DiFronzo's picture
Update README.md
38669b9
|
raw
history blame
1.13 kB

Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amongst six categories:

  • WALKING,
  • WALKING_UPSTAIRS,
  • WALKING_DOWNSTAIRS,
  • SITTING,
  • STANDING

The experiments have been carried out with a group of 16 volunteers within an age bracket of 19-26 years. Each person performed five activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING) wearing a smartphone (Samsung Galaxy S8) in the pucket. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually.

'raw_data/labels.txt': include all the activity labels available for the dataset (1 per row).
   Column 1: experiment number ID,
   Column 2: user number ID,
   Column 3: activity number ID
   Column 4: Label start point (in number of signal log samples (recorded at 50Hz))
   Column 5: Label end point (in number of signal log samples)

activity_type:
 1 WALKING
 2 WALKING_UPSTAIRS
 3 WALKING_DOWNSTAIRS
 4 SITTING
 5 STANDING