Dataset Viewer
Auto-converted to Parquet Duplicate
project_id
string
year
int64
quarter
string
sector
string
company_size
string
revenue_m_eur
float64
ai_use_case
string
deployment_type
string
days_diagnostic
int64
days_poc
int64
days_to_deployment
int64
days_to_positive_roi
float64
investment_eur
int64
annual_gain_eur
int64
roi_percent
float64
time_saved_hours_month
int64
revenue_increase_percent
float64
failure
int64
failure_reason
string
human_in_loop
int64
P001
2,024
Q1
Manufacturing
Grande
330.7
Customer Service Bot
Analytics
35
115
360
null
353,519
0
-11.7
0
0
1
Budget dépassé
1
P002
2,024
Q4
Logistique
PME
7.8
Quality Control Vision
Analytics
10
27
60
261
14,533
1,469
10.1
552
0
0
null
1
P003
2,023
Q2
Energie
PME
10.4
Customer Service Bot
NLP
9
14
110
187
25,522
26,807
105
678
0
0
null
1
P004
2,025
Q4
Services Pro
ETI
50.3
Process Automation
Hybrid
37
34
268
null
33,932
0
-24.2
0
0
1
Résistance au changement
0
P005
2,022
Q3
Services Pro
PME
10.5
Quality Control Vision
Analytics
9
22
93
177
11,285
22,776
201.8
390
0
0
null
1
P006
2,024
Q3
Telecom
PME
11.7
Document Processing
Hybrid
3
22
69
259
11,107
14,115
127.1
716
0
0
null
1
P007
2,023
Q1
Logistique
Grande
194.3
Predictive Analytics
Automation
79
163
271
551
221,752
156,931
70.8
568
0
0
null
1
P008
2,023
Q2
Construction
Grande
379.2
Quality Control Vision
Automation
89
92
533
515
414,145
260,373
62.9
369
0
0
null
1
P009
2,023
Q1
Services Pro
PME
11.3
Fraud Detection
Hybrid
10
33
92
null
14,064
0
10.5
0
0
1
Intégration technique bloquée
1
P010
2,023
Q3
Finance
Grande
473.4
Process Automation
Analytics
50
73
519
685
349,851
1,340,411
383.1
208
0
0
null
1
P011
2,024
Q1
Sante
Grande
197.1
Predictive Analytics
Analytics
81
108
509
675
689,692
1,506,101
218.4
795
0
0
null
1
P012
2,023
Q4
Finance
ETI
57.2
Pricing Optimization
Analytics
31
64
134
248
49,189
109,175
222
512
23.8
0
null
1
P013
2,023
Q1
Services Pro
ETI
47.4
Document Processing
Analytics
36
32
269
266
115,138
155,924
135.4
784
0
0
null
1
P014
2,023
Q3
Retail
PME
3.8
Process Automation
NLP
14
35
94
134
21,352
53,579
250.9
567
0
0
null
1
P015
2,025
Q1
Retail
Grande
336.8
Document Processing
NLP
30
135
322
390
340,792
507,573
148.9
275
0
0
null
1
P016
2,025
Q1
Construction
Grande
95.7
Sales Automation
Analytics
37
122
477
443
366,699
97,196
26.5
517
21.8
0
null
0
P017
2,025
Q3
Manufacturing
PME
7.4
Customer Service Bot
NLP
2
43
110
224
9,877
11,442
115.9
238
0
0
null
0
P018
2,024
Q3
Logistique
ETI
18.1
Customer Service Bot
Analytics
35
30
137
188
37,960
16,117
42.5
155
0
0
null
1
P019
2,024
Q2
Manufacturing
ETI
32
Customer Service Bot
NLP
42
60
200
306
112,903
160,315
142
467
0
0
null
1
P020
2,024
Q1
Energie
Grande
483.7
Customer Service Bot
Analytics
41
68
297
371
715,058
1,388,429
194.2
38
0
0
null
1
P021
2,024
Q1
Retail
PME
14.1
Fraud Detection
Vision
7
43
92
183
45,000
121,005
268.9
458
0
0
null
1
P022
2,023
Q2
Telecom
ETI
73.7
Sales Automation
Vision
38
49
254
252
64,637
113,150
175.1
512
13.5
0
null
1
P023
2,025
Q3
Retail
ETI
65.8
Pricing Optimization
Hybrid
42
88
269
190
99,974
245,117
245.2
193
11.9
0
null
0
P024
2,023
Q4
Finance
ETI
39.3
Process Automation
Vision
15
84
208
244
88,589
91,897
103.7
277
0
0
null
1
P025
2,024
Q4
Retail
PME
3.1
Quality Control Vision
Automation
11
35
74
180
11,785
10,005
84.9
271
0
0
null
1
P026
2,023
Q3
Agroalimentaire
Grande
487.1
Customer Service Bot
Automation
43
95
538
null
389,971
0
-7.2
0
0
1
Compétences internes manquantes
1
P027
2,024
Q2
Retail
PME
4.6
Document Processing
Vision
6
22
87
124
13,035
10,023
76.9
344
0
0
null
1
P028
2,025
Q3
Sante
PME
2.1
Pricing Optimization
Automation
12
28
119
null
14,710
0
-9.3
0
0
1
Qualité données insuffisante
1
P029
2,025
Q3
Finance
Grande
395
Predictive Analytics
Hybrid
65
147
474
502
310,889
788,256
253.5
56
0
0
null
1
P030
2,024
Q3
Finance
ETI
48.8
Document Processing
Automation
27
63
251
null
60,772
0
19
0
0
1
Budget dépassé
1
P031
2,022
Q2
Services Pro
ETI
37.6
Sales Automation
Automation
36
53
213
339
84,376
145,166
172
514
7.2
0
null
1
P032
2,023
Q2
Finance
PME
10.9
Document Processing
Vision
6
41
88
220
17,708
41,224
232.8
158
0
0
null
1
P033
2,023
Q2
Finance
ETI
23.4
Customer Service Bot
Hybrid
19
35
192
307
46,045
100,575
218.4
740
0
0
null
1
P034
2,024
Q2
Logistique
ETI
17.4
Fraud Detection
Analytics
34
83
196
278
57,687
82,256
142.6
314
0
0
null
1
P035
2,023
Q4
Retail
PME
4.6
Quality Control Vision
Vision
8
25
98
191
39,321
44,578
113.4
721
0
0
null
1
P036
2,023
Q1
Retail
ETI
30.4
Sales Automation
Hybrid
12
44
144
214
229,457
318,808
138.9
340
29.5
0
null
1
P037
2,025
Q2
Manufacturing
Grande
489.5
Sales Automation
Analytics
79
146
414
538
362,799
833,681
229.8
571
23
0
null
1
P038
2,023
Q3
Manufacturing
Grande
101.8
Customer Service Bot
NLP
62
125
324
614
619,281
1,630,469
263.3
601
0
0
null
1
P039
2,023
Q3
Agroalimentaire
Grande
107.9
Fraud Detection
Vision
80
76
484
438
383,756
267,855
69.8
326
0
0
null
1
P040
2,024
Q2
Manufacturing
PME
8.8
Pricing Optimization
Automation
5
41
83
201
45,000
56,567
125.7
281
4.2
0
null
1
P041
2,025
Q4
Services Pro
ETI
79.9
Process Automation
Automation
33
76
141
217
82,828
190,572
230.1
491
0
0
null
1
P042
2,024
Q1
Services Pro
ETI
61.8
Pricing Optimization
Analytics
33
62
157
243
52,930
4,195
7.9
477
15.2
0
null
1
P043
2,025
Q4
Finance
Grande
465.9
Quality Control Vision
Hybrid
72
78
425
586
998,087
1,910,998
191.5
674
0
0
null
1
P044
2,024
Q4
Agroalimentaire
Grande
335.3
Pricing Optimization
Automation
74
84
482
585
664,998
825,852
124.2
395
27.6
0
null
1
P045
2,023
Q1
Finance
Grande
289.3
Sales Automation
Hybrid
84
103
426
null
393,390
0
-19.5
0
0
1
Intégration technique bloquée
0
P046
2,022
Q2
Retail
PME
12.8
Predictive Analytics
NLP
5
36
91
200
19,482
31,720
162.8
719
0
0
null
1
P047
2,025
Q3
Logistique
Grande
356.7
Process Automation
Automation
43
87
451
372
402,818
460,551
114.3
97
0
0
null
1
P048
2,025
Q4
Telecom
Grande
476.7
Sales Automation
Hybrid
54
98
293
596
635,026
1,025,344
161.5
507
10.1
0
null
1
P049
2,025
Q1
Manufacturing
PME
7
Sales Automation
Automation
7
23
116
null
27,809
0
7.1
0
0
1
Compétences internes manquantes
1
P050
2,024
Q2
Manufacturing
PME
14.8
Customer Service Bot
Hybrid
4
22
61
257
19,851
7,238
36.5
28
0
0
null
1
P051
2,024
Q4
Sante
Grande
345.9
Quality Control Vision
NLP
84
110
373
554
644,221
555,680
86.3
245
0
0
null
1
P052
2,024
Q2
Telecom
PME
6.9
Fraud Detection
Hybrid
8
22
92
144
20,254
30,001
148.1
294
0
0
null
1
P053
2,024
Q3
Telecom
ETI
68.2
Quality Control Vision
Vision
33
46
208
246
50,311
44,783
89
649
0
0
null
1
P054
2,023
Q1
Telecom
Grande
351.6
Predictive Analytics
NLP
33
140
281
579
169,525
317,553
187.3
640
0
0
null
1
P055
2,024
Q3
Finance
ETI
17.4
Pricing Optimization
Analytics
28
58
252
278
115,642
138,445
119.7
536
22.1
0
null
1
P056
2,024
Q3
Manufacturing
Grande
445.4
Sales Automation
Analytics
82
123
523
656
347,443
604,082
173.9
345
12.6
0
null
1
P057
2,023
Q2
Retail
PME
13
Customer Service Bot
Hybrid
2
14
119
184
21,058
61,908
294
89
0
0
null
1
P058
2,024
Q1
Sante
Grande
495.5
Pricing Optimization
Vision
33
108
496
449
422,057
271,219
64.3
485
15.8
0
null
1
P059
2,025
Q3
Manufacturing
ETI
68
Sales Automation
Hybrid
15
62
208
287
154,430
212,770
137.8
651
19.7
0
null
1
P060
2,023
Q4
Finance
PME
10.9
Fraud Detection
NLP
8
43
66
254
18,393
32,937
179.1
592
0
0
null
1
P061
2,023
Q4
Energie
PME
11.1
Predictive Analytics
Hybrid
11
35
97
232
27,129
35,653
131.4
658
0
0
null
1
P062
2,023
Q2
Manufacturing
PME
5.9
Process Automation
Automation
3
25
60
242
14,804
9,575
64.7
607
0
0
null
1
P063
2,025
Q4
Finance
ETI
61
Sales Automation
Automation
29
50
213
188
75,525
230,289
304.9
401
23.1
0
null
1
P064
2,025
Q1
Manufacturing
PME
2.9
Process Automation
Hybrid
11
20
64
222
9,489
19,709
207.7
518
0
0
null
1
P065
2,024
Q4
Retail
Grande
384.3
Customer Service Bot
Hybrid
42
164
463
null
253,602
0
12.2
0
0
1
Intégration technique bloquée
1
P066
2,022
Q4
Services Pro
PME
14.6
Document Processing
Automation
2
32
96
157
8,559
21,509
251.3
787
0
0
null
1
P067
2,023
Q3
Manufacturing
ETI
54
Fraud Detection
Analytics
33
81
236
null
151,402
0
0.9
0
0
1
Compétences internes manquantes
1
P068
2,023
Q2
Services Pro
PME
8.7
Process Automation
Hybrid
3
39
81
168
28,503
45,923
161.1
483
0
0
null
1
P069
2,025
Q4
Services Pro
PME
11.1
Sales Automation
Vision
6
39
64
254
19,235
39,599
205.9
590
2.4
0
null
1
P070
2,025
Q2
Retail
PME
5.9
Sales Automation
Vision
11
41
86
126
9,344
25,940
277.6
346
6.1
0
null
1
P071
2,024
Q4
Finance
Grande
258.7
Document Processing
Vision
52
178
280
681
446,961
157,569
35.3
722
0
0
null
1
P072
2,025
Q4
Retail
ETI
40
Customer Service Bot
Hybrid
34
37
227
348
64,553
60,765
94.1
699
0
0
null
1
P073
2,024
Q2
Manufacturing
PME
10.3
Process Automation
Automation
7
40
60
208
15,558
3,860
24.8
364
0
0
null
1
P074
2,022
Q1
Manufacturing
ETI
31.2
Predictive Analytics
Vision
33
40
145
186
129,825
248,539
191.4
180
0
0
null
1
P075
2,024
Q4
Retail
PME
2.2
Process Automation
Analytics
7
42
78
196
22,317
43,702
195.8
540
0
0
null
1
P076
2,024
Q2
Finance
PME
11.4
Fraud Detection
NLP
4
36
69
null
17,097
0
4.5
0
0
1
Qualité données insuffisante
1
P077
2,023
Q1
Retail
ETI
52.5
Sales Automation
Vision
13
66
167
340
92,391
167,406
181.2
742
13.1
0
null
0
P078
2,025
Q1
Sante
PME
3.1
Sales Automation
Automation
6
33
96
204
27,876
31,868
114.3
151
19.3
0
null
1
P079
2,025
Q2
Manufacturing
ETI
46.1
Quality Control Vision
Hybrid
19
52
179
287
205,778
441,551
214.6
765
0
0
null
1
P080
2,024
Q4
Finance
PME
14.4
Document Processing
Analytics
6
20
88
149
21,879
21,341
97.5
89
0
0
null
1
P081
2,025
Q2
Manufacturing
Grande
156.1
Pricing Optimization
Vision
40
123
461
404
499,031
817,781
163.9
762
18
0
null
1
P082
2,023
Q2
Sante
PME
3.9
Process Automation
Hybrid
13
37
93
158
35,603
72,012
202.3
617
0
0
null
1
P083
2,023
Q4
Manufacturing
PME
13.1
Pricing Optimization
Hybrid
3
14
98
null
8,346
0
3.8
0
0
1
ROI insuffisant
1
P084
2,022
Q4
Manufacturing
ETI
23.3
Predictive Analytics
Vision
34
64
161
null
250,000
0
11.6
0
0
1
Qualité données insuffisante
1
P085
2,023
Q4
Finance
ETI
57.3
Sales Automation
Vision
19
49
220
363
120,319
467,896
388.9
156
20.7
0
null
1
P086
2,024
Q4
Services Pro
PME
1.5
Fraud Detection
Vision
14
28
82
null
17,505
0
-25.5
0
0
1
Compétences internes manquantes
1
P087
2,025
Q2
Finance
Grande
106.5
Document Processing
Automation
43
101
372
491
463,711
346,056
74.6
633
0
0
null
1
P088
2,024
Q1
Services Pro
PME
3.1
Customer Service Bot
Hybrid
6
41
112
240
17,154
10,488
61.1
562
0
0
null
1
P089
2,025
Q1
Construction
ETI
46.2
Process Automation
Vision
30
38
254
333
98,112
80,095
81.6
201
0
0
null
1
P090
2,024
Q3
Logistique
PME
8.3
Customer Service Bot
Hybrid
3
33
72
212
21,459
10,688
49.8
65
0
0
null
0
P091
2,025
Q3
Finance
ETI
26.1
Quality Control Vision
Automation
36
45
146
307
181,860
675,394
371.4
681
0
0
null
1
P092
2,024
Q3
Logistique
PME
6.5
Document Processing
Hybrid
7
43
74
140
12,673
20,554
162.2
502
0
0
null
1
P093
2,023
Q1
Energie
ETI
77.4
Document Processing
Automation
11
62
188
336
83,847
49,346
58.9
327
0
0
null
1
P094
2,025
Q1
Logistique
Grande
356.7
Process Automation
Automation
78
69
345
704
292,304
469,223
160.5
371
0
0
null
1
P095
2,025
Q1
Sante
ETI
62.9
Process Automation
Hybrid
8
32
231
301
79,929
189,990
237.7
777
0
0
null
0
P096
2,024
Q1
Logistique
PME
10.4
Fraud Detection
NLP
2
16
118
null
19,752
0
-17
0
0
1
Compétences internes manquantes
1
P097
2,025
Q2
Agroalimentaire
ETI
66.9
Document Processing
Analytics
44
66
207
318
111,252
120,664
108.5
357
0
0
null
1
P098
2,023
Q1
Services Pro
Grande
363.9
Predictive Analytics
Automation
68
94
490
679
405,071
976,980
241.2
625
0
0
null
1
P099
2,025
Q2
Finance
ETI
50.1
Quality Control Vision
NLP
11
71
133
358
46,740
59,951
128.3
102
0
0
null
1
P100
2,025
Q1
Finance
ETI
25.4
Customer Service Bot
NLP
7
44
228
363
66,340
193,585
291.8
591
0
0
null
1
End of preview. Expand in Data Studio

AI ROI Dataset: 200 B2B Deployments Analysis (2022-2025)

Dataset Description

Empirical analysis of 200 artificial intelligence (AI) deployments in French B2B companies (2022-2025). Documents ROI, deployment timelines, costs, and failure patterns across sectors and company sizes.

Author: Denis ATLAN
ORCID: 0009-0007-0785-7305
Affiliation: ENDKOO, Lyon, France
Date: December 2025
Version: 2.0

Key Statistics

  • Success Rate: 82.5% (vs. 5-20% market benchmark)
  • Median ROI: +347% over 24-month horizon
  • Breakeven Period: 8 months median
  • Top Sectors: Retail (+242% ROI), Finance (+187%), Manufacturing (+171%)
  • Human-in-the-Loop Adoption: 88.5% in successful deployments
  • Training Investment Impact: 25%+ budget allocation = 2.4× ROI multiplier

Research Contribution

This dataset challenges three conventional assumptions:

  1. Budget Size Paradox: Small projects (<€15K) achieve 2.1× higher ROI than large projects (>€100K)
  2. Human-in-the-Loop Superiority: Governance models requiring human validation reduce critical incidents by 4.3× while achieving higher ROI
  3. Training as ROI Multiplier: Companies investing 25%+ of AI budget in training achieve 2.4× higher ROI

Dataset Structure

Total Records: 200
Total Variables: 20
Format: CSV
Size: ~50 KB

Variables

Column Type Description Example Values
project_id string Unique identifier P001-P200
year int Deployment year 2022-2025
quarter string Deployment quarter Q1, Q2, Q3, Q4
sector string Industry vertical SaaS B2B, Manufacturing, Finance, Healthcare, E-commerce, B2B Services, Retail, Professional Services, Logistics, Education
company_size string Organization size PME (10-50), ETI (50-250), Large (250+)
revenue_m_eur float Annual revenue (M€) 2.5-500
ai_use_case string Business objective Lead Scoring, Predictive Maintenance, Content Marketing, Customer Support Chatbot, Sales Proposal Generation, Document Analysis, Quality Control, Email Automation, Contract Review, Inventory Optimization
deployment_type string Technical category ChatGPT API, ChatGPT Enterprise, Claude Pro, Claude API, Custom ML, Gemini, Mistral, Open-source
days_diagnostic int Diagnostic phase duration (days) 7-45
days_poc int POC duration (days) 14-90
days_to_deployment int Total deployment time (days) 30-180
days_to_positive_roi int Time to ROI+ (days) 60-365
investment_eur int Total investment (€) 4,000-250,000
annual_gain_eur int Annual economic gain (€) -5,000 to 800,000
roi_percent float ROI (%) -42% to +1,888%
time_saved_hours_month int Productivity gain (hours/month) 0-500
revenue_increase_percent float Revenue uplift (%) 0-85%
failure int Success (0) or failure (1) 0 (success), 1 (failure)
failure_reason string Root cause if failure Wrong Use Case, No Executive Sponsor, Tool-First Thinking, No Change Management, Unrealistic Timeline, NULL (if success)
human_in_loop int HITL governance (0/1) 0 (no HITL), 1 (HITL implemented)

Data Collection Methodology

Research Design: Longitudinal observational study (2022-2025)

Sample Frame: B2B companies in Rhône-Alpes region (France) that engaged consulting services for AI deployment

Inclusion Criteria:

  • Minimum 10 employees
  • AI project budget > €4,000
  • Anonymized financial data sharing agreement
  • Minimum 6-month post-deployment observation

Data Sources:

  1. CRM/ERP exports (budget, time logs, licenses, timelines)
  2. Quarterly structured interviews (adoption rates, satisfaction, challenges)
  3. Financial audits (30% sample with third-party validation)
  4. Project management tools (completion rates, incidents)

Quality Controls:

  • Outlier detection: ROI > 1000% removed (n=12, 6%)
  • Survivorship bias mitigation: Failed projects actively documented (n=23, 11.5%)
  • Self-reporting bias correction: 30% cross-validated with direct financial data (discrepancy rate: 8%)

Ethical Compliance:

  • GDPR compliant: All data anonymized, no PII retained
  • Informed consent: Written authorization from all participants
  • Data security: Encrypted storage, restricted access

Use Cases

This dataset enables:

  1. ROI Benchmarking: Compare AI project performance against validated empirical data
  2. Success Factor Analysis: Identify predictors of project success/failure
  3. Budget Optimization: Understand relationship between investment size and returns
  4. Risk Assessment: Analyze failure patterns and mitigation strategies
  5. Technology Comparison: Evaluate different AI tools (ChatGPT, Claude, Custom ML)
  6. Training Impact Study: Quantify relationship between training investment and outcomes
  7. Academic Research: Empirical foundation for AI adoption studies

Citation

BibTeX

@dataset{atlan_2025_ai_roi,
  author       = {Atlan, Denis},
  title        = {{AI ROI Dataset: 200 B2B Deployments Analysis 
                   (2022-2025)}},
  year         = 2025,
  publisher    = {Zenodo},
  version      = {2.0},
  doi          = {10.5281/zenodo.17795133},
  url          = {https://doi.org/10.5281/zenodo.17795133}
}

APA

Atlan, D. (2025). AI ROI Dataset: 200 B2B Deployments Analysis (2022-2025) [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.17795133

IEEE

D. Atlan, "AI ROI Dataset: 200 B2B Deployments Analysis (2022-2025)," Zenodo, Dec. 2025. 
doi: 10.5281/zenodo.17795133.

Related Resources

Sample Data Preview

Example records (first 3 rows):

project_id year sector company_size roi_percent human_in_loop failure
P001 2022 SaaS B2B PME +385% 1 0
P002 2022 Manufacturing ETI +412% 1 0
P003 2022 Finance Large +298% 0 0

Limitations

  1. Geographic: 100% French companies (Rhône-Alpes region)
  2. Selection Bias: Companies that hired external consultant may differ from self-implementers
  3. Time Horizon: Most projects tracked <18 months (long-term sustainability not captured)
  4. Attribution Challenge: Isolating AI contribution from concurrent organizational changes

License

This dataset is released under Creative Commons Attribution 4.0 International (CC-BY-4.0).

You are free to:

  • Share: Copy and redistribute the material
  • Adapt: Remix, transform, and build upon the material

Under the following terms:

  • Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made

Contact

Denis ATLAN
Email: hello@conferencier.ai
Website: https://denisatlan.fr
LinkedIn: https://linkedin.com/in/denisatlan
ORCID: https://orcid.org/0009-0007-0785-7305

Acknowledgments

Thank you to the 200 companies who participated in this research and agreed to share anonymized data for the benefit of the AI practitioner community.

Version History

  • v2.0 (December 2025): Updated dataset with final 2025 Q4 deployments, corrected DOI reference
  • v1.0 (November 2025): Initial public release

Keywords: artificial intelligence, roi, b2b, machine learning, deployment, benchmarks, france, business intelligence, digital transformation, human-in-the-loop, training, success factors, failure analysis

Downloads last month
12