The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: EnumaInc/ko-TinyLlama-1.1B-intermediate-step-1431k-3Tb-vocab-extend-45000-untrained-v1
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /root/axolotl/datasets/mix_corpus_extended_validated.json
    type: completion
    field: text
dataset_prepared_path:

val_set_size: 0.01
output_dir: ./out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: language-transfer-eeve-v2
wandb_entity:
wandb_watch:
wandb_name: eeve-v2-stage1
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 32
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00015

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 500
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128

save_strategy: steps
save_steps: 100
save_total_limit: 5

#saves_per_epoch: 1

debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:

# for curriculum learning
shuffle_merged_datasets: false

unfrozen_parameters:
  - ^model.embed_tokens.weight$[32000:]
# - model.layers.2[0-9]+.block_sparse_moe.gate
#  - model.layers.2[0-9]+.block_sparse_moe.experts
#  - model.layers.3[0-9]+.block_sparse_moe.gate
#  - model.layers.3[0-9]+.block_sparse_moe.experts

out

This model is a fine-tuned version of EnumaInc/ko-TinyLlama-1.1B-intermediate-step-1431k-3Tb-vocab-extend-45000-untrained-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.651 1.0 1918 1.6306

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
96