Datasets:
metadata
license: mit
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: method
dtype: string
- name: clean_method
dtype: string
- name: doc
dtype: string
- name: comment
dtype: string
- name: method_name
dtype: string
- name: extra
struct:
- name: repo_name
dtype: string
- name: path
dtype: string
- name: license
dtype: string
- name: size
dtype: int64
- name: imports
sequence: string
- name: imports_info
dtype: string
- name: cluster_imports_info
dtype: string
- name: libraries
sequence: string
- name: libraries_info
dtype: string
- name: id
dtype: int64
splits:
- name: train
num_bytes: 5373034269
num_examples: 2916582
download_size: 2492962682
dataset_size: 5373034269
tags:
- code-generation
pretty_name: 'CodeGen4Libs '
size_categories:
- 1M<n<10M
Dataset Card for FudanSELab CodeGen4Libs Code Retrieval Library
Dataset Description
- Repository: GitHub Repository
- Paper: CodeGen4Libs: A Two-stage Approach for Library-oriented Code Generation
Dataset Summary
This dataset is the code retrieval library used in the ASE2023 paper titled "CodeGen4Libs: A Two-stage Approach for Library-oriented Code Generation".
Additional Information
Citation Information
@inproceedings{ase2023codegen4libs,
author = {Mingwei Liu and Tianyong Yang and Yiling Lou and Xueying Du and Ying Wang and and Xin Peng},
title = {{CodeGen4Libs}: A Two-stage Approach for Library-oriented Code Generation},
booktitle = {38th {IEEE/ACM} International Conference on Automated Software Engineering,
{ASE} 2023, Kirchberg, Luxembourg, September 11-15, 2023},
pages = {0--0},
publisher = {{IEEE}},
year = {2023},
}