Datasets:
GAIR
/

Modalities:
Text
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
OlympicArena / README.md
AdinaY's picture
AdinaY HF staff
Add paper link
ec68a86 verified
|
raw
history blame
7.79 kB
---
Paper: arxiv.org/abs/2406.16772
license: cc-by-nc-sa-4.0
dataset_info:
- config_name: Math
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 3153019
num_examples: 2977
- name: val
num_bytes: 484904
num_examples: 244
download_size: 1402261
dataset_size: 3637923
- config_name: Physics
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 3139836
num_examples: 1303
- name: val
num_bytes: 283157
num_examples: 90
download_size: 1613993
dataset_size: 3422993
- config_name: Chemistry
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 3102033
num_examples: 1354
- name: val
num_bytes: 284518
num_examples: 65
download_size: 1389141
dataset_size: 3386551
- config_name: Biology
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 3483679
num_examples: 1495
- name: val
num_bytes: 238015
num_examples: 63
download_size: 1814227
dataset_size: 3721694
- config_name: Geography
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 2555530
num_examples: 1522
- name: val
num_bytes: 138082
num_examples: 68
download_size: 1212126
dataset_size: 2693612
- config_name: Astronomy
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 3161275
num_examples: 1110
- name: val
num_bytes: 320943
num_examples: 90
download_size: 1685604
dataset_size: 3482218
- config_name: CS
features:
- name: id
dtype: string
- name: problem
dtype: string
- name: prompt
dtype: string
- name: figure_urls
sequence: string
- name: answer
sequence: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: unit
sequence: string
- name: answer_sequence
sequence: string
- name: type_sequence
sequence: string
- name: test_cases
sequence:
- name: input
dtype: string
- name: output
dtype: string
- name: subject
dtype: string
- name: language
dtype: string
- name: modality
dtype: string
splits:
- name: test
num_bytes: 1235615
num_examples: 216
- name: val
num_bytes: 496838967
num_examples: 18
download_size: 256590378
dataset_size: 498074582
configs:
- config_name: Math
data_files:
- split: test
path: Math/test-*
- split: val
path: Math/val-*
- config_name: Physics
data_files:
- split: test
path: Physics/test-*
- split: val
path: Physics/val-*
- config_name: Chemistry
data_files:
- split: test
path: Chemistry/test-*
- split: val
path: Chemistry/val-*
- config_name: Biology
data_files:
- split: test
path: Biology/test-*
- split: val
path: Biology/val-*
- config_name: Geography
data_files:
- split: test
path: Geography/test-*
- split: val
path: Geography/val-*
- config_name: Astronomy
data_files:
- split: test
path: Astronomy/test-*
- split: val
path: Astronomy/val-*
- config_name: CS
data_files:
- split: test
path: CS/test-*
- split: val
path: CS/val-*
task_categories:
- question-answering
language:
- en
- zh
pretty_name: OlympicArena
size_categories:
- 10K<n<100K
tags:
- croissant
---
# OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI
**OlympicArena** is a comprehensive, highly-challenging, and rigorously curated benchmark featuring a detailed, fine-grained evaluation mechanism designed to assess advanced AI capabilities across a broad spectrum of Olympic-level challenges.
This benchmark encompasses seven disciplines: Mathematics, Physics, Chemistry, Biology, Geography, Astronomy, and Computer Science. Each discipline is divided into two splits: validation (val) and test. The validation split includes publicly available answers for small-scale testing and evaluation, while the test split does not disclose the answers, users could submit their results.
# An Example to load the data
```python
from datasets import load_dataset
dataset=load_dataset("GAIR/OlympicArena", "Math", split="val")
print(dataset[0])
```
More details on loading and using the data are at our [github page](https://github.com/GAIR-NLP/OlympicArena).