Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
multiun / README.md
albertvillanova's picture
Add dataset name to the title in the dataset card
72e1e32 verified
|
raw
history blame
12.2 kB
metadata
annotations_creators:
  - found
language_creators:
  - found
language:
  - ar
  - de
  - en
  - es
  - fr
  - ru
  - zh
license:
  - unknown
multilinguality:
  - multilingual
size_categories:
  - 100K<n<1M
source_datasets:
  - original
task_categories:
  - translation
task_ids: []
paperswithcode_id: multiun
pretty_name: Multilingual Corpus from United Nation Documents
dataset_info:
  - config_name: ar-de
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - de
    splits:
      - name: train
        num_bytes: 94466397
        num_examples: 165090
    download_size: 21869935
    dataset_size: 94466397
  - config_name: ar-en
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - en
    splits:
      - name: train
        num_bytes: 4189852369
        num_examples: 9759125
    download_size: 1036296368
    dataset_size: 4189852369
  - config_name: ar-es
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - es
    splits:
      - name: train
        num_bytes: 4509675284
        num_examples: 10119379
    download_size: 1101206667
    dataset_size: 4509675284
  - config_name: ar-fr
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - fr
    splits:
      - name: train
        num_bytes: 4516850009
        num_examples: 9929567
    download_size: 1109705925
    dataset_size: 4516850009
  - config_name: ar-ru
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - ru
    splits:
      - name: train
        num_bytes: 5932866867
        num_examples: 10206243
    download_size: 1261123878
    dataset_size: 5932866867
  - config_name: ar-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ar
              - zh
    splits:
      - name: train
        num_bytes: 3781658413
        num_examples: 9832293
    download_size: 1009696775
    dataset_size: 3781658413
  - config_name: de-en
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - de
              - en
    splits:
      - name: train
        num_bytes: 76684549
        num_examples: 162981
    download_size: 19468529
    dataset_size: 76684549
  - config_name: de-es
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - de
              - es
    splits:
      - name: train
        num_bytes: 80936653
        num_examples: 162078
    download_size: 20266591
    dataset_size: 80936653
  - config_name: de-fr
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - de
              - fr
    splits:
      - name: train
        num_bytes: 81888435
        num_examples: 164025
    download_size: 20692837
    dataset_size: 81888435
  - config_name: de-ru
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - de
              - ru
    splits:
      - name: train
        num_bytes: 111517934
        num_examples: 164792
    download_size: 23507789
    dataset_size: 111517934
  - config_name: de-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - de
              - zh
    splits:
      - name: train
        num_bytes: 70534818
        num_examples: 176933
    download_size: 19927209
    dataset_size: 70534818
  - config_name: en-es
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - en
              - es
    splits:
      - name: train
        num_bytes: 4128141663
        num_examples: 11350967
    download_size: 1123164180
    dataset_size: 4128141663
  - config_name: en-fr
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - en
              - fr
    splits:
      - name: train
        num_bytes: 4678055160
        num_examples: 13172019
    download_size: 1355002731
    dataset_size: 4678055160
  - config_name: en-ru
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - en
              - ru
    splits:
      - name: train
        num_bytes: 5632662839
        num_examples: 11654416
    download_size: 1285801078
    dataset_size: 5632662839
  - config_name: en-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - en
              - zh
    splits:
      - name: train
        num_bytes: 2960376046
        num_examples: 9564315
    download_size: 900076520
    dataset_size: 2960376046
  - config_name: es-fr
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - es
              - fr
    splits:
      - name: train
        num_bytes: 4454712498
        num_examples: 11441889
    download_size: 1195733510
    dataset_size: 4454712498
  - config_name: es-ru
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - es
              - ru
    splits:
      - name: train
        num_bytes: 5442655730
        num_examples: 10605056
    download_size: 1228045966
    dataset_size: 5442655730
  - config_name: es-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - es
              - zh
    splits:
      - name: train
        num_bytes: 3223871198
        num_examples: 9847770
    download_size: 953250084
    dataset_size: 3223871198
  - config_name: fr-ru
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - fr
              - ru
    splits:
      - name: train
        num_bytes: 5979879089
        num_examples: 11761738
    download_size: 1364307157
    dataset_size: 5979879089
  - config_name: fr-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - fr
              - zh
    splits:
      - name: train
        num_bytes: 3241098333
        num_examples: 9690914
    download_size: 962824881
    dataset_size: 3241098333
  - config_name: ru-zh
    features:
      - name: translation
        dtype:
          translation:
            languages:
              - ru
              - zh
    splits:
      - name: train
        num_bytes: 4233875537
        num_examples: 9557007
    download_size: 1037881127
    dataset_size: 4233875537
config_names:
  - ar-de
  - ar-en
  - ar-es
  - ar-fr
  - ar-ru
  - ar-zh
  - de-en
  - de-es
  - de-fr
  - de-ru
  - de-zh
  - en-es
  - en-fr
  - en-ru
  - en-zh
  - es-fr
  - es-ru
  - es-zh
  - fr-ru
  - fr-zh
  - ru-zh

Dataset Card for MultiUN

Table of Contents

Dataset Description

Dataset Summary

The MultiUN parallel corpus is extracted from the United Nations Website , and then cleaned and converted to XML at Language Technology Lab in DFKI GmbH (LT-DFKI), Germany. The documents were published by UN from 2000 to 2009.

This is a collection of translated documents from the United Nations originally compiled by Andreas Eisele and Yu Chen (see http://www.euromatrixplus.net/multi-un/).

This corpus is available in all 6 official languages of the UN consisting of around 300 million words per language

Supported Tasks and Leaderboards

The underlying task is machine translation.

Languages

Parallel texts are present in all six official languages, namely Arabic, Chinese, English, French, Russian and Spanish, with a small part of the documents available also in German.

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

Original MultiUN source data: http://www.euromatrixplus.net/multi-unp

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

If you use this corpus in your work, please cite the paper:

@inproceedings{eisele-chen-2010-multiun,
    title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
    author = "Eisele, Andreas  and
      Chen, Yu",
    booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
    month = may,
    year = "2010",
    address = "Valletta, Malta",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
    abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
}

If you use any part of the corpus (hosted in OPUS) in your own work, please cite the following article:

@inproceedings{tiedemann-2012-parallel,
    title = "Parallel Data, Tools and Interfaces in {OPUS}",
    author = {Tiedemann, J{\"o}rg},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\u{g}}an, Mehmet U{\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
    pages = "2214--2218",
    abstract = "This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project.",
}

Contributions

Thanks to @patil-suraj for adding this dataset.