Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
un_ga / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.18.0)
fad03b7
|
raw
history blame
4.23 kB
---
annotations_creators:
- found
language_creators:
- found
languages:
ar-to-en:
- ar
- en
ar-to-es:
- ar
- es
ar-to-fr:
- ar
- fr
ar-to-ru:
- ar
- ru
ar-to-zh:
- ar
- zh
en-to-es:
- en
- es
en-to-fr:
- en
- fr
en-to-ru:
- en
- ru
en-to-zh:
- en
- zh
es-to-fr:
- es
- fr
es-to-ru:
- es
- ru
es-to-zh:
- es
- zh
fr-to-ru:
- fr
- ru
fr-to-zh:
- fr
- zh
ru-to-zh:
- ru
- zh
licenses:
- unknown
multilinguality:
- translation
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- conditional-text-generation
task_ids:
- machine-translation
paperswithcode_id: null
pretty_name: UnGa
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/UN.php
- **Repository:**
- **Paper:** https://www.researchgate.net/publication/228579662_United_nations_general_assembly_resolutions_A_six-language_parallel_corpus
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is a collection of translated documents from the United Nations originally compiled into a translation memory by Alexandre Rafalovitch, Robert Dale (see http://uncorpora.org).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@inproceedings{title = "United Nations General Assembly Resolutions: a six-language parallel corpus",
abstract = "In this paper we describe a six-ways parallel public-domain corpus consisting of 2100 United Nations General Assembly Resolutions with translations in the six official languages of the United Nations, with an average of around 3 million tokens per language. The corpus is available in a preprocessed, formatting-normalized TMX format with paragraphs aligned across multiple languages. We describe the background to the corpus and its content, the process of its construction, and some of its interesting properties.",
author = "Alexandre Rafalovitch and Robert Dale",
year = "2009",
language = "English",
booktitle = "MT Summit XII proceedings",
publisher = "International Association of Machine Translation",
}
### Contributions
Thanks to [@param087](https://github.com/param087) for adding this dataset.