Datasets:
metadata
annotations_creators:
- found
language_creators:
- found
language:
- ar
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: united-nations-parallel-corpus
pretty_name: United Nations Parallel Corpus
dataset_info:
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 8039689939
num_examples: 20044478
download_size: 2025106743
dataset_size: 8039689939
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 8715754848
num_examples: 20532014
download_size: 2167791297
dataset_size: 8715754848
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 8897848038
num_examples: 20281645
download_size: 2188765415
dataset_size: 8897848038
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 11395923083
num_examples: 20571334
download_size: 2476562835
dataset_size: 11395923083
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 6447658008
num_examples: 17306056
download_size: 1738869755
dataset_size: 6447658008
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 8241635322
num_examples: 25227004
download_size: 2300411698
dataset_size: 8241635322
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 9718522775
num_examples: 30340652
download_size: 2657208676
dataset_size: 9718522775
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 11156164691
num_examples: 25173398
download_size: 2589707636
dataset_size: 11156164691
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 4988812558
num_examples: 17451549
download_size: 1535707641
dataset_size: 4988812558
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 9230891207
num_examples: 25887160
download_size: 2492342915
dataset_size: 9230891207
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 10789780134
num_examples: 22294106
download_size: 2487664520
dataset_size: 10789780134
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 5475365986
num_examples: 17599223
download_size: 1639717723
dataset_size: 5475365986
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 12099669711
num_examples: 25219973
download_size: 2762585269
dataset_size: 12099669711
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 5679222134
num_examples: 17521170
download_size: 1668823634
dataset_size: 5679222134
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 7905443441
num_examples: 17920922
download_size: 1934425373
dataset_size: 7905443441
config_names:
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
Dataset Card for [Dataset Name]
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://opus.nlpl.eu/UNPC/corpus/version/UNPC
- Repository:
- Paper:
- Leaderboard:
- Point of Contact:
Dataset Summary
This parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014)
for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish.
6 languages, 15 bitexts
Supported Tasks and Leaderboards
The underlying task is machine translation.
Languages
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{ziemski-etal-2016-united,
title = "The {U}nited {N}ations Parallel Corpus v1.0",
author = "Ziemski, Micha{\\l} and
Junczys-Dowmunt, Marcin and
Pouliquen, Bruno",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://www.aclweb.org/anthology/L16-1561",
pages = "3530--3534",
abstract = "This paper describes the creation process and statistics of the official United Nations Parallel Corpus, the first parallel corpus composed from United Nations documents published by the original data creator. The parallel corpus presented consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish. The corpus is freely available for download under a liberal license. Apart from the pairwise aligned documents, a fully aligned subcorpus for the six official UN languages is distributed. We provide baseline BLEU scores of our Moses-based SMT systems trained with the full data of language pairs involving English and for all possible translation directions of the six-way subcorpus.",
}
Contributions
Thanks to @patil-suraj for adding this dataset.