Datasets:
YAML tags: null
annotations_creators:
- crowdsourced
language_creators:
- found
languages:
- ru
- ru-RU
- en
licenses:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: HeadlineCause
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
- causal-reasoning
Dataset Card for HeadlineCause
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://github.com/IlyaGusev/HeadlineCause
- Paper: HeadlineCause: A Dataset of News Headlines for Detecting Casualties
- Point of Contact: Ilya Gusev
Dataset Summary
A dataset for detecting implicit causal relations between pairs of news headlines. The dataset includes over 5000 headline pairs from English news and over 9000 headline pairs from Russian news labeled through crowdsourcing. The pairs vary from totally unrelated or belonging to the same general topic to the ones including causation and refutation relations.
Usage
Loading Russian Simple task:
from datasets import load_dataset
dataset = load_dataset("IlyaGusev/headline_cause", "ru_simple")
Supported Tasks and Leaderboards
[More Information Needed]
Languages
This dataset consists of two parts, Russian and English.
Dataset Structure
Data Instances
There is an URL, a title, and a timestamp for each of the two headlines in every data instance. A label is presented in three fields. 'Result' field is a textual label, 'label' field is a numeric label, and the 'agreement' field shows the majority vote agreement between annotators. Additional information includes instance ID and the presence of the link between two articles.
{
'left_url': 'https://www.kommersant.ru/doc/4347456',
'right_url': 'https://tass.ru/kosmos/8488527',
'left_title': 'NASA: информация об отказе сотрудничать с Россией по освоению Луны некорректна',
'right_title': 'NASA назвало некорректными сообщения о нежелании США включать РФ в соглашение по Луне',
'left_timestamp': datetime.datetime(2020, 5, 15, 19, 46, 20),
'right_timestamp': datetime.datetime(2020, 5, 15, 19, 21, 36),
'label': 0,
'result': 'not_cause',
'agreement': 1.0,
'id': 'ru_tg_101',
'has_link': True
}
Data Splits
Dataset | Split | Number of Instances |
---|---|---|
ru_simple | train | 7,641 |
ru_simple | validation | 955 |
ru_simple | test | 957 |
en_simple | train | 4,332 |
en_simple | validation | 542 |
en_simple | test | 542 |
ru_full | train | 5,713 |
ru_full | validation | 715 |
ru_full | test | 715 |
en_full | train | 2,009 |
en_full | validation | 251 |
en_full | test | 252 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
The data was collected by Ilya Gusev.
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]
Contributions
[More Information Needed]