|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- image-segmentation |
|
- object-detection |
|
task_ids: |
|
- semantic-segmentation |
|
- instance-segmentation |
|
tags: |
|
- automotive |
|
- autonomous driving |
|
- synthetic |
|
- safe ai |
|
- validation |
|
- pedestrian detection |
|
- 2d object-detection |
|
- 3d object-detection |
|
- semantic-segmentation |
|
- instance-segmentation |
|
pretty_name: VALERIE22 |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments |
|
|
|
## Dataset Description |
|
|
|
- **Paper:** https://arxiv.org/abs/2308.09632 |
|
- **Point of Contact:** korbinian.hagn@intel.com |
|
|
|
### Dataset Summary |
|
|
|
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
- pedestrian detection |
|
- 2d object-detection |
|
- 3d object-detection |
|
- semantic-segmentation |
|
- instance-segmentation |
|
- ai-validation |
|
|
|
## Dataset Structure |
|
|
|
``` |
|
VALERIE22 |
|
ββββintel_results_sequence_0050 |
|
β ββββground-truth |
|
β β ββββ2d-bounding-box_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β ββββ3d-bounding-box_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β ββββclass-id_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β ββββgeneral-globally-per-frame-analysis_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.csv |
|
β β ββββsemantic-group-segmentation_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β ββββsemantic-instance-segmentation_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β β ββββcar-camera000-0000-{UUID}-0000 |
|
β β β β ββββ{Entity-ID} |
|
β ββββsensor |
|
β β ββββcamera |
|
β β β ββββleft |
|
β β β β ββββpng |
|
β β β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β β β ββββpng_distorted |
|
β β β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
ββββintel_results_sequence_0052 |
|
ββββintel_results_sequence_0054 |
|
ββββintel_results_sequence_0057 |
|
ββββintel_results_sequence_0058 |
|
ββββintel_results_sequence_0059 |
|
ββββintel_results_sequence_0060 |
|
ββββintel_results_sequence_0062 |
|
``` |
|
|
|
### Data Splits |
|
|
|
Train/Validation/Test splits are provided |
|
|
|
### Licensing Information |
|
|
|
Creative Commons Zero v1.0 Universal |
|
|
|
### Citation Information |
|
Relevant publications: |
|
|
|
``` |
|
@misc{grau2023valerie22, |
|
title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments}, |
|
author={Oliver Grau and Korbinian Hagn}, |
|
year={2023}, |
|
eprint={2308.09632}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{hagn2022increasing, |
|
title={Increasing pedestrian detection performance through weighting of detection impairing factors}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium}, |
|
pages={1--10}, |
|
year={2022} |
|
} |
|
|
|
@inproceedings{hagn2022validation, |
|
title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={European Conference on Computer Vision}, |
|
pages={476--491}, |
|
year={2022}, |
|
organization={Springer} |
|
} |
|
|
|
@incollection{grau2022variational, |
|
title={A variational deep synthesis approach for perception validation}, |
|
author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub}, |
|
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety}, |
|
pages={359--381}, |
|
year={2022}, |
|
publisher={Springer International Publishing Cham} |
|
} |
|
|
|
@incollection{hagn2022optimized, |
|
title={Optimized data synthesis for DNN training and validation by sensor artifact simulation}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety}, |
|
pages={127--147}, |
|
year={2022}, |
|
publisher={Springer International Publishing Cham} |
|
} |
|
|
|
@inproceedings{syed2020dnn, |
|
title={DNN analysis through synthetic data variation}, |
|
author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian}, |
|
booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium}, |
|
pages={1--10}, |
|
year={2020} |
|
} |
|
``` |