|
|
|
import torch |
|
import torchvision.transforms as T |
|
from torchvision.models.segmentation import deeplabv3_resnet50 |
|
from PIL import Image |
|
|
|
class FurnitureMaskNode: |
|
def __init__(self): |
|
self.model = deeplabv3_resnet50(pretrained=True).eval() |
|
self.transforms = T.Compose([ |
|
T.Resize(256), |
|
T.CenterCrop(224), |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"input_image": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "detect_furniture" |
|
|
|
CATEGORY = "custom" |
|
|
|
def detect_furniture(self, input_image): |
|
input_image = Image.fromarray((input_image * 255).astype('uint8')) |
|
input_tensor = self.transforms(input_image).unsqueeze(0) |
|
with torch.no_grad(): |
|
output = self.model(input_tensor)['out'][0] |
|
output_predictions = output.argmax(0) |
|
|
|
non_furniture_classes = list(range(1, 151)) |
|
furniture_classes = [5, 10, 20, 25, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] |
|
non_furniture_classes = [cls for cls in non_furniture_classes if cls not in furniture_classes] |
|
|
|
mask = torch.zeros_like(output_predictions, dtype=torch.bool) |
|
for cls in non_furniture_classes: |
|
mask |= (output_predictions == cls) |
|
|
|
mask = ~mask |
|
masked_image = input_image * mask.unsqueeze(-1).float() |
|
|
|
return masked_image, mask |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"FurnitureMask": FurnitureMaskNode |
|
} |
|
|