data / custom_node_furniture_mask.py
ItchyFingaz's picture
Update custom_node_furniture_mask.py
8937a2b
# custom_node_furniture_mask.py by StyleSpace (and GPT4)
import torch
import torchvision.transforms as T
from torchvision.models.segmentation import deeplabv3_resnet50
from PIL import Image
class FurnitureMaskNode:
def __init__(self):
self.model = deeplabv3_resnet50(pretrained=True).eval()
self.transforms = T.Compose([
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input_image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "detect_furniture"
CATEGORY = "custom"
def detect_furniture(self, input_image):
input_image = Image.fromarray((input_image * 255).astype('uint8'))
input_tensor = self.transforms(input_image).unsqueeze(0)
with torch.no_grad():
output = self.model(input_tensor)['out'][0]
output_predictions = output.argmax(0)
non_furniture_classes = list(range(1, 151)) # Adjust the range based on ADE20K classes
furniture_classes = [5, 10, 20, 25, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] # Based on ADE20K
non_furniture_classes = [cls for cls in non_furniture_classes if cls not in furniture_classes]
mask = torch.zeros_like(output_predictions, dtype=torch.bool)
for cls in non_furniture_classes:
mask |= (output_predictions == cls)
mask = ~mask
masked_image = input_image * mask.unsqueeze(-1).float()
return masked_image, mask
NODE_CLASS_MAPPINGS = {
"FurnitureMask": FurnitureMaskNode
}