license: mit
dataset_info:
- config_name: default
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
splits:
- name: train
num_bytes: 366918005
num_examples: 972467
download_size: 256443222
dataset_size: 366918005
- config_name: gemini-augmented
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 11142831.6
num_examples: 9000
- name: test
num_bytes: 1238092.4
num_examples: 1000
download_size: 7541863
dataset_size: 12380924
- config_name: instruct
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 9876880
num_examples: 9000
- name: test
num_bytes: 1104403
num_examples: 1000
download_size: 6887847
dataset_size: 10981283
- config_name: instruct-augmented
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 11171774
num_examples: 9000
- name: test
num_bytes: 1209150
num_examples: 1000
download_size: 7561715
dataset_size: 12380924
- config_name: instruct-large
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1072811901.9168397
num_examples: 970727
- name: test
num_bytes: 1104403
num_examples: 1000
download_size: 673287243
dataset_size: 1073916304.9168396
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: instruct
data_files:
- split: train
path: instruct/train-*
- split: test
path: instruct/test-*
- config_name: instruct-augmented
data_files:
- split: train
path: instruct-augmented/train-*
- split: test
path: instruct-augmented/test-*
- config_name: instruct-large
data_files:
- split: train
path: instruct-large/train-*
- split: test
path: instruct-large/test-*
task_categories:
- translation
- question-answering
language:
- zh
- en
size_categories:
- 100K<n<1M
Dataset Card for WenYanWen_English_Parallel
Dataset Summary
The WenYanWen_English_Parallel dataset is a multilingual parallel corpus in Classical Chinese (Wenyanwen), modern Chinese, and English. The Classical Chinese and modern Chinese parts are sourced from the NiuTrans/Classical-Modern dataset, while the corresponding English translations are generated using Gemini Pro.
Data Fields
info
: A string representing the title or source information of the text.classical
: Classical Chinese (Wenyanwen) text corresponding to the modern text.modern
: A string containing the translation of the original Classical Chinese text into modern Chinese.english
: English translation of the Chinese text.text
: instruction/answer pair in string formatmessages
: instruction/answer pair in conversation format:content
: String representing the content of a message.role
: String representing the role associated with the message (e.g., system, assistent, user).
Here is an example for a dataset entry:
Field | Type | Description |
---|---|---|
info | string | 《辽史·列传·卷二十八》 |
modern | string | 乾统三年,徙封为秦国公。 |
classical | string | 乾统三年,徙封秦国。 |
english | string | In the third year of the Qingtong Era, he was re-enfeoffed as Prince of the Qin State. |
text | string | <s> [INST] 将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。 [/INST] 乾统三年,徙封秦国。</s> |
messages | list | [{"content": "将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。", "role": "user"}, {"content": "乾统三年,徙封秦国。", "role": "assistant"}] |
Dataset Structure
The dataset consists of four subsets: default
, instruct
, instruct-augment
, and instruct-large
.
default
is a parallel translation dataset.instruct
serves as an instruction-tuning dataset and consists of prompt/answer pairs created from a 10,000-sample subset of thedefault
dataset.instruct-augment
is similar toinstruct
, with the distinction being that the prompt/answer pairs have been augmented by Gemini-Pro. (Detailed information can be found in our dataset generation code on Github)instruct-large
is an expanded version ofinstruct
that includes all samples from thedefault
dataset.
Default
info |
modern |
classical |
english |
---|---|---|---|
string | string | string | string |
Split | Examples |
---|---|
Train | 972,467 |
Instruct
info |
modern |
classical |
english |
text |
messages |
---|---|---|---|---|---|
string | string | string | string | string | list of {content : string, role : string} |
Split | Examples |
---|---|
Train | 9,000 |
Test | 1,000 |
Instruct-Augmented
info |
modern |
classical |
english |
text |
messages |
---|---|---|---|---|---|
string | string | string | string | string | list of {content : string, role : string} |
Split | Examples |
---|---|
Train | 9,000 |
Test | 1,000 |
Instruct-Large
info |
modern |
classical |
english |
text |
messages |
---|---|---|---|---|---|
string | string | string | string | string | list of {content : string, role : string} |
Split | Examples |
---|---|
Train | 875,214 |
Test | 97,246 |
Supported Tasks and Leaderboard
This dataset can be used for various multilingual and translation tasks, including but not limited to:
- Neural Machine Translation (Classical Chinese to Modern Chinese)
- Neural Machine Translation (Modern Chinese to English)
- Neural Machine Translation (Classical Chinese to English)
- Multilingual Text-to-Text Transfer
There is currently no official leaderboard for this dataset.
License
Please refer to the license of the NiuTrans/Classical-Modern dataset and the terms of use of Gemini Pro for more information regarding the dataset license.
Citation Information
If you use this dataset in your research, please cite the original sources:
Potential Bias
Since the English translations are generated using Gemini Pro, there might be inconsistencies or errors in the translations, which may introduce bias into the dataset. Additionally, the choice of Classical Chinese texts and their modern Chinese translations may also introduce bias. Finally, the use of a single translation tool for the English translations may result in limited linguistic diversity.
Potential Social Impact
This dataset can be used for various multilingual and translation tasks, which can have a positive impact on facilitating cross-cultural communication and understanding. However, it is important to be aware of the potential biases in the dataset and to use the dataset responsibly. Additionally, as with any dataset, it is important to consider the ethical implications of using this dataset, including issues related to data privacy, consent, and representation.