|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{jiang2019freebaseqa, |
|
title={FreebaseQA: A New Factoid QA Dataset Matching Trivia-Style Question-Answer Pairs with Freebase}, |
|
author={Jiang, Kelvin and Wu, Dekun and Jiang, Hui}, |
|
journal={north american chapter of the association for computational linguistics}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
FreebaseQA is for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase The data set is generated by matching trivia-type question-answer pairs with subject-predicateobject triples in Freebase. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/kelvin-jiang/FreebaseQA" |
|
|
|
_LICENSE = "" |
|
|
|
|
|
_REPO = "https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/" |
|
|
|
_URLs = { |
|
"train": _REPO + "FreebaseQA-train.json", |
|
"eval": _REPO + "FreebaseQA-eval.json", |
|
"dev": _REPO + "FreebaseQA-dev.json", |
|
} |
|
|
|
|
|
class FreebaseQA(datasets.GeneratorBasedBuilder): |
|
"""FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"Question-ID": datasets.Value("string"), |
|
"RawQuestion": datasets.Value("string"), |
|
"ProcessedQuestion": datasets.Value("string"), |
|
"Parses": datasets.Sequence( |
|
{ |
|
"Parse-Id": datasets.Value("string"), |
|
"PotentialTopicEntityMention": datasets.Value("string"), |
|
"TopicEntityName": datasets.Value("string"), |
|
"TopicEntityMid": datasets.Value("string"), |
|
"InferentialChain": datasets.Value("string"), |
|
"Answers": datasets.Sequence( |
|
{ |
|
"AnswersMid": datasets.Value("string"), |
|
"AnswersName": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
} |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir["eval"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["dev"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
dataset = json.load(f) |
|
|
|
if "Questions" in dataset: |
|
for data in dataset["Questions"]: |
|
id_ = data["Question-ID"] |
|
parses = [] |
|
|
|
for item in data["Parses"]: |
|
answers = [answer for answer in item["Answers"]] |
|
|
|
parses.append( |
|
{ |
|
"Parse-Id": item["Parse-Id"], |
|
"PotentialTopicEntityMention": item["PotentialTopicEntityMention"], |
|
"TopicEntityName": item["TopicEntityName"], |
|
"TopicEntityMid": item["TopicEntityMid"], |
|
"InferentialChain": item["InferentialChain"], |
|
"Answers": answers, |
|
}, |
|
) |
|
|
|
question = { |
|
"Question-ID": data["Question-ID"], |
|
"RawQuestion": data["RawQuestion"], |
|
"ProcessedQuestion": data["ProcessedQuestion"], |
|
"Parses": parses, |
|
} |
|
|
|
yield id_, question |
|
|