Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
360Motion-Dataset / README.md
lemonaddie's picture
Update README.md
e72815e verified
|
raw
history blame
3.02 kB
metadata
language:
  - en

360°-Motion Dataset

Project page | Paper

image/png

News

  • [2024-12] We release the V1 dataset (36,000 videos consists of 50 entities, 6 UE scenes, and 121 trajectory templates).

Data structure

 ├── 360Motion-Dataset                   Video Number          Cam-Obj Distance (m)
   ├── Desert (`desert`)                    18,000
       ├── location_data.json
   ├── HDRI                                                      [3.43, 13.01]
       ├── loc1 (`snowy street`)            3,600
       ├── loc2 (`park`)                    3,600
       ├── loc3 (`indoor open space`)       3,600
       ├── loc11 (`gymnastics room`)        3,600
       ├── loc13 (`autumn forest`)          3,600
       ├── location_data.json
   ├── RefPic
   ├── CharacterInfo.json
   ├── Hemi12_transforms.json

(1) Released Dataset Information

Argument Description Argument Description
Video Resolution 480×720 Frames/Duration/FPS 99/3.3s/30
UE Scenes 6 (1 desert+5 HDRIs) Video Samples 36,000
Hemi12_transforms.json 12 surrounding cameras CharacterInfo.json entity prompts
RefPic 50 animals 1/2/3 Trajectory Templates 36/60/35 (121 in total)
{D/N}_{locX} {Day/Night}_{LocationX} {C}_ {XX}_{35mm} {Close-Up Shot}_{Cam. Index(1-12)} _{Focal Length}

(2) Difference with the Dataset to Train on Our Internal Video Diffusion Model

The release of the full dataset regarding more entities and UE scenes is 1) still under our internal license check, 2) awaiting the paper decision.

Argument Released Dataset Our Internal Dataset
Video Resolution 480×720 (re-rendered) 384×672
Entities 50 (all animals) 70 (20 humans+50 animals)
Video Samples 36,000 54,000
Scenes 6 9 (+city, forest, asian town)
Trajectory Templates 121 96

(3) Load Dataset Sample

  1. Change root path to dataset. We provide a script to load our dataset (video & entity & pose sequence) as follows. It will generate the sampled video for visualization in the same folder path.

    python load_dataset.py
    
  2. Visualize the 6DoF pose sequence via Open3D as follows.

    python vis_trajecotry.py
    

    After running the visualization script, you will get an interactive window like this.