Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
360Motion-Dataset / utils.py
lemonaddie's picture
Upload 54 files
ce33d81 verified
raw
history blame
5.73 kB
# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster
# --------------------------------------------------------------------------
import os
import numpy as np
from io import BytesIO
import imageio.v2 as imageio
import open3d
import math
from tools.vis_cam import get_camera_frustum, frustums2lineset
import trimesh
def parse_matrix(matrix_str):
rows = matrix_str.strip().split('] [')
matrix = []
for row in rows:
row = row.replace('[', '').replace(']', '')
matrix.append(list(map(float, row.split())))
return np.array(matrix)
def load_sceneposes(objs_file, obj_idx, obj_transl):
ext_poses = []
for i, key in enumerate(objs_file.keys()):
ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix']))
ext_poses = np.stack(ext_poses)
ext_poses = np.transpose(ext_poses, (0,2,1))
ext_poses[:,:3,3] -= obj_transl
ext_poses[:,:3,3] /= 100.
ext_poses = ext_poses[:, :, [1,2,0,3]]
return ext_poses
def save_images2video(images, video_name, fps):
fps = fps
format = "mp4"
codec = "libx264"
ffmpeg_params = ["-crf", str(12)]
pixelformat = "yuv420p"
video_stream = BytesIO()
with imageio.get_writer(
video_stream,
fps=fps,
format=format,
codec=codec,
ffmpeg_params=ffmpeg_params,
pixelformat=pixelformat,
) as writer:
for idx in range(len(images)):
writer.append_data(images[idx])
video_data = video_stream.getvalue()
output_path = os.path.join(video_name + ".mp4")
with open(output_path, "wb") as f:
f.write(video_data)
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def matrix_to_euler_angles(matrix):
sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0])
singular = sy < 1e-6
if not singular:
x = math.atan2(matrix[2][1], matrix[2][2])
y = math.atan2(-matrix[2][0], sy)
z = math.atan2(matrix[1][0], matrix[0][0])
else:
x = math.atan2(-matrix[1][2], matrix[1][1])
y = math.atan2(-matrix[2][0], sy)
z = 0
return math.degrees(x), math.degrees(y), math.degrees(z)
def eul2rot(theta) :
R = np.array([[np.cos(theta[1])*np.cos(theta[2]), np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]), np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
[np.sin(theta[2])*np.cos(theta[1]), np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]), np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
[-np.sin(theta[1]), np.sin(theta[0])*np.cos(theta[1]), np.cos(theta[0])*np.cos(theta[1])]])
return R.T
def extract_location_rotation(data):
results = {}
for key, value in data.items():
matrix = parse_matrix(value)
location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]])
rotation = eul2rot(matrix_to_euler_angles(matrix))
transofmed_matrix = np.identity(4)
transofmed_matrix[:3,3] = location
transofmed_matrix[:3,:3] = rotation
results[key] = transofmed_matrix
return results
def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length):
cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length, color=[0., 0., 1.])
cam_points = cam[0]
for item in cam[1]:
cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None)))
cam_points[:,0]*=-1
cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255])
cam_points_vis = open3d.geometry.PointCloud()
cam_points_vis.points = open3d.utility.Vector3dVector(cam_points)
cam_points_vis.paint_uniform_color(color)
return cam_points_vis
def batch_axis_angle_to_rotation_matrix(r_batch):
batch_size = r_batch.shape[0]
rotation_matrices = []
for i in range(batch_size):
r = r_batch[i]
theta = np.linalg.norm(r)
if theta == 0:
rotation_matrices.append(np.eye(3))
else:
k = r / theta
kx, ky, kz = k
K = np.array([
[0, -kz, ky],
[kz, 0, -kx],
[-ky, kx, 0]
])
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K)
rotation_matrices.append(R)
return np.array(rotation_matrices)