|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
from io import BytesIO |
|
import imageio.v2 as imageio |
|
import open3d |
|
import math |
|
from tools.vis_cam import get_camera_frustum, frustums2lineset |
|
import trimesh |
|
|
|
def parse_matrix(matrix_str): |
|
rows = matrix_str.strip().split('] [') |
|
matrix = [] |
|
for row in rows: |
|
row = row.replace('[', '').replace(']', '') |
|
matrix.append(list(map(float, row.split()))) |
|
return np.array(matrix) |
|
|
|
def load_sceneposes(objs_file, obj_idx, obj_transl): |
|
ext_poses = [] |
|
for i, key in enumerate(objs_file.keys()): |
|
ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix'])) |
|
ext_poses = np.stack(ext_poses) |
|
ext_poses = np.transpose(ext_poses, (0,2,1)) |
|
ext_poses[:,:3,3] -= obj_transl |
|
ext_poses[:,:3,3] /= 100. |
|
ext_poses = ext_poses[:, :, [1,2,0,3]] |
|
return ext_poses |
|
|
|
def save_images2video(images, video_name, fps): |
|
fps = fps |
|
format = "mp4" |
|
codec = "libx264" |
|
ffmpeg_params = ["-crf", str(12)] |
|
pixelformat = "yuv420p" |
|
video_stream = BytesIO() |
|
|
|
with imageio.get_writer( |
|
video_stream, |
|
fps=fps, |
|
format=format, |
|
codec=codec, |
|
ffmpeg_params=ffmpeg_params, |
|
pixelformat=pixelformat, |
|
) as writer: |
|
for idx in range(len(images)): |
|
writer.append_data(images[idx]) |
|
|
|
video_data = video_stream.getvalue() |
|
|
|
output_path = os.path.join(video_name + ".mp4") |
|
with open(output_path, "wb") as f: |
|
f.write(video_data) |
|
|
|
def normalize(x): |
|
return x / np.linalg.norm(x) |
|
|
|
def viewmatrix(z, up, pos): |
|
vec2 = normalize(z) |
|
vec1_avg = up |
|
vec0 = normalize(np.cross(vec1_avg, vec2)) |
|
vec1 = normalize(np.cross(vec2, vec0)) |
|
m = np.stack([vec0, vec1, vec2, pos], 1) |
|
return m |
|
|
|
def matrix_to_euler_angles(matrix): |
|
sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0]) |
|
singular = sy < 1e-6 |
|
|
|
if not singular: |
|
x = math.atan2(matrix[2][1], matrix[2][2]) |
|
y = math.atan2(-matrix[2][0], sy) |
|
z = math.atan2(matrix[1][0], matrix[0][0]) |
|
else: |
|
x = math.atan2(-matrix[1][2], matrix[1][1]) |
|
y = math.atan2(-matrix[2][0], sy) |
|
z = 0 |
|
|
|
return math.degrees(x), math.degrees(y), math.degrees(z) |
|
|
|
def eul2rot(theta) : |
|
|
|
R = np.array([[np.cos(theta[1])*np.cos(theta[2]), np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]), np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])], |
|
[np.sin(theta[2])*np.cos(theta[1]), np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]), np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])], |
|
[-np.sin(theta[1]), np.sin(theta[0])*np.cos(theta[1]), np.cos(theta[0])*np.cos(theta[1])]]) |
|
|
|
return R.T |
|
|
|
def extract_location_rotation(data): |
|
results = {} |
|
for key, value in data.items(): |
|
matrix = parse_matrix(value) |
|
location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]]) |
|
rotation = eul2rot(matrix_to_euler_angles(matrix)) |
|
transofmed_matrix = np.identity(4) |
|
transofmed_matrix[:3,3] = location |
|
transofmed_matrix[:3,:3] = rotation |
|
results[key] = transofmed_matrix |
|
return results |
|
|
|
def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length): |
|
cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length, color=[0., 0., 1.]) |
|
cam_points = cam[0] |
|
for item in cam[1]: |
|
cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None))) |
|
cam_points[:,0]*=-1 |
|
cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255]) |
|
cam_points_vis = open3d.geometry.PointCloud() |
|
cam_points_vis.points = open3d.utility.Vector3dVector(cam_points) |
|
cam_points_vis.paint_uniform_color(color) |
|
return cam_points_vis |
|
|
|
def batch_axis_angle_to_rotation_matrix(r_batch): |
|
batch_size = r_batch.shape[0] |
|
rotation_matrices = [] |
|
|
|
for i in range(batch_size): |
|
r = r_batch[i] |
|
theta = np.linalg.norm(r) |
|
if theta == 0: |
|
rotation_matrices.append(np.eye(3)) |
|
else: |
|
k = r / theta |
|
kx, ky, kz = k |
|
|
|
K = np.array([ |
|
[0, -kz, ky], |
|
[kz, 0, -kx], |
|
[-ky, kx, 0] |
|
]) |
|
|
|
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K) |
|
rotation_matrices.append(R) |
|
|
|
return np.array(rotation_matrices) |