File size: 17,798 Bytes
e3615e7 39e9b1f e3615e7 39e9b1f 4ed3116 e3615e7 4ed3116 9bb4a91 e3615e7 39e9b1f e3615e7 39e9b1f e3615e7 39e9b1f e3615e7 39e9b1f e3615e7 39e9b1f e3615e7 39e9b1f 21b99e4 39e9b1f 21b99e4 39e9b1f e3615e7 39e9b1f e3615e7 4ed3116 39e9b1f 4ed3116 39e9b1f 4ed3116 e3615e7 39e9b1f e3615e7 39e9b1f e3615e7 39e9b1f 4e75b54 e3615e7 39e9b1f b0e20ca 39e9b1f e3615e7 55cde07 4ed3116 39e9b1f 55cde07 4ed3116 39e9b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Copyright 2022 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TED-LIUM speech recognition dataset."""
import os
import re
from collections import defaultdict
from io import BytesIO
from pathlib import Path
import numpy as np
import soundfile as sf
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_DL_URL = "https://huggingface.co/datasets/LIUM/tedlium/resolve/main/"
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
class TedliumReleaseConfig(datasets.BuilderConfig):
"""BuilderConfig for a release of the TED-LIUM dataset."""
def __init__(self, *, url, download_urls, split_paths, citation, **kwargs):
super(TedliumReleaseConfig, self).__init__(version=datasets.Version("1.0.1"), **kwargs)
self.url = url
self.download_urls = download_urls
# List of split, path pairs containing the relative path within the
# extracted tarball to the data for each split.
self.split_paths = split_paths
self.citation = citation
def _make_builder_configs():
"""Creates builder configs for all supported Tedlium dataset releases."""
release1 = TedliumReleaseConfig(
name="release1",
description="""\
The TED-LIUM corpus is English-language TED talks, with transcriptions,
sampled at 16kHz. It contains about 118 hours of speech.
This is the TED-LIUM corpus release 1,
licensed under Creative Commons BY-NC-ND 3.0
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
""",
citation="""\
@inproceedings{rousseau2012tedlium,
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
booktitle={Conference on Language Resources and Evaluation (LREC)},
pages={125--129},
year={2012}
}
""",
url="https://www.openslr.org/7/",
download_urls={
"train": [_DL_URL + os.path.join("TEDLIUM_release1", "train.tar.gz")],
"validation": [_DL_URL + os.path.join("TEDLIUM_release1", "dev.tar.gz")],
"test": [_DL_URL + os.path.join("TEDLIUM_release1", "test.tar.gz")],
},
split_paths=[
(datasets.Split.TRAIN, "train"),
(datasets.Split.VALIDATION, "dev"),
(datasets.Split.TEST, "test"),
],
)
release2 = TedliumReleaseConfig(
name="release2",
description="""\
This is the TED-LIUM corpus release 2,
licensed under Creative Commons BY-NC-ND 3.0
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
All talks and text are property of TED Conferences LLC.
The TED-LIUM corpus was made from audio talks and their transcriptions
available on the TED website. We have prepared and filtered these data
in order to train acoustic models to participate to the International
Workshop on Spoken Language Translation 2011 (the LIUM English/French
SLT system reached the first rank in the SLT task).
Contains 1495 talks and transcripts.
""",
citation="""\
@inproceedings{rousseau2014tedlium2,
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
booktitle={Conference on Language Resources and Evaluation (LREC)},
year={2014}
}
""",
url="https://www.openslr.org/19/",
download_urls={
"train": [
_DL_URL + os.path.join("TEDLIUM_release2", "train_1.tar.gz"),
_DL_URL + os.path.join("TEDLIUM_release2", "train_2.tar.gz"),
],
"validation": [_DL_URL + os.path.join("TEDLIUM_release2", "dev.tar.gz")],
"test": [_DL_URL + os.path.join("TEDLIUM_release2", "test.tar.gz")],
},
split_paths=[
(datasets.Split.TRAIN, "train"),
(datasets.Split.VALIDATION, "dev"),
(datasets.Split.TEST, "test"),
],
)
release3 = TedliumReleaseConfig(
name="release3",
description="""\
This is the TED-LIUM corpus release 3, licensed under Creative Commons
BY-NC-ND 3.0. This is the 'legacy' version of the corpus, in which the dev and test datasets are the same as in
TED-LIUM 2 (and TED-LIUM 1).
All talks and text are property of TED Conferences LLC.
This new TED-LIUM release was made through a collaboration between the
Ubiqus company and the LIUM (University of Le Mans, France)
Contents:
- 2351 audio talks in NIST sphere format (SPH), including talks from
TED-LIUM 2: be careful, same talks but not same audio files (only
these audio file must be used with the TED-LIUM 3 STM files)
- 452 hours of audio
- 2351 aligned automatic transcripts in STM format
- TEDLIUM 2 dev and test data: 19 TED talks in SPH format with
corresponding manual transcriptions.
- Dictionary with pronunciations (159848 entries), same file as the one
included in TED-LIUM 2
- Selected monolingual data for language modeling from WMT12 publicly
available corpora: these files come from the TED-LIUM 2 release, but
have been modified to get a tokenization more relevant for English
language
""",
citation="""\
@inproceedings{hernandez2018tedlium3,
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
booktitle={International Conference on Speech and Computer},
pages={198--208},
year={2018},
organization={Springer}
}
""",
url="https://www.openslr.org/51/",
download_urls={
"train": [
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_1.tar.gz"),
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_2.tar.gz"),
],
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "dev.tar.gz")],
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "test.tar.gz")],
},
split_paths=[
(datasets.Split.TRAIN, "train"),
(datasets.Split.VALIDATION, "dev"),
(datasets.Split.TEST, "test"),
],
)
release3_speaker_adaptation = TedliumReleaseConfig(
name="release3-speaker-adaptation",
description="""\
This is the TED-LIUM corpus release 3, licensed under Creative Commons
BY-NC-ND 3.0. This is the 'speaker adaptation' version of the corpus, specially designed for experiments on
speaker adaptation.
All talks and text are property of TED Conferences LLC.
This new TED-LIUM release was made through a collaboration between the
Ubiqus company and the LIUM (University of Le Mans, France)
""",
citation="""\
@inproceedings{hernandez2018tedlium3,
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
booktitle={International Conference on Speech and Computer},
pages={198--208},
year={2018},
organization={Springer}
}
""",
url="https://www.openslr.org/51/",
download_urls={
"train": [
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_1.tar.gz"),
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_2.tar.gz"),
],
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "dev.tar.gz")],
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "test.tar.gz")],
},
split_paths=[
(datasets.Split.TRAIN, "train"),
(datasets.Split.VALIDATION, "dev"),
(datasets.Split.TEST, "test"),
],
)
return [release1, release2, release3, release3_speaker_adaptation]
class TedLium(datasets.GeneratorBasedBuilder):
"""The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = _make_builder_configs()
def _info(self):
features = datasets.Features(
{
"audio": datasets.features.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
"file": datasets.Value("string"),
"id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=self.config.description,
features=features,
supervised_keys=("audio", "text"),
homepage=self.config.url,
license=_LICENSE,
citation=self.config.citation,
# task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
task_templates=[AutomaticSpeechRecognition("audio", "text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(self.config.download_urls)
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
splits = []
for split, path in self.config.split_paths:
kwargs = {
"filepath": [dl_manager.iter_archive(sharded_path) for sharded_path in archive_path[split]],
"local_extracted_archive": local_extracted_archive.get(split),
"split_path": path,
}
splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
return splits
def _generate_examples(self, filepath, local_extracted_archive, split_path):
"""Generate examples from a TED-LIUM stm file."""
if local_extracted_archive:
for local_archive in local_extracted_archive:
# The stm directory houses the speaker and transcription information in .stm format
split_dir = os.path.join(local_archive, split_path)
stm_files = [os.path.join(split_dir, f) for f in os.listdir(split_dir) if f.endswith(".stm")]
for file in stm_files:
# the .sph speaker file almost always has the same file name as the .stm file
speaker_file = Path(file).stem
audio_file = os.path.join(split_dir, speaker_file + ".sph")
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
with open(file) as f:
for line in f:
line = line.strip()
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
transcript = _maybe_trim_suffix(transcript)
if speaker_file != fn:
# handle the case where the stm file does not have the same file name as the transcript
speaker_file = fn
audio_file = os.path.join(split_dir, speaker_file + ".sph")
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
samples = _extract_audio_segment(segment, sampling_rate, float(start), float(end))
key = "-".join([speaker, start, end, label])
example = {
"audio": {"path": audio_file, "array": samples, "sampling_rate": sampling_rate},
"text": transcript,
"speaker_id": speaker,
"gender": _parse_gender(label),
"file": audio_file,
"id": key,
}
yield key, example
else:
audio_data = {}
transcripts = defaultdict(list)
for file in filepath:
for path, f in file:
if path.endswith(".sph"):
# get the speaker id
fn = path.split("/")[-1].strip(".sph")
# read the audio data from raw byte form and add key-value pair to dict
audio_data[fn] = sf.read(BytesIO(f.read()), dtype=np.int16)
elif path.endswith(".stm"):
for line in f:
if line:
line = line.decode("utf-8").strip()
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
transcript = _maybe_trim_suffix(transcript)
audio_file = path.replace("stm", "sph")
key = "-".join([speaker, start, end, label])
# append metadata information to the dict of transcripts for the associated speaker
transcripts[fn].append(
{
"text": transcript,
"speaker_id": speaker,
"gender": _parse_gender(label),
"file": audio_file,
"id": key,
"start": start,
"end": end,
"channel": channel,
"fn": fn,
}
)
if audio_data and audio_data.keys() == transcripts.keys():
for fn, speaker in transcripts.items():
for transcript in speaker:
segment, sampling_rate = audio_data[transcript["fn"]]
samples = _extract_audio_segment(
segment,
sampling_rate,
float(transcript["start"]),
float(transcript["end"]),
)
audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
key = transcript["id"]
yield key, {
"audio": audio,
"text": transcript["text"],
"speaker_id": transcript["speaker_id"],
"gender": transcript["gender"],
"file": transcript["file"],
"id": transcript["id"],
}
audio_data = {}
transcripts = defaultdict(list)
def _maybe_trim_suffix(transcript):
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
# parens) at the end.
splits = transcript.rsplit(" ", 1)
transcript = splits[0]
if len(splits) > 1:
suffix = splits[-1]
if not suffix.startswith("("):
transcript += " " + suffix
return transcript
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
# The dataset only contains mono audio.
start_sample = int(start_sec * sampling_rate)
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
samples = segment[start_sample:end_sample]
return samples
def _parse_gender(label_str):
"""Parse gender string from STM "<label>" field."""
gender = re.split(",|_", label_str)[-1][:-1]
# Fix inconsistencies in the data.
if not gender:
gender = -1 # Missing label.
elif gender == "<NA": # In TEDLIUM release 3 training data.
gender = -1 # Missing label.
elif gender == "F":
gender = "female"
elif gender == "M":
gender = "male"
return gender
|