image
imagewidth (px)
10
658
item_ID
stringlengths
13
13
query
stringclasses
1 value
title
stringlengths
1
711
position
int64
0
0
id-0000000116
None
A Logbook for Your Life - 30 Days to Change: Stress: The Intelligent Trucker Changes Series
0
id-0000044806
None
Medimix Ayurvedic Facewash - 100 ml (Pack of 2)
0
id-0000143499
None
Marvelous Meals (Good Eats Vol. 6)
0
id-0000401048
None
The rogue of publishers' row;: Confessions of a publisher (A Banner Book)
0
id-000065650X
None
Everyuth Orange Peel Off - Home Facial 50 Grams (Pack of 2)
0
id-0000659045
None
Central Service Leadership Manual
0
id-000077135X
None
Bloomberg Businessweek Magazine (April 1, 2013 - April 7, 2013) Samsung's Secret
0
id-0000791156
None
Spirit Led—Moving By Grace In The Holy Spirit's Gifts
0
id-0001001787
None
Sailing
0
id-0001006657
None
I Want My Dinner
0
id-000102521X
None
The Fatal Strand (Tales from the Wyrd Museum)
0
id-0001035649
None
Under Milk Wood Dylan Thomas & the Original Cast
0
id-0001048252
None
All the Pretty Horses
0
id-0001127748
None
Lift Him up - Volume 1
0
id-0001237756
None
The New Year's Imp
0
id-0001381512
None
Little Richard and Prickles
0
id-0001601547
None
Mystery of the Fiery Eye
0
id-0001632108
None
Pixie Tales
0
id-0001711237
None
Little Black Goes to the Circus!
0
id-0001711342
None
Doctor Dolittle and the Pirates
0
id-000171337X
None
Oh Say Can You Say?
0
id-0001837397
None
Autumn Story: Introduce children to the seasons in the gorgeously illustrated classics of Brambly Hedge!
0
id-000184086X
None
The High Hills (Brambly Hedge)
0
id-0001846590
None
Princess and the Goblin (Abridged Classics)
0
id-0001939777
None
The Lion, the Witch and the Wardrobe (The Chronicles of Narnia)
0
id-0001942263
None
Little Grey Rabbit's May Day (Little Grey Rabbit Library)
0
id-0001955071
None
Mog the Forgetful Cat
0
id-0001961853
None
Sinister Wisdom 41 Summer/Fall 1990
0
id-0001983415
None
Nice for Mice
0
id-0001983458
None
A Visit to Brambly Hedge
0
id-0001983660
None
Bloomer
0
id-0002000423
None
Fumbling with a Flyrod : Stories of the River
0
id-0002005573
None
Bedlam
0
id-0002005786
None
Garden of Venus
0
id-0002006804
None
Life on the Refrigerator Door
0
id-0002007185
None
Woolf in Ceylon : An Imperial Journey in the Shadow of Leonard Woolf, 1904-1911
0
id-0002007533
None
Donna Hay Christmas: Simple Recipes, Menu Planners
0
id-0002008068
None
Lullabies for Little Criminals unknown Edition by O'Neill, Heather [2006]
0
id-0002008483
None
Curl to Win
0
id-0002111616
None
De Gaulle: A biography
0
id-0002111640
None
Farewell to the Don: The journal of Brigadier H. N. H. Williamson;
0
id-0002114836
None
The lure of the falcon
0
id-0002116324
None
MARGO OLIVER'S WEEKEND MAGAZINE COOK BOOK
0
id-0002117088
None
Renoir, My Father
0
id-0002117908
None
Social Contract: A Personal Inquiry into the Evolutionary Sources of Order and Disorder
0
id-0002153572
None
Wild swans: Three daughters of China
0
id-000215479X
None
Practicalities
0
id-0002154803
None
Letters: C.S. Lewis & Don Giovanni Calabria
0
id-000215854X
None
America: The Beautiful Cookbook
0
id-0002159309
None
Shining Path: The world's deadliest revolutionary force
0
id-000216194X
None
The life of my choice
0
id-0002163322
None
THE SALAD DAYS: AN AUTOBIOGRAPHY [LARGE PRINT]
0
id-000216373X
None
Ashkenazy: Beyond Frontiers
0
id-0002173689
None
A Field Guide to the Nests, Eggs and Nestlings of North American Birds (Collins Pocket Guide)
0
id-0002177137
None
The Lion and the Honeycomb
0
id-0002178273
None
Jaguar One Man's Struggle to Save Jaguars in the Wild
0
id-0002189364
None
Michael Owen Soccer Skills (Collins GEM)
0
id-0002190044
None
Pyramids of life: An investigation of nature's fearful symmetry
0
id-0002191911
None
Birds of the West Indies
0
id-000219502X
None
People of the Lake: Man, His Origins, Nature, and Future
0
id-0002200775
None
Birds of Southern South America and Antarctica (Collins Illustrated Checklist)
0
id-0002202085
None
London 360: Views Inspired by British Airways London Eye
0
id-0002214873
None
The lost embassy
0
id-0002215470
None
Breakheart Pass
0
id-0002216949
None
Ransom
0
id-0002218577
None
The Unconquerable
0
id-0002226049
None
The Last Frontier
0
id-0002226723
None
North and South
0
id-0002227096
None
The Final Run
0
id-0002227649
None
In honour bound
0
id-0002228645
None
The loving cup: A novel of Cornwall, 1813-1815
0
id-0002229277
None
The Hunt for Red October
0
id-0002231247
None
Gray Eagles
0
id-0002231271
None
I Was a 15 Year Old Blimp
0
id-0002233916
None
Dust in Sunlight
0
id-0002242052
None
Without Remorse
0
id-0002251892
None
Muhammad Ali in Perspective
0
id-0002251981
None
See You Later, Litigator! (Peanuts at Work and Play)
0
id-0002252104
None
Grains (Gourmet Pantry)
0
id-0002254409
None
Seahorses
0
id-0002256045
None
The Willows at Christmas
0
id-0002261820
None
One for my baby
0
id-0002315637
None
Nemesis
0
id-0002315858
None
Long Hard Cure
0
id-0002322420
None
Coffin in the Black Museum
0
id-000232265X
None
The Mamur Zapt and the Donkey-Vous
0
id-0002325128
None
Asking for the Moon
0
id-0002326809
None
When the Ashes Burn
0
id-0002435039
None
Mrs Tim
0
id-000250653X
None
Jesus of Nazareth
0
id-0002551446
None
Shaka's children: A history of the Zulu people
0
id-0002551489
None
The Best of Mexico
0
id-0002551519
None
Pacific Northwest: The Beautiful Cookbook
0
id-0002551659
None
Lemons: A Country Garden Cookbook
0
id-000255206X
None
The Best of Thailand: A Cookbook
0
id-000255349X
None
Halliwell's Film Guide
0
id-0002553708
None
Mediterranean the Beautiful Cookbook: Authentic Recipes from the Mediterranean Lands
0
id-0002553899
None
Rare Air: Michael on Michael
0
id-0002554216
None
A Heart for Children: Inspirations for Parents and Their Children
0
id-0002556642
None
Stanley Spencer: A Biography
0

Marqo Ecommerce Embedding Models

In this work, we introduce the AmazonProducts-3m dataset for evaluation. This dataset comes with the release of our state-of-the-art embedding models for ecommerce products: Marqo-Ecommerce-B and Marqo-Ecommerce-L.

Released Content:

  1. Marqo-Ecommerce-B and Marqo-Ecommerce-L embedding models
  2. GoogleShopping-1m and AmazonProducts-3m for evaluation
  3. Evaluation Code

The benchmarking results show that the Marqo-Ecommerce models consistently outperformed all other models across various metrics. Specifically, marqo-ecommerce-L achieved an average improvement of 17.6% in MRR and 20.5% in nDCG@10 when compared with the current best open source model, ViT-SO400M-14-SigLIP across all three tasks in the marqo-ecommerce-hard dataset. When compared with the best private model, Amazon-Titan-Multimodal, we saw an average improvement of 38.9% in MRR and 45.1% in nDCG@10 across all three tasks, and 35.9% in Recall across the Text-to-Image tasks in the marqo-ecommerce-hard dataset.

multi split visual

More benchmarking results can be found below.

Models

Embedding Model #Params (m) Dimension HuggingFace Download .pt
Marqo-Ecommerce-B 203 768 Marqo/marqo-ecommerce-embeddings-B link
Marqo-Ecommerce-L 652 1024 Marqo/marqo-ecommerce-embeddings-L link

Load from HuggingFace with transformers

To load the models in Transformers, see below. The models are hosted on Hugging Face and loaded using Transformers.

from transformers import AutoModel, AutoProcessor
import torch
from PIL import Image
import requests

model_name= 'Marqo/marqo-ecommerce-embeddings-L'
# model_name = 'Marqo/marqo-ecommerce-embeddings-B'

model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw).convert("RGB")
image = [img]
text = ["dining chairs", "a laptop", "toothbrushes"]
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")
processor.image_processor.do_rescale = False
with torch.no_grad():
    image_features = model.get_image_features(processed['pixel_values'], normalize=True)
    text_features = model.get_text_features(processed['input_ids'], normalize=True)

    text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
    
print(text_probs)
# [1.0000e+00, 8.3131e-12, 5.2173e-12]

Load from HuggingFace with OpenCLIP

To load the models in OpenCLIP, see below. The models are hosted on Hugging Face and loaded using OpenCLIP. You can also find this code inside run_models.py.

pip install open_clip_torch
from PIL import Image
import open_clip
import requests
import torch

# Specify model from Hugging Face Hub
model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-L'
# model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-B'

model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
tokenizer = open_clip.get_tokenizer(model_name)

# Preprocess the image and tokenize text inputs
# Load an example image from a URL
img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw)
image = preprocess_val(img).unsqueeze(0)
text = tokenizer(["dining chairs", "a laptop", "toothbrushes"])

# Perform inference
with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image, normalize=True)
    text_features = model.encode_text(text, normalize=True)

    # Calculate similarity probabilities
    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

# Display the label probabilities
print("Label probs:", text_probs)
# [1.0000e+00, 8.3131e-12, 5.2173e-12]

Evaluation

Generalised Contrastiove Learning (GCL) is used for the evaluation. The following code can also be found in scripts.

git clone https://github.com/marqo-ai/GCL

Install the packages required by GCL.

1. GoogleShopping-Text2Image Retrieval.

cd ./GCL
MODEL=hf-hub:Marqo/marqo-ecommerce-B
outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-title2image
hfdataset=Marqo/google-shopping-general-eval
python  evals/eval_hf_datasets_v1.py \
      --model_name $MODEL \
      --hf-dataset $hfdataset \
      --output-dir $outdir \
      --batch-size 1024 \
      --num_workers 8 \
      --left-key "['title']" \
      --right-key "['image']" \
      --img-or-txt "[['txt'], ['img']]" \
      --left-weight "[1]" \
      --right-weight "[1]" \
      --run-queries-cpu \
      --top-q 4000 \
      --doc-id-key item_ID \
      --context-length "[[64], [0]]"

2. GoogleShopping-Category2Image Retrieval.

cd ./GCL
MODEL=hf-hub:Marqo/marqo-ecommerce-B
outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-cat2image
hfdataset=Marqo/google-shopping-general-eval
python  evals/eval_hf_datasets_v1.py \
      --model_name $MODEL \
      --hf-dataset $hfdataset \
      --output-dir $outdir \
      --batch-size 1024 \
      --num_workers 8 \
      --left-key "['query']" \
      --right-key "['image']" \
      --img-or-txt "[['txt'], ['img']]" \
      --left-weight "[1]" \
      --right-weight "[1]" \
      --run-queries-cpu \
      --top-q 4000 \
      --doc-id-key item_ID \
      --context-length "[[64], [0]]"

3. AmazonProducts-Category2Image Retrieval.

cd ./GCL
MODEL=hf-hub:Marqo/marqo-ecommerce-B
outdir=/MarqoModels/GE/marqo-ecommerce-B/ap-title2image
hfdataset=Marqo/amazon-products-eval
python  evals/eval_hf_datasets_v1.py \
      --model_name $MODEL \
      --hf-dataset $hfdataset \
      --output-dir $outdir \
      --batch-size 1024 \
      --num_workers 8 \
      --left-key "['title']" \
      --right-key "['image']" \
      --img-or-txt "[['txt'], ['img']]" \
      --left-weight "[1]" \
      --right-weight "[1]" \
      --run-queries-cpu \
      --top-q 4000 \
      --doc-id-key item_ID \
      --context-length "[[64], [0]]"

Detailed Performance

Our benchmarking process was divided into two distinct regimes, each using different datasets of ecommerce product listings: marqo-ecommerce-hard and marqo-ecommerce-easy. Both datasets contained product images and text and only differed in size. The "easy" dataset is approximately 10-30 times smaller (200k vs 4M products), and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex (with limits of 0.66 rps and 2 rps respectively). The "hard" dataset represents the true challenge, since it contains four million ecommerce product listings and is more representative of real-world ecommerce search scenarios.

Within both these scenarios, the models were benchmarked against three different tasks:

  • Google Shopping Text-to-Image
  • Google Shopping Category-to-Image
  • Amazon Products Text-to-Image

Marqo-Ecommerce-Hard

Marqo-Ecommerce-Hard looks into the comprehensive evaluation conducted using the full 4 million dataset, highlighting the robust performance of our models in a real-world context.

GoogleShopping-Text2Image Retrieval.

Embedding Model mAP R@10 MRR nDCG@10
Marqo-Ecommerce-L 0.682 0.878 0.683 0.726
Marqo-Ecommerce-B 0.623 0.832 0.624 0.668
ViT-SO400M-14-SigLip 0.573 0.763 0.574 0.613
ViT-L-16-SigLip 0.540 0.722 0.540 0.577
ViT-B-16-SigLip 0.476 0.660 0.477 0.513
Amazon-Titan-MultiModal 0.475 0.648 0.475 0.509
Jina-V1-CLIP 0.285 0.402 0.285 0.306

GoogleShopping-Category2Image Retrieval.

Embedding Model mAP P@10 MRR nDCG@10
Marqo-Ecommerce-L 0.463 0.652 0.822 0.666
Marqo-Ecommerce-B 0.423 0.629 0.810 0.644
ViT-SO400M-14-SigLip 0.352 0.516 0.707 0.529
ViT-L-16-SigLip 0.324 0.497 0.687 0.509
ViT-B-16-SigLip 0.277 0.458 0.660 0.473
Amazon-Titan-MultiModal 0.246 0.429 0.642 0.446
Jina-V1-CLIP 0.123 0.275 0.504 0.294

AmazonProducts-Text2Image Retrieval.

Embedding Model mAP R@10 MRR nDCG@10
Marqo-Ecommerce-L 0.658 0.854 0.663 0.703
Marqo-Ecommerce-B 0.592 0.795 0.597 0.637
ViT-SO400M-14-SigLip 0.560 0.742 0.564 0.599
ViT-L-16-SigLip 0.544 0.715 0.548 0.580
ViT-B-16-SigLip 0.480 0.650 0.484 0.515
Amazon-Titan-MultiModal 0.456 0.627 0.457 0.491
Jina-V1-CLIP 0.265 0.378 0.266 0.285

Marqo-Ecommerce-Easy

This dataset is about 10-30 times smaller than the Marqo-Ecommerce-Hard, and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex.

GoogleShopping-Text2Image Retrieval.

Embedding Model mAP R@10 MRR nDCG@10
Marqo-Ecommerce-L 0.879 0.971 0.879 0.901
Marqo-Ecommerce-B 0.842 0.961 0.842 0.871
ViT-SO400M-14-SigLip 0.792 0.935 0.792 0.825
GCP-Vertex 0.740 0.910 0.740 0.779
ViT-L-16-SigLip 0.754 0.907 0.754 0.789
ViT-B-16-SigLip 0.701 0.870 0.701 0.739
Amazon-Titan-MultiModal 0.694 0.868 0.693 0.733
Jina-V1-CLIP 0.480 0.638 0.480 0.511
Cohere-embedding-v3 0.358 0.515 0.358 0.389

GoogleShopping-Category2Image Retrieval.

Embedding Model mAP P@10 MRR nDCG@10
Marqo-Ecommerce-L 0.515 0.358 0.764 0.590
Marqo-Ecommerce-B 0.479 0.336 0.744 0.558
ViT-SO400M-14-SigLip 0.423 0.302 0.644 0.487
GCP-Vertex 0.417 0.298 0.636 0.481
ViT-L-16-SigLip 0.392 0.281 0.627 0.458
ViT-B-16-SigLip 0.347 0.252 0.594 0.414
Amazon-Titan-MultiModal 0.308 0.231 0.558 0.377
Jina-V1-CLIP 0.175 0.122 0.369 0.229
Cohere-embedding-v3 0.136 0.110 0.315 0.178

AmazonProducts-Text2Image Retrieval.

Embedding Model mAP R@10 MRR nDCG@10
Marqo-Ecommerce-L 0.92 0.978 0.928 0.940
Marqo-Ecommerce-B 0.897 0.967 0.897 0.914
ViT-SO400M-14-SigLip 0.860 0.954 0.860 0.882
ViT-L-16-SigLip 0.842 0.940 0.842 0.865
GCP-Vertex 0.808 0.933 0.808 0.837
ViT-B-16-SigLip 0.797 0.917 0.797 0.825
Amazon-Titan-MultiModal 0.762 0.889 0.763 0.791
Jina-V1-CLIP 0.530 0.699 0.530 0.565
Cohere-embedding-v3 0.433 0.597 0.433 0.465

Citation

@software{zhu2024marqoecommembed_2024,
        author = {Tianyu Zhu and and Jesse Clark},
        month = oct,
        title = {{Marqo Ecommerce Embeddings - Foundation Model for Product Embeddings}},
        url = {https://github.com/marqo-ai/marqo-ecommerce-embeddings/},
        version = {1.0.0},
        year = {2024}
        }
Downloads last month
331
Edit dataset card

Models trained or fine-tuned on Marqo/amazon-products-eval

Space using Marqo/amazon-products-eval 1

Collection including Marqo/amazon-products-eval