Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
100K - 1M
ArXiv:
Tags:
language-identification
License:
Convert dataset to Parquet
#4
by
albertvillanova
HF staff
- opened
- README.md +13 -5
- WiLI-2018 dataset/test-00000-of-00001.parquet +3 -0
- WiLI-2018 dataset/train-00000-of-00001.parquet +3 -0
- wili_2018.py +0 -334
README.md
CHANGED
@@ -258,6 +258,7 @@ language_bcp47:
|
|
258 |
tags:
|
259 |
- language-identification
|
260 |
dataset_info:
|
|
|
261 |
features:
|
262 |
- name: sentence
|
263 |
dtype: string
|
@@ -500,16 +501,23 @@ dataset_info:
|
|
500 |
'232': tuk
|
501 |
'233': kan
|
502 |
'234': ltg
|
503 |
-
config_name: WiLI-2018 dataset
|
504 |
splits:
|
505 |
- name: train
|
506 |
-
num_bytes:
|
507 |
num_examples: 117500
|
508 |
- name: test
|
509 |
-
num_bytes:
|
510 |
num_examples: 117500
|
511 |
-
download_size:
|
512 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
---
|
514 |
|
515 |
# Dataset Card for wili_2018
|
|
|
258 |
tags:
|
259 |
- language-identification
|
260 |
dataset_info:
|
261 |
+
config_name: WiLI-2018 dataset
|
262 |
features:
|
263 |
- name: sentence
|
264 |
dtype: string
|
|
|
501 |
'232': tuk
|
502 |
'233': kan
|
503 |
'234': ltg
|
|
|
504 |
splits:
|
505 |
- name: train
|
506 |
+
num_bytes: 65408153
|
507 |
num_examples: 117500
|
508 |
- name: test
|
509 |
+
num_bytes: 66491212
|
510 |
num_examples: 117500
|
511 |
+
download_size: 91718265
|
512 |
+
dataset_size: 131899365
|
513 |
+
configs:
|
514 |
+
- config_name: WiLI-2018 dataset
|
515 |
+
data_files:
|
516 |
+
- split: train
|
517 |
+
path: WiLI-2018 dataset/train-*
|
518 |
+
- split: test
|
519 |
+
path: WiLI-2018 dataset/test-*
|
520 |
+
default: true
|
521 |
---
|
522 |
|
523 |
# Dataset Card for wili_2018
|
WiLI-2018 dataset/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a1b582dbc8fc71d6baabc9574835d4a5d925b21f9ab2fcea49c7c4e86acc0df
|
3 |
+
size 46000315
|
WiLI-2018 dataset/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:816e63cff8d7d3da5d9a2aaab68527f9d28e9efd22dab45ca0a9b9517c52ecea
|
3 |
+
size 45717950
|
wili_2018.py
DELETED
@@ -1,334 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
"""WiLI-2018, the Wikipedia language identification benchmark dataset"""
|
17 |
-
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
from datasets.tasks import TextClassification
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@dataset{thoma_martin_2018_841984,
|
25 |
-
author = {Thoma, Martin},
|
26 |
-
title = {{WiLI-2018 - Wikipedia Language Identification database}},
|
27 |
-
month = jan,
|
28 |
-
year = 2018,
|
29 |
-
publisher = {Zenodo},
|
30 |
-
version = {1.0.0},
|
31 |
-
doi = {10.5281/zenodo.841984},
|
32 |
-
url = {https://doi.org/10.5281/zenodo.841984}
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
It is a benchmark dataset for language identification and contains 235000 paragraphs of 235 languages
|
38 |
-
"""
|
39 |
-
|
40 |
-
# TODO: Add a link to an official homepage for the dataset here
|
41 |
-
_HOMEPAGE = "https://zenodo.org/record/841984"
|
42 |
-
|
43 |
-
# TODO: Add the licence for the dataset here if you can find it
|
44 |
-
_LICENSE = "ODC Open Database License v1.0"
|
45 |
-
|
46 |
-
|
47 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
48 |
-
_TRAIN_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u"
|
49 |
-
_TEST_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"
|
50 |
-
|
51 |
-
_CLASSES = [
|
52 |
-
"cdo",
|
53 |
-
"glk",
|
54 |
-
"jam",
|
55 |
-
"lug",
|
56 |
-
"san",
|
57 |
-
"rue",
|
58 |
-
"wol",
|
59 |
-
"new",
|
60 |
-
"mwl",
|
61 |
-
"bre",
|
62 |
-
"ara",
|
63 |
-
"hye",
|
64 |
-
"xmf",
|
65 |
-
"ext",
|
66 |
-
"cor",
|
67 |
-
"yor",
|
68 |
-
"div",
|
69 |
-
"asm",
|
70 |
-
"lat",
|
71 |
-
"cym",
|
72 |
-
"hif",
|
73 |
-
"ace",
|
74 |
-
"kbd",
|
75 |
-
"tgk",
|
76 |
-
"rus",
|
77 |
-
"nso",
|
78 |
-
"mya",
|
79 |
-
"msa",
|
80 |
-
"ava",
|
81 |
-
"cbk",
|
82 |
-
"urd",
|
83 |
-
"deu",
|
84 |
-
"swa",
|
85 |
-
"pus",
|
86 |
-
"bxr",
|
87 |
-
"udm",
|
88 |
-
"csb",
|
89 |
-
"yid",
|
90 |
-
"vro",
|
91 |
-
"por",
|
92 |
-
"pdc",
|
93 |
-
"eng",
|
94 |
-
"tha",
|
95 |
-
"hat",
|
96 |
-
"lmo",
|
97 |
-
"pag",
|
98 |
-
"jav",
|
99 |
-
"chv",
|
100 |
-
"nan",
|
101 |
-
"sco",
|
102 |
-
"kat",
|
103 |
-
"bho",
|
104 |
-
"bos",
|
105 |
-
"kok",
|
106 |
-
"oss",
|
107 |
-
"mri",
|
108 |
-
"fry",
|
109 |
-
"cat",
|
110 |
-
"azb",
|
111 |
-
"kin",
|
112 |
-
"hin",
|
113 |
-
"sna",
|
114 |
-
"dan",
|
115 |
-
"egl",
|
116 |
-
"mkd",
|
117 |
-
"ron",
|
118 |
-
"bul",
|
119 |
-
"hrv",
|
120 |
-
"som",
|
121 |
-
"pam",
|
122 |
-
"nav",
|
123 |
-
"ksh",
|
124 |
-
"nci",
|
125 |
-
"khm",
|
126 |
-
"sgs",
|
127 |
-
"srn",
|
128 |
-
"bar",
|
129 |
-
"cos",
|
130 |
-
"ckb",
|
131 |
-
"pfl",
|
132 |
-
"arz",
|
133 |
-
"roa-tara",
|
134 |
-
"fra",
|
135 |
-
"mai",
|
136 |
-
"zh-yue",
|
137 |
-
"guj",
|
138 |
-
"fin",
|
139 |
-
"kir",
|
140 |
-
"vol",
|
141 |
-
"hau",
|
142 |
-
"afr",
|
143 |
-
"uig",
|
144 |
-
"lao",
|
145 |
-
"swe",
|
146 |
-
"slv",
|
147 |
-
"kor",
|
148 |
-
"szl",
|
149 |
-
"srp",
|
150 |
-
"dty",
|
151 |
-
"nrm",
|
152 |
-
"dsb",
|
153 |
-
"ind",
|
154 |
-
"wln",
|
155 |
-
"pnb",
|
156 |
-
"ukr",
|
157 |
-
"bpy",
|
158 |
-
"vie",
|
159 |
-
"tur",
|
160 |
-
"aym",
|
161 |
-
"lit",
|
162 |
-
"zea",
|
163 |
-
"pol",
|
164 |
-
"est",
|
165 |
-
"scn",
|
166 |
-
"vls",
|
167 |
-
"stq",
|
168 |
-
"gag",
|
169 |
-
"grn",
|
170 |
-
"kaz",
|
171 |
-
"ben",
|
172 |
-
"pcd",
|
173 |
-
"bjn",
|
174 |
-
"krc",
|
175 |
-
"amh",
|
176 |
-
"diq",
|
177 |
-
"ltz",
|
178 |
-
"ita",
|
179 |
-
"kab",
|
180 |
-
"bel",
|
181 |
-
"ang",
|
182 |
-
"mhr",
|
183 |
-
"che",
|
184 |
-
"koi",
|
185 |
-
"glv",
|
186 |
-
"ido",
|
187 |
-
"fao",
|
188 |
-
"bak",
|
189 |
-
"isl",
|
190 |
-
"bcl",
|
191 |
-
"tet",
|
192 |
-
"jpn",
|
193 |
-
"kur",
|
194 |
-
"map-bms",
|
195 |
-
"tyv",
|
196 |
-
"olo",
|
197 |
-
"arg",
|
198 |
-
"ori",
|
199 |
-
"lim",
|
200 |
-
"tel",
|
201 |
-
"lin",
|
202 |
-
"roh",
|
203 |
-
"sqi",
|
204 |
-
"xho",
|
205 |
-
"mlg",
|
206 |
-
"fas",
|
207 |
-
"hbs",
|
208 |
-
"tam",
|
209 |
-
"aze",
|
210 |
-
"lad",
|
211 |
-
"nob",
|
212 |
-
"sin",
|
213 |
-
"gla",
|
214 |
-
"nap",
|
215 |
-
"snd",
|
216 |
-
"ast",
|
217 |
-
"mal",
|
218 |
-
"mdf",
|
219 |
-
"tsn",
|
220 |
-
"nds",
|
221 |
-
"tgl",
|
222 |
-
"nno",
|
223 |
-
"sun",
|
224 |
-
"lzh",
|
225 |
-
"jbo",
|
226 |
-
"crh",
|
227 |
-
"pap",
|
228 |
-
"oci",
|
229 |
-
"hak",
|
230 |
-
"uzb",
|
231 |
-
"zho",
|
232 |
-
"hsb",
|
233 |
-
"sme",
|
234 |
-
"mlt",
|
235 |
-
"vep",
|
236 |
-
"lez",
|
237 |
-
"nld",
|
238 |
-
"nds-nl",
|
239 |
-
"mrj",
|
240 |
-
"spa",
|
241 |
-
"ceb",
|
242 |
-
"ina",
|
243 |
-
"heb",
|
244 |
-
"hun",
|
245 |
-
"que",
|
246 |
-
"kaa",
|
247 |
-
"mar",
|
248 |
-
"vec",
|
249 |
-
"frp",
|
250 |
-
"ell",
|
251 |
-
"sah",
|
252 |
-
"eus",
|
253 |
-
"ces",
|
254 |
-
"slk",
|
255 |
-
"chr",
|
256 |
-
"lij",
|
257 |
-
"nep",
|
258 |
-
"srd",
|
259 |
-
"ilo",
|
260 |
-
"be-tarask",
|
261 |
-
"bod",
|
262 |
-
"orm",
|
263 |
-
"war",
|
264 |
-
"glg",
|
265 |
-
"mon",
|
266 |
-
"gle",
|
267 |
-
"min",
|
268 |
-
"ibo",
|
269 |
-
"ile",
|
270 |
-
"epo",
|
271 |
-
"lav",
|
272 |
-
"lrc",
|
273 |
-
"als",
|
274 |
-
"mzn",
|
275 |
-
"rup",
|
276 |
-
"fur",
|
277 |
-
"tat",
|
278 |
-
"myv",
|
279 |
-
"pan",
|
280 |
-
"ton",
|
281 |
-
"kom",
|
282 |
-
"wuu",
|
283 |
-
"tcy",
|
284 |
-
"tuk",
|
285 |
-
"kan",
|
286 |
-
"ltg",
|
287 |
-
]
|
288 |
-
|
289 |
-
|
290 |
-
class Wili_2018(datasets.GeneratorBasedBuilder):
|
291 |
-
"""WiLI Language Identification Dataset"""
|
292 |
-
|
293 |
-
VERSION = datasets.Version("1.1.0")
|
294 |
-
|
295 |
-
BUILDER_CONFIGS = [
|
296 |
-
datasets.BuilderConfig(
|
297 |
-
name="WiLI-2018 dataset",
|
298 |
-
version=VERSION,
|
299 |
-
description="Plain text of import of WiLI-2018",
|
300 |
-
)
|
301 |
-
]
|
302 |
-
|
303 |
-
def _info(self):
|
304 |
-
|
305 |
-
return datasets.DatasetInfo(
|
306 |
-
# This is the description that will appear on the datasets page.
|
307 |
-
description=_DESCRIPTION,
|
308 |
-
# This defines the different columns of the dataset and their types
|
309 |
-
features=datasets.Features(
|
310 |
-
{"sentence": datasets.Value("string"), "label": datasets.features.ClassLabel(names=_CLASSES)}
|
311 |
-
),
|
312 |
-
supervised_keys=None,
|
313 |
-
homepage=_HOMEPAGE,
|
314 |
-
license=_LICENSE,
|
315 |
-
citation=_CITATION,
|
316 |
-
task_templates=[TextClassification(text_column="sentence", label_column="label")],
|
317 |
-
)
|
318 |
-
|
319 |
-
def _split_generators(self, dl_manager):
|
320 |
-
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
321 |
-
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
322 |
-
return [
|
323 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
324 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
325 |
-
]
|
326 |
-
|
327 |
-
def _generate_examples(self, filepath):
|
328 |
-
|
329 |
-
with open(filepath, encoding="utf-8") as f:
|
330 |
-
for id_, line in enumerate(f):
|
331 |
-
text, label = line.rsplit(",", 1)
|
332 |
-
text = text.strip('"')
|
333 |
-
label = int(label.strip())
|
334 |
-
yield id_, {"sentence": text, "label": label - 1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|