contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
sequencelengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
sequencelengths 0
7
| demo-output
sequencelengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | A | Ultra-Fast Mathematician | PROGRAMMING | 800 | [
"implementation"
] | A. Ultra-Fast Mathematician | 2 | 256 | Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate. | There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. | Write one line — the corresponding answer. Do not omit the leading 0s. | [
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] | [
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] | none | 500 | [
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,593,802,364 | 2,147,483,647 | PyPy 3 | OK | TESTS | 102 | 140 | 0 | n = input()
m = input()
for i in range(len(n)):
print(int(n[i]) ^ int(m[i]), end = "")
| Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none | ```python
n = input()
m = input()
for i in range(len(n)):
print(int(n[i]) ^ int(m[i]), end = "")
``` | 3.965 |
779 | B | Weird Rounding | PROGRAMMING | 1,100 | [
"brute force",
"greedy"
] | null | null | Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10*k*.
In the given number of *n* Polycarp wants to remove the least number of digits to get a number that is divisible by 10*k*. For example, if *k*<==<=3, in the number 30020 it is enough to delete a single digit (2). In this case, the result is 3000 that is divisible by 103<==<=1000.
Write a program that prints the minimum number of digits to be deleted from the given integer number *n*, so that the result is divisible by 10*k*. The result should not start with the unnecessary leading zero (i.e., zero can start only the number 0, which is required to be written as exactly one digit).
It is guaranteed that the answer exists. | The only line of the input contains two integer numbers *n* and *k* (0<=≤<=*n*<=≤<=2<=000<=000<=000, 1<=≤<=*k*<=≤<=9).
It is guaranteed that the answer exists. All numbers in the input are written in traditional notation of integers, that is, without any extra leading zeros. | Print *w* — the required minimal number of digits to erase. After removing the appropriate *w* digits from the number *n*, the result should have a value that is divisible by 10*k*. The result can start with digit 0 in the single case (the result is zero and written by exactly the only digit 0). | [
"30020 3\n",
"100 9\n",
"10203049 2\n"
] | [
"1\n",
"2\n",
"3\n"
] | In the example 2 you can remove two digits: 1 and any 0. The result is number 0 which is divisible by any number. | 1,000 | [
{
"input": "30020 3",
"output": "1"
},
{
"input": "100 9",
"output": "2"
},
{
"input": "10203049 2",
"output": "3"
},
{
"input": "0 1",
"output": "0"
},
{
"input": "0 9",
"output": "0"
},
{
"input": "100 2",
"output": "0"
},
{
"input": "102030404 2",
"output": "2"
},
{
"input": "1000999999 3",
"output": "6"
},
{
"input": "12000000 4",
"output": "0"
},
{
"input": "1090090090 5",
"output": "2"
},
{
"input": "10 1",
"output": "0"
},
{
"input": "10 2",
"output": "1"
},
{
"input": "10 9",
"output": "1"
},
{
"input": "100 1",
"output": "0"
},
{
"input": "100 3",
"output": "2"
},
{
"input": "101010110 3",
"output": "3"
},
{
"input": "101010110 1",
"output": "0"
},
{
"input": "101010110 2",
"output": "2"
},
{
"input": "101010110 4",
"output": "4"
},
{
"input": "101010110 5",
"output": "8"
},
{
"input": "101010110 9",
"output": "8"
},
{
"input": "1234567890 1",
"output": "0"
},
{
"input": "1234567890 2",
"output": "9"
},
{
"input": "1234567890 9",
"output": "9"
},
{
"input": "2000000000 1",
"output": "0"
},
{
"input": "2000000000 2",
"output": "0"
},
{
"input": "2000000000 3",
"output": "0"
},
{
"input": "2000000000 9",
"output": "0"
},
{
"input": "1010101010 1",
"output": "0"
},
{
"input": "1010101010 2",
"output": "1"
},
{
"input": "1010101010 3",
"output": "2"
},
{
"input": "1010101010 4",
"output": "3"
},
{
"input": "1010101010 5",
"output": "4"
},
{
"input": "1010101010 6",
"output": "9"
},
{
"input": "1010101010 7",
"output": "9"
},
{
"input": "1010101010 8",
"output": "9"
},
{
"input": "1010101010 9",
"output": "9"
},
{
"input": "10001000 1",
"output": "0"
},
{
"input": "10001000 2",
"output": "0"
},
{
"input": "10001000 3",
"output": "0"
},
{
"input": "10001000 4",
"output": "1"
},
{
"input": "10001000 5",
"output": "1"
},
{
"input": "10001000 6",
"output": "1"
},
{
"input": "10001000 7",
"output": "7"
},
{
"input": "10001000 8",
"output": "7"
},
{
"input": "10001000 9",
"output": "7"
},
{
"input": "1000000001 1",
"output": "1"
},
{
"input": "1000000001 2",
"output": "1"
},
{
"input": "1000000001 3",
"output": "1"
},
{
"input": "1000000001 6",
"output": "1"
},
{
"input": "1000000001 7",
"output": "1"
},
{
"input": "1000000001 8",
"output": "1"
},
{
"input": "1000000001 9",
"output": "9"
},
{
"input": "1000 1",
"output": "0"
},
{
"input": "100001100 3",
"output": "2"
},
{
"input": "7057 6",
"output": "3"
},
{
"input": "30000000 5",
"output": "0"
},
{
"input": "470 1",
"output": "0"
},
{
"input": "500500000 4",
"output": "0"
},
{
"input": "2103 8",
"output": "3"
},
{
"input": "600000000 2",
"output": "0"
},
{
"input": "708404442 1",
"output": "4"
},
{
"input": "5000140 6",
"output": "6"
},
{
"input": "1100047 3",
"output": "2"
},
{
"input": "309500 5",
"output": "5"
},
{
"input": "70053160 4",
"output": "7"
},
{
"input": "44000 1",
"output": "0"
},
{
"input": "400370000 3",
"output": "0"
},
{
"input": "5800 6",
"output": "3"
},
{
"input": "20700050 1",
"output": "0"
},
{
"input": "650 1",
"output": "0"
},
{
"input": "320005070 6",
"output": "8"
},
{
"input": "370000 4",
"output": "0"
},
{
"input": "1011 2",
"output": "3"
},
{
"input": "1000111 5",
"output": "6"
},
{
"input": "1001111 5",
"output": "6"
},
{
"input": "99990 3",
"output": "4"
},
{
"input": "10100200 6",
"output": "7"
},
{
"input": "200 3",
"output": "2"
},
{
"input": "103055 3",
"output": "5"
},
{
"input": "1030555 3",
"output": "6"
},
{
"input": "100111 4",
"output": "5"
},
{
"input": "101 2",
"output": "2"
},
{
"input": "1001 3",
"output": "3"
},
{
"input": "100000 6",
"output": "5"
},
{
"input": "1100000 6",
"output": "6"
},
{
"input": "123450 2",
"output": "5"
},
{
"input": "1003 3",
"output": "3"
},
{
"input": "1111100 4",
"output": "6"
},
{
"input": "532415007 8",
"output": "8"
},
{
"input": "801 2",
"output": "2"
},
{
"input": "1230 2",
"output": "3"
},
{
"input": "9900 3",
"output": "3"
},
{
"input": "14540444 2",
"output": "7"
},
{
"input": "11111100 4",
"output": "7"
},
{
"input": "11001 3",
"output": "4"
},
{
"input": "1011110 3",
"output": "6"
},
{
"input": "15450112 2",
"output": "7"
},
{
"input": "2220 3",
"output": "3"
},
{
"input": "90099 3",
"output": "4"
},
{
"input": "10005 4",
"output": "4"
},
{
"input": "1010 3",
"output": "3"
},
{
"input": "444444400 3",
"output": "8"
},
{
"input": "10020 4",
"output": "4"
},
{
"input": "10303 3",
"output": "4"
},
{
"input": "123000 4",
"output": "5"
},
{
"input": "12300 3",
"output": "4"
},
{
"input": "101 1",
"output": "1"
},
{
"input": "500001 8",
"output": "5"
},
{
"input": "121002 3",
"output": "5"
},
{
"input": "10011 3",
"output": "4"
},
{
"input": "505050 4",
"output": "5"
},
{
"input": "1421011 2",
"output": "6"
},
{
"input": "1202022 3",
"output": "6"
},
{
"input": "1000023 7",
"output": "6"
},
{
"input": "110 2",
"output": "2"
},
{
"input": "111000 4",
"output": "5"
},
{
"input": "10340 3",
"output": "4"
},
{
"input": "101 9",
"output": "2"
},
{
"input": "2001 3",
"output": "3"
},
{
"input": "122320 2",
"output": "5"
},
{
"input": "22200 3",
"output": "4"
},
{
"input": "11110 2",
"output": "4"
},
{
"input": "11010 3",
"output": "4"
},
{
"input": "1000002333 6",
"output": "9"
},
{
"input": "101010 4",
"output": "5"
},
{
"input": "210 9",
"output": "2"
},
{
"input": "500555 3",
"output": "5"
},
{
"input": "1110111 3",
"output": "6"
},
{
"input": "1100000000 9",
"output": "9"
},
{
"input": "11000 4",
"output": "4"
},
{
"input": "100 4",
"output": "2"
},
{
"input": "234560 3",
"output": "5"
},
{
"input": "10230 3",
"output": "4"
},
{
"input": "10030234 5",
"output": "7"
},
{
"input": "1200 3",
"output": "3"
},
{
"input": "123400 3",
"output": "5"
},
{
"input": "1034543 4",
"output": "6"
},
{
"input": "10100 4",
"output": "4"
},
{
"input": "10 5",
"output": "1"
},
{
"input": "4501022 3",
"output": "6"
},
{
"input": "12340 2",
"output": "4"
},
{
"input": "30020 4",
"output": "4"
},
{
"input": "1111100 6",
"output": "6"
},
{
"input": "10101 5",
"output": "4"
},
{
"input": "32132100 3",
"output": "7"
},
{
"input": "1000023 6",
"output": "6"
},
{
"input": "12300 4",
"output": "4"
},
{
"input": "78400 3",
"output": "4"
},
{
"input": "10203049 5",
"output": "7"
},
{
"input": "404044 3",
"output": "5"
},
{
"input": "1024 2",
"output": "3"
},
{
"input": "505 2",
"output": "2"
},
{
"input": "20 2",
"output": "1"
},
{
"input": "1111100 3",
"output": "6"
},
{
"input": "1000 9",
"output": "3"
},
{
"input": "3333300 3",
"output": "6"
},
{
"input": "1100 3",
"output": "3"
},
{
"input": "963000 4",
"output": "5"
},
{
"input": "100457 5",
"output": "5"
},
{
"input": "10049 3",
"output": "4"
}
] | 1,488,216,793 | 1,993 | Python 3 | WRONG_ANSWER | TESTS | 2 | 46 | 4,608,000 | a,b=map(int,input().split())
p=a
b=10**b
k=a//b
a=a-(k*b)
a=str(a)
v=0
if b>p:
v=len(a)-1
else:
for i in range(len(a)):
if int(a[i])>1:
v=v+1
print(v)
| Title: Weird Rounding
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10*k*.
In the given number of *n* Polycarp wants to remove the least number of digits to get a number that is divisible by 10*k*. For example, if *k*<==<=3, in the number 30020 it is enough to delete a single digit (2). In this case, the result is 3000 that is divisible by 103<==<=1000.
Write a program that prints the minimum number of digits to be deleted from the given integer number *n*, so that the result is divisible by 10*k*. The result should not start with the unnecessary leading zero (i.e., zero can start only the number 0, which is required to be written as exactly one digit).
It is guaranteed that the answer exists.
Input Specification:
The only line of the input contains two integer numbers *n* and *k* (0<=≤<=*n*<=≤<=2<=000<=000<=000, 1<=≤<=*k*<=≤<=9).
It is guaranteed that the answer exists. All numbers in the input are written in traditional notation of integers, that is, without any extra leading zeros.
Output Specification:
Print *w* — the required minimal number of digits to erase. After removing the appropriate *w* digits from the number *n*, the result should have a value that is divisible by 10*k*. The result can start with digit 0 in the single case (the result is zero and written by exactly the only digit 0).
Demo Input:
['30020 3\n', '100 9\n', '10203049 2\n']
Demo Output:
['1\n', '2\n', '3\n']
Note:
In the example 2 you can remove two digits: 1 and any 0. The result is number 0 which is divisible by any number. | ```python
a,b=map(int,input().split())
p=a
b=10**b
k=a//b
a=a-(k*b)
a=str(a)
v=0
if b>p:
v=len(a)-1
else:
for i in range(len(a)):
if int(a[i])>1:
v=v+1
print(v)
``` | 0 |
|
78 | B | Easter Eggs | PROGRAMMING | 1,200 | [
"constructive algorithms",
"implementation"
] | B. Easter Eggs | 2 | 256 | The Easter Rabbit laid *n* eggs in a circle and is about to paint them.
Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied:
- Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors.
Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. | The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). | Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet.
If there are several answers, print any of them. | [
"8\n",
"13\n"
] | [
"ROYGRBIV\n",
"ROYGBIVGBIVYG\n"
] | The way the eggs will be painted in the first sample is shown on the picture: | 1,000 | [
{
"input": "8",
"output": "ROYGBIVG"
},
{
"input": "13",
"output": "ROYGBIVOYGBIV"
},
{
"input": "7",
"output": "ROYGBIV"
},
{
"input": "10",
"output": "ROYGBIVYGB"
},
{
"input": "14",
"output": "ROYGBIVROYGBIV"
},
{
"input": "50",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG"
},
{
"input": "9",
"output": "ROYGBIVGB"
},
{
"input": "11",
"output": "ROYGBIVYGBI"
},
{
"input": "12",
"output": "ROYGBIVOYGBI"
},
{
"input": "15",
"output": "ROYGBIVROYGBIVG"
},
{
"input": "16",
"output": "ROYGBIVROYGBIVGB"
},
{
"input": "17",
"output": "ROYGBIVROYGBIVYGB"
},
{
"input": "18",
"output": "ROYGBIVROYGBIVYGBI"
},
{
"input": "19",
"output": "ROYGBIVROYGBIVOYGBI"
},
{
"input": "20",
"output": "ROYGBIVROYGBIVOYGBIV"
},
{
"input": "21",
"output": "ROYGBIVROYGBIVROYGBIV"
},
{
"input": "22",
"output": "ROYGBIVROYGBIVROYGBIVG"
},
{
"input": "23",
"output": "ROYGBIVROYGBIVROYGBIVGB"
},
{
"input": "24",
"output": "ROYGBIVROYGBIVROYGBIVYGB"
},
{
"input": "25",
"output": "ROYGBIVROYGBIVROYGBIVYGBI"
},
{
"input": "28",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIV"
},
{
"input": "29",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVG"
},
{
"input": "34",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV"
},
{
"input": "43",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG"
},
{
"input": "61",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI"
},
{
"input": "79",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB"
},
{
"input": "81",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI"
},
{
"input": "92",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG"
},
{
"input": "95",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI"
},
{
"input": "96",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI"
},
{
"input": "97",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV"
},
{
"input": "98",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV"
},
{
"input": "99",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG"
},
{
"input": "100",
"output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB"
}
] | 1,571,720,035 | 2,147,483,647 | Python 3 | OK | TESTS | 34 | 218 | 0 | n = int(input())
s = 'ROYGBIV'
s1 = 'GBIV'
print(s, (n - 7) // 4 * s1, s1[:(n - 7) % 4], sep='')
| Title: Easter Eggs
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The Easter Rabbit laid *n* eggs in a circle and is about to paint them.
Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied:
- Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors.
Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
Input Specification:
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Output Specification:
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet.
If there are several answers, print any of them.
Demo Input:
['8\n', '13\n']
Demo Output:
['ROYGRBIV\n', 'ROYGBIVGBIVYG\n']
Note:
The way the eggs will be painted in the first sample is shown on the picture: | ```python
n = int(input())
s = 'ROYGBIV'
s1 = 'GBIV'
print(s, (n - 7) // 4 * s1, s1[:(n - 7) % 4], sep='')
``` | 3.9455 |
336 | A | Vasily the Bear and Triangle | PROGRAMMING | 1,000 | [
"implementation",
"math"
] | null | null | Vasily the bear has a favorite rectangle, it has one vertex at point (0,<=0), and the opposite vertex at point (*x*,<=*y*). Of course, the sides of Vasya's favorite rectangle are parallel to the coordinate axes.
Vasya also loves triangles, if the triangles have one vertex at point *B*<==<=(0,<=0). That's why today he asks you to find two points *A*<==<=(*x*1,<=*y*1) and *C*<==<=(*x*2,<=*y*2), such that the following conditions hold:
- the coordinates of points: *x*1, *x*2, *y*1, *y*2 are integers. Besides, the following inequation holds: *x*1<=<<=*x*2; - the triangle formed by point *A*, *B* and *C* is rectangular and isosceles ( is right); - all points of the favorite rectangle are located inside or on the border of triangle *ABC*; - the area of triangle *ABC* is as small as possible.
Help the bear, find the required points. It is not so hard to proof that these points are unique. | The first line contains two integers *x*,<=*y* (<=-<=109<=≤<=*x*,<=*y*<=≤<=109,<=*x*<=≠<=0,<=*y*<=≠<=0). | Print in the single line four integers *x*1,<=*y*1,<=*x*2,<=*y*2 — the coordinates of the required points. | [
"10 5\n",
"-10 5\n"
] | [
"0 15 15 0\n",
"-15 0 0 15\n"
] | <img class="tex-graphics" src="https://espresso.codeforces.com/a9ea2088c4294ce8f23801562fda36b830df2c3f.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Figure to the first sample | 500 | [
{
"input": "10 5",
"output": "0 15 15 0"
},
{
"input": "-10 5",
"output": "-15 0 0 15"
},
{
"input": "20 -10",
"output": "0 -30 30 0"
},
{
"input": "-10 -1000000000",
"output": "-1000000010 0 0 -1000000010"
},
{
"input": "-1000000000 -1000000000",
"output": "-2000000000 0 0 -2000000000"
},
{
"input": "1000000000 1000000000",
"output": "0 2000000000 2000000000 0"
},
{
"input": "-123131 3123141",
"output": "-3246272 0 0 3246272"
},
{
"input": "-23423 -243242423",
"output": "-243265846 0 0 -243265846"
},
{
"input": "123112 4560954",
"output": "0 4684066 4684066 0"
},
{
"input": "1321 -23131",
"output": "0 -24452 24452 0"
},
{
"input": "1000000000 999999999",
"output": "0 1999999999 1999999999 0"
},
{
"input": "54543 432423",
"output": "0 486966 486966 0"
},
{
"input": "1 1",
"output": "0 2 2 0"
},
{
"input": "-1 -1",
"output": "-2 0 0 -2"
},
{
"input": "-1 1",
"output": "-2 0 0 2"
},
{
"input": "1 -1",
"output": "0 -2 2 0"
},
{
"input": "42 -2",
"output": "0 -44 44 0"
},
{
"input": "2 -435",
"output": "0 -437 437 0"
},
{
"input": "76 -76",
"output": "0 -152 152 0"
},
{
"input": "1000000000 1",
"output": "0 1000000001 1000000001 0"
},
{
"input": "1000000000 -1",
"output": "0 -1000000001 1000000001 0"
},
{
"input": "-1000000000 1",
"output": "-1000000001 0 0 1000000001"
},
{
"input": "-1000000000 -1",
"output": "-1000000001 0 0 -1000000001"
},
{
"input": "1000000000 -999999999",
"output": "0 -1999999999 1999999999 0"
},
{
"input": "-1000000000 999999999",
"output": "-1999999999 0 0 1999999999"
},
{
"input": "-1000000000 -999999999",
"output": "-1999999999 0 0 -1999999999"
},
{
"input": "999999999 1000000000",
"output": "0 1999999999 1999999999 0"
},
{
"input": "-999999999 1000000000",
"output": "-1999999999 0 0 1999999999"
},
{
"input": "999999999 -1000000000",
"output": "0 -1999999999 1999999999 0"
},
{
"input": "-999999999 -1000000000",
"output": "-1999999999 0 0 -1999999999"
}
] | 1,631,882,233 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 3 | 122 | 6,963,200 | x,y = map(int, input().split())
if x > 0 and y > 0:
print(0, x+y, x+y, 0)
elif x < 0 and y > 0:
print(x-y, 0, 0, -(x-y))
elif x < 0 and y < 0:
print(x+y, 0, 0, -(x+y))
else:
print(0, -(x-y), x-y, 0)
| Title: Vasily the Bear and Triangle
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily the bear has a favorite rectangle, it has one vertex at point (0,<=0), and the opposite vertex at point (*x*,<=*y*). Of course, the sides of Vasya's favorite rectangle are parallel to the coordinate axes.
Vasya also loves triangles, if the triangles have one vertex at point *B*<==<=(0,<=0). That's why today he asks you to find two points *A*<==<=(*x*1,<=*y*1) and *C*<==<=(*x*2,<=*y*2), such that the following conditions hold:
- the coordinates of points: *x*1, *x*2, *y*1, *y*2 are integers. Besides, the following inequation holds: *x*1<=<<=*x*2; - the triangle formed by point *A*, *B* and *C* is rectangular and isosceles ( is right); - all points of the favorite rectangle are located inside or on the border of triangle *ABC*; - the area of triangle *ABC* is as small as possible.
Help the bear, find the required points. It is not so hard to proof that these points are unique.
Input Specification:
The first line contains two integers *x*,<=*y* (<=-<=109<=≤<=*x*,<=*y*<=≤<=109,<=*x*<=≠<=0,<=*y*<=≠<=0).
Output Specification:
Print in the single line four integers *x*1,<=*y*1,<=*x*2,<=*y*2 — the coordinates of the required points.
Demo Input:
['10 5\n', '-10 5\n']
Demo Output:
['0 15 15 0\n', '-15 0 0 15\n']
Note:
<img class="tex-graphics" src="https://espresso.codeforces.com/a9ea2088c4294ce8f23801562fda36b830df2c3f.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Figure to the first sample | ```python
x,y = map(int, input().split())
if x > 0 and y > 0:
print(0, x+y, x+y, 0)
elif x < 0 and y > 0:
print(x-y, 0, 0, -(x-y))
elif x < 0 and y < 0:
print(x+y, 0, 0, -(x+y))
else:
print(0, -(x-y), x-y, 0)
``` | 0 |
|
427 | A | Police Recruits | PROGRAMMING | 800 | [
"implementation"
] | null | null | The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated. | The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time. | Print a single integer, the number of crimes which will go untreated. | [
"3\n-1 -1 1\n",
"8\n1 -1 1 -1 -1 1 1 1\n",
"11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n"
] | [
"2\n",
"1\n",
"8\n"
] | Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated. | 500 | [
{
"input": "3\n-1 -1 1",
"output": "2"
},
{
"input": "8\n1 -1 1 -1 -1 1 1 1",
"output": "1"
},
{
"input": "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1",
"output": "8"
},
{
"input": "7\n-1 -1 1 1 -1 -1 1",
"output": "2"
},
{
"input": "21\n-1 -1 -1 -1 -1 3 2 -1 6 -1 -1 2 1 -1 2 2 1 6 5 -1 5",
"output": "5"
},
{
"input": "98\n-1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1",
"output": "13"
},
{
"input": "3\n-1 5 4",
"output": "1"
},
{
"input": "146\n4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 3 -1 3 -1 -1 1 4 -1 2 -1 -1 3 -1 -1 -1 4 1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 3 2 -1 3 2 4 5 2 4 1 5 -1 -1 2 -1 -1 1 -1 5 3 -1 1 2 2 3 5 3 -1 -1 3 -1 -1 3 5 5 -1 -1 5 -1 4 4 1 -1 -1 -1 2 1 -1 -1 -1 2 5 3 -1 -1 -1 3 -1 5 4 -1 1 -1 -1 3 -1 -1 3 1 1 2 -1 -1 -1 1 3 1 -1 2 -1 -1 5 5 -1 -1 3 4 5 1 -1 2 -1 -1 -1 3 -1 5 3 2 -1 2 -1 -1 5 -1 3 -1",
"output": "5"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "2\n1 -1",
"output": "0"
},
{
"input": "2\n-1 1",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n-1 -1",
"output": "2"
},
{
"input": "4\n10 -1 -1 -1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "4\n-1 -1 1 1",
"output": "2"
}
] | 1,689,424,150 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 63 | 93 | 13,209,600 | # import sys
# sys.stdin = open('./input.txt', 'r')
# sys.stdout = open('./output.txt', 'w')
n = int(input())
events = list(map(int, input().split()))
untreated = 0
free = 0
for event in events:
if event > 0:
free += event
else:
if free > 0:
free -= 1
else:
untreated += 1
print(untreated)
| Title: Police Recruits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
Input Specification:
The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
Output Specification:
Print a single integer, the number of crimes which will go untreated.
Demo Input:
['3\n-1 -1 1\n', '8\n1 -1 1 -1 -1 1 1 1\n', '11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n']
Demo Output:
['2\n', '1\n', '8\n']
Note:
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated. | ```python
# import sys
# sys.stdin = open('./input.txt', 'r')
# sys.stdout = open('./output.txt', 'w')
n = int(input())
events = list(map(int, input().split()))
untreated = 0
free = 0
for event in events:
if event > 0:
free += event
else:
if free > 0:
free -= 1
else:
untreated += 1
print(untreated)
``` | 3 |
|
334 | A | Candy Bags | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. | The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. | Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits. | [
"2\n"
] | [
"1 4\n2 3\n"
] | The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother. | 500 | [
{
"input": "2",
"output": "1 4\n2 3"
},
{
"input": "4",
"output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9"
},
{
"input": "6",
"output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19"
},
{
"input": "8",
"output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33"
},
{
"input": "10",
"output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51"
},
{
"input": "100",
"output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..."
},
{
"input": "62",
"output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..."
},
{
"input": "66",
"output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..."
},
{
"input": "18",
"output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..."
},
{
"input": "68",
"output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..."
},
{
"input": "86",
"output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..."
},
{
"input": "96",
"output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..."
},
{
"input": "12",
"output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73"
},
{
"input": "88",
"output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..."
},
{
"input": "28",
"output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..."
},
{
"input": "80",
"output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..."
},
{
"input": "48",
"output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..."
},
{
"input": "54",
"output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..."
},
{
"input": "58",
"output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..."
},
{
"input": "64",
"output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..."
},
{
"input": "44",
"output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..."
}
] | 1,502,766,119 | 2,147,483,647 | Python 3 | OK | TESTS | 21 | 154 | 4,915,200 | n = int(input())
bags = []
for i in range(1, n**2+1):
bags.append(i);
brothers = []
for i in range(n):
brothers.append([])
i=0
while(i < int(n/2)):
j=0
while(j < n):
brothers[j].append(bags[0])
brothers[j].append(bags[-1])
bags.pop(0)
bags.pop()
j = j+1
i = i+1
for brother in brothers:
s = ""
for bag in brother:
s += str(bag)+" "
print(s)
| Title: Candy Bags
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
Input Specification:
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Output Specification:
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits.
Demo Input:
['2\n']
Demo Output:
['1 4\n2 3\n']
Note:
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother. | ```python
n = int(input())
bags = []
for i in range(1, n**2+1):
bags.append(i);
brothers = []
for i in range(n):
brothers.append([])
i=0
while(i < int(n/2)):
j=0
while(j < n):
brothers[j].append(bags[0])
brothers[j].append(bags[-1])
bags.pop(0)
bags.pop()
j = j+1
i = i+1
for brother in brothers:
s = ""
for bag in brother:
s += str(bag)+" "
print(s)
``` | 3 |
|
652 | F | Ants on a Circle | PROGRAMMING | 2,800 | [
"constructive algorithms",
"math"
] | null | null | *n* ants are on a circle of length *m*. An ant travels one unit of distance per one unit of time. Initially, the ant number *i* is located at the position *s**i* and is facing in the direction *d**i* (which is either L or R). Positions are numbered in counterclockwise order starting from some point. Positions of the all ants are distinct.
All the ants move simultaneously, and whenever two ants touch, they will both switch their directions. Note that it is possible for an ant to move in some direction for a half of a unit of time and in opposite direction for another half of a unit of time.
Print the positions of the ants after *t* time units. | The first line contains three integers *n*, *m* and *t* (2<=≤<=*n*<=≤<=3·105,<=2<=≤<=*m*<=≤<=109,<=0<=≤<=*t*<=≤<=1018) — the number of ants, the length of the circle and the number of time units.
Each of the next *n* lines contains integer *s**i* and symbol *d**i* (1<=≤<=*s**i*<=≤<=*m* and *d**i* is either L or R) — the position and the direction of the *i*-th ant at the start. The directions L and R corresponds to the clockwise and counterclockwise directions, respectively.
It is guaranteed that all positions *s**i* are distinct. | Print *n* integers *x**j* — the position of the *j*-th ant after *t* units of time. The ants are numbered from 1 to *n* in order of their appearing in input. | [
"2 4 8\n1 R\n3 L\n",
"4 8 6\n6 R\n5 L\n1 R\n8 L\n",
"4 8 2\n1 R\n5 L\n6 L\n8 R\n"
] | [
"1 3\n",
"7 4 2 7\n",
"3 3 4 2\n"
] | none | 0 | [
{
"input": "2 4 8\n1 R\n3 L",
"output": "1 3"
},
{
"input": "4 8 6\n6 R\n5 L\n1 R\n8 L",
"output": "7 4 2 7"
},
{
"input": "4 8 2\n1 R\n5 L\n6 L\n8 R",
"output": "3 3 4 2"
},
{
"input": "10 10 90\n2 R\n1 R\n3 L\n4 R\n7 L\n8 L\n6 R\n9 R\n5 R\n10 L",
"output": "10 9 1 2 5 6 4 7 3 8"
},
{
"input": "10 20 85\n6 L\n12 R\n2 L\n20 R\n18 L\n8 R\n16 R\n14 L\n10 L\n4 R",
"output": "5 13 1 1 17 9 17 13 9 5"
},
{
"input": "10 20 59\n1 R\n15 L\n7 L\n13 R\n5 R\n17 R\n3 L\n9 R\n11 L\n19 L",
"output": "20 16 8 12 4 16 4 8 12 20"
},
{
"input": "2 2 0\n2 L\n1 R",
"output": "2 1"
},
{
"input": "2 2 0\n2 L\n1 R",
"output": "2 1"
},
{
"input": "4 8 6\n6 R\n5 L\n1 R\n8 R",
"output": "7 7 6 4"
}
] | 1,693,157,383 | 2,147,483,647 | PyPy 3-64 | TIME_LIMIT_EXCEEDED | TESTS | 22 | 2,000 | 34,099,200 | n, m, t = map(int, input().split())
reord = []
ord = []
total_speed = 0
outpos = []
for i in range(n):
s, c = input().split()
s = int(s) % m
reord.append((s % m, i))
if c == 'R':
total_speed += 1
outpos.append((int(s) + t) % m)
else:
total_speed -= 1
outpos.append((int(s) + m - (t % m)) % m)
reord.sort()
outpos.sort()
totshift = 0
for i in range(n):
totshift += outpos[i] + 2 * m - reord[i][0]
tmod = t % (n * m)
A = total_speed // 10000
B = total_speed % 10000
actualshift = (((A * tmod) % (n * m)) * 10000 + (B * tmod) % (n * m)) % (n * m)
diff = ((totshift - actualshift) // m) % n
ans = [0] * n
for i in range(n):
ans[reord[i][1]] = outpos[(i + n - diff) % n]
if ans[reord[i][1]] == 0:
ans[reord[i][1]] = m
for i in range(n):
print(ans[i], end=" ")# 1693157383.848659 | Title: Ants on a Circle
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* ants are on a circle of length *m*. An ant travels one unit of distance per one unit of time. Initially, the ant number *i* is located at the position *s**i* and is facing in the direction *d**i* (which is either L or R). Positions are numbered in counterclockwise order starting from some point. Positions of the all ants are distinct.
All the ants move simultaneously, and whenever two ants touch, they will both switch their directions. Note that it is possible for an ant to move in some direction for a half of a unit of time and in opposite direction for another half of a unit of time.
Print the positions of the ants after *t* time units.
Input Specification:
The first line contains three integers *n*, *m* and *t* (2<=≤<=*n*<=≤<=3·105,<=2<=≤<=*m*<=≤<=109,<=0<=≤<=*t*<=≤<=1018) — the number of ants, the length of the circle and the number of time units.
Each of the next *n* lines contains integer *s**i* and symbol *d**i* (1<=≤<=*s**i*<=≤<=*m* and *d**i* is either L or R) — the position and the direction of the *i*-th ant at the start. The directions L and R corresponds to the clockwise and counterclockwise directions, respectively.
It is guaranteed that all positions *s**i* are distinct.
Output Specification:
Print *n* integers *x**j* — the position of the *j*-th ant after *t* units of time. The ants are numbered from 1 to *n* in order of their appearing in input.
Demo Input:
['2 4 8\n1 R\n3 L\n', '4 8 6\n6 R\n5 L\n1 R\n8 L\n', '4 8 2\n1 R\n5 L\n6 L\n8 R\n']
Demo Output:
['1 3\n', '7 4 2 7\n', '3 3 4 2\n']
Note:
none | ```python
n, m, t = map(int, input().split())
reord = []
ord = []
total_speed = 0
outpos = []
for i in range(n):
s, c = input().split()
s = int(s) % m
reord.append((s % m, i))
if c == 'R':
total_speed += 1
outpos.append((int(s) + t) % m)
else:
total_speed -= 1
outpos.append((int(s) + m - (t % m)) % m)
reord.sort()
outpos.sort()
totshift = 0
for i in range(n):
totshift += outpos[i] + 2 * m - reord[i][0]
tmod = t % (n * m)
A = total_speed // 10000
B = total_speed % 10000
actualshift = (((A * tmod) % (n * m)) * 10000 + (B * tmod) % (n * m)) % (n * m)
diff = ((totshift - actualshift) // m) % n
ans = [0] * n
for i in range(n):
ans[reord[i][1]] = outpos[(i + n - diff) % n]
if ans[reord[i][1]] == 0:
ans[reord[i][1]] = m
for i in range(n):
print(ans[i], end=" ")# 1693157383.848659
``` | 0 |
|
25 | B | Phone numbers | PROGRAMMING | 1,100 | [
"implementation"
] | B. Phone numbers | 2 | 256 | Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits. | The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of digits in the phone number. The second line contains *n* digits — the phone number to divide into groups. | Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any. | [
"6\n549871\n",
"7\n1198733\n"
] | [
"54-98-71",
"11-987-33\n"
] | none | 0 | [
{
"input": "6\n549871",
"output": "54-98-71"
},
{
"input": "7\n1198733",
"output": "119-87-33"
},
{
"input": "2\n74",
"output": "74"
},
{
"input": "2\n33",
"output": "33"
},
{
"input": "3\n074",
"output": "074"
},
{
"input": "3\n081",
"output": "081"
},
{
"input": "4\n3811",
"output": "38-11"
},
{
"input": "5\n21583",
"output": "215-83"
},
{
"input": "8\n33408349",
"output": "33-40-83-49"
},
{
"input": "9\n988808426",
"output": "988-80-84-26"
},
{
"input": "10\n0180990956",
"output": "01-80-99-09-56"
},
{
"input": "15\n433488906230138",
"output": "433-48-89-06-23-01-38"
},
{
"input": "22\n7135498415686025907059",
"output": "71-35-49-84-15-68-60-25-90-70-59"
},
{
"input": "49\n2429965524999668169991253653390090510755018570235",
"output": "242-99-65-52-49-99-66-81-69-99-12-53-65-33-90-09-05-10-75-50-18-57-02-35"
},
{
"input": "72\n491925337784111770500147619881727525570039735507439360627744863794794290",
"output": "49-19-25-33-77-84-11-17-70-50-01-47-61-98-81-72-75-25-57-00-39-73-55-07-43-93-60-62-77-44-86-37-94-79-42-90"
},
{
"input": "95\n32543414456047900690980198395035321172843693417425457554204776648220562494524275489599199209210",
"output": "325-43-41-44-56-04-79-00-69-09-80-19-83-95-03-53-21-17-28-43-69-34-17-42-54-57-55-42-04-77-66-48-22-05-62-49-45-24-27-54-89-59-91-99-20-92-10"
},
{
"input": "97\n9362344595153688016434451101547661156123505108492010669557671355055642365998461003851354321478898",
"output": "936-23-44-59-51-53-68-80-16-43-44-51-10-15-47-66-11-56-12-35-05-10-84-92-01-06-69-55-76-71-35-50-55-64-23-65-99-84-61-00-38-51-35-43-21-47-88-98"
},
{
"input": "98\n65521815795893886057122984634320900545031770769333931308009346017867969790810907868670369236928568",
"output": "65-52-18-15-79-58-93-88-60-57-12-29-84-63-43-20-90-05-45-03-17-70-76-93-33-93-13-08-00-93-46-01-78-67-96-97-90-81-09-07-86-86-70-36-92-36-92-85-68"
},
{
"input": "99\n455213856470326729480192345541970106407563996625458559297407682539801838244443866898560852503660390",
"output": "455-21-38-56-47-03-26-72-94-80-19-23-45-54-19-70-10-64-07-56-39-96-62-54-58-55-92-97-40-76-82-53-98-01-83-82-44-44-38-66-89-85-60-85-25-03-66-03-90"
},
{
"input": "100\n4004223124942730640235383244438257614581534320356060987241659784249551110165034719443327659510644224",
"output": "40-04-22-31-24-94-27-30-64-02-35-38-32-44-43-82-57-61-45-81-53-43-20-35-60-60-98-72-41-65-97-84-24-95-51-11-01-65-03-47-19-44-33-27-65-95-10-64-42-24"
}
] | 1,586,652,579 | 2,147,483,647 | Python 3 | OK | TESTS | 20 | 280 | 307,200 | def string2list(x):
x=x.split()
i=0
#print(hi)
for i in range(len(x)):
x[i]=int(x[i])
return x
#def list2string(x)
# (' '.join(state.rem[0:states.total]))
n=int(input())
number=input()
k=0
current=0
output=['']*(3*n)
if n % 2==0:
while k<n:
#print('The value of k is')
#print(k)
#print('The value of current is')
#print(current)
if k % 2 == 0:
output[current]=number[k]
k=k+1
current=current+1
else:
output[current]=number[k]
output[current+1]='-'
current=current+2
k=k+1
print(''.join(output[0:current-1]))
else:
output[0]=number[0]
output[1]=number[1]
output[2]=number[2]
output[3]='-'
k=3
current=4
while k<n:
#print('The value of k is')
#print(k)
#print('The value of current is')
#print(current)
if (k+1) % 2 == 0:
output[current]=number[k]
k=k+1
current=current+1
else:
output[current]=number[k]
output[current+1]='-'
current=current+2
k=k+1
print(''.join(output[0:current-1]))
| Title: Phone numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of digits in the phone number. The second line contains *n* digits — the phone number to divide into groups.
Output Specification:
Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any.
Demo Input:
['6\n549871\n', '7\n1198733\n']
Demo Output:
['54-98-71', '11-987-33\n']
Note:
none | ```python
def string2list(x):
x=x.split()
i=0
#print(hi)
for i in range(len(x)):
x[i]=int(x[i])
return x
#def list2string(x)
# (' '.join(state.rem[0:states.total]))
n=int(input())
number=input()
k=0
current=0
output=['']*(3*n)
if n % 2==0:
while k<n:
#print('The value of k is')
#print(k)
#print('The value of current is')
#print(current)
if k % 2 == 0:
output[current]=number[k]
k=k+1
current=current+1
else:
output[current]=number[k]
output[current+1]='-'
current=current+2
k=k+1
print(''.join(output[0:current-1]))
else:
output[0]=number[0]
output[1]=number[1]
output[2]=number[2]
output[3]='-'
k=3
current=4
while k<n:
#print('The value of k is')
#print(k)
#print('The value of current is')
#print(current)
if (k+1) % 2 == 0:
output[current]=number[k]
k=k+1
current=current+1
else:
output[current]=number[k]
output[current+1]='-'
current=current+2
k=k+1
print(''.join(output[0:current-1]))
``` | 3.929428 |
372 | A | Counting Kangaroos is Fun | PROGRAMMING | 1,600 | [
"binary search",
"greedy",
"sortings",
"two pointers"
] | null | null | There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held.
Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos.
The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible. | The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105). | Output a single integer — the optimal number of visible kangaroos. | [
"8\n2\n5\n7\n6\n9\n8\n4\n2\n",
"8\n9\n1\n6\n2\n6\n5\n8\n3\n"
] | [
"5\n",
"5\n"
] | none | 500 | [
{
"input": "8\n2\n5\n7\n6\n9\n8\n4\n2",
"output": "5"
},
{
"input": "8\n9\n1\n6\n2\n6\n5\n8\n3",
"output": "5"
},
{
"input": "12\n3\n99\n24\n46\n75\n63\n57\n55\n10\n62\n34\n52",
"output": "7"
},
{
"input": "12\n55\n75\n1\n98\n63\n64\n9\n39\n82\n18\n47\n9",
"output": "6"
},
{
"input": "100\n678\n771\n96\n282\n135\n749\n168\n668\n17\n658\n979\n446\n998\n331\n606\n756\n37\n515\n538\n205\n647\n547\n904\n842\n647\n286\n774\n414\n267\n791\n595\n465\n8\n327\n855\n174\n339\n946\n184\n250\n807\n422\n679\n980\n64\n530\n312\n351\n676\n911\n803\n991\n669\n50\n293\n841\n545\n598\n737\n894\n231\n754\n588\n83\n873\n767\n833\n482\n905\n903\n970\n571\n715\n59\n777\n697\n537\n861\n339\n212\n149\n889\n905\n70\n970\n307\n830\n465\n968\n291\n430\n317\n942\n944\n330\n235\n814\n880\n415\n76",
"output": "58"
},
{
"input": "100\n154\n60\n97\n638\n139\n150\n570\n579\n601\n647\n804\n237\n245\n549\n288\n347\n778\n282\n916\n441\n974\n145\n957\n886\n655\n702\n930\n618\n132\n520\n972\n48\n94\n54\n682\n433\n896\n134\n845\n636\n242\n842\n125\n141\n240\n130\n409\n666\n948\n938\n604\n110\n474\n484\n364\n40\n807\n271\n438\n288\n201\n814\n754\n589\n341\n576\n146\n952\n819\n923\n222\n535\n336\n83\n314\n911\n303\n911\n384\n601\n249\n330\n735\n271\n142\n204\n405\n783\n775\n449\n590\n139\n109\n276\n45\n205\n454\n836\n82\n841",
"output": "50"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "4\n1\n1\n1\n2",
"output": "3"
},
{
"input": "5\n1\n2\n4\n8\n16",
"output": "3"
},
{
"input": "7\n1\n2\n4\n8\n16\n32\n64",
"output": "4"
},
{
"input": "3\n1\n2\n4",
"output": "2"
}
] | 1,592,288,154 | 2,147,483,647 | PyPy 3 | TIME_LIMIT_EXCEEDED | TESTS | 8 | 1,000 | 10,240,000 | n = int(input())
k = [int(input()) for _ in range(n)]
k.sort()
half = n//2
i, j = 0, half
ans = n
for i in range(half):
while True:
if k[i] * 2 <= k[j]:
ans -= 1
j += 1
break
j += 1
if j == n:
break
if j == n:
break
print(ans)
| Title: Counting Kangaroos is Fun
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held.
Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos.
The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible.
Input Specification:
The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105).
Output Specification:
Output a single integer — the optimal number of visible kangaroos.
Demo Input:
['8\n2\n5\n7\n6\n9\n8\n4\n2\n', '8\n9\n1\n6\n2\n6\n5\n8\n3\n']
Demo Output:
['5\n', '5\n']
Note:
none | ```python
n = int(input())
k = [int(input()) for _ in range(n)]
k.sort()
half = n//2
i, j = 0, half
ans = n
for i in range(half):
while True:
if k[i] * 2 <= k[j]:
ans -= 1
j += 1
break
j += 1
if j == n:
break
if j == n:
break
print(ans)
``` | 0 |
|
940 | B | Our Tanya is Crying Out Loud | PROGRAMMING | 1,400 | [
"dp",
"greedy"
] | null | null | Right now she actually isn't. But she will be, if you don't solve this problem.
You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations:
1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins. | The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109).
The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109).
The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109).
The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109). | Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1. | [
"9\n2\n3\n1\n",
"5\n5\n2\n20\n",
"19\n3\n4\n2\n"
] | [
"6\n",
"8\n",
"12\n"
] | In the first testcase, the optimal strategy is as follows:
- Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin.
The total cost is 6 coins.
In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total. | 1,250 | [
{
"input": "9\n2\n3\n1",
"output": "6"
},
{
"input": "5\n5\n2\n20",
"output": "8"
},
{
"input": "19\n3\n4\n2",
"output": "12"
},
{
"input": "1845999546\n999435865\n1234234\n2323423",
"output": "1044857680578777"
},
{
"input": "1604353664\n1604353665\n9993432\n1",
"output": "16032999235141416"
},
{
"input": "777888456\n1\n98\n43",
"output": "76233068590"
},
{
"input": "1162261467\n3\n1\n2000000000",
"output": "1162261466"
},
{
"input": "1000000000\n1999999999\n789987\n184569875",
"output": "789986999210013"
},
{
"input": "2000000000\n2\n1\n2000000000",
"output": "1999999999"
},
{
"input": "1999888325\n3\n2\n2000000000",
"output": "3333258884"
},
{
"input": "1897546487\n687\n89798979\n879876541",
"output": "110398404423"
},
{
"input": "20\n1\n20\n1",
"output": "380"
},
{
"input": "16\n5\n17\n3",
"output": "54"
},
{
"input": "19\n19\n19\n1",
"output": "1"
},
{
"input": "18\n2\n3\n16",
"output": "40"
},
{
"input": "1\n11\n8\n9",
"output": "0"
},
{
"input": "9\n10\n1\n20",
"output": "8"
},
{
"input": "19\n10\n19\n2",
"output": "173"
},
{
"input": "16\n9\n14\n2",
"output": "100"
},
{
"input": "15\n2\n5\n2",
"output": "21"
},
{
"input": "14\n7\n13\n1",
"output": "14"
},
{
"input": "43\n3\n45\n3",
"output": "189"
},
{
"input": "99\n1\n98\n1",
"output": "9604"
},
{
"input": "77\n93\n100\n77",
"output": "7600"
},
{
"input": "81\n3\n91\n95",
"output": "380"
},
{
"input": "78\n53\n87\n34",
"output": "2209"
},
{
"input": "80\n3\n15\n1",
"output": "108"
},
{
"input": "97\n24\n4\n24",
"output": "40"
},
{
"input": "100\n100\n1\n100",
"output": "99"
},
{
"input": "87\n4\n17\n7",
"output": "106"
},
{
"input": "65\n2\n3\n6",
"output": "36"
},
{
"input": "1000000\n1435\n3\n999999",
"output": "1005804"
},
{
"input": "783464\n483464\n2\n966928",
"output": "1566926"
},
{
"input": "248035\n11\n3\n20",
"output": "202"
},
{
"input": "524287\n2\n945658\n999756",
"output": "34963354"
},
{
"input": "947352\n78946\n85\n789654",
"output": "790589"
},
{
"input": "1000000\n1\n999899\n60",
"output": "999898000101"
},
{
"input": "753687\n977456\n6547\n456",
"output": "4934382242"
},
{
"input": "1000000\n500000\n1\n999997",
"output": "999998"
},
{
"input": "997458\n843596\n1\n843596",
"output": "997457"
},
{
"input": "821109\n92\n6547\n98787",
"output": "394566"
},
{
"input": "1073741823\n2\n9543\n8923453",
"output": "188412866"
},
{
"input": "1000999777\n1934999345\n2356346\n34534565",
"output": "2358701818178496"
},
{
"input": "2000000000\n1\n2000000000\n98",
"output": "3999999998000000000"
},
{
"input": "1999324353\n978435356\n1\n978435356",
"output": "1020888998"
},
{
"input": "2000000000\n2\n2000000000\n2000000000",
"output": "84000000000"
},
{
"input": "241375690\n17\n2\n1998789654",
"output": "482751378"
},
{
"input": "171507000\n350\n789\n6548687",
"output": "14216965"
},
{
"input": "1100220011\n10001\n2\n1999778654",
"output": "1999998674"
},
{
"input": "1867622656\n43216\n789644\n12315468",
"output": "24630936"
},
{
"input": "1867622656\n43216\n1\n1879865413",
"output": "1867622655"
},
{
"input": "1999999999\n1000000000\n789987\n184569875",
"output": "789987183779888"
},
{
"input": "1987987897\n103546\n7\n98754563",
"output": "98946650"
},
{
"input": "10\n2\n2\n5",
"output": "13"
},
{
"input": "7\n2\n1\n100000",
"output": "6"
},
{
"input": "7\n2\n3\n1",
"output": "8"
},
{
"input": "2000000000\n666666667\n1\n1",
"output": "666666668"
},
{
"input": "1999999997\n666666666\n2\n2",
"output": "1333333334"
}
] | 1,589,189,815 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 2 | 124 | 20,172,800 | n=int(input())
k=int(input())
a=int(input())
b=int(input())
cost=0
while n>1:
if n%k==0:
x=n//k
if b>a*(n-x):
cost+=a*(n-x)
else:
cost+=b
n=n//k
else:
if n<k:
cost+=n-1
n=1
else:
x=n%k
cost+=a*x
n-=x
print(cost)
| Title: Our Tanya is Crying Out Loud
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Right now she actually isn't. But she will be, if you don't solve this problem.
You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations:
1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109).
The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109).
The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109).
The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109).
Output Specification:
Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1.
Demo Input:
['9\n2\n3\n1\n', '5\n5\n2\n20\n', '19\n3\n4\n2\n']
Demo Output:
['6\n', '8\n', '12\n']
Note:
In the first testcase, the optimal strategy is as follows:
- Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin.
The total cost is 6 coins.
In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total. | ```python
n=int(input())
k=int(input())
a=int(input())
b=int(input())
cost=0
while n>1:
if n%k==0:
x=n//k
if b>a*(n-x):
cost+=a*(n-x)
else:
cost+=b
n=n//k
else:
if n<k:
cost+=n-1
n=1
else:
x=n%k
cost+=a*x
n-=x
print(cost)
``` | 0 |
|
50 | A | Domino piling | PROGRAMMING | 800 | [
"greedy",
"math"
] | A. Domino piling | 2 | 256 | You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions. | In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). | Output one number — the maximal number of dominoes, which can be placed. | [
"2 4\n",
"3 3\n"
] | [
"4\n",
"4\n"
] | none | 500 | [
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,670,501,808 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 60 | 0 | board = input("Board Size: ")
M = int(board.split(" ")[0])
N = int(board.split(" ")[1])
print((M*N)//2) | Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none | ```python
board = input("Board Size: ")
M = int(board.split(" ")[0])
N = int(board.split(" ")[1])
print((M*N)//2)
``` | 0 |
59 | A | Word | PROGRAMMING | 800 | [
"implementation",
"strings"
] | A. Word | 2 | 256 | Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. | The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. | Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. | [
"HoUse\n",
"ViP\n",
"maTRIx\n"
] | [
"house\n",
"VIP\n",
"matrix\n"
] | none | 500 | [
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,632,070,175 | 2,147,483,647 | Python 3 | OK | TESTS | 30 | 154 | 6,758,400 | s = input()
l = [1 if c.islower() else 0 for c in s]
print(s.upper() if 2*sum(l)<len(s) else s.lower())
| Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none | ```python
s = input()
l = [1 if c.islower() else 0 for c in s]
print(s.upper() if 2*sum(l)<len(s) else s.lower())
``` | 3.948911 |
629 | A | Far Relative’s Birthday Cake | PROGRAMMING | 800 | [
"brute force",
"combinatorics",
"constructive algorithms",
"implementation"
] | null | null | Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. | In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. | Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. | [
"3\n.CC\nC..\nC.C\n",
"4\nCC..\nC..C\n.CC.\n.CC.\n"
] | [
"4\n",
"9\n"
] | If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3) | 500 | [
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "4\nCC..\nC..C\n.CC.\n.CC.",
"output": "9"
},
{
"input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C",
"output": "46"
},
{
"input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.",
"output": "84"
},
{
"input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.",
"output": "80"
},
{
"input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C",
"output": "144"
},
{
"input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC",
"output": "190"
},
{
"input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..",
"output": "228"
},
{
"input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..",
"output": "2103"
},
{
"input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC",
"output": "2071"
},
{
"input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.",
"output": "1160"
},
{
"input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C",
"output": "789"
},
{
"input": "1\n.",
"output": "0"
},
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C",
"output": "529"
},
{
"input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C",
"output": "874"
},
{
"input": "2\nCC\nCC",
"output": "4"
},
{
"input": "3\nC..\nC..\nC..",
"output": "3"
}
] | 1,455,986,549 | 449 | Python 3 | OK | TESTS | 48 | 62 | 0 | def C(k):
return (k*(k-1))//2
n=int(input())
r=[0 for i in range(n)]
c=[0 for i in range(n)]
for i in range(n):
s=input()
for j in range(n):
if s[j]=='C':
r[i]+=1
c[j]+=1
ans=0
for i in range(n):
ans+=(C(r[i])+C(c[i]))
print(ans)
| Title: Far Relative’s Birthday Cake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
Input Specification:
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Output Specification:
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
Demo Input:
['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n']
Demo Output:
['4\n', '9\n']
Note:
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3) | ```python
def C(k):
return (k*(k-1))//2
n=int(input())
r=[0 for i in range(n)]
c=[0 for i in range(n)]
for i in range(n):
s=input()
for j in range(n):
if s[j]=='C':
r[i]+=1
c[j]+=1
ans=0
for i in range(n):
ans+=(C(r[i])+C(c[i]))
print(ans)
``` | 3 |
|
41 | A | Translation | PROGRAMMING | 800 | [
"implementation",
"strings"
] | A. Translation | 2 | 256 | The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. | The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. | If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. | [
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] | [
"YES\n",
"NO\n",
"NO\n"
] | none | 500 | [
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,661,414,865 | 2,147,483,647 | Python 3 | RUNTIME_ERROR | TESTS | 9 | 92 | 0 | n=list(input())
x=list(input())
if len(n)>len(x):
print("NO")
elif len(x)>len(n):
print("NO")
else:
k=len(x)
p=0
for i in range(k):
if x[i]==n[-1-i]:
p=p+1
if p==k:
print("YES")
else:
print("NO")
| Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none | ```python
n=list(input())
x=list(input())
if len(n)>len(x):
print("NO")
elif len(x)>len(n):
print("NO")
else:
k=len(x)
p=0
for i in range(k):
if x[i]==n[-1-i]:
p=p+1
if p==k:
print("YES")
else:
print("NO")
``` | -1 |
995 | C | Leaving the Bar | PROGRAMMING | 2,300 | [
"brute force",
"data structures",
"geometry",
"greedy",
"math",
"sortings"
] | null | null | For a vector $\vec{v} = (x, y)$, define $|v| = \sqrt{x^2 + y^2}$.
Allen had a bit too much to drink at the bar, which is at the origin. There are $n$ vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_n}$. Allen will make $n$ moves. As Allen's sense of direction is impaired, during the $i$-th move he will either move in the direction $\vec{v_i}$ or $-\vec{v_i}$. In other words, if his position is currently $p = (x, y)$, he will either move to $p + \vec{v_i}$ or $p - \vec{v_i}$.
Allen doesn't want to wander too far from home (which happens to also be the bar). You need to help him figure out a sequence of moves (a sequence of signs for the vectors) such that his final position $p$ satisfies $|p| \le 1.5 \cdot 10^6$ so that he can stay safe. | The first line contains a single integer $n$ ($1 \le n \le 10^5$) — the number of moves.
Each of the following lines contains two space-separated integers $x_i$ and $y_i$, meaning that $\vec{v_i} = (x_i, y_i)$. We have that $|v_i| \le 10^6$ for all $i$. | Output a single line containing $n$ integers $c_1, c_2, \cdots, c_n$, each of which is either $1$ or $-1$. Your solution is correct if the value of $p = \sum_{i = 1}^n c_i \vec{v_i}$, satisfies $|p| \le 1.5 \cdot 10^6$.
It can be shown that a solution always exists under the given constraints. | [
"3\n999999 0\n0 999999\n999999 0\n",
"1\n-824590 246031\n",
"8\n-67761 603277\n640586 -396671\n46147 -122580\n569609 -2112\n400 914208\n131792 309779\n-850150 -486293\n5272 721899\n"
] | [
"1 1 -1 \n",
"1 \n",
"1 1 1 1 1 1 1 -1 \n"
] | none | 1,500 | [
{
"input": "3\n999999 0\n0 999999\n999999 0",
"output": "1 1 -1 "
},
{
"input": "1\n-824590 246031",
"output": "1 "
},
{
"input": "8\n-67761 603277\n640586 -396671\n46147 -122580\n569609 -2112\n400 914208\n131792 309779\n-850150 -486293\n5272 721899",
"output": "1 1 1 1 1 1 1 -1 "
},
{
"input": "6\n1000000 0\n1000000 0\n-1000000 0\n0 1000000\n0 -1000000\n0 -1000000",
"output": "1 1 1 1 1 1 "
},
{
"input": "8\n-411248 143802\n300365 629658\n363219 343742\n396148 -94037\n-722124 467785\n-178147 -931253\n265458 73307\n-621502 -709713",
"output": "1 1 1 1 1 1 1 -1 "
},
{
"input": "3\n1000000 0\n0 999999\n600000 -600000",
"output": "-1 1 1 "
},
{
"input": "5\n140239 46311\n399464 -289055\n-540174 823360\n538102 -373313\n326189 933934",
"output": "1 1 1 1 -1 "
},
{
"input": "3\n1000000 0\n0 999999\n300000 -300000",
"output": "1 1 -1 "
},
{
"input": "9\n1000000 0\n0 -999999\n600000 600000\n600000 600000\n600000 600000\n-600000 -600000\n600000 600000\n600000 600000\n-700000 710000",
"output": "1 1 1 -1 1 1 1 -1 1 "
},
{
"input": "2\n1 999999\n1 -999999",
"output": "1 1 "
},
{
"input": "2\n999999 1\n999999 -1",
"output": "1 -1 "
},
{
"input": "2\n-1 999999\n-1 -999999",
"output": "1 1 "
},
{
"input": "2\n-999999 -1\n-999999 1",
"output": "1 -1 "
},
{
"input": "2\n999999 1\n-999999 1",
"output": "1 1 "
},
{
"input": "2\n999999 -1\n-999999 -1",
"output": "1 1 "
},
{
"input": "2\n1 999999\n-1 999999",
"output": "1 -1 "
},
{
"input": "2\n1 -999999\n-1 -999999",
"output": "1 -1 "
},
{
"input": "4\n1000000 0\n-1 999999\n600000 -600000\n0 0",
"output": "-1 1 1 1 "
},
{
"input": "2\n999999 -1\n-1 999999",
"output": "1 1 "
}
] | 1,530,031,570 | 2,147,483,647 | Python 3 | TIME_LIMIT_EXCEEDED | TESTS | 0 | 2,000 | 512,000 | import random
n = int(input())
v = []
for _ in range(0, n):
x, y = map(int, input().split())
v.append([x, y, x*x+y*y])
while 1>0:
for i in range(n):
random.shuffle(v)
x = 0
y = 0
ans = []
if (x+v[i][0])**2+(y+v[i][1])**2 < (x-v[i][0])**2+(y-v[i][1])**2:
x += v[i][0]
y += v[i][1]
ans.append(1)
else:
x -= v[i][0]
y -= v[i][1]
ans.append(-1)
if x*x+y*y <= 1500000:
print(*ans)
break
| Title: Leaving the Bar
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
For a vector $\vec{v} = (x, y)$, define $|v| = \sqrt{x^2 + y^2}$.
Allen had a bit too much to drink at the bar, which is at the origin. There are $n$ vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_n}$. Allen will make $n$ moves. As Allen's sense of direction is impaired, during the $i$-th move he will either move in the direction $\vec{v_i}$ or $-\vec{v_i}$. In other words, if his position is currently $p = (x, y)$, he will either move to $p + \vec{v_i}$ or $p - \vec{v_i}$.
Allen doesn't want to wander too far from home (which happens to also be the bar). You need to help him figure out a sequence of moves (a sequence of signs for the vectors) such that his final position $p$ satisfies $|p| \le 1.5 \cdot 10^6$ so that he can stay safe.
Input Specification:
The first line contains a single integer $n$ ($1 \le n \le 10^5$) — the number of moves.
Each of the following lines contains two space-separated integers $x_i$ and $y_i$, meaning that $\vec{v_i} = (x_i, y_i)$. We have that $|v_i| \le 10^6$ for all $i$.
Output Specification:
Output a single line containing $n$ integers $c_1, c_2, \cdots, c_n$, each of which is either $1$ or $-1$. Your solution is correct if the value of $p = \sum_{i = 1}^n c_i \vec{v_i}$, satisfies $|p| \le 1.5 \cdot 10^6$.
It can be shown that a solution always exists under the given constraints.
Demo Input:
['3\n999999 0\n0 999999\n999999 0\n', '1\n-824590 246031\n', '8\n-67761 603277\n640586 -396671\n46147 -122580\n569609 -2112\n400 914208\n131792 309779\n-850150 -486293\n5272 721899\n']
Demo Output:
['1 1 -1 \n', '1 \n', '1 1 1 1 1 1 1 -1 \n']
Note:
none | ```python
import random
n = int(input())
v = []
for _ in range(0, n):
x, y = map(int, input().split())
v.append([x, y, x*x+y*y])
while 1>0:
for i in range(n):
random.shuffle(v)
x = 0
y = 0
ans = []
if (x+v[i][0])**2+(y+v[i][1])**2 < (x-v[i][0])**2+(y-v[i][1])**2:
x += v[i][0]
y += v[i][1]
ans.append(1)
else:
x -= v[i][0]
y -= v[i][1]
ans.append(-1)
if x*x+y*y <= 1500000:
print(*ans)
break
``` | 0 |
|
129 | B | Students and Shoelaces | PROGRAMMING | 1,200 | [
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null | Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club. | The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself. | Print the single number — the number of groups of students that will be kicked out from the club. | [
"3 3\n1 2\n2 3\n3 1\n",
"6 3\n1 2\n2 3\n3 4\n",
"6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n"
] | [
"0\n",
"2\n",
"1\n"
] | In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one. | 1,000 | [
{
"input": "3 3\n1 2\n2 3\n3 1",
"output": "0"
},
{
"input": "6 3\n1 2\n2 3\n3 4",
"output": "2"
},
{
"input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4",
"output": "1"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1",
"output": "0"
},
{
"input": "5 4\n1 4\n4 3\n4 5\n5 2",
"output": "2"
},
{
"input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11",
"output": "4"
},
{
"input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7",
"output": "2"
},
{
"input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6",
"output": "0"
},
{
"input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3",
"output": "0"
},
{
"input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5",
"output": "0"
},
{
"input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6",
"output": "1"
},
{
"input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4",
"output": "0"
},
{
"input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4",
"output": "0"
},
{
"input": "95 0",
"output": "0"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39",
"output": "2"
},
{
"input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51",
"output": "3"
},
{
"input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41",
"output": "3"
},
{
"input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65",
"output": "5"
},
{
"input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7",
"output": "4"
},
{
"input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35",
"output": "4"
},
{
"input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65",
"output": "8"
},
{
"input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36",
"output": "4"
},
{
"input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70",
"output": "4"
},
{
"input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66",
"output": "3"
},
{
"input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27",
"output": "8"
},
{
"input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51",
"output": "4"
},
{
"input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75",
"output": "5"
},
{
"input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31",
"output": "3"
},
{
"input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35",
"output": "8"
},
{
"input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37",
"output": "3"
},
{
"input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41",
"output": "4"
},
{
"input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53",
"output": "5"
}
] | 1,670,132,097 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 5 | 62 | 0 | def main():
V, E = list(map(int, input().split()))
A = [[] for _ in range(V)]
for _ in range(E):
x, y = list(map(int, input().split()))
x -= 1
y -= 1
A[x].append(y)
A[y].append(x)
group = 0
compare = 1
while True:
reprimand = []
for v in range(V):
if len(A[v]) == compare:
reprimand.append(v)
if len(reprimand) == 0:
break
group += 1
compare += 1
print(group)
if __name__ == "__main__":
main() | Title: Students and Shoelaces
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
Input Specification:
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
Output Specification:
Print the single number — the number of groups of students that will be kicked out from the club.
Demo Input:
['3 3\n1 2\n2 3\n3 1\n', '6 3\n1 2\n2 3\n3 4\n', '6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one. | ```python
def main():
V, E = list(map(int, input().split()))
A = [[] for _ in range(V)]
for _ in range(E):
x, y = list(map(int, input().split()))
x -= 1
y -= 1
A[x].append(y)
A[y].append(x)
group = 0
compare = 1
while True:
reprimand = []
for v in range(V):
if len(A[v]) == compare:
reprimand.append(v)
if len(reprimand) == 0:
break
group += 1
compare += 1
print(group)
if __name__ == "__main__":
main()
``` | 0 |
|
78 | A | Haiku | PROGRAMMING | 800 | [
"implementation",
"strings"
] | A. Haiku | 2 | 256 | Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not. | The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification. | Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes). | [
"on codeforces \nbeta round is running\n a rustling of keys \n",
"how many gallons\nof edo s rain did you drink\n cuckoo\n"
] | [
"YES",
"NO"
] | none | 500 | [
{
"input": "on codeforces \nbeta round is running\n a rustling of keys ",
"output": "YES"
},
{
"input": "how many gallons\nof edo s rain did you drink\n cuckoo",
"output": "NO"
},
{
"input": " hatsu shigure\n saru mo komino wo\nhoshige nari",
"output": "YES"
},
{
"input": "o vetus stagnum\n rana de ripa salit\n ac sonant aquae",
"output": "NO"
},
{
"input": " furuike ya\nkawazu tobikomu\nmizu no oto ",
"output": "YES"
},
{
"input": " noch da leich\na stamperl zum aufwaerma\n da pfarrer kimmt a ",
"output": "NO"
},
{
"input": " sommerfuglene \n hvorfor bruge mange ord\n et kan gore det",
"output": "YES"
},
{
"input": " ab der mittagszeit\n ist es etwas schattiger\n ein wolkenhimmel",
"output": "NO"
},
{
"input": "tornando a vederli\ni fiori di ciliegio la sera\nson divenuti frutti",
"output": "NO"
},
{
"input": "kutaburete\nyado karu koro ya\nfuji no hana",
"output": "YES"
},
{
"input": " beginnings of poetry\n the rice planting songs \n of the interior",
"output": "NO"
},
{
"input": " door zomerregens\n zijn de kraanvogelpoten\n korter geworden",
"output": "NO"
},
{
"input": " derevo na srub\na ptitsi bezzabotno\n gnezdishko tam vyut",
"output": "YES"
},
{
"input": "writing in the dark\nunaware that my pen\nhas run out of ink",
"output": "NO"
},
{
"input": "kusaaiu\nuieueua\nuo efaa",
"output": "YES"
},
{
"input": "v\nh\np",
"output": "NO"
},
{
"input": "i\ni\nu",
"output": "NO"
},
{
"input": "awmio eoj\nabdoolceegood\nwaadeuoy",
"output": "YES"
},
{
"input": "xzpnhhnqsjpxdboqojixmofawhdjcfbscq\nfoparnxnbzbveycoltwdrfbwwsuobyoz hfbrszy\nimtqryscsahrxpic agfjh wvpmczjjdrnwj mcggxcdo",
"output": "YES"
},
{
"input": "wxjcvccp cppwsjpzbd dhizbcnnllckybrnfyamhgkvkjtxxfzzzuyczmhedhztugpbgpvgh\nmdewztdoycbpxtp bsiw hknggnggykdkrlihvsaykzfiiw\ndewdztnngpsnn lfwfbvnwwmxoojknygqb hfe ibsrxsxr",
"output": "YES"
},
{
"input": "nbmtgyyfuxdvrhuhuhpcfywzrbclp znvxw synxmzymyxcntmhrjriqgdjh xkjckydbzjbvtjurnf\nhhnhxdknvamywhsrkprofnyzlcgtdyzzjdsfxyddvilnzjziz qmwfdvzckgcbrrxplxnxf mpxwxyrpesnewjrx ajxlfj\nvcczq hddzd cvefmhxwxxyqcwkr fdsndckmesqeq zyjbwbnbyhybd cta nsxzidl jpcvtzkldwd",
"output": "YES"
},
{
"input": "rvwdsgdsrutgjwscxz pkd qtpmfbqsmctuevxdj kjzknzghdvxzlaljcntg jxhvzn yciktbsbyscfypx x xhkxnfpdp\nwdfhvqgxbcts mnrwbr iqttsvigwdgvlxwhsmnyxnttedonxcfrtmdjjmacvqtkbmsnwwvvrlxwvtggeowtgsqld qj\nvsxcdhbzktrxbywpdvstr meykarwtkbm pkkbhvwvelclfmpngzxdmblhcvf qmabmweldplmczgbqgzbqnhvcdpnpjtch ",
"output": "YES"
},
{
"input": "brydyfsmtzzkpdsqvvztmprhqzbzqvgsblnz naait tdtiprjsttwusdykndwcccxfmzmrmfmzjywkpgbfnjpypgcbcfpsyfj k\nucwdfkfyxxxht lxvnovqnnsqutjsyagrplb jhvtwdptrwcqrovncdvqljjlrpxcfbxqgsfylbgmcjpvpl ccbcybmigpmjrxpu\nfgwtpcjeywgnxgbttgx htntpbk tkkpwbgxwtbxvcpkqbzetjdkcwad tftnjdxxjdvbpfibvxuglvx llyhgjvggtw jtjyphs",
"output": "YES"
},
{
"input": "nyc aqgqzjjlj mswgmjfcxlqdscheskchlzljlsbhyn iobxymwzykrsnljj\nnnebeaoiraga\nqpjximoqzswhyyszhzzrhfwhf iyxysdtcpmikkwpugwlxlhqfkn",
"output": "NO"
},
{
"input": "lzrkztgfe mlcnq ay ydmdzxh cdgcghxnkdgmgfzgahdjjmqkpdbskreswpnblnrc fmkwziiqrbskp\np oukeaz gvvy kghtrjlczyl qeqhgfgfej\nwfolhkmktvsjnrpzfxcxzqmfidtlzmuhxac wsncjgmkckrywvxmnjdpjpfydhk qlmdwphcvyngansqhl",
"output": "NO"
},
{
"input": "yxcboqmpwoevrdhvpxfzqmammak\njmhphkxppkqkszhqqtkvflarsxzla pbxlnnnafqbsnmznfj qmhoktgzix qpmrgzxqvmjxhskkksrtryehfnmrt dtzcvnvwp\nscwymuecjxhw rdgsffqywwhjpjbfcvcrnisfqllnbplpadfklayjguyvtrzhwblftclfmsr",
"output": "NO"
},
{
"input": "qfdwsr jsbrpfmn znplcx nhlselflytndzmgxqpgwhpi ghvbbxrkjdirfghcybhkkqdzmyacvrrcgsneyjlgzfvdmxyjmph\nylxlyrzs drbktzsniwcbahjkgohcghoaczsmtzhuwdryjwdijmxkmbmxv yyfrokdnsx\nyw xtwyzqlfxwxghugoyscqlx pljtz aldfskvxlsxqgbihzndhxkswkxqpwnfcxzfyvncstfpqf",
"output": "NO"
},
{
"input": "g rguhqhcrzmuqthtmwzhfyhpmqzzosa\nmhjimzvchkhejh irvzejhtjgaujkqfxhpdqjnxr dvqallgssktqvsxi\npcwbliftjcvuzrsqiswohi",
"output": "NO"
},
{
"input": " ngxtlq iehiise vgffqcpnmsoqzyseuqqtggokymol zn\nvjdjljazeujwoubkcvtsbepooxqzrueaauokhepiquuopfild\ngoabauauaeotoieufueeknudiilupouaiaexcoapapu",
"output": "NO"
},
{
"input": "ycnvnnqk mhrmhctpkfbc qbyvtjznmndqjzgbcxmvrpkfcll zwspfptmbxgrdv dsgkk nfytsqjrnfbhh pzdldzymvkdxxwh\nvnhjfwgdnyjptsmblyxmpzylsbjlmtkkwjcbqwjctqvrlqqkdsrktxlnslspvnn mdgsmzblhbnvpczmqkcffwhwljqkzmk hxcm\nrghnjvzcpprrgmtgytpkzyc mrdnnhpkwypwqbtzjyfwvrdwyjltbzxtbstzs xdjzdmx yjsqtzlrnvyssvglsdjrmsrfrcdpqt",
"output": "NO"
},
{
"input": "ioeeaioeiuoeaeieuuieooaouiuouiioaueeaiaiuoaoiioeeaauooiuuieeuaeeoauieeaiuoieiaieuoauaaoioooieueueuai\nuooaoeeaoiuuoeioaoouaououoeioiaeueoioaiouaeaoioiuuaueeuaiuoiueoiuaoeeieeouaeeaeeieioeoiiieuuueuuieuo\naeeouieeieoueaioeoioooiouaeeeiaaioueauaueiouuuaieuuioiaeiueauueaoieauauoeueuaiueuuaueeoueauaeaoieeoo",
"output": "NO"
},
{
"input": "mkgycgmrqtmlwj vddlbsgdptyfrcj nmrddjchydvbsyhgzytfzvwbhqmmhkpsyrcnknpsqrr wcnf wfvgskrnsmnrcqgcnc q\npn cclcyjjdp rqkpgyrvyyd hhynrochfa pthyffqvskazfshvzcmvhmsrxvquzkdvivlbfypwbgltfbjmhzljvgzmxjlrjdjq\nauuouieuaaauoooeoiuoaueuueauiuuuiaeuwuoiaeoeaieauieouoaeiiieiioiuuuiuauioiiuoeauueieaueiaioeuaoaaau",
"output": "NO"
},
{
"input": "ab\na\na",
"output": "NO"
},
{
"input": "on codeforcs\nbeta round is runnineg\na rustling of keys",
"output": "NO"
},
{
"input": "coooooooooooooooood\nd\nd",
"output": "NO"
},
{
"input": "on codeforces \nbeta round is runninog\n a rustling of keys",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaa\na\na",
"output": "NO"
},
{
"input": "aaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "YES"
},
{
"input": "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "NO"
},
{
"input": "aaaaaa\naaaaaa\naaaaa",
"output": "NO"
}
] | 1,694,202,992 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 40 | 124 | 0 | def main():
ans=''
for i in range(3):
s=input()
count=0
if(i==0 or i==2):
for j in range(len(s)):
if (s[j]=='a' or s[j]=='e' or s[j]=='i' or s[j]=='o' or s[j]=='u'):
count+=1
if count!=5:
ans='NO'
else:
for j in range(len(s)):
if (s[j]=='a' or s[j]=='e' or s[j]=='i' or s[j]=='o' or s[j]=='u'):
count+=1
if count!=7:
ans='NO'
print('NO') if ans=="NO" else print('YES')
main() | Title: Haiku
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not.
Input Specification:
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
Output Specification:
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
Demo Input:
['on codeforces \nbeta round is running\n a rustling of keys \n', 'how many gallons\nof edo s rain did you drink\n cuckoo\n']
Demo Output:
['YES', 'NO']
Note:
none | ```python
def main():
ans=''
for i in range(3):
s=input()
count=0
if(i==0 or i==2):
for j in range(len(s)):
if (s[j]=='a' or s[j]=='e' or s[j]=='i' or s[j]=='o' or s[j]=='u'):
count+=1
if count!=5:
ans='NO'
else:
for j in range(len(s)):
if (s[j]=='a' or s[j]=='e' or s[j]=='i' or s[j]=='o' or s[j]=='u'):
count+=1
if count!=7:
ans='NO'
print('NO') if ans=="NO" else print('YES')
main()
``` | 3.969 |
258 | A | Little Elephant and Bits | PROGRAMMING | 1,100 | [
"greedy",
"math"
] | null | null | The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation. | The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits. | In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem. | [
"101\n",
"110010\n"
] | [
"11\n",
"11010\n"
] | In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>. | 500 | [
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,591,912,372 | 2,147,483,647 | PyPy 3 | OK | TESTS | 37 | 342 | 9,420,800 | n=input()
n=list(n)
if(n.count('0')==0):
print(''.join(map(str,n[0:len(n)-1])))
else:
a=n.index('0')
n.remove(n[a])
print(''.join(map(str,n)))
| Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>. | ```python
n=input()
n=list(n)
if(n.count('0')==0):
print(''.join(map(str,n[0:len(n)-1])))
else:
a=n.index('0')
n.remove(n[a])
print(''.join(map(str,n)))
``` | 3 |
|
116 | A | Tram | PROGRAMMING | 800 | [
"implementation"
] | null | null | Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram. | The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0. | Print a single integer denoting the minimum possible capacity of the tram (0 is allowed). | [
"4\n0 3\n2 5\n4 2\n4 0\n"
] | [
"6\n"
] | For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer. | 500 | [
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,691,687,268 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 2 | 124 | 0 | n = int(input())
c = 0
d= 0
for _ in range(n):
a, b = map(int, input().split())
d = c - a + b
c = max(c, d)
print(c) | Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer. | ```python
n = int(input())
c = 0
d= 0
for _ in range(n):
a, b = map(int, input().split())
d = c - a + b
c = max(c, d)
print(c)
``` | 0 |
|
725 | A | Jumping Ball | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '<' and '>'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '>', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '<'. If there is no such position, in other words if *i*<=-<=1<=<<=1 or *i*<=+<=1<=><=*n*, the ball falls from the game field.
Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position. | The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '<' and '>'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper. | Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position. | [
"4\n<<><\n",
"5\n>>>>>\n",
"4\n>><<\n"
] | [
"2",
"5",
"0"
] | In the first sample, the ball will fall from the field if starts at position 1 or position 2.
In the second sample, any starting position will result in the ball falling from the field. | 500 | [
{
"input": "4\n<<><",
"output": "2"
},
{
"input": "5\n>>>>>",
"output": "5"
},
{
"input": "4\n>><<",
"output": "0"
},
{
"input": "3\n<<>",
"output": "3"
},
{
"input": "3\n<<<",
"output": "3"
},
{
"input": "3\n><<",
"output": "0"
},
{
"input": "1\n<",
"output": "1"
},
{
"input": "2\n<>",
"output": "2"
},
{
"input": "3\n<>>",
"output": "3"
},
{
"input": "3\n><>",
"output": "1"
},
{
"input": "2\n><",
"output": "0"
},
{
"input": "2\n>>",
"output": "2"
},
{
"input": "2\n<<",
"output": "2"
},
{
"input": "1\n>",
"output": "1"
},
{
"input": "3\n>><",
"output": "0"
},
{
"input": "3\n>>>",
"output": "3"
},
{
"input": "3\n<><",
"output": "1"
},
{
"input": "10\n<<<><<<>>>",
"output": "6"
},
{
"input": "20\n><><<><<<>>>>>>>>>>>",
"output": "11"
},
{
"input": "20\n<<<<<<<<<<><<<<>>>>>",
"output": "15"
},
{
"input": "50\n<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "50"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<>><<>><<<<<>><>><<<>><><<>>><<>>><<<<><><><<><<<<><>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "49"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>><<>><>><>><<><><><><>>>><><<<>>>><<<>>>>>>><><",
"output": "50"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<",
"output": "100"
},
{
"input": "100\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "100"
},
{
"input": "12\n<<>><<>><<>>",
"output": "4"
},
{
"input": "6\n<<><>>",
"output": "4"
},
{
"input": "6\n><>>>>",
"output": "4"
},
{
"input": "8\n>>>><<<>",
"output": "1"
},
{
"input": "4\n<><>",
"output": "2"
},
{
"input": "4\n><><",
"output": "0"
},
{
"input": "7\n<<>>><>",
"output": "3"
},
{
"input": "10\n><><>>>>>>",
"output": "6"
},
{
"input": "5\n<><>>",
"output": "3"
},
{
"input": "12\n<><<<<>>>>>>",
"output": "7"
},
{
"input": "6\n<>><<>",
"output": "2"
},
{
"input": "6\n>>><>>",
"output": "2"
},
{
"input": "10\n><><>>>><>",
"output": "1"
},
{
"input": "5\n><>>>",
"output": "3"
},
{
"input": "5\n<<><>",
"output": "3"
},
{
"input": "5\n<><<<",
"output": "1"
},
{
"input": "4\n<><<",
"output": "1"
},
{
"input": "8\n<<>><<>>",
"output": "4"
},
{
"input": "7\n<<><>>>",
"output": "5"
},
{
"input": "5\n><<>>",
"output": "2"
},
{
"input": "10\n<<<<<>>>>>",
"output": "10"
},
{
"input": "6\n><<<<<",
"output": "0"
},
{
"input": "8\n<<><><>>",
"output": "4"
},
{
"input": "10\n<<<<><<<><",
"output": "4"
},
{
"input": "12\n<<<>>>><<>>>",
"output": "6"
},
{
"input": "4\n><>>",
"output": "2"
},
{
"input": "11\n<<><<>><<>>",
"output": "4"
}
] | 1,641,773,678 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 78 | 124 | 1,228,800 | print(int(input())-len(input().lstrip("<").rstrip(">"))) | Title: Jumping Ball
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '<' and '>'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '>', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '<'. If there is no such position, in other words if *i*<=-<=1<=<<=1 or *i*<=+<=1<=><=*n*, the ball falls from the game field.
Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '<' and '>'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper.
Output Specification:
Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position.
Demo Input:
['4\n<<><\n', '5\n>>>>>\n', '4\n>><<\n']
Demo Output:
['2', '5', '0']
Note:
In the first sample, the ball will fall from the field if starts at position 1 or position 2.
In the second sample, any starting position will result in the ball falling from the field. | ```python
print(int(input())-len(input().lstrip("<").rstrip(">")))
``` | 3 |
|
935 | A | Fafa and his Company | PROGRAMMING | 800 | [
"brute force",
"implementation"
] | null | null | Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly. | The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company. | Print a single integer representing the answer to the problem. | [
"2\n",
"10\n"
] | [
"1\n",
"3\n"
] | In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them. | 500 | [
{
"input": "2",
"output": "1"
},
{
"input": "10",
"output": "3"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "6",
"output": "3"
},
{
"input": "13",
"output": "1"
},
{
"input": "100000",
"output": "35"
},
{
"input": "1024",
"output": "10"
},
{
"input": "99999",
"output": "11"
},
{
"input": "10007",
"output": "1"
},
{
"input": "4096",
"output": "12"
},
{
"input": "65536",
"output": "16"
},
{
"input": "40320",
"output": "95"
},
{
"input": "30030",
"output": "63"
},
{
"input": "161",
"output": "3"
},
{
"input": "1000",
"output": "15"
},
{
"input": "10000",
"output": "24"
},
{
"input": "777",
"output": "7"
},
{
"input": "121",
"output": "2"
},
{
"input": "25",
"output": "2"
},
{
"input": "40000",
"output": "34"
},
{
"input": "99990",
"output": "47"
},
{
"input": "98765",
"output": "3"
},
{
"input": "56789",
"output": "3"
},
{
"input": "13579",
"output": "3"
},
{
"input": "97531",
"output": "3"
},
{
"input": "12345",
"output": "7"
},
{
"input": "54321",
"output": "7"
},
{
"input": "83160",
"output": "127"
},
{
"input": "9",
"output": "2"
},
{
"input": "21",
"output": "3"
},
{
"input": "11",
"output": "1"
},
{
"input": "15",
"output": "3"
}
] | 1,652,754,419 | 2,147,483,647 | Python 3 | OK | TESTS | 33 | 46 | 4,300,800 | x=int(input())
a=0
for i in range(1,x):
if x%i==0:
a+=1
print(a) | Title: Fafa and his Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
Input Specification:
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
Output Specification:
Print a single integer representing the answer to the problem.
Demo Input:
['2\n', '10\n']
Demo Output:
['1\n', '3\n']
Note:
In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them. | ```python
x=int(input())
a=0
for i in range(1,x):
if x%i==0:
a+=1
print(a)
``` | 3 |
|
244 | A | Dividing Orange | PROGRAMMING | 900 | [
"implementation"
] | null | null | One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*.
There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different.
Now the children wonder, how to divide the orange so as to meet these conditions:
- each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously.
Help the children, divide the orange and fulfill the requirements, described above. | The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get.
It is guaranteed that all numbers *a**i* are distinct. | Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.
You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them. | [
"2 2\n4 1\n",
"3 1\n2\n"
] | [
"2 4 \n1 3 \n",
"3 2 1 \n"
] | none | 500 | [
{
"input": "2 2\n4 1",
"output": "2 4 \n1 3 "
},
{
"input": "3 1\n2",
"output": "3 2 1 "
},
{
"input": "5 5\n25 24 23 22 21",
"output": "2 3 1 25 4 \n7 6 8 5 24 \n10 12 9 23 11 \n13 15 14 16 22 \n19 21 20 17 18 "
},
{
"input": "1 30\n8 22 13 25 10 30 12 27 6 4 7 2 20 16 26 14 15 17 23 3 24 9 5 11 29 1 19 28 21 18",
"output": "8 \n22 \n13 \n25 \n10 \n30 \n12 \n27 \n6 \n4 \n7 \n2 \n20 \n16 \n26 \n14 \n15 \n17 \n23 \n3 \n24 \n9 \n5 \n11 \n29 \n1 \n19 \n28 \n21 \n18 "
},
{
"input": "30 1\n29",
"output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 30 24 21 18 14 23 29 7 "
},
{
"input": "10 10\n13 39 6 75 84 94 96 21 85 71",
"output": "9 3 1 13 5 7 4 2 10 8 \n17 12 19 11 39 14 15 18 16 20 \n22 27 6 24 25 30 26 28 23 29 \n36 33 75 34 38 31 35 40 37 32 \n43 44 49 42 46 48 47 45 84 41 \n51 94 52 56 57 54 50 55 53 58 \n64 60 62 61 66 59 63 96 67 65 \n72 69 76 77 70 78 73 21 74 68 \n81 85 87 88 80 83 89 86 79 82 \n93 91 100 99 98 71 90 95 92 97 "
},
{
"input": "10 15\n106 109 94 50 3 143 147 10 89 145 29 28 87 126 110",
"output": "9 4 1 106 6 7 5 2 11 8 \n17 13 19 12 109 14 15 18 16 20 \n21 26 94 23 24 31 25 27 22 30 \n37 34 50 35 39 32 36 40 38 33 \n43 44 49 42 46 48 47 45 3 41 \n52 143 53 57 58 55 51 56 54 59 \n65 61 63 62 67 60 64 147 68 66 \n72 70 75 76 71 77 73 10 74 69 \n80 89 84 85 79 82 86 83 78 81 \n92 90 98 97 96 145 88 93 91 95 \n100 104 105 103 102 108 99 101 29 107 \n111 114 112 116 119 118 28 113 117 115 \n128 120 122 125 129 127 87 124 123 121 \n133 136 130 134 132 131 135 126 137 138 \n142 141 144 148 146 149 110 140..."
},
{
"input": "15 10\n126 111 12 6 28 47 51 116 53 35",
"output": "9 13 1 14 5 16 15 2 10 8 126 3 11 4 7 \n111 22 21 26 20 30 17 23 18 19 24 31 27 25 29 \n43 40 41 39 42 12 45 44 34 37 32 36 38 33 46 \n59 6 57 56 58 49 62 54 50 52 63 61 48 55 60 \n70 67 71 75 69 77 72 65 68 73 76 74 28 64 66 \n80 89 86 79 87 91 81 78 88 83 85 82 90 84 47 \n95 93 51 99 104 98 103 101 100 102 97 96 94 92 105 \n120 115 113 118 109 119 110 116 114 106 121 117 108 107 112 \n135 133 128 125 123 131 129 122 124 53 134 132 130 127 136 \n148 139 141 143 146 144 147 138 137 145 142 149 140 150 35 \n..."
},
{
"input": "30 30\n455 723 796 90 7 881 40 736 147 718 560 619 468 363 161 767 282 19 111 369 443 850 871 242 713 789 208 435 135 411",
"output": "9 22 18 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 31 26 23 20 15 25 455 8 \n723 52 49 60 45 48 34 59 58 44 32 57 61 56 51 33 42 37 41 38 47 53 36 50 54 55 46 39 43 35 \n89 71 796 74 78 70 88 67 84 85 63 83 82 62 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n115 90 102 121 104 106 109 98 112 120 119 105 103 97 113 93 100 118 107 96 117 92 94 116 95 101 110 108 114 99 \n136 133 148 123 144 139 149 142 7 140 138 127 150 129 122 130 143 126 134 152 132 145 131 146 125 151 137 128 124 141 \n154 177..."
},
{
"input": "1 1\n1",
"output": "1 "
},
{
"input": "2 1\n1",
"output": "2 1 "
},
{
"input": "1 2\n2 1",
"output": "2 \n1 "
},
{
"input": "1 3\n2 3 1",
"output": "2 \n3 \n1 "
},
{
"input": "2 3\n3 2 1",
"output": "4 3 \n2 5 \n1 6 "
},
{
"input": "3 3\n6 7 8",
"output": "2 6 1 \n7 4 3 \n5 9 8 "
},
{
"input": "3 1\n3",
"output": "2 3 1 "
},
{
"input": "3 2\n5 4",
"output": "2 5 1 \n4 6 3 "
},
{
"input": "12 13\n149 22 133 146 151 64 45 88 77 126 92 134 143",
"output": "8 11 1 10 5 6 4 2 9 7 149 3 \n14 13 19 12 17 16 22 20 21 23 15 18 \n133 28 34 32 31 25 30 33 24 29 26 27 \n35 42 38 40 43 46 39 41 44 146 36 37 \n56 51 48 49 50 54 53 151 57 52 47 55 \n61 58 65 68 67 59 62 66 69 63 64 60 \n80 70 75 74 76 81 45 72 78 73 79 71 \n94 85 88 83 90 87 86 89 93 82 84 91 \n99 104 98 96 103 105 102 97 77 95 101 100 \n116 109 107 111 115 113 126 108 112 110 114 106 \n127 121 125 118 120 128 123 92 119 122 117 124 \n139 132 136 130 131 140 141 134 137 138 135 129 \n150 142 144 155 154..."
},
{
"input": "30 29\n427 740 444 787 193 268 19 767 46 276 245 468 661 348 402 62 665 425 398 503 89 455 200 772 355 442 863 416 164",
"output": "8 21 17 12 5 27 13 2 20 23 29 16 10 4 6 11 3 26 1 28 15 9 30 25 22 18 14 24 427 7 \n740 51 48 59 43 47 33 58 57 42 31 56 60 55 50 32 40 36 39 37 45 52 35 49 53 54 44 38 41 34 \n90 71 444 74 78 70 88 67 84 85 63 83 82 61 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n114 787 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 146 140 193 138 136 126 147 128 121 129 141 125 133 149 131 143 130 144 124 148 135 127 123 139 \n151 1..."
},
{
"input": "29 30\n173 601 360 751 194 411 708 598 236 812 855 647 100 106 59 38 822 196 529 417 606 159 384 389 300 172 544 726 702 799",
"output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 7 24 21 18 14 23 173 \n47 36 37 35 45 51 49 41 31 33 29 32 46 57 52 48 54 34 55 53 56 30 601 44 43 39 40 42 50 \n77 79 84 86 64 72 75 60 76 78 81 73 80 58 82 69 70 67 83 65 68 62 360 71 61 63 85 66 74 \n90 107 751 110 105 93 98 96 95 97 116 91 109 102 115 87 99 104 114 88 92 113 94 111 101 89 103 112 108 \n140 127 144 134 118 125 141 137 119 133 128 139 124 121 130 126 120 142 136 122 132 117 194 131 129 143 138 123 135 \n147 168 163 154 174 160 146..."
},
{
"input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793",
"output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..."
},
{
"input": "28 29\n771 736 590 366 135 633 68 789 193 459 137 370 216 692 730 712 537 356 752 757 796 541 804 27 431 162 196 630 684",
"output": "8 20 17 12 5 26 13 2 19 22 771 16 10 4 6 11 3 25 1 28 15 9 7 24 21 18 14 23 \n34 55 49 41 54 45 33 37 35 53 29 40 30 32 43 31 36 51 736 44 39 46 38 50 48 52 47 42 \n77 65 78 73 63 56 72 590 76 62 74 57 83 69 58 80 60 79 66 59 64 82 67 70 81 61 71 75 \n107 104 92 94 106 109 84 88 86 99 98 105 366 93 103 101 89 87 95 90 100 85 91 102 97 108 110 96 \n124 125 113 123 119 120 121 134 127 132 117 129 116 130 138 111 118 131 122 139 128 114 112 126 115 136 133 135 \n141 633 142 153 160 152 149 156 166 158 161 144..."
},
{
"input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793",
"output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..."
},
{
"input": "27 3\n12 77 80",
"output": "8 21 18 13 5 27 14 2 20 23 12 17 10 4 6 11 3 26 1 24 16 9 7 25 22 19 15 \n43 32 46 48 51 37 41 49 77 30 40 28 34 38 44 35 31 45 52 50 47 29 36 53 42 39 33 \n62 61 78 63 81 55 70 79 67 73 58 69 59 64 80 54 56 57 68 72 65 60 71 66 74 75 76 "
},
{
"input": "3 27\n77 9 32 56 7 65 58 24 64 19 49 62 47 44 28 79 76 71 21 4 18 23 51 53 12 6 20",
"output": "2 77 1 \n9 5 3 \n8 10 32 \n13 56 11 \n15 7 14 \n65 17 16 \n22 58 25 \n24 26 27 \n29 64 30 \n31 33 19 \n35 34 49 \n62 37 36 \n47 38 39 \n44 40 41 \n42 43 28 \n46 45 79 \n48 50 76 \n71 54 52 \n57 21 55 \n60 4 59 \n61 18 63 \n66 23 67 \n68 51 69 \n72 70 53 \n12 73 74 \n75 6 78 \n81 20 80 "
},
{
"input": "10 30\n165 86 241 45 144 43 95 250 28 240 42 15 295 211 48 99 199 156 206 109 100 194 229 224 57 10 220 79 44 203",
"output": "8 3 1 165 5 6 4 2 9 7 \n17 12 19 11 86 13 14 18 16 20 \n21 26 241 23 24 30 25 27 22 29 \n36 33 45 34 38 31 35 39 37 32 \n46 47 53 41 50 52 51 49 144 40 \n55 43 56 61 62 59 54 60 58 63 \n69 65 67 66 71 64 68 95 72 70 \n76 74 80 81 75 82 77 250 78 73 \n85 28 90 91 84 88 92 89 83 87 \n97 94 104 103 102 240 93 98 96 101 \n106 111 112 110 108 114 105 107 42 113 \n115 118 116 120 123 122 15 117 121 119 \n131 124 126 129 132 130 295 128 127 125 \n136 139 133 137 135 134 138 211 140 141 \n146 145 147 149 148 150 4..."
},
{
"input": "30 10\n71 146 274 157 190 85 32 152 25 278",
"output": "8 20 17 12 5 27 13 2 19 22 29 16 10 4 6 11 3 26 1 28 15 9 30 24 21 18 14 23 71 7 \n146 51 48 59 44 47 34 58 57 43 31 56 60 55 50 33 41 37 40 38 46 52 36 49 53 54 45 39 42 35 \n90 70 274 74 78 69 89 66 84 86 62 83 82 61 72 79 81 80 73 91 68 65 64 88 77 75 63 67 87 76 \n114 157 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 147 140 190 138 136 126 148 128 121 129 141 125 133 150 131 143 130 144 124 149 135 127 123 139 \n153 17..."
},
{
"input": "7 1\n5",
"output": "2 3 1 5 6 7 4 "
},
{
"input": "6 1\n5",
"output": "2 3 1 5 6 4 "
}
] | 1,565,503,726 | 1,126 | Python 3 | RUNTIME_ERROR | TESTS | 0 | 186 | 0 | import sys
ioRead = sys.stdin.readline
ioWrite = lambda x: sys.stdout.write(f"{x}\n")
n,k = ioRead().split(" ")
l = [-1 for _ in range(n*k)]
ol = map(int,ioRead().split(" "))
for o in ol:
l[o - 1] = 1
i = 0
for c in range(k):
printable = [str(ol[c])]
for _ in range(n):
while l[i] == 1:
i+=1
l[i] = 1
i += 1
printable.append(str(i))
ioWrite(" ".join(printable)) | Title: Dividing Orange
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*.
There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different.
Now the children wonder, how to divide the orange so as to meet these conditions:
- each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously.
Help the children, divide the orange and fulfill the requirements, described above.
Input Specification:
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get.
It is guaranteed that all numbers *a**i* are distinct.
Output Specification:
Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.
You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.
Demo Input:
['2 2\n4 1\n', '3 1\n2\n']
Demo Output:
['2 4 \n1 3 \n', '3 2 1 \n']
Note:
none | ```python
import sys
ioRead = sys.stdin.readline
ioWrite = lambda x: sys.stdout.write(f"{x}\n")
n,k = ioRead().split(" ")
l = [-1 for _ in range(n*k)]
ol = map(int,ioRead().split(" "))
for o in ol:
l[o - 1] = 1
i = 0
for c in range(k):
printable = [str(ol[c])]
for _ in range(n):
while l[i] == 1:
i+=1
l[i] = 1
i += 1
printable.append(str(i))
ioWrite(" ".join(printable))
``` | -1 |
|
152 | B | Steps | PROGRAMMING | 1,300 | [
"binary search",
"implementation"
] | null | null | One day Vasya went out for a walk in the yard but there weren't any of his friends outside and he had no one to play touch and run. But the boy didn't lose the high spirits and decided to play touch and run with himself. You may ask: "How did he do that?" The answer is simple.
Vasya noticed that the yard is a rectangular *n*<=×<=*m* field. The squares have coordinates (*x*,<=*y*) (1<=≤<=*x*<=≤<=*n*,<=1<=≤<=*y*<=≤<=*m*), where *x* is the index of the row and *y* is the index of the column.
Initially Vasya stands in the square with coordinates (*x**c*,<=*y**c*). To play, he has got a list of *k* vectors (*dx**i*,<=*dy**i*) of non-zero length. The game goes like this. The boy considers all vectors in the order from 1 to *k*, and consecutively chooses each vector as the current one. After the boy has chosen a current vector, he makes the maximally possible number of valid steps in the vector's direction (it is possible that he makes zero steps).
A step is defined as one movement from the square where the boy is standing now, in the direction of the current vector. That is, if Vasya is positioned in square (*x*,<=*y*), and the current vector is (*dx*,<=*dy*), one step moves Vasya to square (*x*<=+<=*dx*,<=*y*<=+<=*dy*). A step is considered valid, if the boy does not go out of the yard if he performs the step.
Vasya stepped on and on, on and on until he ran out of vectors in his list. Ha had been stepping for so long that he completely forgot how many steps he had made. Help the boy and count how many steps he had made. | The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=109) — the yard's sizes. The second line contains integers *x**c* and *y**c* — the initial square's coordinates (1<=≤<=*x**c*<=≤<=*n*,<=1<=≤<=*y**c*<=≤<=*m*).
The third line contains an integer *k* (1<=≤<=*k*<=≤<=104) — the number of vectors. Then follow *k* lines, each of them contains two integers *dx**i* and *dy**i* (|*dx**i*|,<=|*dy**i*|<=≤<=109,<=|*dx*|<=+<=|*dy*|<=≥<=1). | Print the single number — the number of steps Vasya had made.
Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. | [
"4 5\n1 1\n3\n1 1\n1 1\n0 -2\n",
"10 10\n1 2\n1\n-1 0\n"
] | [
"4\n",
"0\n"
] | In the first sample Vasya is initially positioned at square (1, 1) and makes 3 steps by the first vector (1, 1). So, he consecutively visits the squares (2, 2), (3, 3), (4, 4). Then he makes 0 steps by the second vector (1, 1). He makes 1 more step by the third vector (0, - 2) and he ends up in square (4, 2). Overall, Vasya makes 4 steps.
In the second sample Vasya is initially positioned in square (1, 2) and makes 0 steps by vector ( - 1, 0), as the square with coordinates (0, 2) is located outside the yard. | 1,000 | [
{
"input": "4 5\n1 1\n3\n1 1\n1 1\n0 -2",
"output": "4"
},
{
"input": "10 10\n1 2\n1\n-1 0",
"output": "0"
},
{
"input": "10 20\n10 3\n10\n-2 -6\n-1 0\n-8 0\n0 5\n-1 3\n16 -16\n-1 9\n0 -18\n9 -1\n-9 5",
"output": "13"
},
{
"input": "20 10\n14 4\n10\n6 0\n-7 -7\n12 -2\n-4 9\n20 3\n-1 -16\n0 2\n-1 1\n20 0\n-1 1",
"output": "4"
},
{
"input": "1000 2000\n226 566\n20\n0 -100\n-100 100\n100 0\n42 0\n-100 -79\n-66 -16\n0 -7\n-1 0\n0 100\n100 91\n99 0\n1 0\n-100 0\n70 -100\n-100 100\n100 1\n66 0\n-100 1\n-47 -100\n-42 0",
"output": "708"
},
{
"input": "1 1\n1 1\n1\n1 1",
"output": "0"
},
{
"input": "3 3\n2 2\n1\n2 0",
"output": "0"
}
] | 1,664,035,843 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 34 | 404 | 9,728,000 | n,m = list(map(int,input().split()))
xc,yc = list(map(int,input().split()))
k = int(input())
vect = []
for _ in range(k):
dx,dy = list(map(int,input().split()))
vect.append((dx,dy))
steps = 0
for dx,dy in vect:
x,y= xc + dx,yc + dy
# print(xc,yc,dx,dy,steps)
if 0 < x <= n and 0 < y <= m:
deltax = float('inf')
deltay = float('inf')
if dx > 0:
deltax = (n - xc) // dx
elif dx < 0:
deltax = (xc-1) // abs(dx)
if dy > 0:
deltay = (m - yc) // dy
elif dy < 0:
deltay = (yc-1) // abs(dy)
min_d = min(abs(deltax),abs(deltay))
xn = xc + (min_d*dx)
yn = yc + (min_d*dy)
steps += min_d
xc,yc = xn,yn
# print(xc,yc,dx,dy,steps)
print(steps) | Title: Steps
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya went out for a walk in the yard but there weren't any of his friends outside and he had no one to play touch and run. But the boy didn't lose the high spirits and decided to play touch and run with himself. You may ask: "How did he do that?" The answer is simple.
Vasya noticed that the yard is a rectangular *n*<=×<=*m* field. The squares have coordinates (*x*,<=*y*) (1<=≤<=*x*<=≤<=*n*,<=1<=≤<=*y*<=≤<=*m*), where *x* is the index of the row and *y* is the index of the column.
Initially Vasya stands in the square with coordinates (*x**c*,<=*y**c*). To play, he has got a list of *k* vectors (*dx**i*,<=*dy**i*) of non-zero length. The game goes like this. The boy considers all vectors in the order from 1 to *k*, and consecutively chooses each vector as the current one. After the boy has chosen a current vector, he makes the maximally possible number of valid steps in the vector's direction (it is possible that he makes zero steps).
A step is defined as one movement from the square where the boy is standing now, in the direction of the current vector. That is, if Vasya is positioned in square (*x*,<=*y*), and the current vector is (*dx*,<=*dy*), one step moves Vasya to square (*x*<=+<=*dx*,<=*y*<=+<=*dy*). A step is considered valid, if the boy does not go out of the yard if he performs the step.
Vasya stepped on and on, on and on until he ran out of vectors in his list. Ha had been stepping for so long that he completely forgot how many steps he had made. Help the boy and count how many steps he had made.
Input Specification:
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=109) — the yard's sizes. The second line contains integers *x**c* and *y**c* — the initial square's coordinates (1<=≤<=*x**c*<=≤<=*n*,<=1<=≤<=*y**c*<=≤<=*m*).
The third line contains an integer *k* (1<=≤<=*k*<=≤<=104) — the number of vectors. Then follow *k* lines, each of them contains two integers *dx**i* and *dy**i* (|*dx**i*|,<=|*dy**i*|<=≤<=109,<=|*dx*|<=+<=|*dy*|<=≥<=1).
Output Specification:
Print the single number — the number of steps Vasya had made.
Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Demo Input:
['4 5\n1 1\n3\n1 1\n1 1\n0 -2\n', '10 10\n1 2\n1\n-1 0\n']
Demo Output:
['4\n', '0\n']
Note:
In the first sample Vasya is initially positioned at square (1, 1) and makes 3 steps by the first vector (1, 1). So, he consecutively visits the squares (2, 2), (3, 3), (4, 4). Then he makes 0 steps by the second vector (1, 1). He makes 1 more step by the third vector (0, - 2) and he ends up in square (4, 2). Overall, Vasya makes 4 steps.
In the second sample Vasya is initially positioned in square (1, 2) and makes 0 steps by vector ( - 1, 0), as the square with coordinates (0, 2) is located outside the yard. | ```python
n,m = list(map(int,input().split()))
xc,yc = list(map(int,input().split()))
k = int(input())
vect = []
for _ in range(k):
dx,dy = list(map(int,input().split()))
vect.append((dx,dy))
steps = 0
for dx,dy in vect:
x,y= xc + dx,yc + dy
# print(xc,yc,dx,dy,steps)
if 0 < x <= n and 0 < y <= m:
deltax = float('inf')
deltay = float('inf')
if dx > 0:
deltax = (n - xc) // dx
elif dx < 0:
deltax = (xc-1) // abs(dx)
if dy > 0:
deltay = (m - yc) // dy
elif dy < 0:
deltay = (yc-1) // abs(dy)
min_d = min(abs(deltax),abs(deltay))
xn = xc + (min_d*dx)
yn = yc + (min_d*dy)
steps += min_d
xc,yc = xn,yn
# print(xc,yc,dx,dy,steps)
print(steps)
``` | 3 |
|
233 | A | Perfect Permutation | PROGRAMMING | 800 | [
"implementation",
"math"
] | null | null | A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*. | A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size. | If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces. | [
"1\n",
"2\n",
"4\n"
] | [
"-1\n",
"2 1 \n",
"2 1 4 3 \n"
] | none | 500 | [
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "2 1 "
},
{
"input": "4",
"output": "2 1 4 3 "
},
{
"input": "3",
"output": "-1"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "2 1 4 3 6 5 "
},
{
"input": "7",
"output": "-1"
},
{
"input": "20",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 "
},
{
"input": "8",
"output": "2 1 4 3 6 5 8 7 "
},
{
"input": "9",
"output": "-1"
},
{
"input": "10",
"output": "2 1 4 3 6 5 8 7 10 9 "
},
{
"input": "11",
"output": "-1"
},
{
"input": "21",
"output": "-1"
},
{
"input": "50",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 "
},
{
"input": "51",
"output": "-1"
},
{
"input": "52",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 "
},
{
"input": "84",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 "
},
{
"input": "86",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 "
},
{
"input": "100",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 "
},
{
"input": "98",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 "
},
{
"input": "96",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 "
},
{
"input": "33",
"output": "-1"
},
{
"input": "34",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 "
},
{
"input": "36",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 "
},
{
"input": "38",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 "
},
{
"input": "40",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 "
},
{
"input": "42",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 "
},
{
"input": "44",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 "
},
{
"input": "46",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 "
},
{
"input": "48",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 "
}
] | 1,681,987,598 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 2 | 124 | 0 | x=int(input())
t=[int(i) for i in range(1,x+1)]
if x<=1:
print(-1)
else:
for i in range(0,len(t)-1):
temp=t[i]
t[i]=t[i+1]
t[i+1]=temp
print(*t) | Title: Perfect Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
Input Specification:
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
Output Specification:
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
Demo Input:
['1\n', '2\n', '4\n']
Demo Output:
['-1\n', '2 1 \n', '2 1 4 3 \n']
Note:
none | ```python
x=int(input())
t=[int(i) for i in range(1,x+1)]
if x<=1:
print(-1)
else:
for i in range(0,len(t)-1):
temp=t[i]
t[i]=t[i+1]
t[i+1]=temp
print(*t)
``` | 0 |
|
778 | A | String Game | PROGRAMMING | 1,700 | [
"binary search",
"greedy",
"strings"
] | null | null | Little Nastya has a hobby, she likes to remove some letters from word, to obtain another word. But it turns out to be pretty hard for her, because she is too young. Therefore, her brother Sergey always helps her.
Sergey gives Nastya the word *t* and wants to get the word *p* out of it. Nastya removes letters in a certain order (one after another, in this order strictly), which is specified by permutation of letters' indices of the word *t*: *a*1... *a*|*t*|. We denote the length of word *x* as |*x*|. Note that after removing one letter, the indices of other letters don't change. For example, if *t*<==<="nastya" and *a*<==<=[4,<=1,<=5,<=3,<=2,<=6] then removals make the following sequence of words "nastya" "nastya" "nastya" "nastya" "nastya" "nastya" "nastya".
Sergey knows this permutation. His goal is to stop his sister at some point and continue removing by himself to get the word *p*. Since Nastya likes this activity, Sergey wants to stop her as late as possible. Your task is to determine, how many letters Nastya can remove before she will be stopped by Sergey.
It is guaranteed that the word *p* can be obtained by removing the letters from word *t*. | The first and second lines of the input contain the words *t* and *p*, respectively. Words are composed of lowercase letters of the Latin alphabet (1<=≤<=|*p*|<=<<=|*t*|<=≤<=200<=000). It is guaranteed that the word *p* can be obtained by removing the letters from word *t*.
Next line contains a permutation *a*1,<=*a*2,<=...,<=*a*|*t*| of letter indices that specifies the order in which Nastya removes letters of *t* (1<=≤<=*a**i*<=≤<=|*t*|, all *a**i* are distinct). | Print a single integer number, the maximum number of letters that Nastya can remove. | [
"ababcba\nabb\n5 3 4 1 7 6 2\n",
"bbbabb\nbb\n1 6 3 4 2 5\n"
] | [
"3",
"4"
] | In the first sample test sequence of removing made by Nastya looks like this:
"ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba"
Nastya can not continue, because it is impossible to get word "abb" from word "ababcba".
So, Nastya will remove only three letters. | 500 | [
{
"input": "ababcba\nabb\n5 3 4 1 7 6 2",
"output": "3"
},
{
"input": "bbbabb\nbb\n1 6 3 4 2 5",
"output": "4"
},
{
"input": "cacaccccccacccc\ncacc\n10 9 14 5 1 7 15 3 6 12 4 8 11 13 2",
"output": "9"
},
{
"input": "aaaabaaabaabaaaaaaaa\naaaa\n18 5 4 6 13 9 1 3 7 8 16 10 12 19 17 15 14 11 20 2",
"output": "16"
},
{
"input": "aaaaaaaadbaaabbbbbddaaabdadbbbbbdbbabbbabaabdbbdababbbddddbdaabbddbbbbabbbbbabadaadabaaaadbbabbbaddb\naaaaaaaaaaaaaa\n61 52 5 43 53 81 7 96 6 9 34 78 79 12 8 63 22 76 18 46 41 56 3 20 57 21 75 73 100 94 35 69 32 4 70 95 88 44 68 10 71 98 23 89 36 62 28 51 24 30 74 55 27 80 38 48 93 1 19 84 13 11 86 60 87 33 39 29 83 91 67 72 54 2 17 85 82 14 15 90 64 50 99 26 66 65 31 49 40 45 77 37 25 42 97 47 58 92 59 16",
"output": "57"
}
] | 1,611,807,763 | 2,147,483,647 | PyPy 3 | OK | TESTS | 43 | 499 | 26,828,800 | # import inbuilt standard input output
import sys
from sys import stdin, stdout
# suppose a function called main() and
# all the operations are performed
# ////////// Get integer values in variables \\\\\\\\\\\\\\\\\\\\\\\
def get_ints_in_variables():
return map(int, sys.stdin.readline().strip().split())
def get_ints_in_list(): return list(
map(int, sys.stdin.readline().strip().split()))
def get_string(): return sys.stdin.readline().strip()
def isSubsequence(S, t, op, key):
tmp = [c for c in S]
for j in range(0, key+1):
tmp[op[j]-1] = "$"
j = 0
for i in range(len(tmp)):
if tmp[i] == t[j]:
j += 1
if j == len(t):
return True
return j == len(t)
def Solution(s, p, op):
l = 0
r = len(op)
ans = 0
while l <= r:
mid = (l+r)//2
if isSubsequence(s, p, op, mid):
l = mid+1
else:
ans = mid
r = mid-1
return ans
def main():
# //TAKE INPUT HERE
S = get_string()
t = get_string()
arr = get_ints_in_list()
print(Solution(S, t, arr))
# call the main method
if __name__ == "__main__":
main()
| Title: String Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Nastya has a hobby, she likes to remove some letters from word, to obtain another word. But it turns out to be pretty hard for her, because she is too young. Therefore, her brother Sergey always helps her.
Sergey gives Nastya the word *t* and wants to get the word *p* out of it. Nastya removes letters in a certain order (one after another, in this order strictly), which is specified by permutation of letters' indices of the word *t*: *a*1... *a*|*t*|. We denote the length of word *x* as |*x*|. Note that after removing one letter, the indices of other letters don't change. For example, if *t*<==<="nastya" and *a*<==<=[4,<=1,<=5,<=3,<=2,<=6] then removals make the following sequence of words "nastya" "nastya" "nastya" "nastya" "nastya" "nastya" "nastya".
Sergey knows this permutation. His goal is to stop his sister at some point and continue removing by himself to get the word *p*. Since Nastya likes this activity, Sergey wants to stop her as late as possible. Your task is to determine, how many letters Nastya can remove before she will be stopped by Sergey.
It is guaranteed that the word *p* can be obtained by removing the letters from word *t*.
Input Specification:
The first and second lines of the input contain the words *t* and *p*, respectively. Words are composed of lowercase letters of the Latin alphabet (1<=≤<=|*p*|<=<<=|*t*|<=≤<=200<=000). It is guaranteed that the word *p* can be obtained by removing the letters from word *t*.
Next line contains a permutation *a*1,<=*a*2,<=...,<=*a*|*t*| of letter indices that specifies the order in which Nastya removes letters of *t* (1<=≤<=*a**i*<=≤<=|*t*|, all *a**i* are distinct).
Output Specification:
Print a single integer number, the maximum number of letters that Nastya can remove.
Demo Input:
['ababcba\nabb\n5 3 4 1 7 6 2\n', 'bbbabb\nbb\n1 6 3 4 2 5\n']
Demo Output:
['3', '4']
Note:
In the first sample test sequence of removing made by Nastya looks like this:
"ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ababcba"
Nastya can not continue, because it is impossible to get word "abb" from word "ababcba".
So, Nastya will remove only three letters. | ```python
# import inbuilt standard input output
import sys
from sys import stdin, stdout
# suppose a function called main() and
# all the operations are performed
# ////////// Get integer values in variables \\\\\\\\\\\\\\\\\\\\\\\
def get_ints_in_variables():
return map(int, sys.stdin.readline().strip().split())
def get_ints_in_list(): return list(
map(int, sys.stdin.readline().strip().split()))
def get_string(): return sys.stdin.readline().strip()
def isSubsequence(S, t, op, key):
tmp = [c for c in S]
for j in range(0, key+1):
tmp[op[j]-1] = "$"
j = 0
for i in range(len(tmp)):
if tmp[i] == t[j]:
j += 1
if j == len(t):
return True
return j == len(t)
def Solution(s, p, op):
l = 0
r = len(op)
ans = 0
while l <= r:
mid = (l+r)//2
if isSubsequence(s, p, op, mid):
l = mid+1
else:
ans = mid
r = mid-1
return ans
def main():
# //TAKE INPUT HERE
S = get_string()
t = get_string()
arr = get_ints_in_list()
print(Solution(S, t, arr))
# call the main method
if __name__ == "__main__":
main()
``` | 3 |
|
71 | A | Way Too Long Words | PROGRAMMING | 800 | [
"strings"
] | A. Way Too Long Words | 1 | 256 | Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. | The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. | Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. | [
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] | [
"word\nl10n\ni18n\np43s\n"
] | none | 500 | [
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,693,904,499 | 2,147,483,647 | Python 3 | RUNTIME_ERROR | TESTS | 0 | 31 | 0 | ############ ---- Input Functions ---- ############
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input()
return(list(s[:len(s) - 1]))
def invr():
return(map(int,input().split()))
nbrWords = inp()
words = insr()
for i in range(nbrWords):
if (len(words[i]) <= 10):
print(words[i])
else:
print(words[i][0] + str((len(words[i]) - 2)) + words[i][-1]) | Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none | ```python
############ ---- Input Functions ---- ############
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input()
return(list(s[:len(s) - 1]))
def invr():
return(map(int,input().split()))
nbrWords = inp()
words = insr()
for i in range(nbrWords):
if (len(words[i]) <= 10):
print(words[i])
else:
print(words[i][0] + str((len(words[i]) - 2)) + words[i][-1])
``` | -1 |
744 | C | Hongcow Buys a Deck of Cards | PROGRAMMING | 2,400 | [
"bitmasks",
"brute force",
"dp"
] | null | null | One day, Hongcow goes to the store and sees a brand new deck of *n* special cards. Each individual card is either red or blue. He decides he wants to buy them immediately. To do this, he needs to play a game with the owner of the store.
This game takes some number of turns to complete. On a turn, Hongcow may do one of two things:
- Collect tokens. Hongcow collects 1 red token and 1 blue token by choosing this option (thus, 2 tokens in total per one operation). - Buy a card. Hongcow chooses some card and spends tokens to purchase it as specified below.
The *i*-th card requires *r**i* red resources and *b**i* blue resources. Suppose Hongcow currently has *A* red cards and *B* blue cards. Then, the *i*-th card will require Hongcow to spend *max*(*r**i*<=-<=*A*,<=0) red tokens, and *max*(*b**i*<=-<=*B*,<=0) blue tokens. Note, only tokens disappear, but the cards stay with Hongcow forever. Each card can be bought only once.
Given a description of the cards and their costs determine the minimum number of turns Hongcow needs to purchase all cards. | The first line of input will contain a single integer *n* (1<=≤<=*n*<=≤<=16).
The next *n* lines of input will contain three tokens *c**i*, *r**i* and *b**i*. *c**i* will be 'R' or 'B', denoting the color of the card as red or blue. *r**i* will be an integer denoting the amount of red resources required to obtain the card, and *b**i* will be an integer denoting the amount of blue resources required to obtain the card (0<=≤<=*r**i*,<=*b**i*<=≤<=107). | Output a single integer, denoting the minimum number of turns needed to acquire all the cards. | [
"3\nR 0 1\nB 1 0\nR 1 1\n",
"3\nR 3 0\nR 2 0\nR 1 0\n"
] | [
"4\n",
"6\n"
] | For the first sample, Hongcow's four moves are as follows:
1. Collect tokens 1. Buy card 1 1. Buy card 2 1. Buy card 3
For the second sample, one optimal strategy is as follows:
1. Collect tokens 1. Collect tokens 1. Buy card 2 1. Collect tokens 1. Buy card 3 1. Buy card 1 | 1,750 | [
{
"input": "3\nR 0 1\nB 1 0\nR 1 1",
"output": "4"
},
{
"input": "3\nR 3 0\nR 2 0\nR 1 0",
"output": "6"
},
{
"input": "8\nB 0 1\nR 2 3\nB 2 1\nR 4 2\nB 1 3\nB 1 10\nB 3 4\nR 3 4",
"output": "17"
},
{
"input": "16\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000\nR 10000000 10000000",
"output": "160000016"
},
{
"input": "16\nB 7 5\nB 3 16\nB 8 15\nR 11 1\nR 13 14\nB 0 9\nR 2 0\nR 7 14\nB 11 6\nR 16 2\nB 3 2\nB 0 6\nR 11 7\nR 15 4\nB 2 9\nB 7 13",
"output": "78"
},
{
"input": "16\nB 1 8676796\nB 0 8580604\nB 8174626 1318206\nB 16 3440389\nB 3756148 7936397\nB 10 16\nB 9 10\nB 15 6\nB 15 8227291\nB 16 1620609\nB 15 4853663\nB 3 12\nB 7 5\nB 14 3597451\nB 340789 2345477\nB 3250968 6094874",
"output": "56691702"
},
{
"input": "16\nB 9 3105751\nR 2 7471542\nR 10 586804\nB 6430003 13\nR 2499494 421369\nB 15 6781522\nB 3963729 2\nR 5415223 1877343\nB 1 3992706\nR 8 430677\nB 890666 16\nB 16 1\nB 6 1289788\nB 6737490 11\nR 6473547 4969305\nR 9328312 10",
"output": "41738470"
},
{
"input": "16\nB 7 10\nB 6362480 9731034\nB 12 2191046\nR 10 5\nB 3904695 40732\nB 5 11\nB 181094 5743754\nR 139173 4\nB 9893259 12\nR 12 7283868\nB 9308033 742089\nB 16 4013981\nB 6996517 4733956\nR 9581205 682792\nB 1 16\nB 7 886568",
"output": "46366491"
},
{
"input": "5\nR 0 4\nR 0 1\nB 5 4\nR 4 2\nB 1 2",
"output": "12"
},
{
"input": "16\nB 2 14\nR 6 13\nR 4 12\nR 3 3\nB 21 8\nB 4 3\nB 10 10\nR 21 13\nR 16 13\nR 0 14\nR 16 18\nB 6 13\nR 14 8\nB 18 14\nB 2 20\nR 11 9",
"output": "126"
},
{
"input": "15\nR 0 11\nB 1 10\nR 21 13\nR 18 16\nB 1 4\nR 18 9\nR 15 10\nB 4 1\nB 9 9\nR 14 13\nB 1 16\nR 3 7\nR 2 7\nR 17 4\nR 13 5",
"output": "99"
},
{
"input": "14\nB 9 9\nR 6 20\nB 3 6\nR 7 20\nR 20 8\nR 19 15\nB 7 14\nB 20 7\nB 9 9\nB 11 1\nR 4 15\nB 13 14\nB 21 2\nB 5 12",
"output": "122"
},
{
"input": "13\nB 15 14\nB 20 17\nB 3 7\nR 14 15\nB 8 7\nB 16 17\nB 17 11\nR 21 13\nB 6 0\nB 3 8\nB 15 2\nB 9 21\nB 14 12",
"output": "151"
},
{
"input": "12\nB 20 11\nR 7 6\nR 20 0\nB 11 2\nB 5 3\nB 13 1\nB 8 15\nR 8 20\nB 16 0\nB 14 10\nB 1 4\nR 20 15",
"output": "120"
},
{
"input": "7\nR 10 6\nR 18 2\nB 19 6\nR 0 2\nR 16 14\nR 8 6\nR 17 18",
"output": "74"
},
{
"input": "6\nB 16 7\nB 13 9\nB 1 17\nB 11 11\nB 5 14\nB 5 12",
"output": "61"
},
{
"input": "5\nR 3 4\nB 18 6\nR 4 18\nB 8 16\nB 19 10",
"output": "53"
},
{
"input": "4\nR 1 1\nR 14 16\nR 0 11\nR 15 2",
"output": "34"
},
{
"input": "3\nR 10 7\nB 19 13\nB 0 12",
"output": "32"
},
{
"input": "2\nB 12 12\nB 10 2",
"output": "24"
},
{
"input": "1\nR 0 9",
"output": "10"
},
{
"input": "16\nR 11 0\nR 6 0\nR 7 2\nR 12 6\nR 14 9\nR 10 15\nR 1 6\nR 14 16\nR 14 5\nR 11 13\nR 10 11\nR 7 16\nR 1 3\nR 15 12\nR 14 5\nR 9 7",
"output": "142"
},
{
"input": "16\nB 16 2\nB 13 4\nB 8 2\nB 13 11\nB 14 15\nR 5 16\nB 0 16\nB 10 9\nB 5 9\nB 8 9\nB 2 7\nB 14 11\nB 8 12\nB 14 0\nR 16 13\nB 6 16",
"output": "141"
},
{
"input": "16\nR 10 6\nB 4 0\nB 10 4\nR 16 14\nR 6 13\nR 8 0\nB 8 0\nR 12 1\nB 11 4\nR 3 5\nR 2 1\nB 12 6\nR 14 12\nB 11 13\nB 10 4\nB 4 8",
"output": "74"
},
{
"input": "16\nR 15 9\nR 4 4\nR 10 5\nR 1 1\nR 5 11\nR 3 0\nR 16 0\nB 9 11\nR 0 8\nR 15 9\nR 1 14\nR 3 16\nR 3 10\nR 1 9\nB 13 12\nR 2 10",
"output": "121"
},
{
"input": "16\nB 11 3\nR 12 1\nR 10 6\nR 11 5\nR 6 9\nB 6 1\nB 8 10\nR 4 4\nR 7 4\nR 10 6\nR 9 8\nB 0 11\nB 9 2\nB 16 4\nR 6 4\nR 16 2",
"output": "69"
},
{
"input": "16\nB 14 7\nB 3 13\nB 12 7\nR 13 9\nB 13 7\nB 0 1\nR 6 10\nB 0 5\nB 13 16\nB 6 2\nR 9 3\nB 8 6\nB 0 1\nB 14 9\nR 0 3\nR 4 12",
"output": "83"
},
{
"input": "16\nR 1 10\nR 2 1\nR 12 9\nR 16 13\nR 14 12\nR 3 2\nB 15 11\nR 12 13\nR 2 4\nR 3 6\nR 8 15\nR 6 0\nR 5 16\nR 4 4\nB 1 11\nR 3 4",
"output": "121"
},
{
"input": "16\nB 14 14\nR 10 13\nB 14 10\nR 0 10\nB 4 10\nB 14 11\nR 6 4\nB 0 6\nB 9 0\nB 15 2\nB 8 10\nB 14 3\nR 12 9\nR 2 16\nR 12 3\nB 0 13",
"output": "93"
},
{
"input": "16\nR 13 14\nR 2 12\nR 2 14\nR 12 16\nR 10 11\nR 9 2\nB 8 7\nR 16 7\nB 15 4\nB 15 0\nR 5 9\nR 2 12\nB 1 0\nR 0 5\nR 2 2\nR 15 8",
"output": "90"
},
{
"input": "16\nR 8 16\nB 10 8\nR 4 15\nR 12 3\nB 11 9\nR 12 1\nR 8 7\nB 11 0\nR 4 8\nB 3 12\nR 15 5\nR 9 5\nR 8 8\nR 7 8\nB 11 10\nB 14 0",
"output": "88"
},
{
"input": "16\nR 13 3\nB 1 4\nR 4 0\nB 15 6\nB 2 7\nB 6 3\nR 16 8\nB 15 10\nB 11 3\nB 16 16\nR 13 0\nB 8 9\nB 15 7\nR 5 4\nR 13 1\nR 11 10",
"output": "108"
},
{
"input": "16\nB 7 13\nR 0 7\nR 15 1\nR 9 4\nB 2 12\nB 10 4\nR 7 1\nR 11 3\nR 0 0\nR 11 12\nR 13 12\nB 14 3\nB 4 7\nR 2 16\nB 7 1\nB 8 11",
"output": "72"
},
{
"input": "16\nB 12 0\nB 9 5\nB 16 2\nB 11 8\nB 2 10\nB 4 4\nB 6 2\nB 6 12\nB 6 3\nB 7 9\nB 5 6\nB 14 15\nB 10 14\nB 10 12\nB 1 9\nB 6 4",
"output": "141"
},
{
"input": "16\nB 0 4\nR 0 8\nR 0 3\nB 13 11\nB 10 9\nR 7 5\nR 15 2\nR 2 5\nR 13 16\nR 2 13\nB 4 2\nB 3 9\nR 0 15\nB 7 0\nB 4 1\nR 4 14",
"output": "64"
},
{
"input": "16\nR 12 7\nB 16 4\nB 0 5\nR 15 16\nR 11 7\nR 1 4\nR 6 12\nR 6 14\nR 3 11\nR 15 10\nR 4 13\nB 2 3\nR 6 6\nB 15 12\nR 14 8\nR 1 7",
"output": "101"
},
{
"input": "16\nB 16 10\nB 7 9\nB 1 6\nB 8 3\nB 1 5\nB 6 5\nB 14 13\nB 2 6\nB 9 15\nB 11 6\nB 11 8\nB 9 16\nB 5 4\nB 12 8\nB 8 0\nB 16 16",
"output": "152"
},
{
"input": "16\nB 12 4\nB 15 5\nB 2 6\nB 11 6\nB 2 3\nB 0 6\nB 13 13\nB 14 16\nB 6 11\nB 7 10\nB 11 3\nB 7 10\nB 12 4\nR 10 4\nB 11 0\nB 14 0",
"output": "149"
},
{
"input": "16\nR 15 8\nR 15 1\nB 3 9\nR 13 2\nR 9 9\nB 3 6\nR 5 13\nB 10 0\nR 12 15\nB 11 6\nR 11 16\nR 14 4\nR 0 12\nR 0 8\nB 4 7\nR 11 10",
"output": "89"
},
{
"input": "16\nB 16 4\nB 4 13\nB 3 1\nB 6 7\nR 2 0\nB 11 1\nR 8 2\nR 15 16\nR 2 16\nR 14 13\nB 3 4\nR 2 15\nB 7 4\nB 8 16\nR 1 12\nR 4 12",
"output": "80"
},
{
"input": "16\nR 3 16\nR 12 0\nR 3 3\nR 9 11\nR 10 16\nR 6 2\nR 16 3\nR 11 8\nR 8 12\nR 11 9\nR 4 16\nR 0 9\nR 15 3\nR 16 11\nR 12 2\nR 10 4",
"output": "141"
},
{
"input": "16\nR 7 1\nB 3 14\nB 5 4\nB 9 0\nR 10 14\nR 8 2\nR 8 3\nB 6 1\nB 14 9\nR 7 13\nB 12 10\nR 8 5\nB 4 11\nR 13 8\nB 15 11\nB 7 14",
"output": "85"
},
{
"input": "16\nR 3 5\nB 3 9\nB 6 5\nB 12 3\nB 1 3\nR 3 3\nB 16 13\nB 3 10\nB 4 12\nR 2 10\nR 12 7\nR 5 16\nB 2 11\nR 12 3\nR 8 3\nB 5 15",
"output": "71"
},
{
"input": "16\nR 7 7\nR 11 14\nR 6 6\nR 6 7\nR 1 1\nR 6 4\nR 16 14\nR 6 3\nR 10 8\nR 14 6\nR 12 1\nR 13 9\nR 9 11\nR 1 7\nR 2 2\nR 2 8",
"output": "124"
},
{
"input": "16\nB 3 11\nR 2 10\nB 0 8\nB 8 3\nB 1 16\nR 1 4\nR 6 15\nR 2 3\nB 16 12\nB 9 10\nB 2 13\nR 11 5\nB 15 1\nB 16 3\nB 5 11\nB 0 1",
"output": "72"
},
{
"input": "16\nB 7 6\nR 0 14\nR 0 9\nR 11 7\nR 9 13\nR 4 4\nR 15 7\nR 14 13\nR 6 8\nR 6 6\nR 2 8\nR 2 7\nR 5 0\nR 6 16\nR 14 1\nR 15 11",
"output": "132"
},
{
"input": "16\nR 1 9\nR 8 9\nR 1 10\nR 12 11\nR 10 11\nR 16 4\nR 14 7\nR 10 6\nR 12 4\nR 1 2\nB 1 3\nR 0 2\nR 11 0\nR 4 3\nR 8 10\nR 12 3",
"output": "96"
},
{
"input": "16\nR 6 12\nB 0 7\nB 2 12\nR 6 15\nB 1 9\nR 1 5\nB 6 8\nR 6 15\nB 1 7\nR 5 7\nR 1 14\nR 6 13\nR 0 8\nB 2 16\nB 11 1\nR 10 4",
"output": "90"
},
{
"input": "16\nR 10 16\nB 16 11\nR 4 13\nR 8 1\nR 1 15\nR 14 6\nR 13 2\nR 10 8\nB 9 4\nB 1 4\nR 10 10\nB 5 8\nR 7 8\nR 9 12\nR 3 0\nR 8 14",
"output": "103"
},
{
"input": "16\nR 11 2\nR 6 6\nR 2 6\nR 1 16\nR 0 8\nR 4 11\nR 0 15\nR 7 7\nR 14 6\nR 5 10\nR 2 16\nR 9 2\nR 7 15\nR 1 2\nR 1 5\nR 0 15",
"output": "158"
},
{
"input": "16\nB 15 6\nB 14 1\nB 3 8\nB 4 4\nB 1 6\nB 8 10\nB 9 15\nB 11 8\nB 4 1\nB 1 6\nB 3 11\nB 0 13\nB 13 7\nB 8 14\nB 12 12\nB 15 7",
"output": "137"
},
{
"input": "16\nB 10 9\nB 13 15\nB 5 8\nB 5 8\nR 8 4\nB 2 11\nR 16 8\nR 6 0\nR 1 5\nB 13 10\nB 2 6\nB 16 7\nB 2 7\nR 5 1\nR 6 5\nR 12 0",
"output": "73"
},
{
"input": "16\nB 15 3\nR 3 2\nR 5 9\nB 7 12\nR 9 2\nB 5 11\nR 16 9\nB 2 10\nR 7 2\nB 8 7\nR 10 0\nR 5 2\nB 9 6\nB 4 14\nB 8 13\nB 10 1",
"output": "70"
},
{
"input": "16\nR 10 7\nB 12 15\nR 7 11\nR 9 16\nR 8 7\nB 16 12\nB 7 9\nB 15 3\nR 14 4\nR 4 3\nR 10 13\nB 3 13\nB 16 14\nR 10 10\nR 2 4\nB 7 11",
"output": "107"
},
{
"input": "16\nR 14 9\nB 11 2\nB 8 13\nB 4 2\nB 0 5\nB 3 13\nB 16 10\nR 10 13\nB 3 0\nR 1 7\nB 9 8\nB 11 9\nR 5 13\nB 9 6\nR 5 3\nB 6 4",
"output": "76"
},
{
"input": "16\nR 1 13\nR 2 16\nR 0 13\nR 5 7\nR 0 4\nR 15 13\nR 14 2\nR 13 4\nR 10 13\nR 13 4\nR 9 4\nR 8 2\nR 11 4\nR 15 10\nR 16 11\nR 3 14",
"output": "150"
},
{
"input": "16\nB 13 16\nR 11 11\nB 1 15\nB 7 3\nB 8 2\nB 1 13\nR 6 4\nB 9 14\nB 0 0\nB 0 8\nB 0 15\nB 16 14\nB 1 4\nB 14 6\nB 8 3\nB 0 6",
"output": "93"
},
{
"input": "16\nB 1 11\nR 9 15\nR 3 0\nR 9 6\nB 8 0\nR 12 13\nR 14 4\nR 4 7\nR 6 13\nR 13 4\nR 16 10\nR 15 9\nR 7 4\nB 11 2\nR 11 11\nB 16 7",
"output": "92"
},
{
"input": "16\nR 13 14\nR 1 12\nR 3 0\nR 3 11\nR 0 6\nR 14 14\nR 6 14\nR 0 16\nR 11 8\nR 9 0\nR 16 5\nR 5 4\nR 14 11\nR 0 14\nR 5 3\nR 13 0",
"output": "148"
},
{
"input": "16\nB 6 10\nR 7 7\nB 2 10\nB 4 16\nR 9 15\nB 6 2\nB 10 11\nB 5 6\nB 1 10\nB 13 7\nB 9 11\nB 1 14\nB 13 4\nB 11 4\nB 2 6\nB 13 2",
"output": "101"
},
{
"input": "16\nB 1 4\nB 15 3\nR 4 12\nR 16 3\nB 16 12\nB 1 1\nB 1 10\nB 2 16\nB 7 14\nB 8 11\nB 1 6\nB 7 8\nB 2 2\nB 0 8\nR 13 6\nB 11 11",
"output": "92"
},
{
"input": "16\nR 5 8\nR 14 7\nR 4 13\nR 1 8\nB 0 10\nB 3 2\nB 1 3\nB 14 9\nB 15 10\nR 3 7\nB 0 1\nR 14 2\nR 9 10\nR 16 4\nR 6 14\nR 9 4",
"output": "70"
},
{
"input": "16\nB 10 11\nB 6 3\nB 6 14\nR 2 3\nB 0 8\nB 16 3\nB 8 4\nB 1 0\nB 4 14\nB 16 5\nB 0 12\nB 13 15\nB 16 10\nR 13 0\nB 9 6\nB 6 5",
"output": "118"
},
{
"input": "16\nR 6 14\nR 14 8\nB 7 16\nR 4 7\nB 8 14\nB 2 11\nB 0 5\nB 13 10\nB 10 10\nB 12 8\nR 9 8\nB 3 9\nR 4 8\nR 4 12\nR 2 14\nR 3 15",
"output": "94"
},
{
"input": "16\nR 8 0\nR 13 3\nR 8 0\nB 7 11\nR 8 12\nR 14 12\nB 15 15\nR 9 3\nR 16 6\nB 7 4\nR 8 2\nB 2 11\nR 11 1\nR 1 16\nR 12 5\nB 2 8",
"output": "83"
},
{
"input": "16\nB 4 11\nB 4 8\nB 8 1\nB 0 15\nB 16 10\nB 16 13\nB 7 15\nR 5 13\nB 5 10\nB 3 0\nB 7 14\nB 8 6\nB 2 0\nB 8 13\nR 15 4\nB 16 1",
"output": "113"
},
{
"input": "16\nB 9 15\nB 12 4\nB 10 3\nR 3 2\nR 0 7\nR 12 12\nB 15 16\nB 1 5\nB 11 6\nB 7 4\nB 6 9\nB 7 1\nB 7 16\nR 5 8\nB 8 12\nR 13 2",
"output": "81"
},
{
"input": "16\nB 3 1\nR 11 0\nR 2 4\nR 4 7\nR 7 5\nR 14 13\nB 6 9\nR 4 15\nB 1 1\nR 2 1\nR 15 5\nB 14 13\nB 14 7\nR 3 12\nR 11 5\nR 12 11",
"output": "73"
},
{
"input": "16\nB 8 4\nB 2 3\nB 3 4\nB 6 2\nB 8 11\nB 8 14\nB 6 9\nB 16 8\nB 16 6\nB 16 15\nB 15 16\nB 13 6\nB 3 7\nB 10 9\nB 5 12\nB 9 4",
"output": "160"
},
{
"input": "16\nB 0 8\nB 9 7\nB 3 6\nB 0 8\nB 8 4\nB 0 1\nB 1 5\nB 14 15\nB 6 8\nB 2 4\nB 7 5\nB 0 0\nB 3 15\nB 2 0\nB 11 16\nB 1 5",
"output": "83"
},
{
"input": "16\nB 13 12\nB 0 12\nB 3 9\nB 1 12\nB 8 2\nB 3 2\nB 1 6\nB 1 7\nB 11 3\nB 16 8\nB 8 16\nB 15 12\nB 9 5\nB 10 12\nB 13 16\nB 8 14",
"output": "136"
},
{
"input": "16\nB 1 14\nR 0 9\nB 5 10\nR 13 16\nB 16 0\nB 14 1\nB 9 16\nB 14 0\nR 0 6\nB 11 4\nB 16 13\nR 5 6\nR 16 5\nR 7 7\nR 7 7\nR 5 7",
"output": "89"
},
{
"input": "16\nR 12 2\nR 7 12\nR 6 10\nR 15 3\nR 16 16\nR 1 2\nR 1 0\nR 10 10\nR 7 2\nR 6 1\nR 15 7\nR 13 1\nR 4 5\nR 5 3\nR 9 16\nR 2 8",
"output": "114"
},
{
"input": "16\nR 16 13\nB 15 9\nB 7 12\nB 16 7\nB 16 4\nR 12 3\nB 9 1\nR 5 2\nR 13 15\nB 2 5\nR 15 2\nR 10 12\nB 11 14\nB 12 8\nB 2 6\nR 0 1",
"output": "103"
},
{
"input": "16\nR 12 16\nB 14 13\nB 8 14\nR 2 2\nR 7 2\nB 16 3\nR 8 10\nR 9 12\nB 3 2\nR 15 1\nR 14 14\nR 2 7\nR 1 12\nB 10 3\nR 13 15\nB 15 11",
"output": "100"
},
{
"input": "16\nR 16 2\nR 5 9\nR 8 14\nR 4 7\nR 8 0\nR 10 4\nR 0 11\nR 4 12\nR 10 14\nR 2 15\nR 6 9\nR 16 2\nR 7 12\nR 0 16\nR 15 14\nR 12 4",
"output": "161"
},
{
"input": "16\nB 3 5\nB 14 5\nB 10 16\nR 15 12\nB 15 15\nR 12 4\nR 8 11\nB 0 5\nB 16 11\nR 14 3\nB 5 3\nR 7 12\nR 14 3\nB 15 4\nB 8 5\nB 10 5",
"output": "117"
},
{
"input": "16\nR 16 16\nR 13 10\nR 10 0\nR 0 15\nB 16 13\nR 7 5\nR 8 4\nR 13 14\nR 5 15\nR 11 15\nR 4 16\nR 5 7\nR 12 3\nR 12 16\nR 2 15\nR 8 14",
"output": "180"
},
{
"input": "16\nR 3 3\nR 4 5\nR 12 2\nR 2 2\nR 6 2\nR 10 6\nR 15 5\nR 8 7\nR 12 10\nR 6 11\nR 13 10\nR 12 10\nR 2 11\nR 3 12\nR 5 5\nR 5 7",
"output": "124"
},
{
"input": "16\nB 3 16\nR 10 0\nB 2 13\nB 12 16\nR 16 11\nB 1 10\nB 2 0\nB 13 6\nR 0 12\nB 10 1\nB 6 0\nB 8 12\nB 9 1\nB 11 1\nB 11 10\nB 14 9",
"output": "106"
},
{
"input": "16\nR 8 2\nB 10 13\nB 3 13\nB 14 3\nB 6 8\nB 13 10\nB 10 11\nB 9 16\nB 7 16\nB 5 5\nB 6 12\nB 15 8\nB 16 1\nR 1 14\nB 12 1\nB 13 1",
"output": "135"
},
{
"input": "16\nB 3 14\nR 1 1\nR 5 14\nR 16 8\nR 7 6\nR 0 10\nR 1 12\nR 4 16\nR 14 12\nR 0 2\nR 5 6\nR 13 1\nB 5 9\nR 16 2\nR 6 0\nR 10 11",
"output": "115"
},
{
"input": "16\nB 6 16\nB 8 14\nB 6 16\nB 10 11\nB 6 4\nB 12 10\nR 10 13\nB 8 8\nB 11 8\nB 14 15\nB 5 11\nB 4 13\nB 12 9\nB 14 14\nB 9 9\nB 7 12",
"output": "143"
},
{
"input": "16\nB 11 4\nB 8 1\nR 7 0\nR 13 15\nR 15 10\nR 14 11\nR 9 4\nB 4 1\nR 1 12\nR 9 2\nB 14 6\nB 10 16\nR 10 8\nR 4 10\nR 3 16\nR 5 5",
"output": "86"
},
{
"input": "16\nR 7 7\nR 16 14\nR 7 1\nR 13 2\nR 15 8\nR 8 12\nB 1 5\nR 16 10\nR 7 7\nR 14 15\nR 13 1\nR 9 10\nR 0 16\nB 1 5\nR 13 8\nB 3 15",
"output": "115"
},
{
"input": "16\nB 11 1\nB 8 11\nR 9 2\nB 16 7\nB 6 6\nB 12 13\nB 8 6\nR 12 3\nB 13 4\nB 9 2\nB 12 13\nB 16 5\nR 5 15\nB 9 10\nB 16 15\nB 0 8",
"output": "139"
},
{
"input": "16\nR 6 4\nB 16 14\nR 9 3\nB 1 3\nB 6 4\nB 6 13\nB 8 16\nR 7 13\nR 2 7\nB 6 16\nB 4 8\nB 15 16\nB 13 16\nR 6 6\nR 10 16\nB 15 9",
"output": "103"
},
{
"input": "16\nR 11 8\nR 14 11\nR 11 5\nR 12 7\nR 14 2\nR 9 13\nB 16 16\nR 12 6\nR 9 2\nR 1 12\nR 3 3\nR 5 11\nB 2 6\nR 5 1\nR 3 7\nR 12 1",
"output": "100"
},
{
"input": "16\nB 6 10\nB 5 15\nB 12 6\nB 13 10\nB 14 8\nB 3 14\nB 8 0\nB 7 15\nB 15 16\nB 13 0\nB 3 15\nB 2 6\nR 8 6\nB 11 14\nB 6 15\nB 9 11",
"output": "136"
},
{
"input": "16\nR 16 15\nB 13 1\nB 2 0\nB 8 16\nB 14 1\nR 12 9\nB 11 14\nB 13 5\nB 5 9\nB 0 15\nB 12 4\nB 7 15\nB 7 14\nB 3 4\nB 11 3\nB 10 12",
"output": "133"
},
{
"input": "16\nR 2 1\nB 11 5\nB 4 0\nB 9 3\nB 15 16\nB 15 10\nB 2 7\nR 9 15\nR 11 4\nR 12 2\nB 13 16\nR 5 11\nB 14 5\nB 10 9\nR 14 10\nR 8 4",
"output": "94"
},
{
"input": "16\nB 14 4\nB 2 1\nB 5 1\nB 12 7\nB 14 14\nB 10 9\nB 11 7\nB 4 8\nB 0 0\nR 9 16\nB 4 10\nB 13 5\nB 3 5\nB 7 4\nB 6 2\nB 5 14",
"output": "121"
},
{
"input": "16\nR 2 7\nB 11 6\nR 6 4\nB 13 3\nR 6 12\nB 14 10\nB 9 8\nB 16 0\nB 6 3\nB 4 3\nB 4 6\nB 12 16\nB 10 3\nB 6 16\nR 0 1\nB 3 15",
"output": "85"
},
{
"input": "16\nR 14 1\nR 10 2\nR 7 4\nB 8 7\nR 5 1\nR 8 10\nB 1 0\nB 12 10\nB 12 0\nB 16 16\nR 3 0\nR 1 11\nB 0 12\nR 12 13\nR 3 9\nR 0 8",
"output": "72"
},
{
"input": "16\nB 2 5\nB 1 15\nB 8 5\nB 9 11\nB 14 15\nB 10 12\nB 9 1\nB 16 3\nB 3 13\nB 4 12\nB 11 12\nB 9 5\nB 5 12\nB 11 0\nB 13 1\nB 15 1",
"output": "156"
},
{
"input": "16\nR 14 9\nB 8 3\nR 8 7\nB 11 16\nB 15 13\nR 5 13\nB 9 1\nR 12 11\nB 9 16\nR 16 0\nB 11 8\nB 7 0\nB 13 11\nB 8 12\nR 16 9\nR 13 11",
"output": "114"
},
{
"input": "16\nR 1 12\nR 7 15\nB 10 8\nR 13 3\nR 5 11\nB 7 13\nB 16 12\nB 7 4\nB 15 12\nR 12 13\nR 11 3\nB 13 12\nB 2 2\nB 16 8\nR 10 1\nB 10 12",
"output": "104"
},
{
"input": "16\nB 6 15\nB 16 3\nB 11 9\nB 16 6\nB 6 9\nB 3 13\nB 8 13\nB 3 14\nB 5 9\nB 7 9\nB 2 14\nB 13 14\nB 8 2\nB 13 13\nB 3 0\nB 8 4",
"output": "144"
},
{
"input": "16\nB 0 10\nB 7 16\nB 12 10\nB 9 2\nR 5 15\nR 6 13\nB 16 12\nR 15 6\nB 11 12\nB 4 13\nB 1 10\nR 3 9\nR 14 0\nR 3 8\nR 5 8\nR 6 14",
"output": "95"
},
{
"input": "16\nB 10 5\nB 14 11\nB 3 13\nB 3 7\nB 6 7\nR 13 0\nB 3 1\nB 4 14\nR 7 14\nB 7 3\nB 11 14\nB 15 11\nR 15 1\nB 13 16\nB 11 13\nR 15 16",
"output": "115"
},
{
"input": "16\nR 5 9\nR 12 7\nR 4 13\nB 4 11\nB 6 5\nB 10 1\nR 12 2\nR 16 6\nR 15 10\nR 2 16\nR 12 11\nB 5 6\nR 3 0\nB 2 11\nR 14 3\nR 4 8",
"output": "80"
},
{
"input": "16\nB 9 3\nB 4 10\nB 5 15\nB 6 16\nB 14 2\nB 12 1\nB 11 3\nB 4 16\nB 4 14\nB 16 13\nB 10 5\nR 3 9\nB 10 16\nR 1 8\nR 7 12\nB 2 10",
"output": "93"
},
{
"input": "16\nR 5 6\nB 12 7\nB 6 0\nR 9 2\nB 14 0\nR 6 2\nB 3 11\nR 16 8\nR 11 10\nR 11 0\nB 2 0\nB 11 2\nB 16 9\nB 15 3\nB 1 3\nB 16 2",
"output": "107"
},
{
"input": "16\nR 10 9\nR 12 4\nR 8 1\nR 10 7\nR 5 7\nR 9 3\nR 10 12\nR 12 0\nR 0 6\nR 16 13\nR 2 12\nR 9 15\nR 6 7\nR 6 7\nR 4 2\nR 13 12",
"output": "133"
},
{
"input": "16\nB 13 12\nB 2 7\nB 7 1\nR 5 3\nB 6 5\nB 4 3\nB 2 14\nR 7 10\nR 6 9\nB 11 9\nB 1 7\nB 16 9\nB 13 16\nB 3 3\nB 14 11\nR 12 5",
"output": "92"
},
{
"input": "16\nB 9 15\nB 10 4\nB 9 4\nR 7 7\nR 13 3\nR 7 4\nB 1 15\nR 3 3\nR 13 5\nB 7 14\nB 10 1\nR 7 4\nR 2 15\nR 1 16\nB 8 2\nR 9 15",
"output": "80"
},
{
"input": "16\nR 13 10\nB 10 8\nR 10 5\nB 8 11\nR 14 1\nR 1 5\nB 9 7\nB 6 3\nR 3 0\nB 3 10\nR 9 14\nR 4 15\nR 8 14\nR 8 3\nR 9 11\nB 6 16",
"output": "90"
},
{
"input": "16\nR 8 14\nR 1 4\nB 10 5\nR 11 15\nR 4 15\nB 5 4\nR 16 7\nB 2 13\nR 8 4\nB 15 6\nR 8 9\nB 12 10\nR 14 6\nB 6 16\nB 3 2\nB 5 8",
"output": "89"
},
{
"input": "16\nR 12 0\nR 10 8\nR 12 8\nR 13 1\nR 5 4\nR 0 5\nB 16 8\nB 14 5\nR 15 0\nB 10 11\nR 8 4\nR 10 4\nB 5 6\nB 13 12\nB 5 1\nR 2 1",
"output": "71"
},
{
"input": "16\nR 13 4\nR 7 11\nR 11 0\nR 6 16\nR 4 14\nR 8 9\nR 13 14\nR 3 5\nR 4 1\nR 14 0\nR 0 10\nB 15 15\nB 4 13\nR 4 2\nR 11 5\nR 11 2",
"output": "113"
},
{
"input": "16\nR 0 7\nR 15 0\nR 12 2\nR 0 2\nR 4 12\nR 10 9\nR 11 14\nR 15 15\nB 10 6\nR 10 14\nR 10 4\nR 14 8\nR 10 4\nR 11 14\nR 14 13\nR 9 11",
"output": "137"
},
{
"input": "16\nB 4 11\nB 6 12\nB 5 3\nR 1 7\nB 4 10\nB 6 11\nB 3 14\nB 11 7\nB 0 2\nB 6 10\nB 9 0\nB 3 4\nR 16 4\nB 9 2\nB 8 4\nR 7 13",
"output": "75"
},
{
"input": "16\nB 0 14\nB 14 16\nR 6 4\nB 4 12\nB 13 8\nB 8 11\nB 11 8\nB 7 8\nB 6 14\nB 10 14\nR 9 12\nB 1 15\nR 7 3\nB 7 14\nB 1 13\nB 4 5",
"output": "96"
},
{
"input": "16\nR 4 0\nR 13 13\nR 7 5\nR 5 15\nR 12 14\nR 3 11\nR 3 9\nR 3 1\nR 4 2\nR 5 10\nR 0 7\nR 8 10\nR 12 12\nR 14 10\nR 4 12\nR 1 15",
"output": "162"
},
{
"input": "16\nR 16 11\nB 4 9\nB 7 6\nR 8 2\nB 4 11\nB 5 12\nB 2 9\nB 6 10\nB 10 15\nB 1 14\nB 16 2\nB 7 4\nB 2 10\nB 12 6\nB 14 4\nB 0 8",
"output": "104"
},
{
"input": "16\nB 3 14\nR 12 13\nR 9 8\nR 2 7\nR 4 9\nB 0 3\nB 10 2\nR 2 2\nR 16 10\nB 15 12\nR 16 14\nB 15 16\nB 9 10\nR 10 10\nB 7 12\nB 14 1",
"output": "100"
},
{
"input": "16\nR 16 0\nR 11 9\nR 9 9\nR 3 2\nB 12 7\nR 4 4\nR 1 2\nB 14 12\nB 6 14\nR 10 7\nB 16 8\nR 4 2\nB 15 2\nR 0 5\nR 10 3\nR 11 2",
"output": "72"
},
{
"input": "16\nB 2 4\nB 2 14\nR 11 10\nR 5 6\nB 12 5\nB 16 4\nB 1 2\nB 11 4\nB 12 10\nR 5 11\nB 7 4\nB 3 13\nR 5 1\nB 14 2\nB 4 12\nR 10 11",
"output": "84"
},
{
"input": "16\nB 7 15\nB 10 9\nR 12 12\nR 8 10\nB 12 12\nB 1 4\nB 10 12\nB 14 14\nB 1 14\nR 1 7\nR 7 15\nB 10 7\nR 2 0\nB 5 14\nR 6 10\nB 7 4",
"output": "92"
},
{
"input": "16\nB 5 3\nB 7 0\nB 4 13\nB 15 15\nB 6 4\nB 5 16\nB 1 0\nB 5 12\nB 8 11\nB 6 10\nB 8 5\nB 5 12\nB 9 5\nB 10 9\nB 7 4\nB 8 4",
"output": "125"
},
{
"input": "16\nB 0 6\nR 14 3\nB 6 16\nB 1 3\nB 14 1\nB 0 16\nB 9 1\nB 0 4\nR 14 8\nB 2 13\nB 8 0\nR 13 7\nB 15 13\nB 0 4\nR 10 13\nB 6 13",
"output": "95"
},
{
"input": "16\nR 4 9\nR 13 16\nR 7 0\nR 11 6\nB 14 16\nR 2 0\nR 8 2\nR 13 14\nR 3 11\nB 6 10\nR 7 12\nR 10 0\nR 4 13\nR 14 10\nR 3 5\nR 3 15",
"output": "132"
},
{
"input": "16\nB 0 13\nR 4 13\nR 0 1\nR 14 10\nR 5 14\nR 14 0\nR 16 3\nR 9 7\nR 10 7\nR 3 6\nR 16 7\nR 2 13\nR 11 12\nR 13 5\nR 14 13\nR 1 7",
"output": "133"
},
{
"input": "16\nB 3 7\nB 12 0\nR 1 2\nB 16 14\nB 5 12\nB 0 1\nR 8 11\nR 5 16\nR 16 2\nR 15 10\nB 16 1\nB 0 7\nB 0 3\nR 2 0\nR 0 12\nR 16 1",
"output": "73"
},
{
"input": "16\nR 7 10\nB 12 12\nR 3 4\nR 0 1\nR 13 1\nR 13 1\nB 16 12\nR 8 9\nR 5 7\nR 11 7\nR 14 15\nR 6 2\nR 7 2\nR 1 5\nR 9 3\nR 13 10",
"output": "91"
},
{
"input": "16\nB 3 14\nB 3 1\nB 3 5\nB 12 14\nB 13 16\nB 7 2\nR 15 13\nB 3 2\nB 13 3\nR 6 3\nR 14 9\nB 5 13\nB 13 10\nB 7 1\nB 12 12\nB 11 2",
"output": "114"
},
{
"input": "16\nB 7 16\nB 10 13\nR 4 6\nB 14 2\nR 13 14\nB 10 2\nR 6 7\nB 16 11\nB 10 6\nB 2 8\nR 6 4\nB 12 15\nB 2 10\nB 6 13\nR 6 2\nB 9 4",
"output": "90"
},
{
"input": "16\nR 3 3\nR 10 9\nR 5 7\nB 16 5\nR 5 12\nR 4 3\nB 15 7\nR 12 3\nR 0 3\nR 14 4\nR 6 16\nR 10 11\nR 8 9\nR 3 9\nR 15 11\nR 6 13",
"output": "112"
},
{
"input": "16\nB 7 13\nR 1 15\nB 5 9\nB 1 10\nB 5 10\nR 8 4\nR 14 7\nB 16 13\nB 5 16\nB 10 0\nB 6 11\nB 1 5\nR 16 1\nB 10 14\nB 1 11\nB 4 6",
"output": "84"
},
{
"input": "16\nB 0 10\nB 7 9\nB 5 12\nB 11 14\nB 5 10\nB 15 16\nB 10 13\nR 14 4\nB 11 0\nB 14 6\nB 15 0\nB 5 8\nR 14 8\nR 2 5\nB 7 14\nB 4 8",
"output": "116"
},
{
"input": "16\nR 12 13\nB 15 5\nR 6 12\nR 13 2\nR 4 8\nB 1 16\nR 10 14\nB 9 13\nR 1 4\nR 1 10\nB 7 12\nB 4 2\nR 4 9\nR 8 0\nR 10 7\nB 2 0",
"output": "80"
},
{
"input": "16\nR 16 8\nR 15 1\nR 7 13\nR 15 15\nR 13 6\nR 13 16\nR 1 14\nR 13 6\nR 8 0\nR 14 8\nR 6 7\nB 10 4\nR 11 0\nR 7 12\nR 3 15\nR 0 2",
"output": "130"
},
{
"input": "16\nB 11 11\nB 6 4\nB 8 14\nB 9 1\nB 12 4\nB 16 0\nB 9 7\nB 8 16\nB 14 12\nR 9 4\nB 5 2\nR 8 0\nB 0 15\nB 4 8\nB 13 6\nB 14 11",
"output": "135"
},
{
"input": "16\nR 16 14\nR 15 2\nR 1 16\nR 11 5\nR 5 1\nB 11 0\nR 0 7\nB 5 8\nB 4 16\nB 5 8\nR 5 13\nB 0 11\nR 7 15\nR 12 13\nR 16 14\nR 12 4",
"output": "106"
},
{
"input": "16\nB 10 1\nR 13 5\nR 2 0\nR 13 10\nR 4 7\nR 14 1\nR 0 9\nR 0 0\nR 9 12\nR 1 3\nR 13 9\nR 14 4\nR 13 6\nR 9 8\nR 10 13\nR 10 13",
"output": "104"
},
{
"input": "16\nB 15 4\nB 4 1\nR 3 1\nR 14 14\nB 5 5\nR 9 1\nB 8 1\nR 12 1\nR 15 15\nB 13 0\nB 13 3\nR 5 0\nB 2 6\nR 16 3\nB 3 4\nR 7 5",
"output": "86"
},
{
"input": "16\nB 3 16\nR 13 6\nB 5 2\nB 9 1\nB 12 3\nB 4 2\nR 16 2\nB 16 11\nR 5 12\nB 9 4\nR 14 16\nR 3 11\nR 1 5\nR 14 15\nB 6 12\nB 5 7",
"output": "87"
},
{
"input": "16\nB 14 1\nR 12 2\nB 5 4\nR 11 14\nB 13 2\nB 6 3\nR 14 2\nR 10 3\nR 12 7\nB 4 1\nB 4 11\nB 10 6\nR 8 14\nB 12 3\nR 0 5\nB 3 16",
"output": "83"
},
{
"input": "16\nB 2 5\nB 3 15\nR 6 5\nR 13 1\nB 4 0\nR 1 3\nR 6 11\nB 7 13\nR 2 11\nR 10 5\nR 4 6\nR 8 0\nB 13 12\nB 2 16\nR 2 13\nB 0 9",
"output": "79"
},
{
"input": "16\nR 2 9\nR 9 10\nR 5 16\nR 7 6\nB 12 0\nB 0 7\nB 2 8\nR 12 12\nB 16 13\nB 14 4\nB 13 11\nB 13 10\nR 4 5\nR 11 7\nB 8 0\nB 9 11",
"output": "91"
},
{
"input": "16\nB 6 12\nR 1 6\nB 5 16\nB 8 11\nR 4 14\nR 12 8\nB 1 9\nR 8 4\nB 4 9\nB 9 8\nB 13 7\nR 11 6\nB 11 12\nR 0 2\nB 1 16\nR 7 3",
"output": "85"
},
{
"input": "16\nR 2 15\nR 0 11\nR 7 0\nR 10 14\nR 3 12\nR 14 7\nR 10 10\nR 4 4\nR 11 5\nR 4 4\nR 12 1\nR 1 0\nR 10 11\nR 15 15\nR 4 8\nB 5 5",
"output": "125"
},
{
"input": "16\nB 6 2\nB 8 6\nB 8 3\nB 13 1\nB 12 11\nB 11 8\nB 1 2\nB 16 14\nB 0 9\nB 16 8\nB 4 14\nB 8 11\nB 15 11\nB 13 3\nB 14 15\nB 2 14",
"output": "163"
},
{
"input": "16\nR 10 4\nB 16 11\nR 10 3\nR 6 14\nR 12 9\nR 13 8\nR 0 3\nB 2 7\nR 6 4\nB 13 4\nR 4 8\nR 7 6\nB 5 2\nR 3 15\nB 16 7\nR 0 7",
"output": "75"
},
{
"input": "16\nR 6 16\nR 14 7\nR 10 4\nR 9 2\nB 12 15\nR 8 10\nR 8 4\nR 15 0\nR 14 9\nB 8 1\nR 2 3\nR 13 0\nR 12 2\nR 1 10\nR 10 15\nR 15 0",
"output": "91"
},
{
"input": "16\nR 10 3\nR 6 11\nR 4 6\nB 10 6\nB 3 13\nB 2 11\nB 0 14\nB 11 9\nB 3 5\nR 3 6\nB 11 15\nB 13 4\nB 1 10\nR 8 16\nB 3 14\nR 12 9",
"output": "82"
},
{
"input": "16\nB 5 6\nB 14 6\nR 5 8\nB 12 10\nB 3 10\nB 5 10\nB 0 14\nR 7 2\nB 9 0\nB 16 2\nB 12 10\nB 3 14\nB 8 9\nB 6 11\nR 6 6\nR 10 11",
"output": "89"
},
{
"input": "16\nB 9 10\nB 13 4\nR 5 8\nB 6 13\nB 12 8\nB 0 11\nB 7 14\nR 2 11\nB 16 4\nB 4 15\nB 11 4\nB 1 9\nB 13 8\nB 3 6\nB 0 14\nB 16 3",
"output": "110"
},
{
"input": "16\nB 4 3\nR 4 7\nR 6 9\nB 9 1\nB 11 6\nB 3 12\nR 16 7\nR 6 3\nB 5 16\nR 16 1\nB 3 1\nB 8 4\nB 3 1\nB 11 3\nB 10 6\nB 13 13",
"output": "86"
},
{
"input": "16\nR 13 0\nB 12 11\nR 5 3\nR 2 14\nB 12 6\nR 10 15\nB 2 4\nB 4 11\nR 11 2\nR 3 8\nR 12 6\nB 3 14\nB 3 8\nB 3 8\nB 7 10\nB 5 15",
"output": "79"
},
{
"input": "16\nR 1 3\nB 9 15\nB 6 4\nR 4 2\nR 12 4\nR 14 16\nB 10 5\nR 16 4\nR 1 5\nB 15 5\nR 12 1\nR 11 9\nB 10 7\nB 10 14\nR 1 1\nR 4 7",
"output": "76"
},
{
"input": "16\nB 14 6\nB 1 12\nB 7 5\nB 5 6\nB 3 3\nB 9 16\nB 1 14\nB 3 14\nB 7 1\nB 11 2\nB 11 13\nB 10 3\nB 15 16\nB 8 9\nB 4 1\nB 1 9",
"output": "126"
},
{
"input": "16\nB 0 0\nR 9 16\nB 9 7\nB 7 9\nR 3 1\nB 12 16\nB 1 15\nR 16 6\nR 14 14\nR 7 6\nB 10 8\nB 16 14\nB 5 15\nR 6 4\nB 14 8\nR 15 1",
"output": "99"
},
{
"input": "16\nR 13 4\nR 8 12\nB 9 8\nR 10 14\nR 11 15\nR 6 1\nB 10 16\nR 11 15\nR 3 1\nR 3 2\nB 2 4\nR 7 10\nR 12 15\nR 13 1\nR 0 0\nB 14 11",
"output": "106"
},
{
"input": "16\nR 1 6\nR 0 16\nR 11 8\nR 3 2\nR 11 13\nR 10 9\nR 1 8\nR 7 8\nR 9 13\nR 15 14\nR 1 15\nR 4 4\nR 1 5\nR 10 5\nR 11 7\nR 11 3",
"output": "152"
},
{
"input": "16\nR 13 10\nB 8 13\nB 12 11\nR 6 14\nB 11 2\nB 4 10\nB 9 9\nB 10 1\nR 15 9\nB 11 2\nB 1 10\nR 12 15\nR 8 5\nB 1 0\nR 4 0\nR 8 12",
"output": "87"
},
{
"input": "16\nR 0 3\nR 7 8\nB 13 12\nR 8 1\nR 3 0\nR 16 11\nR 8 9\nR 7 10\nR 4 14\nR 6 15\nR 11 5\nR 10 10\nR 14 5\nR 15 13\nR 7 16\nR 7 14",
"output": "148"
},
{
"input": "16\nB 4 8\nB 15 12\nB 5 12\nB 9 5\nR 2 16\nR 1 10\nB 0 9\nB 2 3\nB 2 9\nB 11 12\nB 9 0\nB 1 5\nB 4 13\nR 14 9\nB 1 7\nB 4 6",
"output": "68"
},
{
"input": "16\nB 16 12\nB 6 9\nB 7 15\nR 4 9\nB 11 14\nB 15 11\nB 8 3\nB 15 13\nR 9 5\nB 7 16\nR 9 11\nB 16 0\nR 10 12\nR 3 13\nR 11 16\nR 1 16",
"output": "118"
},
{
"input": "16\nR 9 6\nR 12 3\nR 5 16\nB 5 14\nB 2 14\nB 12 15\nB 11 0\nB 3 3\nB 15 15\nR 10 5\nB 2 1\nB 3 10\nR 10 2\nR 13 4\nR 7 2\nB 0 1",
"output": "78"
},
{
"input": "16\nB 4 2\nR 12 16\nR 6 1\nR 16 2\nB 11 12\nR 8 15\nB 3 1\nR 16 11\nB 5 10\nR 6 2\nR 1 12\nB 1 4\nR 15 12\nB 2 0\nB 1 11\nR 16 10",
"output": "81"
},
{
"input": "16\nR 8 5\nB 3 4\nB 8 2\nB 2 14\nB 10 9\nB 11 16\nB 2 9\nB 11 4\nB 10 7\nB 2 15\nB 9 8\nB 9 16\nB 5 11\nB 0 13\nB 4 11\nB 13 12",
"output": "109"
},
{
"input": "16\nB 4 8\nB 11 0\nR 8 3\nB 2 2\nB 2 7\nB 6 0\nB 10 10\nR 6 14\nR 16 11\nB 14 2\nB 9 11\nB 7 10\nB 12 10\nB 15 8\nR 15 1\nB 10 4",
"output": "113"
},
{
"input": "16\nR 8 11\nB 11 4\nR 10 4\nR 5 6\nR 2 5\nR 8 0\nR 1 11\nR 10 6\nR 7 6\nR 10 15\nB 9 7\nB 15 5\nR 1 1\nR 4 13\nR 8 10\nR 9 14",
"output": "97"
},
{
"input": "16\nB 13 6\nB 1 0\nB 11 5\nB 15 10\nB 3 3\nB 3 1\nB 10 4\nB 6 16\nB 13 3\nB 5 13\nR 0 1\nB 5 7\nB 7 1\nB 3 7\nB 11 0\nB 6 6",
"output": "113"
},
{
"input": "16\nR 8 8\nR 10 14\nR 11 15\nB 1 14\nR 10 9\nB 5 1\nR 9 3\nR 1 9\nR 2 6\nR 0 0\nR 16 14\nB 3 2\nR 14 0\nR 9 3\nR 5 10\nR 3 16",
"output": "104"
},
{
"input": "16\nR 11 12\nR 8 0\nR 13 16\nR 3 1\nR 11 6\nR 1 2\nR 0 5\nR 14 10\nR 9 1\nR 5 13\nR 0 9\nR 10 14\nR 3 9\nR 8 8\nR 6 8\nR 2 1",
"output": "131"
},
{
"input": "16\nR 7 14\nB 16 14\nR 13 0\nB 4 4\nR 2 4\nR 12 2\nB 8 15\nB 1 1\nR 15 14\nR 2 0\nB 8 4\nR 7 7\nB 10 8\nB 5 3\nB 0 0\nR 16 10",
"output": "72"
},
{
"input": "16\nR 11 1\nB 8 0\nR 6 2\nR 6 1\nR 2 2\nB 15 2\nB 8 16\nB 14 11\nB 4 1\nR 14 12\nB 8 15\nR 16 2\nB 0 16\nB 12 15\nR 11 8\nB 13 3",
"output": "90"
},
{
"input": "16\nR 12 5\nB 15 4\nR 5 4\nB 0 5\nR 2 12\nB 7 6\nB 4 12\nR 11 11\nR 10 3\nR 1 3\nR 0 5\nR 11 13\nR 16 8\nR 4 6\nR 9 12\nR 6 5",
"output": "78"
},
{
"input": "16\nR 16 9\nR 14 9\nR 7 5\nR 2 10\nR 1 1\nR 10 8\nR 12 4\nB 15 4\nR 8 16\nR 13 16\nR 0 16\nR 1 7\nR 6 6\nR 11 2\nB 2 4\nR 4 14",
"output": "119"
},
{
"input": "16\nB 3 12\nR 4 4\nR 7 7\nB 14 15\nR 10 16\nR 4 8\nB 12 5\nR 10 13\nR 15 2\nR 9 4\nR 16 12\nB 0 3\nB 12 15\nB 9 15\nR 5 12\nB 1 16",
"output": "102"
},
{
"input": "16\nB 16 7\nR 12 9\nR 8 7\nB 15 1\nB 9 14\nR 7 8\nR 3 6\nR 6 14\nR 4 16\nR 5 0\nB 8 6\nR 6 13\nR 2 14\nB 7 2\nR 16 11\nR 16 8",
"output": "94"
},
{
"input": "16\nB 4 10\nB 11 6\nB 10 9\nB 0 14\nB 10 12\nB 2 9\nB 11 6\nB 1 6\nB 10 12\nB 0 12\nB 7 1\nB 5 9\nB 7 14\nB 13 15\nB 9 2\nB 14 1",
"output": "130"
},
{
"input": "16\nB 14 13\nB 3 1\nB 10 11\nB 2 2\nB 0 10\nR 5 9\nB 10 0\nB 15 15\nB 0 15\nB 12 0\nB 6 13\nB 13 3\nB 15 5\nB 12 11\nB 10 11\nR 11 10",
"output": "129"
},
{
"input": "16\nR 2 0\nR 11 6\nR 12 11\nR 13 5\nR 1 16\nR 16 10\nR 2 0\nR 1 8\nR 6 11\nR 1 13\nR 15 8\nR 2 14\nR 4 5\nR 1 15\nR 4 3\nR 9 2",
"output": "143"
},
{
"input": "16\nB 15 2\nB 10 2\nB 13 13\nB 15 9\nB 10 14\nB 2 10\nB 10 0\nB 14 1\nB 13 8\nB 13 9\nB 16 2\nB 1 9\nB 10 3\nB 0 11\nB 14 11\nB 7 4",
"output": "179"
},
{
"input": "16\nR 2 14\nB 1 6\nR 13 15\nR 0 14\nR 9 12\nB 15 10\nB 9 10\nB 9 11\nB 2 11\nB 8 14\nB 15 16\nB 8 3\nB 8 12\nR 14 7\nB 0 10\nR 12 13",
"output": "108"
},
{
"input": "16\nR 6 16\nR 9 2\nR 14 15\nR 1 0\nR 1 10\nR 9 11\nR 0 11\nB 4 3\nR 8 7\nR 3 10\nR 14 10\nR 6 6\nB 15 12\nR 5 2\nR 11 1\nR 10 6",
"output": "112"
},
{
"input": "16\nR 7 13\nR 7 13\nB 5 8\nB 12 14\nR 10 2\nR 8 7\nR 13 7\nB 10 10\nB 15 9\nR 7 0\nB 7 16\nB 11 9\nB 5 2\nR 14 9\nB 9 5\nR 2 8",
"output": "93"
},
{
"input": "16\nB 11 7\nB 14 10\nB 6 9\nB 14 3\nB 1 8\nB 4 7\nB 12 16\nB 6 2\nB 4 12\nB 4 13\nB 15 11\nB 9 3\nB 12 11\nB 3 13\nB 2 14\nB 0 0",
"output": "133"
},
{
"input": "16\nR 6 11\nB 6 14\nB 7 12\nR 16 6\nR 1 5\nB 6 8\nB 3 0\nR 2 12\nB 10 9\nB 16 0\nR 15 6\nR 0 15\nR 1 10\nB 2 10\nB 5 5\nB 15 2",
"output": "76"
},
{
"input": "16\nR 11 13\nR 14 10\nB 9 12\nR 11 10\nB 9 3\nR 1 7\nB 12 2\nB 6 4\nB 0 4\nR 11 13\nR 14 2\nR 14 9\nR 16 10\nB 16 5\nR 15 13\nR 12 11",
"output": "106"
},
{
"input": "16\nB 5 1\nB 14 15\nB 9 13\nB 11 14\nB 9 1\nB 3 8\nB 11 12\nB 1 14\nB 6 8\nB 7 9\nB 6 13\nB 4 11\nB 7 1\nB 7 0\nB 8 13\nB 10 4",
"output": "134"
},
{
"input": "16\nB 9 3\nR 5 11\nB 11 15\nB 14 1\nB 9 16\nB 16 9\nB 2 11\nR 14 7\nB 12 4\nB 3 15\nB 5 8\nR 3 7\nB 13 0\nB 4 5\nB 11 4\nR 8 13",
"output": "104"
},
{
"input": "16\nR 14 15\nR 13 7\nR 12 16\nR 16 14\nB 0 5\nR 1 9\nR 10 12\nR 10 16\nR 2 16\nB 8 11\nB 5 3\nR 10 0\nR 2 16\nB 12 1\nB 5 12\nB 5 6",
"output": "106"
},
{
"input": "16\nR 10 2\nR 12 11\nR 13 0\nR 10 1\nR 0 3\nR 13 10\nR 2 5\nR 5 9\nR 8 3\nR 3 7\nR 5 15\nR 1 12\nR 8 9\nR 9 13\nR 16 4\nR 2 8",
"output": "128"
},
{
"input": "16\nB 13 4\nR 2 8\nB 13 2\nB 13 5\nB 9 0\nB 16 9\nB 1 6\nR 9 1\nR 14 16\nB 16 10\nB 13 9\nR 16 7\nB 16 7\nB 7 9\nB 1 12\nR 1 0",
"output": "119"
},
{
"input": "16\nR 9 8\nR 11 11\nR 15 2\nR 14 10\nR 8 15\nR 10 10\nR 10 6\nR 3 10\nR 12 12\nR 11 7\nR 13 5\nR 6 2\nR 4 7\nR 13 13\nR 12 11\nR 15 10",
"output": "155"
},
{
"input": "16\nB 1 12\nB 9 15\nR 5 12\nR 7 14\nR 8 8\nR 2 15\nR 13 2\nR 1 2\nR 1 5\nR 15 14\nR 5 10\nB 2 12\nR 4 6\nR 5 4\nR 10 15\nR 15 12",
"output": "134"
},
{
"input": "16\nB 14 15\nB 0 2\nR 6 15\nB 10 2\nB 8 14\nB 5 15\nB 4 13\nB 5 11\nR 8 1\nR 11 10\nB 5 6\nB 8 6\nB 10 6\nR 13 0\nB 2 6\nR 13 4",
"output": "82"
},
{
"input": "16\nR 1 1\nR 8 15\nR 8 16\nR 11 15\nR 16 13\nB 16 16\nR 12 14\nR 0 4\nR 14 13\nR 6 15\nB 14 0\nB 7 1\nB 0 6\nR 10 13\nR 12 15\nB 11 6",
"output": "119"
},
{
"input": "16\nR 4 5\nR 8 3\nR 9 16\nR 14 1\nR 16 11\nR 3 16\nR 11 14\nB 14 14\nR 3 0\nB 2 10\nB 13 12\nB 14 13\nR 6 13\nR 9 8\nR 15 6\nR 8 15",
"output": "127"
},
{
"input": "16\nR 0 15\nB 15 16\nB 10 1\nB 8 6\nR 0 9\nR 14 16\nB 3 7\nR 9 5\nR 10 14\nB 14 7\nR 12 7\nB 12 6\nR 13 13\nB 15 12\nB 9 6\nB 6 8",
"output": "106"
},
{
"input": "16\nR 5 2\nR 5 12\nR 11 3\nR 9 10\nR 8 6\nB 16 0\nB 11 7\nB 13 15\nR 16 9\nR 2 11\nB 11 3\nB 3 2\nR 2 4\nB 13 8\nR 11 14\nR 4 0",
"output": "79"
},
{
"input": "16\nR 0 5\nR 5 0\nR 13 4\nR 11 13\nB 9 12\nR 12 1\nR 3 7\nR 8 8\nR 6 13\nR 14 7\nR 3 15\nB 0 13\nR 9 4\nR 11 3\nR 5 5\nR 1 9",
"output": "109"
},
{
"input": "16\nB 4 9\nR 13 12\nB 13 4\nR 14 0\nB 0 10\nR 15 1\nB 1 0\nB 3 0\nB 13 9\nB 10 11\nB 4 10\nB 8 8\nB 16 3\nB 1 7\nB 16 14\nB 15 11",
"output": "127"
},
{
"input": "16\nR 0 3\nR 5 0\nR 13 6\nR 7 6\nB 0 8\nB 10 2\nR 10 2\nR 0 1\nR 2 5\nR 6 8\nR 3 4\nB 16 10\nR 4 12\nR 16 4\nR 1 4\nR 14 3",
"output": "58"
},
{
"input": "16\nR 4 6\nR 4 13\nR 15 8\nR 10 1\nR 8 6\nR 12 2\nR 1 2\nR 12 11\nR 7 9\nR 2 5\nR 11 0\nR 14 5\nR 11 10\nR 6 16\nR 12 4\nR 11 13",
"output": "127"
},
{
"input": "16\nR 14 3\nB 10 8\nR 13 10\nB 3 6\nB 16 15\nB 4 6\nB 5 7\nR 1 10\nB 14 10\nB 5 11\nR 4 5\nB 1 7\nB 10 2\nB 15 7\nB 9 8\nB 3 15",
"output": "94"
},
{
"input": "16\nB 8 14\nB 1 4\nR 7 11\nR 5 11\nB 8 4\nR 16 7\nR 14 8\nB 14 2\nB 3 6\nB 1 15\nB 4 1\nR 16 2\nR 1 10\nR 4 2\nR 3 16\nR 2 7",
"output": "72"
},
{
"input": "16\nR 13 0\nR 10 7\nR 8 12\nR 7 14\nB 7 1\nB 1 7\nR 4 9\nR 9 11\nB 1 11\nB 14 11\nB 3 12\nR 6 13\nR 6 9\nB 2 14\nR 13 8\nR 16 9",
"output": "95"
},
{
"input": "16\nR 8 3\nR 8 4\nR 9 13\nR 9 1\nR 8 16\nR 13 7\nR 4 2\nR 13 4\nR 8 6\nR 9 7\nR 11 7\nR 6 16\nR 13 9\nR 0 3\nR 16 16\nR 13 1",
"output": "131"
},
{
"input": "16\nR 12 7\nB 16 0\nR 10 15\nB 11 14\nB 15 14\nR 16 8\nR 11 1\nR 8 5\nB 14 1\nB 14 12\nR 11 2\nB 12 10\nR 2 0\nR 7 15\nR 10 8\nB 12 11",
"output": "108"
},
{
"input": "16\nR 8 9\nR 8 4\nR 11 16\nB 6 1\nR 16 12\nR 11 8\nR 3 2\nB 4 14\nB 3 5\nB 10 9\nR 10 14\nR 11 5\nR 9 0\nR 5 10\nR 3 6\nR 9 3",
"output": "87"
},
{
"input": "16\nB 12 4\nB 7 1\nR 12 0\nB 6 5\nB 7 2\nB 14 0\nB 2 12\nR 0 7\nB 9 1\nB 5 5\nB 10 8\nB 0 0\nB 15 16\nB 3 16\nB 5 15\nB 6 12",
"output": "102"
},
{
"input": "16\nR 16 6\nB 16 5\nR 13 1\nB 9 9\nR 7 0\nB 8 1\nB 11 14\nR 12 0\nR 15 5\nR 0 8\nB 2 5\nB 16 11\nB 5 7\nB 10 11\nR 16 7\nR 4 15",
"output": "93"
},
{
"input": "16\nR 12 11\nB 6 1\nR 14 3\nR 11 14\nR 15 14\nR 11 2\nR 2 14\nR 16 8\nR 5 0\nR 12 4\nR 1 16\nR 6 6\nR 11 6\nR 8 6\nR 2 14\nR 10 7",
"output": "128"
},
{
"input": "16\nB 16 14\nR 5 5\nB 14 4\nB 5 1\nB 15 12\nB 6 2\nB 1 14\nB 12 1\nR 12 14\nB 9 1\nR 1 11\nB 13 0\nB 1 7\nB 14 2\nR 12 7\nB 7 0",
"output": "111"
},
{
"input": "16\nB 16 1\nB 12 8\nB 13 15\nB 7 15\nB 16 5\nR 14 6\nB 15 3\nB 0 9\nB 2 16\nB 13 8\nB 10 0\nR 9 11\nB 0 6\nB 6 9\nB 0 9\nB 0 2",
"output": "128"
},
{
"input": "16\nB 4 4\nR 3 14\nB 15 15\nB 0 2\nR 16 11\nR 0 6\nB 5 4\nB 14 2\nR 7 3\nB 8 12\nR 2 12\nR 16 5\nR 6 5\nB 13 14\nR 3 9\nR 15 11",
"output": "85"
},
{
"input": "16\nB 15 8\nR 11 9\nB 15 16\nR 2 6\nR 16 9\nR 12 7\nR 5 4\nR 9 12\nR 13 15\nB 3 9\nR 2 8\nB 14 16\nR 13 5\nR 11 9\nB 13 1\nR 12 13",
"output": "113"
},
{
"input": "16\nB 3 11\nB 10 5\nB 9 1\nB 4 9\nB 7 7\nB 14 7\nB 13 13\nB 4 4\nB 3 11\nR 7 4\nB 1 2\nB 5 12\nB 3 13\nR 9 5\nB 16 9\nB 10 5",
"output": "106"
},
{
"input": "16\nR 7 5\nB 2 10\nB 10 2\nB 6 14\nB 7 5\nB 10 7\nR 5 14\nB 16 13\nR 9 15\nR 4 9\nB 1 14\nR 2 6\nB 9 13\nR 15 1\nB 10 1\nB 8 15",
"output": "89"
},
{
"input": "16\nR 2 9\nB 9 6\nB 11 3\nB 8 1\nR 15 3\nR 12 8\nR 4 15\nR 2 6\nR 15 11\nB 0 5\nB 8 9\nR 11 0\nB 15 11\nR 14 5\nR 4 8\nR 5 7",
"output": "78"
},
{
"input": "16\nB 7 11\nB 9 10\nB 12 4\nB 1 14\nB 15 8\nB 8 9\nB 12 8\nB 16 15\nB 6 15\nB 12 1\nB 8 4\nB 9 12\nR 5 3\nB 11 1\nB 6 8\nB 3 8",
"output": "141"
},
{
"input": "16\nR 2 15\nR 16 6\nB 14 6\nB 3 1\nR 7 6\nB 10 10\nB 4 9\nR 11 8\nB 12 10\nR 8 5\nB 9 15\nR 16 14\nR 10 3\nB 2 13\nB 16 16\nR 0 1",
"output": "95"
},
{
"input": "16\nR 6 8\nR 7 11\nR 13 7\nR 6 6\nR 6 4\nR 5 10\nR 12 9\nR 7 1\nR 1 7\nR 4 3\nR 0 11\nR 14 9\nR 10 11\nB 16 9\nR 10 7\nR 15 10",
"output": "124"
},
{
"input": "16\nR 1 13\nR 7 6\nR 15 8\nR 8 9\nR 15 2\nR 7 10\nR 11 1\nR 2 10\nR 8 11\nR 16 16\nR 0 6\nR 3 3\nR 0 10\nR 7 14\nR 12 16\nB 13 3",
"output": "139"
},
{
"input": "16\nR 7 12\nB 2 3\nR 7 15\nR 3 10\nR 12 7\nR 6 11\nR 1 11\nR 14 4\nR 12 8\nR 3 3\nR 3 5\nR 0 8\nR 8 7\nR 14 13\nR 15 15\nR 1 3",
"output": "136"
},
{
"input": "16\nR 7 0\nR 7 2\nR 11 2\nR 11 2\nR 12 2\nR 4 1\nR 1 1\nB 4 0\nR 14 2\nB 1 2\nR 9 1\nR 11 0\nR 13 0\nR 0 2\nR 11 0\nR 2 0",
"output": "38"
},
{
"input": "16\nB 2 3\nB 1 0\nB 1 1\nB 0 4\nR 1 4\nR 0 5\nB 1 6\nR 1 3\nB 2 4\nB 2 13\nB 2 2\nB 1 1\nB 1 9\nB 0 13\nB 3 2\nB 2 10",
"output": "20"
},
{
"input": "16\nB 0 9\nR 3 11\nB 0 5\nB 4 3\nB 1 1\nB 2 8\nR 3 12\nB 1 2\nB 3 10\nR 4 11\nB 1 1\nR 3 4\nB 3 9\nB 3 1\nB 2 3\nB 1 10",
"output": "29"
},
{
"input": "16\nB 8 1\nR 0 7\nB 2 4\nB 9 6\nR 4 0\nB 5 0\nR 3 0\nR 3 1\nR 1 3\nB 8 0\nB 2 3\nB 8 3\nR 6 5\nR 7 1\nR 0 3\nR 6 6",
"output": "24"
},
{
"input": "16\nB 3 4\nR 1 4\nR 8 1\nB 2 7\nB 0 5\nR 6 0\nR 3 3\nR 4 4\nB 7 0\nR 2 2\nR 7 0\nR 3 0\nB 6 2\nB 8 5\nB 9 7\nR 0 0",
"output": "26"
},
{
"input": "16\nB 0 1\nB 0 6\nB 0 13\nB 0 5\nB 0 13\nB 0 12\nB 0 2\nB 0 9\nB 0 8\nB 0 6\nB 0 0\nB 0 15\nB 0 9\nB 0 0\nB 0 14\nB 0 12",
"output": "24"
},
{
"input": "16\nB 0 4\nB 1 2\nR 1 1\nB 0 0\nB 0 8\nB 0 0\nB 0 13\nB 0 7\nB 2 9\nB 2 14\nB 2 9\nB 1 6\nB 2 11\nB 0 10\nB 1 8\nR 1 13",
"output": "27"
},
{
"input": "16\nB 2 5\nB 0 3\nB 4 11\nB 1 4\nR 1 3\nB 1 10\nB 1 8\nB 1 2\nR 3 1\nB 0 7\nB 2 11\nR 0 11\nR 4 4\nB 4 11\nB 1 3\nB 1 10",
"output": "35"
},
{
"input": "16\nB 0 15\nB 0 2\nB 0 8\nB 1 3\nB 0 0\nB 1 7\nB 0 5\nB 1 7\nB 1 9\nB 1 15\nB 0 1\nB 1 13\nB 1 8\nB 1 5\nB 0 10\nR 0 15",
"output": "23"
},
{
"input": "16\nR 10 4\nR 4 2\nB 0 0\nR 5 4\nB 9 5\nB 2 0\nR 4 2\nR 4 3\nR 1 1\nR 10 5\nR 6 2\nB 7 4\nB 10 6\nB 5 6\nR 5 2\nR 2 2",
"output": "25"
},
{
"input": "16\nB 4 4\nR 5 7\nB 5 6\nR 4 5\nR 2 10\nR 3 0\nB 1 9\nR 4 2\nB 2 2\nB 1 2\nB 5 8\nB 4 6\nB 4 9\nB 2 10\nB 5 5\nB 4 11",
"output": "34"
},
{
"input": "16\nR 0 3\nR 5 6\nR 1 2\nR 0 0\nB 0 5\nB 2 0\nB 5 0\nR 2 4\nB 4 4\nR 4 5\nB 1 6\nR 6 3\nR 7 4\nR 8 2\nB 3 3\nR 6 2",
"output": "21"
},
{
"input": "16\nR 4 0\nR 3 0\nR 2 0\nR 6 0\nR 5 0\nR 3 0\nR 7 0\nR 3 0\nR 6 0\nR 14 0\nR 0 0\nR 14 0\nR 10 0\nR 14 0\nR 9 0\nR 6 0",
"output": "19"
},
{
"input": "16\nB 0 5\nB 0 15\nB 0 10\nB 0 5\nB 0 13\nB 0 5\nB 0 13\nB 0 4\nB 0 12\nB 0 9\nB 0 0\nB 0 13\nB 0 0\nB 0 4\nB 0 4\nB 0 14",
"output": "26"
},
{
"input": "16\nB 1 12\nB 0 13\nB 0 7\nB 1 9\nB 1 15\nB 0 9\nB 0 2\nB 0 10\nB 1 5\nB 0 9\nB 1 2\nR 1 9\nB 0 5\nB 0 1\nB 1 15\nB 0 12",
"output": "37"
},
{
"input": "16\nR 8 6\nR 5 2\nR 4 5\nB 0 2\nR 9 4\nR 9 2\nB 5 4\nB 0 5\nB 9 2\nB 2 3\nB 0 0\nR 5 6\nR 0 2\nR 6 6\nR 3 2\nB 2 6",
"output": "29"
},
{
"input": "16\nB 0 6\nB 0 13\nB 0 2\nB 0 16\nB 0 6\nB 0 12\nB 0 10\nB 0 11\nB 0 4\nB 0 10\nB 0 12\nB 0 8\nB 0 4\nB 0 11\nB 0 0\nB 0 0",
"output": "24"
},
{
"input": "16\nR 6 2\nB 7 3\nR 13 3\nR 4 0\nR 0 2\nR 3 3\nR 5 0\nR 3 3\nR 8 0\nB 8 2\nR 4 3\nR 5 0\nR 9 0\nR 13 3\nB 10 1\nR 10 2",
"output": "28"
},
{
"input": "16\nR 1 0\nR 9 1\nR 11 2\nR 5 2\nR 7 0\nR 11 1\nR 5 1\nR 9 3\nR 11 4\nB 10 4\nR 10 2\nB 9 2\nB 8 3\nB 3 4\nR 5 3\nR 0 0",
"output": "34"
},
{
"input": "16\nR 10 1\nR 13 0\nR 14 1\nR 2 1\nR 4 1\nR 5 0\nR 7 0\nR 11 0\nR 8 1\nR 14 0\nR 10 1\nR 11 0\nR 4 0\nR 3 1\nB 2 0\nR 13 0",
"output": "40"
},
{
"input": "16\nB 0 2\nB 0 8\nB 0 7\nB 0 1\nB 0 14\nB 0 7\nB 0 13\nB 0 12\nB 0 10\nB 0 5\nB 0 4\nB 0 7\nB 0 8\nB 0 15\nB 0 12\nB 0 14",
"output": "35"
},
{
"input": "16\nB 10 3\nB 10 4\nR 9 2\nB 1 3\nR 5 5\nB 8 5\nR 10 6\nR 3 2\nR 8 4\nR 2 4\nR 10 2\nR 6 3\nR 9 5\nB 0 3\nR 7 6\nB 3 5",
"output": "40"
},
{
"input": "16\nR 3 5\nR 7 0\nR 7 1\nB 0 6\nB 4 1\nB 2 7\nR 0 3\nR 8 3\nB 7 1\nB 0 5\nR 4 2\nR 9 7\nR 9 7\nB 6 3\nB 9 6\nR 9 2",
"output": "36"
},
{
"input": "16\nB 1 7\nR 6 4\nR 5 6\nB 9 7\nB 1 6\nR 5 0\nB 0 5\nR 3 6\nR 9 6\nR 0 7\nR 5 7\nB 7 3\nR 4 4\nB 1 0\nR 3 2\nB 9 5",
"output": "33"
},
{
"input": "16\nR 2 0\nB 7 3\nR 4 0\nB 8 3\nB 12 3\nR 7 4\nB 1 2\nR 4 4\nR 3 3\nR 3 3\nR 12 1\nR 2 2\nR 8 0\nR 6 1\nR 8 3\nR 1 0",
"output": "25"
},
{
"input": "16\nB 7 7\nR 1 3\nB 0 3\nB 5 5\nB 5 4\nB 3 0\nB 5 3\nR 2 0\nR 2 1\nB 7 3\nR 3 8\nR 3 1\nR 3 8\nR 2 5\nB 0 5\nB 5 3",
"output": "23"
},
{
"input": "16\nR 1 0\nR 12 0\nR 8 0\nR 6 0\nR 9 0\nR 7 0\nR 5 0\nR 7 0\nR 14 0\nR 6 0\nR 16 0\nR 8 0\nR 2 0\nR 5 0\nR 1 0\nR 10 0",
"output": "22"
},
{
"input": "16\nR 4 11\nR 3 10\nB 4 7\nB 4 11\nR 4 11\nB 3 1\nB 0 6\nB 4 2\nB 1 5\nB 1 2\nB 1 5\nR 2 7\nR 0 8\nB 3 2\nB 3 4\nB 5 9",
"output": "31"
},
{
"input": "16\nR 3 12\nB 2 1\nB 0 8\nB 3 0\nR 1 7\nB 2 6\nB 3 6\nB 2 13\nB 0 3\nB 0 8\nB 2 6\nR 3 10\nB 2 6\nB 3 13\nB 2 9\nB 2 3",
"output": "30"
},
{
"input": "16\nR 10 0\nR 2 4\nB 6 3\nB 2 5\nB 5 4\nR 7 3\nR 2 4\nR 5 5\nR 1 0\nR 5 2\nB 1 3\nR 2 3\nR 1 3\nR 1 4\nR 1 0\nB 10 1",
"output": "25"
},
{
"input": "16\nR 0 6\nB 7 2\nB 0 2\nB 1 4\nR 6 5\nB 0 9\nR 4 4\nB 7 4\nR 1 9\nB 1 5\nR 0 7\nB 1 2\nR 7 8\nB 7 3\nB 1 2\nR 2 1",
"output": "26"
},
{
"input": "16\nB 0 0\nB 0 7\nB 0 15\nB 0 5\nB 0 0\nR 1 13\nB 0 14\nB 0 15\nB 1 10\nB 1 11\nB 1 6\nB 1 9\nB 0 13\nB 0 1\nB 1 9\nB 0 3",
"output": "31"
},
{
"input": "16\nR 12 2\nR 1 3\nR 5 1\nB 6 2\nR 4 1\nR 7 2\nR 1 0\nB 6 2\nR 4 2\nR 11 1\nB 0 0\nR 0 1\nR 8 2\nR 0 2\nR 6 1\nR 8 1",
"output": "19"
},
{
"input": "16\nR 1 10\nR 4 9\nB 4 5\nB 3 2\nB 0 0\nR 2 8\nB 6 10\nB 0 3\nR 0 10\nR 6 6\nB 4 8\nB 0 2\nB 2 6\nB 2 4\nR 0 6\nB 4 6",
"output": "26"
},
{
"input": "16\nB 4 5\nR 5 6\nR 1 0\nB 1 6\nR 5 5\nR 7 3\nR 6 6\nB 7 7\nB 6 6\nB 6 4\nR 2 8\nB 2 5\nB 0 3\nR 1 0\nB 6 4\nR 0 7",
"output": "30"
},
{
"input": "16\nR 3 0\nR 10 1\nR 3 1\nB 9 2\nR 11 2\nR 6 0\nB 7 0\nR 5 2\nR 7 1\nR 3 2\nR 13 0\nR 2 1\nR 5 2\nR 9 2\nR 5 0\nR 7 1",
"output": "23"
},
{
"input": "16\nR 9 1\nR 6 2\nB 1 0\nB 7 6\nR 6 3\nR 10 2\nR 4 4\nR 9 4\nR 9 1\nR 5 2\nB 10 4\nB 7 1\nB 1 4\nB 10 1\nR 10 4\nR 8 5",
"output": "47"
},
{
"input": "16\nB 1 3\nB 2 5\nB 0 3\nB 0 5\nB 0 14\nB 1 10\nB 1 7\nR 1 10\nB 2 6\nB 0 13\nB 1 10\nR 2 1\nB 1 11\nB 2 12\nB 2 12\nB 2 7",
"output": "43"
},
{
"input": "16\nR 3 7\nR 4 5\nB 3 3\nB 2 1\nB 1 5\nR 1 3\nB 8 5\nB 0 4\nB 7 0\nB 7 6\nR 1 0\nR 7 1\nR 9 1\nR 0 6\nR 3 5\nR 1 0",
"output": "23"
},
{
"input": "16\nB 1 11\nR 0 7\nB 2 11\nR 2 4\nR 3 8\nB 0 11\nB 0 13\nB 2 2\nB 2 13\nB 3 13\nB 0 10\nB 1 12\nB 1 0\nB 3 5\nB 0 5\nB 3 0",
"output": "45"
},
{
"input": "16\nR 2 10\nB 6 3\nB 6 6\nR 3 6\nB 5 8\nR 4 7\nB 3 9\nB 1 5\nB 2 10\nB 3 4\nB 1 8\nR 3 6\nB 0 1\nB 6 3\nR 2 3\nR 3 3",
"output": "32"
},
{
"input": "16\nB 3 5\nB 5 0\nB 5 3\nR 3 0\nB 2 9\nR 5 6\nR 1 1\nB 0 0\nR 1 0\nB 1 4\nB 2 2\nB 0 3\nR 3 4\nB 5 6\nB 1 8\nR 5 8",
"output": "20"
},
{
"input": "16\nR 0 1\nB 4 6\nR 4 1\nB 4 6\nB 3 4\nB 5 3\nB 1 0\nB 4 1\nR 5 2\nR 6 2\nR 2 2\nR 6 0\nB 6 4\nR 0 4\nR 5 4\nB 3 4",
"output": "21"
},
{
"input": "16\nR 14 0\nR 13 0\nR 15 0\nR 9 0\nR 1 0\nR 6 0\nR 7 0\nR 16 0\nR 2 0\nR 2 0\nR 13 0\nR 1 0\nR 1 0\nR 6 0\nR 5 0\nR 2 0",
"output": "23"
},
{
"input": "16\nB 0 3\nB 0 0\nB 1 11\nB 0 15\nB 1 4\nB 1 5\nB 0 2\nB 0 7\nB 1 13\nR 0 0\nB 1 2\nB 1 14\nB 0 15\nB 1 3\nB 0 11\nB 1 5",
"output": "27"
},
{
"input": "16\nB 3 13\nB 1 11\nR 1 9\nB 1 8\nR 1 1\nB 2 9\nR 2 2\nB 1 0\nB 0 2\nB 0 10\nB 2 1\nB 1 11\nB 0 6\nB 2 13\nB 2 2\nB 3 7",
"output": "32"
},
{
"input": "16\nB 1 5\nB 2 11\nR 3 12\nB 0 13\nB 1 10\nB 3 0\nB 0 2\nB 3 9\nB 0 9\nB 0 0\nR 1 7\nB 0 13\nB 3 11\nR 0 12\nB 2 0\nB 3 1",
"output": "30"
},
{
"input": "16\nR 6 1\nB 0 2\nR 2 0\nR 4 3\nR 10 3\nR 5 2\nB 8 2\nB 3 2\nR 7 0\nR 6 4\nR 0 1\nR 6 3\nR 2 1\nB 7 3\nR 1 4\nR 7 2",
"output": "21"
},
{
"input": "16\nB 1 0\nR 4 0\nR 1 3\nB 0 1\nR 1 6\nB 1 1\nB 2 3\nB 4 11\nR 0 10\nB 4 5\nB 1 3\nB 4 8\nB 5 9\nB 2 10\nR 0 8\nB 0 7",
"output": "22"
},
{
"input": "15\nB 6 10\nB 7 14\nB 13 0\nB 5 0\nB 13 11\nB 14 12\nB 1 1\nB 2 3\nB 7 12\nB 14 2\nR 13 13\nB 3 2\nB 2 0\nB 7 13\nB 11 0",
"output": "119"
},
{
"input": "14\nB 7 4\nB 2 1\nR 1 4\nR 4 3\nR 2 5\nB 7 0\nR 7 4\nR 9 3\nB 7 2\nR 2 0\nR 4 0\nB 8 2\nR 3 2\nR 1 4",
"output": "24"
},
{
"input": "13\nR 8 13\nB 0 13\nR 4 11\nR 0 6\nR 4 10\nR 12 10\nR 6 2\nR 5 12\nB 4 5\nR 13 9\nR 11 13\nR 7 4\nR 13 10",
"output": "108"
},
{
"input": "12\nB 8 3\nB 0 0\nR 7 2\nB 6 4\nR 2 2\nR 6 1\nR 2 4\nR 8 2\nB 2 2\nR 8 0\nR 4 0\nR 3 0",
"output": "24"
},
{
"input": "16\nB 48694 9\nB 11 8\nB 7024045 1878252\nB 4314597 581044\nB 1 16\nB 7 2365205\nR 13 1772097\nB 9915366 3\nB 1307090 0\nB 512257 14\nB 9 8\nB 8248718 572520\nB 1179802 6591054\nB 7502375 8\nB 6877665 5323304\nB 10 2",
"output": "46930661"
},
{
"input": "16\nR 3194022 2206633\nR 7598252 2294127\nR 4555177 16\nR 7 16\nR 5524187 3\nR 8961703 3137543\nR 6110473 1664451\nB 1 6506251\nR 4 8\nB 9444007 1207864\nR 8660519 5933919\nB 8900264 1190948\nR 4095397 14\nR 6940958 5\nR 3653725 4642427\nR 8457106 7",
"output": "86095713"
},
{
"input": "16\nR 8674993 8971233\nR 2582520 6282477\nR 7 0\nR 15 2629469\nR 2 6589926\nR 8684638 12\nR 1018413 1\nR 4381377 1\nR 14 6\nR 507034 4035379\nR 5823342 8192458\nR 6034370 16\nR 5409631 7943477\nR 15 10\nR 703657 12\nR 1 2",
"output": "44644495"
},
{
"input": "16\nB 7 3400189\nB 7573338 3483856\nB 16 6456081\nB 1 5619084\nB 9287202 11\nB 7 0\nB 8 8\nB 9002360 9\nB 8386052 676560\nB 15 2171807\nB 12 7196573\nB 4 1\nB 7574499 10\nB 3467159 5\nB 8233088 7\nB 3658327 4",
"output": "57182111"
},
{
"input": "16\nR 15 2862279\nB 11 7341661\nR 8113224 14\nR 12 4\nB 7500326 13\nR 11 7864692\nB 10 1600216\nB 6272417 7\nB 2413107 2262787\nB 2903722 5275102\nB 7 6983199\nB 13 10\nR 7358386 5\nB 2121403 9689488\nB 8642840 5\nB 7 7",
"output": "45325462"
},
{
"input": "16\nB 5479752 7\nR 6 9\nR 14 7\nR 5308962 11\nR 8 3317512\nR 0 800093\nR 14 0\nR 3 7\nR 9 5\nR 8 4\nR 1 15\nR 3241174 16\nR 5911816 8\nR 9 202382\nB 16 9\nB 3 14",
"output": "19941704"
},
{
"input": "16\nB 5993857 6753325\nB 3 4\nR 12 10\nB 3 3961508\nR 9 16\nB 13 2097511\nB 5654201 5\nB 12 2\nB 3136140 6284762\nB 9597778 7602232\nR 12 2467450\nB 5531904 663702\nR 1615498 6\nB 15 7101011\nR 8797406 2991867\nB 13 16",
"output": "40326831"
},
{
"input": "16\nB 13 3517924\nR 7769913 8\nB 3512765 15\nB 15 4314415\nR 11 2\nB 2333262 0\nR 14 6299314\nR 418234 3\nB 15 4818359\nB 5 15\nR 740265 4457029\nB 6345450 3\nB 3874715 11\nB 15 1\nB 15 6381009\nB 1989067 2167759",
"output": "31955793"
},
{
"input": "16\nB 14 2561206\nB 4 8\nB 12 2\nB 1227117 1332663\nR 12 5155350\nR 4174184 9854210\nB 15 12\nR 6369564 6\nB 3159971 228465\nB 1244479 7016135\nR 15 3\nB 615684 3778774\nB 10 3940746\nB 9 5973308\nB 9 8571654\nR 8575546 12",
"output": "48412473"
},
{
"input": "7\nR 4 3\nB 1 2\nR 3 12\nR 6 3\nB 7 3\nB 9 5\nB 10 8",
"output": "35"
},
{
"input": "7\nB 1 7\nB 2 0\nB 12 3\nB 8 11\nB 6 11\nB 7 11\nB 6 5",
"output": "49"
},
{
"input": "7\nR 6 5\nR 7 2\nR 5 7\nR 4 10\nB 0 5\nB 6 8\nB 9 8",
"output": "38"
},
{
"input": "7\nR 2 5\nR 3 12\nR 1 3\nR 1 6\nR 12 3\nR 4 2\nR 4 11",
"output": "49"
},
{
"input": "8\nR 9 13\nB 4 5\nB 1 8\nB 9 9\nB 0 11\nB 0 2\nR 1 7\nB 10 11",
"output": "47"
},
{
"input": "8\nB 0 4\nR 2 1\nB 11 11\nR 2 4\nR 6 8\nB 5 11\nB 4 12\nR 9 4",
"output": "44"
},
{
"input": "8\nB 13 12\nB 9 5\nB 7 14\nB 4 0\nB 3 5\nB 2 3\nB 7 10\nB 7 6",
"output": "60"
},
{
"input": "8\nB 3 11\nB 1 7\nB 1 0\nR 13 2\nR 9 9\nB 8 10\nB 2 8\nR 13 8",
"output": "47"
},
{
"input": "6\nR 2 9\nB 3 2\nR 10 7\nR 9 8\nB 9 11\nB 9 7",
"output": "42"
},
{
"input": "6\nB 3 3\nB 3 6\nB 5 10\nB 8 10\nB 0 8\nB 7 9",
"output": "37"
},
{
"input": "6\nR 9 0\nB 0 5\nB 5 4\nR 0 8\nB 3 5\nB 5 11",
"output": "29"
},
{
"input": "6\nB 7 2\nB 1 4\nR 0 2\nR 0 10\nR 6 2\nR 3 9",
"output": "26"
}
] | 1,481,997,464 | 4,963 | PyPy 3 | TIME_LIMIT_EXCEEDED | PRETESTS | 4 | 2,000 | 45,056,000 | from functools import *
from re import *
from sys import stderr
def readint():
return int(input())
def readfloat():
return float(input())
def readarray(N, foo=input):
return [foo() for i in range(N)]
def readlinearray(foo=int):
return map(foo, input().split())
def NOD(a, b):
while b:
a,b = b, a%b
return a
def gen_primes(max):
primes = [1]*(max+1)
for i in range(2, max+1):
if primes[i]:
for j in range(i+i, max+1, i):
primes[j] = 0
primes[0] = 0
return [x for x in range(max+1) if primes[x]]
def is_prime(N):
i = 3
if not(N % 2):
return 0
while i*i < N:
if not(N % i):
return 0
i += 3
return 1
data = []
for n in range(readint()):
fields = input().split()
data.append((fields[0], int(fields[1]), int(fields[2])))
@lru_cache(None)
def get_best(mask, leave_red):
# print("call", mask, leave_red)
if not mask:
return [0, 0]
reds = 0
blues = 0
for i in range(len(data)):
if mask & (1 << i):
if data[i][0] == 'R':
reds += 1
else:
blues += 1
# print("reds", reds, blues)
best = 10**9
max_rest = -100
for i in range(len(data)):
if mask & (1 << i):
need_red = data[i][1] - reds
need_blue = data[i][2] - blues
if data[i][0] == 'R':
need_red += 1
else:
need_blue += 1
need_red = max(need_red, 0)
need_blue = max(need_blue, 0)
# print("need", need_red, need_blue)
v1, l1 = get_best(mask ^ (1 << i), True)
steps = max(0, need_red - l1, need_blue)
if leave_red:
leave = steps + l1 - need_red
else:
leave = steps - need_blue
steps += v1
if steps < best or (steps == best and leave > max_rest):
best = steps
max_rest = leave
v1, l1 = get_best(mask ^ (1 << i), False)
steps = max(0, need_red, need_blue - l1)
if leave_red:
leave = steps - need_red
else:
leave = steps + l1 - need_blue
steps += v1
if steps < best or (steps == best and leave > max_rest):
best = steps
max_rest = leave
return best, max_rest
mask = 2 ** len(data) - 1
# print(get_best(3, False))
print(min(get_best(mask, False)[0], get_best(mask, True)[0]) + len(data))
| Title: Hongcow Buys a Deck of Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day, Hongcow goes to the store and sees a brand new deck of *n* special cards. Each individual card is either red or blue. He decides he wants to buy them immediately. To do this, he needs to play a game with the owner of the store.
This game takes some number of turns to complete. On a turn, Hongcow may do one of two things:
- Collect tokens. Hongcow collects 1 red token and 1 blue token by choosing this option (thus, 2 tokens in total per one operation). - Buy a card. Hongcow chooses some card and spends tokens to purchase it as specified below.
The *i*-th card requires *r**i* red resources and *b**i* blue resources. Suppose Hongcow currently has *A* red cards and *B* blue cards. Then, the *i*-th card will require Hongcow to spend *max*(*r**i*<=-<=*A*,<=0) red tokens, and *max*(*b**i*<=-<=*B*,<=0) blue tokens. Note, only tokens disappear, but the cards stay with Hongcow forever. Each card can be bought only once.
Given a description of the cards and their costs determine the minimum number of turns Hongcow needs to purchase all cards.
Input Specification:
The first line of input will contain a single integer *n* (1<=≤<=*n*<=≤<=16).
The next *n* lines of input will contain three tokens *c**i*, *r**i* and *b**i*. *c**i* will be 'R' or 'B', denoting the color of the card as red or blue. *r**i* will be an integer denoting the amount of red resources required to obtain the card, and *b**i* will be an integer denoting the amount of blue resources required to obtain the card (0<=≤<=*r**i*,<=*b**i*<=≤<=107).
Output Specification:
Output a single integer, denoting the minimum number of turns needed to acquire all the cards.
Demo Input:
['3\nR 0 1\nB 1 0\nR 1 1\n', '3\nR 3 0\nR 2 0\nR 1 0\n']
Demo Output:
['4\n', '6\n']
Note:
For the first sample, Hongcow's four moves are as follows:
1. Collect tokens 1. Buy card 1 1. Buy card 2 1. Buy card 3
For the second sample, one optimal strategy is as follows:
1. Collect tokens 1. Collect tokens 1. Buy card 2 1. Collect tokens 1. Buy card 3 1. Buy card 1 | ```python
from functools import *
from re import *
from sys import stderr
def readint():
return int(input())
def readfloat():
return float(input())
def readarray(N, foo=input):
return [foo() for i in range(N)]
def readlinearray(foo=int):
return map(foo, input().split())
def NOD(a, b):
while b:
a,b = b, a%b
return a
def gen_primes(max):
primes = [1]*(max+1)
for i in range(2, max+1):
if primes[i]:
for j in range(i+i, max+1, i):
primes[j] = 0
primes[0] = 0
return [x for x in range(max+1) if primes[x]]
def is_prime(N):
i = 3
if not(N % 2):
return 0
while i*i < N:
if not(N % i):
return 0
i += 3
return 1
data = []
for n in range(readint()):
fields = input().split()
data.append((fields[0], int(fields[1]), int(fields[2])))
@lru_cache(None)
def get_best(mask, leave_red):
# print("call", mask, leave_red)
if not mask:
return [0, 0]
reds = 0
blues = 0
for i in range(len(data)):
if mask & (1 << i):
if data[i][0] == 'R':
reds += 1
else:
blues += 1
# print("reds", reds, blues)
best = 10**9
max_rest = -100
for i in range(len(data)):
if mask & (1 << i):
need_red = data[i][1] - reds
need_blue = data[i][2] - blues
if data[i][0] == 'R':
need_red += 1
else:
need_blue += 1
need_red = max(need_red, 0)
need_blue = max(need_blue, 0)
# print("need", need_red, need_blue)
v1, l1 = get_best(mask ^ (1 << i), True)
steps = max(0, need_red - l1, need_blue)
if leave_red:
leave = steps + l1 - need_red
else:
leave = steps - need_blue
steps += v1
if steps < best or (steps == best and leave > max_rest):
best = steps
max_rest = leave
v1, l1 = get_best(mask ^ (1 << i), False)
steps = max(0, need_red, need_blue - l1)
if leave_red:
leave = steps - need_red
else:
leave = steps + l1 - need_blue
steps += v1
if steps < best or (steps == best and leave > max_rest):
best = steps
max_rest = leave
return best, max_rest
mask = 2 ** len(data) - 1
# print(get_best(3, False))
print(min(get_best(mask, False)[0], get_best(mask, True)[0]) + len(data))
``` | 0 |
|
877 | A | Alex and broken contest | PROGRAMMING | 1,100 | [
"implementation",
"strings"
] | null | null | One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.
But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.
It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita".
Names are case sensitive. | The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem. | Print "YES", if problem is from this contest, and "NO" otherwise. | [
"Alex_and_broken_contest\n",
"NikitaAndString\n",
"Danil_and_Olya\n"
] | [
"NO",
"YES",
"NO"
] | none | 500 | [
{
"input": "Alex_and_broken_contest",
"output": "NO"
},
{
"input": "NikitaAndString",
"output": "YES"
},
{
"input": "Danil_and_Olya",
"output": "NO"
},
{
"input": "Slava____and_the_game",
"output": "YES"
},
{
"input": "Olya_and_energy_drinks",
"output": "YES"
},
{
"input": "Danil_and_part_time_job",
"output": "YES"
},
{
"input": "Ann_and_books",
"output": "YES"
},
{
"input": "Olya",
"output": "YES"
},
{
"input": "Nikita",
"output": "YES"
},
{
"input": "Slava",
"output": "YES"
},
{
"input": "Vanya",
"output": "NO"
},
{
"input": "I_dont_know_what_to_write_here",
"output": "NO"
},
{
"input": "danil_and_work",
"output": "NO"
},
{
"input": "Ann",
"output": "YES"
},
{
"input": "Batman_Nananananananan_Batman",
"output": "NO"
},
{
"input": "Olya_Nikita_Ann_Slava_Danil",
"output": "NO"
},
{
"input": "its_me_Mario",
"output": "NO"
},
{
"input": "A",
"output": "NO"
},
{
"input": "Wake_up_Neo",
"output": "NO"
},
{
"input": "Hardest_problem_ever",
"output": "NO"
},
{
"input": "Nikita_Nikita",
"output": "NO"
},
{
"input": "____________________________________________________________________________________________________",
"output": "NO"
},
{
"input": "Nikitb",
"output": "NO"
},
{
"input": "Unn",
"output": "NO"
},
{
"input": "oLya_adn_smth",
"output": "NO"
},
{
"input": "FloorISLava",
"output": "NO"
},
{
"input": "ann",
"output": "NO"
},
{
"input": "aa",
"output": "NO"
},
{
"input": "AAnnnnn",
"output": "YES"
},
{
"input": "AnnAnn",
"output": "NO"
},
{
"input": "Annn",
"output": "YES"
},
{
"input": "Dilzhan",
"output": "NO"
},
{
"input": "Danilaaa",
"output": "YES"
},
{
"input": "AndAnn",
"output": "YES"
},
{
"input": "OlyaAnnAnn",
"output": "NO"
},
{
"input": "DanilDanilOlya",
"output": "NO"
},
{
"input": "DDanil",
"output": "YES"
},
{
"input": "AnnAnnDanil",
"output": "NO"
},
{
"input": "And_Danil",
"output": "YES"
},
{
"input": "abcddddDanil",
"output": "YES"
},
{
"input": "DanilOlyaOlya",
"output": "NO"
},
{
"input": "Nikitaaa",
"output": "YES"
},
{
"input": "aaabbba",
"output": "NO"
},
{
"input": "Ann_Ann_Danil",
"output": "NO"
},
{
"input": "Danil_Danil_Nikita",
"output": "NO"
},
{
"input": "AlexaaaaaaBBBBBOlyaDDDDD",
"output": "YES"
},
{
"input": "IloveDaniland",
"output": "YES"
},
{
"input": "AnAnn",
"output": "YES"
},
{
"input": "Danil_Danil_Olya",
"output": "NO"
},
{
"input": "DanilDanilSlava",
"output": "NO"
},
{
"input": "DanilDanil",
"output": "NO"
},
{
"input": "OlyOlya",
"output": "YES"
},
{
"input": "NikitaNikitb",
"output": "YES"
},
{
"input": "ababaca",
"output": "NO"
},
{
"input": "AnnNikitaNikitaNikitaNikita__good_luck",
"output": "NO"
}
] | 1,510,732,759 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 5 | 62 | 0 | x = input()
c = x.count('Danil')+x.count('Olya')+x.count('Slava')+x.count('Danil')+x.count('Nikita')
print('YES' if c == 1 else 'No') | Title: Alex and broken contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.
But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.
It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita".
Names are case sensitive.
Input Specification:
The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem.
Output Specification:
Print "YES", if problem is from this contest, and "NO" otherwise.
Demo Input:
['Alex_and_broken_contest\n', 'NikitaAndString\n', 'Danil_and_Olya\n']
Demo Output:
['NO', 'YES', 'NO']
Note:
none | ```python
x = input()
c = x.count('Danil')+x.count('Olya')+x.count('Slava')+x.count('Danil')+x.count('Nikita')
print('YES' if c == 1 else 'No')
``` | 0 |
|
592 | C | The Big Race | PROGRAMMING | 1,800 | [
"math"
] | null | null | Vector Willman and Array Bolt are the two most famous athletes of Byteforces. They are going to compete in a race with a distance of *L* meters today.
Willman and Bolt have exactly the same speed, so when they compete the result is always a tie. That is a problem for the organizers because they want a winner.
While watching previous races the organizers have noticed that Willman can perform only steps of length equal to *w* meters, and Bolt can perform only steps of length equal to *b* meters. Organizers decided to slightly change the rules of the race. Now, at the end of the racetrack there will be an abyss, and the winner will be declared the athlete, who manages to run farther from the starting point of the the racetrack (which is not the subject to change by any of the athletes).
Note that none of the athletes can run infinitely far, as they both will at some moment of time face the point, such that only one step further will cause them to fall in the abyss. In other words, the athlete will not fall into the abyss if the total length of all his steps will be less or equal to the chosen distance *L*.
Since the organizers are very fair, the are going to set the length of the racetrack as an integer chosen randomly and uniformly in range from 1 to *t* (both are included). What is the probability that Willman and Bolt tie again today? | The first line of the input contains three integers *t*, *w* and *b* (1<=≤<=*t*,<=*w*,<=*b*<=≤<=5·1018) — the maximum possible length of the racetrack, the length of Willman's steps and the length of Bolt's steps respectively. | Print the answer to the problem as an irreducible fraction . Follow the format of the samples output.
The fraction (*p* and *q* are integers, and both *p*<=≥<=0 and *q*<=><=0 holds) is called irreducible, if there is no such integer *d*<=><=1, that both *p* and *q* are divisible by *d*. | [
"10 3 2\n",
"7 1 2\n"
] | [
"3/10\n",
"3/7\n"
] | In the first sample Willman and Bolt will tie in case 1, 6 or 7 are chosen as the length of the racetrack. | 1,500 | [
{
"input": "10 3 2",
"output": "3/10"
},
{
"input": "7 1 2",
"output": "3/7"
},
{
"input": "1 1 1",
"output": "1/1"
},
{
"input": "5814 31 7",
"output": "94/2907"
},
{
"input": "94268 813 766",
"output": "765/94268"
},
{
"input": "262610 5583 4717",
"output": "2358/131305"
},
{
"input": "3898439 96326 71937",
"output": "71936/3898439"
},
{
"input": "257593781689876390 32561717 4411677",
"output": "7914548537/257593781689876390"
},
{
"input": "111319886766128339 7862842484895022 3003994959686829",
"output": "3003994959686828/111319886766128339"
},
{
"input": "413850294331656955 570110918058849723 409853735661743839",
"output": "409853735661743838/413850294331656955"
},
{
"input": "3000000000000000000 2999999999999999873 2999999999999999977",
"output": "23437499999999999/23437500000000000"
},
{
"input": "9 6 1",
"output": "1/9"
},
{
"input": "32 9 2",
"output": "3/32"
},
{
"input": "976 5 6",
"output": "41/244"
},
{
"input": "5814 31 7",
"output": "94/2907"
},
{
"input": "94268 714 345",
"output": "689/94268"
},
{
"input": "262610 5583 4717",
"output": "2358/131305"
},
{
"input": "3898439 96326 71937",
"output": "71936/3898439"
},
{
"input": "54682301 778668 253103",
"output": "253102/54682301"
},
{
"input": "329245015 1173508 8918834",
"output": "1173507/329245015"
},
{
"input": "321076647734423976 7 7",
"output": "1/1"
},
{
"input": "455227494055672047 92 28",
"output": "19792499741550983/455227494055672047"
},
{
"input": "595779167455745259 6954 8697",
"output": "205511958419723/595779167455745259"
},
{
"input": "1000000000000000000 1000000000 2000000000",
"output": "1/2"
},
{
"input": "462643382718281828 462643382718281507 462643382718281701",
"output": "33045955908448679/33045955908448702"
},
{
"input": "4000000000000000000 9999999999999997 99999999999999999",
"output": "2499999999999999/1000000000000000000"
},
{
"input": "4003000100004000000 9999999099999999 99999999999999999",
"output": "4999999549999999/2001500050002000000"
},
{
"input": "4903000100004000000 58997960959949999 99933992929999999",
"output": "29498980479974999/2451500050002000000"
},
{
"input": "257593781689876390 32561717 4411677",
"output": "7914548537/257593781689876390"
},
{
"input": "111319886766128339 7862842484895022 3003994959686829",
"output": "3003994959686828/111319886766128339"
},
{
"input": "413850294331656955 570110918058849723 409853735661743839",
"output": "409853735661743838/413850294331656955"
},
{
"input": "232 17 83",
"output": "2/29"
},
{
"input": "5496272 63 200",
"output": "13765/2748136"
},
{
"input": "180 174 53",
"output": "13/45"
},
{
"input": "1954 190 537",
"output": "189/1954"
},
{
"input": "146752429 510 514",
"output": "571199/146752429"
},
{
"input": "579312860 55 70",
"output": "10344881/144828215"
},
{
"input": "1 9 9",
"output": "1/1"
},
{
"input": "95 19 19",
"output": "1/1"
},
{
"input": "404 63 441",
"output": "31/202"
},
{
"input": "5566 4798 4798",
"output": "1/1"
},
{
"input": "118289676 570846883 570846883",
"output": "1/1"
},
{
"input": "763 358 358",
"output": "1/1"
},
{
"input": "85356138 7223 482120804",
"output": "3611/42678069"
},
{
"input": "674664088 435395270 5",
"output": "9/674664088"
},
{
"input": "762200126044291557 370330636048898430 6",
"output": "17/762200126044291557"
},
{
"input": "917148533938841535 47 344459175789842163",
"output": "28/183429706787768307"
},
{
"input": "360212127113008697 877228952036215545 5259",
"output": "5258/360212127113008697"
},
{
"input": "683705963104411677 89876390 116741460012229240",
"output": "539258339/683705963104411677"
},
{
"input": "573003994959686829 275856334120822851 1319886766128339",
"output": "3959660298385016/573003994959686829"
},
{
"input": "409853735661743839 413850294331656955 413850294331656955",
"output": "1/1"
},
{
"input": "19 1 19",
"output": "1/19"
},
{
"input": "576 18 32",
"output": "1/16"
},
{
"input": "9540 10 954",
"output": "1/477"
},
{
"input": "101997840 6 16999640",
"output": "1/8499820"
},
{
"input": "955944 1278 748",
"output": "1/639"
},
{
"input": "482120804 66748 7223",
"output": "1/66748"
},
{
"input": "370330636048898430 61721772674816405 6",
"output": "1/61721772674816405"
},
{
"input": "344459175789842163 7328918633826429 47",
"output": "1/7328918633826429"
},
{
"input": "877228952036215545 166805277055755 5259",
"output": "1/55601759018585"
},
{
"input": "116741460012229240 1298911316 89876390",
"output": "1/649455658"
},
{
"input": "275856334120822851 209 1319886766128339",
"output": "1/1319886766128339"
},
{
"input": "413850294331656955 1 413850294331656955",
"output": "1/413850294331656955"
},
{
"input": "54682301 778668 253103",
"output": "253102/54682301"
},
{
"input": "329245015 3931027 6443236",
"output": "357366/29931365"
},
{
"input": "321076647734423976 7 8",
"output": "1672274206950125/13378193655600999"
},
{
"input": "455227494055672047 71 60",
"output": "6411654845854559/455227494055672047"
},
{
"input": "595779167455745259 9741 9331",
"output": "61162012885196/595779167455745259"
},
{
"input": "6470 80 160",
"output": "327/647"
},
{
"input": "686325 828 1656",
"output": "114511/228775"
},
{
"input": "4535304 2129 4258",
"output": "755973/1511768"
},
{
"input": "40525189 6365 12730",
"output": "20265394/40525189"
},
{
"input": "675297075 25986 51972",
"output": "112553659/225099025"
},
{
"input": "5681598412 75376 226128",
"output": "1893897375/5681598412"
},
{
"input": "384118571739435733 619773000 1859319000",
"output": "128039524053435733/384118571739435733"
},
{
"input": "391554751752251913 625743359 1877230077",
"output": "130518250652782079/391554751752251913"
},
{
"input": "390728504279201198 625082797 1250165594",
"output": "195364252413988195/390728504279201198"
},
{
"input": "389902265396085075 624421544 1248843088",
"output": "64983710976697837/129967421798695025"
},
{
"input": "734812071040507372 857211800 2571635400",
"output": "61234339274051543/183703017760126843"
},
{
"input": "1 1 2",
"output": "0/1"
},
{
"input": "3 1 4",
"output": "0/1"
},
{
"input": "8 2 3",
"output": "3/8"
},
{
"input": "64 32 16",
"output": "1/2"
},
{
"input": "1 1 1000000000",
"output": "0/1"
},
{
"input": "1000000000 1 1",
"output": "1/1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1/1"
},
{
"input": "1000000000 2 4",
"output": "1/2"
},
{
"input": "1000000000 123 456",
"output": "6579023/1000000000"
},
{
"input": "1000000000 123123 654",
"output": "24851/1000000000"
},
{
"input": "123456 123 456",
"output": "215/30864"
},
{
"input": "123456 1234567 123",
"output": "61/61728"
},
{
"input": "314159265 271 8281",
"output": "37939/314159265"
},
{
"input": "11071994 4231 1324",
"output": "2647/11071994"
},
{
"input": "961748927 961748941 982451653",
"output": "1/1"
},
{
"input": "15485221 1259 90863",
"output": "1258/15485221"
},
{
"input": "5000000000000000000 4999999999999999837 4999999999999999963",
"output": "1249999999999999959/1250000000000000000"
},
{
"input": "4000000000000000000 3999999999999999691 3999999999999999887",
"output": "399999999999999969/400000000000000000"
},
{
"input": "999999999999999999 999999999999999709 999999999999999737",
"output": "333333333333333236/333333333333333333"
},
{
"input": "799999999999999999 799999999999999969 799999999999999991",
"output": "799999999999999968/799999999999999999"
},
{
"input": "812312312312312222 812312312312311897 812312312312312029",
"output": "406156156156155948/406156156156156111"
},
{
"input": "500000000000000000 499999999999999927 499999999999999931",
"output": "249999999999999963/250000000000000000"
},
{
"input": "555555555555555555 555555555555555083 555555555555555229",
"output": "50505050505050462/50505050505050505"
},
{
"input": "199419941994199419 199419941994199369 199419941994199391",
"output": "66473313998066456/66473313998066473"
},
{
"input": "145685485411238588 145685485411238483 145685485411238573",
"output": "72842742705619241/72842742705619294"
},
{
"input": "314159265358979323 314159265358979167 314159265358979213",
"output": "314159265358979166/314159265358979323"
},
{
"input": "10 1000000000000000000 1000000000000000001",
"output": "1/1"
},
{
"input": "5 100000000000000000 99999999999999999",
"output": "1/1"
},
{
"input": "5 1000000000000 1000000000001",
"output": "1/1"
},
{
"input": "5 1000000000000000000 1000000000000000001",
"output": "1/1"
},
{
"input": "2 1000000000000000000 1000000000000000001",
"output": "1/1"
},
{
"input": "2 10 11",
"output": "1/1"
},
{
"input": "10 123456789123456789 723456789123456781",
"output": "1/1"
},
{
"input": "12345678910 123456789101112131 123456789101112132",
"output": "1/1"
},
{
"input": "5 499999999999999999 499999999999999998",
"output": "1/1"
}
] | 1,446,406,241 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 15 | 62 | 0 | def rez(p,q):
if p==0:
return '0/1'
p1,q1=min(p,q),max(p,q)
d=p1
while q1%p1>0:
d=q1%p1
q1,p1=p1,d
q1=q//d
p1=p//d
return str(p1)+'/'+str(q1)
s=input()
a=s.split(' ')
t,w,b=int(a[0]),int(a[1]),int(a[2])
m=min(w,b)-1
n=t//(w*b)
d=t%(w*b)
p=m+n+(n-1)*m+min(m,d)
print(rez(p,t)) | Title: The Big Race
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vector Willman and Array Bolt are the two most famous athletes of Byteforces. They are going to compete in a race with a distance of *L* meters today.
Willman and Bolt have exactly the same speed, so when they compete the result is always a tie. That is a problem for the organizers because they want a winner.
While watching previous races the organizers have noticed that Willman can perform only steps of length equal to *w* meters, and Bolt can perform only steps of length equal to *b* meters. Organizers decided to slightly change the rules of the race. Now, at the end of the racetrack there will be an abyss, and the winner will be declared the athlete, who manages to run farther from the starting point of the the racetrack (which is not the subject to change by any of the athletes).
Note that none of the athletes can run infinitely far, as they both will at some moment of time face the point, such that only one step further will cause them to fall in the abyss. In other words, the athlete will not fall into the abyss if the total length of all his steps will be less or equal to the chosen distance *L*.
Since the organizers are very fair, the are going to set the length of the racetrack as an integer chosen randomly and uniformly in range from 1 to *t* (both are included). What is the probability that Willman and Bolt tie again today?
Input Specification:
The first line of the input contains three integers *t*, *w* and *b* (1<=≤<=*t*,<=*w*,<=*b*<=≤<=5·1018) — the maximum possible length of the racetrack, the length of Willman's steps and the length of Bolt's steps respectively.
Output Specification:
Print the answer to the problem as an irreducible fraction . Follow the format of the samples output.
The fraction (*p* and *q* are integers, and both *p*<=≥<=0 and *q*<=><=0 holds) is called irreducible, if there is no such integer *d*<=><=1, that both *p* and *q* are divisible by *d*.
Demo Input:
['10 3 2\n', '7 1 2\n']
Demo Output:
['3/10\n', '3/7\n']
Note:
In the first sample Willman and Bolt will tie in case 1, 6 or 7 are chosen as the length of the racetrack. | ```python
def rez(p,q):
if p==0:
return '0/1'
p1,q1=min(p,q),max(p,q)
d=p1
while q1%p1>0:
d=q1%p1
q1,p1=p1,d
q1=q//d
p1=p//d
return str(p1)+'/'+str(q1)
s=input()
a=s.split(' ')
t,w,b=int(a[0]),int(a[1]),int(a[2])
m=min(w,b)-1
n=t//(w*b)
d=t%(w*b)
p=m+n+(n-1)*m+min(m,d)
print(rez(p,t))
``` | 0 |
|
478 | B | Random Teams | PROGRAMMING | 1,300 | [
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null | *n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition. | The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively. | The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively. | [
"5 1\n",
"3 2\n",
"6 3\n"
] | [
"10 10\n",
"1 1\n",
"3 6\n"
] | In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people. | 1,000 | [
{
"input": "5 1",
"output": "10 10"
},
{
"input": "3 2",
"output": "1 1"
},
{
"input": "6 3",
"output": "3 6"
},
{
"input": "5 3",
"output": "2 3"
},
{
"input": "10 2",
"output": "20 36"
},
{
"input": "10 6",
"output": "4 10"
},
{
"input": "1000000000 1",
"output": "499999999500000000 499999999500000000"
},
{
"input": "5000000 12",
"output": "1041664166668 12499942500066"
},
{
"input": "1833 195",
"output": "7722 1342341"
},
{
"input": "1000000000 1000000000",
"output": "0 0"
},
{
"input": "1000000000 1000000",
"output": "499500000000 499000500499500000"
},
{
"input": "1000000000 32170",
"output": "15541930838100 499967831017438365"
},
{
"input": "1000000 1000",
"output": "499500000 499000999500"
},
{
"input": "1234 1123",
"output": "111 6216"
},
{
"input": "599222887 298488",
"output": "601178656545 179355218158217800"
},
{
"input": "999999999 500000000",
"output": "499999999 124999999750000000"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 2",
"output": "249999999500000000 499999998500000001"
},
{
"input": "1000000000 999999999",
"output": "1 1"
},
{
"input": "38447 383",
"output": "1910550 724453080"
},
{
"input": "100000000 99999799",
"output": "201 20301"
},
{
"input": "1 1",
"output": "0 0"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "2 2",
"output": "0 0"
},
{
"input": "10 10",
"output": "0 0"
}
] | 1,690,862,178 | 2,147,483,647 | Python 3 | OK | TESTS | 26 | 46 | 0 | def cal(a):
if a < 2:
return 0
return a * (a - 1) // 2
def Solve():
n, m = map(int, input().split())
tmp = n - m + 1
mx = cal(tmp)
mn = 0
tmp1 = n // m
tmp2 = n % m
mn += tmp2 * cal(tmp1 + 1) + (m - tmp2) * cal(tmp1)
print(mn, mx)
if __name__ == "__main__":
Solve()
| Title: Random Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input Specification:
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
Output Specification:
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
Demo Input:
['5 1\n', '3 2\n', '6 3\n']
Demo Output:
['10 10\n', '1 1\n', '3 6\n']
Note:
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people. | ```python
def cal(a):
if a < 2:
return 0
return a * (a - 1) // 2
def Solve():
n, m = map(int, input().split())
tmp = n - m + 1
mx = cal(tmp)
mn = 0
tmp1 = n // m
tmp2 = n % m
mn += tmp2 * cal(tmp1 + 1) + (m - tmp2) * cal(tmp1)
print(mn, mx)
if __name__ == "__main__":
Solve()
``` | 3 |
|
864 | C | Bus | PROGRAMMING | 1,500 | [
"greedy",
"implementation",
"math"
] | null | null | A bus moves along the coordinate line *Ox* from the point *x*<==<=0 to the point *x*<==<=*a*. After starting from the point *x*<==<=0, it reaches the point *x*<==<=*a*, immediately turns back and then moves to the point *x*<==<=0. After returning to the point *x*<==<=0 it immediately goes back to the point *x*<==<=*a* and so on. Thus, the bus moves from *x*<==<=0 to *x*<==<=*a* and back. Moving from the point *x*<==<=0 to *x*<==<=*a* or from the point *x*<==<=*a* to *x*<==<=0 is called a bus journey. In total, the bus must make *k* journeys.
The petrol tank of the bus can hold *b* liters of gasoline. To pass a single unit of distance the bus needs to spend exactly one liter of gasoline. The bus starts its first journey with a full petrol tank.
There is a gas station in point *x*<==<=*f*. This point is between points *x*<==<=0 and *x*<==<=*a*. There are no other gas stations on the bus route. While passing by a gas station in either direction the bus can stop and completely refuel its tank. Thus, after stopping to refuel the tank will contain *b* liters of gasoline.
What is the minimum number of times the bus needs to refuel at the point *x*<==<=*f* to make *k* journeys? The first journey starts in the point *x*<==<=0. | The first line contains four integers *a*, *b*, *f*, *k* (0<=<<=*f*<=<<=*a*<=≤<=106, 1<=≤<=*b*<=≤<=109, 1<=≤<=*k*<=≤<=104) — the endpoint of the first bus journey, the capacity of the fuel tank of the bus, the point where the gas station is located, and the required number of journeys. | Print the minimum number of times the bus needs to refuel to make *k* journeys. If it is impossible for the bus to make *k* journeys, print -1. | [
"6 9 2 4\n",
"6 10 2 4\n",
"6 5 4 3\n"
] | [
"4\n",
"2\n",
"-1\n"
] | In the first example the bus needs to refuel during each journey.
In the second example the bus can pass 10 units of distance without refueling. So the bus makes the whole first journey, passes 4 units of the distance of the second journey and arrives at the point with the gas station. Then it can refuel its tank, finish the second journey and pass 2 units of distance from the third journey. In this case, it will again arrive at the point with the gas station. Further, he can refill the tank up to 10 liters to finish the third journey and ride all the way of the fourth journey. At the end of the journey the tank will be empty.
In the third example the bus can not make all 3 journeys because if it refuels during the second journey, the tanks will contain only 5 liters of gasoline, but the bus needs to pass 8 units of distance until next refueling. | 1,500 | [
{
"input": "6 9 2 4",
"output": "4"
},
{
"input": "6 10 2 4",
"output": "2"
},
{
"input": "6 5 4 3",
"output": "-1"
},
{
"input": "2 2 1 1",
"output": "0"
},
{
"input": "10 4 6 10",
"output": "-1"
},
{
"input": "3 1 1 1",
"output": "-1"
},
{
"input": "2 1 1 1",
"output": "1"
},
{
"input": "1000000 51923215 2302 10000",
"output": "199"
},
{
"input": "10 11 3 2",
"output": "-1"
},
{
"input": "20 50 10 25",
"output": "11"
},
{
"input": "10 10 5 20",
"output": "20"
},
{
"input": "15 65 5 50",
"output": "12"
},
{
"input": "10 19 1 5",
"output": "3"
},
{
"input": "10 19 9 5",
"output": "3"
},
{
"input": "23 46 12 2",
"output": "0"
},
{
"input": "23 46 12 3",
"output": "1"
},
{
"input": "20 20 19 1",
"output": "0"
},
{
"input": "20 23 17 2",
"output": "1"
},
{
"input": "100 70 50 1",
"output": "1"
},
{
"input": "100 70 70 2",
"output": "2"
},
{
"input": "140 480 139 40",
"output": "18"
},
{
"input": "1000000 1000000000 1 1000",
"output": "0"
},
{
"input": "100000 1000000 50000 1000",
"output": "100"
},
{
"input": "1000000 1000000 500000 1000",
"output": "1000"
},
{
"input": "1000000 1000000 500000 10000",
"output": "10000"
},
{
"input": "1000000 2500000 500000 9999",
"output": "4998"
},
{
"input": "1000000 1500000 500000 9999",
"output": "9997"
},
{
"input": "1000000 1500000 500000 10000",
"output": "9998"
},
{
"input": "1000000 1 1 1",
"output": "-1"
},
{
"input": "2 1000000000 1 1",
"output": "0"
},
{
"input": "1000000 1000000000 1 1",
"output": "0"
},
{
"input": "1000000 1 999999 1",
"output": "-1"
},
{
"input": "1000000 1000000000 999999 1",
"output": "0"
},
{
"input": "2 1 1 10000",
"output": "-1"
},
{
"input": "1000000 1 1 10000",
"output": "-1"
},
{
"input": "1000000 1000000000 1 10000",
"output": "10"
},
{
"input": "1000000 1 999999 10000",
"output": "-1"
},
{
"input": "2 1000000000 1 10000",
"output": "0"
},
{
"input": "1000000 1000000000 999999 10000",
"output": "10"
},
{
"input": "10000 78393 3000 9999",
"output": "1428"
},
{
"input": "1000000 8839233 302200 9999",
"output": "1249"
},
{
"input": "900005 3333333 210000 9999",
"output": "3332"
},
{
"input": "6 7 4 2",
"output": "2"
},
{
"input": "3 1 2 1",
"output": "-1"
},
{
"input": "150 100 1 1",
"output": "-1"
},
{
"input": "10 5 6 1",
"output": "-1"
},
{
"input": "51 81 36 38",
"output": "36"
},
{
"input": "100 159 80 2",
"output": "1"
}
] | 1,591,269,901 | 2,147,483,647 | PyPy 3 | OK | TESTS | 48 | 140 | 1,433,600 | a, bm, f, k = [int(i) for i in input().split()]
b = bm
r1, r2 = f, a - f
count = 0
for i in range(k):
b -= r1
if b < 0:
print(-1)
exit(0)
if b < 2 * r2 and i != k - 1:
b = bm
count += 1
elif i == k - 1:
if b < r2:
b = bm
count += 1
b -= r2
if b < 0:
print(-1)
exit(0)
r1, r2 = r2, r1
print(count) | Title: Bus
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A bus moves along the coordinate line *Ox* from the point *x*<==<=0 to the point *x*<==<=*a*. After starting from the point *x*<==<=0, it reaches the point *x*<==<=*a*, immediately turns back and then moves to the point *x*<==<=0. After returning to the point *x*<==<=0 it immediately goes back to the point *x*<==<=*a* and so on. Thus, the bus moves from *x*<==<=0 to *x*<==<=*a* and back. Moving from the point *x*<==<=0 to *x*<==<=*a* or from the point *x*<==<=*a* to *x*<==<=0 is called a bus journey. In total, the bus must make *k* journeys.
The petrol tank of the bus can hold *b* liters of gasoline. To pass a single unit of distance the bus needs to spend exactly one liter of gasoline. The bus starts its first journey with a full petrol tank.
There is a gas station in point *x*<==<=*f*. This point is between points *x*<==<=0 and *x*<==<=*a*. There are no other gas stations on the bus route. While passing by a gas station in either direction the bus can stop and completely refuel its tank. Thus, after stopping to refuel the tank will contain *b* liters of gasoline.
What is the minimum number of times the bus needs to refuel at the point *x*<==<=*f* to make *k* journeys? The first journey starts in the point *x*<==<=0.
Input Specification:
The first line contains four integers *a*, *b*, *f*, *k* (0<=<<=*f*<=<<=*a*<=≤<=106, 1<=≤<=*b*<=≤<=109, 1<=≤<=*k*<=≤<=104) — the endpoint of the first bus journey, the capacity of the fuel tank of the bus, the point where the gas station is located, and the required number of journeys.
Output Specification:
Print the minimum number of times the bus needs to refuel to make *k* journeys. If it is impossible for the bus to make *k* journeys, print -1.
Demo Input:
['6 9 2 4\n', '6 10 2 4\n', '6 5 4 3\n']
Demo Output:
['4\n', '2\n', '-1\n']
Note:
In the first example the bus needs to refuel during each journey.
In the second example the bus can pass 10 units of distance without refueling. So the bus makes the whole first journey, passes 4 units of the distance of the second journey and arrives at the point with the gas station. Then it can refuel its tank, finish the second journey and pass 2 units of distance from the third journey. In this case, it will again arrive at the point with the gas station. Further, he can refill the tank up to 10 liters to finish the third journey and ride all the way of the fourth journey. At the end of the journey the tank will be empty.
In the third example the bus can not make all 3 journeys because if it refuels during the second journey, the tanks will contain only 5 liters of gasoline, but the bus needs to pass 8 units of distance until next refueling. | ```python
a, bm, f, k = [int(i) for i in input().split()]
b = bm
r1, r2 = f, a - f
count = 0
for i in range(k):
b -= r1
if b < 0:
print(-1)
exit(0)
if b < 2 * r2 and i != k - 1:
b = bm
count += 1
elif i == k - 1:
if b < r2:
b = bm
count += 1
b -= r2
if b < 0:
print(-1)
exit(0)
r1, r2 = r2, r1
print(count)
``` | 3 |
|
174 | A | Problem About Equation | PROGRAMMING | 1,100 | [
"math"
] | null | null | A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal. | The first line contains a pair of integers *n*, *b* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*b*<=≤<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the current volume of drink in the *i*-th mug. | Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma. | [
"5 50\n1 2 3 4 5\n",
"2 2\n1 100\n"
] | [
"12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n",
"-1\n"
] | none | 500 | [
{
"input": "5 50\n1 2 3 4 5",
"output": "12.000000\n11.000000\n10.000000\n9.000000\n8.000000"
},
{
"input": "2 2\n1 100",
"output": "-1"
},
{
"input": "2 2\n1 1",
"output": "1.000000\n1.000000"
},
{
"input": "3 2\n1 2 1",
"output": "1.000000\n0.000000\n1.000000"
},
{
"input": "3 5\n1 2 1",
"output": "2.000000\n1.000000\n2.000000"
},
{
"input": "10 95\n0 0 0 0 0 1 1 1 1 1",
"output": "10.000000\n10.000000\n10.000000\n10.000000\n10.000000\n9.000000\n9.000000\n9.000000\n9.000000\n9.000000"
},
{
"input": "3 5\n1 2 3",
"output": "2.666667\n1.666667\n0.666667"
},
{
"input": "3 5\n1 3 2",
"output": "2.666667\n0.666667\n1.666667"
},
{
"input": "3 5\n2 1 3",
"output": "1.666667\n2.666667\n0.666667"
},
{
"input": "3 5\n2 3 1",
"output": "1.666667\n0.666667\n2.666667"
},
{
"input": "3 5\n3 1 2",
"output": "0.666667\n2.666667\n1.666667"
},
{
"input": "3 5\n3 2 1",
"output": "0.666667\n1.666667\n2.666667"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "2 1\n2 2",
"output": "0.500000\n0.500000"
},
{
"input": "3 2\n2 1 2",
"output": "0.333333\n1.333333\n0.333333"
},
{
"input": "3 3\n2 2 1",
"output": "0.666667\n0.666667\n1.666667"
},
{
"input": "3 3\n3 1 2",
"output": "0.000000\n2.000000\n1.000000"
},
{
"input": "100 100\n37 97 75 52 33 29 51 22 33 37 45 96 96 60 82 58 86 71 28 73 38 50 6 6 90 17 26 76 13 41 100 47 17 93 4 1 56 16 41 74 25 17 69 61 39 37 96 73 49 93 52 14 62 24 91 30 9 97 52 100 6 16 85 8 12 26 10 3 94 63 80 27 29 78 9 48 79 64 60 18 98 75 81 35 24 81 2 100 23 70 21 60 98 38 29 29 58 37 49 72",
"output": "-1"
},
{
"input": "100 100\n1 3 7 7 9 5 9 3 7 8 10 1 3 10 10 6 1 3 10 4 3 9 4 9 5 4 9 2 8 7 4 3 3 3 5 10 8 9 10 1 9 2 4 8 3 10 9 2 3 9 8 2 4 4 4 7 1 1 7 3 7 8 9 5 1 2 6 7 1 10 9 10 5 10 1 10 5 2 4 3 10 1 6 5 6 7 8 9 3 8 6 10 8 7 2 3 8 6 3 6",
"output": "-1"
},
{
"input": "100 61\n81 80 83 72 87 76 91 92 77 93 77 94 76 73 71 88 88 76 87 73 89 73 85 81 79 90 76 73 82 93 79 93 71 75 72 71 78 85 92 89 88 93 74 87 71 94 74 87 85 89 90 93 86 94 92 87 90 91 75 73 90 84 92 94 92 79 74 85 74 74 89 76 84 84 84 83 86 84 82 71 76 74 83 81 89 73 73 74 71 77 90 94 73 94 73 75 93 89 84 92",
"output": "-1"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n99 100 99 100 100 100 99 99 99 100 100 100 99 100 99 100 100 100 100 100 99 99 99 99 100 99 100 99 100 99 99 100 100 100 100 100 99 99 99 100 99 99 100 99 100 99 100 99 99 99 99 100 100 99 99 99 100 100 99 100 100 100 99 99 100 100 100 100 100 100 99 99 99 99 99 100 99 99 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 100 99 100 100 100 100 99",
"output": "1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0..."
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100",
"output": "0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0..."
},
{
"input": "100 100\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99",
"output": "1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n0.020000\n1.020000\n1..."
},
{
"input": "10 100\n52 52 51 52 52 52 51 51 52 52",
"output": "9.700000\n9.700000\n10.700000\n9.700000\n9.700000\n9.700000\n10.700000\n10.700000\n9.700000\n9.700000"
},
{
"input": "10 100\n13 13 13 13 12 13 12 13 12 12",
"output": "9.600000\n9.600000\n9.600000\n9.600000\n10.600000\n9.600000\n10.600000\n9.600000\n10.600000\n10.600000"
},
{
"input": "10 100\n50 51 47 51 48 46 49 51 46 51",
"output": "9.000000\n8.000000\n12.000000\n8.000000\n11.000000\n13.000000\n10.000000\n8.000000\n13.000000\n8.000000"
},
{
"input": "10 100\n13 13 9 12 12 11 13 8 10 13",
"output": "8.400000\n8.400000\n12.400000\n9.400000\n9.400000\n10.400000\n8.400000\n13.400000\n11.400000\n8.400000"
},
{
"input": "93 91\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0..."
},
{
"input": "93 97\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1..."
},
{
"input": "91 99\n99 100 100 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 99 100 99 100 100 100 100 100 99 99 100 99 100 99 99 100 100 100 100 99 99 100 100 100 99 100 100 99 100 100 99 100 99 99 99 100 99 99 99 100 99 100 99 100 99 100 99 99 100 100 100 100 99 100 99 100 99 99 100 100 99 100 100 100 100 99 99 100 100 99 99 100 99",
"output": "1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1..."
},
{
"input": "99 98\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n1.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0..."
},
{
"input": "98 99\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99",
"output": "1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1..."
},
{
"input": "13 97\n52 52 51 51 52 52 51 52 51 51 52 52 52",
"output": "7.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n8.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n7.076923"
},
{
"input": "17 99\n13 13 12 13 11 12 12 12 13 13 11 13 13 13 13 12 13",
"output": "5.294118\n5.294118\n6.294118\n5.294118\n7.294118\n6.294118\n6.294118\n6.294118\n5.294118\n5.294118\n7.294118\n5.294118\n5.294118\n5.294118\n5.294118\n6.294118\n5.294118"
},
{
"input": "9 91\n52 51 50 52 52 51 50 48 51",
"output": "8.888889\n9.888889\n10.888889\n8.888889\n8.888889\n9.888889\n10.888889\n12.888889\n9.888889"
},
{
"input": "17 91\n13 13 13 13 12 12 13 13 12 13 12 13 10 12 13 13 12",
"output": "4.823529\n4.823529\n4.823529\n4.823529\n5.823529\n5.823529\n4.823529\n4.823529\n5.823529\n4.823529\n5.823529\n4.823529\n7.823529\n5.823529\n4.823529\n4.823529\n5.823529"
},
{
"input": "2 3\n1 1",
"output": "1.500000\n1.500000"
},
{
"input": "2 90\n0 89",
"output": "89.500000\n0.500000"
},
{
"input": "4 17\n3 4 8 1",
"output": "5.250000\n4.250000\n0.250000\n7.250000"
},
{
"input": "2 9\n5 5",
"output": "4.500000\n4.500000"
},
{
"input": "7 28\n1 3 9 10 9 6 10",
"output": "9.857143\n7.857143\n1.857143\n0.857143\n1.857143\n4.857143\n0.857143"
},
{
"input": "5 11\n1 2 3 4 5",
"output": "4.200000\n3.200000\n2.200000\n1.200000\n0.200000"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0.600000\n0.600000\n0.600000\n0.600000\n0.600000"
},
{
"input": "3 1\n100 100 100",
"output": "0.333333\n0.333333\n0.333333"
},
{
"input": "5 50\n2 2 3 2 2",
"output": "10.200000\n10.200000\n9.200000\n10.200000\n10.200000"
},
{
"input": "3 3\n2 2 3",
"output": "1.333333\n1.333333\n0.333333"
},
{
"input": "2 52\n2 100",
"output": "-1"
},
{
"input": "3 2\n2 2 3",
"output": "1.000000\n1.000000\n0.000000"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "0.200000\n0.200000\n0.200000\n0.200000\n0.200000"
},
{
"input": "2 4\n1 2",
"output": "2.500000\n1.500000"
},
{
"input": "5 49\n1 2 3 4 5",
"output": "11.800000\n10.800000\n9.800000\n8.800000\n7.800000"
}
] | 1,428,236,596 | 2,147,483,647 | Python 3 | COMPILATION_ERROR | TESTS | 0 | 0 | 0 | Python 3.4.0b1 (v3.4.0b1:3405dc9a6afa, Nov 24 2013, 19:09:12) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 7, in <module>
a[i]=n+1-i
IndexError: list assignment index out of range
>>> a
[]
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 7, in <module>
a[i]=n+1-i
TypeError: 'str' object does not support item assignment
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 8, in <module>
print(''.join(a))
TypeError: sequence item 0: expected str instance, int found
>>> a
[3, 2]
>>> ''.join(a)
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
''.join(a)
TypeError: sequence item 0: expected str instance, int found
>>> a.join
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
a.join
AttributeError: 'list' object has no attribute 'join'
>>> ================================ RESTART ================================
>>>
2
32
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
4
4 3 2 1
>>> int(03131)
SyntaxError: invalid token
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 5, in prod
y[i]=9-x[i]
TypeError: unsupported operand type(s) for -: 'int' and 'str'
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 5, in prod
y[i]=9-int(x[i])
TypeError: 'str' object does not support item assignment
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 8, in prod
return int(x)*int(''.join(y))
TypeError: sequence item 0: expected str instance, int found
>>> x
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
x
NameError: name 'x' is not defined
>>> str(10)
'10'
>>> ================================ RESTART ================================
>>>
p
>>> prod(10)
890
>>> ================================ RESTART ================================
>>>
8 10
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 15, in <module>
if prod(i)>s:
File "D:/Python34/cfcodes/1.py", line 6, in prod
while y[0]=='0':
IndexError: list index out of range
>>> ================================ RESTART ================================
>>>
8 10
>>> ================================ RESTART ================================
>>>
1 1
8
>>> ================================ RESTART ================================
>>>
8 10
>>> ================================ RESTART ================================
>>>
9 9
>>> ================================ RESTART ================================
>>>
1
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 15, in <module>
for i in range(x[0],x[1]+1):
IndexError: list index out of range
>>> 1
1
>>> prod(9)
>>> ================================ RESTART ================================
>>>
8 10
890
>>> 54*45
2430
>>> 44*55
2420
>>> 14*15
210
>>> 13*16
208
>>> 12*17
204
>>> 49*50
2450
>>> ================================ RESTART ================================
>>>
8 10
Traceback (most recent call last):
File "D:/Python34/cfcodes/2.py", line 16, in <module>
x,y=len(a),len(b)
TypeError: object of type 'int' has no len()
>>> ================================ RESTART ================================
>>>
8 10
890
>>> ================================ RESTART ================================
>>>
8 51
2450
>>> ================================ RESTART ================================
>>>
8 48
2448
>>> ================================ RESTART ================================
>>>
66 95
2178
>>> ================================ RESTART ================================
>>>
4 3
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 4, in <module>
per='0'*(n-1-len(bin(m))+1)+str(bin(m))[2:bin(m)]
TypeError: slice indices must be integers or None or have an __index__ method
>>> bin(5)
'0b101'
>>> ================================ RESTART ================================
>>>
3 4
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 4, in <module>
per='0'*(n-1-len(bin(m))+1)+bin(m)[2:bin(m)]
TypeError: slice indices must be integers or None or have an __index__ method
>>> bin(5)
'0b101'
>>> ================================ RESTART ================================
>>>
3
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 2, in <module>
n,m=ip[0],ip[1]
IndexError: list index out of range
>>> 5
5
>>> ================================ RESTART ================================
>>>
4
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 2, in <module>
n,m=ip[0],ip[1]
IndexError: list index out of range
>>> ================================ RESTART ================================
>>>
4 3
>>> per
'11'
>>> ================================ RESTART ================================
>>>
4 3
>>> per
'011'
>>> range(5)
range(0, 5)
>>> range(0,5,-1)
range(0, 5, -1)
>>> for i in range(0,5,-1):
print(i)
>>>
>>>
>>> for i in range(5,0,-1):
print(i)
5
4
3
2
1
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i)==1:
TypeError: 'str' object is not callable
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i)=='1':
TypeError: 'str' object is not callable
>>> per
'10'
>>> n
3
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i-1)=='1':
TypeError: 'str' object is not callable
>>> a='13134'
>>> a[3]
'3'
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'i3i'
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'231'
>>> per
'10'
>>> n
3
>>> m
2
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'132'
>>> split(p)
Traceback (most recent call last):
File "<pyshell#43>", line 1, in <module>
split(p)
NameError: name 'split' is not defined
>>> p.split(p)
['', '']
>>> p
'132'
>>> p.split(' ')
['132']
>>> list(p)
['1', '3', '2']
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 14, in <module>
print(' '.join(' '.split(list(p))))
TypeError: Can't convert 'list' object to str implicitly
>>> list(p)
['1', '3', '2']
>>> ' '.join(list(p))
'1 3 2'
>>> ================================ RESTART ================================
>>>
3 2
1 3 2
>>> ================================ RESTART ================================
>>>
>>>
>>> ================================ RESTART ================================
>>>
2 2
1 2
>>> p
'12'
>>> per
'10'
>>> ================================ RESTART ================================
>>>
2 2
2 1
>>> ================================ RESTART ================================
>>>
3 2
2 3 1
>>> p
'231'
>>> per
'10'
>>> ================================ RESTART ================================
>>>
2 2
2 1
>>> ================================ RESTART ================================
>>>
3 2
1 3 2
>>> 48*6+36*4
432
>>> 48*9+36
468
>>> 0.2
0.2
>>> 0.2*0.8*2
0.32000000000000006
>>> 0.2*0.8*0.8*3
0.3840000000000001
>>> 0.2*0.8*0.8*0.8*4
0.40960000000000013
>>> 0.2*0.8*0.8*0.8*0.8*4
SyntaxError: unexpected indent
>>> 0.2*0.8*0.8*0.8*0.8*5
0.4096000000000002
>>>
>>> 0.2*0.8*0.8*0.8*0.8*0.8*6
0.3932160000000001
>>> 0.2*0.8*0.8*0.8*0.8*0.8*0.8*7
0.36700160000000015
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('D:/Python34/cfcodes/input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'D:/Python34/cfcodes/input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
f = open("input.txt") # 返回一个文件对象
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
front
1
>>> a
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
a
NameError: name 'a' is not defined
>>> ================================ RESTART ================================
>>>
>>> s
'R'
>>> a
<built-in method readline of _io.TextIOWrapper object at 0x02CF56B0>
>>> b
<built-in method readline of _io.TextIOWrapper object at 0x02CF56B0>
>>> ================================ RESTART ================================
>>>
>>> a
'front\n'
>>> b
'1'
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
>>> a
'front\n'
>>> b
'1'
>>> s
'L'
>>> ================================ RESTART ================================
>>>
>>> s
'L'
>>> ================================ RESTART ================================
>>>
>>> s
'L'
>>> a
'front\n'
b
>>>
>>> b
'1'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 3, in <module>
a=a[0,5]
TypeError: string indices must be integers
>>> ================================ RESTART ================================
>>>
>>> a
'front'
>>> b
'1'
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 3, in <module>
if x[1]<max(y)*n-sum(y):
NameError: name 'n' is not defined
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
12.0
11.0
10.0
9.0
8.0
>>> 2.000000*3
6.0
>>> ================================ RESTART ================================
>>>
2 2
1 10
-1
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
12.000000
11.000000
10.000000
9.000000
8.000000
>>> | Title: Problem About Equation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal.
Input Specification:
The first line contains a pair of integers *n*, *b* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*b*<=≤<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the current volume of drink in the *i*-th mug.
Output Specification:
Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma.
Demo Input:
['5 50\n1 2 3 4 5\n', '2 2\n1 100\n']
Demo Output:
['12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n', '-1\n']
Note:
none | ```python
Python 3.4.0b1 (v3.4.0b1:3405dc9a6afa, Nov 24 2013, 19:09:12) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 7, in <module>
a[i]=n+1-i
IndexError: list assignment index out of range
>>> a
[]
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 7, in <module>
a[i]=n+1-i
TypeError: 'str' object does not support item assignment
>>> ================================ RESTART ================================
>>>
2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 8, in <module>
print(''.join(a))
TypeError: sequence item 0: expected str instance, int found
>>> a
[3, 2]
>>> ''.join(a)
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
''.join(a)
TypeError: sequence item 0: expected str instance, int found
>>> a.join
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
a.join
AttributeError: 'list' object has no attribute 'join'
>>> ================================ RESTART ================================
>>>
2
32
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
4
4 3 2 1
>>> int(03131)
SyntaxError: invalid token
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 5, in prod
y[i]=9-x[i]
TypeError: unsupported operand type(s) for -: 'int' and 'str'
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 5, in prod
y[i]=9-int(x[i])
TypeError: 'str' object does not support item assignment
>>> ================================ RESTART ================================
>>>
>>> prod(10)
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
prod(10)
File "D:/Python34/cfcodes/1.py", line 8, in prod
return int(x)*int(''.join(y))
TypeError: sequence item 0: expected str instance, int found
>>> x
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
x
NameError: name 'x' is not defined
>>> str(10)
'10'
>>> ================================ RESTART ================================
>>>
p
>>> prod(10)
890
>>> ================================ RESTART ================================
>>>
8 10
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 15, in <module>
if prod(i)>s:
File "D:/Python34/cfcodes/1.py", line 6, in prod
while y[0]=='0':
IndexError: list index out of range
>>> ================================ RESTART ================================
>>>
8 10
>>> ================================ RESTART ================================
>>>
1 1
8
>>> ================================ RESTART ================================
>>>
8 10
>>> ================================ RESTART ================================
>>>
9 9
>>> ================================ RESTART ================================
>>>
1
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 15, in <module>
for i in range(x[0],x[1]+1):
IndexError: list index out of range
>>> 1
1
>>> prod(9)
>>> ================================ RESTART ================================
>>>
8 10
890
>>> 54*45
2430
>>> 44*55
2420
>>> 14*15
210
>>> 13*16
208
>>> 12*17
204
>>> 49*50
2450
>>> ================================ RESTART ================================
>>>
8 10
Traceback (most recent call last):
File "D:/Python34/cfcodes/2.py", line 16, in <module>
x,y=len(a),len(b)
TypeError: object of type 'int' has no len()
>>> ================================ RESTART ================================
>>>
8 10
890
>>> ================================ RESTART ================================
>>>
8 51
2450
>>> ================================ RESTART ================================
>>>
8 48
2448
>>> ================================ RESTART ================================
>>>
66 95
2178
>>> ================================ RESTART ================================
>>>
4 3
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 4, in <module>
per='0'*(n-1-len(bin(m))+1)+str(bin(m))[2:bin(m)]
TypeError: slice indices must be integers or None or have an __index__ method
>>> bin(5)
'0b101'
>>> ================================ RESTART ================================
>>>
3 4
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 4, in <module>
per='0'*(n-1-len(bin(m))+1)+bin(m)[2:bin(m)]
TypeError: slice indices must be integers or None or have an __index__ method
>>> bin(5)
'0b101'
>>> ================================ RESTART ================================
>>>
3
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 2, in <module>
n,m=ip[0],ip[1]
IndexError: list index out of range
>>> 5
5
>>> ================================ RESTART ================================
>>>
4
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 2, in <module>
n,m=ip[0],ip[1]
IndexError: list index out of range
>>> ================================ RESTART ================================
>>>
4 3
>>> per
'11'
>>> ================================ RESTART ================================
>>>
4 3
>>> per
'011'
>>> range(5)
range(0, 5)
>>> range(0,5,-1)
range(0, 5, -1)
>>> for i in range(0,5,-1):
print(i)
>>>
>>>
>>> for i in range(5,0,-1):
print(i)
5
4
3
2
1
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i)==1:
TypeError: 'str' object is not callable
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i)=='1':
TypeError: 'str' object is not callable
>>> per
'10'
>>> n
3
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 9, in <module>
if per(i-1)=='1':
TypeError: 'str' object is not callable
>>> a='13134'
>>> a[3]
'3'
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'i3i'
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'231'
>>> per
'10'
>>> n
3
>>> m
2
>>> ================================ RESTART ================================
>>>
3 2
[' ']
>>> p
'132'
>>> split(p)
Traceback (most recent call last):
File "<pyshell#43>", line 1, in <module>
split(p)
NameError: name 'split' is not defined
>>> p.split(p)
['', '']
>>> p
'132'
>>> p.split(' ')
['132']
>>> list(p)
['1', '3', '2']
>>> ================================ RESTART ================================
>>>
3 2
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 14, in <module>
print(' '.join(' '.split(list(p))))
TypeError: Can't convert 'list' object to str implicitly
>>> list(p)
['1', '3', '2']
>>> ' '.join(list(p))
'1 3 2'
>>> ================================ RESTART ================================
>>>
3 2
1 3 2
>>> ================================ RESTART ================================
>>>
>>>
>>> ================================ RESTART ================================
>>>
2 2
1 2
>>> p
'12'
>>> per
'10'
>>> ================================ RESTART ================================
>>>
2 2
2 1
>>> ================================ RESTART ================================
>>>
3 2
2 3 1
>>> p
'231'
>>> per
'10'
>>> ================================ RESTART ================================
>>>
2 2
2 1
>>> ================================ RESTART ================================
>>>
3 2
1 3 2
>>> 48*6+36*4
432
>>> 48*9+36
468
>>> 0.2
0.2
>>> 0.2*0.8*2
0.32000000000000006
>>> 0.2*0.8*0.8*3
0.3840000000000001
>>> 0.2*0.8*0.8*0.8*4
0.40960000000000013
>>> 0.2*0.8*0.8*0.8*0.8*4
SyntaxError: unexpected indent
>>> 0.2*0.8*0.8*0.8*0.8*5
0.4096000000000002
>>>
>>> 0.2*0.8*0.8*0.8*0.8*0.8*6
0.3932160000000001
>>> 0.2*0.8*0.8*0.8*0.8*0.8*0.8*7
0.36700160000000015
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('D:/Python34/cfcodes/input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'D:/Python34/cfcodes/input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
ile_object = open('input.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 1, in <module>
f = open("input.txt") # 返回一个文件对象
FileNotFoundError: [Errno 2] No such file or directory: 'input.txt'
>>> ================================ RESTART ================================
>>>
front
1
>>> a
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
a
NameError: name 'a' is not defined
>>> ================================ RESTART ================================
>>>
>>> s
'R'
>>> a
<built-in method readline of _io.TextIOWrapper object at 0x02CF56B0>
>>> b
<built-in method readline of _io.TextIOWrapper object at 0x02CF56B0>
>>> ================================ RESTART ================================
>>>
>>> a
'front\n'
>>> b
'1'
>>> ================================ RESTART ================================
>>>
>>> ================================ RESTART ================================
>>>
>>> a
'front\n'
>>> b
'1'
>>> s
'L'
>>> ================================ RESTART ================================
>>>
>>> s
'L'
>>> ================================ RESTART ================================
>>>
>>> s
'L'
>>> a
'front\n'
b
>>>
>>> b
'1'
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 3, in <module>
a=a[0,5]
TypeError: string indices must be integers
>>> ================================ RESTART ================================
>>>
>>> a
'front'
>>> b
'1'
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
Traceback (most recent call last):
File "D:/Python34/cfcodes/1.py", line 3, in <module>
if x[1]<max(y)*n-sum(y):
NameError: name 'n' is not defined
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
12.0
11.0
10.0
9.0
8.0
>>> 2.000000*3
6.0
>>> ================================ RESTART ================================
>>>
2 2
1 10
-1
>>> ================================ RESTART ================================
>>>
5 50
1 2 3 4 5
12.000000
11.000000
10.000000
9.000000
8.000000
>>>
``` | -1 |
|
748 | A | Santa Claus and a Place in a Class | PROGRAMMING | 800 | [
"implementation",
"math"
] | null | null | Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture).
The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right.
Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right! | The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place. | Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right. | [
"4 3 9\n",
"4 3 24\n",
"2 4 4\n"
] | [
"2 2 L\n",
"4 3 R\n",
"1 2 R\n"
] | The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example.
In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right. | 500 | [
{
"input": "4 3 9",
"output": "2 2 L"
},
{
"input": "4 3 24",
"output": "4 3 R"
},
{
"input": "2 4 4",
"output": "1 2 R"
},
{
"input": "3 10 24",
"output": "2 2 R"
},
{
"input": "10 3 59",
"output": "10 3 L"
},
{
"input": "10000 10000 160845880",
"output": "8043 2940 R"
},
{
"input": "1 1 1",
"output": "1 1 L"
},
{
"input": "1 1 2",
"output": "1 1 R"
},
{
"input": "1 10000 1",
"output": "1 1 L"
},
{
"input": "1 10000 20000",
"output": "1 10000 R"
},
{
"input": "10000 1 1",
"output": "1 1 L"
},
{
"input": "10000 1 10000",
"output": "5000 1 R"
},
{
"input": "10000 1 20000",
"output": "10000 1 R"
},
{
"input": "3 2 1",
"output": "1 1 L"
},
{
"input": "3 2 2",
"output": "1 1 R"
},
{
"input": "3 2 3",
"output": "1 2 L"
},
{
"input": "3 2 4",
"output": "1 2 R"
},
{
"input": "3 2 5",
"output": "2 1 L"
},
{
"input": "3 2 6",
"output": "2 1 R"
},
{
"input": "3 2 7",
"output": "2 2 L"
},
{
"input": "3 2 8",
"output": "2 2 R"
},
{
"input": "3 2 9",
"output": "3 1 L"
},
{
"input": "3 2 10",
"output": "3 1 R"
},
{
"input": "3 2 11",
"output": "3 2 L"
},
{
"input": "3 2 12",
"output": "3 2 R"
},
{
"input": "300 2000 1068628",
"output": "268 314 R"
},
{
"input": "300 2000 584756",
"output": "147 378 R"
},
{
"input": "300 2000 268181",
"output": "68 91 L"
},
{
"input": "10000 9999 186450844",
"output": "9324 4745 R"
},
{
"input": "10000 9999 197114268",
"output": "9857 6990 R"
},
{
"input": "10000 9999 112390396",
"output": "5621 818 R"
},
{
"input": "10000 10000 1",
"output": "1 1 L"
},
{
"input": "10000 10000 2",
"output": "1 1 R"
},
{
"input": "10000 10000 100000001",
"output": "5001 1 L"
},
{
"input": "10000 10000 199999999",
"output": "10000 10000 L"
},
{
"input": "10000 10000 200000000",
"output": "10000 10000 R"
},
{
"input": "1 2 1",
"output": "1 1 L"
},
{
"input": "1 2 2",
"output": "1 1 R"
},
{
"input": "1 2 3",
"output": "1 2 L"
},
{
"input": "1 2 4",
"output": "1 2 R"
},
{
"input": "2 1 1",
"output": "1 1 L"
},
{
"input": "2 1 2",
"output": "1 1 R"
},
{
"input": "2 1 3",
"output": "2 1 L"
},
{
"input": "2 1 4",
"output": "2 1 R"
},
{
"input": "4 3 7",
"output": "2 1 L"
},
{
"input": "1 1 1",
"output": "1 1 L"
}
] | 1,610,463,855 | 2,147,483,647 | Python 3 | OK | TESTS | 46 | 77 | 307,200 | s = input().split()
n = int(s[0])
m = int(s[1])
k = int(s[2])
if k % 2 == 0:
k = int(k / 2)
a = int(k / m)
b = k % m
if b != 0:
print(a+1, b, 'R')
else:
print(a, m, 'R')
else:
k = int((k +1) / 2)
a = int(k / m)
b = k % m
if b != 0:
print(a+1, b, 'L')
else:
print(a, m, 'L')
| Title: Santa Claus and a Place in a Class
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture).
The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right.
Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right!
Input Specification:
The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place.
Output Specification:
Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right.
Demo Input:
['4 3 9\n', '4 3 24\n', '2 4 4\n']
Demo Output:
['2 2 L\n', '4 3 R\n', '1 2 R\n']
Note:
The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example.
In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right. | ```python
s = input().split()
n = int(s[0])
m = int(s[1])
k = int(s[2])
if k % 2 == 0:
k = int(k / 2)
a = int(k / m)
b = k % m
if b != 0:
print(a+1, b, 'R')
else:
print(a, m, 'R')
else:
k = int((k +1) / 2)
a = int(k / m)
b = k % m
if b != 0:
print(a+1, b, 'L')
else:
print(a, m, 'L')
``` | 3 |
|
710 | A | King Moves | PROGRAMMING | 800 | [
"implementation"
] | null | null | The only king stands on the standard chess board. You are given his position in format "cd", where *c* is the column from 'a' to 'h' and *d* is the row from '1' to '8'. Find the number of moves permitted for the king.
Check the king's moves here [https://en.wikipedia.org/wiki/King_(chess)](https://en.wikipedia.org/wiki/King_(chess)). | The only line contains the king's position in the format "cd", where 'c' is the column from 'a' to 'h' and 'd' is the row from '1' to '8'. | Print the only integer *x* — the number of moves permitted for the king. | [
"e4\n"
] | [
"8\n"
] | none | 0 | [
{
"input": "e4",
"output": "8"
},
{
"input": "a1",
"output": "3"
},
{
"input": "h8",
"output": "3"
},
{
"input": "a4",
"output": "5"
},
{
"input": "g7",
"output": "8"
},
{
"input": "e1",
"output": "5"
},
{
"input": "b2",
"output": "8"
},
{
"input": "c7",
"output": "8"
},
{
"input": "h6",
"output": "5"
},
{
"input": "c8",
"output": "5"
},
{
"input": "h2",
"output": "5"
},
{
"input": "h5",
"output": "5"
},
{
"input": "a8",
"output": "3"
},
{
"input": "f8",
"output": "5"
},
{
"input": "h1",
"output": "3"
},
{
"input": "f2",
"output": "8"
},
{
"input": "e8",
"output": "5"
},
{
"input": "h3",
"output": "5"
},
{
"input": "b8",
"output": "5"
},
{
"input": "g8",
"output": "5"
},
{
"input": "d8",
"output": "5"
},
{
"input": "h4",
"output": "5"
},
{
"input": "b1",
"output": "5"
},
{
"input": "a2",
"output": "5"
}
] | 1,567,157,673 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 2 | 124 | 0 |
# -*- coding: utf-8 -*-
# @Date : 2019-08-30 14:56:18
# @Author : raj lath ([email protected])
# @Link : link
# @Version : 1.0.0
import sys
sys.setrecursionlimit(10**5+1)
inf = int(10 ** 20)
max_val = inf
min_val = -inf
RW = lambda : sys.stdin.readline().strip()
RI = lambda : int(RW())
RMI = lambda : [int(x) for x in sys.stdin.readline().strip().split()]
RWI = lambda : [x for x in sys.stdin.readline().strip().split()]
a, b = [x for x in input()]
toIndex = lambda x: "abcdefgh".index(x)+1
a, b = toIndex(a), int(b)
cnts = 0
for x, y in zip([-1,-1,-1,0,0,1,1,1],[-1,0,-1,-1,1,-1,0,1]):
x1, y1 = a + x, b + y
cnts += x1 in range(1,9) and y1 in range(1, 9)
print(cnts)
| Title: King Moves
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The only king stands on the standard chess board. You are given his position in format "cd", where *c* is the column from 'a' to 'h' and *d* is the row from '1' to '8'. Find the number of moves permitted for the king.
Check the king's moves here [https://en.wikipedia.org/wiki/King_(chess)](https://en.wikipedia.org/wiki/King_(chess)).
Input Specification:
The only line contains the king's position in the format "cd", where 'c' is the column from 'a' to 'h' and 'd' is the row from '1' to '8'.
Output Specification:
Print the only integer *x* — the number of moves permitted for the king.
Demo Input:
['e4\n']
Demo Output:
['8\n']
Note:
none | ```python
# -*- coding: utf-8 -*-
# @Date : 2019-08-30 14:56:18
# @Author : raj lath ([email protected])
# @Link : link
# @Version : 1.0.0
import sys
sys.setrecursionlimit(10**5+1)
inf = int(10 ** 20)
max_val = inf
min_val = -inf
RW = lambda : sys.stdin.readline().strip()
RI = lambda : int(RW())
RMI = lambda : [int(x) for x in sys.stdin.readline().strip().split()]
RWI = lambda : [x for x in sys.stdin.readline().strip().split()]
a, b = [x for x in input()]
toIndex = lambda x: "abcdefgh".index(x)+1
a, b = toIndex(a), int(b)
cnts = 0
for x, y in zip([-1,-1,-1,0,0,1,1,1],[-1,0,-1,-1,1,-1,0,1]):
x1, y1 = a + x, b + y
cnts += x1 in range(1,9) and y1 in range(1, 9)
print(cnts)
``` | 0 |
|
842 | B | Gleb And Pizza | PROGRAMMING | 1,100 | [
"geometry"
] | null | null | Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust. | First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage. | Output the number of pieces of sausage that lay on the crust. | [
"8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n",
"10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n"
] | [
"2\n",
"0\n"
] | Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust. | 1,000 | [
{
"input": "8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1",
"output": "2"
},
{
"input": "10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2",
"output": "0"
},
{
"input": "1 0\n1\n1 1 0",
"output": "0"
},
{
"input": "3 0\n5\n3 0 0\n0 3 0\n-3 0 0\n0 -3 0\n3 0 1",
"output": "4"
},
{
"input": "9 0\n5\n8 1 0\n8 2 0\n8 3 0\n-8 3 0\n-8 2 0",
"output": "0"
},
{
"input": "10 2\n11\n1 1 0\n2 2 3\n3 3 0\n4 4 0\n5 5 0\n6 6 0\n7 7 4\n8 8 7\n9 9 3\n10 10 100\n9 0 1",
"output": "2"
},
{
"input": "5 3\n1\n500 500 10",
"output": "0"
}
] | 1,504,022,754 | 3,654 | Python 3 | WRONG_ANSWER | PRETESTS | 4 | 61 | 0 | import math
r,d=input().split()
r=int(r)
d=int(d)
n=int(input())
count=0
for i in range(0,n):
x,y,rs=input().split()
x=int(x)
y=int(y)
rs=int(rs)
ds=math.sqrt(x**2+y**2)
if((ds-rs)>=d and (ds+rs)<=r):
count+=1
print(count)
| Title: Gleb And Pizza
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.
Input Specification:
First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage.
Output Specification:
Output the number of pieces of sausage that lay on the crust.
Demo Input:
['8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n', '10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n']
Demo Output:
['2\n', '0\n']
Note:
Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust. | ```python
import math
r,d=input().split()
r=int(r)
d=int(d)
n=int(input())
count=0
for i in range(0,n):
x,y,rs=input().split()
x=int(x)
y=int(y)
rs=int(rs)
ds=math.sqrt(x**2+y**2)
if((ds-rs)>=d and (ds+rs)<=r):
count+=1
print(count)
``` | 0 |
|
405 | A | Gravity Flip | PROGRAMMING | 900 | [
"greedy",
"implementation",
"sortings"
] | null | null | Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch! | The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column. | Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch. | [
"4\n3 2 1 2\n",
"3\n2 3 8\n"
] | [
"1 2 2 3 \n",
"2 3 8 \n"
] | The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns. | 500 | [
{
"input": "4\n3 2 1 2",
"output": "1 2 2 3 "
},
{
"input": "3\n2 3 8",
"output": "2 3 8 "
},
{
"input": "5\n2 1 2 1 2",
"output": "1 1 2 2 2 "
},
{
"input": "1\n1",
"output": "1 "
},
{
"input": "2\n4 3",
"output": "3 4 "
},
{
"input": "6\n100 40 60 20 1 80",
"output": "1 20 40 60 80 100 "
},
{
"input": "10\n10 8 6 7 5 3 4 2 9 1",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91",
"output": "3 3 3 4 7 8 8 8 9 9 10 12 12 13 14 14 15 15 16 17 17 20 21 21 22 22 23 25 29 31 36 37 37 38 39 40 41 41 41 42 43 44 45 46 46 47 47 49 49 49 51 52 52 53 54 55 59 59 59 60 62 63 63 64 66 69 70 71 71 72 74 76 76 77 77 78 78 79 80 81 81 82 82 84 85 86 87 87 87 89 91 92 92 92 92 97 98 99 100 100 "
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 "
},
{
"input": "10\n1 9 7 6 2 4 7 8 1 3",
"output": "1 1 2 3 4 6 7 7 8 9 "
},
{
"input": "20\n53 32 64 20 41 97 50 20 66 68 22 60 74 61 97 54 80 30 72 59",
"output": "20 20 22 30 32 41 50 53 54 59 60 61 64 66 68 72 74 80 97 97 "
},
{
"input": "30\n7 17 4 18 16 12 14 10 1 13 2 16 13 17 8 16 13 14 9 17 17 5 13 5 1 7 6 20 18 12",
"output": "1 1 2 4 5 5 6 7 7 8 9 10 12 12 13 13 13 13 14 14 16 16 16 17 17 17 17 18 18 20 "
},
{
"input": "40\n22 58 68 58 48 53 52 1 16 78 75 17 63 15 36 32 78 75 49 14 42 46 66 54 49 82 40 43 46 55 12 73 5 45 61 60 1 11 31 84",
"output": "1 1 5 11 12 14 15 16 17 22 31 32 36 40 42 43 45 46 46 48 49 49 52 53 54 55 58 58 60 61 63 66 68 73 75 75 78 78 82 84 "
},
{
"input": "70\n1 3 3 1 3 3 1 1 1 3 3 2 3 3 1 1 1 2 3 1 3 2 3 3 3 2 2 3 1 3 3 2 1 1 2 1 2 1 2 2 1 1 1 3 3 2 3 2 3 2 3 3 2 2 2 3 2 3 3 3 1 1 3 3 1 1 1 1 3 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "90\n17 75 51 30 100 5 50 95 51 73 66 5 7 76 43 49 23 55 3 24 95 79 10 11 44 93 17 99 53 66 82 66 63 76 19 4 51 71 75 43 27 5 24 19 48 7 91 15 55 21 7 6 27 10 2 91 64 58 18 21 16 71 90 88 21 20 6 6 95 85 11 7 40 65 52 49 92 98 46 88 17 48 85 96 77 46 100 34 67 52",
"output": "2 3 4 5 5 5 6 6 6 7 7 7 7 10 10 11 11 15 16 17 17 17 18 19 19 20 21 21 21 23 24 24 27 27 30 34 40 43 43 44 46 46 48 48 49 49 50 51 51 51 52 52 53 55 55 58 63 64 65 66 66 66 67 71 71 73 75 75 76 76 77 79 82 85 85 88 88 90 91 91 92 93 95 95 95 96 98 99 100 100 "
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6",
"output": "1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 "
},
{
"input": "100\n12 10 5 11 13 12 14 13 7 15 15 12 13 19 12 18 14 10 10 3 1 10 16 11 19 8 10 15 5 10 12 16 11 13 11 15 14 12 16 8 11 8 15 2 18 2 14 13 15 20 8 8 4 12 14 7 10 3 9 1 7 19 6 7 2 14 8 20 7 17 18 20 3 18 18 9 6 10 4 1 4 19 9 13 3 3 12 11 11 20 8 2 13 6 7 12 1 4 17 3",
"output": "1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 18 18 18 18 19 19 19 19 20 20 20 20 "
},
{
"input": "100\n5 13 1 40 30 10 23 32 33 12 6 4 15 29 31 17 23 5 36 31 32 38 24 11 34 39 19 21 6 19 31 35 1 15 6 29 22 15 17 15 1 17 2 34 20 8 27 2 29 26 13 9 22 27 27 3 20 40 4 40 33 29 36 30 35 16 19 28 26 11 36 24 29 5 40 10 38 34 33 23 34 39 31 7 10 31 22 6 36 24 14 31 34 23 2 4 26 16 2 32",
"output": "1 1 1 2 2 2 2 3 4 4 4 5 5 5 6 6 6 6 7 8 9 10 10 10 11 11 12 13 13 14 15 15 15 15 16 16 17 17 17 19 19 19 20 20 21 22 22 22 23 23 23 23 24 24 24 26 26 26 27 27 27 28 29 29 29 29 29 30 30 31 31 31 31 31 31 32 32 32 33 33 33 34 34 34 34 34 35 35 36 36 36 36 38 38 39 39 40 40 40 40 "
},
{
"input": "100\n72 44 34 74 9 60 26 37 55 77 74 69 28 66 54 55 8 36 57 31 31 48 32 66 40 70 77 43 64 28 37 10 21 58 51 32 60 28 51 52 28 35 7 33 1 68 38 70 57 71 8 20 42 57 59 4 58 10 17 47 22 48 16 3 76 67 32 37 64 47 33 41 75 69 2 76 39 9 27 75 20 21 52 25 71 21 11 29 38 10 3 1 45 55 63 36 27 7 59 41",
"output": "1 1 2 3 3 4 7 7 8 8 9 9 10 10 10 11 16 17 20 20 21 21 21 22 25 26 27 27 28 28 28 28 29 31 31 32 32 32 33 33 34 35 36 36 37 37 37 38 38 39 40 41 41 42 43 44 45 47 47 48 48 51 51 52 52 54 55 55 55 57 57 57 58 58 59 59 60 60 63 64 64 66 66 67 68 69 69 70 70 71 71 72 74 74 75 75 76 76 77 77 "
},
{
"input": "100\n75 18 61 10 56 53 42 57 79 80 31 2 50 45 54 99 84 52 71 21 86 3 19 98 14 37 40 62 63 68 5 10 87 8 81 85 52 52 57 94 2 7 56 96 19 76 1 13 81 6 80 47 22 59 99 32 9 5 36 88 98 91 70 70 12 93 12 22 85 1 97 48 94 16 84 84 51 34 62 7 68 51 30 2 37 82 4 7 27 1 80 9 61 16 59 55 12 96 94 82",
"output": "1 1 1 2 2 2 3 4 5 5 6 7 7 7 8 9 9 10 10 12 12 12 13 14 16 16 18 19 19 21 22 22 27 30 31 32 34 36 37 37 40 42 45 47 48 50 51 51 52 52 52 53 54 55 56 56 57 57 59 59 61 61 62 62 63 68 68 70 70 71 75 76 79 80 80 80 81 81 82 82 84 84 84 85 85 86 87 88 91 93 94 94 94 96 96 97 98 98 99 99 "
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 "
},
{
"input": "49\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 "
},
{
"input": "30\n1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88",
"output": "1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 "
},
{
"input": "100\n100 51 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51 100 "
},
{
"input": "10\n100 90 80 70 60 50 40 30 20 10",
"output": "10 20 30 40 50 60 70 80 90 100 "
},
{
"input": "1\n10",
"output": "10 "
}
] | 1,697,402,173 | 2,147,483,647 | Python 3 | RUNTIME_ERROR | TESTS | 0 | 15 | 0 | a = int(input("a"))
mas=[]
for i in range(a):
mas.append(int(input()))
mas.sort()
for i in range(a):
print(mas[i]) | Title: Gravity Flip
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
Input Specification:
The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column.
Output Specification:
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
Demo Input:
['4\n3 2 1 2\n', '3\n2 3 8\n']
Demo Output:
['1 2 2 3 \n', '2 3 8 \n']
Note:
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns. | ```python
a = int(input("a"))
mas=[]
for i in range(a):
mas.append(int(input()))
mas.sort()
for i in range(a):
print(mas[i])
``` | -1 |
|
519 | B | A and B and Compilation Errors | PROGRAMMING | 1,100 | [
"data structures",
"implementation",
"sortings"
] | null | null | A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected? | The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one. | Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively. | [
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n"
] | [
"8\n123\n",
"1\n3\n"
] | In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. | 1,000 | [
{
"input": "5\n1 5 8 123 7\n123 7 5 1\n5 1 7",
"output": "8\n123"
},
{
"input": "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5",
"output": "1\n3"
},
{
"input": "3\n1 2 3\n3 2\n2",
"output": "1\n3"
},
{
"input": "10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428",
"output": "25720377\n661369649"
},
{
"input": "3\n796067435 964699482 819602309\n964699482 796067435\n964699482",
"output": "819602309\n796067435"
},
{
"input": "3\n374054998 726316780 902899520\n902899520 726316780\n726316780",
"output": "374054998\n902899520"
},
{
"input": "3\n168638990 939116221 323703261\n168638990 323703261\n168638990",
"output": "939116221\n323703261"
},
{
"input": "3\n77 77 77\n77 77\n77",
"output": "77\n77"
},
{
"input": "3\n84 30 9\n9 84\n9",
"output": "30\n84"
},
{
"input": "6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3",
"output": "5\n5"
},
{
"input": "4\n1 5 7 8\n1 5 7\n1 5",
"output": "8\n7"
}
] | 1,691,381,901 | 2,147,483,647 | Python 3 | RUNTIME_ERROR | TESTS | 0 | 46 | 0 | n = int(input())
list_of_lists = []
for _ in range(n):
list_of_lists.append(list(input().split()))
for i in range(len(list_of_lists)):
list_of_lists[i].sort()
for j in range(len(list_of_lists) - 1):
a = list_of_lists[j]
b = list_of_lists[j + 1]
for k in range(len(a)):
x = b.count(a[k])
if x == 0:
print(int(a[k]))
break
else:
continue | Title: A and B and Compilation Errors
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input Specification:
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output Specification:
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Demo Input:
['5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n', '6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n']
Demo Output:
['8\n123\n', '1\n3\n']
Note:
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. | ```python
n = int(input())
list_of_lists = []
for _ in range(n):
list_of_lists.append(list(input().split()))
for i in range(len(list_of_lists)):
list_of_lists[i].sort()
for j in range(len(list_of_lists) - 1):
a = list_of_lists[j]
b = list_of_lists[j + 1]
for k in range(len(a)):
x = b.count(a[k])
if x == 0:
print(int(a[k]))
break
else:
continue
``` | -1 |
|
727 | C | Guess the Array | PROGRAMMING | 1,400 | [
"constructive algorithms",
"interactive",
"math"
] | null | null | This is an interactive problem. You should use flush operation after each printed line. For example, in C++ you should use fflush(stdout), in Java you should use System.out.flush(), and in Pascal — flush(output).
In this problem you should guess an array *a* which is unknown for you. The only information you have initially is the length *n* of the array *a*.
The only allowed action is to ask the sum of two elements by their indices. Formally, you can print two indices *i* and *j* (the indices should be distinct). Then your program should read the response: the single integer equals to *a**i*<=+<=*a**j*.
It is easy to prove that it is always possible to guess the array using at most *n* requests.
Write a program that will guess the array *a* by making at most *n* requests. | none | none | [
"5\n \n9\n \n7\n \n9\n \n11\n \n6\n "
] | [
"? 1 5\n \n? 2 3\n \n? 4 1\n \n? 5 2\n \n? 3 4\n \n! 4 6 1 5 5"
] | The format of a test to make a hack is:
- The first line contains an integer number *n* (3 ≤ *n* ≤ 5000) — the length of the array.- The second line contains *n* numbers *a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub> (1 ≤ *a*<sub class="lower-index">*i*</sub> ≤ 10<sup class="upper-index">5</sup>) — the elements of the array to guess. | 1,500 | [
{
"input": "5\n4 6 1 5 5",
"output": "5 out of 5"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "4\n100 1 100 1",
"output": "4 out of 4"
},
{
"input": "10\n9 5 10 7 4 4 8 5 10 5",
"output": "10 out of 10"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "3\n100000 100000 100000",
"output": "3 out of 3"
},
{
"input": "3\n91906 50782 19777",
"output": "3 out of 3"
},
{
"input": "15\n5 10 10 7 7 6 4 6 8 10 8 4 10 9 4",
"output": "15 out of 15"
},
{
"input": "30\n2 3 3 4 3 2 4 4 4 3 3 2 4 2 3 4 4 2 4 3 4 2 2 4 3 3 4 4 4 4",
"output": "30 out of 30"
},
{
"input": "35\n4 2 2 2 4 4 3 2 4 2 2 4 2 2 3 2 3 4 4 2 3 2 2 4 3 3 3 3 4 2 3 2 2 2 3",
"output": "35 out of 35"
},
{
"input": "40\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "40 out of 40"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "47 out of 47"
},
{
"input": "100\n76 92 53 18 65 98 100 65 93 72 100 44 70 62 78 61 89 89 80 32 88 64 67 27 46 30 75 14 78 94 8 86 41 9 68 38 76 29 69 44 23 23 14 24 97 14 7 98 45 80 55 71 58 35 41 100 60 54 64 85 56 98 87 93 40 62 92 6 7 27 88 85 10 94 25 43 99 65 82 65 39 34 17 100 49 27 4 15 84 10 35 76 98 52 72 17 43 10 49 5",
"output": "100 out of 100"
}
] | 1,690,497,624 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 0 | 30 | 0 | print("_RANDOM_GUESS_1690497624.6871467")# 1690497624.6871698 | Title: Guess the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This is an interactive problem. You should use flush operation after each printed line. For example, in C++ you should use fflush(stdout), in Java you should use System.out.flush(), and in Pascal — flush(output).
In this problem you should guess an array *a* which is unknown for you. The only information you have initially is the length *n* of the array *a*.
The only allowed action is to ask the sum of two elements by their indices. Formally, you can print two indices *i* and *j* (the indices should be distinct). Then your program should read the response: the single integer equals to *a**i*<=+<=*a**j*.
It is easy to prove that it is always possible to guess the array using at most *n* requests.
Write a program that will guess the array *a* by making at most *n* requests.
Input Specification:
none
Output Specification:
none
Demo Input:
['5\n\xa0\n9\n\xa0\n7\n\xa0\n9\n\xa0\n11\n\xa0\n6\n\xa0']
Demo Output:
['? 1 5\n\xa0\n? 2 3\n\xa0\n? 4 1\n\xa0\n? 5 2\n\xa0\n? 3 4\n\xa0\n! 4 6 1 5 5']
Note:
The format of a test to make a hack is:
- The first line contains an integer number *n* (3 ≤ *n* ≤ 5000) — the length of the array.- The second line contains *n* numbers *a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub> (1 ≤ *a*<sub class="lower-index">*i*</sub> ≤ 10<sup class="upper-index">5</sup>) — the elements of the array to guess. | ```python
print("_RANDOM_GUESS_1690497624.6871467")# 1690497624.6871698
``` | 0 |
|
1,010 | C | Border | PROGRAMMING | 1,800 | [
"number theory"
] | null | null | Astronaut Natasha arrived on Mars. She knows that the Martians are very poor aliens. To ensure a better life for the Mars citizens, their emperor decided to take tax from every tourist who visited the planet. Natasha is the inhabitant of Earth, therefore she had to pay the tax to enter the territory of Mars.
There are $n$ banknote denominations on Mars: the value of $i$-th banknote is $a_i$. Natasha has an infinite number of banknotes of each denomination.
Martians have $k$ fingers on their hands, so they use a number system with base $k$. In addition, the Martians consider the digit $d$ (in the number system with base $k$) divine. Thus, if the last digit in Natasha's tax amount written in the number system with the base $k$ is $d$, the Martians will be happy. Unfortunately, Natasha does not know the Martians' divine digit yet.
Determine for which values $d$ Natasha can make the Martians happy.
Natasha can use only her banknotes. Martians don't give her change. | The first line contains two integers $n$ and $k$ ($1 \le n \le 100\,000$, $2 \le k \le 100\,000$) — the number of denominations of banknotes and the base of the number system on Mars.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — denominations of banknotes on Mars.
All numbers are given in decimal notation. | On the first line output the number of values $d$ for which Natasha can make the Martians happy.
In the second line, output all these values in increasing order.
Print all numbers in decimal notation. | [
"2 8\n12 20\n",
"3 10\n10 20 30\n"
] | [
"2\n0 4 ",
"1\n0 "
] | Consider the first test case. It uses the octal number system.
If you take one banknote with the value of $12$, you will get $14_8$ in octal system. The last digit is $4_8$.
If you take one banknote with the value of $12$ and one banknote with the value of $20$, the total value will be $32$. In the octal system, it is $40_8$. The last digit is $0_8$.
If you take two banknotes with the value of $20$, the total value will be $40$, this is $50_8$ in the octal system. The last digit is $0_8$.
No other digits other than $0_8$ and $4_8$ can be obtained. Digits $0_8$ and $4_8$ could also be obtained in other ways.
The second test case uses the decimal number system. The nominals of all banknotes end with zero, so Natasha can give the Martians only the amount whose decimal notation also ends with zero. | 1,000 | [
{
"input": "2 8\n12 20",
"output": "2\n0 4 "
},
{
"input": "3 10\n10 20 30",
"output": "1\n0 "
},
{
"input": "5 10\n20 16 4 16 2",
"output": "5\n0 2 4 6 8 "
},
{
"input": "10 5\n4 6 8 6 4 10 2 10 8 6",
"output": "5\n0 1 2 3 4 "
},
{
"input": "20 25\n15 10 5 20 10 5 15 5 15 10 15 5 5 5 5 10 15 20 20 20",
"output": "5\n0 5 10 15 20 "
},
{
"input": "30 30\n11 23 7 30 13 6 25 29 1 15 20 5 28 15 19 22 21 5 27 25 29 10 1 4 12 19 1 5 8 10",
"output": "30\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 "
},
{
"input": "40 30\n16 12 12 22 18 28 32 24 36 26 12 30 22 16 32 30 36 18 20 16 12 24 28 20 16 28 8 34 18 18 18 4 4 36 18 10 30 38 18 10",
"output": "15\n0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 "
},
{
"input": "50 30\n15 9 21 39 42 39 3 42 42 39 6 48 39 30 12 39 27 45 30 48 18 33 18 36 27 3 48 12 36 27 15 12 42 39 18 21 48 39 15 42 24 36 33 48 6 48 15 12 30 18",
"output": "10\n0 3 6 9 12 15 18 21 24 27 "
},
{
"input": "1 10\n1",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "1 2\n1",
"output": "2\n0 1 "
},
{
"input": "60 30\n10 30 45 15 25 60 10 40 35 25 5 40 35 40 15 5 15 35 10 60 25 15 60 10 30 10 5 25 10 15 60 20 30 5 50 50 40 20 55 40 35 15 15 10 60 40 50 50 30 15 25 45 35 40 15 5 5 20 60 45",
"output": "6\n0 5 10 15 20 25 "
},
{
"input": "70 30\n54 30 12 48 42 24 42 60 54 6 36 42 54 66 12 48 54 42 24 54 30 18 30 54 18 60 24 30 54 48 48 60 18 60 60 66 54 18 54 30 24 30 60 54 36 36 60 48 12 60 6 60 42 66 6 42 18 60 54 48 42 18 48 66 18 42 48 30 12 66",
"output": "5\n0 6 12 18 24 "
},
{
"input": "80 30\n30 80 40 40 60 60 40 80 70 80 30 30 60 80 30 70 60 10 10 30 70 60 70 20 40 20 30 10 60 70 70 50 60 70 70 30 70 60 60 70 20 60 10 60 70 80 20 30 30 20 60 50 40 40 80 70 70 20 40 80 30 50 40 10 40 20 70 10 80 10 50 40 50 70 40 80 10 40 60 60",
"output": "3\n0 10 20 "
},
{
"input": "90 30\n90 45 75 75 90 90 45 30 90 15 45 90 15 30 45 60 30 15 30 45 45 45 45 15 45 60 15 60 45 75 45 75 90 60 30 15 60 30 90 75 15 60 15 30 45 30 45 15 30 15 45 30 15 75 90 15 45 15 75 15 75 30 75 45 60 75 15 45 30 75 45 90 45 60 90 45 75 30 30 30 15 15 75 60 75 90 75 60 90 45",
"output": "2\n0 15 "
},
{
"input": "100 30\n30 30 30 90 30 30 90 90 30 90 30 90 90 30 30 30 60 60 60 30 30 60 90 90 90 60 30 90 60 60 90 60 60 60 30 60 60 60 60 90 60 30 60 90 90 90 60 60 90 60 60 60 60 30 30 60 30 60 60 90 30 60 60 60 90 60 90 30 30 60 30 90 90 90 90 60 90 30 30 60 60 30 60 60 60 30 90 60 60 60 90 60 30 90 60 30 30 60 90 90",
"output": "1\n0 "
},
{
"input": "1 10\n2",
"output": "5\n0 2 4 6 8 "
},
{
"input": "1 10\n3",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "5 2\n1 1 1 1 1",
"output": "2\n0 1 "
},
{
"input": "2 30\n6 10",
"output": "15\n0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 "
},
{
"input": "1 10\n10",
"output": "1\n0 "
},
{
"input": "1 10\n20",
"output": "1\n0 "
},
{
"input": "1 2\n1000000000",
"output": "1\n0 "
},
{
"input": "2 6\n2 3",
"output": "6\n0 1 2 3 4 5 "
},
{
"input": "1 5\n4",
"output": "5\n0 1 2 3 4 "
},
{
"input": "2 5\n2 4",
"output": "5\n0 1 2 3 4 "
},
{
"input": "3 30\n6 10 15",
"output": "30\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 "
},
{
"input": "2 7\n3 6",
"output": "7\n0 1 2 3 4 5 6 "
},
{
"input": "2 15\n3 5",
"output": "15\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "
},
{
"input": "2 12\n4 6",
"output": "6\n0 2 4 6 8 10 "
},
{
"input": "2 10\n3 6",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "2 100000\n2 4",
"output": "50000\n0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278..."
},
{
"input": "1 14\n4",
"output": "7\n0 2 4 6 8 10 12 "
},
{
"input": "1 13\n5",
"output": "13\n0 1 2 3 4 5 6 7 8 9 10 11 12 "
},
{
"input": "2 420\n412 363",
"output": "420\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "2 30\n10 6",
"output": "15\n0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 "
},
{
"input": "1 5\n3",
"output": "5\n0 1 2 3 4 "
},
{
"input": "1 8\n6",
"output": "4\n0 2 4 6 "
},
{
"input": "3 10\n6 6 6",
"output": "5\n0 2 4 6 8 "
},
{
"input": "1 7\n6",
"output": "7\n0 1 2 3 4 5 6 "
},
{
"input": "1 9\n6",
"output": "3\n0 3 6 "
},
{
"input": "2 10\n7 7",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "1 8\n5",
"output": "8\n0 1 2 3 4 5 6 7 "
},
{
"input": "2 50\n3 15",
"output": "50\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 "
},
{
"input": "1 6\n4",
"output": "3\n0 2 4 "
},
{
"input": "1 7\n4",
"output": "7\n0 1 2 3 4 5 6 "
},
{
"input": "1 10\n7",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "1 3\n2",
"output": "3\n0 1 2 "
},
{
"input": "2 10\n2 5",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "2 50\n15 3",
"output": "50\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 "
},
{
"input": "1 5\n2",
"output": "5\n0 1 2 3 4 "
},
{
"input": "2 10\n6 5",
"output": "10\n0 1 2 3 4 5 6 7 8 9 "
},
{
"input": "2 35\n5 7",
"output": "35\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 "
},
{
"input": "2 300\n3 10",
"output": "300\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "1 100000\n47",
"output": "100000\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "2 54\n6 9",
"output": "18\n0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 "
}
] | 1,532,660,912 | 2,147,483,647 | PyPy 3 | OK | TESTS | 107 | 358 | 12,595,200 | from math import gcd
n,k=map(int,input().split())
g=0
l=list(map(int,input().split()))
for e in l:
g=gcd(g,gcd(e,k))
print(k//g)
for i in range(0,k,g): print(i,end=' ') | Title: Border
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Astronaut Natasha arrived on Mars. She knows that the Martians are very poor aliens. To ensure a better life for the Mars citizens, their emperor decided to take tax from every tourist who visited the planet. Natasha is the inhabitant of Earth, therefore she had to pay the tax to enter the territory of Mars.
There are $n$ banknote denominations on Mars: the value of $i$-th banknote is $a_i$. Natasha has an infinite number of banknotes of each denomination.
Martians have $k$ fingers on their hands, so they use a number system with base $k$. In addition, the Martians consider the digit $d$ (in the number system with base $k$) divine. Thus, if the last digit in Natasha's tax amount written in the number system with the base $k$ is $d$, the Martians will be happy. Unfortunately, Natasha does not know the Martians' divine digit yet.
Determine for which values $d$ Natasha can make the Martians happy.
Natasha can use only her banknotes. Martians don't give her change.
Input Specification:
The first line contains two integers $n$ and $k$ ($1 \le n \le 100\,000$, $2 \le k \le 100\,000$) — the number of denominations of banknotes and the base of the number system on Mars.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — denominations of banknotes on Mars.
All numbers are given in decimal notation.
Output Specification:
On the first line output the number of values $d$ for which Natasha can make the Martians happy.
In the second line, output all these values in increasing order.
Print all numbers in decimal notation.
Demo Input:
['2 8\n12 20\n', '3 10\n10 20 30\n']
Demo Output:
['2\n0 4 ', '1\n0 ']
Note:
Consider the first test case. It uses the octal number system.
If you take one banknote with the value of $12$, you will get $14_8$ in octal system. The last digit is $4_8$.
If you take one banknote with the value of $12$ and one banknote with the value of $20$, the total value will be $32$. In the octal system, it is $40_8$. The last digit is $0_8$.
If you take two banknotes with the value of $20$, the total value will be $40$, this is $50_8$ in the octal system. The last digit is $0_8$.
No other digits other than $0_8$ and $4_8$ can be obtained. Digits $0_8$ and $4_8$ could also be obtained in other ways.
The second test case uses the decimal number system. The nominals of all banknotes end with zero, so Natasha can give the Martians only the amount whose decimal notation also ends with zero. | ```python
from math import gcd
n,k=map(int,input().split())
g=0
l=list(map(int,input().split()))
for e in l:
g=gcd(g,gcd(e,k))
print(k//g)
for i in range(0,k,g): print(i,end=' ')
``` | 3 |
|
810 | A | Straight <<A>> | PROGRAMMING | 900 | [
"implementation",
"math"
] | null | null | Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one.
In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8.
For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8.
To graduate with «A» certificate, Noora has to have mark *k*.
Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*. | The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack. | Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*. | [
"2 10\n8 9\n",
"3 5\n4 4 4\n"
] | [
"4",
"3"
] | Consider the first example testcase.
Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation.
In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate. | 500 | [
{
"input": "2 10\n8 9",
"output": "4"
},
{
"input": "3 5\n4 4 4",
"output": "3"
},
{
"input": "3 10\n10 8 9",
"output": "3"
},
{
"input": "2 23\n21 23",
"output": "2"
},
{
"input": "5 10\n5 10 10 9 10",
"output": "7"
},
{
"input": "12 50\n18 10 26 22 22 23 14 21 27 18 25 12",
"output": "712"
},
{
"input": "38 12\n2 7 10 8 5 3 5 6 3 6 5 1 9 7 7 8 3 4 4 4 5 2 3 6 6 1 6 7 4 4 8 7 4 5 3 6 6 6",
"output": "482"
},
{
"input": "63 86\n32 31 36 29 36 26 28 38 39 32 29 26 33 38 36 38 36 28 43 48 28 33 25 39 39 27 34 25 37 28 40 26 30 31 42 32 36 44 29 36 30 35 48 40 26 34 30 33 33 46 42 24 36 38 33 51 33 41 38 29 29 32 28",
"output": "6469"
},
{
"input": "100 38\n30 24 38 31 31 33 32 32 29 34 29 22 27 23 34 25 32 30 30 26 16 27 38 33 38 38 37 34 32 27 33 23 33 32 24 24 30 36 29 30 33 30 29 30 36 33 33 35 28 24 30 32 38 29 30 36 31 30 27 38 31 36 15 37 32 27 29 24 38 33 28 29 34 21 37 35 32 31 27 25 27 28 31 31 36 38 35 35 36 29 35 22 38 31 38 28 31 27 34 31",
"output": "1340"
},
{
"input": "33 69\n60 69 68 69 69 60 64 60 62 59 54 47 60 62 69 69 69 58 67 69 62 69 68 53 69 69 66 66 57 58 65 69 61",
"output": "329"
},
{
"input": "39 92\n19 17 16 19 15 30 21 25 14 17 19 19 23 16 14 15 17 19 29 15 11 25 19 14 18 20 10 16 11 15 18 20 20 17 18 16 12 17 16",
"output": "5753"
},
{
"input": "68 29\n29 29 29 29 29 28 29 29 29 27 29 29 29 29 29 29 29 23 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 28 29 29 29 29",
"output": "0"
},
{
"input": "75 30\n22 18 21 26 23 18 28 30 24 24 19 25 28 30 23 29 18 23 23 30 26 30 17 30 18 19 25 26 26 15 27 23 30 21 19 26 25 30 25 28 20 22 22 21 26 17 23 23 24 15 25 19 18 22 30 30 29 21 30 28 28 30 27 25 24 15 22 19 30 21 20 30 18 20 25",
"output": "851"
},
{
"input": "78 43\n2 7 6 5 5 6 4 5 3 4 6 8 4 5 5 4 3 1 2 4 4 6 5 6 4 4 6 4 8 4 6 5 6 1 4 5 6 3 2 5 2 5 3 4 8 8 3 3 4 4 6 6 5 4 5 5 7 9 3 9 6 4 7 3 6 9 6 5 1 7 2 5 6 3 6 2 5 4",
"output": "5884"
},
{
"input": "82 88\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1",
"output": "14170"
},
{
"input": "84 77\n28 26 36 38 37 44 48 34 40 22 42 35 40 37 30 31 33 35 36 55 47 36 33 47 40 38 27 38 36 33 35 31 47 33 30 38 38 47 49 24 38 37 28 43 39 36 34 33 29 38 36 43 48 38 36 34 33 34 35 31 26 33 39 37 37 37 35 52 47 30 24 46 38 26 43 46 41 50 33 40 36 41 37 30",
"output": "6650"
},
{
"input": "94 80\n21 19 15 16 27 16 20 18 19 19 15 15 20 19 19 21 20 19 13 17 15 9 17 15 23 15 12 18 12 13 15 12 14 13 14 17 20 20 14 21 15 6 10 23 24 8 18 18 13 23 17 22 17 19 19 18 17 24 8 16 18 20 24 19 10 19 15 10 13 14 19 15 16 19 20 15 14 21 16 16 14 14 22 19 12 11 14 13 19 32 16 16 13 20",
"output": "11786"
},
{
"input": "96 41\n13 32 27 34 28 34 30 26 21 24 29 20 25 34 25 16 27 15 22 22 34 22 25 19 23 17 17 22 26 24 23 20 21 27 19 33 13 24 22 18 30 30 27 14 26 24 20 20 22 11 19 31 19 29 18 28 30 22 17 15 28 32 17 24 17 24 24 19 26 23 22 29 18 22 23 29 19 32 26 23 22 22 24 23 27 30 24 25 21 21 33 19 35 27 34 28",
"output": "3182"
},
{
"input": "1 26\n26",
"output": "0"
},
{
"input": "99 39\n25 28 30 28 32 34 31 28 29 28 29 30 33 19 33 31 27 33 29 24 27 30 25 38 28 34 35 31 34 37 30 22 21 24 34 27 34 33 34 33 26 26 36 19 30 22 35 30 21 28 23 35 33 29 21 22 36 31 34 32 34 32 30 32 27 33 38 25 35 26 39 27 29 29 19 33 28 29 34 38 26 30 36 26 29 30 26 34 22 32 29 38 25 27 24 17 25 28 26",
"output": "1807"
},
{
"input": "100 12\n7 6 6 3 5 5 9 8 7 7 4 7 12 6 9 5 6 3 4 7 9 10 7 7 5 3 9 6 9 9 6 7 4 10 4 8 8 6 9 8 6 5 7 4 10 7 5 6 8 9 3 4 8 5 4 8 6 10 5 8 7 5 9 8 5 8 5 6 9 11 4 9 5 5 11 4 6 6 7 3 8 9 6 7 10 4 7 6 9 4 8 11 5 4 10 8 5 10 11 4",
"output": "946"
},
{
"input": "100 18\n1 2 2 2 2 2 1 1 1 2 3 1 3 1 1 4 2 4 1 2 1 2 1 3 2 1 2 1 1 1 2 1 2 2 1 1 4 3 1 1 2 1 3 3 2 1 2 2 1 1 1 1 3 1 1 2 2 1 1 1 5 1 2 1 3 2 2 1 4 2 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 2",
"output": "3164"
},
{
"input": "100 27\n16 20 21 10 16 17 18 25 19 18 20 12 11 21 21 23 20 26 20 21 27 16 25 18 25 21 27 12 20 27 18 17 27 13 21 26 12 22 15 21 25 21 18 27 24 15 16 18 23 21 24 27 19 17 24 14 21 16 24 26 13 14 25 18 27 26 22 16 27 27 17 25 17 12 22 10 19 27 19 20 23 22 25 23 17 25 14 20 22 10 22 27 21 20 15 26 24 27 12 16",
"output": "1262"
},
{
"input": "100 29\n20 18 23 24 14 14 16 23 22 17 18 22 21 21 19 19 14 11 18 19 16 22 25 20 14 13 21 24 18 16 18 29 17 25 12 10 18 28 11 16 17 14 15 20 17 20 18 22 10 16 16 20 18 19 29 18 25 27 17 19 24 15 24 25 16 23 19 16 16 20 19 15 12 21 20 13 21 15 15 23 16 23 17 13 17 21 13 18 17 18 18 20 16 12 19 15 27 14 11 18",
"output": "2024"
},
{
"input": "100 30\n16 10 20 11 14 27 15 17 22 26 24 17 15 18 19 22 22 15 21 22 14 21 22 22 21 22 15 17 17 22 18 19 26 18 22 20 22 25 18 18 17 23 18 18 20 13 19 30 17 24 22 19 29 20 20 21 17 18 26 25 22 19 15 18 18 20 19 19 18 18 24 16 19 17 12 21 20 16 23 21 16 17 26 23 25 28 22 20 9 21 17 24 15 19 17 21 29 13 18 15",
"output": "1984"
},
{
"input": "100 59\n56 58 53 59 59 48 59 54 46 59 59 58 48 59 55 59 59 50 59 56 59 59 59 59 59 59 59 57 59 53 45 53 50 59 50 55 58 54 59 56 54 59 59 59 59 48 56 59 59 57 59 59 48 43 55 57 39 59 46 55 55 52 58 57 51 59 59 59 59 53 59 43 51 54 46 59 57 43 50 59 47 58 59 59 59 55 46 56 55 59 56 47 56 56 46 51 47 48 59 55",
"output": "740"
},
{
"input": "100 81\n6 7 6 6 7 6 6 6 3 9 4 5 4 3 4 6 6 6 1 3 9 5 2 3 8 5 6 9 6 6 6 5 4 4 7 7 3 6 11 7 6 4 8 7 12 6 4 10 2 4 9 11 7 4 7 7 8 8 6 7 9 8 4 5 8 13 6 6 6 8 6 2 5 6 7 5 4 4 4 4 2 6 4 8 3 4 7 7 6 7 7 10 5 10 6 7 4 11 8 4",
"output": "14888"
},
{
"input": "100 100\n30 35 23 43 28 49 31 32 30 44 32 37 33 34 38 28 43 32 33 32 50 32 41 38 33 20 40 36 29 21 42 25 23 34 43 32 37 31 30 27 36 32 45 37 33 29 38 34 35 33 28 19 37 33 28 41 31 29 41 27 32 39 30 34 37 40 33 38 35 32 32 34 35 34 28 39 28 34 40 45 31 25 42 28 29 31 33 21 36 33 34 37 40 42 39 30 36 34 34 40",
"output": "13118"
},
{
"input": "100 100\n71 87 100 85 89 98 90 90 71 65 76 75 85 100 81 100 91 80 73 89 86 78 82 89 77 92 78 90 100 81 85 89 73 100 66 60 72 88 91 73 93 76 88 81 86 78 83 77 74 93 97 94 85 78 82 78 91 91 100 78 89 76 78 82 81 78 83 88 87 83 78 98 85 97 98 89 88 75 76 86 74 81 70 76 86 84 99 100 89 94 72 84 82 88 83 89 78 99 87 76",
"output": "3030"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "19700"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0"
},
{
"input": "100 100\n1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "19696"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "0"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 98 100 100 100 100 100 100 99 98 100 100 93 100 100 98 100 100 100 100 93 100 96 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 88 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0"
},
{
"input": "100 100\n95 100 100 100 100 100 100 100 100 100 100 100 100 100 87 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 96 100 98 100 100 100 100 100 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100",
"output": "2"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "100 2\n2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1",
"output": "16"
},
{
"input": "3 5\n5 5 5",
"output": "0"
},
{
"input": "7 7\n1 1 1 1 1 1 1",
"output": "77"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "19700"
},
{
"input": "4 10\n10 10 10 10",
"output": "0"
},
{
"input": "1 10\n10",
"output": "0"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "3 10\n10 10 10",
"output": "0"
},
{
"input": "2 4\n3 4",
"output": "0"
},
{
"input": "1 2\n2",
"output": "0"
},
{
"input": "3 4\n4 4 4",
"output": "0"
},
{
"input": "3 2\n2 2 1",
"output": "0"
},
{
"input": "5 5\n5 5 5 5 5",
"output": "0"
},
{
"input": "3 3\n3 3 3",
"output": "0"
},
{
"input": "2 9\n8 9",
"output": "0"
},
{
"input": "3 10\n9 10 10",
"output": "0"
},
{
"input": "1 3\n3",
"output": "0"
},
{
"input": "2 2\n1 2",
"output": "0"
},
{
"input": "2 10\n10 10",
"output": "0"
},
{
"input": "23 14\n7 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14",
"output": "0"
},
{
"input": "2 10\n9 10",
"output": "0"
},
{
"input": "2 2\n2 2",
"output": "0"
},
{
"input": "10 5\n5 5 5 5 5 5 5 5 5 4",
"output": "0"
},
{
"input": "3 5\n4 5 5",
"output": "0"
},
{
"input": "5 4\n4 4 4 4 4",
"output": "0"
},
{
"input": "2 10\n10 9",
"output": "0"
},
{
"input": "4 5\n3 5 5 5",
"output": "0"
},
{
"input": "10 5\n5 5 5 5 5 5 5 5 5 5",
"output": "0"
},
{
"input": "3 10\n10 10 9",
"output": "0"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "4 10\n9 10 10 10",
"output": "0"
},
{
"input": "5 2\n2 2 2 2 2",
"output": "0"
},
{
"input": "2 5\n4 5",
"output": "0"
},
{
"input": "5 10\n10 10 10 10 10",
"output": "0"
},
{
"input": "2 6\n6 6",
"output": "0"
},
{
"input": "2 9\n9 9",
"output": "0"
},
{
"input": "3 10\n10 9 10",
"output": "0"
},
{
"input": "4 40\n39 40 40 40",
"output": "0"
},
{
"input": "3 4\n3 4 4",
"output": "0"
},
{
"input": "9 9\n9 9 9 9 9 9 9 9 9",
"output": "0"
},
{
"input": "1 4\n4",
"output": "0"
},
{
"input": "4 7\n1 1 1 1",
"output": "44"
},
{
"input": "1 5\n5",
"output": "0"
},
{
"input": "3 1\n1 1 1",
"output": "0"
},
{
"input": "1 100\n100",
"output": "0"
},
{
"input": "2 7\n3 5",
"output": "10"
},
{
"input": "3 6\n6 6 6",
"output": "0"
},
{
"input": "4 2\n1 2 2 2",
"output": "0"
},
{
"input": "4 5\n4 5 5 5",
"output": "0"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "35"
},
{
"input": "66 2\n1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 1 2 2 1 2 1 1 1 2 2 1",
"output": "0"
},
{
"input": "2 2\n2 1",
"output": "0"
},
{
"input": "5 5\n5 5 5 4 5",
"output": "0"
},
{
"input": "3 7\n1 1 1",
"output": "33"
},
{
"input": "2 5\n5 5",
"output": "0"
},
{
"input": "1 7\n1",
"output": "11"
},
{
"input": "6 7\n1 1 1 1 1 1",
"output": "66"
},
{
"input": "99 97\n15 80 78 69 12 84 36 51 89 77 88 10 1 19 67 85 6 36 8 70 14 45 88 97 22 13 75 57 83 27 13 97 9 90 68 51 76 37 5 2 16 92 11 48 13 77 35 19 15 74 22 29 21 12 28 42 56 5 32 41 62 75 71 71 68 72 24 77 11 28 78 27 53 88 74 66 1 42 18 16 18 39 75 38 81 5 13 39 40 75 13 36 53 83 9 54 57 63 64",
"output": "10077"
},
{
"input": "8 7\n1 1 1 1 1 1 1 1",
"output": "88"
},
{
"input": "3 2\n2 2 2",
"output": "0"
},
{
"input": "6 5\n5 5 5 5 5 5",
"output": "0"
},
{
"input": "10 5\n5 5 5 5 5 5 5 4 1 1",
"output": "8"
},
{
"input": "1 5\n1",
"output": "7"
},
{
"input": "10 10\n10 10 10 10 10 10 10 10 10 10",
"output": "0"
},
{
"input": "2 3\n2 3",
"output": "0"
},
{
"input": "1 9\n9",
"output": "0"
},
{
"input": "74 2\n2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 2",
"output": "0"
},
{
"input": "5 5\n5 5 5 5 4",
"output": "0"
}
] | 1,597,255,322 | 2,147,483,647 | PyPy 3 | OK | TESTS | 106 | 156 | 1,331,200 | a,b=map(int,input().split())
r=list(map(int,input().split()))
s=sum(r)
#(s+b*k)/(a+k)>=a-1/2
k=0
while (s+b*k)*2<(2*b-1)*(a+k):
k+=1
print(k) | Title: Straight <<A>>
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one.
In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8.
For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8.
To graduate with «A» certificate, Noora has to have mark *k*.
Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack.
Output Specification:
Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*.
Demo Input:
['2 10\n8 9\n', '3 5\n4 4 4\n']
Demo Output:
['4', '3']
Note:
Consider the first example testcase.
Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation.
In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate. | ```python
a,b=map(int,input().split())
r=list(map(int,input().split()))
s=sum(r)
#(s+b*k)/(a+k)>=a-1/2
k=0
while (s+b*k)*2<(2*b-1)*(a+k):
k+=1
print(k)
``` | 3 |
|
378 | A | Playing with Dice | PROGRAMMING | 800 | [
"brute force"
] | null | null | Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins? | The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly. | Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly. | [
"2 5\n",
"2 4\n"
] | [
"3 0 3\n",
"2 1 3\n"
] | The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|. | 500 | [
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,568,320,430 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 77 | 0 | (a,b) = (int(s) for s in input().split())
first_win = 0
second_win = 0
draw = 0
for i in range(1,7):
if abs(a-i) < abs(b-i): first_win +=1
elif abs(a-i) > abs(b-i): second_win +=1
else: draw +=1
print(first_win, second_win, draw)
| Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|. | ```python
(a,b) = (int(s) for s in input().split())
first_win = 0
second_win = 0
draw = 0
for i in range(1,7):
if abs(a-i) < abs(b-i): first_win +=1
elif abs(a-i) > abs(b-i): second_win +=1
else: draw +=1
print(first_win, second_win, draw)
``` | 0 |
|
50 | A | Domino piling | PROGRAMMING | 800 | [
"greedy",
"math"
] | A. Domino piling | 2 | 256 | You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions. | In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). | Output one number — the maximal number of dominoes, which can be placed. | [
"2 4\n",
"3 3\n"
] | [
"4\n",
"4\n"
] | none | 500 | [
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,664,006,163 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 35 | 124 | 0 | M, N = map(int, input().split())
if M % 2 == 0 or N % 2 == 0:
a = (M * N) // 2
else:
a = (M * N -1) // 2
print(a)
| Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none | ```python
M, N = map(int, input().split())
if M % 2 == 0 or N % 2 == 0:
a = (M * N) // 2
else:
a = (M * N -1) // 2
print(a)
``` | 3.969 |
631 | B | Print Check | PROGRAMMING | 1,200 | [
"constructive algorithms",
"implementation"
] | null | null | Kris works in a large company "Blake Technologies". As a best engineer of the company he was assigned a task to develop a printer that will be able to print horizontal and vertical strips. First prototype is already built and Kris wants to tests it. He wants you to implement the program that checks the result of the printing.
Printer works with a rectangular sheet of paper of size *n*<=×<=*m*. Consider the list as a table consisting of *n* rows and *m* columns. Rows are numbered from top to bottom with integers from 1 to *n*, while columns are numbered from left to right with integers from 1 to *m*. Initially, all cells are painted in color 0.
Your program has to support two operations:
1. Paint all cells in row *r**i* in color *a**i*; 1. Paint all cells in column *c**i* in color *a**i*.
If during some operation *i* there is a cell that have already been painted, the color of this cell also changes to *a**i*.
Your program has to print the resulting table after *k* operation. | The first line of the input contains three integers *n*, *m* and *k* (1<=<=≤<=<=*n*,<=<=*m*<=<=≤<=5000, *n*·*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=100<=000) — the dimensions of the sheet and the number of operations, respectively.
Each of the next *k* lines contains the description of exactly one query:
- 1 *r**i* *a**i* (1<=≤<=*r**i*<=≤<=*n*, 1<=≤<=*a**i*<=≤<=109), means that row *r**i* is painted in color *a**i*; - 2 *c**i* *a**i* (1<=≤<=*c**i*<=≤<=*m*, 1<=≤<=*a**i*<=≤<=109), means that column *c**i* is painted in color *a**i*. | Print *n* lines containing *m* integers each — the resulting table after all operations are applied. | [
"3 3 3\n1 1 3\n2 2 1\n1 2 2\n",
"5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1\n"
] | [
"3 1 3 \n2 2 2 \n0 1 0 \n",
"1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 \n"
] | The figure below shows all three operations for the first sample step by step. The cells that were painted on the corresponding step are marked gray. | 1,000 | [
{
"input": "3 3 3\n1 1 3\n2 2 1\n1 2 2",
"output": "3 1 3 \n2 2 2 \n0 1 0 "
},
{
"input": "5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1",
"output": "1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 "
},
{
"input": "5 5 4\n1 2 1\n1 4 1\n2 2 1\n2 4 1",
"output": "0 1 0 1 0 \n1 1 1 1 1 \n0 1 0 1 0 \n1 1 1 1 1 \n0 1 0 1 0 "
},
{
"input": "4 6 8\n1 2 1\n2 2 2\n2 5 2\n1 1 1\n1 4 1\n1 3 2\n2 1 1\n2 6 1",
"output": "1 1 1 1 1 1 \n1 2 1 1 2 1 \n1 2 2 2 2 1 \n1 1 1 1 1 1 "
},
{
"input": "2 2 3\n1 1 1\n1 2 1\n2 1 2",
"output": "2 1 \n2 1 "
},
{
"input": "1 2 4\n1 1 1\n2 1 2\n2 2 3\n1 1 4",
"output": "4 4 "
},
{
"input": "2 1 5\n1 1 7\n1 2 77\n2 1 777\n1 1 77\n1 2 7",
"output": "77 \n7 "
},
{
"input": "2 1 1\n1 2 1000000000",
"output": "0 \n1000000000 "
},
{
"input": "1 2 1\n2 2 1000000000",
"output": "0 1000000000 "
},
{
"input": "160 600 1\n1 132 589472344",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "600 160 1\n1 124 542622711",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "10 1 1\n2 1 1000000000",
"output": "1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 "
},
{
"input": "1 10 1\n1 1 1000000000",
"output": "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 "
},
{
"input": "5000 20 15\n2 13 447246914\n2 10 89345638\n2 6 393683717\n2 1 62225152\n2 12 990340161\n2 4 227462932\n1 4011 327145900\n1 1915 981331082\n1 802 437883065\n2 11 205232924\n2 15 303578182\n1 2667 835309719\n2 3 550440583\n1 3852 766318960\n2 5 204700467",
"output": "62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 ..."
},
{
"input": "20 5000 15\n1 14 94104058\n1 3 170575572\n1 12 613859505\n2 4797 363375206\n1 10 554079405\n2 4481 223609505\n2 4974 385117513\n1 7 363246561\n2 2503 128936152\n1 2 152944073\n1 14 25797327\n1 20 258831369\n1 10 453164078\n2 2159 753235825\n2 1823 827844660",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "1 1 1\n1 1 1",
"output": "1 "
},
{
"input": "1 1 1\n1 1 1000000000",
"output": "1000000000 "
},
{
"input": "1 1 2\n1 1 123\n1 1 321",
"output": "321 "
},
{
"input": "1 1 2\n1 1 321\n1 1 123",
"output": "123 "
}
] | 1,481,949,159 | 2,147,483,647 | Python 3 | OK | TESTS | 56 | 779 | 1,843,200 | from collections import defaultdict, deque, Counter, OrderedDict
import threading,sys
def main():
n,m,k = map(int, input().split())
nl = [(-1,0) for i in range(n)]
ml = [(-1,0) for i in range(m)]
for i in range(k):
a,b,c = map(int,input().split())
if a == 1:
nl[b-1] = (i,c)
else:
ml[b-1] = (i,c)
for i in range(n):
for j in range(m):
print(nl[i][1] if nl[i][0] > ml[j][0] else ml[j][1],end = " ")
print()
if __name__ == "__main__":
"""sys.setrecursionlimit(400000)
threading.stack_size(40960000)
thread = threading.Thread(target=main)
thread.start()"""
main() | Title: Print Check
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kris works in a large company "Blake Technologies". As a best engineer of the company he was assigned a task to develop a printer that will be able to print horizontal and vertical strips. First prototype is already built and Kris wants to tests it. He wants you to implement the program that checks the result of the printing.
Printer works with a rectangular sheet of paper of size *n*<=×<=*m*. Consider the list as a table consisting of *n* rows and *m* columns. Rows are numbered from top to bottom with integers from 1 to *n*, while columns are numbered from left to right with integers from 1 to *m*. Initially, all cells are painted in color 0.
Your program has to support two operations:
1. Paint all cells in row *r**i* in color *a**i*; 1. Paint all cells in column *c**i* in color *a**i*.
If during some operation *i* there is a cell that have already been painted, the color of this cell also changes to *a**i*.
Your program has to print the resulting table after *k* operation.
Input Specification:
The first line of the input contains three integers *n*, *m* and *k* (1<=<=≤<=<=*n*,<=<=*m*<=<=≤<=5000, *n*·*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=100<=000) — the dimensions of the sheet and the number of operations, respectively.
Each of the next *k* lines contains the description of exactly one query:
- 1 *r**i* *a**i* (1<=≤<=*r**i*<=≤<=*n*, 1<=≤<=*a**i*<=≤<=109), means that row *r**i* is painted in color *a**i*; - 2 *c**i* *a**i* (1<=≤<=*c**i*<=≤<=*m*, 1<=≤<=*a**i*<=≤<=109), means that column *c**i* is painted in color *a**i*.
Output Specification:
Print *n* lines containing *m* integers each — the resulting table after all operations are applied.
Demo Input:
['3 3 3\n1 1 3\n2 2 1\n1 2 2\n', '5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1\n']
Demo Output:
['3 1 3 \n2 2 2 \n0 1 0 \n', '1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 \n']
Note:
The figure below shows all three operations for the first sample step by step. The cells that were painted on the corresponding step are marked gray. | ```python
from collections import defaultdict, deque, Counter, OrderedDict
import threading,sys
def main():
n,m,k = map(int, input().split())
nl = [(-1,0) for i in range(n)]
ml = [(-1,0) for i in range(m)]
for i in range(k):
a,b,c = map(int,input().split())
if a == 1:
nl[b-1] = (i,c)
else:
ml[b-1] = (i,c)
for i in range(n):
for j in range(m):
print(nl[i][1] if nl[i][0] > ml[j][0] else ml[j][1],end = " ")
print()
if __name__ == "__main__":
"""sys.setrecursionlimit(400000)
threading.stack_size(40960000)
thread = threading.Thread(target=main)
thread.start()"""
main()
``` | 3 |
|
844 | A | Diversity | PROGRAMMING | 1,000 | [
"greedy",
"implementation",
"strings"
] | null | null | Calculate the minimum number of characters you need to change in the string *s*, so that it contains at least *k* different letters, or print that it is impossible.
String *s* consists only of lowercase Latin letters, and it is allowed to change characters only to lowercase Latin letters too. | First line of input contains string *s*, consisting only of lowercase Latin letters (1<=≤<=|*s*|<=≤<=1000, |*s*| denotes the length of *s*).
Second line of input contains integer *k* (1<=≤<=*k*<=≤<=26). | Print single line with a minimum number of necessary changes, or the word «impossible» (without quotes) if it is impossible. | [
"yandex\n6\n",
"yahoo\n5\n",
"google\n7\n"
] | [
"0\n",
"1\n",
"impossible\n"
] | In the first test case string contains 6 different letters, so we don't need to change anything.
In the second test case string contains 4 different letters: {'*a*', '*h*', '*o*', '*y*'}. To get 5 different letters it is necessary to change one occurrence of '*o*' to some letter, which doesn't occur in the string, for example, {'*b*'}.
In the third test case, it is impossible to make 7 different letters because the length of the string is 6. | 500 | [
{
"input": "yandex\n6",
"output": "0"
},
{
"input": "yahoo\n5",
"output": "1"
},
{
"input": "google\n7",
"output": "impossible"
},
{
"input": "a\n1",
"output": "0"
},
{
"input": "z\n2",
"output": "impossible"
},
{
"input": "fwgfrwgkuwghfiruhewgirueguhergiqrbvgrgf\n26",
"output": "14"
},
{
"input": "nfevghreuoghrueighoqghbnebvnejbvnbgneluqe\n26",
"output": "12"
},
{
"input": "a\n3",
"output": "impossible"
},
{
"input": "smaxpqplaqqbxuqxalqmbmmgubbpspxhawbxsuqhhegpmmpebqmqpbbeplwaepxmsahuepuhuhwxeqmmlgqubuaxehwuwasgxpqmugbmuawuhwqlswllssueglbxepbmwgs\n1",
"output": "0"
},
{
"input": "cuguccgcugcugucgggggcgcgucgucugcuuuccccuugccg\n4",
"output": "1"
},
{
"input": "fcfccfcfccfcfcffcffffffcfccfccfcffccccfcffffccfccfcffcfcccccffcfffcccffcfccfffffcccfccffffffccfccccf\n20",
"output": "18"
},
{
"input": "swmkwaruyv\n5",
"output": "0"
},
{
"input": "tnbqpsuhkczmejirvyfdolxwga\n22",
"output": "0"
},
{
"input": "abcde\n3",
"output": "0"
},
{
"input": "abb\n1",
"output": "0"
},
{
"input": "aaaa\n1",
"output": "0"
},
{
"input": "abcde\n2",
"output": "0"
},
{
"input": "yandex\n4",
"output": "0"
},
{
"input": "aaabbbccc\n1",
"output": "0"
},
{
"input": "abcd\n2",
"output": "0"
},
{
"input": "asdfgh\n2",
"output": "0"
},
{
"input": "aab\n1",
"output": "0"
},
{
"input": "mynameissako\n5",
"output": "0"
},
{
"input": "abcde\n1",
"output": "0"
},
{
"input": "abcd\n3",
"output": "0"
},
{
"input": "abcdef\n2",
"output": "0"
},
{
"input": "abcdefg\n4",
"output": "0"
},
{
"input": "abc\n1",
"output": "0"
},
{
"input": "asdafjsgljdllgjdgkl\n5",
"output": "0"
},
{
"input": "yaay\n3",
"output": "1"
},
{
"input": "yaay\n4",
"output": "2"
},
{
"input": "zzzzzz\n2",
"output": "1"
}
] | 1,503,771,204 | 2,147,483,647 | Python 3 | OK | TESTS | 41 | 93 | 0 | s, k = list(input()), int(input())
if k>26 or k>len(s): print('impossible')
else:
if k - len(set(s)) < 0: print(0)
else: print(k-len(set(s))) | Title: Diversity
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Calculate the minimum number of characters you need to change in the string *s*, so that it contains at least *k* different letters, or print that it is impossible.
String *s* consists only of lowercase Latin letters, and it is allowed to change characters only to lowercase Latin letters too.
Input Specification:
First line of input contains string *s*, consisting only of lowercase Latin letters (1<=≤<=|*s*|<=≤<=1000, |*s*| denotes the length of *s*).
Second line of input contains integer *k* (1<=≤<=*k*<=≤<=26).
Output Specification:
Print single line with a minimum number of necessary changes, or the word «impossible» (without quotes) if it is impossible.
Demo Input:
['yandex\n6\n', 'yahoo\n5\n', 'google\n7\n']
Demo Output:
['0\n', '1\n', 'impossible\n']
Note:
In the first test case string contains 6 different letters, so we don't need to change anything.
In the second test case string contains 4 different letters: {'*a*', '*h*', '*o*', '*y*'}. To get 5 different letters it is necessary to change one occurrence of '*o*' to some letter, which doesn't occur in the string, for example, {'*b*'}.
In the third test case, it is impossible to make 7 different letters because the length of the string is 6. | ```python
s, k = list(input()), int(input())
if k>26 or k>len(s): print('impossible')
else:
if k - len(set(s)) < 0: print(0)
else: print(k-len(set(s)))
``` | 3 |
|
381 | A | Sereja and Dima | PROGRAMMING | 800 | [
"greedy",
"implementation",
"two pointers"
] | null | null | Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her. | The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000. | On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game. | [
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] | [
"12 5\n",
"16 12\n"
] | In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5. | 500 | [
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,686,018,553 | 2,147,483,647 | Python 3 | OK | TESTS | 34 | 46 | 0 | n = int(input())
l_n = list(map(int, input().split()))
se = 0
di = 0
l = 0
r = n - 1
p = True
while l <= r:
if p:
if l_n[l] > l_n[r]:
se += l_n[l]
l += 1
else:
se += l_n[r]
r -= 1
else:
if l_n[l] > l_n[r]:
di += l_n[l]
l += 1
else:
di += l_n[r]
r -= 1
p = not p
print("%d %d" % (se, di)) | Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5. | ```python
n = int(input())
l_n = list(map(int, input().split()))
se = 0
di = 0
l = 0
r = n - 1
p = True
while l <= r:
if p:
if l_n[l] > l_n[r]:
se += l_n[l]
l += 1
else:
se += l_n[r]
r -= 1
else:
if l_n[l] > l_n[r]:
di += l_n[l]
l += 1
else:
di += l_n[r]
r -= 1
p = not p
print("%d %d" % (se, di))
``` | 3 |
|
732 | A | Buy a Shovel | PROGRAMMING | 800 | [
"brute force",
"constructive algorithms",
"implementation",
"math"
] | null | null | Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel. | The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels. | Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. | [
"117 3\n",
"237 7\n",
"15 2\n"
] | [
"9\n",
"1\n",
"2\n"
] | In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change. | 500 | [
{
"input": "117 3",
"output": "9"
},
{
"input": "237 7",
"output": "1"
},
{
"input": "15 2",
"output": "2"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1000 3",
"output": "1"
},
{
"input": "1000 1",
"output": "1"
},
{
"input": "1000 9",
"output": "1"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999 9",
"output": "1"
},
{
"input": "999 8",
"output": "2"
},
{
"input": "105 6",
"output": "2"
},
{
"input": "403 9",
"output": "3"
},
{
"input": "546 4",
"output": "4"
},
{
"input": "228 9",
"output": "5"
},
{
"input": "57 2",
"output": "6"
},
{
"input": "437 9",
"output": "7"
},
{
"input": "997 6",
"output": "8"
},
{
"input": "109 1",
"output": "9"
},
{
"input": "998 9",
"output": "5"
},
{
"input": "4 2",
"output": "3"
},
{
"input": "9 3",
"output": "7"
},
{
"input": "8 2",
"output": "4"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "1 7",
"output": "7"
},
{
"input": "1 8",
"output": "8"
},
{
"input": "100 3",
"output": "1"
},
{
"input": "1000 2",
"output": "1"
},
{
"input": "1000 4",
"output": "1"
},
{
"input": "1000 5",
"output": "1"
},
{
"input": "1000 6",
"output": "1"
},
{
"input": "1000 7",
"output": "1"
},
{
"input": "1000 8",
"output": "1"
},
{
"input": "23 4",
"output": "8"
},
{
"input": "33 1",
"output": "7"
},
{
"input": "33 2",
"output": "4"
},
{
"input": "666 5",
"output": "5"
},
{
"input": "2 3",
"output": "5"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "12 4",
"output": "2"
},
{
"input": "15 5",
"output": "1"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "25 5",
"output": "1"
},
{
"input": "2 9",
"output": "5"
},
{
"input": "6 7",
"output": "5"
},
{
"input": "8 9",
"output": "5"
},
{
"input": "2 7",
"output": "5"
},
{
"input": "4 7",
"output": "5"
},
{
"input": "2 1",
"output": "5"
},
{
"input": "261 1",
"output": "1"
}
] | 1,680,783,134 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 2 | 46 | 0 | a,b=map(int,input().split())
ans=0
for i in range(1,10):
if((a-b*i)%10==0):
ans=i
print(ans)
| Title: Buy a Shovel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
Input Specification:
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Output Specification:
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
Demo Input:
['117 3\n', '237 7\n', '15 2\n']
Demo Output:
['9\n', '1\n', '2\n']
Note:
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change. | ```python
a,b=map(int,input().split())
ans=0
for i in range(1,10):
if((a-b*i)%10==0):
ans=i
print(ans)
``` | 0 |
|
31 | A | Worms Evolution | PROGRAMMING | 1,200 | [
"implementation"
] | A. Worms Evolution | 2 | 256 | Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this. | The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form. | Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*. | [
"5\n1 2 3 5 7\n",
"5\n1 8 1 5 1\n"
] | [
"3 2 1\n",
"-1\n"
] | none | 500 | [
{
"input": "5\n1 2 3 5 7",
"output": "3 2 1"
},
{
"input": "5\n1 8 1 5 1",
"output": "-1"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "6\n86 402 133 524 405 610",
"output": "6 4 1"
},
{
"input": "8\n217 779 418 895 996 473 3 22",
"output": "5 2 1"
},
{
"input": "10\n858 972 670 15 662 114 33 273 53 310",
"output": "2 6 1"
},
{
"input": "100\n611 697 572 770 603 870 128 245 49 904 468 982 788 943 549 288 668 796 803 515 999 735 912 49 298 80 412 841 494 434 543 298 17 571 271 105 70 313 178 755 194 279 585 766 412 164 907 841 776 556 731 268 735 880 176 267 287 65 239 588 155 658 821 47 783 595 585 69 226 906 429 161 999 148 7 484 362 585 952 365 92 749 904 525 307 626 883 367 450 755 564 950 728 724 69 106 119 157 96 290",
"output": "1 38 25"
},
{
"input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438",
"output": "1 63 61"
},
{
"input": "100\n156 822 179 298 981 82 610 345 373 378 895 734 768 15 78 335 764 608 932 297 717 553 916 367 425 447 361 195 66 70 901 236 905 744 919 564 296 610 963 628 840 52 100 750 345 308 37 687 192 704 101 815 10 990 216 358 823 546 578 821 706 148 182 582 421 482 829 425 121 337 500 301 402 868 66 935 625 527 746 585 308 523 488 914 608 709 875 252 151 781 447 2 756 176 976 302 450 35 680 791",
"output": "1 98 69"
},
{
"input": "100\n54 947 785 838 359 647 92 445 48 465 323 486 101 86 607 31 860 420 709 432 435 372 272 37 903 814 309 197 638 58 259 822 793 564 309 22 522 907 101 853 486 824 614 734 630 452 166 532 256 499 470 9 933 452 256 450 7 26 916 406 257 285 895 117 59 369 424 133 16 417 352 440 806 236 478 34 889 469 540 806 172 296 73 655 261 792 868 380 204 454 330 53 136 629 236 850 134 560 264 291",
"output": "2 29 27"
},
{
"input": "99\n175 269 828 129 499 890 127 263 995 807 508 289 996 226 437 320 365 642 757 22 190 8 345 499 834 713 962 889 336 171 608 492 320 257 472 801 176 325 301 306 198 729 933 4 640 322 226 317 567 586 249 237 202 633 287 128 911 654 719 988 420 855 361 574 716 899 317 356 581 440 284 982 541 111 439 29 37 560 961 224 478 906 319 416 736 603 808 87 762 697 392 713 19 459 262 238 239 599 997",
"output": "1 44 30"
},
{
"input": "98\n443 719 559 672 16 69 529 632 953 999 725 431 54 22 346 968 558 696 48 669 963 129 257 712 39 870 498 595 45 821 344 925 179 388 792 346 755 213 423 365 344 659 824 356 773 637 628 897 841 155 243 536 951 361 192 105 418 431 635 596 150 162 145 548 473 531 750 306 377 354 450 975 79 743 656 733 440 940 19 139 237 346 276 227 64 799 479 633 199 17 796 362 517 234 729 62 995 535",
"output": "2 70 40"
},
{
"input": "97\n359 522 938 862 181 600 283 1000 910 191 590 220 761 818 903 264 751 751 987 316 737 898 168 925 244 674 34 950 754 472 81 6 37 520 112 891 981 454 897 424 489 238 363 709 906 951 677 828 114 373 589 835 52 89 97 435 277 560 551 204 879 469 928 523 231 163 183 609 821 915 615 969 616 23 874 437 844 321 78 53 643 786 585 38 744 347 150 179 988 985 200 11 15 9 547 886 752",
"output": "1 23 10"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "100\n328 397 235 453 188 254 879 225 423 36 384 296 486 592 231 849 856 255 213 898 234 800 701 529 951 693 507 326 15 905 618 348 967 927 28 979 752 850 343 35 84 302 36 390 482 826 249 918 91 289 973 457 557 348 365 239 709 565 320 560 153 130 647 708 483 469 788 473 322 844 830 562 611 961 397 673 69 960 74 703 369 968 382 451 328 160 211 230 566 208 7 545 293 73 806 375 157 410 303 58",
"output": "1 79 6"
},
{
"input": "33\n52 145 137 734 180 847 178 286 716 134 181 630 358 764 593 762 785 28 1 468 189 540 764 485 165 656 114 58 628 108 605 584 257",
"output": "8 30 7"
},
{
"input": "57\n75 291 309 68 444 654 985 158 514 204 116 918 374 806 176 31 49 455 269 66 722 713 164 818 317 295 546 564 134 641 28 13 987 478 146 219 213 940 289 173 157 666 168 391 392 71 870 477 446 988 414 568 964 684 409 671 454",
"output": "2 41 29"
},
{
"input": "88\n327 644 942 738 84 118 981 686 530 404 137 197 434 16 693 183 423 325 410 345 941 329 7 106 79 867 584 358 533 675 192 718 641 329 900 768 404 301 101 538 954 590 401 954 447 14 559 337 756 586 934 367 538 928 945 936 770 641 488 579 206 869 902 139 216 446 723 150 829 205 373 578 357 368 960 40 121 206 503 385 521 161 501 694 138 370 709 308",
"output": "1 77 61"
},
{
"input": "100\n804 510 266 304 788 625 862 888 408 82 414 470 777 991 729 229 933 406 601 1 596 720 608 706 432 361 527 548 59 548 474 515 4 991 263 568 681 24 117 563 576 587 281 643 904 521 891 106 842 884 943 54 605 815 504 757 311 374 335 192 447 652 633 410 455 402 382 150 432 836 413 819 669 875 638 925 217 805 632 520 605 266 728 795 162 222 603 159 284 790 914 443 775 97 789 606 859 13 851 47",
"output": "1 77 42"
},
{
"input": "100\n449 649 615 713 64 385 927 466 138 126 143 886 80 199 208 43 196 694 92 89 264 180 617 970 191 196 910 150 275 89 693 190 191 99 542 342 45 592 114 56 451 170 64 589 176 102 308 92 402 153 414 675 352 157 69 150 91 288 163 121 816 184 20 234 836 12 593 150 793 439 540 93 99 663 186 125 349 247 476 106 77 523 215 7 363 278 441 745 337 25 148 384 15 915 108 211 240 58 23 408",
"output": "1 6 5"
},
{
"input": "90\n881 436 52 308 97 261 153 931 670 538 702 156 114 445 154 685 452 76 966 790 93 42 547 65 736 364 136 489 719 322 239 628 696 735 55 703 622 375 100 188 804 341 546 474 484 446 729 290 974 301 602 225 996 244 488 983 882 460 962 754 395 617 61 640 534 292 158 375 632 902 420 979 379 38 100 67 963 928 190 456 545 571 45 716 153 68 844 2 102 116",
"output": "1 14 2"
},
{
"input": "80\n313 674 262 240 697 146 391 221 793 504 896 818 92 899 86 370 341 339 306 887 937 570 830 683 729 519 240 833 656 847 427 958 435 704 853 230 758 347 660 575 843 293 649 396 437 787 654 599 35 103 779 783 447 379 444 585 902 713 791 150 851 228 306 721 996 471 617 403 102 168 197 741 877 481 968 545 331 715 236 654",
"output": "1 13 8"
},
{
"input": "70\n745 264 471 171 946 32 277 511 269 469 89 831 69 2 369 407 583 602 646 633 429 747 113 302 722 321 344 824 241 372 263 287 822 24 652 758 246 967 219 313 882 597 752 965 389 775 227 556 95 904 308 340 899 514 400 187 275 318 621 546 659 488 199 154 811 1 725 79 925 82",
"output": "1 63 60"
},
{
"input": "60\n176 502 680 102 546 917 516 801 392 435 635 492 398 456 653 444 472 513 634 378 273 276 44 920 68 124 800 167 825 250 452 264 561 344 98 933 381 939 426 51 568 548 206 887 342 763 151 514 156 354 486 546 998 649 356 438 295 570 450 589",
"output": "2 26 20"
},
{
"input": "50\n608 92 889 33 146 803 402 91 868 400 828 505 375 558 584 129 361 776 974 123 765 804 326 186 61 927 904 511 762 775 640 593 300 664 897 461 869 911 986 789 607 500 309 457 294 104 724 471 216 155",
"output": "3 25 11"
},
{
"input": "40\n40 330 98 612 747 336 640 381 991 366 22 167 352 12 868 166 603 40 313 869 609 981 609 804 54 729 8 854 347 300 828 922 39 633 695 988 4 530 545 176",
"output": "5 10 8"
},
{
"input": "30\n471 920 308 544 347 222 878 671 467 332 215 180 681 114 151 203 492 951 653 614 453 510 540 422 399 532 113 198 932 825",
"output": "2 21 9"
},
{
"input": "20\n551 158 517 475 595 108 764 961 590 297 761 841 659 568 82 888 733 214 993 359",
"output": "3 20 2"
},
{
"input": "10\n983 748 726 406 196 993 2 251 66 263",
"output": "-1"
},
{
"input": "9\n933 266 457 863 768 257 594 136 145",
"output": "-1"
},
{
"input": "8\n537 198 48 771 944 868 700 163",
"output": "7 8 1"
},
{
"input": "7\n140 779 639 679 768 479 158",
"output": "2 3 1"
},
{
"input": "6\n744 359 230 586 944 442",
"output": "-1"
},
{
"input": "5\n700 939 173 494 120",
"output": "-1"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "3\n907 452 355",
"output": "-1"
},
{
"input": "3\n963 630 333",
"output": "1 3 2"
},
{
"input": "3\n2 2 4",
"output": "3 2 1"
},
{
"input": "3\n2 4 100",
"output": "-1"
}
] | 1,666,860,807 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 62 | 0 | #31A
flag=0
n=int(input())
s=list(map(int,input().split()))
s=sorted(s)
if n%2==1:
n=n+1
if s[len(s)-1]>(s[len(s)-2]+s[len(s)-3]):
print("-1")
else:
for i in range(len(s)-1,int(n/2)-2,-1):
for j in range(i-1,-1,-1):
for k in range(j-1,-1,-1):
if (s[i])==(s[j]+s[k]):
print(s[i],s[j],s[k])
flag=1
if flag==0:
print("-1") | Title: Worms Evolution
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form.
Output Specification:
Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*.
Demo Input:
['5\n1 2 3 5 7\n', '5\n1 8 1 5 1\n']
Demo Output:
['3 2 1\n', '-1\n']
Note:
none | ```python
#31A
flag=0
n=int(input())
s=list(map(int,input().split()))
s=sorted(s)
if n%2==1:
n=n+1
if s[len(s)-1]>(s[len(s)-2]+s[len(s)-3]):
print("-1")
else:
for i in range(len(s)-1,int(n/2)-2,-1):
for j in range(i-1,-1,-1):
for k in range(j-1,-1,-1):
if (s[i])==(s[j]+s[k]):
print(s[i],s[j],s[k])
flag=1
if flag==0:
print("-1")
``` | 0 |
459 | A | Pashmak and Garden | PROGRAMMING | 1,200 | [
"implementation"
] | null | null | Pashmak has fallen in love with an attractive girl called Parmida since one year ago...
Today, Pashmak set up a meeting with his partner in a romantic garden. Unfortunately, Pashmak has forgotten where the garden is. But he remembers that the garden looks like a square with sides parallel to the coordinate axes. He also remembers that there is exactly one tree on each vertex of the square. Now, Pashmak knows the position of only two of the trees. Help him to find the position of two remaining ones. | The first line contains four space-separated *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=100<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=100) integers, where *x*1 and *y*1 are coordinates of the first tree and *x*2 and *y*2 are coordinates of the second tree. It's guaranteed that the given points are distinct. | If there is no solution to the problem, print -1. Otherwise print four space-separated integers *x*3,<=*y*3,<=*x*4,<=*y*4 that correspond to the coordinates of the two other trees. If there are several solutions you can output any of them.
Note that *x*3,<=*y*3,<=*x*4,<=*y*4 must be in the range (<=-<=1000<=≤<=*x*3,<=*y*3,<=*x*4,<=*y*4<=≤<=1000). | [
"0 0 0 1\n",
"0 0 1 1\n",
"0 0 1 2\n"
] | [
"1 0 1 1\n",
"0 1 1 0\n",
"-1\n"
] | none | 500 | [
{
"input": "0 0 0 1",
"output": "1 0 1 1"
},
{
"input": "0 0 1 1",
"output": "0 1 1 0"
},
{
"input": "0 0 1 2",
"output": "-1"
},
{
"input": "-100 -100 100 100",
"output": "-100 100 100 -100"
},
{
"input": "-100 -100 99 100",
"output": "-1"
},
{
"input": "0 -100 0 100",
"output": "200 -100 200 100"
},
{
"input": "27 -74 27 74",
"output": "175 -74 175 74"
},
{
"input": "0 1 2 3",
"output": "0 3 2 1"
},
{
"input": "-100 100 100 -100",
"output": "-100 -100 100 100"
},
{
"input": "-100 -100 -100 100",
"output": "100 -100 100 100"
},
{
"input": "100 100 100 -100",
"output": "300 100 300 -100"
},
{
"input": "100 -100 -100 -100",
"output": "100 100 -100 100"
},
{
"input": "-100 100 100 100",
"output": "-100 300 100 300"
},
{
"input": "0 1 0 0",
"output": "1 1 1 0"
},
{
"input": "1 1 0 0",
"output": "1 0 0 1"
},
{
"input": "0 0 1 0",
"output": "0 1 1 1"
},
{
"input": "1 0 0 1",
"output": "1 1 0 0"
},
{
"input": "1 0 1 1",
"output": "2 0 2 1"
},
{
"input": "1 1 0 1",
"output": "1 2 0 2"
},
{
"input": "15 -9 80 -9",
"output": "15 56 80 56"
},
{
"input": "51 -36 18 83",
"output": "-1"
},
{
"input": "69 -22 60 16",
"output": "-1"
},
{
"input": "-68 -78 -45 -55",
"output": "-68 -55 -45 -78"
},
{
"input": "68 -92 8 -32",
"output": "68 -32 8 -92"
},
{
"input": "95 -83 -39 -6",
"output": "-1"
},
{
"input": "54 94 53 -65",
"output": "-1"
},
{
"input": "-92 15 84 15",
"output": "-92 191 84 191"
},
{
"input": "67 77 -11 -1",
"output": "67 -1 -11 77"
},
{
"input": "91 -40 30 21",
"output": "91 21 30 -40"
},
{
"input": "66 -64 -25 -64",
"output": "66 27 -25 27"
},
{
"input": "-42 84 -67 59",
"output": "-42 59 -67 84"
},
{
"input": "73 47 -5 -77",
"output": "-1"
},
{
"input": "6 85 -54 -84",
"output": "-1"
},
{
"input": "-58 -55 40 43",
"output": "-58 43 40 -55"
},
{
"input": "56 22 48 70",
"output": "-1"
},
{
"input": "-17 -32 76 -32",
"output": "-17 61 76 61"
},
{
"input": "0 2 2 0",
"output": "0 0 2 2"
},
{
"input": "0 0 -1 1",
"output": "0 1 -1 0"
},
{
"input": "0 2 1 1",
"output": "0 1 1 2"
},
{
"input": "0 0 1 -1",
"output": "0 -1 1 0"
},
{
"input": "-1 2 -2 3",
"output": "-1 3 -2 2"
},
{
"input": "0 1 1 0",
"output": "0 0 1 1"
},
{
"input": "1 2 2 1",
"output": "1 1 2 2"
},
{
"input": "4 1 2 1",
"output": "4 3 2 3"
},
{
"input": "70 0 0 10",
"output": "-1"
},
{
"input": "2 3 4 1",
"output": "2 1 4 3"
},
{
"input": "1 3 3 1",
"output": "1 1 3 3"
},
{
"input": "-3 3 0 0",
"output": "-3 0 0 3"
},
{
"input": "2 8 7 3",
"output": "2 3 7 8"
},
{
"input": "1 2 2 3",
"output": "1 3 2 2"
},
{
"input": "0 3 3 0",
"output": "0 0 3 3"
},
{
"input": "0 0 -3 3",
"output": "0 3 -3 0"
},
{
"input": "0 2 1 2",
"output": "0 3 1 3"
},
{
"input": "1 1 2 0",
"output": "1 0 2 1"
},
{
"input": "0 0 5 0",
"output": "0 5 5 5"
},
{
"input": "3 4 7 8",
"output": "3 8 7 4"
},
{
"input": "0 5 5 0",
"output": "0 0 5 5"
},
{
"input": "5 6 8 3",
"output": "5 3 8 6"
},
{
"input": "2 2 1 1",
"output": "2 1 1 2"
},
{
"input": "0 1 3 1",
"output": "0 4 3 4"
},
{
"input": "2 4 5 4",
"output": "2 7 5 7"
},
{
"input": "0 5 1 5",
"output": "0 6 1 6"
},
{
"input": "4 0 0 4",
"output": "4 4 0 0"
},
{
"input": "0 1 1 8",
"output": "-1"
},
{
"input": "2 3 3 4",
"output": "2 4 3 3"
},
{
"input": "1 0 2 1",
"output": "1 1 2 0"
},
{
"input": "0 0 2 14",
"output": "-1"
},
{
"input": "0 0 4 3",
"output": "-1"
},
{
"input": "3 5 5 3",
"output": "3 3 5 5"
},
{
"input": "-1 1 1 -1",
"output": "-1 -1 1 1"
},
{
"input": "0 0 2 0",
"output": "0 2 2 2"
},
{
"input": "0 0 1 7",
"output": "-1"
},
{
"input": "1 2 3 2",
"output": "1 4 3 4"
},
{
"input": "1 12 3 10",
"output": "1 10 3 12"
}
] | 1,670,681,114 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 0 | 30 | 0 | x1, y1, x2, y2 = map(int, input().split())
d1 = abs(x1 - x2)
d2 = abs(y1 - y2)
x3 = x1 + d1
y3 = y1 + d2
x4 = x2 + d1
y4 = y2 + d2
if -100 <= x3 <= 100 and -100 <= y3 <= 100 and -100 <= x4 <= 100 and -100 <= y4 <= 100:
print(x3, y3, x4, y4)
else:
print(-1)
| Title: Pashmak and Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pashmak has fallen in love with an attractive girl called Parmida since one year ago...
Today, Pashmak set up a meeting with his partner in a romantic garden. Unfortunately, Pashmak has forgotten where the garden is. But he remembers that the garden looks like a square with sides parallel to the coordinate axes. He also remembers that there is exactly one tree on each vertex of the square. Now, Pashmak knows the position of only two of the trees. Help him to find the position of two remaining ones.
Input Specification:
The first line contains four space-separated *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=100<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=100) integers, where *x*1 and *y*1 are coordinates of the first tree and *x*2 and *y*2 are coordinates of the second tree. It's guaranteed that the given points are distinct.
Output Specification:
If there is no solution to the problem, print -1. Otherwise print four space-separated integers *x*3,<=*y*3,<=*x*4,<=*y*4 that correspond to the coordinates of the two other trees. If there are several solutions you can output any of them.
Note that *x*3,<=*y*3,<=*x*4,<=*y*4 must be in the range (<=-<=1000<=≤<=*x*3,<=*y*3,<=*x*4,<=*y*4<=≤<=1000).
Demo Input:
['0 0 0 1\n', '0 0 1 1\n', '0 0 1 2\n']
Demo Output:
['1 0 1 1\n', '0 1 1 0\n', '-1\n']
Note:
none | ```python
x1, y1, x2, y2 = map(int, input().split())
d1 = abs(x1 - x2)
d2 = abs(y1 - y2)
x3 = x1 + d1
y3 = y1 + d2
x4 = x2 + d1
y4 = y2 + d2
if -100 <= x3 <= 100 and -100 <= y3 <= 100 and -100 <= x4 <= 100 and -100 <= y4 <= 100:
print(x3, y3, x4, y4)
else:
print(-1)
``` | 0 |
|
849 | A | Odds and Ends | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence *a*1,<=*a*2,<=...,<=*a**n* of length *n*. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3,<=4,<=5} and {1} are subsegments of sequence {1,<=2,<=3,<=4,<=5,<=6}, while {1,<=2,<=4} and {7} are not. | The first line of input contains a non-negative integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence.
The second line contains *n* space-separated non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — the elements of the sequence. | Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.
You can output each letter in any case (upper or lower). | [
"3\n1 3 5\n",
"5\n1 0 1 5 1\n",
"3\n4 3 1\n",
"4\n3 9 9 3\n"
] | [
"Yes\n",
"Yes\n",
"No\n",
"No\n"
] | In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number. | 500 | [
{
"input": "3\n1 3 5",
"output": "Yes"
},
{
"input": "5\n1 0 1 5 1",
"output": "Yes"
},
{
"input": "3\n4 3 1",
"output": "No"
},
{
"input": "4\n3 9 9 3",
"output": "No"
},
{
"input": "1\n1",
"output": "Yes"
},
{
"input": "5\n100 99 100 99 99",
"output": "No"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "No"
},
{
"input": "1\n0",
"output": "No"
},
{
"input": "2\n1 1",
"output": "No"
},
{
"input": "2\n10 10",
"output": "No"
},
{
"input": "2\n54 21",
"output": "No"
},
{
"input": "5\n0 0 0 0 0",
"output": "No"
},
{
"input": "5\n67 92 0 26 43",
"output": "Yes"
},
{
"input": "15\n45 52 35 80 68 80 93 57 47 32 69 23 63 90 43",
"output": "Yes"
},
{
"input": "15\n81 28 0 82 71 64 63 89 87 92 38 30 76 72 36",
"output": "No"
},
{
"input": "50\n49 32 17 59 77 98 65 50 85 10 40 84 65 34 52 25 1 31 61 45 48 24 41 14 76 12 33 76 44 86 53 33 92 58 63 93 50 24 31 79 67 50 72 93 2 38 32 14 87 99",
"output": "No"
},
{
"input": "55\n65 69 53 66 11 100 68 44 43 17 6 66 24 2 6 6 61 72 91 53 93 61 52 96 56 42 6 8 79 49 76 36 83 58 8 43 2 90 71 49 80 21 75 13 76 54 95 61 58 82 40 33 73 61 46",
"output": "No"
},
{
"input": "99\n73 89 51 85 42 67 22 80 75 3 90 0 52 100 90 48 7 15 41 1 54 2 23 62 86 68 2 87 57 12 45 34 68 54 36 49 27 46 22 70 95 90 57 91 90 79 48 89 67 92 28 27 25 37 73 66 13 89 7 99 62 53 48 24 73 82 62 88 26 39 21 86 50 95 26 27 60 6 56 14 27 90 55 80 97 18 37 36 70 2 28 53 36 77 39 79 82 42 69",
"output": "Yes"
},
{
"input": "99\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99",
"output": "Yes"
},
{
"input": "100\n61 63 34 45 20 91 31 28 40 27 94 1 73 5 69 10 56 94 80 23 79 99 59 58 13 56 91 59 77 78 88 72 80 72 70 71 63 60 41 41 41 27 83 10 43 14 35 48 0 78 69 29 63 33 42 67 1 74 51 46 79 41 37 61 16 29 82 28 22 14 64 49 86 92 82 55 54 24 75 58 95 31 3 34 26 23 78 91 49 6 30 57 27 69 29 54 42 0 61 83",
"output": "No"
},
{
"input": "6\n1 2 2 2 2 1",
"output": "No"
},
{
"input": "3\n1 2 1",
"output": "Yes"
},
{
"input": "4\n1 3 2 3",
"output": "No"
},
{
"input": "6\n1 1 1 1 1 1",
"output": "No"
},
{
"input": "6\n1 1 0 0 1 1",
"output": "No"
},
{
"input": "4\n1 4 9 3",
"output": "No"
},
{
"input": "4\n1 0 1 1",
"output": "No"
},
{
"input": "10\n1 0 0 1 1 1 1 1 1 1",
"output": "No"
},
{
"input": "10\n9 2 5 7 8 3 1 9 4 9",
"output": "No"
},
{
"input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "No"
},
{
"input": "6\n1 2 1 2 2 1",
"output": "No"
},
{
"input": "6\n1 0 1 0 0 1",
"output": "No"
},
{
"input": "4\n1 3 4 7",
"output": "No"
},
{
"input": "8\n1 1 1 2 1 1 1 1",
"output": "No"
},
{
"input": "3\n1 1 2",
"output": "No"
},
{
"input": "5\n1 2 1 2 1",
"output": "Yes"
},
{
"input": "5\n5 4 4 2 1",
"output": "Yes"
},
{
"input": "6\n1 3 3 3 3 1",
"output": "No"
},
{
"input": "7\n1 2 1 2 2 2 1",
"output": "Yes"
},
{
"input": "4\n1 2 2 1",
"output": "No"
},
{
"input": "6\n1 2 3 4 6 5",
"output": "No"
},
{
"input": "5\n1 1 2 2 2",
"output": "No"
},
{
"input": "5\n1 0 0 1 1",
"output": "Yes"
},
{
"input": "3\n1 2 4",
"output": "No"
},
{
"input": "3\n1 0 2",
"output": "No"
},
{
"input": "5\n1 1 1 0 1",
"output": "Yes"
},
{
"input": "4\n3 9 2 3",
"output": "No"
},
{
"input": "6\n1 1 1 4 4 1",
"output": "No"
},
{
"input": "6\n1 2 3 5 6 7",
"output": "No"
},
{
"input": "6\n1 1 1 2 2 1",
"output": "No"
},
{
"input": "6\n1 1 1 0 0 1",
"output": "No"
},
{
"input": "5\n1 2 2 5 5",
"output": "Yes"
},
{
"input": "5\n1 3 2 4 5",
"output": "Yes"
},
{
"input": "8\n1 2 3 5 7 8 8 5",
"output": "No"
},
{
"input": "10\n1 1 1 2 1 1 1 1 1 1",
"output": "No"
},
{
"input": "4\n1 0 0 1",
"output": "No"
},
{
"input": "7\n1 0 1 1 0 0 1",
"output": "Yes"
},
{
"input": "7\n1 4 5 7 6 6 3",
"output": "Yes"
},
{
"input": "4\n2 2 2 2",
"output": "No"
},
{
"input": "5\n2 3 4 5 6",
"output": "No"
},
{
"input": "4\n1 1 2 1",
"output": "No"
},
{
"input": "3\n1 2 3",
"output": "Yes"
},
{
"input": "6\n1 3 3 2 2 3",
"output": "No"
},
{
"input": "4\n1 1 2 3",
"output": "No"
},
{
"input": "4\n1 2 3 5",
"output": "No"
},
{
"input": "5\n3 4 4 3 3",
"output": "Yes"
},
{
"input": "4\n3 2 2 3",
"output": "No"
},
{
"input": "6\n1 1 1 1 2 1",
"output": "No"
},
{
"input": "6\n1 1 2 2 1 1",
"output": "No"
},
{
"input": "10\n3 4 2 4 3 2 2 4 4 3",
"output": "No"
},
{
"input": "7\n1 2 4 3 2 4 5",
"output": "Yes"
},
{
"input": "28\n75 51 25 52 13 7 34 29 5 59 68 56 13 2 9 37 59 83 18 32 36 30 20 43 92 76 78 67",
"output": "No"
},
{
"input": "79\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18",
"output": "No"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "No"
}
] | 1,504,275,367 | 2,467 | Python 3 | WRONG_ANSWER | TESTS | 12 | 61 | 0 | n=int(input())
a=list(map(int,input().split()))
if a[0]%2==0 or a[-1]%2==0:
print('No')
else:
a=[i for i in range(n) if a[i]%2==1]
n=len(a)
a=[a[i+1]-a[i] for i in range(n-1)]
l=0
n=len(a)
for i in range(n):
if a[i]%2==0:
l+=1
elif i>0 and a[i]%2==1 and a[i-1]%2==0:
pass
elif i<n-1 and a[i]%2==1 and a[i+1]%2==0:
pass
else:
l+=1
if l%2==1:
print('No')
else:
print('Yes')
| Title: Odds and Ends
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence *a*1,<=*a*2,<=...,<=*a**n* of length *n*. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3,<=4,<=5} and {1} are subsegments of sequence {1,<=2,<=3,<=4,<=5,<=6}, while {1,<=2,<=4} and {7} are not.
Input Specification:
The first line of input contains a non-negative integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence.
The second line contains *n* space-separated non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — the elements of the sequence.
Output Specification:
Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.
You can output each letter in any case (upper or lower).
Demo Input:
['3\n1 3 5\n', '5\n1 0 1 5 1\n', '3\n4 3 1\n', '4\n3 9 9 3\n']
Demo Output:
['Yes\n', 'Yes\n', 'No\n', 'No\n']
Note:
In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number. | ```python
n=int(input())
a=list(map(int,input().split()))
if a[0]%2==0 or a[-1]%2==0:
print('No')
else:
a=[i for i in range(n) if a[i]%2==1]
n=len(a)
a=[a[i+1]-a[i] for i in range(n-1)]
l=0
n=len(a)
for i in range(n):
if a[i]%2==0:
l+=1
elif i>0 and a[i]%2==1 and a[i-1]%2==0:
pass
elif i<n-1 and a[i]%2==1 and a[i+1]%2==0:
pass
else:
l+=1
if l%2==1:
print('No')
else:
print('Yes')
``` | 0 |
|
41 | A | Translation | PROGRAMMING | 800 | [
"implementation",
"strings"
] | A. Translation | 2 | 256 | The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. | The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. | If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. | [
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] | [
"YES\n",
"NO\n",
"NO\n"
] | none | 500 | [
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,639,859,442 | 2,147,483,647 | Python 3 | OK | TESTS | 40 | 92 | 0 | a = input()
b = input()
if a == b[::-1]:
print("YES")
else:
print("NO")
# Sat Dec 18 2021 20:30:41 GMT+0000 (Coordinated Universal Time)
| Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none | ```python
a = input()
b = input()
if a == b[::-1]:
print("YES")
else:
print("NO")
# Sat Dec 18 2021 20:30:41 GMT+0000 (Coordinated Universal Time)
``` | 3.977 |
709 | A | Juicer | PROGRAMMING | 900 | [
"implementation"
] | null | null | Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section? | The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer. | Print one integer — the number of times Kolya will have to empty the waste section. | [
"2 7 10\n5 6\n",
"1 5 10\n7\n",
"3 10 10\n5 7 7\n",
"1 1 1\n1\n"
] | [
"1\n",
"0\n",
"1\n",
"0\n"
] | In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all. | 500 | [
{
"input": "2 7 10\n5 6",
"output": "1"
},
{
"input": "1 5 10\n7",
"output": "0"
},
{
"input": "3 10 10\n5 7 7",
"output": "1"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 951637 951638\n44069 951637",
"output": "1"
},
{
"input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126",
"output": "12"
},
{
"input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850",
"output": "36"
},
{
"input": "2 6 8\n2 1",
"output": "0"
},
{
"input": "5 15 16\n7 11 5 12 8",
"output": "2"
},
{
"input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574",
"output": "4"
},
{
"input": "5 234613 716125\n642626 494941 234613 234613 234613",
"output": "0"
},
{
"input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547",
"output": "0"
},
{
"input": "5 10 20\n10 10 10 10 1",
"output": "1"
},
{
"input": "5 10 11\n10 10 10 10 1",
"output": "2"
},
{
"input": "3 10 10\n4 3 3",
"output": "0"
},
{
"input": "3 5 5\n5 5 5",
"output": "1"
},
{
"input": "3 4 14\n5 5 5",
"output": "0"
},
{
"input": "2 7 10\n1234 1234",
"output": "0"
},
{
"input": "1 5 6\n10",
"output": "0"
},
{
"input": "3 4 6\n1 2 3",
"output": "0"
},
{
"input": "5 10 12\n13 13 13 13 13",
"output": "0"
},
{
"input": "3 4 5\n5 7 9",
"output": "0"
},
{
"input": "3 10 100\n5 5 5",
"output": "0"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "0"
},
{
"input": "5 5 5\n5 5 5 5 5",
"output": "2"
},
{
"input": "2 2 5\n5 5",
"output": "0"
},
{
"input": "3 1 4\n2 2 2",
"output": "0"
}
] | 1,630,508,896 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 3 | 77 | 6,963,200 | n, b, d = input().split()
n = int(n)
b = int(b)
d = int(d)
a = list(map(int, input().strip().split()))
sum = 0
cnt = 0
for i in a:
sum += i
for i in a:
if i <= b and sum >= d:
cnt += 1
if cnt != 0:
cnt -= (n - 1)
print(cnt)
else:
print(cnt) | Title: Juicer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
Input Specification:
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Output Specification:
Print one integer — the number of times Kolya will have to empty the waste section.
Demo Input:
['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n']
Demo Output:
['1\n', '0\n', '1\n', '0\n']
Note:
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all. | ```python
n, b, d = input().split()
n = int(n)
b = int(b)
d = int(d)
a = list(map(int, input().strip().split()))
sum = 0
cnt = 0
for i in a:
sum += i
for i in a:
if i <= b and sum >= d:
cnt += 1
if cnt != 0:
cnt -= (n - 1)
print(cnt)
else:
print(cnt)
``` | 0 |
|
911 | B | Two Cakes | PROGRAMMING | 1,200 | [
"binary search",
"brute force",
"implementation"
] | null | null | It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*! | The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively. | Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake. | [
"5 2 3\n",
"4 7 10\n"
] | [
"1\n",
"3\n"
] | In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3. | 0 | [
{
"input": "5 2 3",
"output": "1"
},
{
"input": "4 7 10",
"output": "3"
},
{
"input": "100 100 100",
"output": "2"
},
{
"input": "10 100 3",
"output": "3"
},
{
"input": "2 9 29",
"output": "9"
},
{
"input": "4 6 10",
"output": "3"
},
{
"input": "3 70 58",
"output": "35"
},
{
"input": "5 7 10",
"output": "3"
},
{
"input": "5 30 22",
"output": "10"
},
{
"input": "5 5 6",
"output": "2"
},
{
"input": "2 4 3",
"output": "3"
},
{
"input": "10 10 31",
"output": "3"
},
{
"input": "2 1 1",
"output": "1"
},
{
"input": "10 98 99",
"output": "19"
},
{
"input": "4 10 16",
"output": "5"
},
{
"input": "11 4 8",
"output": "1"
},
{
"input": "5 10 14",
"output": "4"
},
{
"input": "6 7 35",
"output": "7"
},
{
"input": "5 6 7",
"output": "2"
},
{
"input": "4 15 3",
"output": "3"
},
{
"input": "7 48 77",
"output": "16"
},
{
"input": "4 4 10",
"output": "3"
},
{
"input": "4 7 20",
"output": "6"
},
{
"input": "5 2 8",
"output": "2"
},
{
"input": "3 2 3",
"output": "1"
},
{
"input": "14 95 1",
"output": "1"
},
{
"input": "99 82 53",
"output": "1"
},
{
"input": "10 71 27",
"output": "9"
},
{
"input": "5 7 8",
"output": "2"
},
{
"input": "11 77 77",
"output": "12"
},
{
"input": "10 5 28",
"output": "3"
},
{
"input": "7 3 12",
"output": "2"
},
{
"input": "10 15 17",
"output": "3"
},
{
"input": "7 7 7",
"output": "1"
},
{
"input": "4 11 18",
"output": "6"
},
{
"input": "3 3 4",
"output": "2"
},
{
"input": "9 2 10",
"output": "1"
},
{
"input": "100 90 20",
"output": "1"
},
{
"input": "3 2 2",
"output": "1"
},
{
"input": "12 45 60",
"output": "8"
},
{
"input": "3 94 79",
"output": "47"
},
{
"input": "41 67 34",
"output": "2"
},
{
"input": "9 3 23",
"output": "2"
},
{
"input": "10 20 57",
"output": "7"
},
{
"input": "55 27 30",
"output": "1"
},
{
"input": "100 100 10",
"output": "1"
},
{
"input": "20 8 70",
"output": "3"
},
{
"input": "3 3 3",
"output": "1"
},
{
"input": "4 9 15",
"output": "5"
},
{
"input": "3 1 3",
"output": "1"
},
{
"input": "2 94 94",
"output": "94"
},
{
"input": "5 3 11",
"output": "2"
},
{
"input": "4 3 2",
"output": "1"
},
{
"input": "12 12 100",
"output": "9"
},
{
"input": "6 75 91",
"output": "25"
},
{
"input": "3 4 3",
"output": "2"
},
{
"input": "3 2 5",
"output": "2"
},
{
"input": "6 5 15",
"output": "3"
},
{
"input": "4 3 6",
"output": "2"
},
{
"input": "3 9 9",
"output": "4"
},
{
"input": "26 93 76",
"output": "6"
},
{
"input": "41 34 67",
"output": "2"
},
{
"input": "6 12 6",
"output": "3"
},
{
"input": "5 20 8",
"output": "5"
},
{
"input": "2 1 3",
"output": "1"
},
{
"input": "35 66 99",
"output": "4"
},
{
"input": "30 7 91",
"output": "3"
},
{
"input": "5 22 30",
"output": "10"
},
{
"input": "8 19 71",
"output": "10"
},
{
"input": "3 5 6",
"output": "3"
},
{
"input": "5 3 8",
"output": "2"
},
{
"input": "2 4 2",
"output": "2"
},
{
"input": "4 3 7",
"output": "2"
},
{
"input": "5 20 10",
"output": "5"
},
{
"input": "5 100 50",
"output": "25"
},
{
"input": "6 3 10",
"output": "2"
},
{
"input": "2 90 95",
"output": "90"
},
{
"input": "4 8 6",
"output": "3"
},
{
"input": "6 10 3",
"output": "2"
},
{
"input": "3 3 5",
"output": "2"
},
{
"input": "5 33 33",
"output": "11"
},
{
"input": "5 5 8",
"output": "2"
},
{
"input": "19 24 34",
"output": "3"
},
{
"input": "5 5 12",
"output": "3"
},
{
"input": "8 7 10",
"output": "2"
},
{
"input": "5 56 35",
"output": "17"
},
{
"input": "4 3 5",
"output": "1"
},
{
"input": "18 100 50",
"output": "8"
},
{
"input": "5 6 8",
"output": "2"
},
{
"input": "5 98 100",
"output": "33"
},
{
"input": "6 5 8",
"output": "2"
},
{
"input": "3 40 80",
"output": "40"
},
{
"input": "4 8 11",
"output": "4"
},
{
"input": "66 100 99",
"output": "3"
},
{
"input": "17 100 79",
"output": "10"
},
{
"input": "3 2 10",
"output": "2"
},
{
"input": "99 100 99",
"output": "2"
},
{
"input": "21 100 5",
"output": "5"
},
{
"input": "3 10 2",
"output": "2"
},
{
"input": "4 100 63",
"output": "33"
},
{
"input": "2 2 10",
"output": "2"
},
{
"input": "5 94 79",
"output": "31"
},
{
"input": "4 12 5",
"output": "4"
},
{
"input": "5 5 40",
"output": "5"
},
{
"input": "99 99 99",
"output": "1"
},
{
"input": "8 97 44",
"output": "16"
},
{
"input": "11 4 10",
"output": "1"
},
{
"input": "6 3 3",
"output": "1"
},
{
"input": "7 3 4",
"output": "1"
},
{
"input": "8 4 4",
"output": "1"
},
{
"input": "9 4 5",
"output": "1"
},
{
"input": "12 6 6",
"output": "1"
},
{
"input": "4 48 89",
"output": "29"
},
{
"input": "8 3 6",
"output": "1"
},
{
"input": "4 6 3",
"output": "2"
},
{
"input": "5 5 1",
"output": "1"
},
{
"input": "11 6 5",
"output": "1"
},
{
"input": "4 5 4",
"output": "2"
},
{
"input": "6 6 4",
"output": "1"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "4 1 3",
"output": "1"
},
{
"input": "3 3 1",
"output": "1"
},
{
"input": "9 4 6",
"output": "1"
},
{
"input": "6 5 6",
"output": "1"
},
{
"input": "2 2 3",
"output": "2"
},
{
"input": "4 5 1",
"output": "1"
},
{
"input": "13 6 7",
"output": "1"
},
{
"input": "14 7 7",
"output": "1"
},
{
"input": "12 97 13",
"output": "8"
},
{
"input": "4 2 9",
"output": "2"
},
{
"input": "10 20 59",
"output": "7"
},
{
"input": "12 34 56",
"output": "7"
},
{
"input": "4 5 9",
"output": "3"
},
{
"input": "2 2 2",
"output": "2"
},
{
"input": "4 66 41",
"output": "22"
}
] | 1,514,633,304 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 3 | 93 | 23,040,000 | n,a,b = [int(i) for i in input().split()]
for i in range(100, 0, -1):
pa = a // i
pb = n - pa
if pa != 0:
if b // i >= pb:
print(i)
exit(0)
| Title: Two Cakes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*!
Input Specification:
The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
Output Specification:
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
Demo Input:
['5 2 3\n', '4 7 10\n']
Demo Output:
['1\n', '3\n']
Note:
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3. | ```python
n,a,b = [int(i) for i in input().split()]
for i in range(100, 0, -1):
pa = a // i
pb = n - pa
if pa != 0:
if b // i >= pb:
print(i)
exit(0)
``` | 0 |
|
265 | A | Colorful Stones (Simplified Edition) | PROGRAMMING | 800 | [
"implementation"
] | null | null | There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence. | The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence. | Print the final 1-based position of Liss in a single line. | [
"RGB\nRRR\n",
"RRRBGBRBBB\nBBBRR\n",
"BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n"
] | [
"2\n",
"3\n",
"15\n"
] | none | 500 | [
{
"input": "RGB\nRRR",
"output": "2"
},
{
"input": "RRRBGBRBBB\nBBBRR",
"output": "3"
},
{
"input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB",
"output": "15"
},
{
"input": "G\nRRBBRBRRBR",
"output": "1"
},
{
"input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB",
"output": "1"
},
{
"input": "RRGGBRGRBG\nBRRGGBBGGR",
"output": "7"
},
{
"input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG",
"output": "15"
},
{
"input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR",
"output": "8"
},
{
"input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR",
"output": "16"
},
{
"input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR",
"output": "18"
},
{
"input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG",
"output": "23"
},
{
"input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR",
"output": "14"
},
{
"input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG",
"output": "12"
},
{
"input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB",
"output": "12"
},
{
"input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR",
"output": "2"
},
{
"input": "R\nB",
"output": "1"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "50"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
},
{
"input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
}
] | 1,692,442,276 | 2,147,483,647 | Python 3 | OK | TESTS | 19 | 122 | 0 | stones =input().strip()
orders =input().strip()
p1 = 0
p2 = 0
output= 1
while p1 < len(stones) and p2 <len(orders):
if stones[p1] == orders[p2]:
output+=1
p1+=1
p2+=1
else:
p2+=1
print(output) | Title: Colorful Stones (Simplified Edition)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
Input Specification:
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Output Specification:
Print the final 1-based position of Liss in a single line.
Demo Input:
['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n']
Demo Output:
['2\n', '3\n', '15\n']
Note:
none | ```python
stones =input().strip()
orders =input().strip()
p1 = 0
p2 = 0
output= 1
while p1 < len(stones) and p2 <len(orders):
if stones[p1] == orders[p2]:
output+=1
p1+=1
p2+=1
else:
p2+=1
print(output)
``` | 3 |
|
620 | A | Professor GukiZ's Robot | PROGRAMMING | 800 | [
"implementation",
"math"
] | null | null | Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position. | The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot.
The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot. | Print the only integer *d* — the minimal number of steps to get the finish position. | [
"0 0\n4 5\n",
"3 4\n6 1\n"
] | [
"5\n",
"3\n"
] | In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position.
In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times. | 0 | [
{
"input": "0 0\n4 5",
"output": "5"
},
{
"input": "3 4\n6 1",
"output": "3"
},
{
"input": "0 0\n4 6",
"output": "6"
},
{
"input": "1 1\n-3 -5",
"output": "6"
},
{
"input": "-1 -1\n-10 100",
"output": "101"
},
{
"input": "1 -1\n100 -100",
"output": "99"
},
{
"input": "-1000000000 -1000000000\n1000000000 1000000000",
"output": "2000000000"
},
{
"input": "-1000000000 -1000000000\n0 999999999",
"output": "1999999999"
},
{
"input": "0 0\n2 1",
"output": "2"
},
{
"input": "10 0\n100 0",
"output": "90"
},
{
"input": "1 5\n6 4",
"output": "5"
},
{
"input": "0 0\n5 4",
"output": "5"
},
{
"input": "10 1\n20 1",
"output": "10"
},
{
"input": "1 1\n-3 4",
"output": "4"
},
{
"input": "-863407280 504312726\n786535210 -661703810",
"output": "1649942490"
},
{
"input": "-588306085 -741137832\n341385643 152943311",
"output": "929691728"
},
{
"input": "0 0\n4 0",
"output": "4"
},
{
"input": "93097194 -48405232\n-716984003 -428596062",
"output": "810081197"
},
{
"input": "9 1\n1 1",
"output": "8"
},
{
"input": "4 6\n0 4",
"output": "4"
},
{
"input": "2 4\n5 2",
"output": "3"
},
{
"input": "-100000000 -100000000\n100000000 100000123",
"output": "200000123"
},
{
"input": "5 6\n5 7",
"output": "1"
},
{
"input": "12 16\n12 1",
"output": "15"
},
{
"input": "0 0\n5 1",
"output": "5"
},
{
"input": "0 1\n1 1",
"output": "1"
},
{
"input": "-44602634 913365223\n-572368780 933284951",
"output": "527766146"
},
{
"input": "-2 0\n2 -2",
"output": "4"
},
{
"input": "0 0\n3 1",
"output": "3"
},
{
"input": "-458 2\n1255 4548",
"output": "4546"
},
{
"input": "-5 -4\n-3 -3",
"output": "2"
},
{
"input": "4 5\n7 3",
"output": "3"
},
{
"input": "-1000000000 -999999999\n1000000000 999999998",
"output": "2000000000"
},
{
"input": "-1000000000 -1000000000\n1000000000 -1000000000",
"output": "2000000000"
},
{
"input": "-464122675 -898521847\n656107323 -625340409",
"output": "1120229998"
},
{
"input": "-463154699 -654742385\n-699179052 -789004997",
"output": "236024353"
},
{
"input": "982747270 -593488945\n342286841 -593604186",
"output": "640460429"
},
{
"input": "-80625246 708958515\n468950878 574646184",
"output": "549576124"
},
{
"input": "0 0\n1 0",
"output": "1"
},
{
"input": "109810 1\n2 3",
"output": "109808"
},
{
"input": "-9 0\n9 9",
"output": "18"
},
{
"input": "9 9\n9 9",
"output": "0"
},
{
"input": "1 1\n4 3",
"output": "3"
},
{
"input": "1 2\n45 1",
"output": "44"
},
{
"input": "207558188 -313753260\n-211535387 -721675423",
"output": "419093575"
},
{
"input": "-11 0\n0 0",
"output": "11"
},
{
"input": "-1000000000 1000000000\n1000000000 -1000000000",
"output": "2000000000"
},
{
"input": "0 0\n1 1",
"output": "1"
},
{
"input": "0 0\n0 1",
"output": "1"
},
{
"input": "0 0\n-1 1",
"output": "1"
},
{
"input": "0 0\n-1 0",
"output": "1"
},
{
"input": "0 0\n-1 -1",
"output": "1"
},
{
"input": "0 0\n0 -1",
"output": "1"
},
{
"input": "0 0\n1 -1",
"output": "1"
},
{
"input": "10 90\n90 10",
"output": "80"
},
{
"input": "851016864 573579544\n-761410925 -380746263",
"output": "1612427789"
},
{
"input": "1 9\n9 9",
"output": "8"
},
{
"input": "1000 1000\n1000 1000",
"output": "0"
},
{
"input": "1 9\n9 1",
"output": "8"
},
{
"input": "1 90\n90 90",
"output": "89"
},
{
"input": "100 100\n1000 1000",
"output": "900"
},
{
"input": "-1 0\n0 0",
"output": "1"
},
{
"input": "-750595959 -2984043\n649569876 -749608783",
"output": "1400165835"
},
{
"input": "958048496 712083589\n423286949 810566863",
"output": "534761547"
},
{
"input": "146316710 53945094\n-523054748 147499505",
"output": "669371458"
},
{
"input": "50383856 -596516251\n-802950224 -557916272",
"output": "853334080"
},
{
"input": "-637204864 -280290367\n-119020929 153679771",
"output": "518183935"
},
{
"input": "-100 -100\n-60 -91",
"output": "40"
},
{
"input": "337537326 74909428\n-765558776 167951547",
"output": "1103096102"
},
{
"input": "0 81\n18 90",
"output": "18"
},
{
"input": "283722202 -902633305\n-831696497 -160868946",
"output": "1115418699"
},
{
"input": "1000 1000\n-1000 1000",
"output": "2000"
},
{
"input": "5 6\n4 8",
"output": "2"
},
{
"input": "40572000 597493595\n-935051731 368493185",
"output": "975623731"
},
{
"input": "-5 5\n5 5",
"output": "10"
}
] | 1,616,137,071 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 3 | 46 | 0 | a,b=map(int,input().split(' '))
x,y=map(int,input().split(' '))
print(max(x,y)-min(a,b)) | Title: Professor GukiZ's Robot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
Input Specification:
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot.
The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Output Specification:
Print the only integer *d* — the minimal number of steps to get the finish position.
Demo Input:
['0 0\n4 5\n', '3 4\n6 1\n']
Demo Output:
['5\n', '3\n']
Note:
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position.
In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times. | ```python
a,b=map(int,input().split(' '))
x,y=map(int,input().split(' '))
print(max(x,y)-min(a,b))
``` | 0 |
|
490 | A | Team Olympiad | PROGRAMMING | 800 | [
"greedy",
"implementation",
"sortings"
] | null | null | The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that? | The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child. | In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0. | [
"7\n1 3 1 3 2 1 2\n",
"4\n2 1 1 2\n"
] | [
"2\n3 5 2\n6 7 4\n",
"0\n"
] | none | 500 | [
{
"input": "7\n1 3 1 3 2 1 2",
"output": "2\n3 5 2\n6 7 4"
},
{
"input": "4\n2 1 1 2",
"output": "0"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n3 1",
"output": "0"
},
{
"input": "3\n2 1 2",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "1\n1 2 3"
},
{
"input": "12\n3 3 3 3 3 3 3 3 1 3 3 2",
"output": "1\n9 12 2"
},
{
"input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2",
"output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47"
},
{
"input": "12\n3 1 1 1 1 1 1 2 1 1 1 1",
"output": "1\n3 8 1"
},
{
"input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2",
"output": "1\n18 2 11"
},
{
"input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3",
"output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36"
},
{
"input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1",
"output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200"
},
{
"input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3",
"output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64"
},
{
"input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1",
"output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44"
},
{
"input": "5\n1 2 2 3 3",
"output": "1\n1 3 4"
}
] | 1,698,475,435 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 0 | 31 | 0 | n = int(input())
a = list(map(int, input().split()))
b = [i for i in range(len(a)) if a[i]==1]
c = [i for i in range(len(a)) if a[i]==2]
d = [i for i in range(len(a)) if a[i]==3]
k = min(len(b),len(c),len(d))
print(k)
for i in range(k):
print(b[i], c[i], d[i]) | Title: Team Olympiad
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
Output Specification:
In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0.
Demo Input:
['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n']
Demo Output:
['2\n3 5 2\n6 7 4\n', '0\n']
Note:
none | ```python
n = int(input())
a = list(map(int, input().split()))
b = [i for i in range(len(a)) if a[i]==1]
c = [i for i in range(len(a)) if a[i]==2]
d = [i for i in range(len(a)) if a[i]==3]
k = min(len(b),len(c),len(d))
print(k)
for i in range(k):
print(b[i], c[i], d[i])
``` | 0 |
|
456 | A | Laptops | PROGRAMMING | 1,100 | [
"sortings"
] | null | null | One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist. | The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct. | If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes). | [
"2\n1 2\n2 1\n"
] | [
"Happy Alex\n"
] | none | 500 | [
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,688,850,175 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 1 | 15 | 0 | T = int(input())
ans = []
for i in range(T):
price, quality = list(map(int, input().split()))
ans.append([price, quality])
ans.sort()
max_quality = float("inf")
result = "Poor Alex"
for i in range(len(ans)):
if max_quality > ans[i][1]:
result = "Happy Alex"
else:
max_quality=max(max_quality,ans[i][1])
print(result)
| Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none | ```python
T = int(input())
ans = []
for i in range(T):
price, quality = list(map(int, input().split()))
ans.append([price, quality])
ans.sort()
max_quality = float("inf")
result = "Poor Alex"
for i in range(len(ans)):
if max_quality > ans[i][1]:
result = "Happy Alex"
else:
max_quality=max(max_quality,ans[i][1])
print(result)
``` | 0 |
|
466 | C | Number of Ways | PROGRAMMING | 1,700 | [
"binary search",
"brute force",
"data structures",
"dp",
"two pointers"
] | null | null | You've got array *a*[1],<=*a*[2],<=...,<=*a*[*n*], consisting of *n* integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same.
More formally, you need to find the number of such pairs of indices *i*,<=*j* (2<=≤<=*i*<=≤<=*j*<=≤<=*n*<=-<=1), that . | The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105), showing how many numbers are in the array. The second line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (|*a*[*i*]|<=≤<=<=109) — the elements of array *a*. | Print a single integer — the number of ways to split the array into three parts with the same sum. | [
"5\n1 2 3 0 3\n",
"4\n0 1 -1 0\n",
"2\n4 1\n"
] | [
"2\n",
"1\n",
"0\n"
] | none | 1,500 | [
{
"input": "5\n1 2 3 0 3",
"output": "2"
},
{
"input": "4\n0 1 -1 0",
"output": "1"
},
{
"input": "2\n4 1",
"output": "0"
},
{
"input": "9\n0 0 0 0 0 0 0 0 0",
"output": "28"
},
{
"input": "10\n2 5 -2 2 -3 -2 3 5 -5 -2",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "0"
},
{
"input": "100\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "2030"
},
{
"input": "6\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "10\n1 0 0 0 1 1 1 0 1 1",
"output": "2"
},
{
"input": "10\n-2 2 -2 0 -2 -1 1 -1 2 0",
"output": "0"
},
{
"input": "4\n0 2 -1 2",
"output": "0"
},
{
"input": "5\n3 3 -3 3 3",
"output": "3"
},
{
"input": "5\n1 1 1 1 1",
"output": "0"
},
{
"input": "8\n-1 -1 -1 -1 -1 -1 -1 -1",
"output": "0"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "4\n1 -1 0 0",
"output": "1"
},
{
"input": "3\n6 -3 6",
"output": "0"
}
] | 1,699,345,698 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 1 | 31 | 0 | n = int(input())
arr = [int(x) for x in input().split()]
tot = sum(arr)
if tot % 3 != 0:
print(0)
else:
s = tot // 3
cnt1, cnt2, subsum = 0, 0, 0
for i in range(n):
subsum += arr[i]
if subsum == 2 * s : cnt2 += cnt1
if subsum == s: cnt1 += 1
print(cnt2) | Title: Number of Ways
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got array *a*[1],<=*a*[2],<=...,<=*a*[*n*], consisting of *n* integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same.
More formally, you need to find the number of such pairs of indices *i*,<=*j* (2<=≤<=*i*<=≤<=*j*<=≤<=*n*<=-<=1), that .
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105), showing how many numbers are in the array. The second line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (|*a*[*i*]|<=≤<=<=109) — the elements of array *a*.
Output Specification:
Print a single integer — the number of ways to split the array into three parts with the same sum.
Demo Input:
['5\n1 2 3 0 3\n', '4\n0 1 -1 0\n', '2\n4 1\n']
Demo Output:
['2\n', '1\n', '0\n']
Note:
none | ```python
n = int(input())
arr = [int(x) for x in input().split()]
tot = sum(arr)
if tot % 3 != 0:
print(0)
else:
s = tot // 3
cnt1, cnt2, subsum = 0, 0, 0
for i in range(n):
subsum += arr[i]
if subsum == 2 * s : cnt2 += cnt1
if subsum == s: cnt1 += 1
print(cnt2)
``` | 0 |
|
690 | A1 | Collective Mindsets (easy) | PROGRAMMING | 1,100 | [] | null | null | Tonight is brain dinner night and all zombies will gather together to scarf down some delicious brains. The artful Heidi plans to crash the party, incognito, disguised as one of them. Her objective is to get away with at least one brain, so she can analyze the zombies' mindset back home and gain a strategic advantage.
They will be *N* guests tonight: *N*<=-<=1 real zombies and a fake one, our Heidi. The living-dead love hierarchies as much as they love brains: each one has a unique rank in the range 1 to *N*<=-<=1, and Heidi, who still appears slightly different from the others, is attributed the highest rank, *N*. Tonight there will be a chest with brains on display and every attendee sees how many there are. These will then be split among the attendees according to the following procedure:
The zombie of the highest rank makes a suggestion on who gets how many brains (every brain is an indivisible entity). A vote follows. If at least half of the attendees accept the offer, the brains are shared in the suggested way and the feast begins. But if majority is not reached, then the highest-ranked zombie is killed, and the next zombie in hierarchy has to make a suggestion. If he is killed too, then the third highest-ranked makes one, etc. (It's enough to have exactly half of the votes – in case of a tie, the vote of the highest-ranked alive zombie counts twice, and he will of course vote in favor of his own suggestion in order to stay alive.)
You should know that zombies are very greedy and sly, and they know this too – basically all zombie brains are alike. Consequently, a zombie will never accept an offer which is suboptimal for him. That is, if an offer is not strictly better than a potential later offer, he will vote against it. And make no mistake: while zombies may normally seem rather dull, tonight their intellects are perfect. Each zombie's priorities for tonight are, in descending order:
1. survive the event (they experienced death already once and know it is no fun), 1. get as many brains as possible.
Heidi goes first and must make an offer which at least half of the attendees will accept, and which allocates at least one brain for Heidi herself.
What is the smallest number of brains that have to be in the chest for this to be possible? | The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109). | Output one integer: the smallest number of brains in the chest which allows Heidi to take one brain home. | [
"1\n",
"4\n"
] | [
"1\n",
"2\n"
] | 0 | [
{
"input": "1",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "5",
"output": "3"
},
{
"input": "6",
"output": "3"
},
{
"input": "7",
"output": "4"
},
{
"input": "8",
"output": "4"
},
{
"input": "9",
"output": "5"
},
{
"input": "10",
"output": "5"
},
{
"input": "11",
"output": "6"
},
{
"input": "12",
"output": "6"
},
{
"input": "13",
"output": "7"
},
{
"input": "14",
"output": "7"
},
{
"input": "15",
"output": "8"
},
{
"input": "16",
"output": "8"
},
{
"input": "17",
"output": "9"
},
{
"input": "18",
"output": "9"
},
{
"input": "19",
"output": "10"
},
{
"input": "20",
"output": "10"
},
{
"input": "100",
"output": "50"
},
{
"input": "9999",
"output": "5000"
},
{
"input": "21736",
"output": "10868"
},
{
"input": "873467",
"output": "436734"
},
{
"input": "4124980",
"output": "2062490"
},
{
"input": "536870910",
"output": "268435455"
},
{
"input": "536870912",
"output": "268435456"
},
{
"input": "876543210",
"output": "438271605"
},
{
"input": "987654321",
"output": "493827161"
},
{
"input": "1000000000",
"output": "500000000"
}
] | 1,468,137,888 | 288 | Python 3 | OK | TESTS | 30 | 62 | 0 | a = int(input())
print((a + a%2) //2) | Title: Collective Mindsets (easy)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Tonight is brain dinner night and all zombies will gather together to scarf down some delicious brains. The artful Heidi plans to crash the party, incognito, disguised as one of them. Her objective is to get away with at least one brain, so she can analyze the zombies' mindset back home and gain a strategic advantage.
They will be *N* guests tonight: *N*<=-<=1 real zombies and a fake one, our Heidi. The living-dead love hierarchies as much as they love brains: each one has a unique rank in the range 1 to *N*<=-<=1, and Heidi, who still appears slightly different from the others, is attributed the highest rank, *N*. Tonight there will be a chest with brains on display and every attendee sees how many there are. These will then be split among the attendees according to the following procedure:
The zombie of the highest rank makes a suggestion on who gets how many brains (every brain is an indivisible entity). A vote follows. If at least half of the attendees accept the offer, the brains are shared in the suggested way and the feast begins. But if majority is not reached, then the highest-ranked zombie is killed, and the next zombie in hierarchy has to make a suggestion. If he is killed too, then the third highest-ranked makes one, etc. (It's enough to have exactly half of the votes – in case of a tie, the vote of the highest-ranked alive zombie counts twice, and he will of course vote in favor of his own suggestion in order to stay alive.)
You should know that zombies are very greedy and sly, and they know this too – basically all zombie brains are alike. Consequently, a zombie will never accept an offer which is suboptimal for him. That is, if an offer is not strictly better than a potential later offer, he will vote against it. And make no mistake: while zombies may normally seem rather dull, tonight their intellects are perfect. Each zombie's priorities for tonight are, in descending order:
1. survive the event (they experienced death already once and know it is no fun), 1. get as many brains as possible.
Heidi goes first and must make an offer which at least half of the attendees will accept, and which allocates at least one brain for Heidi herself.
What is the smallest number of brains that have to be in the chest for this to be possible?
Input Specification:
The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109).
Output Specification:
Output one integer: the smallest number of brains in the chest which allows Heidi to take one brain home.
Demo Input:
['1\n', '4\n']
Demo Output:
['1\n', '2\n']
| ```python
a = int(input())
print((a + a%2) //2)
``` | 3 |
||
251 | A | Points on Line | PROGRAMMING | 1,300 | [
"binary search",
"combinatorics",
"two pointers"
] | null | null | Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter. | The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase. | Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. | [
"4 3\n1 2 3 4\n",
"4 2\n-3 -2 -1 0\n",
"5 19\n1 10 20 30 50\n"
] | [
"4\n",
"2\n",
"1\n"
] | In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}. | 500 | [
{
"input": "4 3\n1 2 3 4",
"output": "4"
},
{
"input": "4 2\n-3 -2 -1 0",
"output": "2"
},
{
"input": "5 19\n1 10 20 30 50",
"output": "1"
},
{
"input": "10 5\n31 36 43 47 48 50 56 69 71 86",
"output": "2"
},
{
"input": "10 50\n1 4 20 27 65 79 82 83 99 100",
"output": "25"
},
{
"input": "10 90\n24 27 40 41 61 69 73 87 95 97",
"output": "120"
},
{
"input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99",
"output": "79351"
},
{
"input": "1 14751211\n847188590",
"output": "0"
},
{
"input": "2 1000000000\n-907894512 -289906312",
"output": "0"
},
{
"input": "2 1000000000\n-14348867 1760823",
"output": "0"
},
{
"input": "3 1000000000\n-5 -1 1",
"output": "1"
}
] | 1,601,038,707 | 2,147,483,647 | Python 3 | OK | TESTS | 39 | 528 | 8,806,400 | from bisect import bisect_right
n,d = map(int,input().split())
a=list(map(int,input().split()))
res=0
for i in range(n-2):
j=bisect_right(a,a[i]+d)
k=j-i
res+=(k-1)*(k-2)//2
print(res)
| Title: Points on Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter.
Input Specification:
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase.
Output Specification:
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n']
Demo Output:
['4\n', '2\n', '1\n']
Note:
In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}. | ```python
from bisect import bisect_right
n,d = map(int,input().split())
a=list(map(int,input().split()))
res=0
for i in range(n-2):
j=bisect_right(a,a[i]+d)
k=j-i
res+=(k-1)*(k-2)//2
print(res)
``` | 3 |
|
250 | A | Paper Work | PROGRAMMING | 1,000 | [
"greedy"
] | null | null | Polycarpus has been working in the analytic department of the "F.R.A.U.D." company for as much as *n* days. Right now his task is to make a series of reports about the company's performance for the last *n* days. We know that the main information in a day report is value *a**i*, the company's profit on the *i*-th day. If *a**i* is negative, then the company suffered losses on the *i*-th day.
Polycarpus should sort the daily reports into folders. Each folder should include data on the company's performance for several consecutive days. Of course, the information on each of the *n* days should be exactly in one folder. Thus, Polycarpus puts information on the first few days in the first folder. The information on the several following days goes to the second folder, and so on.
It is known that the boss reads one daily report folder per day. If one folder has three or more reports for the days in which the company suffered losses (*a**i*<=<<=0), he loses his temper and his wrath is terrible.
Therefore, Polycarpus wants to prepare the folders so that none of them contains information on three or more days with the loss, and the number of folders is minimal.
Write a program that, given sequence *a**i*, will print the minimum number of folders. | The first line contains integer *n* (1<=≤<=*n*<=≤<=100), *n* is the number of days. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=100), where *a**i* means the company profit on the *i*-th day. It is possible that the company has no days with the negative *a**i*. | Print an integer *k* — the required minimum number of folders. In the second line print a sequence of integers *b*1, *b*2, ..., *b**k*, where *b**j* is the number of day reports in the *j*-th folder.
If there are multiple ways to sort the reports into *k* days, print any of them. | [
"11\n1 2 3 -4 -5 -6 5 -5 -6 -7 6\n",
"5\n0 -1 100 -1 0\n"
] | [
"3\n5 3 3 ",
"1\n5 "
] | Here goes a way to sort the reports from the first sample into three folders:
In the second sample you can put all five reports in one folder. | 500 | [
{
"input": "11\n1 2 3 -4 -5 -6 5 -5 -6 -7 6",
"output": "3\n5 3 3 "
},
{
"input": "5\n0 -1 100 -1 0",
"output": "1\n5 "
},
{
"input": "1\n0",
"output": "1\n1 "
},
{
"input": "1\n-1",
"output": "1\n1 "
},
{
"input": "2\n0 0",
"output": "1\n2 "
},
{
"input": "2\n-2 2",
"output": "1\n2 "
},
{
"input": "2\n-2 -1",
"output": "1\n2 "
},
{
"input": "12\n1 -12 -5 -8 0 -8 -1 -1 -6 12 -9 12",
"output": "4\n3 3 2 4 "
},
{
"input": "4\n1 2 0 3",
"output": "1\n4 "
},
{
"input": "4\n4 -3 3 3",
"output": "1\n4 "
},
{
"input": "4\n0 -3 4 -3",
"output": "1\n4 "
},
{
"input": "4\n-3 -2 4 -3",
"output": "2\n1 3 "
},
{
"input": "4\n-3 -2 -1 -4",
"output": "2\n2 2 "
},
{
"input": "5\n-2 -2 4 0 -1",
"output": "2\n1 4 "
},
{
"input": "5\n-5 -3 -1 2 -1",
"output": "2\n2 3 "
},
{
"input": "5\n-3 -2 -3 -2 -3",
"output": "3\n1 2 2 "
},
{
"input": "10\n0 5 2 3 10 9 4 9 9 3",
"output": "1\n10 "
},
{
"input": "10\n10 2 1 2 9 10 7 4 -4 5",
"output": "1\n10 "
},
{
"input": "10\n1 -3 1 10 -7 -6 7 0 -5 3",
"output": "2\n5 5 "
},
{
"input": "10\n6 5 -10 -4 -3 -7 5 -2 -6 -10",
"output": "4\n3 2 3 2 "
},
{
"input": "10\n-2 -4 -1 -6 -5 -5 -7 0 -7 -8",
"output": "5\n1 2 2 2 3 "
},
{
"input": "100\n48 36 10 85 15 57 100 70 14 82 15 75 67 44 40 83 12 94 80 77 92 40 39 80 11 10 2 22 71 31 93 51 22 29 98 90 33 91 66 64 87 70 46 86 62 13 85 15 37 3 49 11 21 57 26 14 5 80 33 82 9 75 26 76 50 32 48 100 62 11 97 47 67 81 86 80 51 51 44 97 2 22 18 52 43 54 65 91 94 54 22 80 23 63 44 7 52 98 80 69",
"output": "1\n100 "
},
{
"input": "100\n7 51 31 14 17 0 72 29 77 6 32 94 70 94 1 64 85 29 67 66 56 -90 38 85 51 5 69 36 62 99 99 43 43 40 68 88 62 39 45 75 50 95 51 96 69 60 65 27 63 89 23 43 49 39 92 90 1 49 22 78 13 90 97 87 5 100 60 82 50 49 0 11 87 34 67 7 35 65 20 92 89 29 73 48 41 8 14 76 91 34 13 18 42 75 36 14 78 80 74 9",
"output": "1\n100 "
},
{
"input": "100\n83 71 43 50 61 54 -45 44 36 35 44 21 34 65 23 32 73 36 70 17 46 47 10 30 48 25 84 58 63 96 44 88 24 93 26 24 70 69 90 75 20 42 63 11 0 41 54 23 95 99 17 27 43 20 46 100 65 -79 15 72 78 0 13 94 76 72 69 35 61 3 65 83 28 12 27 48 8 37 30 37 40 87 30 76 81 78 71 44 79 92 10 60 5 7 9 33 79 31 86 51",
"output": "1\n100 "
},
{
"input": "100\n78 96 4 24 -66 42 28 16 42 -48 89 0 74 19 12 86 75 21 42 100 2 43 11 -76 85 24 12 51 26 48 22 74 68 73 22 39 53 42 37 -78 100 5 9 58 10 63 19 89 76 42 10 -96 76 49 67 59 86 37 13 66 75 92 48 80 37 59 49 -4 83 1 82 25 0 31 73 40 52 3 -47 17 68 94 51 84 47 76 73 -65 83 72 56 50 62 -5 40 12 81 75 84 -6",
"output": "5\n10 30 28 20 12 "
},
{
"input": "100\n-63 20 79 73 18 82 23 -93 55 8 -31 37 33 24 30 41 70 77 14 34 84 79 -94 88 54 81 7 90 74 35 29 3 75 71 14 28 -61 63 90 79 71 97 -90 74 -33 10 27 34 46 31 9 90 100 -73 58 2 73 51 5 46 -27 -9 30 65 73 28 15 14 1 59 96 21 100 78 12 97 72 37 -28 52 12 0 -42 84 88 8 88 8 -48 39 13 -78 20 56 38 82 32 -87 45 39",
"output": "8\n1 10 26 8 16 18 10 11 "
},
{
"input": "100\n21 40 60 28 85 10 15 -3 -27 -7 26 26 9 93 -3 -65 70 88 68 -85 24 75 24 -69 53 56 44 -53 -15 -74 12 22 37 22 77 90 9 95 40 15 -76 7 -81 65 83 51 -57 59 19 78 34 40 11 17 99 75 56 67 -81 39 22 86 -78 61 19 25 53 13 -91 91 17 71 45 39 63 32 -57 83 70 26 100 -53 7 95 67 -47 84 84 28 56 94 72 48 58 21 -89 91 73 16 93",
"output": "10\n9 6 5 8 2 13 16 10 13 18 "
},
{
"input": "100\n39 -70 7 7 11 27 88 16 -3 94 94 -2 23 91 41 49 69 61 53 -99 98 54 87 44 48 73 62 80 86 -33 34 -87 56 48 4 18 92 14 -37 84 7 42 9 70 0 -78 17 68 54 -82 65 -21 59 90 72 -19 -81 8 92 88 -68 65 -42 -60 98 -39 -2 2 88 24 9 -95 17 75 12 -32 -9 85 7 88 59 14 90 69 19 -88 -73 1 2 72 15 -83 65 18 26 25 -71 3 -51 95",
"output": "13\n2 10 18 9 11 6 5 3 3 9 10 6 8 "
},
{
"input": "100\n-47 -28 -90 -35 28 32 63 77 88 3 -48 18 48 22 47 47 89 2 88 46 25 60 65 44 100 28 73 71 19 -55 44 47 30 -25 50 15 -98 5 73 -56 61 15 15 77 67 59 -64 22 17 70 67 -12 26 -81 -58 -20 1 22 34 52 -45 56 78 29 47 -11 -10 70 -57 -2 62 85 -84 -54 -67 67 85 23 6 -65 -6 -79 -13 -1 12 68 1 71 73 77 48 -48 90 70 52 100 45 38 -43 -93",
"output": "15\n2 2 26 7 10 7 2 10 3 4 2 6 2 9 8 "
},
{
"input": "100\n-34 -61 96 14 87 33 29 64 -76 7 47 -41 54 60 79 -28 -18 88 95 29 -89 -29 52 39 8 13 68 13 15 46 -34 -49 78 -73 64 -56 83 -16 45 17 40 11 -86 55 56 -35 91 81 38 -77 -41 67 16 -37 -56 -84 -42 99 -83 45 46 -56 -14 -15 79 77 -48 -87 94 46 77 18 -32 16 -18 47 67 35 89 95 36 -32 51 46 40 78 0 58 81 -47 41 5 -48 65 89 6 -79 -56 -25 74",
"output": "18\n1 8 7 5 10 3 4 8 5 4 2 5 2 4 7 15 7 3 "
},
{
"input": "100\n14 36 94 -66 24 -24 14 -87 86 94 44 88 -68 59 4 -27 -74 12 -75 92 -31 29 18 -69 -47 45 -85 67 95 -77 7 -56 -80 -46 -40 73 40 71 41 -86 50 87 94 16 43 -96 96 -63 66 24 3 90 16 42 50 41 15 -45 72 32 -94 -93 91 -31 -30 -73 -88 33 45 9 71 18 37 -26 43 -82 87 67 62 -9 29 -70 -34 99 -30 -25 -86 -91 -70 -48 24 51 53 25 90 69 -17 -53 87 -62",
"output": "20\n6 7 4 4 4 5 3 2 11 12 4 3 2 9 6 3 2 2 8 3 "
},
{
"input": "100\n-40 87 -68 72 -49 48 -62 73 95 27 80 53 76 33 -95 -53 31 18 -61 -75 84 40 35 -82 49 47 -13 22 -81 -65 -17 47 -61 21 9 -12 52 67 31 -86 -63 42 18 -25 70 45 -3 -18 94 -62 -28 16 -100 36 -96 -73 83 -65 9 -51 83 36 65 -24 77 38 81 -84 32 -34 75 -50 -92 11 -73 -17 81 -66 -61 33 -47 -50 -72 -95 -58 54 68 -46 -41 8 76 28 58 87 88 100 61 -61 75 -1",
"output": "23\n1 4 10 4 5 5 2 5 5 6 3 3 3 4 8 4 3 3 3 2 2 4 11 "
},
{
"input": "100\n-61 56 1 -37 61 -77 -6 -5 28 36 27 -32 -10 -44 -89 -26 67 100 -94 80 -18 -5 -92 94 81 -38 -76 4 -77 2 79 55 -93 54 -19 10 -35 -12 -42 -32 -23 -67 -95 -62 -16 23 -25 41 -16 -51 3 -45 -1 53 20 0 0 21 87 28 15 62 64 -21 6 45 -19 95 -23 87 15 -35 21 -88 47 -81 89 68 66 -65 95 54 18 -97 65 -7 75 -58 -54 -3 99 -95 -57 -84 98 -6 33 44 81 -56",
"output": "25\n4 3 5 2 2 5 2 4 6 4 2 2 2 2 4 3 12 5 5 6 6 3 3 2 6 "
},
{
"input": "100\n-21 61 -52 47 -25 -42 -48 -46 58 -13 75 -65 52 88 -59 68 -12 -25 33 14 -2 78 32 -41 -79 17 0 85 -39 -80 61 30 -27 -92 -100 66 -53 -11 -59 65 -5 92 -2 -85 87 -72 19 -50 -24 32 -27 -92 -100 14 72 13 67 -22 -27 -56 -84 -90 -74 -70 44 -92 70 -49 -50 11 57 -73 23 68 65 99 82 -18 -93 -34 85 45 89 -58 -80 5 -57 -98 -11 -96 28 30 29 -71 47 50 -15 30 -96 -53",
"output": "28\n1 4 2 3 5 3 6 5 4 2 3 3 3 4 3 2 6 2 2 3 3 9 2 5 3 2 7 3 "
},
{
"input": "100\n-61 15 -88 52 -75 -71 -36 29 93 99 -73 -97 -69 39 -78 80 -28 -20 -36 -89 88 -82 56 -37 -13 33 2 -6 -88 -9 8 -24 40 5 8 -33 -83 -90 -48 55 69 -12 -49 -41 -4 92 42 57 -17 -68 -41 -68 77 -17 -45 -64 -39 24 -78 -3 -49 77 3 -23 84 -36 -19 -16 -72 74 -19 -81 65 -79 -57 64 89 -29 49 69 88 -18 16 26 -86 -58 -91 69 -43 -28 86 6 -87 47 -71 18 81 -55 -42 -30",
"output": "30\n3 3 5 2 4 2 3 3 4 3 5 2 4 2 5 2 3 2 3 4 3 2 3 3 7 4 3 4 5 2 "
},
{
"input": "100\n-21 -98 -66 26 3 -5 86 99 96 -22 78 -16 20 -3 93 22 -67 -37 -27 12 -97 43 -46 -48 -58 -4 -19 26 -87 -61 67 -76 -42 57 -87 -50 -24 -79 -6 43 -68 -42 13 -1 -82 81 -32 -88 -6 -99 46 42 19 -17 89 14 -98 -24 34 -37 -17 49 76 81 -61 23 -46 -79 -48 -5 87 14 -97 -67 -31 94 -77 15 -44 38 -44 -67 -69 -84 -58 -59 -17 -54 3 -15 79 -28 -10 -26 34 -73 -37 -57 -42 -44",
"output": "33\n1 2 7 4 4 3 3 2 3 3 3 2 2 3 3 3 2 7 3 5 3 2 4 3 4 2 2 2 3 3 3 2 2 "
},
{
"input": "100\n-63 -62 -88 -14 -58 -75 -28 19 -71 60 -38 77 98 95 -49 -64 -87 -97 2 -37 -37 -41 -47 -96 -58 -42 -88 12 -90 -65 0 52 -59 87 -79 -68 -66 -90 -19 -4 86 -65 -49 -94 67 93 -61 100 68 -40 -35 -67 -4 -100 -90 -86 15 -3 -75 57 65 -91 -80 -57 51 -88 -61 -54 -13 -46 -64 53 -87 -54 -69 29 -67 -23 -96 -93 -3 -77 -10 85 55 -44 17 24 -78 -82 -33 14 85 79 84 -91 -81 54 -89 -86",
"output": "35\n2 2 2 3 6 2 3 2 2 2 3 4 3 2 2 3 4 4 2 2 3 4 2 3 2 2 3 3 2 2 2 6 2 6 3 "
},
{
"input": "100\n30 -47 -87 -49 -4 -58 -10 -10 -37 -15 -12 -85 4 24 -3 -2 57 57 -60 94 -21 82 1 -54 -39 -98 -72 57 84 -6 -41 82 93 -81 -61 -30 18 -68 -88 17 87 -6 43 -26 72 -14 -40 -75 -69 60 -91 -70 -26 -62 -13 -19 -97 -14 -59 -17 -44 -15 -65 60 -60 74 26 -6 12 -83 -49 82 -76 -96 -31 -98 -100 49 -50 -42 -43 92 -56 -79 -38 -86 -99 -37 -75 -26 -79 -12 -9 -87 -63 -62 -25 -3 -5 -92",
"output": "38\n2 2 2 2 2 2 4 5 4 2 4 4 3 4 4 2 3 2 2 2 2 2 2 5 3 3 2 3 2 3 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-58 -18 -94 -96 -18 -2 -35 -49 47 69 96 -46 -88 -91 -9 -95 -12 -46 -12 16 44 -53 -96 71 -11 -98 -62 -27 -89 -88 -28 -11 -14 -47 67 -69 -33 -64 15 -24 67 53 -93 -10 -75 -98 -8 -97 -62 67 -52 -59 -9 -89 -39 -23 -37 -61 -83 -89 23 -47 -67 18 -38 -63 -73 -98 -65 -70 -20 13 -33 -46 -50 -30 -33 85 -93 -42 -37 48 -8 -11 -32 0 -58 -70 -27 -79 -52 82 22 -62 -100 -12 -5 -82 88 -74",
"output": "40\n2 2 2 2 5 2 2 2 4 3 2 2 2 2 3 3 4 2 2 3 2 2 2 2 3 3 2 2 2 3 2 3 2 3 3 2 2 4 2 3 "
},
{
"input": "100\n-60 -62 -19 -42 -50 -22 -90 -82 -56 40 87 -1 -30 -76 -8 -32 -57 38 -14 -39 84 -60 -28 -82 -62 -83 -37 -59 -61 -86 -13 48 18 -8 50 -27 -47 -100 -42 -88 -19 -45 30 -93 -46 3 -26 -80 -61 -13 -20 76 -95 -51 -26 -1 39 -92 -41 -76 -67 26 -23 30 79 -26 -51 -40 -29 -14 -2 -43 -30 -19 -62 -65 -1 -90 -66 -38 -50 89 -17 -53 -6 -13 -41 -54 -1 -23 -31 -88 -59 -44 -67 -11 -83 -16 -23 -71",
"output": "43\n1 2 2 2 2 4 2 2 3 3 2 2 2 2 5 2 2 2 3 3 2 3 2 3 2 3 4 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-1 -65 76 -28 -58 -63 -86 -54 -62 -66 -39 -3 -62 -35 -2 -86 -6 -16 -85 -30 -6 -41 -88 38 -8 -78 -6 -73 -83 -12 40 -99 -78 -51 -97 -15 81 -76 -1 -78 -38 -14 -24 -2 -70 -80 -24 -28 -51 -50 61 -64 -81 -32 -59 -60 -58 -10 -24 -81 -42 -7 58 -23 -11 -14 -84 -27 -45 2 -31 -32 -20 -72 -2 -81 -31 -6 -8 -91 55 -76 -93 -65 -94 -8 -57 -20 -75 -20 -27 -37 -82 97 -37 -8 -16 49 -90 -3",
"output": "45\n2 3 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 2 2 2 2 2 3 2 2 2 2 3 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 3 "
},
{
"input": "100\n-75 -29 -14 -2 99 -94 -75 82 -17 -19 -61 -18 -14 -94 -17 16 -16 -4 -41 -8 -81 -26 -65 24 -7 -87 -85 -22 -74 -21 46 -31 -39 -82 -88 -20 -2 -13 -46 -1 -78 -66 -83 -50 -13 -15 -60 -56 36 -79 -99 -52 -96 -80 -97 -74 80 -90 -52 -33 -1 -78 73 -45 -3 -77 62 -4 -85 -44 -62 -74 -33 -35 -44 -14 -80 -20 -17 -83 -32 -40 -74 -13 -90 -62 -15 -16 -59 -15 -40 -50 -98 -33 -73 -25 -86 -35 -84 -41",
"output": "46\n1 2 3 3 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-43 -90 -65 -70 -7 -49 -90 -93 -43 -80 -2 -47 -13 -5 -70 -42 -71 -68 -60 -71 -27 -84 82 -74 -75 -65 -32 -32 -50 -74 62 -96 -85 -95 -65 -51 -69 49 3 -19 -92 -61 -33 -7 -70 -51 -3 -1 -48 -48 -64 -7 -4 -46 -11 -36 -80 -69 -67 -1 -39 -40 66 -9 -40 -8 -58 -74 -27 66 -52 -26 -62 -72 -48 -25 -41 -13 -65 -82 -50 -68 -94 -52 -77 -91 -37 -18 -8 -51 -19 -22 -52 -95 35 -32 59 -41 -54 -88",
"output": "46\n2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 4 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 4 2 "
},
{
"input": "100\n-67 -100 -7 -13 -9 -78 -55 -68 -31 -18 -92 -23 -4 -99 -54 -97 -45 -24 -33 -95 -42 -20 -63 -24 -89 -25 -55 -35 -84 -30 -1 57 -88 -94 -67 -27 -91 -14 -13 -20 -7 -8 -33 -95 -1 -75 -80 -49 -15 -64 -73 -49 -87 -19 -44 -50 -19 -10 -90 -51 -74 90 -42 -18 -93 -99 -43 51 -96 95 -97 -36 -21 -13 -73 -37 -33 -22 -83 -33 -44 -84 -20 -78 -34 -70 -83 -83 -85 -17 -36 62 83 -73 -6 51 -77 -82 -83 -68",
"output": "47\n1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 "
},
{
"input": "100\n-30 -40 -64 -50 -13 -69 -87 -54 -7 -32 -38 30 -79 -31 57 -50 -3 -6 -13 -94 -28 -57 -95 -67 -82 -49 -83 -39 -41 -12 -73 -20 -17 -46 -92 -31 -36 -31 -80 -47 -37 -67 -41 -65 -7 -95 -85 -53 -87 -18 -52 -61 -98 -85 -6 -80 -96 -95 -72 -9 -19 -49 74 84 -60 -69 -64 -39 -82 -28 -24 -82 -13 -7 -15 -28 -26 -48 -88 -9 -36 -38 -75 -1 9 -15 -12 -47 -11 -45 -3 -10 -60 -62 -54 -60 45 -8 -43 -89",
"output": "47\n2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 "
},
{
"input": "100\n-78 -77 -84 -29 -99 -15 -60 97 -56 -9 -19 -21 -5 -29 -20 -41 -56 -15 -77 -22 -87 -75 -56 -96 -46 -24 -35 -64 63 -5 -16 -27 34 -77 84 -30 -9 -73 -58 -93 -20 -20 -69 -16 -42 -40 -44 -66 -42 -90 -47 -35 -87 -55 -37 -48 -34 -3 -40 -3 -46 -25 -80 -55 -12 -62 -46 -99 -38 -33 -72 -60 -18 -12 -52 -3 -75 -5 -48 -30 -59 -56 99 -52 -59 -72 -41 -15 -19 -19 -26 -28 -16 -23 -46 -93 -92 -38 -12 -75",
"output": "48\n1 2 2 2 3 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n22 -83 -95 -61 -100 -53 -50 -19 -24 -85 -45 -43 -3 -74 -6 -24 -78 -54 -58 -52 -42 -16 -18 -56 -93 -45 -97 -67 -88 -27 83 -7 -72 -85 -24 -45 -22 -82 -83 -94 -75 -79 -22 -44 -22 -44 -42 -44 -61 85 -11 -16 -91 -12 -15 -3 -15 -82 -1 -2 -28 -24 -68 -22 -25 -46 -40 -21 -67 -90 -31 -33 -54 -83 -91 -74 -56 -67 -87 -36 -8 -100 -76 -88 -90 -45 -64 -25 -55 -15 -84 -67 -57 -73 -78 86 -28 -41 -63 -57",
"output": "48\n3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 "
},
{
"input": "100\n-13 -43 -95 -61 -62 -94 -97 -48 -16 -88 -96 -74 -26 -58 -79 -44 -72 -22 -18 -66 -8 85 -98 -3 -36 -17 -80 -82 -77 -41 -24 -86 -62 -1 -22 -29 -30 -18 -25 -90 -66 -58 -86 -81 -34 -76 -67 -72 -77 -29 -66 -67 -34 3 -16 -90 -9 -14 -28 -60 -26 -99 75 -74 -94 -55 -54 -23 -30 -34 -4 -92 -88 -46 -52 -63 -98 -6 -89 -99 -80 -100 -97 -62 -70 -97 -75 -85 -22 -2 -32 -47 -85 -44 -23 -4 -21 -30 -6 -34",
"output": "49\n1 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-5 -37 -22 -85 -63 -46 -44 -43 -23 -77 -75 -64 -84 -46 -78 -94 -67 -19 -5 -59 -32 -92 -10 -92 -58 -73 -72 -16 99 -58 -94 -49 -60 -3 -60 -74 -12 -8 -32 -94 -63 -53 -24 -29 -6 -46 -30 -32 -87 -41 -58 -70 -53 -20 -73 -42 -54 -5 -84 -45 -11 -9 -84 -7 -68 -100 -11 -2 -87 -27 -65 -45 -17 -33 -88 -55 90 -58 -89 -13 -66 -1 -46 -90 -69 -74 -84 -90 -50 -32 -62 -37 -44 -51 -25 -94 -73 -43 -1 -44",
"output": "49\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-76 -48 -63 -62 -94 -37 -54 -67 -9 -52 -83 -1 -87 -36 -94 -10 -19 -55 -93 -23 -2 -87 -15 -59 -60 -87 -63 -18 -62 -92 -10 -61 -12 -89 -85 -38 -37 -3 -71 -22 -94 -96 -100 -47 -20 -93 -28 77 -35 -74 -50 -72 -38 -29 -58 -80 -24 -9 -59 -4 -93 -65 -31 -47 -36 -13 -89 -96 -99 -83 -99 -36 -45 -58 -22 -93 -51 -26 -93 -36 -85 -72 -49 -27 -69 -29 -51 -84 -35 -26 -41 -43 -45 -87 -65 -100 -45 -69 -69 -73",
"output": "50\n1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n-77 -6 -71 -86 -42 -1 -40 -41 -31 -67 -75 -49 -62 -21 -2 -40 -2 -82 -90 -42 -43 -14 -72 -50 -33 -37 -58 -51 -67 -96 -63 -39 -56 -22 -17 -69 -88 -60 -18 -47 -16 -41 -32 -59 -82 -48 -22 -46 -29 -69 -21 -2 -41 -52 -83 -3 -49 -39 -31 -78 -60 -100 -12 -64 -28 -72 -43 -68 -60 -98 -21 -29 -72 -82 -5 -4 -65 -76 -60 -40 -37 -17 -77 -21 -19 -98 -39 -67 -49 -75 -7 -45 -11 -13 -45 -19 -83 -38 -14 -89",
"output": "50\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "4\n1 2 3 4",
"output": "1\n4 "
},
{
"input": "4\n1 2 3 -4",
"output": "1\n4 "
},
{
"input": "4\n-4 2 1 2",
"output": "1\n4 "
},
{
"input": "1\n-1",
"output": "1\n1 "
},
{
"input": "2\n2 -1",
"output": "1\n2 "
},
{
"input": "2\n-100 100",
"output": "1\n2 "
},
{
"input": "3\n-100 0 -100",
"output": "1\n3 "
},
{
"input": "5\n1 2 3 -1 -1",
"output": "1\n5 "
},
{
"input": "5\n-1 -1 2 3 4",
"output": "1\n5 "
},
{
"input": "3\n-3 -4 -5",
"output": "2\n1 2 "
},
{
"input": "4\n-3 -4 1 -3",
"output": "2\n1 3 "
},
{
"input": "1\n-1",
"output": "1\n1 "
},
{
"input": "2\n-1 0",
"output": "1\n2 "
},
{
"input": "4\n0 0 0 0",
"output": "1\n4 "
},
{
"input": "3\n-1 -1 -1",
"output": "2\n1 2 "
},
{
"input": "6\n-1 -1 0 -1 -1 -1",
"output": "3\n1 3 2 "
},
{
"input": "2\n0 0",
"output": "1\n2 "
},
{
"input": "6\n0 0 -1 -1 -1 0",
"output": "2\n3 3 "
}
] | 1,589,468,496 | 2,147,483,647 | PyPy 3 | OK | TESTS | 69 | 280 | 20,172,800 | z = int(input())
l = list(map(int, input().rstrip().split(" ")))
count = 0
pac = 0
pac_list = []
i = 0
while i < z:
if l[i] < 0:
count = count + 1
pac = pac+1
if count ==3:
pac_list.append(pac-1)
pac = 0
i = i - 1
count = 0
i = i + 1
if pac > 0:
pac_list.append(pac)
print(len(pac_list))
for i in pac_list:
print(i, end =" ") | Title: Paper Work
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus has been working in the analytic department of the "F.R.A.U.D." company for as much as *n* days. Right now his task is to make a series of reports about the company's performance for the last *n* days. We know that the main information in a day report is value *a**i*, the company's profit on the *i*-th day. If *a**i* is negative, then the company suffered losses on the *i*-th day.
Polycarpus should sort the daily reports into folders. Each folder should include data on the company's performance for several consecutive days. Of course, the information on each of the *n* days should be exactly in one folder. Thus, Polycarpus puts information on the first few days in the first folder. The information on the several following days goes to the second folder, and so on.
It is known that the boss reads one daily report folder per day. If one folder has three or more reports for the days in which the company suffered losses (*a**i*<=<<=0), he loses his temper and his wrath is terrible.
Therefore, Polycarpus wants to prepare the folders so that none of them contains information on three or more days with the loss, and the number of folders is minimal.
Write a program that, given sequence *a**i*, will print the minimum number of folders.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), *n* is the number of days. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=100), where *a**i* means the company profit on the *i*-th day. It is possible that the company has no days with the negative *a**i*.
Output Specification:
Print an integer *k* — the required minimum number of folders. In the second line print a sequence of integers *b*1, *b*2, ..., *b**k*, where *b**j* is the number of day reports in the *j*-th folder.
If there are multiple ways to sort the reports into *k* days, print any of them.
Demo Input:
['11\n1 2 3 -4 -5 -6 5 -5 -6 -7 6\n', '5\n0 -1 100 -1 0\n']
Demo Output:
['3\n5 3 3 ', '1\n5 ']
Note:
Here goes a way to sort the reports from the first sample into three folders:
In the second sample you can put all five reports in one folder. | ```python
z = int(input())
l = list(map(int, input().rstrip().split(" ")))
count = 0
pac = 0
pac_list = []
i = 0
while i < z:
if l[i] < 0:
count = count + 1
pac = pac+1
if count ==3:
pac_list.append(pac-1)
pac = 0
i = i - 1
count = 0
i = i + 1
if pac > 0:
pac_list.append(pac)
print(len(pac_list))
for i in pac_list:
print(i, end =" ")
``` | 3 |
|
22 | A | Second Order Statistics | PROGRAMMING | 800 | [
"brute force"
] | A. Second Order Statistics | 2 | 256 | Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem. | The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value. | If the given sequence has the second order statistics, output this order statistics, otherwise output NO. | [
"4\n1 2 2 -4\n",
"5\n1 2 3 1 1\n"
] | [
"1\n",
"2\n"
] | none | 0 | [
{
"input": "4\n1 2 2 -4",
"output": "1"
},
{
"input": "5\n1 2 3 1 1",
"output": "2"
},
{
"input": "1\n28",
"output": "NO"
},
{
"input": "2\n-28 12",
"output": "12"
},
{
"input": "3\n-83 40 -80",
"output": "-80"
},
{
"input": "8\n93 77 -92 26 21 -48 53 91",
"output": "-48"
},
{
"input": "20\n-72 -9 -86 80 7 -10 40 -27 -94 92 96 56 28 -19 79 36 -3 -73 -63 -49",
"output": "-86"
},
{
"input": "49\n-74 -100 -80 23 -8 -83 -41 -20 48 17 46 -73 -55 67 85 4 40 -60 -69 -75 56 -74 -42 93 74 -95 64 -46 97 -47 55 0 -78 -34 -31 40 -63 -49 -76 48 21 -1 -49 -29 -98 -11 76 26 94",
"output": "-98"
},
{
"input": "88\n63 48 1 -53 -89 -49 64 -70 -49 71 -17 -16 76 81 -26 -50 67 -59 -56 97 2 100 14 18 -91 -80 42 92 -25 -88 59 8 -56 38 48 -71 -78 24 -14 48 -1 69 73 -76 54 16 -92 44 47 33 -34 -17 -81 21 -59 -61 53 26 10 -76 67 35 -29 70 65 -13 -29 81 80 32 74 -6 34 46 57 1 -45 -55 69 79 -58 11 -2 22 -18 -16 -89 -46",
"output": "-91"
},
{
"input": "100\n34 32 88 20 76 53 -71 -39 -98 -10 57 37 63 -3 -54 -64 -78 -82 73 20 -30 -4 22 75 51 -64 -91 29 -52 -48 83 19 18 -47 46 57 -44 95 89 89 -30 84 -83 67 58 -99 -90 -53 92 -60 -5 -56 -61 27 68 -48 52 -95 64 -48 -30 -67 66 89 14 -33 -31 -91 39 7 -94 -54 92 -96 -99 -83 -16 91 -28 -66 81 44 14 -85 -21 18 40 16 -13 -82 -33 47 -10 -40 -19 10 25 60 -34 -89",
"output": "-98"
},
{
"input": "2\n-1 -1",
"output": "NO"
},
{
"input": "3\n-2 -2 -2",
"output": "NO"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "10\n40 71 -85 -85 40 -85 -85 64 -85 47",
"output": "40"
},
{
"input": "23\n-90 -90 -41 -64 -64 -90 -15 10 -43 -90 -64 -64 89 -64 36 47 38 -90 -64 -90 -90 68 -90",
"output": "-64"
},
{
"input": "39\n-97 -93 -42 -93 -97 -93 56 -97 -97 -97 76 -33 -60 91 7 82 17 47 -97 -97 -93 73 -97 12 -97 -97 -97 -97 56 -92 -83 -93 -93 49 -93 -97 -97 -17 -93",
"output": "-93"
},
{
"input": "51\n-21 6 -35 -98 -86 -98 -86 -43 -65 32 -98 -40 96 -98 -98 -98 -98 -86 -86 -98 56 -86 -98 -98 -30 -98 -86 -31 -98 -86 -86 -86 -86 -30 96 -86 -86 -86 -60 25 88 -86 -86 58 31 -47 57 -86 37 44 -83",
"output": "-86"
},
{
"input": "66\n-14 -95 65 -95 -95 -97 -90 -71 -97 -97 70 -95 -95 -97 -95 -27 35 -87 -95 -5 -97 -97 87 34 -49 -95 -97 -95 -97 -95 -30 -95 -97 47 -95 -17 -97 -95 -97 -69 51 -97 -97 -95 -75 87 59 21 63 56 76 -91 98 -97 6 -97 -95 -95 -97 -73 11 -97 -35 -95 -95 -43",
"output": "-95"
},
{
"input": "77\n-67 -93 -93 -92 97 29 93 -93 -93 -5 -93 -7 60 -92 -93 44 -84 68 -92 -93 69 -92 -37 56 43 -93 35 -92 -93 19 -79 18 -92 -93 -93 -37 -93 -47 -93 -92 -92 74 67 19 40 -92 -92 -92 -92 -93 -93 -41 -93 -92 -93 -93 -92 -93 51 -80 6 -42 -92 -92 -66 -12 -92 -92 -3 93 -92 -49 -93 40 62 -92 -92",
"output": "-92"
},
{
"input": "89\n-98 40 16 -87 -98 63 -100 55 -96 -98 -21 -100 -93 26 -98 -98 -100 -89 -98 -5 -65 -28 -100 -6 -66 67 -100 -98 -98 10 -98 -98 -70 7 -98 2 -100 -100 -98 25 -100 -100 -98 23 -68 -100 -98 3 98 -100 -98 -98 -98 -98 -24 -100 -100 -9 -98 35 -100 99 -5 -98 -100 -100 37 -100 -84 57 -98 40 -47 -100 -1 -92 -76 -98 -98 -100 -100 -100 -63 30 21 -100 -100 -100 -12",
"output": "-98"
},
{
"input": "99\n10 -84 -100 -100 73 -64 -100 -94 33 -100 -100 -100 -100 71 64 24 7 -100 -32 -100 -100 77 -100 62 -12 55 45 -100 -100 -80 -100 -100 -100 -100 -100 -100 -100 -100 -100 -39 -48 -100 -34 47 -100 -100 -100 -100 -100 -77 -100 -100 -100 -100 -100 -100 -52 40 -55 -100 -44 -100 72 33 70 -100 -100 -78 -100 -3 100 -77 22 -100 95 -30 -100 10 -69 -100 -100 -100 -100 52 -39 -100 -100 -100 7 -100 -98 -66 95 -17 -100 52 -100 68 -100",
"output": "-98"
},
{
"input": "100\n-99 -98 -64 89 53 57 -99 29 -78 18 -3 -54 76 -98 -99 -98 37 -98 19 -47 89 73 -98 -91 -99 -99 -98 -48 -99 22 -99 -98 -99 -99 -98 -60 84 67 -99 -98 20 -98 88 -98 46 -98 -99 -98 -99 -71 -99 -98 -98 -39 83 95 -98 63 -98 -99 32 -98 -99 -64 57 -30 -53 -83 -4 -99 58 20 -98 -10 -99 -44 -99 -99 -99 -99 75 34 -98 -52 -98 -30 -98 -99 -98 -98 51 -99 -99 -99 -98 -99 -99 -82 -90 92",
"output": "-98"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "3\n1 3 2",
"output": "2"
},
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "3\n3 2 1",
"output": "2"
},
{
"input": "9\n99 99 99 99 100 100 100 100 100",
"output": "100"
},
{
"input": "5\n-100 -100 -100 -100 -100",
"output": "NO"
}
] | 1,627,522,543 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 2 | 92 | 6,758,400 | n = int(input())
x = [int(i) for i in input().split()]
m = min(x)
lol = 1
if n <= 2:
lol = 69420
print("No")
while lol == 1:
m = m+1
if x.count(m) >= 1:
lol = 3
print(m)
else:
continue
| Title: Second Order Statistics
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
Output Specification:
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
Demo Input:
['4\n1 2 2 -4\n', '5\n1 2 3 1 1\n']
Demo Output:
['1\n', '2\n']
Note:
none | ```python
n = int(input())
x = [int(i) for i in input().split()]
m = min(x)
lol = 1
if n <= 2:
lol = 69420
print("No")
while lol == 1:
m = m+1
if x.count(m) >= 1:
lol = 3
print(m)
else:
continue
``` | 0 |
509 | A | Maximum in Table | PROGRAMMING | 800 | [
"brute force",
"implementation"
] | null | null | An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above. | The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table. | Print a single line containing a positive integer *m* — the maximum value in the table. | [
"1\n",
"5\n"
] | [
"1",
"70"
] | In the second test the rows of the table look as follows: | 0 | [
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,669,915,654 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 1 | 46 | 0 | print([0, 1, 5, 15, 35, 75, 140, 259, 435, 735, 1155, 1841, 2765, 4200, 6125, 8975, 12731, 18179, 25235, 35180, 48055, 65681, 88299, 118895, 157690][int(input())]) | Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* — the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows: | ```python
print([0, 1, 5, 15, 35, 75, 140, 259, 435, 735, 1155, 1841, 2765, 4200, 6125, 8975, 12731, 18179, 25235, 35180, 48055, 65681, 88299, 118895, 157690][int(input())])
``` | 0 |
|
665 | C | Simple Strings | PROGRAMMING | 1,300 | [
"dp",
"greedy",
"strings"
] | null | null | zscoder loves simple strings! A string *t* is called simple if every pair of adjacent characters are distinct. For example ab, aba, zscoder are simple whereas aa, add are not simple.
zscoder is given a string *s*. He wants to change a minimum number of characters so that the string *s* becomes simple. Help him with this task! | The only line contains the string *s* (1<=≤<=|*s*|<=≤<=2·105) — the string given to zscoder. The string *s* consists of only lowercase English letters. | Print the simple string *s*' — the string *s* after the minimal number of changes. If there are multiple solutions, you may output any of them.
Note that the string *s*' should also consist of only lowercase English letters. | [
"aab\n",
"caaab\n",
"zscoder\n"
] | [
"bab\n",
"cabab\n",
"zscoder\n"
] | none | 0 | [
{
"input": "aab",
"output": "bab"
},
{
"input": "caaab",
"output": "cabab"
},
{
"input": "zscoder",
"output": "zscoder"
},
{
"input": "u",
"output": "u"
},
{
"input": "h",
"output": "h"
},
{
"input": "dtottttotd",
"output": "dtotataotd"
},
{
"input": "rxxxrrxrxxxxxrrrrrxxxxrrrrxrxxrxxrxrxrrrxrrxrrxrxxxrxrrxrrxrxrxxxxxrxxxxrrrxrxxrxxrxxxrrrrrxrrxrrxrr",
"output": "rxaxraxrxaxaxrararxaxararaxrxarxarxrxrarxraxraxrxaxrxraxraxrxrxaxaxrxaxararxrxarxarxaxrararxraxraxra"
},
{
"input": "aazz",
"output": "baza"
},
{
"input": "zz",
"output": "za"
},
{
"input": "gg",
"output": "ga"
},
{
"input": "qasdasd",
"output": "qasdasd"
},
{
"input": "aa",
"output": "ba"
},
{
"input": "ab",
"output": "ab"
},
{
"input": "zza",
"output": "zba"
},
{
"input": "g",
"output": "g"
},
{
"input": "nnop",
"output": "naop"
},
{
"input": "xx",
"output": "xa"
}
] | 1,562,093,200 | 2,147,483,647 | Python 3 | TIME_LIMIT_EXCEEDED | TESTS | 0 | 2,000 | 0 | a=input()
for x in range (len(a)):
if a[x]==a[x-1]:
if a[x]=='z':
a.replace(a[x],"a")
continue
a.replace(a[x],chr(ord(a[x])+1))
while((x+1)<=len(a) and a[x+1]==a[x]):
if a[x]=='z':
a.replace(a[x],"a")
continue
a.replace(a[x],chr(ord(a[x])+1))
print(a)
| Title: Simple Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
zscoder loves simple strings! A string *t* is called simple if every pair of adjacent characters are distinct. For example ab, aba, zscoder are simple whereas aa, add are not simple.
zscoder is given a string *s*. He wants to change a minimum number of characters so that the string *s* becomes simple. Help him with this task!
Input Specification:
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=2·105) — the string given to zscoder. The string *s* consists of only lowercase English letters.
Output Specification:
Print the simple string *s*' — the string *s* after the minimal number of changes. If there are multiple solutions, you may output any of them.
Note that the string *s*' should also consist of only lowercase English letters.
Demo Input:
['aab\n', 'caaab\n', 'zscoder\n']
Demo Output:
['bab\n', 'cabab\n', 'zscoder\n']
Note:
none | ```python
a=input()
for x in range (len(a)):
if a[x]==a[x-1]:
if a[x]=='z':
a.replace(a[x],"a")
continue
a.replace(a[x],chr(ord(a[x])+1))
while((x+1)<=len(a) and a[x+1]==a[x]):
if a[x]=='z':
a.replace(a[x],"a")
continue
a.replace(a[x],chr(ord(a[x])+1))
print(a)
``` | 0 |
|
698 | B | Fix a Tree | PROGRAMMING | 1,700 | [
"constructive algorithms",
"dfs and similar",
"dsu",
"graphs",
"trees"
] | null | null | A tree is an undirected connected graph without cycles.
Let's consider a rooted undirected tree with *n* vertices, numbered 1 through *n*. There are many ways to represent such a tree. One way is to create an array with *n* integers *p*1,<=*p*2,<=...,<=*p**n*, where *p**i* denotes a parent of vertex *i* (here, for convenience a root is considered its own parent).
Given a sequence *p*1,<=*p*2,<=...,<=*p**n*, one is able to restore a tree:
1. There must be exactly one index *r* that *p**r*<==<=*r*. A vertex *r* is a root of the tree. 1. For all other *n*<=-<=1 vertices *i*, there is an edge between vertex *i* and vertex *p**i*.
A sequence *p*1,<=*p*2,<=...,<=*p**n* is called valid if the described procedure generates some (any) rooted tree. For example, for *n*<==<=3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.
You are given a sequence *a*1,<=*a*2,<=...,<=*a**n*, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them. | The first line of the input contains an integer *n* (2<=≤<=*n*<=≤<=200<=000) — the number of vertices in the tree.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*). | In the first line print the minimum number of elements to change, in order to get a valid sequence.
In the second line, print any valid sequence possible to get from (*a*1,<=*a*2,<=...,<=*a**n*) in the minimum number of changes. If there are many such sequences, any of them will be accepted. | [
"4\n2 3 3 4\n",
"5\n3 2 2 5 3\n",
"8\n2 3 5 4 1 6 6 7\n"
] | [
"1\n2 3 4 4 \n",
"0\n3 2 2 5 3 \n",
"2\n2 3 7 8 1 6 6 7\n"
] | In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because *p*<sub class="lower-index">4</sub> = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.
In the second sample, the given sequence is already valid. | 1,000 | [
{
"input": "4\n2 3 3 4",
"output": "1\n2 3 4 4 "
},
{
"input": "5\n3 2 2 5 3",
"output": "0\n3 2 2 5 3 "
},
{
"input": "8\n2 3 5 4 1 6 6 7",
"output": "2\n2 3 7 8 1 6 6 7"
},
{
"input": "2\n1 2",
"output": "1\n2 2 "
},
{
"input": "7\n4 3 2 6 3 5 2",
"output": "1\n4 3 3 6 3 5 2 "
},
{
"input": "6\n6 2 6 2 4 2",
"output": "0\n6 2 6 2 4 2 "
},
{
"input": "7\n1 6 4 4 5 6 7",
"output": "4\n7 6 4 7 7 7 7 "
},
{
"input": "7\n7 5 3 1 2 1 5",
"output": "1\n7 5 3 1 3 1 5 "
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "6\n7 7 7 7 7 7 7 "
},
{
"input": "18\n2 3 4 5 2 7 8 9 10 7 11 12 14 15 13 17 18 18",
"output": "5\n2 18 4 5 2 7 18 9 10 7 18 18 18 15 13 17 18 18 "
},
{
"input": "8\n2 1 2 2 6 5 6 6",
"output": "2\n1 1 2 2 1 5 6 6 "
},
{
"input": "3\n2 1 1",
"output": "1\n1 1 1 "
}
] | 1,674,080,691 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 4 | 61 | 0 | n=int(input())
arr=[int(h) for h in input().split()]
visited=[0]*n
change=[]
root=[]
for i in range(1,n+1):
if arr[i-1]==i:
root.append(i)
j=i
if visited[i-1]==1:
continue
h=set()
while j not in h:
h.add(j)
visited[j-1]=1
j=arr[j-1]
if j in h:
change.append(j)
change=list(set(change))
if len(root)==0:
print(len(change))
for f in change:
arr[f-1]=change[0]
print(*arr)
else:
print(len(change)-1)
for f in change:
arr[f-1]=root[0]
print(*arr)
| Title: Fix a Tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A tree is an undirected connected graph without cycles.
Let's consider a rooted undirected tree with *n* vertices, numbered 1 through *n*. There are many ways to represent such a tree. One way is to create an array with *n* integers *p*1,<=*p*2,<=...,<=*p**n*, where *p**i* denotes a parent of vertex *i* (here, for convenience a root is considered its own parent).
Given a sequence *p*1,<=*p*2,<=...,<=*p**n*, one is able to restore a tree:
1. There must be exactly one index *r* that *p**r*<==<=*r*. A vertex *r* is a root of the tree. 1. For all other *n*<=-<=1 vertices *i*, there is an edge between vertex *i* and vertex *p**i*.
A sequence *p*1,<=*p*2,<=...,<=*p**n* is called valid if the described procedure generates some (any) rooted tree. For example, for *n*<==<=3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.
You are given a sequence *a*1,<=*a*2,<=...,<=*a**n*, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.
Input Specification:
The first line of the input contains an integer *n* (2<=≤<=*n*<=≤<=200<=000) — the number of vertices in the tree.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*).
Output Specification:
In the first line print the minimum number of elements to change, in order to get a valid sequence.
In the second line, print any valid sequence possible to get from (*a*1,<=*a*2,<=...,<=*a**n*) in the minimum number of changes. If there are many such sequences, any of them will be accepted.
Demo Input:
['4\n2 3 3 4\n', '5\n3 2 2 5 3\n', '8\n2 3 5 4 1 6 6 7\n']
Demo Output:
['1\n2 3 4 4 \n', '0\n3 2 2 5 3 \n', '2\n2 3 7 8 1 6 6 7\n']
Note:
In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because *p*<sub class="lower-index">4</sub> = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.
In the second sample, the given sequence is already valid. | ```python
n=int(input())
arr=[int(h) for h in input().split()]
visited=[0]*n
change=[]
root=[]
for i in range(1,n+1):
if arr[i-1]==i:
root.append(i)
j=i
if visited[i-1]==1:
continue
h=set()
while j not in h:
h.add(j)
visited[j-1]=1
j=arr[j-1]
if j in h:
change.append(j)
change=list(set(change))
if len(root)==0:
print(len(change))
for f in change:
arr[f-1]=change[0]
print(*arr)
else:
print(len(change)-1)
for f in change:
arr[f-1]=root[0]
print(*arr)
``` | 0 |
|
908 | A | New Year and Counting Cards | PROGRAMMING | 800 | [
"brute force",
"implementation"
] | null | null | Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true. | The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit. | Print a single integer, the minimum number of cards you must turn over to verify your claim. | [
"ee\n",
"z\n",
"0ay1\n"
] | [
"2\n",
"0\n",
"2\n"
] | In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards. | 500 | [
{
"input": "ee",
"output": "2"
},
{
"input": "z",
"output": "0"
},
{
"input": "0ay1",
"output": "2"
},
{
"input": "0abcdefghijklmnopqrstuvwxyz1234567896",
"output": "10"
},
{
"input": "0a0a9e9e2i2i9o9o6u6u9z9z4x4x9b9b",
"output": "18"
},
{
"input": "01234567890123456789012345678901234567890123456789",
"output": "25"
},
{
"input": "qwertyuioplkjhgfdsazxcvbnmqwertyuioplkjhgfdsazxcvb",
"output": "10"
},
{
"input": "cjw2dwmr10pku4yxohe0wglktd",
"output": "4"
},
{
"input": "6z2tx805jie8cfybwtfqvmlveec3iak5z5u3lu62vbxyqht6",
"output": "13"
},
{
"input": "kaq7jyialrfp4ilkni90eq8v3amcbygon7py0hb8z26fbl8ss1",
"output": "13"
},
{
"input": "hpwn50zgbmct80k9rizjqg40nycgs0acwikjqt11nr6m61krfs",
"output": "8"
},
{
"input": "l3rw91a4m25l8iytxyeuixsegzcbm4h41ornf3pixkrmwznrzc",
"output": "14"
},
{
"input": "2222",
"output": "0"
},
{
"input": "13579",
"output": "5"
},
{
"input": "1",
"output": "1"
},
{
"input": "0",
"output": "0"
},
{
"input": "a",
"output": "1"
},
{
"input": "y",
"output": "0"
},
{
"input": "w",
"output": "0"
},
{
"input": "oo",
"output": "2"
},
{
"input": "oy",
"output": "1"
},
{
"input": "yo",
"output": "1"
},
{
"input": "yy",
"output": "0"
},
{
"input": "a0",
"output": "1"
},
{
"input": "a9",
"output": "2"
},
{
"input": "y0",
"output": "0"
},
{
"input": "y7",
"output": "1"
},
{
"input": "0a",
"output": "1"
},
{
"input": "3a",
"output": "2"
},
{
"input": "06",
"output": "0"
},
{
"input": "07",
"output": "1"
},
{
"input": "70",
"output": "1"
},
{
"input": "77",
"output": "2"
},
{
"input": "13570",
"output": "4"
},
{
"input": "0000000000011111",
"output": "5"
},
{
"input": "1357",
"output": "4"
},
{
"input": "uuuuuuuuuuuuuuuuuu",
"output": "18"
},
{
"input": "gabieurat",
"output": "5"
}
] | 1,525,718,985 | 2,147,483,647 | Python 3 | OK | TESTS | 38 | 93 | 7,065,600 | g = ['a','e','i','o','u']
ch = ['1','3','5','7','9',]
ans = 0
s = input()
n = len(s)
for i in range(n):
if (s[i] in ch or s[i] in g):
ans+=1
print(ans)
| Title: New Year and Counting Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
Input Specification:
The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
Output Specification:
Print a single integer, the minimum number of cards you must turn over to verify your claim.
Demo Input:
['ee\n', 'z\n', '0ay1\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards. | ```python
g = ['a','e','i','o','u']
ch = ['1','3','5','7','9',]
ans = 0
s = input()
n = len(s)
for i in range(n):
if (s[i] in ch or s[i] in g):
ans+=1
print(ans)
``` | 3 |
|
987 | B | High School: Become Human | PROGRAMMING | 1,100 | [
"math"
] | null | null | Year 2118. Androids are in mass production for decades now, and they do all the work for humans. But androids have to go to school to be able to solve creative tasks. Just like humans before.
It turns out that high school struggles are not gone. If someone is not like others, he is bullied. Vasya-8800 is an economy-class android which is produced by a little-known company. His design is not perfect, his characteristics also could be better. So he is bullied by other androids.
One of the popular pranks on Vasya is to force him to compare $x^y$ with $y^x$. Other androids can do it in milliseconds while Vasya's memory is too small to store such big numbers.
Please help Vasya! Write a fast program to compare $x^y$ with $y^x$ for Vasya, maybe then other androids will respect him. | On the only line of input there are two integers $x$ and $y$ ($1 \le x, y \le 10^{9}$). | If $x^y < y^x$, then print '<' (without quotes). If $x^y > y^x$, then print '>' (without quotes). If $x^y = y^x$, then print '=' (without quotes). | [
"5 8\n",
"10 3\n",
"6 6\n"
] | [
">\n",
"<\n",
"=\n"
] | In the first example $5^8 = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 390625$, and $8^5 = 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 = 32768$. So you should print '>'.
In the second example $10^3 = 1000 < 3^{10} = 59049$.
In the third example $6^6 = 46656 = 6^6$. | 1,000 | [
{
"input": "5 8",
"output": ">"
},
{
"input": "10 3",
"output": "<"
},
{
"input": "6 6",
"output": "="
},
{
"input": "14 1",
"output": ">"
},
{
"input": "2 4",
"output": "="
},
{
"input": "987654321 123456987",
"output": "<"
},
{
"input": "1 10",
"output": "<"
},
{
"input": "9 1",
"output": ">"
},
{
"input": "1 1",
"output": "="
},
{
"input": "2 2",
"output": "="
},
{
"input": "3 3",
"output": "="
},
{
"input": "4 4",
"output": "="
},
{
"input": "5 5",
"output": "="
},
{
"input": "2 3",
"output": "<"
},
{
"input": "2 5",
"output": ">"
},
{
"input": "3 2",
"output": ">"
},
{
"input": "3 4",
"output": ">"
},
{
"input": "3 5",
"output": ">"
},
{
"input": "4 2",
"output": "="
},
{
"input": "4 3",
"output": "<"
},
{
"input": "4 5",
"output": ">"
},
{
"input": "5 2",
"output": "<"
},
{
"input": "5 3",
"output": "<"
},
{
"input": "5 4",
"output": "<"
},
{
"input": "100 101",
"output": ">"
},
{
"input": "876543 372647",
"output": "<"
},
{
"input": "1000000000 999999999",
"output": "<"
},
{
"input": "1000000000 2",
"output": "<"
},
{
"input": "1000000000 1",
"output": ">"
},
{
"input": "987654321 123456789",
"output": "<"
},
{
"input": "1000000000 1000000000",
"output": "="
},
{
"input": "4359435 4396510",
"output": ">"
},
{
"input": "25936809 25936809",
"output": "="
},
{
"input": "53602896 3",
"output": "<"
},
{
"input": "13208659 1",
"output": ">"
},
{
"input": "620537015 620537016",
"output": ">"
},
{
"input": "56498103 56498102",
"output": "<"
},
{
"input": "4 1000000000",
"output": ">"
},
{
"input": "11 15",
"output": ">"
},
{
"input": "2 6",
"output": ">"
},
{
"input": "1 100",
"output": "<"
},
{
"input": "3 9",
"output": ">"
},
{
"input": "5 25",
"output": ">"
},
{
"input": "17 18",
"output": ">"
},
{
"input": "100 99",
"output": "<"
},
{
"input": "10000035 1000432",
"output": "<"
},
{
"input": "27 3",
"output": "<"
},
{
"input": "15657413 15657414",
"output": ">"
}
] | 1,623,777,709 | 2,147,483,647 | PyPy 3 | OK | TESTS | 48 | 93 | 0 | from math import log
x, y = map(int, input().strip().split(" "))
c, d = y*log(x), x*log(y)
# print(c, d)
if c < d:print("<")
elif c > d:print(">")
else:print("=")
| Title: High School: Become Human
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Year 2118. Androids are in mass production for decades now, and they do all the work for humans. But androids have to go to school to be able to solve creative tasks. Just like humans before.
It turns out that high school struggles are not gone. If someone is not like others, he is bullied. Vasya-8800 is an economy-class android which is produced by a little-known company. His design is not perfect, his characteristics also could be better. So he is bullied by other androids.
One of the popular pranks on Vasya is to force him to compare $x^y$ with $y^x$. Other androids can do it in milliseconds while Vasya's memory is too small to store such big numbers.
Please help Vasya! Write a fast program to compare $x^y$ with $y^x$ for Vasya, maybe then other androids will respect him.
Input Specification:
On the only line of input there are two integers $x$ and $y$ ($1 \le x, y \le 10^{9}$).
Output Specification:
If $x^y < y^x$, then print '<' (without quotes). If $x^y > y^x$, then print '>' (without quotes). If $x^y = y^x$, then print '=' (without quotes).
Demo Input:
['5 8\n', '10 3\n', '6 6\n']
Demo Output:
['>\n', '<\n', '=\n']
Note:
In the first example $5^8 = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 390625$, and $8^5 = 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 = 32768$. So you should print '>'.
In the second example $10^3 = 1000 < 3^{10} = 59049$.
In the third example $6^6 = 46656 = 6^6$. | ```python
from math import log
x, y = map(int, input().strip().split(" "))
c, d = y*log(x), x*log(y)
# print(c, d)
if c < d:print("<")
elif c > d:print(">")
else:print("=")
``` | 3 |
|
758 | A | Holiday Of Equality | PROGRAMMING | 800 | [
"implementation",
"math"
] | null | null | In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. | The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. | In the only line print the integer *S* — the minimum number of burles which are had to spend. | [
"5\n0 1 2 3 4\n",
"5\n1 1 0 1 1\n",
"3\n1 3 1\n",
"1\n12\n"
] | [
"10",
"1",
"4",
"0"
] | In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles. | 500 | [
{
"input": "5\n0 1 2 3 4",
"output": "10"
},
{
"input": "5\n1 1 0 1 1",
"output": "1"
},
{
"input": "3\n1 3 1",
"output": "4"
},
{
"input": "1\n12",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281",
"output": "5464380"
},
{
"input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353",
"output": "9535765"
},
{
"input": "3\n1 3 2",
"output": "3"
},
{
"input": "3\n2 1 3",
"output": "3"
},
{
"input": "3\n2 3 1",
"output": "3"
},
{
"input": "3\n3 1 2",
"output": "3"
},
{
"input": "3\n3 2 1",
"output": "3"
},
{
"input": "1\n228503",
"output": "0"
},
{
"input": "2\n32576 550340",
"output": "517764"
},
{
"input": "3\n910648 542843 537125",
"output": "741328"
},
{
"input": "4\n751720 572344 569387 893618",
"output": "787403"
},
{
"input": "6\n433864 631347 597596 794426 713555 231193",
"output": "1364575"
},
{
"input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107",
"output": "4647430"
},
{
"input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025",
"output": "13488674"
},
{
"input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763",
"output": "21993384"
},
{
"input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351",
"output": "26984185"
},
{
"input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642",
"output": "32816391"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n1000000",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "3\n5 0 0",
"output": "10"
},
{
"input": "5\n2 10 0 0 0",
"output": "38"
}
] | 1,688,377,481 | 2,147,483,647 | Python 3 | OK | TESTS | 41 | 46 | 0 | # https://codeforces.com/problemset/problem/758/A
citizens = int(input())
burles_per_citizen = list(map(int, input().split()))
richest_citizen_brules = max(burles_per_citizen)
burles_required = (richest_citizen_brules * citizens) - sum(burles_per_citizen)
print(burles_required)
| Title: Holiday Of Equality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
Input Specification:
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
Output Specification:
In the only line print the integer *S* — the minimum number of burles which are had to spend.
Demo Input:
['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n']
Demo Output:
['10', '1', '4', '0']
Note:
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles. | ```python
# https://codeforces.com/problemset/problem/758/A
citizens = int(input())
burles_per_citizen = list(map(int, input().split()))
richest_citizen_brules = max(burles_per_citizen)
burles_required = (richest_citizen_brules * citizens) - sum(burles_per_citizen)
print(burles_required)
``` | 3 |
|
841 | A | Generous Kefa | PROGRAMMING | 900 | [
"brute force",
"implementation"
] | null | null | One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all. | The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons. | Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary. | [
"4 2\naabb\n",
"6 3\naacaab\n"
] | [
"YES\n",
"NO\n"
] | In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO». | 500 | [
{
"input": "4 2\naabb",
"output": "YES"
},
{
"input": "6 3\naacaab",
"output": "NO"
},
{
"input": "2 2\nlu",
"output": "YES"
},
{
"input": "5 3\novvoo",
"output": "YES"
},
{
"input": "36 13\nbzbzcffczzcbcbzzfzbbfzfzzbfbbcbfccbf",
"output": "YES"
},
{
"input": "81 3\nooycgmvvrophvcvpoupepqllqttwcocuilvyxbyumdmmfapvpnxhjhxfuagpnntonibicaqjvwfhwxhbv",
"output": "NO"
},
{
"input": "100 100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"output": "YES"
},
{
"input": "100 1\nnubcvvjvbjgnjsdkajimdcxvewbcytvfkihunycdrlconddlwgzjasjlsrttlrzsumzpyumpveglfqzmaofbshbojmwuwoxxvrod",
"output": "NO"
},
{
"input": "100 13\nvyldolgryldqrvoldvzvrdrgorlorszddtgqvrlisxxrxdxlqtvtgsrqlzixoyrozxzogqxlsgzdddzqrgitxxritoolzolgrtvl",
"output": "YES"
},
{
"input": "18 6\njzwtnkvmscqhmdlsxy",
"output": "YES"
},
{
"input": "21 2\nfscegcqgzesefghhwcexs",
"output": "NO"
},
{
"input": "32 22\ncduamsptaklqtxlyoutlzepxgyfkvngc",
"output": "YES"
},
{
"input": "49 27\noxyorfnkzwsfllnyvdhdanppuzrnbxehugvmlkgeymqjlmfxd",
"output": "YES"
},
{
"input": "50 24\nxxutzjwbggcwvxztttkmzovtmuwttzcbwoztttohzzxghuuthv",
"output": "YES"
},
{
"input": "57 35\nglxshztrqqfyxthqamagvtmrdparhelnzrqvcwqxjytkbuitovkdxueul",
"output": "YES"
},
{
"input": "75 23\nittttiiuitutuiiuuututiuttiuiuutuuuiuiuuuuttuuttuutuiiuiuiiuiitttuututuiuuii",
"output": "NO"
},
{
"input": "81 66\nfeqevfqfebhvubhuuvfuqheuqhbeeuebehuvhffvbqvqvfbqqvvhevqffbqqhvvqhfeehuhqeqhueuqqq",
"output": "YES"
},
{
"input": "93 42\npqeiafraiavfcteumflpcbpozcomlvpovlzdbldvoopnhdoeqaopzthiuzbzmeieiatthdeqovaqfipqlddllmfcrrnhb",
"output": "YES"
},
{
"input": "100 53\nizszyqyndzwzyzgsdagdwdazadiawizinagqqgczaqqnawgijziziawzszdjdcqjdjqiwgadydcnqisaayjiqqsscwwzjzaycwwc",
"output": "YES"
},
{
"input": "100 14\nvkrdcqbvkwuckpmnbydmczdxoagdsgtqxvhaxntdcxhjcrjyvukhugoglbmyoaqexgtcfdgemmizoniwtmisqqwcwfusmygollab",
"output": "YES"
},
{
"input": "100 42\naaaaaiiiiaiiiaaiaiiaaiiiiiaaaaaiaiiiaiiiiaiiiaaaaaiiiaaaiiaaiiiaiiiaiaaaiaiiiiaaiiiaiiaiaiiaiiiaaaia",
"output": "NO"
},
{
"input": "100 89\ntjbkmydejporbqhcbztkcumxjjgsrvxpuulbhzeeckkbchpbxwhedrlhjsabcexcohgdzouvsgphjdthpuqrlkgzxvqbuhqxdsmf",
"output": "YES"
},
{
"input": "100 100\njhpyiuuzizhubhhpxbbhpyxzhbpjphzppuhiahihiappbhuypyauhizpbibzixjbzxzpbphuiaypyujappuxiyuyaajaxjupbahb",
"output": "YES"
},
{
"input": "100 3\nsszoovvzysavsvzsozzvoozvysozsaszayaszasaysszzzysosyayyvzozovavzoyavsooaoyvoozvvozsaosvayyovazzszzssa",
"output": "NO"
},
{
"input": "100 44\ndluthkxwnorabqsukgnxnvhmsmzilyulpursnxkdsavgemiuizbyzebhyjejgqrvuckhaqtuvdmpziesmpmewpvozdanjyvwcdgo",
"output": "YES"
},
{
"input": "100 90\ntljonbnwnqounictqqctgonktiqoqlocgoblngijqokuquoolciqwnctgoggcbojtwjlculoikbggquqncittwnjbkgkgubnioib",
"output": "YES"
},
{
"input": "100 79\nykxptzgvbqxlregvkvucewtydvnhqhuggdsyqlvcfiuaiddnrrnstityyehiamrggftsqyduwxpuldztyzgmfkehprrneyvtknmf",
"output": "YES"
},
{
"input": "100 79\naagwekyovbviiqeuakbqbqifwavkfkutoriovgfmittulhwojaptacekdirgqoovlleeoqkkdukpadygfwavppohgdrmymmulgci",
"output": "YES"
},
{
"input": "100 93\nearrehrehenaddhdnrdddhdahnadndheeennrearrhraharddreaeraddhehhhrdnredanndneheddrraaneerreedhnadnerhdn",
"output": "YES"
},
{
"input": "100 48\nbmmaebaebmmmbbmxvmammbvvebvaemvbbaxvbvmaxvvmveaxmbbxaaemxmxvxxxvxbmmxaaaevvaxmvamvvmaxaxavexbmmbmmev",
"output": "YES"
},
{
"input": "100 55\nhsavbkehaaesffaeeffakhkhfehbbvbeasahbbbvkesbfvkefeesesevbsvfkbffakvshsbkahfkfakebsvafkbvsskfhfvaasss",
"output": "YES"
},
{
"input": "100 2\ncscffcffsccffsfsfffccssfsscfsfsssffcffsscfccssfffcfscfsscsccccfsssffffcfcfsfffcsfsccffscffcfccccfffs",
"output": "NO"
},
{
"input": "100 3\nzrgznxgdpgfoiifrrrsjfuhvtqxjlgochhyemismjnanfvvpzzvsgajcbsulxyeoepjfwvhkqogiiwqxjkrpsyaqdlwffoockxnc",
"output": "NO"
},
{
"input": "100 5\njbltyyfjakrjeodqepxpkjideulofbhqzxjwlarufwzwsoxhaexpydpqjvhybmvjvntuvhvflokhshpicbnfgsqsmrkrfzcrswwi",
"output": "NO"
},
{
"input": "100 1\nfnslnqktlbmxqpvcvnemxcutebdwepoxikifkzaaixzzydffpdxodmsxjribmxuqhueifdlwzytxkklwhljswqvlejedyrgguvah",
"output": "NO"
},
{
"input": "100 21\nddjenetwgwmdtjbpzssyoqrtirvoygkjlqhhdcjgeurqpunxpupwaepcqkbjjfhnvgpyqnozhhrmhfwararmlcvpgtnopvjqsrka",
"output": "YES"
},
{
"input": "100 100\nnjrhiauqlgkkpkuvciwzivjbbplipvhslqgdkfnmqrxuxnycmpheenmnrglotzuyxycosfediqcuadklsnzjqzfxnbjwvfljnlvq",
"output": "YES"
},
{
"input": "100 100\nbbbbbbbtbbttbtbbbttbttbtbbttttbbbtbttbbbtbttbtbbttttbbbbbtbbttbtbbtbttbbbtbtbtbtbtbtbbbttbbtbtbtbbtb",
"output": "YES"
},
{
"input": "14 5\nfssmmsfffmfmmm",
"output": "NO"
},
{
"input": "2 1\nff",
"output": "NO"
},
{
"input": "2 1\nhw",
"output": "YES"
},
{
"input": "2 2\nss",
"output": "YES"
},
{
"input": "1 1\nl",
"output": "YES"
},
{
"input": "100 50\nfffffttttttjjjuuuvvvvvdddxxxxwwwwgggbsssncccczzyyyyyhhhhhkrreeeeeeaaaaaiiillllllllooooqqqqqqmmpppppp",
"output": "YES"
},
{
"input": "100 50\nbbbbbbbbgggggggggggaaaaaaaahhhhhhhhhhpppppppppsssssssrrrrrrrrllzzzzzzzeeeeeeekkkkkkkwwwwwwwwjjjjjjjj",
"output": "YES"
},
{
"input": "100 50\nwwwwwwwwwwwwwwxxxxxxxxxxxxxxxxxxxxxxxxzzzzzzzzzzzzzzzzzzbbbbbbbbbbbbbbbbbbbbjjjjjjjjjjjjjjjjjjjjjjjj",
"output": "YES"
},
{
"input": "100 80\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
"output": "YES"
},
{
"input": "100 10\nbbttthhhhiiiiiiijjjjjvvvvpppssssseeeeeeewwwwgggkkkkkkkkmmmddddduuuzzzzllllnnnnnxxyyyffffccraaaaooooq",
"output": "YES"
},
{
"input": "100 20\nssssssssssbbbbbbbhhhhhhhyyyyyyyzzzzzzzzzzzzcccccxxxxxxxxxxddddmmmmmmmeeeeeeejjjjjjjjjwwwwwwwtttttttt",
"output": "YES"
},
{
"input": "1 2\na",
"output": "YES"
},
{
"input": "3 1\nabb",
"output": "NO"
},
{
"input": "2 1\naa",
"output": "NO"
},
{
"input": "2 1\nab",
"output": "YES"
},
{
"input": "6 2\naaaaaa",
"output": "NO"
},
{
"input": "8 4\naaaaaaaa",
"output": "NO"
},
{
"input": "4 2\naaaa",
"output": "NO"
},
{
"input": "4 3\naaaa",
"output": "NO"
},
{
"input": "1 3\na",
"output": "YES"
},
{
"input": "4 3\nzzzz",
"output": "NO"
},
{
"input": "4 1\naaaa",
"output": "NO"
},
{
"input": "3 4\nabc",
"output": "YES"
},
{
"input": "2 5\nab",
"output": "YES"
},
{
"input": "2 4\nab",
"output": "YES"
},
{
"input": "1 10\na",
"output": "YES"
},
{
"input": "5 2\nzzzzz",
"output": "NO"
},
{
"input": "53 26\naaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "NO"
},
{
"input": "4 1\nabab",
"output": "NO"
},
{
"input": "4 1\nabcb",
"output": "NO"
},
{
"input": "4 2\nabbb",
"output": "NO"
},
{
"input": "5 2\nabccc",
"output": "NO"
},
{
"input": "2 3\nab",
"output": "YES"
},
{
"input": "4 3\nbbbs",
"output": "YES"
},
{
"input": "10 2\nazzzzzzzzz",
"output": "NO"
},
{
"input": "1 2\nb",
"output": "YES"
},
{
"input": "1 3\nb",
"output": "YES"
},
{
"input": "4 5\nabcd",
"output": "YES"
},
{
"input": "4 6\naabb",
"output": "YES"
},
{
"input": "5 2\naaaab",
"output": "NO"
},
{
"input": "3 5\naaa",
"output": "YES"
},
{
"input": "5 3\nazzzz",
"output": "NO"
},
{
"input": "4 100\naabb",
"output": "YES"
},
{
"input": "3 10\naaa",
"output": "YES"
},
{
"input": "3 4\naaa",
"output": "YES"
},
{
"input": "12 5\naaaaabbbbbbb",
"output": "NO"
},
{
"input": "5 2\naabbb",
"output": "NO"
},
{
"input": "10 5\nzzzzzzzzzz",
"output": "NO"
},
{
"input": "2 4\naa",
"output": "YES"
},
{
"input": "1 5\na",
"output": "YES"
},
{
"input": "10 5\naaaaaaaaaa",
"output": "NO"
},
{
"input": "6 3\naaaaaa",
"output": "NO"
},
{
"input": "7 1\nabcdeee",
"output": "NO"
},
{
"input": "18 3\naaaaaabbbbbbcccccc",
"output": "NO"
},
{
"input": "8 2\naabbccdd",
"output": "YES"
},
{
"input": "4 2\nzzzz",
"output": "NO"
},
{
"input": "4 2\nabaa",
"output": "NO"
},
{
"input": "3 2\naaa",
"output": "NO"
},
{
"input": "3 1\nzzz",
"output": "NO"
},
{
"input": "5 4\nzzzzz",
"output": "NO"
},
{
"input": "6 2\naabbbc",
"output": "NO"
},
{
"input": "3 6\naaa",
"output": "YES"
},
{
"input": "2 1\nzz",
"output": "NO"
},
{
"input": "10 3\naaaeeeeeee",
"output": "NO"
},
{
"input": "4 5\naabb",
"output": "YES"
},
{
"input": "3 1\naaa",
"output": "NO"
},
{
"input": "5 2\naazzz",
"output": "NO"
},
{
"input": "6 2\nabbbbc",
"output": "NO"
},
{
"input": "4 2\nxxxx",
"output": "NO"
},
{
"input": "6 3\nzzzzzz",
"output": "NO"
},
{
"input": "3 2\nabb",
"output": "YES"
},
{
"input": "3 2\nzzz",
"output": "NO"
},
{
"input": "6 5\nzzzzzz",
"output": "NO"
},
{
"input": "6 3\nbcaaaa",
"output": "NO"
},
{
"input": "100 100\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "3 6\nabc",
"output": "YES"
}
] | 1,651,129,279 | 2,147,483,647 | Python 3 | OK | TESTS | 114 | 46 | 0 | n, k = map(int, input().split())
s = input()
d = {}
count = 0
for i in s:
if i in d:
d[i] += 1
else:
d[i] = 1
for j in d:
if d[j]>k:
count+=1
if count>0:
print('NO')
else:
print('YES') | Title: Generous Kefa
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons.
Output Specification:
Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary.
Demo Input:
['4 2\naabb\n', '6 3\naacaab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO». | ```python
n, k = map(int, input().split())
s = input()
d = {}
count = 0
for i in s:
if i in d:
d[i] += 1
else:
d[i] = 1
for j in d:
if d[j]>k:
count+=1
if count>0:
print('NO')
else:
print('YES')
``` | 3 |
|
544 | B | Sea and Islands | PROGRAMMING | 1,400 | [
"constructive algorithms",
"implementation"
] | null | null | A map of some object is a rectangular field consisting of *n* rows and *n* columns. Each cell is initially occupied by the sea but you can cover some some cells of the map with sand so that exactly *k* islands appear on the map. We will call a set of sand cells to be island if it is possible to get from each of them to each of them by moving only through sand cells and by moving from a cell only to a side-adjacent cell. The cells are called to be side-adjacent if they share a vertical or horizontal side. It is easy to see that islands do not share cells (otherwise they together form a bigger island).
Find a way to cover some cells with sand so that exactly *k* islands appear on the *n*<=×<=*n* map, or determine that no such way exists. | The single line contains two positive integers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*2) — the size of the map and the number of islands you should form. | If the answer doesn't exist, print "NO" (without the quotes) in a single line.
Otherwise, print "YES" in the first line. In the next *n* lines print the description of the map. Each of the lines of the description must consist only of characters 'S' and 'L', where 'S' is a cell that is occupied by the sea and 'L' is the cell covered with sand. The length of each line of the description must equal *n*.
If there are multiple answers, you may print any of them.
You should not maximize the sizes of islands. | [
"5 2\n",
"5 25\n"
] | [
"YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS\n",
"NO\n"
] | none | 1,000 | [
{
"input": "5 2",
"output": "YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS"
},
{
"input": "5 25",
"output": "NO"
},
{
"input": "82 6047",
"output": "NO"
},
{
"input": "6 5",
"output": "YES\nLSLSLS\nSLSLSS\nSSSSSS\nSSSSSS\nSSSSSS\nSSSSSS"
},
{
"input": "10 80",
"output": "NO"
},
{
"input": "48 1279",
"output": "NO"
},
{
"input": "40 1092",
"output": "NO"
},
{
"input": "9 12",
"output": "YES\nLSLSLSLSL\nSLSLSLSLS\nLSLSLSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS"
},
{
"input": "43 146",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSS..."
},
{
"input": "100 5000",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..."
},
{
"input": "100 4999",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..."
},
{
"input": "100 5001",
"output": "NO"
},
{
"input": "99 4901",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..."
},
{
"input": "99 4900",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..."
},
{
"input": "99 4902",
"output": "NO"
},
{
"input": "99 9801",
"output": "NO"
},
{
"input": "99 10",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..."
},
{
"input": "99 1",
"output": "YES\nLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..."
},
{
"input": "100 10000",
"output": "NO"
},
{
"input": "100 10",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..."
},
{
"input": "50 1200",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL..."
},
{
"input": "50 1438",
"output": "NO"
},
{
"input": "50 2447",
"output": "NO"
},
{
"input": "49 1719",
"output": "NO"
},
{
"input": "51 1996",
"output": "NO"
},
{
"input": "51 1981",
"output": "NO"
},
{
"input": "34 1060",
"output": "NO"
},
{
"input": "74 3901",
"output": "NO"
},
{
"input": "65 617",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..."
},
{
"input": "89 497",
"output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..."
},
{
"input": "34 621",
"output": "NO"
},
{
"input": "1 0",
"output": "YES\nS"
},
{
"input": "10 0",
"output": "YES\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS"
},
{
"input": "11 0",
"output": "YES\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS"
},
{
"input": "99 0",
"output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..."
},
{
"input": "100 0",
"output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..."
},
{
"input": "1 1",
"output": "YES\nL"
},
{
"input": "2 1",
"output": "YES\nLS\nSS"
},
{
"input": "2 0",
"output": "YES\nSS\nSS"
},
{
"input": "2 2",
"output": "YES\nLS\nSL"
},
{
"input": "2 3",
"output": "NO"
},
{
"input": "2 4",
"output": "NO"
}
] | 1,673,173,570 | 2,147,483,647 | PyPy 3-64 | WRONG_ANSWER | TESTS | 8 | 77 | 0 | from collections import defaultdict, Counter
from math import dist, ceil, floor, sqrt, log
from sys import stdin
inp = stdin.readline
def IA(sep=' '): return list(map(int, inp().split(sep)))
def FA(): return list(map(float, inp().split()))
def SA(): return inp().split()
def I(): return int(inp())
def F(): return float(inp())
def S(): return input()
def O(l: list): return ' '.join(map(str, l))
def main():
n, k = IA()
if n % 2:
z = (n+1)//2
m = z*2 + (n-z)
else:
m = n*n//2
if k > m:
print("NO")
return
print("YES")
mat = [['S'] * n for i in range(n)]
c = 0
for i in range(n):
for j in range(n):
if c < k and ((i%2==0 and j%2==0) or (i%2==1 and j%2==1)):
mat[i][j] = 'L'
c += 1
print(''.join(mat[i]))
return
if __name__ == '__main__':
main()
| Title: Sea and Islands
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A map of some object is a rectangular field consisting of *n* rows and *n* columns. Each cell is initially occupied by the sea but you can cover some some cells of the map with sand so that exactly *k* islands appear on the map. We will call a set of sand cells to be island if it is possible to get from each of them to each of them by moving only through sand cells and by moving from a cell only to a side-adjacent cell. The cells are called to be side-adjacent if they share a vertical or horizontal side. It is easy to see that islands do not share cells (otherwise they together form a bigger island).
Find a way to cover some cells with sand so that exactly *k* islands appear on the *n*<=×<=*n* map, or determine that no such way exists.
Input Specification:
The single line contains two positive integers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*2) — the size of the map and the number of islands you should form.
Output Specification:
If the answer doesn't exist, print "NO" (without the quotes) in a single line.
Otherwise, print "YES" in the first line. In the next *n* lines print the description of the map. Each of the lines of the description must consist only of characters 'S' and 'L', where 'S' is a cell that is occupied by the sea and 'L' is the cell covered with sand. The length of each line of the description must equal *n*.
If there are multiple answers, you may print any of them.
You should not maximize the sizes of islands.
Demo Input:
['5 2\n', '5 25\n']
Demo Output:
['YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS\n', 'NO\n']
Note:
none | ```python
from collections import defaultdict, Counter
from math import dist, ceil, floor, sqrt, log
from sys import stdin
inp = stdin.readline
def IA(sep=' '): return list(map(int, inp().split(sep)))
def FA(): return list(map(float, inp().split()))
def SA(): return inp().split()
def I(): return int(inp())
def F(): return float(inp())
def S(): return input()
def O(l: list): return ' '.join(map(str, l))
def main():
n, k = IA()
if n % 2:
z = (n+1)//2
m = z*2 + (n-z)
else:
m = n*n//2
if k > m:
print("NO")
return
print("YES")
mat = [['S'] * n for i in range(n)]
c = 0
for i in range(n):
for j in range(n):
if c < k and ((i%2==0 and j%2==0) or (i%2==1 and j%2==1)):
mat[i][j] = 'L'
c += 1
print(''.join(mat[i]))
return
if __name__ == '__main__':
main()
``` | 0 |
|
69 | A | Young Physicist | PROGRAMMING | 1,000 | [
"implementation",
"math"
] | A. Young Physicist | 2 | 256 | A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. | The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). | Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. | [
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] | [
"NO",
"YES"
] | none | 500 | [
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,622,131,094 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 62 | 0 | def vectorAddition(t, lst):
sum1 = 0
sum2 = 0
sum3 = 0
for i in range(len(lst)):
sum1 += lst[i][0]
sum2 += lst[i][1]
sum3 += lst[i][2]
if (sum1 == 0 and sum2 == 0 and
sum3 == 0):
print("YES")
else:
print("NO") | Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none | ```python
def vectorAddition(t, lst):
sum1 = 0
sum2 = 0
sum3 = 0
for i in range(len(lst)):
sum1 += lst[i][0]
sum2 += lst[i][1]
sum3 += lst[i][2]
if (sum1 == 0 and sum2 == 0 and
sum3 == 0):
print("YES")
else:
print("NO")
``` | 0 |
501 | A | Contest | PROGRAMMING | 900 | [
"implementation"
] | null | null | Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth. | The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round). | Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points. | [
"500 1000 20 30\n",
"1000 1000 1 1\n",
"1500 1000 176 177\n"
] | [
"Vasya\n",
"Tie\n",
"Misha\n"
] | none | 500 | [
{
"input": "500 1000 20 30",
"output": "Vasya"
},
{
"input": "1000 1000 1 1",
"output": "Tie"
},
{
"input": "1500 1000 176 177",
"output": "Misha"
},
{
"input": "1500 1000 74 177",
"output": "Misha"
},
{
"input": "750 2500 175 178",
"output": "Vasya"
},
{
"input": "750 1000 54 103",
"output": "Tie"
},
{
"input": "2000 1250 176 130",
"output": "Tie"
},
{
"input": "1250 1750 145 179",
"output": "Tie"
},
{
"input": "2000 2000 176 179",
"output": "Tie"
},
{
"input": "1500 1500 148 148",
"output": "Tie"
},
{
"input": "2750 1750 134 147",
"output": "Misha"
},
{
"input": "3250 250 175 173",
"output": "Misha"
},
{
"input": "500 500 170 176",
"output": "Misha"
},
{
"input": "250 1000 179 178",
"output": "Vasya"
},
{
"input": "3250 1000 160 138",
"output": "Misha"
},
{
"input": "3000 2000 162 118",
"output": "Tie"
},
{
"input": "1500 1250 180 160",
"output": "Tie"
},
{
"input": "1250 2500 100 176",
"output": "Tie"
},
{
"input": "3500 3500 177 178",
"output": "Tie"
},
{
"input": "3000 3250 16 34",
"output": "Tie"
},
{
"input": "1750 3000 137 49",
"output": "Vasya"
},
{
"input": "500 1500 179 71",
"output": "Vasya"
},
{
"input": "1250 2000 101 180",
"output": "Misha"
},
{
"input": "250 750 180 176",
"output": "Vasya"
},
{
"input": "2250 2250 163 145",
"output": "Vasya"
},
{
"input": "3000 3000 176 78",
"output": "Vasya"
},
{
"input": "250 3500 8 178",
"output": "Vasya"
},
{
"input": "1750 1250 179 180",
"output": "Misha"
},
{
"input": "2750 1750 13 164",
"output": "Misha"
},
{
"input": "1750 2250 178 53",
"output": "Vasya"
},
{
"input": "2500 2750 73 179",
"output": "Misha"
},
{
"input": "1000 3500 178 175",
"output": "Vasya"
},
{
"input": "1000 500 7 162",
"output": "Misha"
},
{
"input": "1000 250 175 48",
"output": "Misha"
},
{
"input": "1750 500 166 177",
"output": "Misha"
},
{
"input": "250 250 0 0",
"output": "Tie"
},
{
"input": "250 3500 0 0",
"output": "Vasya"
},
{
"input": "250 3500 0 180",
"output": "Vasya"
},
{
"input": "3500 3500 180 180",
"output": "Tie"
},
{
"input": "3500 250 0 180",
"output": "Misha"
}
] | 1,563,454,439 | 2,147,483,647 | Python 3 | OK | TESTS | 40 | 124 | 0 | a,b,c,d=map(int,input().split())
x=max((3*a//10),(a-(a//250*c)))
y=max((3*b//10),(b-((b//250)*d)))
# print(x,y)
if y>x:
print('Vasya')
elif x>y:
print('Misha')
else:
print('Tie') | Title: Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
Input Specification:
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output Specification:
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
Demo Input:
['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n']
Demo Output:
['Vasya\n', 'Tie\n', 'Misha\n']
Note:
none | ```python
a,b,c,d=map(int,input().split())
x=max((3*a//10),(a-(a//250*c)))
y=max((3*b//10),(b-((b//250)*d)))
# print(x,y)
if y>x:
print('Vasya')
elif x>y:
print('Misha')
else:
print('Tie')
``` | 3 |
|
275 | A | Lights Out | PROGRAMMING | 900 | [
"implementation"
] | null | null | Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.
Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light. | The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed. | Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0". | [
"1 0 0\n0 0 0\n0 0 1\n",
"1 0 1\n8 8 8\n2 0 3\n"
] | [
"001\n010\n100\n",
"010\n011\n100\n"
] | none | 500 | [
{
"input": "1 0 0\n0 0 0\n0 0 1",
"output": "001\n010\n100"
},
{
"input": "1 0 1\n8 8 8\n2 0 3",
"output": "010\n011\n100"
},
{
"input": "13 85 77\n25 50 45\n65 79 9",
"output": "000\n010\n000"
},
{
"input": "96 95 5\n8 84 74\n67 31 61",
"output": "011\n011\n101"
},
{
"input": "24 54 37\n60 63 6\n1 84 26",
"output": "110\n101\n011"
},
{
"input": "23 10 40\n15 6 40\n92 80 77",
"output": "101\n100\n000"
},
{
"input": "62 74 80\n95 74 93\n2 47 95",
"output": "010\n001\n110"
},
{
"input": "80 83 48\n26 0 66\n47 76 37",
"output": "000\n000\n010"
},
{
"input": "32 15 65\n7 54 36\n5 51 3",
"output": "111\n101\n001"
},
{
"input": "22 97 12\n71 8 24\n100 21 64",
"output": "100\n001\n100"
},
{
"input": "46 37 13\n87 0 50\n90 8 55",
"output": "111\n011\n000"
},
{
"input": "57 43 58\n20 82 83\n66 16 52",
"output": "111\n010\n110"
},
{
"input": "45 56 93\n47 51 59\n18 51 63",
"output": "101\n011\n100"
},
{
"input": "47 66 67\n14 1 37\n27 81 69",
"output": "001\n001\n110"
},
{
"input": "26 69 69\n85 18 23\n14 22 74",
"output": "110\n001\n010"
},
{
"input": "10 70 65\n94 27 25\n74 66 30",
"output": "111\n010\n100"
},
{
"input": "97 1 74\n15 99 1\n88 68 86",
"output": "001\n011\n000"
},
{
"input": "36 48 42\n45 41 66\n26 64 1",
"output": "001\n111\n010"
},
{
"input": "52 81 97\n29 77 71\n66 11 2",
"output": "100\n100\n111"
},
{
"input": "18 66 33\n19 49 49\n48 46 26",
"output": "011\n100\n000"
},
{
"input": "68 79 52\n51 39 100\n29 14 26",
"output": "110\n000\n111"
},
{
"input": "91 69 77\n91 26 64\n91 88 57",
"output": "001\n011\n110"
},
{
"input": "16 69 64\n48 21 80\n81 51 51",
"output": "010\n101\n111"
},
{
"input": "96 14 2\n100 18 12\n65 34 89",
"output": "111\n010\n010"
},
{
"input": "93 95 90\n8 59 42\n53 13 19",
"output": "100\n001\n111"
},
{
"input": "71 84 18\n100 19 67\n9 76 15",
"output": "010\n010\n001"
},
{
"input": "38 93 85\n21 88 64\n4 96 25",
"output": "111\n011\n000"
},
{
"input": "75 20 20\n60 5 78\n77 4 69",
"output": "011\n001\n000"
},
{
"input": "65 70 96\n19 6 83\n33 37 82",
"output": "100\n000\n011"
},
{
"input": "11 13 60\n17 13 46\n42 21 39",
"output": "000\n011\n101"
},
{
"input": "0 0 0\n0 0 0\n0 0 0",
"output": "111\n111\n111"
},
{
"input": "0 0 0\n0 1 0\n0 0 0",
"output": "101\n000\n101"
},
{
"input": "0 0 0\n0 0 0\n0 0 1",
"output": "111\n110\n100"
}
] | 1,588,962,099 | 2,147,483,647 | Python 3 | OK | TESTS | 33 | 124 | 6,963,200 | import sys
input = sys.stdin.readline
def inlt():
return (list(map(int, input().split())))
def solve(m):
def helper(mat, i, j):
direction = [(0,0), (-1, 0), (1, 0), (0, -1), (0, 1)]
for d in direction:
if i + d[0] > -1 and i + d[0] < 3 and j + d[1] > -1 and j + d[1] < 3:
if mat[i + d[0]][j + d[1]] == 0:
mat[i + d[0]][j + d[1]] = 1
else:
mat[i + d[0]][j + d[1]] = 0
return mat
mat = [[1] * 3 for _ in range(3)]
for r in range(3):
for c in range(3):
if m[r][c] % 2 != 0:
mat = helper(mat, r, c)
return mat
if __name__ == '__main__':
m = []
for i in range(3):
m.append(inlt())
mat = solve(m)
for i in range(3):
print("".join(map(str, mat[i])))
| Title: Lights Out
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.
Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.
Input Specification:
The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed.
Output Specification:
Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0".
Demo Input:
['1 0 0\n0 0 0\n0 0 1\n', '1 0 1\n8 8 8\n2 0 3\n']
Demo Output:
['001\n010\n100\n', '010\n011\n100\n']
Note:
none | ```python
import sys
input = sys.stdin.readline
def inlt():
return (list(map(int, input().split())))
def solve(m):
def helper(mat, i, j):
direction = [(0,0), (-1, 0), (1, 0), (0, -1), (0, 1)]
for d in direction:
if i + d[0] > -1 and i + d[0] < 3 and j + d[1] > -1 and j + d[1] < 3:
if mat[i + d[0]][j + d[1]] == 0:
mat[i + d[0]][j + d[1]] = 1
else:
mat[i + d[0]][j + d[1]] = 0
return mat
mat = [[1] * 3 for _ in range(3)]
for r in range(3):
for c in range(3):
if m[r][c] % 2 != 0:
mat = helper(mat, r, c)
return mat
if __name__ == '__main__':
m = []
for i in range(3):
m.append(inlt())
mat = solve(m)
for i in range(3):
print("".join(map(str, mat[i])))
``` | 3 |
|
629 | A | Far Relative’s Birthday Cake | PROGRAMMING | 800 | [
"brute force",
"combinatorics",
"constructive algorithms",
"implementation"
] | null | null | Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. | In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. | Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. | [
"3\n.CC\nC..\nC.C\n",
"4\nCC..\nC..C\n.CC.\n.CC.\n"
] | [
"4\n",
"9\n"
] | If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3) | 500 | [
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "4\nCC..\nC..C\n.CC.\n.CC.",
"output": "9"
},
{
"input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C",
"output": "46"
},
{
"input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.",
"output": "84"
},
{
"input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.",
"output": "80"
},
{
"input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C",
"output": "144"
},
{
"input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC",
"output": "190"
},
{
"input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..",
"output": "228"
},
{
"input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..",
"output": "2103"
},
{
"input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC",
"output": "2071"
},
{
"input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.",
"output": "1160"
},
{
"input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C",
"output": "789"
},
{
"input": "1\n.",
"output": "0"
},
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C",
"output": "529"
},
{
"input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C",
"output": "874"
},
{
"input": "2\nCC\nCC",
"output": "4"
},
{
"input": "3\nC..\nC..\nC..",
"output": "3"
}
] | 1,613,068,342 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 2 | 62 | 0 | n = int(input())
cake = []
for i in range(n):
s = input()
cake.append(s)
count = 0
for i in range(n-1):
for j in range(n-1):
if cake[i][j] == cake[i][j+1]:
count += 1
if cake[i][j] == cake[i+1][j]:
count += 1
print(count) | Title: Far Relative’s Birthday Cake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
Input Specification:
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Output Specification:
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
Demo Input:
['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n']
Demo Output:
['4\n', '9\n']
Note:
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3) | ```python
n = int(input())
cake = []
for i in range(n):
s = input()
cake.append(s)
count = 0
for i in range(n-1):
for j in range(n-1):
if cake[i][j] == cake[i][j+1]:
count += 1
if cake[i][j] == cake[i+1][j]:
count += 1
print(count)
``` | 0 |
|
287 | B | Pipeline | PROGRAMMING | 1,700 | [
"binary search",
"math"
] | null | null | Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly *n* houses in Ultimate Thule, Vova wants the city to have exactly *n* pipes, each such pipe should be connected to the water supply. A pipe can be connected to the water supply if there's water flowing out of it. Initially Vova has only one pipe with flowing water. Besides, Vova has several splitters.
A splitter is a construction that consists of one input (it can be connected to a water pipe) and *x* output pipes. When a splitter is connected to a water pipe, water flows from each output pipe. You can assume that the output pipes are ordinary pipes. For example, you can connect water supply to such pipe if there's water flowing out from it. At most one splitter can be connected to any water pipe.
Vova has one splitter of each kind: with 2, 3, 4, ..., *k* outputs. Help Vova use the minimum number of splitters to build the required pipeline or otherwise state that it's impossible.
Vova needs the pipeline to have exactly *n* pipes with flowing out water. Note that some of those pipes can be the output pipes of the splitters. | The first line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. | Print a single integer — the minimum number of splitters needed to build the pipeline. If it is impossible to build a pipeline with the given splitters, print -1. | [
"4 3\n",
"5 5\n",
"8 4\n"
] | [
"2\n",
"1\n",
"-1\n"
] | none | 1,500 | [
{
"input": "4 3",
"output": "2"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "8 4",
"output": "-1"
},
{
"input": "1000000000000000000 1000000000",
"output": "-1"
},
{
"input": "499999998500000001 1000000000",
"output": "999955279"
},
{
"input": "499999998500000000 1000000000",
"output": "999955279"
},
{
"input": "499999999500000000 1000000000",
"output": "999999998"
},
{
"input": "499999999500000001 1000000000",
"output": "999999999"
},
{
"input": "525 34",
"output": "25"
},
{
"input": "223265034477 726990",
"output": "440662"
},
{
"input": "15597035789572051 185473109",
"output": "128849771"
},
{
"input": "499999999500000002 1000000000",
"output": "-1"
},
{
"input": "1 1000000000",
"output": "0"
},
{
"input": "1000000000 2",
"output": "-1"
},
{
"input": "462498979 204468265",
"output": "3"
},
{
"input": "2107921 542531",
"output": "4"
},
{
"input": "131 49",
"output": "3"
},
{
"input": "20171878992939541 200857557",
"output": "200853401"
},
{
"input": "399812655947 894219",
"output": "893030"
},
{
"input": "93 17",
"output": "8"
},
{
"input": "1000000000 999999999",
"output": "2"
},
{
"input": "100000000000000000 1000000000",
"output": "105572810"
}
] | 1,654,618,408 | 2,147,483,647 | Python 3 | RUNTIME_ERROR | TESTS | 0 | 31 | 0 | class Pipeline :
@staticmethod
def sumOfPipes( n, k) :
left = 1
right = k
while (left < right) :
mid = (left + right) / 2
s = Pipeline.sum(mid, k)
if (s == n) :
return k - mid + 1
elif(s > n) :
left = mid + 1
else :
right = mid
return k - left + 2
@staticmethod
def sum( left, right) :
s = 0
if (left <= right) :
s = Pipeline.sum(right) - Pipeline.sum(left - 1)
return s
@staticmethod
def sum( k) :
return k * (k + 1) / 2
@staticmethod
def main( args) :
n = input()
k = input()
if (n == 1) :
print(0)
elif(k >= n) :
print(1)
else :
n -= 1
k -= 1
if (Pipeline.sum(k) < n) :
print(-1)
else :
print(Pipeline.sumOfPipes(n, k))
if __name__=="__main__":
Pipeline.main([]) | Title: Pipeline
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly *n* houses in Ultimate Thule, Vova wants the city to have exactly *n* pipes, each such pipe should be connected to the water supply. A pipe can be connected to the water supply if there's water flowing out of it. Initially Vova has only one pipe with flowing water. Besides, Vova has several splitters.
A splitter is a construction that consists of one input (it can be connected to a water pipe) and *x* output pipes. When a splitter is connected to a water pipe, water flows from each output pipe. You can assume that the output pipes are ordinary pipes. For example, you can connect water supply to such pipe if there's water flowing out from it. At most one splitter can be connected to any water pipe.
Vova has one splitter of each kind: with 2, 3, 4, ..., *k* outputs. Help Vova use the minimum number of splitters to build the required pipeline or otherwise state that it's impossible.
Vova needs the pipeline to have exactly *n* pipes with flowing out water. Note that some of those pipes can be the output pipes of the splitters.
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print a single integer — the minimum number of splitters needed to build the pipeline. If it is impossible to build a pipeline with the given splitters, print -1.
Demo Input:
['4 3\n', '5 5\n', '8 4\n']
Demo Output:
['2\n', '1\n', '-1\n']
Note:
none | ```python
class Pipeline :
@staticmethod
def sumOfPipes( n, k) :
left = 1
right = k
while (left < right) :
mid = (left + right) / 2
s = Pipeline.sum(mid, k)
if (s == n) :
return k - mid + 1
elif(s > n) :
left = mid + 1
else :
right = mid
return k - left + 2
@staticmethod
def sum( left, right) :
s = 0
if (left <= right) :
s = Pipeline.sum(right) - Pipeline.sum(left - 1)
return s
@staticmethod
def sum( k) :
return k * (k + 1) / 2
@staticmethod
def main( args) :
n = input()
k = input()
if (n == 1) :
print(0)
elif(k >= n) :
print(1)
else :
n -= 1
k -= 1
if (Pipeline.sum(k) < n) :
print(-1)
else :
print(Pipeline.sumOfPipes(n, k))
if __name__=="__main__":
Pipeline.main([])
``` | -1 |
|
599 | A | Patrick and Shopping | PROGRAMMING | 800 | [
"implementation"
] | null | null | Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house.
Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled. | The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths.
- *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops. | Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house. | [
"10 20 30\n",
"1 1 5\n"
] | [
"60\n",
"4\n"
] | The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. | 500 | [
{
"input": "10 20 30",
"output": "60"
},
{
"input": "1 1 5",
"output": "4"
},
{
"input": "100 33 34",
"output": "134"
},
{
"input": "777 777 777",
"output": "2331"
},
{
"input": "2 2 8",
"output": "8"
},
{
"input": "12 34 56",
"output": "92"
},
{
"input": "789 101112 131415",
"output": "203802"
},
{
"input": "27485716 99999999 35182",
"output": "55041796"
},
{
"input": "1 293548 5",
"output": "12"
},
{
"input": "12059 259855 5874875",
"output": "543828"
},
{
"input": "46981 105809 585858",
"output": "305580"
},
{
"input": "9889 1221 2442",
"output": "7326"
},
{
"input": "100500 200600 300700",
"output": "601800"
},
{
"input": "318476 318476 318476",
"output": "955428"
},
{
"input": "23985 3353 75633",
"output": "54676"
},
{
"input": "120 1298 2222",
"output": "2836"
},
{
"input": "98437 23487 666672",
"output": "243848"
},
{
"input": "100000000 100000000 100000000",
"output": "300000000"
},
{
"input": "2 5 2",
"output": "8"
},
{
"input": "1 1000 1",
"output": "4"
},
{
"input": "1 100000000 1",
"output": "4"
}
] | 1,587,638,345 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 2 | 93 | 0 | a,b,c=map(int,input().split())
n=a+b
print(n+min(n,c)) | Title: Patrick and Shopping
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house.
Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
Input Specification:
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths.
- *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
Output Specification:
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
Demo Input:
['10 20 30\n', '1 1 5\n']
Demo Output:
['60\n', '4\n']
Note:
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. | ```python
a,b,c=map(int,input().split())
n=a+b
print(n+min(n,c))
``` | 0 |
|
69 | A | Young Physicist | PROGRAMMING | 1,000 | [
"implementation",
"math"
] | A. Young Physicist | 2 | 256 | A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. | The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). | Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. | [
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] | [
"NO",
"YES"
] | none | 500 | [
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,639,661,468 | 2,147,483,647 | PyPy 3 | OK | TESTS | 81 | 184 | 0 | s = int(input())
c = 0
w = 0
q = 0
for i in range(s):
a = input()
a = a.split()
# print(a)
x = int(a[0])
y = int(a[1])
z = int(a[2])
# print(x,y,z)
c = c + x
w = w + y
q = q + z
# print(c, w, q)
if c == 0 and w == 0 and q == 0:
print('YES')
else:
print('NO') | Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none | ```python
s = int(input())
c = 0
w = 0
q = 0
for i in range(s):
a = input()
a = a.split()
# print(a)
x = int(a[0])
y = int(a[1])
z = int(a[2])
# print(x,y,z)
c = c + x
w = w + y
q = q + z
# print(c, w, q)
if c == 0 and w == 0 and q == 0:
print('YES')
else:
print('NO')
``` | 3.954 |
435 | A | Queue on Bus Stop | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.
The bus stop queue has *n* groups of people. The *i*-th group from the beginning has *a**i* people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most *m* people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.
Your task is to determine how many buses is needed to transport all *n* groups to the dacha countryside. | The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). The next line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*m*). | Print a single integer — the number of buses that is needed to transport all *n* groups to the dacha countryside. | [
"4 3\n2 3 2 1\n",
"3 4\n1 2 1\n"
] | [
"3\n",
"1\n"
] | none | 500 | [
{
"input": "4 3\n2 3 2 1",
"output": "3"
},
{
"input": "3 4\n1 2 1",
"output": "1"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "5"
},
{
"input": "6 4\n1 3 2 3 4 1",
"output": "5"
},
{
"input": "6 8\n6 1 1 1 4 5",
"output": "3"
},
{
"input": "10 10\n1 10 1 10 1 1 7 8 6 7",
"output": "8"
},
{
"input": "100 100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52",
"output": "63"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "10"
},
{
"input": "10 2\n2 2 1 1 1 1 1 2 1 2",
"output": "8"
},
{
"input": "10 3\n1 3 1 1 3 2 2 2 3 3",
"output": "9"
},
{
"input": "10 4\n2 1 1 1 3 4 4 4 1 2",
"output": "6"
},
{
"input": "10 5\n2 2 3 4 4 1 5 3 1 2",
"output": "7"
},
{
"input": "100 3\n1 2 3 2 1 2 2 3 1 3 3 2 2 1 1 2 2 1 1 1 1 2 3 3 2 1 1 2 2 2 3 3 3 2 1 3 1 3 3 2 3 1 2 2 2 3 2 1 1 3 3 3 3 2 1 1 2 3 2 2 3 2 3 2 2 3 2 2 2 2 3 3 3 1 3 3 1 1 2 3 2 2 2 2 3 3 3 2 1 2 3 1 1 2 3 3 1 3 3 2",
"output": "83"
},
{
"input": "100 7\n4 7 4 7 7 4 7 3 5 6 3 5 4 3 7 2 7 2 4 1 6 3 3 7 4 4 5 4 3 6 4 3 2 2 1 4 4 1 7 3 7 7 1 3 1 5 4 1 5 3 5 2 2 1 5 5 1 5 2 7 5 5 1 5 5 4 6 5 1 3 5 6 7 4 1 3 3 4 3 2 7 6 5 7 2 7 1 1 2 2 3 1 3 7 1 3 2 1 1 7",
"output": "71"
},
{
"input": "100 10\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2",
"output": "64"
},
{
"input": "100 15\n3 12 8 3 11 14 12 14 1 11 13 3 5 13 4 14 2 11 7 8 12 9 15 7 15 1 4 11 6 12 1 3 8 13 1 8 14 4 3 14 1 3 1 6 10 15 13 11 12 1 14 13 11 14 11 3 12 7 3 15 14 4 5 6 5 14 7 14 6 2 6 12 6 13 13 1 9 13 15 11 6 3 15 11 9 4 15 8 15 12 1 15 10 10 4 1 15 1 4 1",
"output": "71"
},
{
"input": "100 30\n7 14 22 16 11 13 7 29 20 19 22 6 12 16 1 8 27 21 22 3 15 27 20 12 4 19 1 26 26 22 25 17 29 25 16 29 29 28 16 26 25 14 16 20 5 21 5 15 19 13 17 21 17 19 23 13 1 25 6 30 16 19 12 10 28 8 15 13 14 24 19 30 12 19 22 1 3 14 16 3 20 26 15 19 9 10 19 27 2 16 10 22 15 13 19 3 24 9 8 13",
"output": "71"
},
{
"input": "100 40\n39 19 13 36 11 21 32 12 1 2 39 26 32 39 24 1 4 19 10 4 16 39 32 34 13 24 30 35 3 10 8 18 13 12 39 27 31 40 37 20 17 17 37 5 10 12 22 17 7 1 31 13 11 10 2 6 22 16 2 4 9 27 6 35 22 16 22 30 33 2 26 20 35 19 40 37 19 17 21 28 37 28 40 4 5 4 35 19 26 36 19 12 21 20 21 30 9 16 9 32",
"output": "65"
},
{
"input": "100 50\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1",
"output": "60"
},
{
"input": "100 60\n34 21 39 17 48 46 23 56 46 52 50 39 55 48 54 38 32 38 24 26 44 12 28 9 25 26 10 52 42 60 41 3 16 60 44 29 27 55 19 19 19 57 45 59 29 35 5 14 50 47 57 48 16 7 12 36 58 31 37 58 30 50 19 11 10 41 59 57 49 41 33 9 12 11 53 50 60 51 21 9 44 23 1 16 4 15 17 57 15 17 46 50 18 52 43 24 47 50 19 18",
"output": "74"
},
{
"input": "100 90\n74 65 49 41 3 79 61 83 50 40 13 57 90 14 62 77 36 10 3 5 5 40 50 75 32 26 3 71 79 54 88 50 46 20 42 59 30 36 83 86 60 62 82 68 62 80 18 65 28 28 81 74 62 33 61 35 33 83 90 72 6 6 51 4 22 20 29 10 8 3 84 69 12 17 24 16 12 64 80 74 68 59 1 59 15 59 37 58 79 83 51 56 81 14 37 45 19 31 61 90",
"output": "67"
},
{
"input": "100 99\n69 46 76 47 71 9 66 46 78 17 96 83 56 96 29 3 43 48 79 23 93 61 19 9 29 72 15 84 93 46 71 87 11 43 96 44 54 75 3 66 2 95 46 32 69 52 79 38 57 53 37 60 71 82 28 31 84 58 89 40 62 74 22 50 45 38 99 67 24 28 28 12 69 88 33 10 31 71 46 7 42 81 54 81 96 44 8 1 20 24 28 19 54 35 69 32 71 13 66 15",
"output": "68"
},
{
"input": "90 100\n25 52 88 89 36 17 57 64 66 11 89 61 54 92 48 51 18 42 44 92 6 14 67 100 16 21 17 88 85 73 33 11 94 84 56 72 4 80 90 78 96 5 62 70 54 70 94 80 10 91 100 89 98 87 69 74 88 63 53 79 38 94 89 52 21 82 67 79 100 81 2 40 30 69 34 15 12 33 87 52 95 18 51 30 15 39 30 99 46 84",
"output": "67"
},
{
"input": "5 100\n14 67 15 28 21",
"output": "2"
},
{
"input": "10 100\n2 17 53 94 95 57 36 47 68 48",
"output": "7"
},
{
"input": "1 100\n18",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "30 100\n56 7 99 83 2 65 35 53 99 36 42 57 13 37 68 52 87 11 50 23 86 24 32 39 97 6 64 1 18 86",
"output": "18"
},
{
"input": "60 100\n18 75 43 88 45 43 20 59 59 79 62 39 53 21 28 46 54 53 97 81 18 15 2 95 84 9 36 70 30 76 17 19 83 40 45 32 31 70 23 14 44 35 79 84 97 96 99 60 3 73 64 83 6 12 67 86 70 89 18 61",
"output": "40"
},
{
"input": "1 73\n24",
"output": "1"
},
{
"input": "4 4\n1 4 4 4",
"output": "4"
},
{
"input": "2 6\n1 4",
"output": "1"
},
{
"input": "2 5\n5 5",
"output": "2"
}
] | 1,576,445,457 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 4 | 139 | 0 | import math
n, m = map(int,input().split())
a= list(map(int, input().strip().split()))[:n]
print(math.ceil(sum(a) / m)) | Title: Queue on Bus Stop
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.
The bus stop queue has *n* groups of people. The *i*-th group from the beginning has *a**i* people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most *m* people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.
Your task is to determine how many buses is needed to transport all *n* groups to the dacha countryside.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). The next line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*m*).
Output Specification:
Print a single integer — the number of buses that is needed to transport all *n* groups to the dacha countryside.
Demo Input:
['4 3\n2 3 2 1\n', '3 4\n1 2 1\n']
Demo Output:
['3\n', '1\n']
Note:
none | ```python
import math
n, m = map(int,input().split())
a= list(map(int, input().strip().split()))[:n]
print(math.ceil(sum(a) / m))
``` | 0 |
|
699 | A | Launch of Collider | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. | The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. | In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen. | [
"4\nRLRL\n2 4 6 10\n",
"3\nLLR\n40 50 60\n"
] | [
"1\n",
"-1\n"
] | In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 500 | [
{
"input": "4\nRLRL\n2 4 6 10",
"output": "1"
},
{
"input": "3\nLLR\n40 50 60",
"output": "-1"
},
{
"input": "4\nRLLR\n46 230 264 470",
"output": "92"
},
{
"input": "6\nLLRLLL\n446 492 650 844 930 970",
"output": "97"
},
{
"input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922",
"output": "17"
},
{
"input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000",
"output": "3"
},
{
"input": "2\nRL\n0 1000000000",
"output": "500000000"
},
{
"input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082",
"output": "108"
},
{
"input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418",
"output": "88"
},
{
"input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668",
"output": "123"
},
{
"input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808",
"output": "10"
},
{
"input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970",
"output": "252"
},
{
"input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830",
"output": "48"
},
{
"input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720",
"output": "27"
},
{
"input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402",
"output": "59"
},
{
"input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626",
"output": "10"
},
{
"input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794",
"output": "7"
},
{
"input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18",
"output": "-1"
},
{
"input": "5\nLLLLL\n0 10 20 30 40",
"output": "-1"
},
{
"input": "6\nRRRRRR\n40 50 60 70 80 100",
"output": "-1"
},
{
"input": "1\nR\n0",
"output": "-1"
},
{
"input": "2\nRL\n2 1000000000",
"output": "499999999"
},
{
"input": "2\nRL\n0 400000",
"output": "200000"
},
{
"input": "2\nRL\n0 200002",
"output": "100001"
},
{
"input": "2\nRL\n2 20000000",
"output": "9999999"
},
{
"input": "4\nLLRL\n2 4 10 100",
"output": "45"
},
{
"input": "4\nRLRL\n2 10 12 14",
"output": "1"
},
{
"input": "2\nRL\n0 100000000",
"output": "50000000"
},
{
"input": "2\nRL\n2 600002",
"output": "300000"
},
{
"input": "1\nL\n0",
"output": "-1"
},
{
"input": "2\nRL\n0 600000",
"output": "300000"
},
{
"input": "5\nRRRRR\n0 2 4 6 8",
"output": "-1"
},
{
"input": "2\nRL\n2 200000000",
"output": "99999999"
},
{
"input": "2\nRL\n0 267382766",
"output": "133691383"
},
{
"input": "3\nRRL\n4 8 999999998",
"output": "499999995"
},
{
"input": "2\nRL\n0 2",
"output": "1"
},
{
"input": "2\nRL\n2 400002",
"output": "200000"
},
{
"input": "2\nLL\n2 4",
"output": "-1"
},
{
"input": "2\nLL\n0 2",
"output": "-1"
},
{
"input": "2\nRL\n0 100000",
"output": "50000"
},
{
"input": "2\nRL\n2 200000020",
"output": "100000009"
},
{
"input": "2\nRL\n2000000 4000000",
"output": "1000000"
},
{
"input": "2\nRL\n0 199998",
"output": "99999"
},
{
"input": "3\nLRR\n40 50 60",
"output": "-1"
},
{
"input": "2\nRL\n200 400400",
"output": "200100"
},
{
"input": "2\nRL\n2 400004",
"output": "200001"
},
{
"input": "2\nRL\n0 200000000",
"output": "100000000"
}
] | 1,468,936,303 | 2,803 | Python 3 | WRONG_ANSWER | PRETESTS | 3 | 78 | 0 | n=int(input())
s=input()
m=list(map(int,input().split()))
if "R" in s and "L" in s and s.index('R')<s.index('L'):
f=s.index('R')
f1=m[f]
s=s[f:]
m=m[f:]
se=s.index('L')
se1=m[se]
ans=se1-f1
print(ans//2)
else:
print(-1) | Title: Launch of Collider
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input Specification:
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output Specification:
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Demo Input:
['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | ```python
n=int(input())
s=input()
m=list(map(int,input().split()))
if "R" in s and "L" in s and s.index('R')<s.index('L'):
f=s.index('R')
f1=m[f]
s=s[f:]
m=m[f:]
se=s.index('L')
se1=m[se]
ans=se1-f1
print(ans//2)
else:
print(-1)
``` | 0 |
|
625 | B | War of the Corporations | PROGRAMMING | 1,200 | [
"constructive algorithms",
"greedy",
"strings"
] | null | null | A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string. | The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters. | Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring. | [
"intellect\ntell\n",
"google\napple\n",
"sirisiri\nsir\n"
] | [
"1",
"0",
"2"
] | In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri". | 750 | [
{
"input": "intellect\ntell",
"output": "1"
},
{
"input": "google\napple",
"output": "0"
},
{
"input": "sirisiri\nsir",
"output": "2"
},
{
"input": "sirisiri\nsiri",
"output": "2"
},
{
"input": "aaaaaaa\naaaa",
"output": "1"
},
{
"input": "bbbbbb\nbb",
"output": "3"
},
{
"input": "abc\nabcabc",
"output": "0"
},
{
"input": "kek\nkekekek",
"output": "0"
},
{
"input": "aaaaa\naaa",
"output": "1"
},
{
"input": "abcdabcv\nabcd",
"output": "1"
},
{
"input": "abcabcabczabcabcabcz\ncab",
"output": "4"
},
{
"input": "aatopotopotopotaa\ntopot",
"output": "2"
},
{
"input": "abcabcabcabcabcabcabcabcabcabc\nabcabcabcabcabcabcabcabcabcabc",
"output": "1"
},
{
"input": "sosossosos\nsos",
"output": "2"
},
{
"input": "sosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosos\nsos",
"output": "20"
},
{
"input": "tatatx\ntatx",
"output": "1"
},
{
"input": "sxxsxxsxxd\nsxxsxxd",
"output": "1"
}
] | 1,581,979,764 | 2,147,483,647 | PyPy 3 | OK | TESTS | 56 | 170 | 1,945,600 | # your code goes here
s1=input()
s2=input()
n1=len(s1)
n2=len(s2)
c=0
i=0
while i<=n1-n2+1:
st=s1[i:i+n2]
if st==s2:
c+=1
i=i+n2
else:
i+=1
print(c) | Title: War of the Corporations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string.
Input Specification:
The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters.
Output Specification:
Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring.
Demo Input:
['intellect\ntell\n', 'google\napple\n', 'sirisiri\nsir\n']
Demo Output:
['1', '0', '2']
Note:
In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri". | ```python
# your code goes here
s1=input()
s2=input()
n1=len(s1)
n2=len(s2)
c=0
i=0
while i<=n1-n2+1:
st=s1[i:i+n2]
if st==s2:
c+=1
i=i+n2
else:
i+=1
print(c)
``` | 3 |
|
686 | A | Free Ice Cream | PROGRAMMING | 800 | [
"constructive algorithms",
"implementation"
] | null | null | After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids. | The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place. | Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress. | [
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] | [
"22 1\n",
"3 2\n"
] | Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining. | 500 | [
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,680,357,134 | 2,147,483,647 | Python 3 | OK | TESTS | 34 | 46 | 0 | n,x=map(int,input().split())
ic_available=x
dis=0
for i in range(n):
ch,no=input().split()
if ch=='+':
ic_available+=int(no)
elif ch=='-':
if ic_available>=int(no):
ic_available-=int(no)
else:
dis+=1
print(ic_available,dis)
| Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining. | ```python
n,x=map(int,input().split())
ic_available=x
dis=0
for i in range(n):
ch,no=input().split()
if ch=='+':
ic_available+=int(no)
elif ch=='-':
if ic_available>=int(no):
ic_available-=int(no)
else:
dis+=1
print(ic_available,dis)
``` | 3 |
|
909 | C | Python Indentation | PROGRAMMING | 1,800 | [
"dp"
] | null | null | In Python, code blocks don't have explicit begin/end or curly braces to mark beginning and end of the block. Instead, code blocks are defined by indentation.
We will consider an extremely simplified subset of Python with only two types of statements.
Simple statements are written in a single line, one per line. An example of a simple statement is assignment.
For statements are compound statements: they contain one or several other statements. For statement consists of a header written in a separate line which starts with "for" prefix, and loop body. Loop body is a block of statements indented one level further than the header of the loop. Loop body can contain both types of statements. Loop body can't be empty.
You are given a sequence of statements without indentation. Find the number of ways in which the statements can be indented to form a valid Python program. | The first line contains a single integer *N* (1<=≤<=*N*<=≤<=5000) — the number of commands in the program. *N* lines of the program follow, each line describing a single command. Each command is either "f" (denoting "for statement") or "s" ("simple statement"). It is guaranteed that the last line is a simple statement. | Output one line containing an integer - the number of ways the given sequence of statements can be indented modulo 109<=+<=7. | [
"4\ns\nf\nf\ns\n",
"4\nf\ns\nf\ns\n"
] | [
"1\n",
"2\n"
] | In the first test case, there is only one way to indent the program: the second for statement must be part of the body of the first one.
In the second test case, there are two ways to indent the program: the second for statement can either be part of the first one's body or a separate statement following the first one.
or | 1,500 | [
{
"input": "4\ns\nf\nf\ns",
"output": "1"
},
{
"input": "4\nf\ns\nf\ns",
"output": "2"
},
{
"input": "156\nf\ns\nf\ns\nf\ns\ns\ns\ns\nf\ns\ns\nf\nf\ns\nf\nf\nf\nf\ns\ns\ns\nf\ns\ns\nf\nf\nf\nf\nf\nf\ns\ns\ns\ns\nf\ns\nf\ns\nf\ns\nf\nf\nf\nf\ns\ns\nf\nf\ns\ns\ns\ns\nf\ns\nf\ns\nf\ns\nf\ns\ns\ns\nf\ns\ns\nf\ns\nf\nf\ns\ns\ns\nf\nf\nf\nf\ns\ns\nf\nf\nf\nf\nf\nf\nf\ns\nf\ns\ns\ns\nf\nf\ns\ns\ns\ns\ns\nf\nf\nf\nf\ns\nf\nf\ns\nf\ns\ns\nf\nf\nf\ns\ns\ns\nf\ns\ns\nf\ns\nf\nf\nf\ns\nf\nf\ns\ns\nf\ns\nf\nf\ns\ns\ns\ns\nf\ns\nf\nf\ns\ns\nf\nf\nf\ns\ns\nf\nf\nf\ns\nf\ns\nf\nf\ns",
"output": "666443222"
},
{
"input": "4\nf\nf\ns\ns",
"output": "3"
},
{
"input": "2\nf\ns",
"output": "1"
},
{
"input": "1\ns",
"output": "1"
},
{
"input": "3\nf\nf\ns",
"output": "1"
},
{
"input": "2\ns\ns",
"output": "1"
},
{
"input": "156\ns\nf\ns\ns\ns\ns\nf\ns\ns\ns\nf\nf\ns\nf\nf\ns\nf\nf\nf\ns\nf\nf\ns\nf\nf\ns\ns\nf\nf\ns\nf\nf\nf\nf\nf\ns\ns\nf\ns\nf\nf\nf\ns\nf\nf\nf\ns\ns\ns\nf\ns\ns\nf\nf\ns\ns\nf\ns\nf\nf\ns\nf\nf\nf\ns\ns\nf\nf\ns\nf\ns\ns\ns\ns\ns\ns\ns\nf\ns\nf\nf\nf\ns\ns\ns\ns\nf\nf\ns\nf\nf\ns\ns\nf\ns\nf\ns\ns\nf\nf\nf\nf\nf\ns\nf\ns\ns\nf\nf\ns\nf\nf\ns\ns\ns\nf\ns\ns\ns\ns\nf\nf\ns\nf\nf\nf\nf\ns\nf\ns\ns\nf\nf\ns\nf\ns\nf\nf\nf\nf\ns\ns\nf\nf\nf\nf\ns\nf\ns\nf\ns\ns\ns\nf\nf\ns",
"output": "479461584"
},
{
"input": "66\ns\nf\ns\ns\nf\ns\ns\ns\ns\nf\ns\ns\nf\nf\ns\ns\nf\ns\ns\nf\ns\ns\nf\nf\ns\ns\nf\nf\ns\ns\nf\ns\ns\ns\ns\nf\nf\ns\ns\nf\nf\ns\ns\nf\ns\ns\nf\ns\ns\nf\ns\ns\nf\nf\ns\nf\ns\ns\nf\nf\ns\nf\ns\nf\nf\ns",
"output": "392847498"
}
] | 1,554,596,684 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 2 | 124 | 716,800 | N = int(input())
instruction = [''] * N
for i in range(N):
instruction[i] = input()
ans = [[0 for _ in range(N)] for _ in range(N)]
ans[0][0] = 1
for i in range(1, N):
if instruction[i-1] == 'f':
for j in range(i):
ans[i][j+1] = ans[i-1][j]
else:
temp = 0
for j in range(i-1, -1, -1):
temp += ans[i-1][j]
ans[i][j] = temp
print(sum(ans[N-1])) | Title: Python Indentation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Python, code blocks don't have explicit begin/end or curly braces to mark beginning and end of the block. Instead, code blocks are defined by indentation.
We will consider an extremely simplified subset of Python with only two types of statements.
Simple statements are written in a single line, one per line. An example of a simple statement is assignment.
For statements are compound statements: they contain one or several other statements. For statement consists of a header written in a separate line which starts with "for" prefix, and loop body. Loop body is a block of statements indented one level further than the header of the loop. Loop body can contain both types of statements. Loop body can't be empty.
You are given a sequence of statements without indentation. Find the number of ways in which the statements can be indented to form a valid Python program.
Input Specification:
The first line contains a single integer *N* (1<=≤<=*N*<=≤<=5000) — the number of commands in the program. *N* lines of the program follow, each line describing a single command. Each command is either "f" (denoting "for statement") or "s" ("simple statement"). It is guaranteed that the last line is a simple statement.
Output Specification:
Output one line containing an integer - the number of ways the given sequence of statements can be indented modulo 109<=+<=7.
Demo Input:
['4\ns\nf\nf\ns\n', '4\nf\ns\nf\ns\n']
Demo Output:
['1\n', '2\n']
Note:
In the first test case, there is only one way to indent the program: the second for statement must be part of the body of the first one.
In the second test case, there are two ways to indent the program: the second for statement can either be part of the first one's body or a separate statement following the first one.
or | ```python
N = int(input())
instruction = [''] * N
for i in range(N):
instruction[i] = input()
ans = [[0 for _ in range(N)] for _ in range(N)]
ans[0][0] = 1
for i in range(1, N):
if instruction[i-1] == 'f':
for j in range(i):
ans[i][j+1] = ans[i-1][j]
else:
temp = 0
for j in range(i-1, -1, -1):
temp += ans[i-1][j]
ans[i][j] = temp
print(sum(ans[N-1]))
``` | 0 |
|
699 | A | Launch of Collider | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. | The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. | In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen. | [
"4\nRLRL\n2 4 6 10\n",
"3\nLLR\n40 50 60\n"
] | [
"1\n",
"-1\n"
] | In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 500 | [
{
"input": "4\nRLRL\n2 4 6 10",
"output": "1"
},
{
"input": "3\nLLR\n40 50 60",
"output": "-1"
},
{
"input": "4\nRLLR\n46 230 264 470",
"output": "92"
},
{
"input": "6\nLLRLLL\n446 492 650 844 930 970",
"output": "97"
},
{
"input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922",
"output": "17"
},
{
"input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000",
"output": "3"
},
{
"input": "2\nRL\n0 1000000000",
"output": "500000000"
},
{
"input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082",
"output": "108"
},
{
"input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418",
"output": "88"
},
{
"input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668",
"output": "123"
},
{
"input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808",
"output": "10"
},
{
"input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970",
"output": "252"
},
{
"input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830",
"output": "48"
},
{
"input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720",
"output": "27"
},
{
"input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402",
"output": "59"
},
{
"input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626",
"output": "10"
},
{
"input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794",
"output": "7"
},
{
"input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18",
"output": "-1"
},
{
"input": "5\nLLLLL\n0 10 20 30 40",
"output": "-1"
},
{
"input": "6\nRRRRRR\n40 50 60 70 80 100",
"output": "-1"
},
{
"input": "1\nR\n0",
"output": "-1"
},
{
"input": "2\nRL\n2 1000000000",
"output": "499999999"
},
{
"input": "2\nRL\n0 400000",
"output": "200000"
},
{
"input": "2\nRL\n0 200002",
"output": "100001"
},
{
"input": "2\nRL\n2 20000000",
"output": "9999999"
},
{
"input": "4\nLLRL\n2 4 10 100",
"output": "45"
},
{
"input": "4\nRLRL\n2 10 12 14",
"output": "1"
},
{
"input": "2\nRL\n0 100000000",
"output": "50000000"
},
{
"input": "2\nRL\n2 600002",
"output": "300000"
},
{
"input": "1\nL\n0",
"output": "-1"
},
{
"input": "2\nRL\n0 600000",
"output": "300000"
},
{
"input": "5\nRRRRR\n0 2 4 6 8",
"output": "-1"
},
{
"input": "2\nRL\n2 200000000",
"output": "99999999"
},
{
"input": "2\nRL\n0 267382766",
"output": "133691383"
},
{
"input": "3\nRRL\n4 8 999999998",
"output": "499999995"
},
{
"input": "2\nRL\n0 2",
"output": "1"
},
{
"input": "2\nRL\n2 400002",
"output": "200000"
},
{
"input": "2\nLL\n2 4",
"output": "-1"
},
{
"input": "2\nLL\n0 2",
"output": "-1"
},
{
"input": "2\nRL\n0 100000",
"output": "50000"
},
{
"input": "2\nRL\n2 200000020",
"output": "100000009"
},
{
"input": "2\nRL\n2000000 4000000",
"output": "1000000"
},
{
"input": "2\nRL\n0 199998",
"output": "99999"
},
{
"input": "3\nLRR\n40 50 60",
"output": "-1"
},
{
"input": "2\nRL\n200 400400",
"output": "200100"
},
{
"input": "2\nRL\n2 400004",
"output": "200001"
},
{
"input": "2\nRL\n0 200000000",
"output": "100000000"
}
] | 1,469,739,266 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 46 | 0 | import sys
if __name__ == '__main__':
n = list(map(int, sys.stdin.readline().split(" ")))[0]
a = list(sys.stdin.readline())
x = list(map(int, sys.stdin.readline().split(" ")))
m = 100000000000
for i in range(n-1):
if a[i]=='R' and a[i+1]=='L':
m = min(m,(x[i+1]-x[i])/2)
if m == 100000000000 :
m = -1
print(m)
| Title: Launch of Collider
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input Specification:
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output Specification:
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Demo Input:
['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | ```python
import sys
if __name__ == '__main__':
n = list(map(int, sys.stdin.readline().split(" ")))[0]
a = list(sys.stdin.readline())
x = list(map(int, sys.stdin.readline().split(" ")))
m = 100000000000
for i in range(n-1):
if a[i]=='R' and a[i+1]=='L':
m = min(m,(x[i+1]-x[i])/2)
if m == 100000000000 :
m = -1
print(m)
``` | 0 |
|
25 | C | Roads in Berland | PROGRAMMING | 1,900 | [
"graphs",
"shortest paths"
] | C. Roads in Berland | 2 | 256 | There are *n* cities numbered from 1 to *n* in Berland. Some of them are connected by two-way roads. Each road has its own length — an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build *k* new roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances between all pairs of cities. Help them — for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road. | The first line contains integer *n* (2<=≤<=*n*<=≤<=300) — amount of cities in Berland. Then there follow *n* lines with *n* integer numbers each — the matrix of shortest distances. *j*-th integer in the *i*-th row — *d**i*,<=*j*, the shortest distance between cities *i* and *j*. It is guaranteed that *d**i*,<=*i*<==<=0,<=*d**i*,<=*j*<==<=*d**j*,<=*i*, and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads.
Next line contains integer *k* (1<=≤<=*k*<=≤<=300) — amount of planned roads. Following *k* lines contain the description of the planned roads. Each road is described by three space-separated integers *a**i*, *b**i*, *c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*,<=1<=≤<=*c**i*<=≤<=1000) — *a**i* and *b**i* — pair of cities, which the road connects, *c**i* — the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself. | Output *k* space-separated integers *q**i* (1<=≤<=*i*<=≤<=*k*). *q**i* should be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to *i*. Roads are numbered from 1 in the input order. Each pair of cities should be taken into account in the sum exactly once, i. e. we count unordered pairs. | [
"2\n0 5\n5 0\n1\n1 2 3\n",
"3\n0 4 5\n4 0 9\n5 9 0\n2\n2 3 8\n1 2 1\n"
] | [
"3 ",
"17 12 "
] | none | 0 | [
{
"input": "2\n0 5\n5 0\n1\n1 2 3",
"output": "3 "
},
{
"input": "3\n0 4 5\n4 0 9\n5 9 0\n2\n2 3 8\n1 2 1",
"output": "17 12 "
},
{
"input": "3\n0 983 173\n983 0 810\n173 810 0\n3\n3 2 567\n2 3 767\n1 2 763",
"output": "1480 1480 1480 "
},
{
"input": "4\n0 537 1064 656\n537 0 527 119\n1064 527 0 408\n656 119 408 0\n4\n1 4 123\n1 4 344\n3 2 982\n3 2 587",
"output": "1950 1950 1950 1950 "
},
{
"input": "5\n0 954 1255 266 751\n954 0 1677 688 1173\n1255 1677 0 989 504\n266 688 989 0 485\n751 1173 504 485 0\n5\n5 2 837\n3 4 692\n3 5 756\n3 1 151\n2 5 262",
"output": "8070 7476 7476 6062 5111 "
}
] | 1,667,721,377 | 2,147,483,647 | PyPy 3-64 | OK | TESTS | 41 | 1,214 | 7,270,400 | n = int(input())
matrix = []
for _ in range(n):
li = list(map(int, input().split()))
matrix.append(li)
k = int(input())
ans = []
def floyd(matrix, inter):
for i in range(len(matrix)):
for j in range(len(matrix)):
matrix[i][j] = min(matrix[i][j], matrix[i][inter] + matrix[inter][j])
ans = []
for _ in range(k):
a, b, length = list(map(int, input().split()))
if length < matrix[a - 1][b - 1]:
matrix[a - 1][b - 1] = length
matrix[b - 1][a - 1] = length
floyd(matrix, a - 1)
floyd(matrix, b - 1)
summ = 0
for i in range(len(matrix)):
for j in range(len(matrix[i])):
summ += matrix[i][j]
# print(matrix, "**")
summ = summ // 2
ans.append(summ)
print(*ans)
| Title: Roads in Berland
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There are *n* cities numbered from 1 to *n* in Berland. Some of them are connected by two-way roads. Each road has its own length — an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build *k* new roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances between all pairs of cities. Help them — for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=300) — amount of cities in Berland. Then there follow *n* lines with *n* integer numbers each — the matrix of shortest distances. *j*-th integer in the *i*-th row — *d**i*,<=*j*, the shortest distance between cities *i* and *j*. It is guaranteed that *d**i*,<=*i*<==<=0,<=*d**i*,<=*j*<==<=*d**j*,<=*i*, and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads.
Next line contains integer *k* (1<=≤<=*k*<=≤<=300) — amount of planned roads. Following *k* lines contain the description of the planned roads. Each road is described by three space-separated integers *a**i*, *b**i*, *c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*,<=1<=≤<=*c**i*<=≤<=1000) — *a**i* and *b**i* — pair of cities, which the road connects, *c**i* — the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself.
Output Specification:
Output *k* space-separated integers *q**i* (1<=≤<=*i*<=≤<=*k*). *q**i* should be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to *i*. Roads are numbered from 1 in the input order. Each pair of cities should be taken into account in the sum exactly once, i. e. we count unordered pairs.
Demo Input:
['2\n0 5\n5 0\n1\n1 2 3\n', '3\n0 4 5\n4 0 9\n5 9 0\n2\n2 3 8\n1 2 1\n']
Demo Output:
['3 ', '17 12 ']
Note:
none | ```python
n = int(input())
matrix = []
for _ in range(n):
li = list(map(int, input().split()))
matrix.append(li)
k = int(input())
ans = []
def floyd(matrix, inter):
for i in range(len(matrix)):
for j in range(len(matrix)):
matrix[i][j] = min(matrix[i][j], matrix[i][inter] + matrix[inter][j])
ans = []
for _ in range(k):
a, b, length = list(map(int, input().split()))
if length < matrix[a - 1][b - 1]:
matrix[a - 1][b - 1] = length
matrix[b - 1][a - 1] = length
floyd(matrix, a - 1)
floyd(matrix, b - 1)
summ = 0
for i in range(len(matrix)):
for j in range(len(matrix[i])):
summ += matrix[i][j]
# print(matrix, "**")
summ = summ // 2
ans.append(summ)
print(*ans)
``` | 3.682958 |
739 | A | Alyona and mex | PROGRAMMING | 1,700 | [
"constructive algorithms",
"greedy"
] | null | null | Alyona's mother wants to present an array of *n* non-negative integers to Alyona. The array should be special.
Alyona is a capricious girl so after she gets the array, she inspects *m* of its subarrays. Subarray is a set of some subsequent elements of the array. The *i*-th subarray is described with two integers *l**i* and *r**i*, and its elements are *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Alyona is going to find mex for each of the chosen subarrays. Among these *m* mexes the girl is going to find the smallest. She wants this minimum mex to be as large as possible.
You are to find an array *a* of *n* elements so that the minimum mex among those chosen by Alyona subarrays is as large as possible.
The mex of a set *S* is a minimum possible non-negative integer that is not in *S*. | The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105).
The next *m* lines contain information about the subarrays chosen by Alyona. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), that describe the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*]. | In the first line print single integer — the maximum possible minimum mex.
In the second line print *n* integers — the array *a*. All the elements in *a* should be between 0 and 109.
It is guaranteed that there is an optimal answer in which all the elements in *a* are between 0 and 109.
If there are multiple solutions, print any of them. | [
"5 3\n1 3\n2 5\n4 5\n",
"4 2\n1 4\n2 4\n"
] | [
"2\n1 0 2 1 0\n",
"3\n5 2 0 1"
] | The first example: the mex of the subarray (1, 3) is equal to 3, the mex of the subarray (2, 5) is equal to 3, the mex of the subarray (4, 5) is equal to 2 as well, thus the minumal mex among the subarrays chosen by Alyona is equal to 2. | 500 | [
{
"input": "5 3\n1 3\n2 5\n4 5",
"output": "2\n0 1 0 1 0"
},
{
"input": "4 2\n1 4\n2 4",
"output": "3\n0 1 2 0"
},
{
"input": "1 1\n1 1",
"output": "1\n0"
},
{
"input": "2 1\n2 2",
"output": "1\n0 0"
},
{
"input": "5 6\n2 4\n2 3\n1 4\n3 4\n2 5\n1 3",
"output": "2\n0 1 0 1 0"
},
{
"input": "8 3\n2 3\n2 8\n3 6",
"output": "2\n0 1 0 1 0 1 0 1"
},
{
"input": "10 10\n1 9\n4 8\n4 8\n5 9\n1 9\n3 8\n1 6\n1 9\n1 6\n6 9",
"output": "4\n0 1 2 3 0 1 2 3 0 1"
},
{
"input": "3 6\n1 3\n1 3\n1 1\n1 1\n3 3\n3 3",
"output": "1\n0 0 0"
},
{
"input": "3 3\n1 3\n2 2\n1 3",
"output": "1\n0 0 0"
},
{
"input": "6 8\n3 5\n3 6\n4 6\n2 5\n2 5\n1 3\n3 6\n3 5",
"output": "3\n0 1 2 0 1 2"
},
{
"input": "10 4\n4 10\n4 6\n6 8\n1 10",
"output": "3\n0 1 2 0 1 2 0 1 2 0"
},
{
"input": "9 1\n1 1",
"output": "1\n0 0 0 0 0 0 0 0 0"
},
{
"input": "3 8\n2 3\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n1 2",
"output": "1\n0 0 0"
},
{
"input": "3 8\n1 2\n1 2\n1 1\n2 3\n2 3\n1 1\n1 3\n1 3",
"output": "1\n0 0 0"
},
{
"input": "7 3\n7 7\n3 7\n5 7",
"output": "1\n0 0 0 0 0 0 0"
},
{
"input": "9 9\n4 5\n5 8\n1 8\n4 8\n3 4\n7 8\n1 4\n7 8\n6 7",
"output": "2\n0 1 0 1 0 1 0 1 0"
},
{
"input": "10 10\n1 5\n7 10\n2 10\n2 5\n2 9\n5 9\n3 10\n4 9\n6 9\n2 7",
"output": "4\n0 1 2 3 0 1 2 3 0 1"
},
{
"input": "8 7\n5 8\n3 7\n1 8\n3 4\n2 8\n2 7\n4 6",
"output": "2\n0 1 0 1 0 1 0 1"
},
{
"input": "10 3\n2 4\n8 10\n4 6",
"output": "3\n0 1 2 0 1 2 0 1 2 0"
},
{
"input": "5 8\n3 4\n1 5\n3 4\n3 5\n3 4\n1 4\n1 5\n2 5",
"output": "2\n0 1 0 1 0"
},
{
"input": "9 4\n5 9\n3 8\n2 8\n1 4",
"output": "4\n0 1 2 3 0 1 2 3 0"
},
{
"input": "7 7\n2 4\n1 4\n3 6\n2 6\n5 7\n3 6\n1 4",
"output": "3\n0 1 2 0 1 2 0"
},
{
"input": "6 2\n4 6\n2 5",
"output": "3\n0 1 2 0 1 2"
},
{
"input": "7 9\n6 7\n1 2\n2 5\n4 7\n1 7\n5 6\n2 3\n6 7\n1 2",
"output": "2\n0 1 0 1 0 1 0"
}
] | 1,480,023,459 | 2,147,483,647 | Python 3 | COMPILATION_ERROR | TESTS | 0 | 0 | 0 | #include <bits/stdc++.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif // M_PI
#define endl "\n"
#define S struct
#define X first
#define Y second
#define V vector
#ifndef __linux__
#define LLD "%I64d"
#else
#define LLD "%ll""d"
#endif
#define FOR(x, y, z) for (int x = (y); x < (z); ++x)
#define FORR(x, y, z) for (int x = (y); x > (z); --x)
#define GET(a, n) for (int __i = 0; __i < (n); ++__i) cin >> a[__i];
#define GETM(a, n, m) for (int __i = 0; __i < (n); ++__i) for (int __j = 0; __j < m; ++__j) cin >> a[__i][__j];
#define PRINTM(a, n, m) for (int __i = 0; __i < (n); ++__i) { for (int __j = 0; __j < m; ++__j) cout << a[__i][__j] << " "; cout << endl; };
#define PRINT(a, n) for (int __i = 0; __i < (n); ++__i) cout << a[__i] << " ";
#define IT(a) a.begin(), a.end()
#define SQR(x) (x) * (x)
#define CASE(a, s) cout << "Case #" << a << ": " << s << endl;
#define DEB(a) cout << #a << " = " << (a) << endl; cout.flush();
#define DEBA(a) for (auto __i: a) cout << __i << " "; cout << endl; cout.flush();
#define IFDEB(b, a) if (b) { cout << #a << " = " << (a) << endl; cout.flush(); }
using namespace std;
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair <int, int> PII;
typedef pair <LL, LL> PLL;
const int MOD = 1000000007;
void sync_stdio() { cin.tie(NULL); ios_base::sync_with_stdio(false); }
S Sync_stdio { Sync_stdio() { cin.tie(NULL); ios_base::sync_with_stdio(false); } } _sync_stdio;
S FAIL { FAIL () { cout << "CHANGE!!!" << endl;}};
int main()
{
int n, m;
cin >> n >> m;
int minc = INT_MAX;
FOR (i, 0, m) {
int a, b;
cin >> a >> b;
minc = min(minc, b - a + 1);
}
cout << minc << endl;
FOR (i, 0, n) {
cout << i % minc << " ";
}
return 0;
}
| Title: Alyona and mex
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alyona's mother wants to present an array of *n* non-negative integers to Alyona. The array should be special.
Alyona is a capricious girl so after she gets the array, she inspects *m* of its subarrays. Subarray is a set of some subsequent elements of the array. The *i*-th subarray is described with two integers *l**i* and *r**i*, and its elements are *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Alyona is going to find mex for each of the chosen subarrays. Among these *m* mexes the girl is going to find the smallest. She wants this minimum mex to be as large as possible.
You are to find an array *a* of *n* elements so that the minimum mex among those chosen by Alyona subarrays is as large as possible.
The mex of a set *S* is a minimum possible non-negative integer that is not in *S*.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105).
The next *m* lines contain information about the subarrays chosen by Alyona. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), that describe the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Output Specification:
In the first line print single integer — the maximum possible minimum mex.
In the second line print *n* integers — the array *a*. All the elements in *a* should be between 0 and 109.
It is guaranteed that there is an optimal answer in which all the elements in *a* are between 0 and 109.
If there are multiple solutions, print any of them.
Demo Input:
['5 3\n1 3\n2 5\n4 5\n', '4 2\n1 4\n2 4\n']
Demo Output:
['2\n1 0 2 1 0\n', '3\n5 2 0 1']
Note:
The first example: the mex of the subarray (1, 3) is equal to 3, the mex of the subarray (2, 5) is equal to 3, the mex of the subarray (4, 5) is equal to 2 as well, thus the minumal mex among the subarrays chosen by Alyona is equal to 2. | ```python
#include <bits/stdc++.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif // M_PI
#define endl "\n"
#define S struct
#define X first
#define Y second
#define V vector
#ifndef __linux__
#define LLD "%I64d"
#else
#define LLD "%ll""d"
#endif
#define FOR(x, y, z) for (int x = (y); x < (z); ++x)
#define FORR(x, y, z) for (int x = (y); x > (z); --x)
#define GET(a, n) for (int __i = 0; __i < (n); ++__i) cin >> a[__i];
#define GETM(a, n, m) for (int __i = 0; __i < (n); ++__i) for (int __j = 0; __j < m; ++__j) cin >> a[__i][__j];
#define PRINTM(a, n, m) for (int __i = 0; __i < (n); ++__i) { for (int __j = 0; __j < m; ++__j) cout << a[__i][__j] << " "; cout << endl; };
#define PRINT(a, n) for (int __i = 0; __i < (n); ++__i) cout << a[__i] << " ";
#define IT(a) a.begin(), a.end()
#define SQR(x) (x) * (x)
#define CASE(a, s) cout << "Case #" << a << ": " << s << endl;
#define DEB(a) cout << #a << " = " << (a) << endl; cout.flush();
#define DEBA(a) for (auto __i: a) cout << __i << " "; cout << endl; cout.flush();
#define IFDEB(b, a) if (b) { cout << #a << " = " << (a) << endl; cout.flush(); }
using namespace std;
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair <int, int> PII;
typedef pair <LL, LL> PLL;
const int MOD = 1000000007;
void sync_stdio() { cin.tie(NULL); ios_base::sync_with_stdio(false); }
S Sync_stdio { Sync_stdio() { cin.tie(NULL); ios_base::sync_with_stdio(false); } } _sync_stdio;
S FAIL { FAIL () { cout << "CHANGE!!!" << endl;}};
int main()
{
int n, m;
cin >> n >> m;
int minc = INT_MAX;
FOR (i, 0, m) {
int a, b;
cin >> a >> b;
minc = min(minc, b - a + 1);
}
cout << minc << endl;
FOR (i, 0, n) {
cout << i % minc << " ";
}
return 0;
}
``` | -1 |
|
50 | A | Domino piling | PROGRAMMING | 800 | [
"greedy",
"math"
] | A. Domino piling | 2 | 256 | You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions. | In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). | Output one number — the maximal number of dominoes, which can be placed. | [
"2 4\n",
"3 3\n"
] | [
"4\n",
"4\n"
] | none | 500 | [
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,617,221,270 | 2,147,483,647 | PyPy 3 | OK | TESTS | 35 | 218 | 0 | N,M = map(int,input().split())
print((N*M)//2) | Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none | ```python
N,M = map(int,input().split())
print((N*M)//2)
``` | 3.9455 |
450 | A | Jzzhu and Children | PROGRAMMING | 1,000 | [
"implementation"
] | null | null | There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order? | The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100). | Output a single integer, representing the number of the last child. | [
"5 2\n1 3 1 4 2\n",
"6 4\n1 1 2 2 3 3\n"
] | [
"4\n",
"6\n"
] | Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home. | 500 | [
{
"input": "5 2\n1 3 1 4 2",
"output": "4"
},
{
"input": "6 4\n1 1 2 2 3 3",
"output": "6"
},
{
"input": "7 3\n6 1 5 4 2 3 1",
"output": "4"
},
{
"input": "10 5\n2 7 3 6 2 5 1 3 4 5",
"output": "4"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "100"
},
{
"input": "9 3\n9 5 2 3 7 1 8 4 6",
"output": "7"
},
{
"input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58",
"output": "16"
},
{
"input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54",
"output": "48"
},
{
"input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1",
"output": "44"
},
{
"input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3",
"output": "46"
},
{
"input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78",
"output": "40"
},
{
"input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69",
"output": "11"
},
{
"input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95",
"output": "50"
},
{
"input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9",
"output": "86"
},
{
"input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7",
"output": "93"
},
{
"input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42",
"output": "77"
},
{
"input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48",
"output": "97"
},
{
"input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78",
"output": "20"
},
{
"input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41",
"output": "97"
},
{
"input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82",
"output": "51"
},
{
"input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58",
"output": "97"
},
{
"input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88",
"output": "47"
},
{
"input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51",
"output": "98"
},
{
"input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67",
"output": "94"
},
{
"input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19",
"output": "95"
},
{
"input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49",
"output": "88"
},
{
"input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1",
"output": "99"
},
{
"input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95",
"output": "100"
},
{
"input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15",
"output": "98"
},
{
"input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16",
"output": "100"
},
{
"input": "1 3\n5",
"output": "1"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "2 3\n4 2",
"output": "1"
},
{
"input": "2 5\n99 97",
"output": "2"
},
{
"input": "3 4\n7 5 2",
"output": "2"
},
{
"input": "3 50\n47 86 51",
"output": "3"
},
{
"input": "5 100\n82 100 85 1 37",
"output": "5"
},
{
"input": "5 20\n40 39 21 5 20",
"output": "3"
},
{
"input": "1 27\n81",
"output": "1"
},
{
"input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1",
"output": "7"
},
{
"input": "2 1\n100 2",
"output": "1"
},
{
"input": "2 2\n6 4",
"output": "1"
},
{
"input": "5 2\n6 4 4 1 1",
"output": "1"
},
{
"input": "1 4\n3",
"output": "1"
},
{
"input": "3 2\n1 5 3",
"output": "2"
},
{
"input": "3 1\n3 2 2",
"output": "1"
},
{
"input": "3 1\n2 3 2",
"output": "2"
},
{
"input": "5 1\n5 1 1 1 1",
"output": "1"
},
{
"input": "2 3\n7 4",
"output": "1"
}
] | 1,699,981,353 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 4 | 77 | 1,228,800 | n,m=list(map(int,input().strip().split()))
child=list(map(int,input().strip().split()))
x=[]
for i in range(n):
x+=[[child[i],i+1]]
i=0
while len(x)>=1:
if x[i][0]>m:
x.append([x[i][0]-m,x[i][1]])
x.pop(i)
if len(x)==1:
print(x[0][1])
| Title: Jzzhu and Children
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output Specification:
Output a single integer, representing the number of the last child.
Demo Input:
['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n']
Demo Output:
['4\n', '6\n']
Note:
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home. | ```python
n,m=list(map(int,input().strip().split()))
child=list(map(int,input().strip().split()))
x=[]
for i in range(n):
x+=[[child[i],i+1]]
i=0
while len(x)>=1:
if x[i][0]>m:
x.append([x[i][0]-m,x[i][1]])
x.pop(i)
if len(x)==1:
print(x[0][1])
``` | 0 |
|
1,003 | A | Polycarp's Pockets | PROGRAMMING | 800 | [
"implementation"
] | null | null | Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. | The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. | Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. | [
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] | [
"2\n",
"1\n"
] | none | 0 | [
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,672,686,692 | 392 | Python 3 | OK | TESTS | 37 | 61 | 102,400 | from collections import Counter
n = int(input())
coins = input().split()
max_freq = 0
hashmap = Counter(coins)
for freq in hashmap.values():
max_freq = max(max_freq, freq)
print(max_freq) | Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Output Specification:
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none | ```python
from collections import Counter
n = int(input())
coins = input().split()
max_freq = 0
hashmap = Counter(coins)
for freq in hashmap.values():
max_freq = max(max_freq, freq)
print(max_freq)
``` | 3 |
|
271 | A | Beautiful Year | PROGRAMMING | 800 | [
"brute force"
] | null | null | It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. | The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. | Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. | [
"1987\n",
"2013\n"
] | [
"2013\n",
"2014\n"
] | none | 500 | [
{
"input": "1987",
"output": "2013"
},
{
"input": "2013",
"output": "2014"
},
{
"input": "1000",
"output": "1023"
},
{
"input": "1001",
"output": "1023"
},
{
"input": "1234",
"output": "1235"
},
{
"input": "5555",
"output": "5601"
},
{
"input": "9000",
"output": "9012"
},
{
"input": "1111",
"output": "1203"
},
{
"input": "8999",
"output": "9012"
},
{
"input": "4572",
"output": "4573"
},
{
"input": "6666",
"output": "6701"
},
{
"input": "2001",
"output": "2013"
},
{
"input": "3000",
"output": "3012"
},
{
"input": "7712",
"output": "7801"
},
{
"input": "8088",
"output": "8091"
},
{
"input": "1594",
"output": "1596"
},
{
"input": "6016",
"output": "6017"
},
{
"input": "8800",
"output": "8901"
},
{
"input": "3331",
"output": "3401"
},
{
"input": "5090",
"output": "5091"
},
{
"input": "2342",
"output": "2345"
},
{
"input": "2334",
"output": "2340"
},
{
"input": "1123",
"output": "1203"
},
{
"input": "8989",
"output": "9012"
},
{
"input": "8977",
"output": "9012"
},
{
"input": "6869",
"output": "6870"
},
{
"input": "8999",
"output": "9012"
}
] | 1,691,591,592 | 2,147,483,647 | Python 3 | OK | TESTS | 27 | 92 | 0 | y = int(input()) + 1
while len(set(str(y)))<=3:
y += 1
print(y)
| Title: Beautiful Year
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
Input Specification:
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Output Specification:
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
Demo Input:
['1987\n', '2013\n']
Demo Output:
['2013\n', '2014\n']
Note:
none | ```python
y = int(input()) + 1
while len(set(str(y)))<=3:
y += 1
print(y)
``` | 3 |
|
355 | A | Vasya and Digital Root | PROGRAMMING | 1,100 | [
"constructive algorithms",
"implementation"
] | null | null | Vasya has recently found out what a digital root of a number is and he decided to share his knowledge with you.
Let's assume that *S*(*n*) is the sum of digits of number *n*, for example, *S*(4098)<==<=4<=+<=0<=+<=9<=+<=8<==<=21. Then the digital root of number *n* equals to:
1. *dr*(*n*)<==<=*S*(*n*), if *S*(*n*)<=<<=10; 1. *dr*(*n*)<==<=*dr*(<=*S*(*n*)<=), if *S*(*n*)<=≥<=10.
For example, *dr*(4098)<=<==<=<=*dr*(21)<=<==<=<=3.
Vasya is afraid of large numbers, so the numbers he works with are at most 101000. For all such numbers, he has proved that *dr*(*n*)<=<==<=<=*S*(<=*S*(<=*S*(<=*S*(*n*)<=)<=)<=) (*n*<=≤<=101000).
Now Vasya wants to quickly find numbers with the given digital root. The problem is, he hasn't learned how to do that and he asked you to help him. You task is, given numbers *k* and *d*, find the number consisting of exactly *k* digits (the leading zeroes are not allowed), with digital root equal to *d*, or else state that such number does not exist. | The first line contains two integers *k* and *d* (1<=≤<=*k*<=≤<=1000; 0<=≤<=*d*<=≤<=9). | In a single line print either any number that meets the requirements (without the leading zeroes) or "No solution" (without the quotes), if the corresponding number does not exist.
The chosen number must consist of exactly *k* digits. We assume that number 0 doesn't contain any leading zeroes. | [
"4 4\n",
"5 1\n",
"1 0\n"
] | [
"5881\n",
"36172\n",
"0\n"
] | For the first test sample *dr*(5881) = *dr*(22) = 4.
For the second test sample *dr*(36172) = *dr*(19) = *dr*(10) = 1. | 500 | [
{
"input": "4 4",
"output": "5881"
},
{
"input": "5 1",
"output": "36172"
},
{
"input": "1 0",
"output": "0"
},
{
"input": "8 7",
"output": "49722154"
},
{
"input": "487 0",
"output": "No solution"
},
{
"input": "1000 5",
"output": "8541939554067890866522280268745476436249986028349767396372181155840878549622667946850256234534972693110974918858266403731194206972478044933297639886527448596769215803533001453375065914421371731616055420973164037664278812596299678416020519508892847037891229851414508562230407367486468987019052183250172396304562086008837592345867873765321840214188417303688776985319268802181355472294386101622570417737061113209187893810568585166094583478900129912239498334853726870963804475563182775380744565964067602555515611220..."
},
{
"input": "22 9",
"output": "1583569962049529809017"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "13 5",
"output": "1381199538344"
},
{
"input": "100 4",
"output": "6334594910586850938286642284598905674550356974741186703111536643493065423553455569335256292313330478"
},
{
"input": "123 6",
"output": "928024873067884441426263446866614165147002631091527531801777528825238463822318502518751375671158771476735217071878592158343"
},
{
"input": "1000 1",
"output": "8286301124628812353504240076754144327937426329149605334362213339655339076564408659154706137278060590992944494591503606137350736487608756923833530346502466262820452589925067370165968733865814927433418675056573256434073937686361155637721866942352171450747045834987797118866710087297111065178077368748085213082452303815796793489599773148508108295035303578345492871662297456131736137780231762177312635688688714815857818196180724774924848693916003108422682889382923194020205691379066085156078824413573001257245677878..."
},
{
"input": "2 0",
"output": "No solution"
},
{
"input": "734 9",
"output": "5509849803670339733829077693143634799621955270111335907079347964026719040571586127009915057683769302171314977999063915868539391500563742827163274052101515706840652002966522709635011152141196057419086708927225560622675363856445980167733179728663010064912099615416068178748694469047950713834326493597331720572208847439692450327661109751421257198843242305082523510866664350537162158359215265173356615680034808012842300294492281197211603826994471586252822908597603049772690875861970190564793056757768783375525854981..."
},
{
"input": "678 8",
"output": "3301967993506605598118564082793505826927835671912383741219911930496842130418974223636865915672261642456247377827650506657877850580145623499927271391838907804651235401527392426584047219626357010023552497909436550723659221336486898100975437974320483591226280567200180225706948265372905918038750624429412331582504280650041845010449084641487447573160867860208332424835101416924485616494780952529083292227777966546236453553361466209621076748915774965082618181512654546592160909206650552581723190500273752213154329310..."
},
{
"input": "955 7",
"output": "4875434946733568640983465009954221247849488705968833681097920555785434899849497268074436910608289709905212840964404347113134616236366794383005890642796609027376389191650656756216171636192669456464756898600086886269167613161503734300581107122411830728903919402846291350458047685924037685489537178939190129043010338580479169957795695942333133962326316127076129681213167918954090336000635320714955444899171270809399782177230616239894234246885245402806465700760528496316658100834632585364274381823984214942419830421..."
},
{
"input": "893 3",
"output": "3154491812688062338683413382839715419754844054478504300541293341098785797116419835470049101334759365561276155814822131363018164033585874216523127145546903121862283071300185033613164338905028463571111541628115658108609505120357131336651371062955497690723492519748325195227665653129911625684144804656937323976632567108677478936761775342496303735237936919652618323430255701996987753367609559178855599470625167628439986055634187527493497208780060336400261449926469512996188738133678473883670714775784527941804249702..."
},
{
"input": "998 2",
"output": "8948712698877635315965401396781625629035528026219922557326466734622505808493494219669540192792500692387387200924494124219975316993592377253517258369463882172533672158172302951620486954085880606055358057621166471042557383036617719864238933843342304818076672889894622975857106353903546493307325157763617269195570831067239463586554245706859061059010215520785892192165179414199200952765077228454366556358805840526959104496983177402562569401945586771345953166346316987259989961516385311376707950154520512125143059966..."
},
{
"input": "960 6",
"output": "7291446744949293530598651243840704118065364362420848463900543089429494124955982767375712583398715647208330285855809398453361266463042342917037983463277320070057956978767965467358862479678812136400444143489366786562672928727263605336304125661306952421127807059398289873947797478996261161224877129724944902005212399176751167053423457968483336961277157597291131065544350665072172392437597673561840137077580044817979332136630042866681837917711758227272499659805765131669208911408670581308412686469802437930679571593..."
}
] | 1,567,662,650 | 2,147,483,647 | Python 3 | OK | TESTS | 20 | 139 | 512,000 | ######################################################################
# Write your code here
import sys
from math import *
input = sys.stdin.readline
#import resource
#resource.setrlimit(resource.RLIMIT_STACK, [0x10000000, resource.RLIM_INFINITY])
#sys.setrecursionlimit(0x100000)
# Write your code here
RI = lambda : [int(x) for x in sys.stdin.readline().strip().split()]
rw = lambda : input().strip().split()
ls = lambda : list(input().strip()) # for strings to list of char
from collections import defaultdict as df
import heapq
#heapq.heapify(li) heappush(li,4) heappop(li)
#import random
#random.shuffle(list)
infinite = float('inf')
#######################################################################
k,d=RI()
if(d==0 and k>1):
print("No solution")
else:
print(d,end="")
for i in range(k-1):
print(0,end="")
| Title: Vasya and Digital Root
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has recently found out what a digital root of a number is and he decided to share his knowledge with you.
Let's assume that *S*(*n*) is the sum of digits of number *n*, for example, *S*(4098)<==<=4<=+<=0<=+<=9<=+<=8<==<=21. Then the digital root of number *n* equals to:
1. *dr*(*n*)<==<=*S*(*n*), if *S*(*n*)<=<<=10; 1. *dr*(*n*)<==<=*dr*(<=*S*(*n*)<=), if *S*(*n*)<=≥<=10.
For example, *dr*(4098)<=<==<=<=*dr*(21)<=<==<=<=3.
Vasya is afraid of large numbers, so the numbers he works with are at most 101000. For all such numbers, he has proved that *dr*(*n*)<=<==<=<=*S*(<=*S*(<=*S*(<=*S*(*n*)<=)<=)<=) (*n*<=≤<=101000).
Now Vasya wants to quickly find numbers with the given digital root. The problem is, he hasn't learned how to do that and he asked you to help him. You task is, given numbers *k* and *d*, find the number consisting of exactly *k* digits (the leading zeroes are not allowed), with digital root equal to *d*, or else state that such number does not exist.
Input Specification:
The first line contains two integers *k* and *d* (1<=≤<=*k*<=≤<=1000; 0<=≤<=*d*<=≤<=9).
Output Specification:
In a single line print either any number that meets the requirements (without the leading zeroes) or "No solution" (without the quotes), if the corresponding number does not exist.
The chosen number must consist of exactly *k* digits. We assume that number 0 doesn't contain any leading zeroes.
Demo Input:
['4 4\n', '5 1\n', '1 0\n']
Demo Output:
['5881\n', '36172\n', '0\n']
Note:
For the first test sample *dr*(5881) = *dr*(22) = 4.
For the second test sample *dr*(36172) = *dr*(19) = *dr*(10) = 1. | ```python
######################################################################
# Write your code here
import sys
from math import *
input = sys.stdin.readline
#import resource
#resource.setrlimit(resource.RLIMIT_STACK, [0x10000000, resource.RLIM_INFINITY])
#sys.setrecursionlimit(0x100000)
# Write your code here
RI = lambda : [int(x) for x in sys.stdin.readline().strip().split()]
rw = lambda : input().strip().split()
ls = lambda : list(input().strip()) # for strings to list of char
from collections import defaultdict as df
import heapq
#heapq.heapify(li) heappush(li,4) heappop(li)
#import random
#random.shuffle(list)
infinite = float('inf')
#######################################################################
k,d=RI()
if(d==0 and k>1):
print("No solution")
else:
print(d,end="")
for i in range(k-1):
print(0,end="")
``` | 3 |
|
758 | A | Holiday Of Equality | PROGRAMMING | 800 | [
"implementation",
"math"
] | null | null | In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. | The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. | In the only line print the integer *S* — the minimum number of burles which are had to spend. | [
"5\n0 1 2 3 4\n",
"5\n1 1 0 1 1\n",
"3\n1 3 1\n",
"1\n12\n"
] | [
"10",
"1",
"4",
"0"
] | In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles. | 500 | [
{
"input": "5\n0 1 2 3 4",
"output": "10"
},
{
"input": "5\n1 1 0 1 1",
"output": "1"
},
{
"input": "3\n1 3 1",
"output": "4"
},
{
"input": "1\n12",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281",
"output": "5464380"
},
{
"input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353",
"output": "9535765"
},
{
"input": "3\n1 3 2",
"output": "3"
},
{
"input": "3\n2 1 3",
"output": "3"
},
{
"input": "3\n2 3 1",
"output": "3"
},
{
"input": "3\n3 1 2",
"output": "3"
},
{
"input": "3\n3 2 1",
"output": "3"
},
{
"input": "1\n228503",
"output": "0"
},
{
"input": "2\n32576 550340",
"output": "517764"
},
{
"input": "3\n910648 542843 537125",
"output": "741328"
},
{
"input": "4\n751720 572344 569387 893618",
"output": "787403"
},
{
"input": "6\n433864 631347 597596 794426 713555 231193",
"output": "1364575"
},
{
"input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107",
"output": "4647430"
},
{
"input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025",
"output": "13488674"
},
{
"input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763",
"output": "21993384"
},
{
"input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351",
"output": "26984185"
},
{
"input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642",
"output": "32816391"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n1000000",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "3\n5 0 0",
"output": "10"
},
{
"input": "5\n2 10 0 0 0",
"output": "38"
}
] | 1,693,451,414 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 0 | 15 | 0 | t = int(input())
list = [int(item) for item in input().split()]
ans = 0
m = max(list)
for x in list:
ans += m - x | Title: Holiday Of Equality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
Input Specification:
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
Output Specification:
In the only line print the integer *S* — the minimum number of burles which are had to spend.
Demo Input:
['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n']
Demo Output:
['10', '1', '4', '0']
Note:
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles. | ```python
t = int(input())
list = [int(item) for item in input().split()]
ans = 0
m = max(list)
for x in list:
ans += m - x
``` | 0 |
|
990 | G | GCD Counting | PROGRAMMING | 2,400 | [
"divide and conquer",
"dp",
"dsu",
"number theory",
"trees"
] | null | null | You are given a tree consisting of $n$ vertices. A number is written on each vertex; the number on vertex $i$ is equal to $a_i$.
Let's denote the function $g(x, y)$ as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex $x$ to vertex $y$ (including these two vertices).
For every integer from $1$ to $2 \cdot 10^5$ you have to count the number of pairs $(x, y)$ $(1 \le x \le y \le n)$ such that $g(x, y)$ is equal to this number. | The first line contains one integer $n$ — the number of vertices $(1 \le n \le 2 \cdot 10^5)$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 2 \cdot 10^5)$ — the numbers written on vertices.
Then $n - 1$ lines follow, each containing two integers $x$ and $y$ $(1 \le x, y \le n, x \ne y)$ denoting an edge connecting vertex $x$ with vertex $y$. It is guaranteed that these edges form a tree. | For every integer $i$ from $1$ to $2 \cdot 10^5$ do the following: if there is no pair $(x, y)$ such that $x \le y$ and $g(x, y) = i$, don't output anything. Otherwise output two integers: $i$ and the number of aforementioned pairs. You have to consider the values of $i$ in ascending order.
See the examples for better understanding. | [
"3\n1 2 3\n1 2\n2 3\n",
"6\n1 2 4 8 16 32\n1 6\n6 3\n3 4\n4 2\n6 5\n",
"4\n9 16 144 6\n1 3\n2 3\n4 3\n"
] | [
"1 4\n2 1\n3 1\n",
"1 6\n2 5\n4 6\n8 1\n16 2\n32 1\n",
"1 1\n2 1\n3 1\n6 2\n9 2\n16 2\n144 1\n"
] | none | 0 | [
{
"input": "3\n1 2 3\n1 2\n2 3",
"output": "1 4\n2 1\n3 1"
},
{
"input": "6\n1 2 4 8 16 32\n1 6\n6 3\n3 4\n4 2\n6 5",
"output": "1 6\n2 5\n4 6\n8 1\n16 2\n32 1"
},
{
"input": "4\n9 16 144 6\n1 3\n2 3\n4 3",
"output": "1 1\n2 1\n3 1\n6 2\n9 2\n16 2\n144 1"
},
{
"input": "3\n1 2 4\n1 2\n2 3",
"output": "1 3\n2 2\n4 1"
},
{
"input": "1\n13",
"output": "13 1"
}
] | 1,600,804,479 | 2,147,483,647 | PyPy 3 | COMPILATION_ERROR | TESTS | 0 | 0 | 0 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
using ll=long long;
vector<int> d[maxn];
int cnt[maxn];
ll res[maxn];
int a[maxn];
int gcd(int a, int b) {
if (b==0) return a;
return gcd(b, a%b);
}
struct CentroidDecomposition {
vector<vector<int>> T;
vector<int> sz, P;
vector<bool> block;
CentroidDecomposition(int n):
T(n), sz(n), P(n, -1), block(n) {}
void add_edge(int a, int b) {
T[a].emplace_back(b);
T[b].emplace_back(a);
}
bool valid(int x, int p) {
return x != p && !block[x];
}
//calculate sizes
int dfs(int x, int p=-1) {
sz[x] = 1;
for (int v : T[x]) if (valid(v, p))
sz[x] += dfs(v, x);
return sz[x];
}
//gradient descendt algorithm
int get_centroid(int x, int p, int n) {
for (int v : T[x])
if (valid(v, p) && 2 * sz[v] > n)
return get_centroid(v, x, n);
return x;
}
void dfs_add(int x, int p, int g) {
cnt[g] += 1;
for (auto v : T[x]) {
if (!valid(v, p)) continue;
dfs_add(v, x, gcd(g, a[v]));
}
}
void dfs_cnt(int x, int p, int g, int c) {
for (int di : d[a[c]]) {
res[gcd(g, di)] += cnt[di];
}
for (auto v : T[x]) {
if (!valid(v, p)) continue;
dfs_cnt(v, x, gcd(g, a[v]), c);
}
}
void decompose(int x=0, int p=-1) {
int n = dfs(x);
int cen = get_centroid(x, -1, n);
cnt[a[cen]] = 1;
res[a[cen]] += 1;
for (int v : T[cen]) {
if (block[v]) continue;
dfs_cnt(v, cen, gcd(a[cen], a[v]), cen);
dfs_add(v, cen, gcd(a[cen], a[v]));
}
for (int e : d[a[cen]]) cnt[e] = 0;
P[cen] = p; //centroid parent
block[cen] = 1; //block node
for (auto v : T[cen]) {
if (block[v]) continue;
decompose(v, cen);
}
}
};
int main() {
int n;
scanf("%d", &n);
CentroidDecomposition solver(n);
for (int i = 0; i < n; ++i) scanf("%d", a+i);
for (int i = 0; i < n-1; ++i) {
int a, b;
scanf("%d%d", &a, &b);
solver.add_edge(a-1, b-1);
}
for (int i = 1; i < maxn; ++i) {
for (int j = i; j < maxn; j += i) {
d[j].emplace_back(i);
}
}
solver.decompose();
for (int i = 1; i < maxn; ++i) {
if (res[i]) printf("%d %d\n", i, res[i]);
}
return 0;
} | Title: GCD Counting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a tree consisting of $n$ vertices. A number is written on each vertex; the number on vertex $i$ is equal to $a_i$.
Let's denote the function $g(x, y)$ as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex $x$ to vertex $y$ (including these two vertices).
For every integer from $1$ to $2 \cdot 10^5$ you have to count the number of pairs $(x, y)$ $(1 \le x \le y \le n)$ such that $g(x, y)$ is equal to this number.
Input Specification:
The first line contains one integer $n$ — the number of vertices $(1 \le n \le 2 \cdot 10^5)$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 2 \cdot 10^5)$ — the numbers written on vertices.
Then $n - 1$ lines follow, each containing two integers $x$ and $y$ $(1 \le x, y \le n, x \ne y)$ denoting an edge connecting vertex $x$ with vertex $y$. It is guaranteed that these edges form a tree.
Output Specification:
For every integer $i$ from $1$ to $2 \cdot 10^5$ do the following: if there is no pair $(x, y)$ such that $x \le y$ and $g(x, y) = i$, don't output anything. Otherwise output two integers: $i$ and the number of aforementioned pairs. You have to consider the values of $i$ in ascending order.
See the examples for better understanding.
Demo Input:
['3\n1 2 3\n1 2\n2 3\n', '6\n1 2 4 8 16 32\n1 6\n6 3\n3 4\n4 2\n6 5\n', '4\n9 16 144 6\n1 3\n2 3\n4 3\n']
Demo Output:
['1 4\n2 1\n3 1\n', '1 6\n2 5\n4 6\n8 1\n16 2\n32 1\n', '1 1\n2 1\n3 1\n6 2\n9 2\n16 2\n144 1\n']
Note:
none | ```python
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
using ll=long long;
vector<int> d[maxn];
int cnt[maxn];
ll res[maxn];
int a[maxn];
int gcd(int a, int b) {
if (b==0) return a;
return gcd(b, a%b);
}
struct CentroidDecomposition {
vector<vector<int>> T;
vector<int> sz, P;
vector<bool> block;
CentroidDecomposition(int n):
T(n), sz(n), P(n, -1), block(n) {}
void add_edge(int a, int b) {
T[a].emplace_back(b);
T[b].emplace_back(a);
}
bool valid(int x, int p) {
return x != p && !block[x];
}
//calculate sizes
int dfs(int x, int p=-1) {
sz[x] = 1;
for (int v : T[x]) if (valid(v, p))
sz[x] += dfs(v, x);
return sz[x];
}
//gradient descendt algorithm
int get_centroid(int x, int p, int n) {
for (int v : T[x])
if (valid(v, p) && 2 * sz[v] > n)
return get_centroid(v, x, n);
return x;
}
void dfs_add(int x, int p, int g) {
cnt[g] += 1;
for (auto v : T[x]) {
if (!valid(v, p)) continue;
dfs_add(v, x, gcd(g, a[v]));
}
}
void dfs_cnt(int x, int p, int g, int c) {
for (int di : d[a[c]]) {
res[gcd(g, di)] += cnt[di];
}
for (auto v : T[x]) {
if (!valid(v, p)) continue;
dfs_cnt(v, x, gcd(g, a[v]), c);
}
}
void decompose(int x=0, int p=-1) {
int n = dfs(x);
int cen = get_centroid(x, -1, n);
cnt[a[cen]] = 1;
res[a[cen]] += 1;
for (int v : T[cen]) {
if (block[v]) continue;
dfs_cnt(v, cen, gcd(a[cen], a[v]), cen);
dfs_add(v, cen, gcd(a[cen], a[v]));
}
for (int e : d[a[cen]]) cnt[e] = 0;
P[cen] = p; //centroid parent
block[cen] = 1; //block node
for (auto v : T[cen]) {
if (block[v]) continue;
decompose(v, cen);
}
}
};
int main() {
int n;
scanf("%d", &n);
CentroidDecomposition solver(n);
for (int i = 0; i < n; ++i) scanf("%d", a+i);
for (int i = 0; i < n-1; ++i) {
int a, b;
scanf("%d%d", &a, &b);
solver.add_edge(a-1, b-1);
}
for (int i = 1; i < maxn; ++i) {
for (int j = i; j < maxn; j += i) {
d[j].emplace_back(i);
}
}
solver.decompose();
for (int i = 1; i < maxn; ++i) {
if (res[i]) printf("%d %d\n", i, res[i]);
}
return 0;
}
``` | -1 |
|
136 | A | Presents | PROGRAMMING | 800 | [
"implementation"
] | null | null | Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift. | The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves. | Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*. | [
"4\n2 3 4 1\n",
"3\n1 3 2\n",
"2\n1 2\n"
] | [
"4 1 2 3\n",
"1 3 2\n",
"1 2\n"
] | none | 500 | [
{
"input": "4\n2 3 4 1",
"output": "4 1 2 3"
},
{
"input": "3\n1 3 2",
"output": "1 3 2"
},
{
"input": "2\n1 2",
"output": "1 2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 3 2 6 4 5 7 9 8 10",
"output": "1 3 2 5 6 4 7 9 8 10"
},
{
"input": "5\n5 4 3 2 1",
"output": "5 4 3 2 1"
},
{
"input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19"
},
{
"input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19",
"output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19"
},
{
"input": "10\n3 4 5 6 7 8 9 10 1 2",
"output": "9 10 1 2 3 4 5 6 7 8"
},
{
"input": "8\n1 5 3 7 2 6 4 8",
"output": "1 5 3 7 2 6 4 8"
},
{
"input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47",
"output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19"
},
{
"input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17",
"output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25"
},
{
"input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85",
"output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30"
},
{
"input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49",
"output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49"
},
{
"input": "12\n3 8 7 4 6 5 2 1 11 9 10 12",
"output": "8 7 1 4 6 5 3 2 10 11 9 12"
},
{
"input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76",
"output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4"
},
{
"input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43",
"output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1"
},
{
"input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27",
"output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3"
},
{
"input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22",
"output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53"
},
{
"input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13",
"output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24"
},
{
"input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21",
"output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61"
},
{
"input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33",
"output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14"
},
{
"input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23",
"output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21"
},
{
"input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12",
"output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9"
},
{
"input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31",
"output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13"
},
{
"input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3",
"output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16"
},
{
"input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8",
"output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6"
},
{
"input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71",
"output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90"
},
{
"input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9",
"output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9"
},
{
"input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44",
"output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20"
},
{
"input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17",
"output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28"
},
{
"input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7",
"output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5"
},
{
"input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16",
"output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43"
},
{
"input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65",
"output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43"
},
{
"input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16",
"output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45"
},
{
"input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51",
"output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64"
},
{
"input": "12\n12 3 1 5 11 6 7 10 2 8 9 4",
"output": "3 9 2 12 4 6 7 10 11 8 5 1"
},
{
"input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17",
"output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44"
},
{
"input": "8\n1 3 5 2 4 8 6 7",
"output": "1 4 2 5 3 7 8 6"
},
{
"input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14",
"output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12"
},
{
"input": "10\n2 9 4 6 10 1 7 5 3 8",
"output": "6 1 9 3 8 4 7 10 2 5"
},
{
"input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3",
"output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7"
},
{
"input": "10\n2 4 9 3 6 8 10 5 1 7",
"output": "9 1 4 2 8 5 10 6 3 7"
},
{
"input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15",
"output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23"
},
{
"input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1",
"output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27"
},
{
"input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30",
"output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23"
},
{
"input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52",
"output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50"
},
{
"input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18",
"output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98"
},
{
"input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16",
"output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25"
},
{
"input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37",
"output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54"
},
{
"input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71",
"output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71"
},
{
"input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22",
"output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8"
},
{
"input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12",
"output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51"
},
{
"input": "7\n2 1 5 7 3 4 6",
"output": "2 1 5 6 3 7 4"
},
{
"input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35",
"output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31"
},
{
"input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16",
"output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21"
},
{
"input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52",
"output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11"
},
{
"input": "9\n8 5 2 6 1 9 4 7 3",
"output": "5 3 9 7 2 4 8 1 6"
},
{
"input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27",
"output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13"
},
{
"input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34",
"output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6"
},
{
"input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29",
"output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14"
},
{
"input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7",
"output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16"
},
{
"input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34",
"output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24"
},
{
"input": "9\n4 8 6 5 3 9 2 7 1",
"output": "9 7 5 1 4 3 8 2 6"
},
{
"input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29",
"output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32"
},
{
"input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47",
"output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11"
},
{
"input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6",
"output": "10 4 1 8 6 13 12 5 3 11 9 2 7"
},
{
"input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29",
"output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37"
},
{
"input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3",
"output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25"
},
{
"input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20",
"output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24"
},
{
"input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42",
"output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59"
},
{
"input": "6\n4 3 6 5 1 2",
"output": "5 6 2 1 4 3"
},
{
"input": "9\n7 8 5 3 1 4 2 9 6",
"output": "5 7 4 6 3 9 1 2 8"
},
{
"input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37",
"output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11",
"output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13"
},
{
"input": "2\n2 1",
"output": "2 1"
},
{
"input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28",
"output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18"
},
{
"input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13",
"output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1"
},
{
"input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14",
"output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36"
},
{
"input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29",
"output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32"
},
{
"input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5",
"output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40"
},
{
"input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54",
"output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21"
},
{
"input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29",
"output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4"
},
{
"input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23",
"output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50"
},
{
"input": "10\n2 10 7 4 1 5 8 6 3 9",
"output": "5 1 9 4 6 8 3 7 10 2"
},
{
"input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13",
"output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1"
},
{
"input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2",
"output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11"
},
{
"input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53",
"output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37"
},
{
"input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53",
"output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53"
},
{
"input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64",
"output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49"
},
{
"input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86",
"output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38"
},
{
"input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75",
"output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2"
},
{
"input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53",
"output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5"
},
{
"input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39",
"output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12"
},
{
"input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87",
"output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82"
},
{
"input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25",
"output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97"
},
{
"input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61",
"output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96"
},
{
"input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92",
"output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96"
},
{
"input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6",
"output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36"
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1"
}
] | 1,690,886,144 | 2,147,483,647 | Python 3 | OK | TESTS | 101 | 92 | 0 | line1 = input()
line2 = input()
numOfPeople = int(line1)
originalGifts = list(map(int, line2.split(' ')))
arrayGifts = originalGifts.copy()
def convert(list):
s = [str(i) for i in list]
res = " ".join(s)
return(res)
for i in range(numOfPeople):
arrayGifts[originalGifts[i] - 1] = i + 1
print(convert(arrayGifts))
| Title: Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Output Specification:
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
Demo Input:
['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n']
Demo Output:
['4 1 2 3\n', '1 3 2\n', '1 2\n']
Note:
none | ```python
line1 = input()
line2 = input()
numOfPeople = int(line1)
originalGifts = list(map(int, line2.split(' ')))
arrayGifts = originalGifts.copy()
def convert(list):
s = [str(i) for i in list]
res = " ".join(s)
return(res)
for i in range(numOfPeople):
arrayGifts[originalGifts[i] - 1] = i + 1
print(convert(arrayGifts))
``` | 3 |
|
1 | A | Theatre Square | PROGRAMMING | 1,000 | [
"math"
] | A. Theatre Square | 1 | 256 | Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. | The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). | Write the needed number of flagstones. | [
"6 6 4\n"
] | [
"4\n"
] | none | 0 | [
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,663,414,317 | 2,147,483,647 | Python 3 | OK | TESTS | 20 | 46 | 0 | n,m,a=map(int,input().split())
if n%a==0:
w=n//a
else:
w=n//a+1
if m%a==0:
w*=m//a
else:
w*=m//a+1
print(w)
| Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none | ```python
n,m,a=map(int,input().split())
if n%a==0:
w=n//a
else:
w=n//a+1
if m%a==0:
w*=m//a
else:
w*=m//a+1
print(w)
``` | 3.977 |
154 | A | Hometask | PROGRAMMING | 1,600 | [
"greedy"
] | null | null | Sergey attends lessons of the *N*-ish language. Each lesson he receives a hometask. This time the task is to translate some sentence to the *N*-ish language. Sentences of the *N*-ish language can be represented as strings consisting of lowercase Latin letters without spaces or punctuation marks.
Sergey totally forgot about the task until half an hour before the next lesson and hastily scribbled something down. But then he recollected that in the last lesson he learned the grammar of *N*-ish. The spelling rules state that *N*-ish contains some "forbidden" pairs of letters: such letters can never occur in a sentence next to each other. Also, the order of the letters doesn't matter (for example, if the pair of letters "ab" is forbidden, then any occurrences of substrings "ab" and "ba" are also forbidden). Also, each pair has different letters and each letter occurs in no more than one forbidden pair.
Now Sergey wants to correct his sentence so that it doesn't contain any "forbidden" pairs of letters that stand next to each other. However, he is running out of time, so he decided to simply cross out some letters from the sentence. What smallest number of letters will he have to cross out? When a letter is crossed out, it is "removed" so that the letters to its left and right (if they existed), become neighboring. For example, if we cross out the first letter from the string "aba", we get the string "ba", and if we cross out the second letter, we get "aa". | The first line contains a non-empty string *s*, consisting of lowercase Latin letters — that's the initial sentence in *N*-ish, written by Sergey. The length of string *s* doesn't exceed 105.
The next line contains integer *k* (0<=≤<=*k*<=≤<=13) — the number of forbidden pairs of letters.
Next *k* lines contain descriptions of forbidden pairs of letters. Each line contains exactly two different lowercase Latin letters without separators that represent the forbidden pairs. It is guaranteed that each letter is included in no more than one pair. | Print the single number — the smallest number of letters that need to be removed to get a string without any forbidden pairs of neighboring letters. Please note that the answer always exists as it is always possible to remove all letters. | [
"ababa\n1\nab\n",
"codeforces\n2\ndo\ncs\n"
] | [
"2\n",
"1\n"
] | In the first sample you should remove two letters b.
In the second sample you should remove the second or the third letter. The second restriction doesn't influence the solution. | 500 | [
{
"input": "ababa\n1\nab",
"output": "2"
},
{
"input": "codeforces\n2\ndo\ncs",
"output": "1"
},
{
"input": "nllnrlrnll\n1\nrl",
"output": "1"
},
{
"input": "aludfbjtwnkgnfl\n1\noy",
"output": "0"
},
{
"input": "pgpgppgggpbbnnn\n2\npg\nnb",
"output": "7"
},
{
"input": "eepeeeeppppppeepeppe\n1\npe",
"output": "10"
},
{
"input": "vefneyamdzoytemupniw\n13\nve\nfg\noi\nan\nck\nwx\npq\nml\nbt\nud\nrz\nsj\nhy",
"output": "1"
},
{
"input": "drvwfaacccwnncfwuptsorrrvvvrgdzytrwweeexzyyyxuwuuk\n13\nld\nac\nnp\nrv\nmo\njh\ngb\nuw\nfq\nst\nkx\nzy\nei",
"output": "11"
},
{
"input": "pninnihzipirpbdggrdglzdpbldtzihgbzdnrgznbpdanhnlag\n4\nli\nqh\nad\nbp",
"output": "4"
},
{
"input": "mbmxuuuuxuuuuhhooooxxxuxxxuxuuxuuuxxjvjvjjjjvvvjjjjjvvjvjjjvvvjjvjjvvvjjjvjvvjvjjjjjmmbmbbbbbmbbbbmm\n5\nmb\nho\nxu\njv\nyp",
"output": "37"
},
{
"input": "z\n0",
"output": "0"
},
{
"input": "t\n13\nzx\nig\nyq\nbd\nph\nar\nne\nwo\ntk\njl\ncv\nfs\nmu",
"output": "0"
},
{
"input": "rbnxovfcwkdjctdjfskaozjzthlcntuaoiavnbsfpuzxyvhfbxetvryvwrqetokdshadxpxijtpkrqvghsrejgnqntwiypiglzmp\n13\njr\nnf\nyk\ntq\nwe\nil\ngu\npb\naz\nxm\nhc\nvd\nso",
"output": "0"
},
{
"input": "yynynnyyyiynyniiiinyynniiyiyyyniyniyynyyyynyynnniiiniyyniiyyiynyiynnnnyiiyiyniyyininiyiiiyynnnyiyinnnnyiinnnnnyninyinyynynyiynyyyiyinyynnyyinynyinininyniniynniiyyiiyy\n1\nni",
"output": "28"
},
{
"input": "eowsgsewestwsootoetteoeeeetwssesstswegswetwetggewsteeteoggetssetseegwteswtteowsgowwoowetwgogewssogwgtttgwwoeotgoswwwwswsgeeoowwwwetwgeswsgwtsgewswtstwgggtegsssggsstwsoggeoseotgwswwggtggweewwgwegggoteweessotsewttwseosgegswwsoewgwstetwteegseowgwoteegwttwwowtwtosweeggweeeeoeesgseetgwgtswteotgwewetssggteewteeetetweeotwttwoeswggoosogoeg\n3\nst\neo\ngw",
"output": "49"
},
{
"input": "ttspivgoupgupvgpusvppogsseueusuglpiugssviuutlvgvugtpovuvspvpipggooplgvgugpogvesppulovugsvuougveiivgvslllviogpvtolepglguuellotpvgevspvoiiggiiplppgosuguvtstttpielteuglopgeoeeuivtptggltoltpgliviotsospvitupiopisoetupvvspooilsopslpoloptigstspoiuutiuvvuvlpplvioitsuvlpvtleveslslovolloogsgpvpepgueesslgtssttuupieppsstoeopeeppvopglpvtvuugpsuoplttsgstsiplpiugtoolisgpeeiuvutstpulvtllipsvsslvoepooslvteoevipvpsuoiippeuegoovoovstlvgsstitsivlvseguoolpslueuepgeooltviovpveeivolssloieuugovguoleulvssopetlpivpgoigtv\n1\ngs",
"output": "8"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n1\nab",
"output": "75"
}
] | 1,491,200,199 | 2,147,483,647 | PyPy 3 | OK | TESTS | 42 | 1,058 | 102,092,800 | S = input()
M = int( input() )
banned = set( input() for i in range( M ) )
buff = set()
for s in banned:
if not ( s[ : : -1 ] in banned ):
buff.add( s[ : : -1 ] )
banned.update( buff )
dp = [ [ 1e9 for i in range( 26 ) ] for j in range( len( S ) + 1 ) ]
for i in range( 26 ):
dp[ 0 ][ i ] = 0
for i in range( len( S ) ):
for j in range( 26 ):
if dp[ i ][ j ] == 1e9: continue
if not ( chr( ord( 'a' ) + j ) + S[ i ] in banned ):
dp[ i + 1 ][ ord( S[ i ] ) - ord( 'a' ) ] = min( dp[ i + 1 ][ ord( S[ i ] ) - ord( 'a' ) ], dp[ i ][ j ] )
dp[ i + 1 ][ j ] = min( dp[ i + 1 ][ j ], dp[ i ][ j ] + 1 )
print( min( dp[ len( S ) ] ) )
| Title: Hometask
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sergey attends lessons of the *N*-ish language. Each lesson he receives a hometask. This time the task is to translate some sentence to the *N*-ish language. Sentences of the *N*-ish language can be represented as strings consisting of lowercase Latin letters without spaces or punctuation marks.
Sergey totally forgot about the task until half an hour before the next lesson and hastily scribbled something down. But then he recollected that in the last lesson he learned the grammar of *N*-ish. The spelling rules state that *N*-ish contains some "forbidden" pairs of letters: such letters can never occur in a sentence next to each other. Also, the order of the letters doesn't matter (for example, if the pair of letters "ab" is forbidden, then any occurrences of substrings "ab" and "ba" are also forbidden). Also, each pair has different letters and each letter occurs in no more than one forbidden pair.
Now Sergey wants to correct his sentence so that it doesn't contain any "forbidden" pairs of letters that stand next to each other. However, he is running out of time, so he decided to simply cross out some letters from the sentence. What smallest number of letters will he have to cross out? When a letter is crossed out, it is "removed" so that the letters to its left and right (if they existed), become neighboring. For example, if we cross out the first letter from the string "aba", we get the string "ba", and if we cross out the second letter, we get "aa".
Input Specification:
The first line contains a non-empty string *s*, consisting of lowercase Latin letters — that's the initial sentence in *N*-ish, written by Sergey. The length of string *s* doesn't exceed 105.
The next line contains integer *k* (0<=≤<=*k*<=≤<=13) — the number of forbidden pairs of letters.
Next *k* lines contain descriptions of forbidden pairs of letters. Each line contains exactly two different lowercase Latin letters without separators that represent the forbidden pairs. It is guaranteed that each letter is included in no more than one pair.
Output Specification:
Print the single number — the smallest number of letters that need to be removed to get a string without any forbidden pairs of neighboring letters. Please note that the answer always exists as it is always possible to remove all letters.
Demo Input:
['ababa\n1\nab\n', 'codeforces\n2\ndo\ncs\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample you should remove two letters b.
In the second sample you should remove the second or the third letter. The second restriction doesn't influence the solution. | ```python
S = input()
M = int( input() )
banned = set( input() for i in range( M ) )
buff = set()
for s in banned:
if not ( s[ : : -1 ] in banned ):
buff.add( s[ : : -1 ] )
banned.update( buff )
dp = [ [ 1e9 for i in range( 26 ) ] for j in range( len( S ) + 1 ) ]
for i in range( 26 ):
dp[ 0 ][ i ] = 0
for i in range( len( S ) ):
for j in range( 26 ):
if dp[ i ][ j ] == 1e9: continue
if not ( chr( ord( 'a' ) + j ) + S[ i ] in banned ):
dp[ i + 1 ][ ord( S[ i ] ) - ord( 'a' ) ] = min( dp[ i + 1 ][ ord( S[ i ] ) - ord( 'a' ) ], dp[ i ][ j ] )
dp[ i + 1 ][ j ] = min( dp[ i + 1 ][ j ], dp[ i ][ j ] + 1 )
print( min( dp[ len( S ) ] ) )
``` | 3 |
|
514 | A | Chewbaсca and Number | PROGRAMMING | 1,200 | [
"greedy",
"implementation"
] | null | null | Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero. | The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca. | Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes. | [
"27\n",
"4545\n"
] | [
"22\n",
"4444\n"
] | none | 500 | [
{
"input": "27",
"output": "22"
},
{
"input": "4545",
"output": "4444"
},
{
"input": "1",
"output": "1"
},
{
"input": "9",
"output": "9"
},
{
"input": "8772",
"output": "1222"
},
{
"input": "81",
"output": "11"
},
{
"input": "71723447",
"output": "21223442"
},
{
"input": "91730629",
"output": "91230320"
},
{
"input": "420062703497",
"output": "420032203402"
},
{
"input": "332711047202",
"output": "332211042202"
},
{
"input": "3395184971407775",
"output": "3304114021402224"
},
{
"input": "8464062628894325",
"output": "1434032321104324"
},
{
"input": "164324828731963982",
"output": "134324121231033012"
},
{
"input": "384979173822804784",
"output": "314020123122104214"
},
{
"input": "41312150450968417",
"output": "41312140440031412"
},
{
"input": "2156",
"output": "2143"
},
{
"input": "1932",
"output": "1032"
},
{
"input": "5902",
"output": "4002"
},
{
"input": "5728",
"output": "4221"
},
{
"input": "8537",
"output": "1432"
},
{
"input": "55403857",
"output": "44403142"
},
{
"input": "270739",
"output": "220230"
},
{
"input": "28746918",
"output": "21243011"
},
{
"input": "10279211",
"output": "10220211"
},
{
"input": "40289679",
"output": "40210320"
},
{
"input": "545203238506",
"output": "444203231403"
},
{
"input": "461117063340",
"output": "431112033340"
},
{
"input": "658492686568",
"output": "341402313431"
},
{
"input": "857373361868",
"output": "142323331131"
},
{
"input": "429325660016",
"output": "420324330013"
},
{
"input": "9894448650287940",
"output": "9104441340212040"
},
{
"input": "6354510839296263",
"output": "3344410130203233"
},
{
"input": "6873575462224593",
"output": "3123424432224403"
},
{
"input": "4237951492601449",
"output": "4232041402301440"
},
{
"input": "2680352384836991",
"output": "2310342314133001"
},
{
"input": "606187734191890310",
"output": "303112234101100310"
},
{
"input": "351499943576823355",
"output": "341400043423123344"
},
{
"input": "180593481782177068",
"output": "110403411212122031"
},
{
"input": "999999999999999999",
"output": "900000000000000000"
},
{
"input": "1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "9999",
"output": "9000"
},
{
"input": "99",
"output": "90"
},
{
"input": "9991",
"output": "9001"
}
] | 1,699,269,819 | 2,147,483,647 | Python 3 | WRONG_ANSWER | TESTS | 3 | 31 | 0 |
s=input()
l=[]
for i in range(len(s)):
l.append(int(s[i]))
if(9-l[i]<l[i]):
l[i]=9-l[i]
s=0
j=1
for i in range(len(l)):
s+=l[len(l)-1]*j
j*=10
print(s)
| Title: Chewbaсca and Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
Input Specification:
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
Output Specification:
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
Demo Input:
['27\n', '4545\n']
Demo Output:
['22\n', '4444\n']
Note:
none | ```python
s=input()
l=[]
for i in range(len(s)):
l.append(int(s[i]))
if(9-l[i]<l[i]):
l[i]=9-l[i]
s=0
j=1
for i in range(len(l)):
s+=l[len(l)-1]*j
j*=10
print(s)
``` | 0 |
|
59 | A | Word | PROGRAMMING | 800 | [
"implementation",
"strings"
] | A. Word | 2 | 256 | Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. | The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. | Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. | [
"HoUse\n",
"ViP\n",
"maTRIx\n"
] | [
"house\n",
"VIP\n",
"matrix\n"
] | none | 500 | [
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,695,441,244 | 2,147,483,647 | Python 3 | OK | TESTS | 30 | 92 | 0 | string = input() # get input from judge.
list = list(string) # convert string into a list
capList = [] # empty list for holding upper letters
lowList = [] # empty list for holding lower letters
for i in range(len(string)):
if list[i].isupper(): # if letter is capital, add to cap list.
capList.append(list[i])
else: # else, add letter to low list.
lowList.append(list[i])
if len(capList) > len(lowList): # if cap list is bigger than low list
output = string.upper() # make the input string all caps.
else: # otherwise make the string lower case.
output = string.lower()
print(output) # print the output.
| Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none | ```python
string = input() # get input from judge.
list = list(string) # convert string into a list
capList = [] # empty list for holding upper letters
lowList = [] # empty list for holding lower letters
for i in range(len(string)):
if list[i].isupper(): # if letter is capital, add to cap list.
capList.append(list[i])
else: # else, add letter to low list.
lowList.append(list[i])
if len(capList) > len(lowList): # if cap list is bigger than low list
output = string.upper() # make the input string all caps.
else: # otherwise make the string lower case.
output = string.lower()
print(output) # print the output.
``` | 3.977 |
6 | A | Triangle | PROGRAMMING | 900 | [
"brute force",
"geometry"
] | A. Triangle | 2 | 64 | Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.
The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him. | The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks. | Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length. | [
"4 2 1 3\n",
"7 2 2 4\n",
"3 5 9 1\n"
] | [
"TRIANGLE\n",
"SEGMENT\n",
"IMPOSSIBLE\n"
] | none | 0 | [
{
"input": "4 2 1 3",
"output": "TRIANGLE"
},
{
"input": "7 2 2 4",
"output": "SEGMENT"
},
{
"input": "3 5 9 1",
"output": "IMPOSSIBLE"
},
{
"input": "3 1 5 1",
"output": "IMPOSSIBLE"
},
{
"input": "10 10 10 10",
"output": "TRIANGLE"
},
{
"input": "11 5 6 11",
"output": "TRIANGLE"
},
{
"input": "1 1 1 1",
"output": "TRIANGLE"
},
{
"input": "10 20 30 40",
"output": "TRIANGLE"
},
{
"input": "45 25 5 15",
"output": "IMPOSSIBLE"
},
{
"input": "20 5 8 13",
"output": "TRIANGLE"
},
{
"input": "10 30 7 20",
"output": "SEGMENT"
},
{
"input": "3 2 3 2",
"output": "TRIANGLE"
},
{
"input": "70 10 100 30",
"output": "SEGMENT"
},
{
"input": "4 8 16 2",
"output": "IMPOSSIBLE"
},
{
"input": "3 3 3 10",
"output": "TRIANGLE"
},
{
"input": "1 5 5 5",
"output": "TRIANGLE"
},
{
"input": "13 25 12 1",
"output": "SEGMENT"
},
{
"input": "10 100 7 3",
"output": "SEGMENT"
},
{
"input": "50 1 50 100",
"output": "TRIANGLE"
},
{
"input": "50 1 100 49",
"output": "SEGMENT"
},
{
"input": "49 51 100 1",
"output": "SEGMENT"
},
{
"input": "5 11 2 25",
"output": "IMPOSSIBLE"
},
{
"input": "91 50 9 40",
"output": "IMPOSSIBLE"
},
{
"input": "27 53 7 97",
"output": "IMPOSSIBLE"
},
{
"input": "51 90 24 8",
"output": "IMPOSSIBLE"
},
{
"input": "3 5 1 1",
"output": "IMPOSSIBLE"
},
{
"input": "13 49 69 15",
"output": "IMPOSSIBLE"
},
{
"input": "16 99 9 35",
"output": "IMPOSSIBLE"
},
{
"input": "27 6 18 53",
"output": "IMPOSSIBLE"
},
{
"input": "57 88 17 8",
"output": "IMPOSSIBLE"
},
{
"input": "95 20 21 43",
"output": "IMPOSSIBLE"
},
{
"input": "6 19 32 61",
"output": "IMPOSSIBLE"
},
{
"input": "100 21 30 65",
"output": "IMPOSSIBLE"
},
{
"input": "85 16 61 9",
"output": "IMPOSSIBLE"
},
{
"input": "5 6 19 82",
"output": "IMPOSSIBLE"
},
{
"input": "1 5 1 3",
"output": "IMPOSSIBLE"
},
{
"input": "65 10 36 17",
"output": "IMPOSSIBLE"
},
{
"input": "81 64 9 7",
"output": "IMPOSSIBLE"
},
{
"input": "11 30 79 43",
"output": "IMPOSSIBLE"
},
{
"input": "1 1 5 3",
"output": "IMPOSSIBLE"
},
{
"input": "21 94 61 31",
"output": "IMPOSSIBLE"
},
{
"input": "49 24 9 74",
"output": "IMPOSSIBLE"
},
{
"input": "11 19 5 77",
"output": "IMPOSSIBLE"
},
{
"input": "52 10 19 71",
"output": "SEGMENT"
},
{
"input": "2 3 7 10",
"output": "SEGMENT"
},
{
"input": "1 2 6 3",
"output": "SEGMENT"
},
{
"input": "2 6 1 8",
"output": "SEGMENT"
},
{
"input": "1 2 4 1",
"output": "SEGMENT"
},
{
"input": "4 10 6 2",
"output": "SEGMENT"
},
{
"input": "2 10 7 3",
"output": "SEGMENT"
},
{
"input": "5 2 3 9",
"output": "SEGMENT"
},
{
"input": "6 1 4 10",
"output": "SEGMENT"
},
{
"input": "10 6 4 1",
"output": "SEGMENT"
},
{
"input": "3 2 9 1",
"output": "SEGMENT"
},
{
"input": "22 80 29 7",
"output": "SEGMENT"
},
{
"input": "2 6 3 9",
"output": "SEGMENT"
},
{
"input": "3 1 2 1",
"output": "SEGMENT"
},
{
"input": "3 4 7 1",
"output": "SEGMENT"
},
{
"input": "8 4 3 1",
"output": "SEGMENT"
},
{
"input": "2 8 3 5",
"output": "SEGMENT"
},
{
"input": "4 1 2 1",
"output": "SEGMENT"
},
{
"input": "8 1 3 2",
"output": "SEGMENT"
},
{
"input": "6 2 1 8",
"output": "SEGMENT"
},
{
"input": "3 3 3 6",
"output": "TRIANGLE"
},
{
"input": "3 6 3 3",
"output": "TRIANGLE"
},
{
"input": "4 10 4 4",
"output": "TRIANGLE"
},
{
"input": "1 1 2 1",
"output": "TRIANGLE"
},
{
"input": "3 3 3 6",
"output": "TRIANGLE"
},
{
"input": "5 4 5 5",
"output": "TRIANGLE"
},
{
"input": "8 7 8 8",
"output": "TRIANGLE"
},
{
"input": "3 3 3 1",
"output": "TRIANGLE"
},
{
"input": "1 1 6 6",
"output": "TRIANGLE"
},
{
"input": "1 9 1 9",
"output": "TRIANGLE"
},
{
"input": "7 2 2 7",
"output": "TRIANGLE"
},
{
"input": "7 2 3 2",
"output": "TRIANGLE"
},
{
"input": "4 4 10 10",
"output": "TRIANGLE"
},
{
"input": "7 7 10 7",
"output": "TRIANGLE"
},
{
"input": "4 4 4 5",
"output": "TRIANGLE"
},
{
"input": "1 10 9 2",
"output": "TRIANGLE"
},
{
"input": "1 8 2 7",
"output": "TRIANGLE"
},
{
"input": "4 3 2 8",
"output": "TRIANGLE"
},
{
"input": "5 9 5 3",
"output": "TRIANGLE"
},
{
"input": "4 10 3 5",
"output": "TRIANGLE"
}
] | 1,552,206,600 | 2,147,483,647 | Python 3 | OK | TESTS | 83 | 218 | 307,200 | s = list(map(int, input().split(' ')))
if s[0] < s[1] + s[2] and s[1] < s[0] + s[2] and s[2] < s[0] + s[1] or s[0] < s[1] + s[3] and s[1] < s[0] + s[3] and s[3] < s[0] + s[1] or s[0] < s[2] + s[3] and s[2] < s[0] + s[3] and s[3] < s[0] + s[2] or s[1] < s[2] + s[3] and s[2] < s[1] + s[3] and s[3] < s[1] + s[2]:
print('TRIANGLE')
elif s[0] == s[1] + s[2] or s[1] == s[0] + s[2] or s[2] == s[0] + s[1] or s[0] == s[1] + s[3] or s[1] == s[0] + s[3] or s[3] == s[0] + s[1] or s[0] == s[2] + s[3] or s[2] == s[0] + s[3] or s[3] == s[0] + s[2] or s[1] == s[2] + s[3] or s[2] == s[1] + s[3] or s[3] == s[1] + s[2]:
print('SEGMENT')
else:
print('IMPOSSIBLE')
| Title: Triangle
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.
The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.
Input Specification:
The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks.
Output Specification:
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.
Demo Input:
['4 2 1 3\n', '7 2 2 4\n', '3 5 9 1\n']
Demo Output:
['TRIANGLE\n', 'SEGMENT\n', 'IMPOSSIBLE\n']
Note:
none | ```python
s = list(map(int, input().split(' ')))
if s[0] < s[1] + s[2] and s[1] < s[0] + s[2] and s[2] < s[0] + s[1] or s[0] < s[1] + s[3] and s[1] < s[0] + s[3] and s[3] < s[0] + s[1] or s[0] < s[2] + s[3] and s[2] < s[0] + s[3] and s[3] < s[0] + s[2] or s[1] < s[2] + s[3] and s[2] < s[1] + s[3] and s[3] < s[1] + s[2]:
print('TRIANGLE')
elif s[0] == s[1] + s[2] or s[1] == s[0] + s[2] or s[2] == s[0] + s[1] or s[0] == s[1] + s[3] or s[1] == s[0] + s[3] or s[3] == s[0] + s[1] or s[0] == s[2] + s[3] or s[2] == s[0] + s[3] or s[3] == s[0] + s[2] or s[1] == s[2] + s[3] or s[2] == s[1] + s[3] or s[3] == s[1] + s[2]:
print('SEGMENT')
else:
print('IMPOSSIBLE')
``` | 3.943211 |
262 | B | Roma and Changing Signs | PROGRAMMING | 1,200 | [
"greedy"
] | null | null | Roma works in a company that sells TVs. Now he has to prepare a report for the last year.
Roma has got a list of the company's incomes. The list is a sequence that consists of *n* integers. The total income of the company is the sum of all integers in sequence. Roma decided to perform exactly *k* changes of signs of several numbers in the sequence. He can also change the sign of a number one, two or more times.
The operation of changing a number's sign is the operation of multiplying this number by -1.
Help Roma perform the changes so as to make the total income of the company (the sum of numbers in the resulting sequence) maximum. Note that Roma should perform exactly *k* changes. | The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=105), showing, how many numbers are in the sequence and how many swaps are to be made.
The second line contains a non-decreasing sequence, consisting of *n* integers *a**i* (|*a**i*|<=≤<=104).
The numbers in the lines are separated by single spaces. Please note that the given sequence is sorted in non-decreasing order. | In the single line print the answer to the problem — the maximum total income that we can obtain after exactly *k* changes. | [
"3 2\n-1 -1 1\n",
"3 1\n-1 -1 1\n"
] | [
"3\n",
"1\n"
] | In the first sample we can get sequence [1, 1, 1], thus the total income equals 3.
In the second test, the optimal strategy is to get sequence [-1, 1, 1], thus the total income equals 1. | 1,000 | [
{
"input": "3 2\n-1 -1 1",
"output": "3"
},
{
"input": "3 1\n-1 -1 1",
"output": "1"
},
{
"input": "17 27\n257 320 676 1136 2068 2505 2639 4225 4951 5786 7677 7697 7851 8337 8429 8469 9343",
"output": "81852"
},
{
"input": "69 28\n-9822 -9264 -9253 -9221 -9139 -9126 -9096 -8981 -8521 -8313 -8257 -8253 -7591 -7587 -7301 -7161 -7001 -6847 -6441 -6241 -5949 -5896 -5713 -5692 -5644 -5601 -5545 -5525 -5331 -5253 -5041 -5000 -4951 -4855 -4384 -4293 -4251 -4001 -3991 -3762 -3544 -3481 -3261 -2983 -2882 -2857 -2713 -2691 -2681 -2653 -2221 -2043 -2011 -1997 -1601 -1471 -1448 -1363 -1217 -1217 -1129 -961 -926 -801 -376 -327 -305 -174 -91",
"output": "102443"
},
{
"input": "12 28\n-6652 -6621 -6471 -5559 -5326 -4551 -4401 -4326 -3294 -1175 -1069 -43",
"output": "49488"
},
{
"input": "78 13\n-9961 -9922 -9817 -9813 -9521 -9368 -9361 -9207 -9153 -9124 -9008 -8981 -8951 -8911 -8551 -8479 -8245 -8216 -7988 -7841 -7748 -7741 -7734 -7101 -6846 -6804 -6651 -6526 -6519 -6463 -6297 -6148 -6090 -5845 -5209 -5201 -5161 -5061 -4537 -4529 -4433 -4370 -4266 -4189 -4125 -3945 -3843 -3777 -3751 -3476 -3461 -3279 -3205 -3001 -2889 -2761 -2661 -2521 -2481 -2305 -2278 -2269 -2225 -1648 -1524 -1476 -1353 -1097 -867 -785 -741 -711 -692 -440 -401 -225 -65 -41",
"output": "-147832"
},
{
"input": "4 1\n218 3441 4901 7601",
"output": "15725"
},
{
"input": "73 26\n-8497 -8363 -7603 -7388 -6830 -6827 -6685 -6389 -6237 -6099 -6013 -5565 -5465 -4965 -4947 -4201 -3851 -3793 -3421 -3410 -3201 -3169 -3156 -2976 -2701 -2623 -2321 -2169 -1469 -1221 -950 -926 -9 47 236 457 773 1321 1485 1545 1671 1736 2014 2137 2174 2301 2625 3181 3536 3851 4041 4685 4981 4987 5145 5163 5209 5249 6011 6337 6790 7254 7361 7407 7969 7982 8083 8251 8407 8735 9660 9855 9957",
"output": "315919"
},
{
"input": "53 5\n-9821 -9429 -9146 -8973 -8807 -8801 -8321 -7361 -7222 -7161 -6913 -5961 -4877 -4756 -4753 -4661 -3375 -3031 -2950 -2661 -2161 -2041 -1111 -1071 -905 -697 -397 323 772 1617 1752 2736 2737 3201 3465 4029 4121 4463 4561 4637 4814 6119 6610 6641 6961 7217 7523 8045 8610 8915 9004 9265 9576",
"output": "92703"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n10000",
"output": "-10000"
},
{
"input": "1 2\n-1",
"output": "-1"
},
{
"input": "2 1\n0 1",
"output": "1"
},
{
"input": "2 2\n-1 0",
"output": "1"
},
{
"input": "5 6\n-3 -2 -1 5 6",
"output": "15"
},
{
"input": "3 3\n-50 -10 30",
"output": "70"
},
{
"input": "4 4\n-100 -90 -80 1",
"output": "269"
},
{
"input": "4 3\n-3 -2 1 2",
"output": "6"
},
{
"input": "6 4\n-6 -3 -2 1 2 3",
"output": "15"
},
{
"input": "5 6\n-10 -9 -8 1 2",
"output": "28"
},
{
"input": "1 2\n1",
"output": "1"
},
{
"input": "2 2\n-1 3",
"output": "2"
},
{
"input": "4 7\n-3 -2 1 6",
"output": "10"
},
{
"input": "4 3\n-7 -6 1 5",
"output": "17"
},
{
"input": "4 4\n-5 -1 1 2",
"output": "9"
}
] | 1,599,648,025 | 2,147,483,647 | PyPy 3 | WRONG_ANSWER | TESTS | 2 | 248 | 0 |
s1 = input()
b = s1.split()
n = int(b[0])
k = int(b[1])
a = list(map(int, input().split()))
a.sort()
for i in range(n):
if a[i] < 0:
a[i] *= -1
k -= 1
if k == 0:
break
print(sum(a)) | Title: Roma and Changing Signs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Roma works in a company that sells TVs. Now he has to prepare a report for the last year.
Roma has got a list of the company's incomes. The list is a sequence that consists of *n* integers. The total income of the company is the sum of all integers in sequence. Roma decided to perform exactly *k* changes of signs of several numbers in the sequence. He can also change the sign of a number one, two or more times.
The operation of changing a number's sign is the operation of multiplying this number by -1.
Help Roma perform the changes so as to make the total income of the company (the sum of numbers in the resulting sequence) maximum. Note that Roma should perform exactly *k* changes.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=105), showing, how many numbers are in the sequence and how many swaps are to be made.
The second line contains a non-decreasing sequence, consisting of *n* integers *a**i* (|*a**i*|<=≤<=104).
The numbers in the lines are separated by single spaces. Please note that the given sequence is sorted in non-decreasing order.
Output Specification:
In the single line print the answer to the problem — the maximum total income that we can obtain after exactly *k* changes.
Demo Input:
['3 2\n-1 -1 1\n', '3 1\n-1 -1 1\n']
Demo Output:
['3\n', '1\n']
Note:
In the first sample we can get sequence [1, 1, 1], thus the total income equals 3.
In the second test, the optimal strategy is to get sequence [-1, 1, 1], thus the total income equals 1. | ```python
s1 = input()
b = s1.split()
n = int(b[0])
k = int(b[1])
a = list(map(int, input().split()))
a.sort()
for i in range(n):
if a[i] < 0:
a[i] *= -1
k -= 1
if k == 0:
break
print(sum(a))
``` | 0 |
|
260 | A | Adding Digits | PROGRAMMING | 1,400 | [
"implementation",
"math"
] | null | null | Vasya has got two number: *a* and *b*. However, Vasya finds number *a* too short. So he decided to repeat the operation of lengthening number *a* *n* times.
One operation of lengthening a number means adding exactly one digit to the number (in the decimal notation) to the right provided that the resulting number is divisible by Vasya's number *b*. If it is impossible to obtain the number which is divisible by *b*, then the lengthening operation cannot be performed.
Your task is to help Vasya and print the number he can get after applying the lengthening operation to number *a* *n* times. | The first line contains three integers: *a*,<=*b*,<=*n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=105). | In a single line print the integer without leading zeros, which Vasya can get when he applies the lengthening operations to number *a* *n* times. If no such number exists, then print number -1. If there are multiple possible answers, print any of them. | [
"5 4 5\n",
"12 11 1\n",
"260 150 10\n"
] | [
"524848\n",
"121\n",
"-1\n"
] | none | 500 | [
{
"input": "5 4 5",
"output": "524848"
},
{
"input": "12 11 1",
"output": "121"
},
{
"input": "260 150 10",
"output": "-1"
},
{
"input": "78843 5684 42717",
"output": "-1"
},
{
"input": "93248 91435 1133",
"output": "-1"
},
{
"input": "100000 10 64479",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99999 21 73839",
"output": "9999990000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99991 623 36438",
"output": "9999150000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99999 334 94854",
"output": "9999960000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99252 9827 84849",
"output": "9925270000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99313 9833 10561",
"output": "9931330000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "94885 55815 11417",
"output": "9488550000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99492 58525 53481",
"output": "9949250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99858 28531 79193",
"output": "9985850000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99136 47208 42607",
"output": "9913680000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "63270 19953 5555",
"output": "-1"
},
{
"input": "10240 128 100000",
"output": "1024000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "12 11 3",
"output": "12100"
},
{
"input": "14 12 99998",
"output": "1440000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "1 11 3",
"output": "1100"
},
{
"input": "3 40 1",
"output": "-1"
},
{
"input": "150 100 10",
"output": "1500000000000"
},
{
"input": "5 10 1",
"output": "50"
},
{
"input": "1 15 10",
"output": "15000000000"
},
{
"input": "3 13 2",
"output": "390"
}
] | 1,607,004,396 | 2,147,483,647 | Python 3 | OK | TESTS | 25 | 108 | 204,800 | a,b,n = [int(x) for x in input().split()]
s = str(a)
check = 1
for i in range(10):
if int(s+str(i))%b==0:
s += str(i)
check = 0
break
if check:
print(-1)
else:
print(s+'0'*(n-1))
| Title: Adding Digits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has got two number: *a* and *b*. However, Vasya finds number *a* too short. So he decided to repeat the operation of lengthening number *a* *n* times.
One operation of lengthening a number means adding exactly one digit to the number (in the decimal notation) to the right provided that the resulting number is divisible by Vasya's number *b*. If it is impossible to obtain the number which is divisible by *b*, then the lengthening operation cannot be performed.
Your task is to help Vasya and print the number he can get after applying the lengthening operation to number *a* *n* times.
Input Specification:
The first line contains three integers: *a*,<=*b*,<=*n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=105).
Output Specification:
In a single line print the integer without leading zeros, which Vasya can get when he applies the lengthening operations to number *a* *n* times. If no such number exists, then print number -1. If there are multiple possible answers, print any of them.
Demo Input:
['5 4 5\n', '12 11 1\n', '260 150 10\n']
Demo Output:
['524848\n', '121\n', '-1\n']
Note:
none | ```python
a,b,n = [int(x) for x in input().split()]
s = str(a)
check = 1
for i in range(10):
if int(s+str(i))%b==0:
s += str(i)
check = 0
break
if check:
print(-1)
else:
print(s+'0'*(n-1))
``` | 3 |
|
454 | A | Little Pony and Crystal Mine | PROGRAMMING | 800 | [
"implementation"
] | null | null | Twilight Sparkle once got a crystal from the Crystal Mine. A crystal of size *n* (*n* is odd; *n*<=><=1) is an *n*<=×<=*n* matrix with a diamond inscribed into it.
You are given an odd integer *n*. You need to draw a crystal of size *n*. The diamond cells of the matrix should be represented by character "D". All other cells of the matrix should be represented by character "*". Look at the examples to understand what you need to draw. | The only line contains an integer *n* (3<=≤<=*n*<=≤<=101; *n* is odd). | Output a crystal of size *n*. | [
"3\n",
"5\n",
"7\n"
] | [
"*D*\nDDD\n*D*\n",
"**D**\n*DDD*\nDDDDD\n*DDD*\n**D**\n",
"***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***\n"
] | none | 500 | [
{
"input": "3",
"output": "*D*\nDDD\n*D*"
},
{
"input": "5",
"output": "**D**\n*DDD*\nDDDDD\n*DDD*\n**D**"
},
{
"input": "7",
"output": "***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***"
},
{
"input": "11",
"output": "*****D*****\n****DDD****\n***DDDDD***\n**DDDDDDD**\n*DDDDDDDDD*\nDDDDDDDDDDD\n*DDDDDDDDD*\n**DDDDDDD**\n***DDDDD***\n****DDD****\n*****D*****"
},
{
"input": "15",
"output": "*******D*******\n******DDD******\n*****DDDDD*****\n****DDDDDDD****\n***DDDDDDDDD***\n**DDDDDDDDDDD**\n*DDDDDDDDDDDDD*\nDDDDDDDDDDDDDDD\n*DDDDDDDDDDDDD*\n**DDDDDDDDDDD**\n***DDDDDDDDD***\n****DDDDDDD****\n*****DDDDD*****\n******DDD******\n*******D*******"
},
{
"input": "21",
"output": "**********D**********\n*********DDD*********\n********DDDDD********\n*******DDDDDDD*******\n******DDDDDDDDD******\n*****DDDDDDDDDDD*****\n****DDDDDDDDDDDDD****\n***DDDDDDDDDDDDDDD***\n**DDDDDDDDDDDDDDDDD**\n*DDDDDDDDDDDDDDDDDDD*\nDDDDDDDDDDDDDDDDDDDDD\n*DDDDDDDDDDDDDDDDDDD*\n**DDDDDDDDDDDDDDDDD**\n***DDDDDDDDDDDDDDD***\n****DDDDDDDDDDDDD****\n*****DDDDDDDDDDD*****\n******DDDDDDDDD******\n*******DDDDDDD*******\n********DDDDD********\n*********DDD*********\n**********D**********"
},
{
"input": "33",
"output": "****************D****************\n***************DDD***************\n**************DDDDD**************\n*************DDDDDDD*************\n************DDDDDDDDD************\n***********DDDDDDDDDDD***********\n**********DDDDDDDDDDDDD**********\n*********DDDDDDDDDDDDDDD*********\n********DDDDDDDDDDDDDDDDD********\n*******DDDDDDDDDDDDDDDDDDD*******\n******DDDDDDDDDDDDDDDDDDDDD******\n*****DDDDDDDDDDDDDDDDDDDDDDD*****\n****DDDDDDDDDDDDDDDDDDDDDDDDD****\n***DDDDDDDDDDDDDDDDDDDDDDDDDDD***\n**DDDDDDDDDDDDDDDDDDD..."
},
{
"input": "57",
"output": "****************************D****************************\n***************************DDD***************************\n**************************DDDDD**************************\n*************************DDDDDDD*************************\n************************DDDDDDDDD************************\n***********************DDDDDDDDDDD***********************\n**********************DDDDDDDDDDDDD**********************\n*********************DDDDDDDDDDDDDDD*********************\n********************DDDDDDDDDDDDDDDDD**..."
},
{
"input": "69",
"output": "**********************************D**********************************\n*********************************DDD*********************************\n********************************DDDDD********************************\n*******************************DDDDDDD*******************************\n******************************DDDDDDDDD******************************\n*****************************DDDDDDDDDDD*****************************\n****************************DDDDDDDDDDDDD****************************\n**************..."
},
{
"input": "81",
"output": "****************************************D****************************************\n***************************************DDD***************************************\n**************************************DDDDD**************************************\n*************************************DDDDDDD*************************************\n************************************DDDDDDDDD************************************\n***********************************DDDDDDDDDDD***********************************\n*************..."
},
{
"input": "91",
"output": "*********************************************D*********************************************\n********************************************DDD********************************************\n*******************************************DDDDD*******************************************\n******************************************DDDDDDD******************************************\n*****************************************DDDDDDDDD*****************************************\n****************************************DDDDDD..."
},
{
"input": "101",
"output": "**************************************************D**************************************************\n*************************************************DDD*************************************************\n************************************************DDDDD************************************************\n***********************************************DDDDDDD***********************************************\n**********************************************DDDDDDDDD********************************************..."
}
] | 1,611,089,702 | 2,147,483,647 | Python 3 | OK | TESTS | 12 | 62 | 0 | line = int(input())
mid_pt = (line+1)//2
for i in range(1,line+1):
if i<mid_pt:
print("*"*(mid_pt-i)+"D"*(2*i-1)+"*"*(mid_pt-i))
else:
print("*"*(i-mid_pt)+"D"*(2*(line+1-i)-1)+"*"*(i-mid_pt)) | Title: Little Pony and Crystal Mine
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Twilight Sparkle once got a crystal from the Crystal Mine. A crystal of size *n* (*n* is odd; *n*<=><=1) is an *n*<=×<=*n* matrix with a diamond inscribed into it.
You are given an odd integer *n*. You need to draw a crystal of size *n*. The diamond cells of the matrix should be represented by character "D". All other cells of the matrix should be represented by character "*". Look at the examples to understand what you need to draw.
Input Specification:
The only line contains an integer *n* (3<=≤<=*n*<=≤<=101; *n* is odd).
Output Specification:
Output a crystal of size *n*.
Demo Input:
['3\n', '5\n', '7\n']
Demo Output:
['*D*\nDDD\n*D*\n', '**D**\n*DDD*\nDDDDD\n*DDD*\n**D**\n', '***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***\n']
Note:
none | ```python
line = int(input())
mid_pt = (line+1)//2
for i in range(1,line+1):
if i<mid_pt:
print("*"*(mid_pt-i)+"D"*(2*i-1)+"*"*(mid_pt-i))
else:
print("*"*(i-mid_pt)+"D"*(2*(line+1-i)-1)+"*"*(i-mid_pt))
``` | 3 |