|
import torch
|
|
import numpy as np
|
|
import random
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.patches as patches
|
|
from shapely.geometry import Point, box
|
|
import networkx as nx
|
|
from copy import deepcopy
|
|
from itertools import groupby
|
|
|
|
def move_to_device(inputs, device):
|
|
if hasattr(inputs, "keys"):
|
|
return {k: move_to_device(v, device) for k, v in inputs.items()}
|
|
elif isinstance(inputs, list):
|
|
return [move_to_device(v, device) for v in inputs]
|
|
elif isinstance(inputs, tuple):
|
|
return tuple([move_to_device(v, device) for v in inputs])
|
|
elif isinstance(inputs, np.ndarray):
|
|
return torch.from_numpy(inputs).to(device)
|
|
else:
|
|
return inputs.to(device)
|
|
|
|
class UnionFind:
|
|
def __init__(self, n):
|
|
self.parent = list(range(n))
|
|
self.size = [1] * n
|
|
self.num_components = n
|
|
|
|
@classmethod
|
|
def from_adj_matrix(cls, adj_matrix):
|
|
ufds = cls(adj_matrix.shape[0])
|
|
for i in range(adj_matrix.shape[0]):
|
|
for j in range(adj_matrix.shape[1]):
|
|
if adj_matrix[i, j] > 0:
|
|
ufds.unite(i, j)
|
|
return ufds
|
|
|
|
@classmethod
|
|
def from_adj_list(cls, adj_list):
|
|
ufds = cls(len(adj_list))
|
|
for i in range(len(adj_list)):
|
|
for j in adj_list[i]:
|
|
ufds.unite(i, j)
|
|
return ufds
|
|
|
|
@classmethod
|
|
def from_edge_list(cls, edge_list, num_nodes):
|
|
ufds = cls(num_nodes)
|
|
for edge in edge_list:
|
|
ufds.unite(edge[0], edge[1])
|
|
return ufds
|
|
|
|
def find(self, x):
|
|
if self.parent[x] == x:
|
|
return x
|
|
self.parent[x] = self.find(self.parent[x])
|
|
return self.parent[x]
|
|
|
|
def unite(self, x, y):
|
|
x = self.find(x)
|
|
y = self.find(y)
|
|
if x != y:
|
|
if self.size[x] < self.size[y]:
|
|
x, y = y, x
|
|
self.parent[y] = x
|
|
self.size[x] += self.size[y]
|
|
self.num_components -= 1
|
|
|
|
def get_components_of(self, x):
|
|
x = self.find(x)
|
|
return [i for i in range(len(self.parent)) if self.find(i) == x]
|
|
|
|
def are_connected(self, x, y):
|
|
return self.find(x) == self.find(y)
|
|
|
|
def get_size(self, x):
|
|
return self.size[self.find(x)]
|
|
|
|
def get_num_components(self):
|
|
return self.num_components
|
|
|
|
def get_labels_for_connected_components(self):
|
|
map_parent_to_label = {}
|
|
labels = []
|
|
for i in range(len(self.parent)):
|
|
parent = self.find(i)
|
|
if parent not in map_parent_to_label:
|
|
map_parent_to_label[parent] = len(map_parent_to_label)
|
|
labels.append(map_parent_to_label[parent])
|
|
return labels
|
|
|
|
def visualise_single_image_prediction(image_as_np_array, predictions, filename):
|
|
h, w = image_as_np_array.shape[:2]
|
|
if h > w:
|
|
figure, subplot = plt.subplots(1, 1, figsize=(10, 10 * h / w))
|
|
else:
|
|
figure, subplot = plt.subplots(1, 1, figsize=(10 * w / h, 10))
|
|
subplot.imshow(image_as_np_array)
|
|
plot_bboxes(subplot, predictions["panels"], color="green")
|
|
plot_bboxes(subplot, predictions["texts"], color="red", add_index=True)
|
|
plot_bboxes(subplot, predictions["characters"], color="blue")
|
|
|
|
COLOURS = [
|
|
"#b7ff51",
|
|
"#f50a8f",
|
|
"#4b13b6",
|
|
"#ddaa34",
|
|
"#bea2a2",
|
|
]
|
|
colour_index = 0
|
|
character_cluster_labels = predictions["character_cluster_labels"]
|
|
unique_label_sorted_by_frequency = sorted(list(set(character_cluster_labels)), key=lambda x: character_cluster_labels.count(x), reverse=True)
|
|
for label in unique_label_sorted_by_frequency:
|
|
root = None
|
|
others = []
|
|
for i in range(len(predictions["characters"])):
|
|
if character_cluster_labels[i] == label:
|
|
if root is None:
|
|
root = i
|
|
else:
|
|
others.append(i)
|
|
if colour_index >= len(COLOURS):
|
|
random_colour = COLOURS[0]
|
|
while random_colour in COLOURS:
|
|
random_colour = "#" + "".join([random.choice("0123456789ABCDEF") for j in range(6)])
|
|
else:
|
|
random_colour = COLOURS[colour_index]
|
|
colour_index += 1
|
|
bbox_i = predictions["characters"][root]
|
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
|
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
|
|
subplot.plot([x1], [y1], color=random_colour, marker="o", markersize=5)
|
|
for j in others:
|
|
|
|
bbox_j = predictions["characters"][j]
|
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
|
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
|
|
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2
|
|
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2
|
|
subplot.plot([x1, x2], [y1, y2], color=random_colour, linewidth=2)
|
|
subplot.plot([x2], [y2], color=random_colour, marker="o", markersize=5)
|
|
|
|
for (i, j) in predictions["text_character_associations"]:
|
|
score = predictions["dialog_confidences"][i]
|
|
bbox_i = predictions["texts"][i]
|
|
bbox_j = predictions["characters"][j]
|
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
|
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
|
|
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2
|
|
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2
|
|
subplot.plot([x1, x2], [y1, y2], color="red", linewidth=2, linestyle="dashed", alpha=score)
|
|
|
|
subplot.axis("off")
|
|
if filename is not None:
|
|
plt.savefig(filename, bbox_inches="tight", pad_inches=0)
|
|
|
|
figure.canvas.draw()
|
|
image = np.array(figure.canvas.renderer._renderer)
|
|
plt.close()
|
|
return image
|
|
|
|
def plot_bboxes(subplot, bboxes, color="red", add_index=False):
|
|
for id, bbox in enumerate(bboxes):
|
|
w = bbox[2] - bbox[0]
|
|
h = bbox[3] - bbox[1]
|
|
rect = patches.Rectangle(
|
|
bbox[:2], w, h, linewidth=1, edgecolor=color, facecolor="none", linestyle="solid"
|
|
)
|
|
subplot.add_patch(rect)
|
|
if add_index:
|
|
cx, cy = bbox[0] + w / 2, bbox[1] + h / 2
|
|
subplot.text(cx, cy, str(id), color=color, fontsize=10, ha="center", va="center")
|
|
|
|
def sort_panels(rects):
|
|
before_rects = convert_to_list_of_lists(rects)
|
|
|
|
rects = [erode_rectangle(rect, 0.05) for rect in before_rects]
|
|
G = nx.DiGraph()
|
|
G.add_nodes_from(range(len(rects)))
|
|
for i in range(len(rects)):
|
|
for j in range(len(rects)):
|
|
if i == j:
|
|
continue
|
|
if is_there_a_directed_edge(i, j, rects):
|
|
G.add_edge(i, j, weight=get_distance(rects[i], rects[j]))
|
|
else:
|
|
G.add_edge(j, i, weight=get_distance(rects[i], rects[j]))
|
|
while True:
|
|
cycles = sorted(nx.simple_cycles(G))
|
|
cycles = [cycle for cycle in cycles if len(cycle) > 1]
|
|
if len(cycles) == 0:
|
|
break
|
|
cycle = cycles[0]
|
|
edges = [e for e in zip(cycle, cycle[1:] + cycle[:1])]
|
|
max_cyclic_edge = max(edges, key=lambda x: G.edges[x]["weight"])
|
|
G.remove_edge(*max_cyclic_edge)
|
|
return list(nx.topological_sort(G))
|
|
|
|
def is_strictly_above(rectA, rectB):
|
|
x1A, y1A, x2A, y2A = rectA
|
|
x1B, y1B, x2B, y2B = rectB
|
|
return y2A < y1B
|
|
|
|
def is_strictly_below(rectA, rectB):
|
|
x1A, y1A, x2A, y2A = rectA
|
|
x1B, y1B, x2B, y2B = rectB
|
|
return y2B < y1A
|
|
|
|
def is_strictly_left_of(rectA, rectB):
|
|
x1A, y1A, x2A, y2A = rectA
|
|
x1B, y1B, x2B, y2B = rectB
|
|
return x2A < x1B
|
|
|
|
def is_strictly_right_of(rectA, rectB):
|
|
x1A, y1A, x2A, y2A = rectA
|
|
x1B, y1B, x2B, y2B = rectB
|
|
return x2B < x1A
|
|
|
|
def intersects(rectA, rectB):
|
|
return box(*rectA).intersects(box(*rectB))
|
|
|
|
def is_there_a_directed_edge(a, b, rects):
|
|
rectA = rects[a]
|
|
rectB = rects[b]
|
|
centre_of_A = [rectA[0] + (rectA[2] - rectA[0]) / 2, rectA[1] + (rectA[3] - rectA[1]) / 2]
|
|
centre_of_B = [rectB[0] + (rectB[2] - rectB[0]) / 2, rectB[1] + (rectB[3] - rectB[1]) / 2]
|
|
if np.allclose(np.array(centre_of_A), np.array(centre_of_B)):
|
|
return box(*rectA).area > (box(*rectB)).area
|
|
copy_A = [rectA[0], rectA[1], rectA[2], rectA[3]]
|
|
copy_B = [rectB[0], rectB[1], rectB[2], rectB[3]]
|
|
while True:
|
|
if is_strictly_above(copy_A, copy_B) and not is_strictly_left_of(copy_A, copy_B):
|
|
return 1
|
|
if is_strictly_above(copy_B, copy_A) and not is_strictly_left_of(copy_B, copy_A):
|
|
return 0
|
|
if is_strictly_right_of(copy_A, copy_B) and not is_strictly_below(copy_A, copy_B):
|
|
return 1
|
|
if is_strictly_right_of(copy_B, copy_A) and not is_strictly_below(copy_B, copy_A):
|
|
return 0
|
|
if is_strictly_below(copy_A, copy_B) and is_strictly_right_of(copy_A, copy_B):
|
|
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects)
|
|
if is_strictly_below(copy_B, copy_A) and is_strictly_right_of(copy_B, copy_A):
|
|
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects)
|
|
|
|
copy_A = erode_rectangle(copy_A, 0.05)
|
|
copy_B = erode_rectangle(copy_B, 0.05)
|
|
|
|
def get_distance(rectA, rectB):
|
|
return box(rectA[0], rectA[1], rectA[2], rectA[3]).distance(box(rectB[0], rectB[1], rectB[2], rectB[3]))
|
|
|
|
def use_cuts_to_determine_edge_from_a_to_b(a, b, rects):
|
|
rects = deepcopy(rects)
|
|
while True:
|
|
xmin, ymin, xmax, ymax = min(rects[a][0], rects[b][0]), min(rects[a][1], rects[b][1]), max(rects[a][2], rects[b][2]), max(rects[a][3], rects[b][3])
|
|
rect_index = [i for i in range(len(rects)) if intersects(rects[i], [xmin, ymin, xmax, ymax])]
|
|
rects_copy = [rect for rect in rects if intersects(rect, [xmin, ymin, xmax, ymax])]
|
|
|
|
|
|
overlapping_y_ranges = merge_overlapping_ranges([(y1, y2) for x1, y1, x2, y2 in rects_copy])
|
|
panel_index_to_split = {}
|
|
for split_index, (y1, y2) in enumerate(overlapping_y_ranges):
|
|
for i, index in enumerate(rect_index):
|
|
if y1 <= rects_copy[i][1] <= rects_copy[i][3] <= y2:
|
|
panel_index_to_split[index] = split_index
|
|
|
|
if panel_index_to_split[a] != panel_index_to_split[b]:
|
|
return panel_index_to_split[a] < panel_index_to_split[b]
|
|
|
|
|
|
overlapping_x_ranges = merge_overlapping_ranges([(x1, x2) for x1, y1, x2, y2 in rects_copy])
|
|
panel_index_to_split = {}
|
|
for split_index, (x1, x2) in enumerate(overlapping_x_ranges[::-1]):
|
|
for i, index in enumerate(rect_index):
|
|
if x1 <= rects_copy[i][0] <= rects_copy[i][2] <= x2:
|
|
panel_index_to_split[index] = split_index
|
|
if panel_index_to_split[a] != panel_index_to_split[b]:
|
|
return panel_index_to_split[a] < panel_index_to_split[b]
|
|
|
|
|
|
rects = [erode_rectangle(rect, 0.05) for rect in rects]
|
|
|
|
def erode_rectangle(bbox, erosion_factor):
|
|
x1, y1, x2, y2 = bbox
|
|
w, h = x2 - x1, y2 - y1
|
|
cx, cy = x1 + w / 2, y1 + h / 2
|
|
if w < h:
|
|
aspect_ratio = w / h
|
|
erosion_factor_width = erosion_factor * aspect_ratio
|
|
erosion_factor_height = erosion_factor
|
|
else:
|
|
aspect_ratio = h / w
|
|
erosion_factor_width = erosion_factor
|
|
erosion_factor_height = erosion_factor * aspect_ratio
|
|
w = w - w * erosion_factor_width
|
|
h = h - h * erosion_factor_height
|
|
x1, y1, x2, y2 = cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2
|
|
return [x1, y1, x2, y2]
|
|
|
|
def merge_overlapping_ranges(ranges):
|
|
"""
|
|
ranges: list of tuples (x1, x2)
|
|
"""
|
|
if len(ranges) == 0:
|
|
return []
|
|
ranges = sorted(ranges, key=lambda x: x[0])
|
|
merged_ranges = []
|
|
for i, r in enumerate(ranges):
|
|
if i == 0:
|
|
prev_x1, prev_x2 = r
|
|
continue
|
|
x1, x2 = r
|
|
if x1 > prev_x2:
|
|
merged_ranges.append((prev_x1, prev_x2))
|
|
prev_x1, prev_x2 = x1, x2
|
|
else:
|
|
prev_x2 = max(prev_x2, x2)
|
|
merged_ranges.append((prev_x1, prev_x2))
|
|
return merged_ranges
|
|
|
|
def sort_text_boxes_in_reading_order(text_bboxes, sorted_panel_bboxes):
|
|
text_bboxes = convert_to_list_of_lists(text_bboxes)
|
|
sorted_panel_bboxes = convert_to_list_of_lists(sorted_panel_bboxes)
|
|
|
|
if len(text_bboxes) == 0:
|
|
return []
|
|
|
|
def indices_of_same_elements(nums):
|
|
groups = groupby(range(len(nums)), key=lambda i: nums[i])
|
|
return [list(indices) for _, indices in groups]
|
|
|
|
panel_id_for_text = get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes)
|
|
indices_of_texts = list(range(len(text_bboxes)))
|
|
indices_of_texts, panel_id_for_text = zip(*sorted(zip(indices_of_texts, panel_id_for_text), key=lambda x: x[1]))
|
|
indices_of_texts = list(indices_of_texts)
|
|
grouped_indices = indices_of_same_elements(panel_id_for_text)
|
|
for group in grouped_indices:
|
|
subset_of_text_indices = [indices_of_texts[i] for i in group]
|
|
text_bboxes_of_subset = [text_bboxes[i] for i in subset_of_text_indices]
|
|
sorted_subset_indices = sort_texts_within_panel(text_bboxes_of_subset)
|
|
indices_of_texts[group[0] : group[-1] + 1] = [subset_of_text_indices[i] for i in sorted_subset_indices]
|
|
return indices_of_texts
|
|
|
|
def get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes):
|
|
text_to_panel_mapping = []
|
|
for text_bbox in text_bboxes:
|
|
shapely_text_polygon = box(*text_bbox)
|
|
all_intersections = []
|
|
all_distances = []
|
|
if len(sorted_panel_bboxes) == 0:
|
|
text_to_panel_mapping.append(-1)
|
|
continue
|
|
for j, annotation in enumerate(sorted_panel_bboxes):
|
|
shapely_annotation_polygon = box(*annotation)
|
|
if shapely_text_polygon.intersects(shapely_annotation_polygon):
|
|
all_intersections.append((shapely_text_polygon.intersection(shapely_annotation_polygon).area, j))
|
|
all_distances.append((shapely_text_polygon.distance(shapely_annotation_polygon), j))
|
|
if len(all_intersections) == 0:
|
|
text_to_panel_mapping.append(min(all_distances, key=lambda x: x[0])[1])
|
|
else:
|
|
text_to_panel_mapping.append(max(all_intersections, key=lambda x: x[0])[1])
|
|
return text_to_panel_mapping
|
|
|
|
def sort_texts_within_panel(rects):
|
|
smallest_y = float("inf")
|
|
greatest_x = float("-inf")
|
|
for i, rect in enumerate(rects):
|
|
x1, y1, x2, y2 = rect
|
|
smallest_y = min(smallest_y, y1)
|
|
greatest_x = max(greatest_x, x2)
|
|
|
|
reference_point = Point(greatest_x, smallest_y)
|
|
|
|
polygons_and_index = []
|
|
for i, rect in enumerate(rects):
|
|
x1, y1, x2, y2 = rect
|
|
polygons_and_index.append((box(x1,y1,x2,y2), i))
|
|
|
|
polygons_and_index = sorted(polygons_and_index, key=lambda x: reference_point.distance(x[0]))
|
|
indices = [x[1] for x in polygons_and_index]
|
|
return indices
|
|
|
|
def x1y1wh_to_x1y1x2y2(bbox):
|
|
x1, y1, w, h = bbox
|
|
return [x1, y1, x1 + w, y1 + h]
|
|
|
|
def x1y1x2y2_to_xywh(bbox):
|
|
x1, y1, x2, y2 = bbox
|
|
return [x1, y1, x2 - x1, y2 - y1]
|
|
|
|
def convert_to_list_of_lists(rects):
|
|
if isinstance(rects, torch.Tensor):
|
|
return rects.tolist()
|
|
if isinstance(rects, np.ndarray):
|
|
return rects.tolist()
|
|
return [[a, b, c, d] for a, b, c, d in rects] |