Datasets:
File size: 3,263 Bytes
fef61f9 d4dbb9a ba1fe29 fef61f9 f73251d fef61f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
task_categories:
- question-answering
language:
- en
tags:
- medical
- question answering
- large language model
- retrieval-augmented generation
size_categories:
- 100K<n<1M
---
# The StatPearls Corpus in MedRAG
This HF dataset contains the information of the StatPearls corpus used in [MedRAG](https://arxiv.org/abs/2402.13178). It can be used for medical Retrieval-Augmented Generation (RAG).
According to the [privacy policy](https://www.statpearls.com/home/privacypolicy/) of StatPearls, **we are not allowed to distribute the StatPearls content**. Please download the raw data from [NCBI Bookshelf](https://www.ncbi.nlm.nih.gov/books/NBK430685/) and use [our code](https://github.com/Teddy-XiongGZ/MedRAG/blob/main/src/data/statpearls.py) for the chunking.
## Dataset Details
### Dataset Descriptions
[StatPearls](https://www.statpearls.com/) is a point-of-the-care clinical decision support tool similar to [UpToDate](https://www.uptodate.com/). We use the 9,330 publicly available StatPearl articles through [NCBI Bookshelf](https://www.ncbi.nlm.nih.gov/books/NBK430685/) to construct the StatPearls corpus.
We chunked StatPearls according to the hierarchical structure, treating each paragraph in an article as a snippet and splicing all the relevant hierarchical headings as the corresponding title.
Our chunked corpus contains 301,202 snippets with an average of 119 tokens.
### Dataset Structure
Each row is a snippet of StatPearls, which includes the following features:
- id: a unique identifier of the snippet
- title: the title and subtitles of the StatPearl article from which the snippet is collected
- content: the content of the snippet
- contents: a concatenation of 'title' and 'content', which will be used by the [BM25](https://github.com/castorini/pyserini) retriever
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
```shell
git clone https://github.com/Teddy-XiongGZ/MedRAG.git
cd MedRAG
wget https://ftp.ncbi.nlm.nih.gov/pub/litarch/3d/12/statpearls_NBK430685.tar.gz -P ./corpus/statpearls
tar -xzvf ./corpus/statpearls/statpearls_NBK430685.tar.gz -C ./corpus/statpearls
python src/data/statpearls.py
```
### Use in MedRAG
```python
>> from src.medrag import MedRAG
>> question = "A lesion causing compression of the facial nerve at the stylomastoid foramen will cause ipsilateral"
>> options = {
"A": "paralysis of the facial muscles.",
"B": "paralysis of the facial muscles and loss of taste.",
"C": "paralysis of the facial muscles, loss of taste and lacrimation.",
"D": "paralysis of the facial muscles, loss of taste, lacrimation and decreased salivation."
}
>> medrag = MedRAG(llm_name="OpenAI/gpt-3.5-turbo-16k", rag=True, retriever_name="MedCPT", corpus_name="StatPearls")
>> answer, snippets, scores = medrag.answer(question=question, options=options, k=32) # scores are given by the retrieval system
```
## Citation
```shell
@article{xiong2024benchmarking,
title={Benchmarking Retrieval-Augmented Generation for Medicine},
author={Guangzhi Xiong and Qiao Jin and Zhiyong Lu and Aidong Zhang},
journal={arXiv preprint arXiv:2402.13178},
year={2024}
}
``` |