text
stringlengths
67
7.88k
<|fim_prefix|>def <|fim_suffix|>( kfp_client, experiment_id, s3_client, sagemaker_client, s3_data_bucket, test_file_dir, ): download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated")) test_params = utils.load_params( utils.replace_placeholders( os.path.join(test_file_dir, "config.yaml"), os.path.join(download_dir, "config.yaml"), ) ) # Generate random prefix for model, job name to avoid errors if resources with same name exists test_params["Arguments"]["model_name"] = test_params["Arguments"][ "job_name" ] = input_job_name = ( utils.generate_random_string(5) + "-" + test_params["Arguments"]["model_name"] ) print(f"running test with model/job name: {input_job_name}") # Generate unique location for output since output filename is generated according to the content_type test_params["Arguments"]["output_location"] = os.path.join( test_params["Arguments"]["output_location"], input_job_name ) _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline( kfp_client, experiment_id, test_params["PipelineDefinition"], test_params["Arguments"], download_dir, test_params["TestName"], test_params["Timeout"], ) outputs = {"sagemaker-batch-transformation": ["output_location"]} output_files = minio_utils.artifact_download_iterator( workflow_json, outputs, download_dir ) # Verify Job was successful on SageMaker response = sagemaker_utils.describe_transform_job(sagemaker_client, input_job_name) assert response["TransformJobStatus"] == "Completed" assert response["TransformJobName"] == input_job_name # Verify output location from pipeline matches job output and that the transformed file exists output_location = utils.read_from_file_in_tar( output_files["sagemaker-batch-transformation"]["output_location"] ) print(f"output location: {output_location}") assert output_location == response["TransformOutput"]["S3OutputPath"] # Get relative path of file in S3 bucket # URI is following format s3://<bucket_name>/relative/path/to/file # split below is to extract the part after bucket name file_key = os.path.join( "/".join(output_location.split("/")[3:]), test_params["ExpectedOutputFile"] ) assert s3_utils.check_object_exists(s3_client, s3_data_bucket, file_key) assert not argo_utils.error_in_cw_logs( workflow_json["metadata"]["name"] ), "Found the CloudWatch error message in the log output. Check SageMaker to see if the job has failed." utils.remove_dir(download_dir)<|fim_middle|>test_transform_job<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, ) -> Callable[ [policytagmanagerserialization.ExportTaxonomiesRequest], Union[ policytagmanagerserialization.ExportTaxonomiesResponse, Awaitable[policytagmanagerserialization.ExportTaxonomiesResponse], ],<|fim_middle|>export_taxonomies<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # self.test_root_dir = os.path.realpath(os.path.join(TEST_DIRNAME, RELATIVE_PATH)) self.test_root_dir = Path(TEST_DIRNAME) / RELATIVE_PATH integration = BcPlatformIntegration() metadata_integration.bc_integration = integration integration.get_public_run_config() metadata_integration.pre_scan() definitions, definitions_raw = get_folder_definitions(str(self.test_root_dir), None) self.definitions_context = build_definitions_context(definitions, definitions_raw)<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(ceph_cluster, **kw): """ Automates OSD re-balance test scenarios. 1. Create replicated and/or erasure pool/pools 2. Identify the osd to be removed 3. Fetch the host by daemon_type=osd and osd id 4. Fetch container id and device path 5. Mark osd out and wait for pgs to be active+clean 6. Remove OSD 7. Zap device and wait for device not present 8. Add OSD and wait for device present and pgs to be active+clean """ log.info(METHOD_NAME.__doc__) config = kw["config"] rhbuild = config.get("rhbuild") cephadm = CephAdmin(cluster=ceph_cluster, **config) rados_obj = RadosOrchestrator(node=cephadm) client_node = ceph_cluster.get_nodes(role="client")[0] timeout = config.get("timeout", 10800) log.info("Running create pool test case") if config.get("create_pools"): pools = config.get("create_pools") for each_pool in pools: cr_pool = each_pool["create_pool"] if cr_pool.get("pool_type", "replicated") == "erasure": method_should_succeed( rados_obj.create_erasure_pool, name=cr_pool["pool_name"], **cr_pool ) else: method_should_succeed(rados_obj.create_pool, **cr_pool) if cr_pool.get("rados_put", False): do_rados_put(mon=client_node, pool=cr_pool["pool_name"], nobj=100) else: method_should_succeed(rados_obj.bench_write, **cr_pool) pool = random.choice(pools)["create_pool"] if not pool: log.error("Failed to retrieve pool details") return 1 # Set recover threads configurations if not rhbuild.startswith("6"): rados_obj.change_recover_threads(config=pool, action="set") # Set mclock_profile if rhbuild.startswith("6") and config.get("mclock_profile"): rados_obj.set_mclock_profile(profile=config["mclock_profile"]) acting_pg_set = rados_obj.get_pg_acting_set(pool_name=pool["pool_name"]) log.info(f"Acting set {acting_pg_set}") if not acting_pg_set: log.error("Failed to retrieve acting pg set") return 1 osd_id = acting_pg_set[0] host = rados_obj.fetch_host_node(daemon_type="osd", daemon_id=osd_id) if not host: log.error("Failed to fetch host details") return 1 # fetch container id out, _ = host.exec_command(sudo=True, cmd="podman ps --format json") container_id = [ item["Names"][0] for item in json.loads(out) if item.get("Command") and f"osd.{osd_id}" in item["Command"] ][0] if not container_id: log.error("Failed to retrieve container id") return 1 # fetch device path by osd_id volume_out, _ = host.exec_command( sudo=True, cmd=f"podman exec {container_id} ceph-volume lvm list --format json", ) dev_path = [ v[0]["devices"][0] for k, v in json.loads(volume_out).items() if str(k) == str(osd_id) ][0] if not dev_path: log.error("Failed to get device path") return 1 log.debug( f"device path : {dev_path}, osd_id : {osd_id}, host.hostname : {host.hostname}" ) utils.set_osd_devices_unmanaged(ceph_cluster, osd_id, unmanaged=True) method_should_succeed(utils.set_osd_out, ceph_cluster, osd_id) method_should_succeed(wait_for_clean_pg_sets, rados_obj, timeout) utils.osd_remove(ceph_cluster, osd_id) if cr_pool.get("rados_put", False): do_rados_get(client_node, pool["pool_name"], 1) method_should_succeed(wait_for_clean_pg_sets, rados_obj, timeout) method_should_succeed(utils.zap_device, ceph_cluster, host.hostname, dev_path) method_should_succeed(wait_for_device, host, osd_id, action="remove") utils.add_osd(ceph_cluster, host.hostname, dev_path, osd_id) method_should_succeed(wait_for_device, host, osd_id, action="add") method_should_succeed(wait_for_clean_pg_sets, rados_obj, timeout) do_rados_put(mon=client_node, pool=pool["pool_name"], nobj=1000) method_should_succeed(wait_for_clean_pg_sets, rados_obj, timeout) if cr_pool.get("rados_put", False): do_rados_get(client_node, pool["pool_name"], 1) utils.set_osd_devices_unmanaged(ceph_cluster, osd_id, unmanaged=False) rados_obj.change_recover_threads(config=pool, action="rm") if config.get("delete_pools"): for name in config["delete_pools"]: method_should_succeed(rados_obj.detete_pool, name) log.info("deleted all the given pools successfully") return 0<|fim_middle|>run<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): with config.change_flags(cxx="", compute_test_value="raise"): yield<|fim_middle|>set_pytensor_flags<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): df = pd.DataFrame({'x': [1, 2, 3], 'y': [1, 2, 3], 'z': [1, 2, 3]}, columns=['x', 'y', 'z']) ds = Points(df, vdims=['x']) self.assertEqual(ds.kdims, [Dimension('y'), Dimension('z')]) self.assertEqual(ds.vdims, [Dimension('x')])<|fim_middle|>test_dataset_extract_kdims_with_vdims_defined<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): config = configparser.ConfigParser() config.optionxform = str config.readfp(open(os.path.join(os.path.dirname(__file__), "../config.ini"), encoding="utf8")) env_conf = dict(config.items('environment')) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() verbose = args.verbose if verbose: level = logging.DEBUG else: level = logging.ERROR formatter = '%(asctime)s - %(levelname)s - %(message)s' # Add the format/level to the logger logging.basicConfig(format=formatter, level=level) bctester(os.path.join(env_conf["SRCDIR"], "test", "util", "data"), "bitcoin-util-test.json", env_conf)<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertEqual( self.latest_profile.to_json({self.app.get_id: self.app.name}), { 'id': self.latest_profile.id, 'app_id': self.app.get_id, 'active': True, 'version': self.v2_build.version, 'build_profile_id': self.build_profile_id, 'app_name': 'foo', 'profile_name': 'English only' } )<|fim_middle|>test_latest_profile_serialize<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( dataset: TextToSpeechDataset, sample, hypos, resample_fn, dump_target ): def to_np(x): return None if x is None else x.detach().cpu().numpy() sample_ids = [dataset.ids[i] for i in sample["id"].tolist()] texts = sample["src_texts"] attns = [to_np(hypo["attn"]) for hypo in hypos] eos_probs = [to_np(hypo.get("eos_prob", None)) for hypo in hypos] feat_preds = [to_np(hypo["feature"]) for hypo in hypos] wave_preds = [to_np(resample_fn(h["waveform"])) for h in hypos] if dump_target: feat_targs = [to_np(hypo["targ_feature"]) for hypo in hypos] wave_targs = [to_np(resample_fn(h["targ_waveform"])) for h in hypos] else: feat_targs = [None for _ in hypos] wave_targs = [None for _ in hypos] return zip(sample_ids, texts, attns, eos_probs, feat_preds, wave_preds, feat_targs, wave_targs)<|fim_middle|>postprocess_results<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(db_session): mine = MineFactory( minimal=True ) MineDocument.query.delete() yield dict( mine=mine )<|fim_middle|>setup_info<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, definition_id: str, action_key: str) -> None: """Add a supported action to a machine.""" if action_key in self._machine_actions: if definition_id in self._supported_actions: if self._machine_actions[action_key] not in self._supported_actions[definition_id]: self._supported_actions[definition_id].append(self._machine_actions[action_key]) else: self._supported_actions[definition_id] = [self._machine_actions[action_key]] else: Logger.log("w", "Unable to add %s to %s, as the action is not recognised", action_key, definition_id)<|fim_middle|>add_supported_action<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(offline_event_factory): EVENT_DATE = parse("2020-01-05 17:00:00 UTC") ACTION_DATE = EVENT_DATE - timedelta(hours=EVENT_STARTING_HOURS) CURRENT_DATE = ACTION_DATE + timedelta(minutes=30) content_type = ContentType.objects.get_for_model(OfflineEvent) event = offline_event_factory( date=EVENT_DATE, ) project = event.project project.is_draft = True project.save() project.refresh_from_db() action_count = Action.objects.filter( verb=START, obj_content_type=content_type ).count() assert action_count == 0 with freeze_time(CURRENT_DATE): call_command("create_offlineevent_system_actions") action_count = Action.objects.filter( verb=START, obj_content_type=content_type ).count() assert action_count == 0 # NotifyFollowersOnUpcomingEventEmail assert len(mail.outbox) == 0<|fim_middle|>test_event_soon_draft_no_email<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(test_client_factory): client = test_client_factory(app) response = client.get("/schema") assert response.headers["Content-Type"] == "application/vnd.oai.openapi" assert response.text.strip() == EXPECTED_SCHEMA.strip()<|fim_middle|>test_schema_endpoint<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, source, **kwargs): """Helper that parses source without requiring files.""" return self.StoreClass(BytesIO(source), **kwargs)<|fim_middle|>parse_store<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(result: PingScanData): return PingScanEvent( source=AGENT_ID, target=HOST_IP, timestamp=TIMESTAMP, tags=frozenset(), response_received=result.response_received, os=result.os, )<|fim_middle|>get_ping_scan_event<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(args): options = parser.parse_args(args) input_text = codecs.open(options.input[0], "r", encoding="utf-8").read() python_globals = dict(chain(*options.defines)) output_text = PREAMBLE.format(template=options.input[0], generator=sys.argv[0]) + preprocess(input_text, python_globals, options.input[0]) txt_changed = True if os.path.exists(options.output): with codecs.open(options.output, "r", encoding="utf-8") as output_file: txt_changed = output_file.read() != output_text if txt_changed: with codecs.open(options.output, "w", encoding="utf-8") as output_file: output_file.write(output_text)<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(polygon: Polygon): """Constructs a compound matplotlib path from a Shapely or GeoJSON-like geometric object Args: polygon (Polygon): polygon Returns: Path: compound matplotlib path """ this = Polygon(polygon) assert this.geom_type == 'Polygon' def coding(ob): # The codes will be all "LINETO" commands, except for "MOVETO"s at the # beginning of each subpath n = len(getattr(ob, 'coords', None) or ob) vals = ones(n, dtype=Path.code_type) * Path.LINETO vals[0] = Path.MOVETO return vals vertices = concatenate([asarray(this.exterior.coords)[:, :2]] + [asarray(r.coords)[:, :2] for r in this.interiors]) codes = concatenate([coding(this.exterior)] + [coding(r) for r in this.interiors]) return Path(vertices, codes)<|fim_middle|>polygon_path<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self, file_object):<|fim_middle|>open<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(next_link=None): if not next_link: request = build_list_request( location=location, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request<|fim_middle|>prepare_request<|file_separator|>
<|fim_prefix|> <|fim_suffix|>(self, info: Info):<|fim_middle|>parse_player_joined<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.pre_operations() yield self.ExternalNetworksDelete(ctx=self.ctx)() self.post_operations()<|fim_middle|>execute_operations<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, sandbox_name: str, **kwargs) -> Response: """ reset all changes in specified sandbox :param sandbox_name: str :return: response """ url = format_url("/api/v1/Sandboxes('{}')/tm1.DiscardChanges", sandbox_name) return self._rest.POST(url=url, **kwargs)<|fim_middle|>reset<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( script="testscript", enabled=True, task_type="stream", db="testdb", rp="default" ): return { "script": script, "enabled": enabled, "type": task_type, "dbrps": [{"db": db, "rp": rp}], }<|fim_middle|>task<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, bufsiz: int, flags: int | None = None) -> bytes: ...<|fim_middle|>recv<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): folder = self._get_cmd_folder() / "node" folder_must_exist(folder) return folder<|fim_middle|>get_cmd_node_folder<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, uuid): try: self.dataset_state[uuid] except KeyError: self.set_status(404, "dataset with uuid %s not found" % uuid) return await self.dataset_state.remove(uuid) msg = Message(self.state).delete_dataset(uuid) log_message(msg) self.event_registry.broadcast_event(msg) self.write(msg)<|fim_middle|>delete<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, event): self._set_color_setter_boolean() if self.is_color_setter_running: return button = event["button"] if button == self.button_up: self._set_color_temperature(+1) elif button == self.button_down: self._set_color_temperature(-1) elif button == self.button_toggle: self._set_color_temperature() else: self.py3.prevent_refresh()<|fim_middle|>on_click<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(before_timestamp: float): """Deleting old files inside : archives and tmp folders. Only files inside the following folders are considered : - {LOG_FOLDER_PATH}/{ARCHIVES_FOLDER_NAME} - {LOG_FOLDER_PATH}/{TMP_FOLDER_NAME} Args: before_timestamp (float): Timestamp before which files are considered expired. """ archives_directory = get_log_sub_dir(name=ARCHIVES_FOLDER_NAME) tmp_directory = get_log_sub_dir(name=TMP_FOLDER_NAME) expired_archives_file_list = get_expired_file_list( directory=archives_directory, before_timestamp=before_timestamp, ) expired_tmp_file_list = get_expired_file_list( directory=tmp_directory, before_timestamp=before_timestamp, ) remove_file_list(file_list=expired_archives_file_list) remove_file_list(file_list=expired_tmp_file_list)<|fim_middle|>clean_expired_files<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, expected_output_np, output_layout): return transform_numpy(expected_output_np, "nhw", output_layout)<|fim_middle|>transformed_expected_output_np<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): if hasattr(self, "rng_state"): torch.set_rng_state(self.rng_state)<|fim_middle|>tear_down<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(l): # Lazy person's mock: just transform the argument in a way in which we # can check that this function was indeed called. return [x * 2 for x in l]<|fim_middle|>dummy_function<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self, options):<|fim_middle|>set_options<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): grp = EmitterGroup(source=self, em1=Event) grp.connect(self.record_event) self.result = None ev = grp.em1(test_key=1) self.assert_result( event=ev, source=self, sources=[ self, self], test_key=1)<|fim_middle|>test_group_connect<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(xml_file, xml_file_name, report_folder, title, report_name): logfunc(f'{title} found') tree = ET.parse(xml_file) data_headers = ('Key', 'Value') data_list = [] root = tree.getroot() for node in root: # skip not relevant keys if '.' in node.attrib['name']: continue value = None try: value = node.attrib['value'] except: value = node.text data_list.append((node.attrib['name'], value)) tl_bool = False _make_reports(f'{APP_NAME} - {report_name}', data_headers, data_list, report_folder, xml_file_name, tl_bool)<|fim_middle|>parse_xml<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( mvn_dist, k, sample_shape, L21, omega1, L11, L22=0.8, L33=0.9, omega2=0.75 ): if mvn_dist == "OMTMultivariateNormal" and k > 1: return omega = torch.tensor([omega1, omega2, 0.0]) loc = torch.zeros(3, requires_grad=True) zero_vec = [0.0, 0.0, 0.0] off_diag = torch.tensor([zero_vec, [L21, 0.0, 0.0], zero_vec], requires_grad=True) L = torch.diag(torch.tensor([L11, L22, L33])) + off_diag if mvn_dist == "OMTMultivariateNormal": dist = OMTMultivariateNormal(loc, L) elif mvn_dist == "AVFMultivariateNormal": CV = (1.1 * torch.rand(2, k, 3)).requires_grad_(True) dist = AVFMultivariateNormal(loc, L, CV) z = dist.rsample(sample_shape) torch.cos((omega * z).sum(-1)).mean().backward() computed_grad = off_diag.grad.cpu().data.numpy()[1, 0] analytic = analytic_grad(L11=L11, L22=L22, L21=L21, omega1=omega1, omega2=omega2) assert off_diag.grad.size() == off_diag.size() assert loc.grad.size() == loc.size() assert torch.triu(off_diag.grad, 1).sum() == 0.0 assert_equal( analytic, computed_grad, prec=0.005, msg="bad cholesky grad for %s (expected %.5f, got %.5f)" % (mvn_dist, analytic, computed_grad), )<|fim_middle|>test_mean_gradient<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(table_oid, attnum, engine, metadata, connection_to_use=None): sa_table = reflect_table_from_oid(table_oid, engine, metadata=metadata, connection_to_use=connection_to_use) column_name = get_column_name_from_attnum(table_oid, attnum, engine, metadata=metadata, connection_to_use=connection_to_use) sa_column = sa_table.columns[column_name] return sa_column<|fim_middle|>get_column_from_oid_and_attnum<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, mock_call, mock_run): mock_run.side_effect = Exception self.manager.request_package('vim') with raises(KiwiRequestError): self.manager.process_delete_requests(force=True) mock_run.assert_called_once_with( ['chroot', 'root-dir', 'rpm', '-q', 'vim'] )<|fim_middle|>test_process_delete_requests_package_missing<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Check if element_id is validated.""" self.assertRaises(ValueError, AnyByteDataModelElement, "") # empty element_id self.assertRaises(TypeError, AnyByteDataModelElement, None) # None element_id self.assertRaises(TypeError, AnyByteDataModelElement, b"path") # bytes element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, True) # boolean element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, 123) # integer element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, 123.22) # float element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, {"id": "path"}) # dict element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, ["path"]) # list element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, []) # empty list element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, ()) # empty tuple element_id is not allowed self.assertRaises(TypeError, AnyByteDataModelElement, set()) # empty set element_id is not allowed<|fim_middle|>test3element_id_input_validation<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): return tf.initializers.VarianceScaling( distribution='uniform', mode='fan_out', scale=0.333)<|fim_middle|>uniform_initializer<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(__n: SupportsIndex, __k: SupportsIndex) -> int: ...<|fim_middle|>comb<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, fn, filename, expected_exception=FileNotFoundError, check_filename=True): with self.assertRaises(expected_exception) as c: fn(filename) exc_filename = c.exception.filename if check_filename: self.assertEqual(exc_filename, filename, "Function '%s(%a) failed " "with bad filename in the exception: %a" % (fn.__name__, filename, exc_filename))<|fim_middle|>apply_failure<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( shape=None, batch_size=None, dtype=None, sparse=None, batch_shape=None, name=None, tensor=None, ): """Used to instantiate a Keras tensor. A Keras tensor is a symbolic tensor-like object, which we augment with certain attributes that allow us to build a Keras model just by knowing the inputs and outputs of the model. For instance, if `a`, `b` and `c` are Keras tensors, it becomes possible to do: `model = Model(input=[a, b], output=c)` Args: shape: A shape tuple (tuple of integers or `None` objects), not including the batch size. For instance, `shape=(32,)` indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be `None`; `None` elements represent dimensions where the shape is not known and may vary (e.g. sequence length). batch_size: Optional static batch size (integer). dtype: The data type expected by the input, as a string (e.g. `"float32"`, `"int32"`...) sparse: A boolean specifying whether the expected input will be sparse tensors. Note that, if `sparse` is `False`, sparse tensors can still be passed into the input - they will be densified with a default value of 0. This feature is only supported with the TensorFlow backend. Defaults to `False`. name: Optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. tensor: Optional existing tensor to wrap into the `Input` layer. If set, the layer will use this tensor rather than creating a new placeholder tensor. Returns: A Keras tensor. Example: ```python # This is a logistic regression in Keras x = Input(shape=(32,)) y = Dense(16, activation='softmax')(x) model = Model(x, y) ``` """ layer = InputLayer( shape=shape, batch_size=batch_size, dtype=dtype, sparse=sparse, batch_shape=batch_shape, name=name, input_tensor=tensor, ) return layer.output<|fim_middle|>input<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(x): return x[0] * x[1]<|fim_middle|>map_mul<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: return f"arn:aws:ec2:{self.ec2_backend.region_name}:{self.ec2_backend.account_id}:transit-gateway/{self.id}"<|fim_middle|>arn<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( num_devices=1, ps_device_type="cpu", worker_device="/cpu:0", ps_ops=None, ps_strategy=None ): if ps_ops == None: ps_ops = ["Variable", "VariableV2", "VarHandleOp"] if ps_strategy is None: ps_strategy = device_setter._RoundRobinStrategy(num_devices) if not six.callable(ps_strategy): raise TypeError("ps_strategy must be callable") def _local_device_chooser(op): current_device = pydev.DeviceSpec.from_string(op.device or "") node_def = op if isinstance(op, node_def_pb2.NodeDef) else op.node_def if node_def.op in ps_ops: ps_device_spec = pydev.DeviceSpec.from_string("/{}:{}".format(ps_device_type, ps_strategy(op))) ps_device_spec.merge_from(current_device) return ps_device_spec.to_string() else: worker_device_spec = pydev.DeviceSpec.from_string(worker_device or "") worker_device_spec.merge_from(current_device) return worker_device_spec.to_string() return _local_device_chooser<|fim_middle|>local_device_setter<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): src_data = [-100, -99, -98, -97, -96, -1] expected_result = [max(src_data), ] src = blocks.vector_source_s(src_data) s2v = blocks.stream_to_vector(gr.sizeof_short, len(src_data)) op = blocks.max_ss(len(src_data)) dst = blocks.vector_sink_s() self.tb.connect(src, s2v, op, dst) self.tb.run() result_data = dst.data() self.assertEqual(expected_result, result_data)<|fim_middle|>stest_s002<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): drop_table(self.connection, self.table1_path)<|fim_middle|>tear_down<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): return _max(product(seq) for seq in list_seqs(NUMS))<|fim_middle|>solve<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(builder, numElems): return builder.StartVector(4, numElems, 4)<|fim_middle|>object_start_fields_vector<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): np_offsets = np.array([7, 10, 10, 200]) np_content = np.array([6.6, 4.4, 5.5, 7.7, 3.3, 2.2, 1.1, 8.8]) array = ak.contents.ListOffsetArray( ak.index.Index(np_offsets), ak.contents.numpyarray.NumpyArray(np_content), ) assert array.nbytes == np_offsets.nbytes + np_content.nbytes<|fim_middle|>test_list_offset_array_nbytes<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, rule: OnlineCTCEndpointRule, rule_name: str, decoding_something: bool, trailine_silence: int, utterance_length: int) -> bool: ans = ( decoding_something or (not rule.must_contain_nonsilence) ) and trailine_silence >= rule.min_trailing_silence and utterance_length >= rule.min_utterance_length if (ans): logger.info(f"Endpoint Rule: {rule_name} activated: {rule}") return ans<|fim_middle|>rule_activated<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(x, axis=-1): """Perform log softmax activation on the data Parameters ---------- data : tvm.te.Tensor N-D input data Returns ------- output : tvm.te.Tensor N-D output with same shape """ shape = x.shape if axis < 0: axis = len(shape) + axis if axis >= len(shape): ValueError("axis parameter should be less than input dim") k1 = te.reduce_axis((0, shape[axis]), name="k") k2 = te.reduce_axis((0, shape[axis]), name="k") def insert_reduce_index(indices, reduce_index): return indices[:axis] + (reduce_index,) + indices[axis:] def get_non_reduce_indices(indices): return tuple([var for (i, var) in enumerate(indices) if i != axis]) def _compute_max(*indices): eval_range = insert_reduce_index(indices, k1) return tvm.te.max(x[eval_range], axis=k1) def _compute_expsum(max_elem, *indices): eval_range = insert_reduce_index(indices, k2) return te.sum(te.exp(x[eval_range] - max_elem[indices]), axis=k2) def _normalize(max_elem, expsum, *indices): non_reduce_indices = get_non_reduce_indices(indices) return x[indices] - max_elem[non_reduce_indices] - te.log(expsum[non_reduce_indices]) reduced_shape = tuple([dim for (i, dim) in enumerate(shape) if i != axis]) max_elem = te.compute(reduced_shape, _compute_max, name="T_softmax_maxelem") expsum = te.compute(reduced_shape, lambda *indices: _compute_expsum(max_elem, *indices)) return te.compute( shape, lambda *indices: _normalize(max_elem, expsum, *indices), attrs={"axis": axis}, )<|fim_middle|>log_softmax<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): TestController.METHOD_NAME(self) self.delete_all_policies() self.delete_all_token() self.delete_all_realms() self.delete_all_resolvers() self.create_common_resolvers() self.create_common_realms()<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> int: return int(math.ceil(float(self.get_length_in_bits() / 8.0)))<|fim_middle|>length_in_bytes<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(id,override): return BackuppcDatabase().METHOD_NAME(id,override)<|fim_middle|>edit_backup_profile<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): def get_option(term_slug: TermEnum, option_type: str) -> TermOption: return [ option for option in terms_dict[term_slug].options if option.option_type == option_type ][0] def get_consent(term_slug: TermEnum, person: Person) -> Consent: return [ consent for consent in old_consents if consent.term.slug == term_slug and consent.person == person ][0] self.admin_1 = Person.objects.create_superuser( username="admin1", personal="Super", family="User", email="sudo1@example.org", password="admin", ) consent_to_all_required_consents(self.admin_1) self.admin_1.airport = Airport.objects.first() self.admin_1.save() self.admin_2 = Person.objects.create_superuser( username="admin_2", personal="Super", family="User", email="sudo@example.org", password="admin", ) consent_to_all_required_consents(self.admin_2) self.admin_2.airport = Airport.objects.first() self.admin_2.save() terms = ( Term.objects.filter( slug__in=[TermEnum.MAY_CONTACT, TermEnum.PUBLIC_PROFILE] ) .active() .prefetch_active_options() ) terms_dict = {term.slug: term for term in terms} may_contact_agree = get_option(TermEnum.MAY_CONTACT, TermOptionChoices.AGREE) may_contact_decline = get_option( TermEnum.MAY_CONTACT, TermOptionChoices.DECLINE ) public_profile_agree = get_option( TermEnum.PUBLIC_PROFILE, TermOptionChoices.AGREE ) public_profile_decline = get_option( TermEnum.PUBLIC_PROFILE, TermOptionChoices.DECLINE ) old_consents = ( Consent.objects.filter( person__in=[self.admin_1, self.admin_2], term__slug__in=[TermEnum.MAY_CONTACT, TermEnum.PUBLIC_PROFILE], ) .active() .select_related("term", "person") ) Consent.reconsent( consent=get_consent(TermEnum.MAY_CONTACT, self.admin_1), term_option=may_contact_agree, ) Consent.reconsent( consent=get_consent(TermEnum.MAY_CONTACT, self.admin_2), term_option=may_contact_decline, ) Consent.reconsent( consent=get_consent(TermEnum.PUBLIC_PROFILE, self.admin_1), term_option=public_profile_agree, ) Consent.reconsent( consent=get_consent(TermEnum.PUBLIC_PROFILE, self.admin_2), term_option=public_profile_decline, ) self.client.login(username="admin1", password="admin")<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, start_status, db_session): em = EmailMessageFactory.create(status=EmailStatuses(start_status)) status = EmailStatus.load(em) assert status.save().status == EmailStatuses(start_status)<|fim_middle|>test_load<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(): return yield<|fim_middle|>g2<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, url): video_id = self._match_id(url) content = self._call_api( '1.5', 'IN/CONTENT/VIDEOURL/VOD/' + video_id, video_id) if content.get('isEncrypted'): raise ExtractorError('This video is DRM protected.', expected=True) dash_url = content['videoURL'] headers = { 'x-playback-session-id': '%s-%d' % (uuid.uuid4().hex, time.time() * 1000) } formats = self._extract_mpd_formats( dash_url, video_id, mpd_id='dash', headers=headers, fatal=False) formats.extend(self._extract_m3u8_formats( dash_url.replace('.mpd', '.m3u8').replace('/DASH/', '/HLS/'), video_id, 'mp4', m3u8_id='hls', headers=headers, fatal=False)) for f in formats: f.setdefault('http_headers', {}).update(headers) self._sort_formats(formats) metadata = self._call_api( '1.6', 'IN/DETAIL/' + video_id, video_id)['containers'][0]['metadata'] title = metadata['title'] episode = metadata.get('episodeTitle') if episode and title != episode: title += ' - ' + episode return { 'id': video_id, 'title': title, 'formats': formats, 'thumbnail': content.get('posterURL'), 'description': metadata.get('longDescription') or metadata.get('shortDescription'), 'timestamp': int_or_none(metadata.get('creationDate'), 1000), 'duration': int_or_none(metadata.get('duration')), 'season_number': int_or_none(metadata.get('season')), 'episode': episode, 'episode_number': int_or_none(metadata.get('episodeNumber')), 'release_year': int_or_none(metadata.get('year')), }<|fim_middle|>real_extract<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Return option value of `processManagement.pidFilePath` if a yaml conf and `pidFilePath` if a key-value pair conf. """ if self.is_yaml: return self.get('processManagement', {}).get('pidFilePath') else: return self.get('pidfilepath')<|fim_middle|>pidfilepath<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, plugin_ctx): return dict(max_kwic_words=self._max_kwic_words, load_chunk_size=self._load_chunk_size)<|fim_middle|>export<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(result: QCSObjectsForNotebook): assert not result.signed_in assert result.is_simulator assert result.project_id == 'fake_project'<|fim_middle|>assert_simulated_values<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Returns following residue in the atom group.""" return self._hv._getResidue(self.getResindex()+1)<|fim_middle|>get_next<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(input_file, output_file=None, format=None): """Crop to non-zero area of the image :param input_file: Name of the file to manipulate :param output_file: filename for the new file (same as input by default) :param format: format to be used new file (if different from extension) """ if PIL is None: raise RuntimeError(_("Install PIL or Pillow to use this function")) if not output_file: output_file = input_file img = Image.open(input_file) box = img.getbbox() cropped_image = img.crop(box) cropped_image.save(output_file, format)<|fim_middle|>crop_image<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(ctx: tanjun.abc.Context) -> None: await ctx.respond("I don't know how to describe Europe... small?")<|fim_middle|>europe_command<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( ifm: te.Tensor, lut: te.Tensor, operator_type: str, ifm_scale: float, ifm_zero_point: int, ofm_scale: float, ofm_zero_point: int, ofm_channels: int, activation: str, clip_min: int, clip_max: int, rounding_mode: str, ifm_layout: str, ofm_layout: str, ) -> te.Tensor: """A compute operator representing the capabilities of unary_elementwise for the NPU. Parameters ---------- ifm : te.Tensor The Input Feature Map tensor (IFM). lut : te.Tensor The look-up table values to use if activation = "LUT". operator_type: str The type of the unary elementwise operator. "ABS" "CLZ" ifm_scale : float The quantization scale for the Input Feature Map tensor. ifm_zero_point : int The quantization zero point for the Input Feature Map tensor. ofm_scale : float The quantization scale for the Output Feature Map tensor. ofm_zero_point : int The quantization zero point for the Output Feature Map tensor. ofm_channels : int The number of OFM channels. activation : str The activation function to use. "NONE" - no activation function. "CLIP" - clip the output between clip_min and clip_max. "TANH" - tanh activation function. "SIGMOID" - sigmoid activation function. "LUT" - use a look-up table to perform the activation function. clip_min : int The minimum clipping value if activation = "CLIP". clip_max : int The maximum clipping value if activation = "CLIP". rounding_mode : str The rounding mode to apply to the Output Feature Map tensor. "TFL" - Tensorflow Lite rounding scheme. "TRUNCATE" - Truncate towards zero. "NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity. ifm_layout : str, optional The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16". ofm_layout : str, optional The layout of the Output Feature Map tensor. Can be "NHWC" or "NHCWB16". Returns ------- te.Tensor The OFM tensor. """ assert ifm.shape[0] == 1 assert ifm_layout in {"NHWC", "NHCWB16"} assert ofm_layout in {"NHWC", "NHCWB16"} # Changing the ifm and ofm scale to conform with that expected by Vela API if ofm_scale != 0: ofm_scale = ifm_scale / ofm_scale ifm_scale = 1.0 # Compute operation for the IFM DMA pipeline dmaed_ifm = dma_ifm_compute( ifm, ifm_layout, ifm_zero_point, ifm_scale, ofm_channels, (0, 0, 0, 0) ) # Unary elementwise compute operation ofm_height = dmaed_ifm.shape[1] ofm_width = dmaed_ifm.shape[2] unary_elementwise_attrs = { "op": "ethosu_unary_elementwise", "operator_type": operator_type, "activation": activation, "clip_min": clip_min, "clip_max": clip_max, "rounding_mode": rounding_mode, } def clz_imp(inp): # Assuming that it's a 32 bit int return 32 - te.log2(inp) operators = {"ABS": te.abs, "CLZ": clz_imp} unary_elementwise = te.compute( (1, ofm_height, ofm_width, ofm_channels), lambda nn, hh, ww, cc: operators[operator_type]( dmaed_ifm(nn, hh, ww, cc).astype(ifm.dtype) ), name="ethosu_unary_elementwise", attrs=unary_elementwise_attrs, ) nhwc_to_nhcwb16, nhcwb16_to_nhwc = get_layout_transform_matrices(int(ofm_channels)) ifm_matrix = [ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], ] if ofm_layout == "NHCWB16": ifm_matrix = np.matmul(ifm_matrix, nhcwb16_to_nhwc).tolist() if ifm_layout == "NHCWB16": ifm_matrix = np.matmul(nhwc_to_nhcwb16, ifm_matrix).tolist() ifm_propagator = Propagator( ifm_matrix, [0, 0, 0, 0] if ifm_layout == "NHWC" else [0, 0, 0, 0, 0], ) propagator_attrs = {"ifm_propagator": ifm_propagator} # Compute operation for the OFM DMA pipeline return dma_ofm_compute( unary_elementwise, ofm_layout, ofm_zero_point, ofm_scale, ofm_channels, attrs=propagator_attrs, )<|fim_middle|>unary_elementwise_compute<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, test_users: dict[str, int], user_based_filter_set_dict: dict[str, Any], valid_filter_set_data_for_update: dict[str, Any], client: FlaskClient[Any], ): # arrange login(client, FILTER_SET_OWNER_USERNAME) # act response = call_delete_filter_set(client, user_based_filter_set_dict) # assert assert response.status_code == 200 assert_filterset_deleted(user_based_filter_set_dict)<|fim_middle|>test_when_caller_is_filterset_owner_200<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, context): self.layout.operator(ROR_OT_exporter.bl_idname, text="Truck (.truck)")<|fim_middle|>menu_func<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): al = RandomSampling() category_id = 0 doc = generate_simple_doc("dummy_dataset", category_id, num_sentences=100) predictions = [Prediction(True, random.random()) for _ in doc.text_elements] sorted_items_for_labeling1 = al.get_recommended_items_for_labeling("dummy_workspace", "dummy_dataset", category_id, doc.text_elements, predictions, sample_size=100) sorted_items_for_labeling2 = al.get_recommended_items_for_labeling("dummy_workspace", "dummy_dataset", category_id, doc.text_elements, predictions, sample_size=100) self.assertEqual(sorted_items_for_labeling1, sorted_items_for_labeling2)<|fim_middle|>test_random_reproducibility<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): """Ask for isolation options and isolate elements""" element_cats = isolate_config.load_configs() select_options = sorted(x.Name for x in element_cats) + [ "Room Tags", "Model Groups", "Painted Elements", "Model Elements", ] selected_switch = forms.CommandSwitchWindow.show( select_options, message="Temporarily isolate elements of type:" ) if selected_switch: curview = revit.active_view with revit.TransactionGroup("Isolate {}".format(selected_switch)): with revit.Transaction("Reset temporary hide/isolate"): # reset temporary hide/isolate before filtering elements curview.DisableTemporaryViewMode( DB.TemporaryViewMode.TemporaryHideIsolate ) element_to_isolate = get_isolation_elements(selected_switch) with revit.Transaction("Isolate {}".format(selected_switch)): # now that list of elements is ready, # let's isolate them in the active view curview.IsolateElementsTemporary(element_to_isolate)<|fim_middle|>ask_for_options<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertCallableWorks(GoodDuckProcessor)<|fim_middle|>test_class_duck_typed<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Test the value of a dataset""" title12 = h5py_read_dataset(self.h5f["/1.2/title"]) self.assertEqual(title12, u"aaaaaa")<|fim_middle|>test_title<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """test form label""" # get object form = CaseForm() # compare self.assertEqual(form.fields['case_id_external'].label, 'Case external ID')<|fim_middle|>test_case_id_external_form_label<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return self.__tau_syn_E<|fim_middle|>tau_syn_e<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Checks that standardization execution passes""" self.assertModule( "r.learn.train", group=self.group, training_map=self.labelled_pixels, model_name="RandomForestClassifier", n_estimators=100, save_model=self.model_file, flags="s", ) self.assertFileExists(filename=self.model_file) self.assertModule( "r.learn.predict", group=self.group, load_model=self.model_file, output=self.output, ) self.assertRasterExists(self.output, msg="Output was not created") estimator, y, class_labels = joblib.load(self.model_file) trans = estimator.named_steps["preprocessing"].transformers[0] self.assertIsInstance(trans[1], StandardScaler) estimator = None<|fim_middle|>test_standardization<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return sjson.dump(self.errors)<|fim_middle|>json_string<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters<|fim_middle|>header_parameters<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id")<|fim_middle|>id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> CompressionStage: return CompressionStage.FULLY_COMPRESSED<|fim_middle|>compression_stage<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>( self, request: executor_pb2.CreateStructRequest -> executor_pb2.CreateStructResponse:<|fim_middle|>create_struct<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Proxy Resource name associated with the resource. """ return pulumi.get(self, "name")<|fim_middle|>name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(rewriter: PatternRewriter) -> list[SSAValue]: """ Add cast operations just before the targeted operation if the operands were not already int registers """ new_ops = list[Operation]() new_operands = list[SSAValue]() for operand in rewriter.current_operation.operands: if not isinstance( operand.type, riscv.IntRegisterType | riscv.FloatRegisterType ): new_type = register_type_for_type(operand.type) cast_op = builtin.UnrealizedConversionCastOp.get( (operand,), (new_type.unallocated(),) ) new_ops.append(cast_op) operand = cast_op.results[0] new_operands.append(operand) rewriter.insert_op_before_matched_op(new_ops) return new_operands<|fim_middle|>cast_operands_to_regs<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(row: Row): buffer.append(self.mapper.write_row(row, with_metadata=True)) if len(buffer) > settings.BUFFER_SIZE: conn.execute(sa.insert(table), buffer) buffer.clear() on_row(row) if on_row else None<|fim_middle|>process_row<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Create a L-intersection in 3D """ f_1 = np.array([[1, 3, 3, 1], [1, 1, 1, 1], [1, 1, 3, 3]]) f_2 = np.array([[1, 1, 1, 1], [1, 3, 3, 1], [1, 1, 3, 3]]) f_set = [f_1, f_2] mdg = pp.meshing.cart_grid(f_set, [3, 3, 3]) mdg.compute_geometry() list_sd_3 = mdg.subdomains(dim=3) list_sd_2 = mdg.subdomains(dim=2) list_sd_1 = mdg.subdomains(dim=1) list_sd_0 = mdg.subdomains(dim=0) self.assertTrue(len(list_sd_3) == 1) self.assertTrue(len(list_sd_2) == 2) self.assertTrue(len(list_sd_1) == 1) self.assertTrue(len(list_sd_0) == 0) g_all = np.hstack([list_sd_3, list_sd_2, list_sd_1, list_sd_0]) for g in g_all: f_p = g.frac_pairs if g.dim == 3: f_p_shape_true = 8 else: f_p_shape_true = 0 self.assertTrue(f_p.shape[1] == f_p_shape_true) self.assertTrue( np.allclose(g.face_centers[:, f_p[0]], g.face_centers[:, f_p[1]]) )<|fim_middle|>test_l_intersection_3d<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Closes resources associated with the transport. .. warning:: Only call this method if the transport is NOT shared with other clients - this may cause errors in other clients! """ raise NotImplementedError()<|fim_middle|>close<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, query: str) -> Response: """ Receive raw query and act upon it somehow. Args: query (Any): query in SurrealQL to execute Returns: HandlerResponse """ need_to_close = self.is_connected is False conn = self.connect() cur = conn.cursor() try: cur.execute(query) result = cur.fetchall() if result: response = Response( RESPONSE_TYPE.TABLE, data_frame=pd.DataFrame( result, columns=[x[0] for x in cur.description], ) ) else: response = Response(RESPONSE_TYPE.OK) except Exception as e: log.logger.error(f'Error running query: {query} on SurrealDB!') response = Response( RESPONSE_TYPE.ERROR, error_message=str(e) ) cur.close() if need_to_close is True: self.disconnect() return response<|fim_middle|>native_query<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # To read soil moisture, read 2 bytes from register 0 return self.get_reg(0)<|fim_middle|>moist<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, }<|fim_middle|>acc_and_f1<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( metadata_extractors_by, testfiledir, filecount, expected, unexpected ): is_two_files = filecount == 2 source_filename = "f-markdown-{0}-nikola.md".format(filecount) metadata_filename = "f-markdown-{0}-nikola.meta".format(filecount) source_path = os.path.join(testfiledir, source_filename) metadata_path = os.path.join(testfiledir, metadata_filename) post = FakePost(source_path, metadata_path, {}, None, metadata_extractors_by) assert os.path.exists(source_path) if is_two_files: assert os.path.exists(metadata_path) meta, extractor = get_meta(post, None) assert extractor is metadata_extractors_by["name"]["nikola"] assert meta["title"] == "T: Markdown, {0}, Nikola".format(filecount) assert meta["slug"] == "s-markdown-{0}-nikola".format(filecount) assert expected in meta["tags"] assert unexpected not in meta["tags"] assert "meta" in meta["tags"] assert "Nikola" in meta["tags"] assert "Markdown" in meta["tags"] assert meta["date"] == "2017-07-01 00:00:00 UTC"<|fim_middle|>test_nikola_meta_markdown<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): prefix = "%s." % self.namespace for scoped_name in self.scoped_keys(): name = scoped_name.replace(prefix, "", 1) yield name<|fim_middle|>keys<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Uses Orca log files to test that molecular zero point_energy can be properly read. """ log = OrcaLog(os.path.join(self.data_path, "Orca_opt_freq_test.log")) assert abs(log.load_zero_point_energy() - 55502.673180815) < 1e-3 log = OrcaLog(os.path.join(self.data_path, "Orca_TS_test.log")) assert abs(log.load_zero_point_energy() - 93500.08860598055) < 1e-3<|fim_middle|>test_load_zero_point_energy_from_orca<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(verify_sizes=True): '''Get train, valid, test retro datasets.''' args = get_args() retro_args = get_retro_args() # DB dataset. db_dataset = get_db_dataset() # Retro datasets. chunk_ds_info_map = get_chunk_dataset_map() retro_dataset_map = {} for data_key, chunk_ds_info in chunk_ds_info_map.items(): chunk_dataset = chunk_ds_info["data"] neighbor_dir = chunk_ds_info["neighbor_dir"] neighbor_path_map = BlockPathMap.from_dir(neighbor_dir, retro_args.retro_block_size) # Verify dataset prefixes. expected_dir = get_neighbor_dirname(data_key, chunk_dataset.sample_dataset) assert expected_dir == neighbor_dir, \ "inconsistent dataset source; '%s' vs. '%s'." % \ (expected_dir, neighbor_dir) # Verify num chunks. n_sample_chunks = len(chunk_dataset) n_neighbor_chunks = neighbor_path_map.max_idx if not os.path.isdir(neighbor_dir): if torch.distributed.get_rank() == 0: raise Exception("neighbor directory '%s' not found; please " "compare --train-samples, --seq-length, --seed, " "--eval-iters, and --eval-interval, with " "retro preprocessing args." % neighbor_dir) torch.distributed.barrier() exit() if verify_sizes and n_sample_chunks != n_neighbor_chunks: if torch.distributed.get_rank() == 0: print("neighbor_dir : %s" % neighbor_dir) print("neighbor_path_map : %s" % neighbor_path_map) raise Exception("num sampled chunks (%d) != num neighbor chunks " "(%d); did you complete querying the entire " "pretraining dataset?" % (n_sample_chunks, n_neighbor_chunks)) torch.distributed.barrier() exit() # Retro dataset. retro_dataset_map[data_key] = RetroDataset( num_neighbors=args.retro_num_neighbors, num_retrieved_chunks=args.retro_num_retrieved_chunks, block_size=retro_args.retro_block_size, db_dataset=db_dataset, chunk_dataset=chunk_dataset, neighbor_path_map=neighbor_path_map, ) # Extract datasets. train_ds = retro_dataset_map.get("train", None) valid_ds = retro_dataset_map.get("valid", None) test_ds = retro_dataset_map.get("test", None) return train_ds, valid_ds, test_ds<|fim_middle|>get_retro_datasets<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): if not Widgets.has_webkit: return self.browser.go_back()<|fim_middle|>back_cb<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(name): try: return prop_cache[name] except KeyError: d = {} exec(template % ((name,)*7), d) prop_cache[name] = d[name] return d[name]<|fim_middle|>make_property<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(*, resp, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: response, response from url call :return: pandas dataframe of original source data """ # Convert response to dataframe # read all files in the stat canada zip with zipfile.ZipFile(io.BytesIO(resp.content), "r") as f: # read in file names for name in f.namelist(): # if filename does not contain "MetaData", then create dataframe if "MetaData" not in name: data = f.open(name) df = pd.read_csv(data, header=0) return df<|fim_middle|>sc_call<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(provided, name): # delete all existing results = provided.query(properties=[('name', name)]) for res in results['features']: provided.delete(res['id'])<|fim_middle|>delete_by_name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """test Language creation""" language = Language(self.sample["language_key"], self.sample["language_name"]) self.assertIsNotNone(language) self.assertIsNotNone(language.key) self.assertIsNone(language.concepts)<|fim_middle|>test_language_init<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, node: Any, key: Optional[Union[int, str]], parent: Any, path: List[Union[int, str]], ancestors: List[Any], ): if isinstance(node, OperationDefinition): self.enter_operation_definition(node, key, parent, path, ancestors)<|fim_middle|>enter<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(apps, schema_editor): _manage_permission(apps, schema_editor, assign_perm)<|fim_middle|>assign_object_permissions<|file_separator|>