text
stringlengths
67
7.88k
<|fim_prefix|>def <|fim_suffix|>(self, metrics): limiter = RateLimiter( storage.MemoryStorage(), "1 per minute; 1 per hour; 1 per day", metrics=metrics, ) current = datetime.datetime.now(tz=datetime.UTC) stats = iter( [ (0, 0), ((current + datetime.timedelta(seconds=60)).timestamp(), 0), ((current + datetime.timedelta(seconds=5)).timestamp(), 0), ] ) limiter._window = pretend.stub(get_window_stats=lambda L, *a: next(stats)) resets_in = limiter.resets_in("foo") assert resets_in > datetime.timedelta(seconds=0) assert resets_in <= datetime.timedelta(seconds=5)<|fim_middle|>test_resets_in_expired<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( model: Input[VertexModel], export_format_id: str, output_info: OutputPath(Dict[str, str]), gcp_resources: OutputPath(str), artifact_destination: str = '', image_destination: str = '',<|fim_middle|>model_export<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(sat_maintain, module_capsule_configured, module_sca_manifest, module_stash): if not module_stash[synced_repos]: org = sat_maintain.satellite.api.Organization().create() sat_maintain.satellite.upload_manifest(org.id, module_sca_manifest.content) # sync custom repo cust_prod = sat_maintain.satellite.api.Product(organization=org).create() cust_repo = sat_maintain.satellite.api.Repository( url=settings.repos.yum_1.url, product=cust_prod ).create() cust_repo.sync() # sync RH repo product = sat_maintain.satellite.api.Product( name=constants.PRDS['rhae'], organization=org.id ).search()[0] r_set = sat_maintain.satellite.api.RepositorySet( name=constants.REPOSET['rhae2'], product=product ).search()[0] payload = {'basearch': constants.DEFAULT_ARCHITECTURE, 'product_id': product.id} r_set.enable(data=payload) result = sat_maintain.satellite.api.Repository( name=constants.REPOS['rhae2']['name'] ).search(query={'organization_id': org.id}) rh_repo_id = result[0].id rh_repo = sat_maintain.satellite.api.Repository(id=rh_repo_id).read() rh_repo.sync() module_stash[synced_repos]['rh_repo'] = rh_repo module_stash[synced_repos]['cust_repo'] = cust_repo module_stash[synced_repos]['org'] = org if type(sat_maintain) is Capsule: # assign the Library LCE to the Capsule lce = sat_maintain.satellite.api.LifecycleEnvironment( organization=module_stash[synced_repos]['org'] ).search(query={'search': f'name={constants.ENVIRONMENT}'})[0] module_capsule_configured.nailgun_capsule.content_add_lifecycle_environment( data={'environment_id': lce.id} ) result = module_capsule_configured.nailgun_capsule.content_lifecycle_environments() assert lce.id in [capsule_lce['id'] for capsule_lce in result['results']] # sync the Capsule sync_status = module_capsule_configured.nailgun_capsule.content_sync() assert sync_status['result'] == 'success' yield { 'custom': module_stash[synced_repos]['cust_repo'], 'rh': module_stash[synced_repos]['rh_repo'], }<|fim_middle|>module_synced_repos<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(service, command, data_dir, num_files, file_size): """Run the given TestDFSIO command.""" args = [ '-' + command, '-nrFiles', str(num_files), '-fileSize', str(file_size) ] properties = {'test.build.data': data_dir} if not (data_dir.startswith(BaseDpbService.HDFS_FS + ':') or data_dir.startswith('/')): properties['fs.default.name'] = data_dir return service.SubmitJob( classname='org.apache.hadoop.fs.TestDFSIO', properties=properties, job_arguments=args, job_type=dpb_service.BaseDpbService.HADOOP_JOB_TYPE)<|fim_middle|>run_test_dfsio<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, config: Mapping[str, Any]) -> List[Stream]: """ :param config: The user-provided configuration as specified by the source's spec. Any stream construction related operation should happen here. :return: A list of the streams in this source connector. """ args = dict( credentials=self.get_credentials(config), partner_id=config.get("partner_id"), start_date=config.get("start_date"), end_date=config.get("end_date"), filters=config.get("filters"), ) METHOD_NAME = [ Reach(**args), Standard(**args), AudienceComposition(**args), Floodlight(**args), UniqueReachAudience(**args), ] return METHOD_NAME<|fim_middle|>streams<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(strategy): return strategy.id<|fim_middle|>strategy_id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(project, name, slug, glossary, license): return project.component_set.create( slug=slug, name=name, is_glossary=True, glossary_name=glossary.name, glossary_color=glossary.color, allow_translation_propagation=False, manage_units=True, file_format="tbx", filemask="*.tbx", vcs="local", repo="local:", branch="main", source_language=glossary.source_language, license=license, )<|fim_middle|>create_glossary<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return get_plugin('OPTIONSET_PROVIDERS', self.provider_key)<|fim_middle|>provider<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): gid = relay.GlobalID(type_name="Fruit", node_id="1") type_ = gid.resolve_type(fake_info) assert type_ is Fruit<|fim_middle|>test_global_id_resolve_type<|file_separator|>
<|fim_prefix|> <|fim_suffix|>(cls) -> SupportedSettingType:<|fim_middle|>get_pre_init_settings<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZObjectType() _schema_on_200 = cls._schema_on_200 _schema_on_200.key1 = AAZStrType( flags={"read_only": True}, ) _schema_on_200.key2 = AAZStrType( flags={"read_only": True}, ) return cls._schema_on_200<|fim_middle|>build_schema_on_200<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertFalse(self.s("artist")) self.s["title"] = "artist - title" self.s.multisong = False self.assertEqual(self.s("title"), "title") self.assertEqual(self.s.get("title"), "title") self.assertEqual(self.s("artist"), "artist") self.assertEqual(self.s.get("artist"), "artist")<|fim_middle|>test_title_split_stream<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> AsyncIterator[ConfigId]: pass<|fim_middle|>list_config_ids<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): device = 'mixed' if args.device == 'gpu' else 'cpu' jpegs, _ = fn.readers.file(file_root=args.images_dir) images = fn.decoders.image(jpegs, device=device, output_type=types.RGB, hw_decoder_load=args.hw_load, preallocate_width_hint=args.width_hint, preallocate_height_hint=args.height_hint) return images<|fim_middle|>decoder_pipeline<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): with get_logo_png() as LOGO_PNG: img = Image.from_file(LOGO_PNG) assert_equal_hash(img.value, LOGO_PNG_DIGEST)<|fim_middle|>test_from_filename<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 )<|fim_middle|>on_200<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): return json.loads(load_file("screens.json"))<|fim_middle|>screens_response<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, node: nodes.Expr, frame: Frame, finalize: CodeGenerator._FinalizeInfo ) -> None: if finalize.src is not None: self.write(")")<|fim_middle|>output_child_post<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_random_mix_good_and_bad_gradients<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> None: root = self.mkdtemp() expect_hex = self.write_file_and_hash(os.path.join(root, "foo"), "hello\n") expect_bar_hex = self.write_file_and_hash( os.path.join(root, "bar"), "different\n" ) with open(os.path.join(root, ".watchmanconfig"), "w") as f: f.write(json.dumps({"content_hash_max_items": 1})) self.watchmanCommand("watch", root) self.assertFileList(root, [".watchmanconfig", "foo", "bar"]) res = self.watchmanCommand( "query", root, {"path": ["foo", "bar"], "fields": ["name", "content.sha1hex"]}, ) self.assertEqual( [ {"name": "bar", "content.sha1hex": expect_bar_hex}, {"name": "foo", "content.sha1hex": expect_hex}, ], sorted(res["files"], key=lambda k: k["name"]), ) stats = self.watchmanCommand("debug-contenthash", root) # ensure that we pruned the cache back to match the content_hash_max_items self.assertEqual(stats["size"], 1) self.assertEqual(stats["cacheHit"], 0) self.assertEqual(stats["cacheMiss"], 2) self.assertEqual(stats["cacheStore"], 2) self.assertEqual(stats["cacheLoad"], 2)<|fim_middle|>test_cache_limit<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(a: Variable, b: Variable) -> None: # Support for iterating over bin contents is limited in Python. # So, simply use `identical` even though it does not produce good error messages. assert a.bins.unit == b.bins.unit assert identical(a, b)<|fim_middle|>assert_identical_binned_variable_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name")<|fim_middle|>name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cmd_invocationInitial : CommandInvocationInitial) -> ParallelizabilityInfo: return get_parallelizability_info_from_cmd_invocation(cmd_invocationInitial)<|fim_middle|>get_parallelizability_info_from_cmd_invocation_util<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): with temp_directory() as project_dir: # Write a default configuration and make sure mq is configured. main(["--directory", project_dir]) project = _check_project_directory(project_dir) assert "message_queue_url" not in (project.app_config or {}) # Try to re-config with message queue, expect error because files # already exist. exit_code = None try: main(["--directory", project_dir, "--mq"]) except SystemExit as e: exit_code = e.code assert exit_code == 1 # Try re-config again with --force, expect it to work and for MQ to be # configured. main(["--directory", project_dir, "--mq", "--force"]) project = _check_project_directory(project_dir) assert "message_queue_url" in project.app_config<|fim_middle|>test_force<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, roles: typing.Iterable, strict=True) -> list: parties = [] for role in roles: if role not in self._role_to_parties: if strict: raise RuntimeError( f"try to get role {role} " f"which is not configured in `role` in runtime conf({self._role_to_parties})" ) else: continue parties.extend(self._role_to_parties[role]) return parties<|fim_middle|>roles_to_parties<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( data: Union[pd.Series, pd.DataFrame], target_column: str = "close", seasonal_periods: int = 7, n_predict: int = 5, start_window: float = 0.85, forecast_horizon: int = 5, ) -> Tuple[ Optional[List[type[TimeSeries]]], Optional[List[type[TimeSeries]]], Optional[List[type[TimeSeries]]], Optional[float], Optional[StatsForecast], Optional[Union[int, str]],<|fim_middle|>get_autoselect_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): tc.reset() tv1 = tc.fresh_tvar() tv2 = tc.fresh_tvar() fn1 = create_Callable([tv1, tv2], bool, {tv1, tv2}) fn2 = create_Callable([int, int], bool) unify_helper(fn1, fn2, Callable[[int, int], bool])<|fim_middle|>test_simple_polymorphic_call<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): with self.assertRaises(ValueError, msg="Invalid task invalid-task. Make sure it's valid."): InferenceApi("bert-base-uncased", task="invalid-task")<|fim_middle|>test_inference_overriding_invalid_task<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(mock_repo): # when get_diff(mock_repo, "some_ref") # then mock_repo.git.diff.assert_called_once_with("some_ref", index=False)<|fim_middle|>test_get_diff<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(kind): """Test writing different Spectrums to HDF5 files.""" spec = make_spec(kind, lt=600.0) fname = os.path.join(TEST_OUTPUTS, "spectrum_io__test_write_h5__" + kind + ".h5") spec.write(fname)<|fim_middle|>test_write_h5<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, attributes): if "cards_url" in attributes: # pragma no branch self._cards_url = self._makeStringAttribute(attributes["cards_url"]) if "created_at" in attributes: # pragma no branch self._created_at = self._makeDatetimeAttribute(attributes["created_at"]) if "id" in attributes: # pragma no branch self._id = self._makeIntAttribute(attributes["id"]) if "name" in attributes: # pragma no branch self._name = self._makeStringAttribute(attributes["name"]) if "node_id" in attributes: # pragma no branch self._node_id = self._makeStringAttribute(attributes["node_id"]) if "project_url" in attributes: # pragma no branch self._project_url = self._makeStringAttribute(attributes["project_url"]) if "updated_at" in attributes: # pragma no branch self._updated_at = self._makeDatetimeAttribute(attributes["updated_at"]) if "url" in attributes: # pragma no branch self._url = self._makeStringAttribute(attributes["url"])<|fim_middle|>use_attributes<|file_separator|>
<|fim_prefix|> <|fim_suffix|>(self):<|fim_middle|>test_utilization_report_for_project<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Union[pandas.DatetimeIndex, None]: return self._start_times<|fim_middle|>start_times<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(bg_img_path, img_shape): if bg_img_path is None: bg = 255 * np.ones(img_shape) elif not os.path.exists(bg_img_path): raise Exception('The --bg_img_path is not existed: {}'.format( bg_img_path)) else: bg = cv2.imread(bg_img_path) return bg<|fim_middle|>get_bg_img<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(x_name, y_lim): plt.figure(figsize=(5.3, 4)) xs = np.asarray(range(5)) for i in range(1, 3): fwd = np.flip(np.asarray(data_fwd_mean[i])) com = np.flip(np.asarray(data_comm_mean[i])) bwd = np.flip(np.asarray(data_bwd_mean[i])) fwd_stdv = np.flip(np.asarray(data_fwd_stdv[i])) com_stdv = np.flip(np.asarray(data_comm_stdv[i])) bwd_stdv = np.flip(np.asarray(data_bwd_stdv[i])) fwd += com configs = { "width": WIDTH, "color": colors[i], "edgecolor": "black", "capsize": 6, } plt.bar(xs + (i - 1.5) * WIDTH, fwd, yerr=fwd_stdv, hatch="///", **configs) plt.bar( xs + (i - 1.5) * WIDTH, bwd, yerr=bwd_stdv, hatch="\\\\\\", bottom=fwd, **configs, ) color_handles = [] color_handles.append(plt.bar([20], [0], color=colors[1])) color_handles.append(plt.bar([2], [0], color=colors[2])) color_names = ["RPC", "Pipeline"] hatch_handles = [] hatch_handles.append(plt.bar([2], [0], hatch="///", color="white")) hatch_handles.append(plt.bar([2], [0], hatch="\\\\\\", color="white")) hatch_names = ["FWD", "BWD"] def interleave(l1, l2): return [val for pair in zip(l1, l2) for val in pair] plt.legend( handles=interleave(color_handles, hatch_handles), loc="upper left", labels=interleave(color_names, hatch_names), prop={"family": FONT["fontname"], "size": FONT["size"] - 2}, ncol=2, # bbox_to_anchor=(-0.015, 0.3, 0.5, 0.5) ) plt.xticks(xs, ["1", "2", "4", "8", "128"], **FONT) plt.yticks(**FONT) plt.xlabel(x_name, **FONT) plt.ylabel("Delay (Second)", **FONT) plt.ylim(y_lim) plt.xlim([-0.5, 4.5]) # plt.yscale('log') # plt.show() plt.savefig(f"../images/gpt.pdf", bbox_inches="tight")<|fim_middle|>plot_nlp<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): AliasInvalid2 = list[int] # [unsubscriptable-object] cast_variable2 = [1, 2, 3] cast_variable2 = typing.cast(list[int], cast_variable2) # [unsubscriptable-object] var12: list[int] # [unsubscriptable-object]<|fim_middle|>func3<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return { "radius": self.radius, "frame": self.frame.METHOD_NAME, }<|fim_middle|>data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): batch_size = 8 steps_per_epoch = 6 dataset_size = batch_size * (steps_per_epoch - 2) x = np.arange(dataset_size).reshape((dataset_size, 1)) y = x * 2 iterator = epoch_iterator.EpochIterator( x=x, y=y, batch_size=batch_size, steps_per_epoch=steps_per_epoch, ) steps_seen = [] for step, _ in iterator.enumerate_epoch(): steps_seen.append(step) self.assertLen(steps_seen, steps_per_epoch - 2) self.assertIsInstance(iterator, epoch_iterator.EpochIterator) self.assertTrue(iterator._insufficient_data)<|fim_middle|>test_insufficient_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): os.mkdir(os.path.join(self.tempdir, "src")) package_xml_path = os.path.join(self.tempdir, "src", "package.xml") with open(package_xml_path, "w") as f: f.write( """<?xml version="1.0" encoding="UTF-8"?><|fim_middle|>test_list_metadata_types<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(distr, method): """Check whether distr has capability of method. Parameters ---------- distr : BaseDistribution object method : str method name to check Returns ------- whether distr has capability method, according to tags capabilities:approx and capabilities:exact """ approx_methods = distr.get_tag("capabilities:approx") exact_methods = distr.get_tag("capabilities:exact") return method in approx_methods or method in exact_methods<|fim_middle|>has_capability<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(list, name): for item in list: if item and is_list(item) and item[0] == 'prop': if len(item) > 1 and item[1] == name: return item[2:] return []<|fim_middle|>getproplist<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): with self.assertRaises(TypeError) as cm: writer = NEXUSDataWriter(file_name='test_file_name.nxs') writer.write() self.assertEqual(str(cm.exception), 'Data to write out must be set.')<|fim_middle|>test_write_throws_when_data_is_none<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Show the input files of the task: input file, submission script and TaskManager """ file = self.task.job_file text = file.read() if file.exists else "Cannot find job_file!" job_file = pn.pane.Markdown(f"```shell\n{text}\n```") from .viewers import JSONViewer json_view = JSONViewer(self.task.manager.as_dict()) def card(title, *items, collapsed=True): return pn.Card(*items, title=title, collapsed=collapsed, sizing_mode="stretch_width", header_color="blue", #header_background="blue", ) return pn.Column( f"## Input files of `{repr(self.task)}`", card("Input file", self.html_with_clipboard_btn(self.task.input), collapsed=False), pn.layout.Divider(), card("Submission script", job_file), pn.layout.Divider(), card("TaskManager", json_view), pn.layout.Divider(), sizing_mode="stretch_width", )<|fim_middle|>get_inputs_view<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( begin_time, end_time, event_time, eeg_bads, status="unedited", name=None, pns_bads=None, nsegs=None, ): """Build content for a single segment in categories.xml. Segments are sorted into categories in categories.xml. In a segmented MFF each category can contain multiple segments, but in an averaged MFF each category only contains one segment (the average). """ channel_status = [ {"signalBin": 1, "exclusion": "badChannels", "channels": eeg_bads} ] if pns_bads: channel_status.append( {"signalBin": 2, "exclusion": "badChannels", "channels": pns_bads} ) content = { "status": status, "beginTime": begin_time, "endTime": end_time, "evtBegin": event_time, "evtEnd": event_time, "channelStatus": channel_status, } if name: content["name"] = name if nsegs: content["keys"] = {"#seg": {"type": "long", "data": nsegs}} return content<|fim_middle|>build_segment_content<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(opt): """ Dump task data to ACUTE-Eval. """ # create repeat label agent and assign it to the specified task agent = RepeatLabelAgent(opt) world = create_task(opt, agent) task = opt.get('task') speaker_0_id = opt.get('speaker_0_id') or f'{task}_as_human' speaker_1_id = opt.get('speaker_1_id') or f'{task}_as_model' if opt['outfile'] is None: outfile = tempfile.mkstemp( prefix='{}_{}_'.format(opt['task'], opt['datatype']), suffix='.txt' )[1] else: outfile = opt['outfile'] num_episodes = ( world.num_episodes() if opt['num_episodes'] == -1 else min(opt['num_episodes'], world.num_episodes()) ) log_timer = TimeLogger() print(f'[ starting to convert, saving output to {outfile} ]') dialogues = [] for _ in range(num_episodes): episode = [] episode_done = False while not episode_done: world.parley() acts = world.get_acts() text = acts[0].get('text') split_text = text.split('\n') label = random.choice( acts[0].get('labels', acts[0].pop('eval_labels', None)) ) if not episode and opt.get('prepended_context'): # first turn context = split_text[:-1] text = split_text[-1] context_turn = [ {'text': context, 'episode_done': False, 'id': 'context'} for _ in range(2) ] episode.append(context_turn) turn = [ {'text': text, 'episode_done': False, 'id': speaker_0_id}, {'text': label, 'episode_done': False, 'id': speaker_1_id}, ] episode.append(turn) if acts[0].get('episode_done', False): episode[-1][-1]['episode_done'] = True episode_done = True dialogues.append(episode) if log_timer.time() > opt['log_every_n_secs']: text, _log = log_timer.log(world.total_parleys, world.num_examples()) print(text) if world.epoch_done(): break Conversations.save_conversations(dialogues, outfile, opt)<|fim_middle|>dump_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(state): """ Generates some random data for the demo. :param state: The state for which to create the data. :return: The newly created data. """ return { 'state': state, 'date': datetime.date.today().isoformat(), 'cases': random.randint(1, 1000), 'deaths': random.randint(1, 100) }<|fim_middle|>generate_random_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, node=None): """Check that a user is able to execute `SYSTEM FETCHES` commands if and only if the privilege has been granted via role. """ user_name = f"user_{getuid()}" role_name = f"role_{getuid()}" if node is None: node = self.context.node with user(node, f"{user_name}"), role(node, f"{role_name}"): with When("I grant the role to the user"): node.query(f"GRANT {role_name} TO {user_name}") Suite(run=check_replicated_privilege, examples=Examples("privilege on grant_target_name user_name", [ tuple(list(row)+[role_name,user_name]) for row in check_replicated_privilege.examples ], args=Args(name="check privilege={privilege}", format_name=True)))<|fim_middle|>replicated_privileges_granted_via_role<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): """Returns the default SymbolDatabase.""" return _DEFAULT<|fim_middle|>default<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(pattern=None): """ Checks if the name is can be parsed back to its original form for an air-by-date format. :return: true if the naming is valid, false if not. """ if pattern is None: pattern = app.NAMING_PATTERN logger.log(u'Checking whether the pattern ' + pattern + ' is valid for an air-by-date episode', logger.DEBUG) valid = validate_name(pattern, abd=True) return valid<|fim_middle|>check_valid_abd_naming<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Retrieve inputs from pointers to results files. This mechanism can be easily extended/replaced to retrieve data from other data sources (e.g., XNAT, HTTP, etc.,.) """ if self._got_inputs: # Inputs cached return if not self.input_source: # No previous nodes self._got_inputs = True return prev_results = defaultdict(list) for key, info in list(self.input_source.items()): prev_results[info[0]].append((key, info[1])) logger.debug( '[Node] Setting %d connected inputs of node "%s" from %d previous nodes.', len(self.input_source), self.name, len(prev_results), ) for results_fname, connections in list(prev_results.items()): outputs = None try: outputs = load_resultfile(results_fname).outputs except AttributeError as e: logger.critical("%s", e) except FileNotFoundError as e: if self.allow_missing_input_source: logger.warning( f'Missing input file "{results_fname}". ' "This may indicate that errors occured during previous processing steps.", exc_info=e, ) else: raise if outputs is None: if self.allow_missing_input_source: continue else: raise RuntimeError( """\<|fim_middle|>get_inputs<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, msg: Union[Exception, str], kwargs: MutableMapping[str, Any] ) -> Tuple[str, MutableMapping[str, Any]]: """Process the message to append the prefix. Args: msg: Message to be prefixed. kwargs: Keyword args for the message. """ return self.prefix_template.format(prefix=self.prefix, msg=msg), kwargs<|fim_middle|>process<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, **kwargs: Any) -> _models.OperationListResult: """List all available Microsoft.AzureStackHCI provider operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: OperationListResult or the result of cls(response) :rtype: ~azure.mgmt.azurestackhci.models.OperationListResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-09-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None) request = build_list_request( api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("OperationListResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized<|fim_middle|>list<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self._s1ap_wrapper = s1ap_wrapper.TestWrapper()<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, configuration: Optional[ExpectationConfiguration] ) -> None: """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: None. Raises InvalidExpectationConfigurationError if the config is not validated successfully """ super().METHOD_NAME(configuration) configuration = configuration or self.configuration # # Check other things in configuration.kwargs and raise Exceptions if needed # try: # assert ( # ... # ), "message" # assert ( # ... # ), "message" # except AssertionError as e: # raise InvalidExpectationConfigurationError(str(e)) return True<|fim_middle|>validate_configuration<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """AWS Batch client.""" if not self._batch: self._batch = BatchClient() return self._batch<|fim_middle|>batch<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): G = nx.DiGraph() G.add_node(0) def kernel(x): return x assert nx.is_isomorphic(gn_graph(1), G) assert nx.is_isomorphic(gn_graph(1, kernel=kernel), G) assert nx.is_isomorphic(gnc_graph(1), G) assert nx.is_isomorphic(gnr_graph(1, 0.5), G)<|fim_middle|>test_parameters<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(tree: fdt.FdtParser, devices: List[device.WrappedNode]) -> List[dict]: cpus = cpu.get_cpus(tree) PSCI_COMPAT = ['arm,psci-0.2', 'arm,psci-1.0'] psci_node = [n for n in devices if n.has_prop('compatible') and n.get_prop('compatible').strings[0] in PSCI_COMPAT] if len(psci_node) > 0: psci_node = psci_node[0] else: psci_node = None cpu_info = [] for i, cpu_node in enumerate(sorted(cpus, key=lambda a: a.path)): enable_method = None if cpu_node.has_prop('enable-method'): enable_method = cpu_node.get_prop('enable-method').strings[0] cpuid = i if cpu_node.has_prop('reg'): cpuid = cpu_node.parse_address(list(cpu_node.get_prop('reg').words)) extra_data = 0 if enable_method == 'psci' and psci_node: extra_data = 'PSCI_METHOD_' + psci_node.get_prop('method').strings[0].upper() elif enable_method == 'spin-table': extra_data = '0x{:x}'.format( device.Utils.make_number(2, list(cpu_node.get_prop('cpu-release-addr').words))) obj = { 'compat': cpu_node.get_prop('compatible').strings[0], 'enable_method': enable_method, 'cpuid': cpuid, 'path': cpu_node.path, 'extra': extra_data, } cpu_info.append(obj) # guarantee that cpus in the same cluster will be consecutive return sorted(cpu_info, key=lambda a: a['cpuid'])<|fim_middle|>get_elfloader_cpus<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Disposes of the content of an editor.""" if self.factory.readonly: # enthought/traitsui#884 _BaseEditor.METHOD_NAME(self) else: super().METHOD_NAME()<|fim_middle|>dispose<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.prepare_data(grant_type='invalid') headers = self.create_basic_header( 'password-client', 'password-secret' ) rv = self.client.post('/oauth/token', data={ 'grant_type': 'password', 'username': 'foo', 'password': 'ok', }, headers=headers) resp = json.loads(rv.data) self.assertEqual(resp['error'], 'unauthorized_client')<|fim_middle|>test_invalid_grant_type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): args = parse_args() new_quantizable_op_type = [] for item in args.quantizable_op_type: new_quantizable_op_type.append(''.join(item)) args.quantizable_op_type = new_quantizable_op_type paddle.enable_static() quantize(args)<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): hash(Availability(True, True, True))<|fim_middle|>test_availability_hash<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): names = mooseutils.git_committers(mooseutils.__file__) self.assertIn('Andrew E. Slaughter', names) with self.assertRaises(OSError) as e: mooseutils.git_authors('wrong') names = mooseutils.git_committers(mooseutils.__file__, '--merges') self.assertIn('Logan Harbour', names)<|fim_middle|>test_committers<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, params: DropTipParams) -> DropTipResult: """Move to and drop a tip using the requested pipette.""" pipette_id = params.pipetteId labware_id = params.labwareId well_name = params.wellName home_after = params.homeAfter if params.alternateDropLocation: well_location = self._state_view.geometry.get_next_tip_drop_location( labware_id=labware_id, well_name=well_name, pipette_id=pipette_id, ) else: well_location = params.wellLocation tip_drop_location = self._state_view.geometry.get_checked_tip_drop_location( pipette_id=pipette_id, labware_id=labware_id, well_location=well_location ) position = await self._movement_handler.move_to_well( pipette_id=pipette_id, labware_id=labware_id, well_name=well_name, well_location=tip_drop_location, ) await self._tip_handler.drop_tip(pipette_id=pipette_id, home_after=home_after) return DropTipResult( position=DeckPoint(x=position.x, y=position.y, z=position.z) )<|fim_middle|>execute<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): from . import basic_assets return [load_assets_from_modules([basic_assets]), basic_assets.basic_assets_job]<|fim_middle|>basic_assets_repository<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(conference_factory, graphql_client): conference = conference_factory() resp = graphql_client.query( """ query($code: String!) { conference(code: $code) { keynotes { title(language: "en") speakers { id } } } } """, variables={"code": conference.code}, ) assert "errors" not in resp assert resp["data"]["conference"]["keynotes"] == []<|fim_middle|>test_get_conference_keynotes_empty<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): global conf conf = read_config() token = conf.token if conf.token is not None else None if token: gh = Github(token) else: gh = Github() jira = JIRA('https://issues.apache.org/jira') result = {} repo = gh.get_repo('apache/lucene') open_prs = repo.get_pulls(state='open') out("Lucene Github PR report") out("============================") out("Number of open Pull Requests: %s" % open_prs.totalCount) result['open_count'] = open_prs.totalCount lack_jira = list(filter(lambda x: not re.match(r'.*\b(LUCENE)-\d{3,6}\b', x.title), open_prs)) result['no_jira_count'] = len(lack_jira) lack_jira_list = [] for pr in lack_jira: lack_jira_list.append({'title': pr.title, 'number': pr.number, 'user': pr.user.login, 'created': pr.created_at.strftime("%Y-%m-%d")}) result['no_jira'] = lack_jira_list out("\nPRs lacking JIRA reference in title") for pr in lack_jira_list: out(" #%s: %s %s (%s)" % (pr['number'], pr['created'], pr['title'], pr['user'] )) out("\nOpen PRs with a resolved JIRA") has_jira = list(filter(lambda x: re.match(r'.*\b(LUCENE)-\d{3,6}\b', x.title), open_prs)) issue_ids = [] issue_to_pr = {} for pr in has_jira: jira_issue_str = re.match(r'.*\b((LUCENE)-\d{3,6})\b', pr.title).group(1) issue_ids.append(jira_issue_str) issue_to_pr[jira_issue_str] = pr resolved_jiras = jira.search_issues(jql_str="key in (%s) AND status in ('Closed', 'Resolved')" % ", ".join(issue_ids)) closed_jiras = [] for issue in resolved_jiras: pr_title = issue_to_pr[issue.key].title pr_number = issue_to_pr[issue.key].number assignee = issue.fields.assignee.name if issue.fields.assignee else None closed_jiras.append({ 'issue_key': issue.key, 'status': issue.fields.status.name, 'resolution': issue.fields.resolution.name, 'resolution_date': issue.fields.resolutiondate[:10], 'pr_number': pr_number, 'pr_title': pr_title, 'issue_summary': issue.fields.summary, 'assignee': assignee}) closed_jiras.sort(key=lambda r: r['pr_number'], reverse=True) for issue in closed_jiras: out(" #%s: %s %s %s: %s (%s)" % (issue['pr_number'], issue['status'], issue['resolution_date'], issue['issue_key'], issue['issue_summary'], issue['assignee']) ) result['closed_jira_count'] = len(resolved_jiras) result['closed_jira'] = closed_jiras if conf.json: print(json.dumps(result, indent=4)) if conf.html: print(make_html(result))<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): model = nn.Sequential(nn.Conv2d(3, 3, 1)) sample = torch.rand(1, 3, 32, 32) model(sample).norm().backward() with pytest.raises(ValueError, match="some parameter already has gradient"): balance_by_time(1, model, sample, device="cpu")<|fim_middle|>test_already_has_grad<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, query: str) -> List[float]: del query return [0, 0, 1, 0, 0]<|fim_middle|>aget_query_embedding<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(using_opengl_renderer, tmp_path): """Test that the frame size can be set via config file.""" np.testing.assert_allclose( config.aspect_ratio, config.pixel_width / config.pixel_height ) np.testing.assert_allclose(config.frame_height, 8.0) with tempconfig({}): tmp_cfg = tempfile.NamedTemporaryFile("w", dir=tmp_path, delete=False) tmp_cfg.write( """ [CLI] pixel_height = 10 pixel_width = 10 """, ) tmp_cfg.close() config.digest_file(tmp_cfg.name) # aspect ratio is set using pixel measurements np.testing.assert_allclose(config.aspect_ratio, 1.0) # if not specified in the cfg file, frame_width is set using the aspect ratio np.testing.assert_allclose(config.frame_height, 8.0) np.testing.assert_allclose(config.frame_width, 8.0) with tempconfig({}): tmp_cfg = tempfile.NamedTemporaryFile("w", dir=tmp_path, delete=False) tmp_cfg.write( """ [CLI] pixel_height = 10 pixel_width = 10 frame_height = 10 frame_width = 10 """, ) tmp_cfg.close() config.digest_file(tmp_cfg.name) np.testing.assert_allclose(config.aspect_ratio, 1.0) # if both are specified in the cfg file, the aspect ratio is ignored np.testing.assert_allclose(config.frame_height, 10.0) np.testing.assert_allclose(config.frame_width, 10.0)<|fim_middle|>test_frame_size<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(n_samples, noise_std=0.0, rotations=1.0): ts = torch.linspace(0, 1, n_samples, device=DEVICE) rs = ts**0.5 thetas = rs * rotations * 2 * math.pi signs = torch.randint(0, 2, (n_samples,), device=DEVICE) * 2 - 1 labels = (signs > 0).to(torch.long).to(DEVICE) xs = ( rs * signs * torch.cos(thetas) + torch.randn(n_samples, device=DEVICE) * noise_std ) ys = ( rs * signs * torch.sin(thetas) + torch.randn(n_samples, device=DEVICE) * noise_std ) points = torch.stack([xs, ys], dim=1) return points, labels<|fim_middle|>make_spirals<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, name: str) -> bytes: return self._serialize(InsType.EIP712_SEND_STRUCT_IMPL, P1Type.COMPLETE_SEND, P2Type.STRUCT_NAME, self._string_to_bytes(name))<|fim_middle|>eip712_send_struct_impl_root_struct<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Test that storage.set() sets value both in in-memory cache and in persist storage """ context = self.get_storage_context() persist_storage = LocalDiskCacheStorage(context) wrapped_storage = InMemoryCacheStorageWrapper( persist_storage=persist_storage, context=context ) persist_storage.set("some-key", b"some-value") with patch.object( persist_storage, "set", wraps=persist_storage.set ) as mock_persist_set: wrapped_storage.set("some-key", b"some-value") mock_persist_set.assert_called_once_with("some-key", b"some-value") self.assertEqual(wrapped_storage.get("some-key"), b"some-value")<|fim_middle|>test_in_memory_cache_storage_wrapper_set<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): s = "foo" resp = self._comm("greeting name={0}".format(s)) self.assertEqual(len(resp), 1) self.assertEqual(resp[0], "Hello '{0}'".format(s)) self.assertTrue(self.ldmsd.is_running())<|fim_middle|>test_recv_1_rec_resp<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(tmp_home, tmp_prefix): """Explicit export must have dependencies before dependent packages.""" helpers.install("python=3.10", "pip", "jupyterlab") lines = helpers.run_env("export", "--explicit").splitlines() indices = { "libzlib": 0, "python": 0, "wheel": 0, "pip": 0, "jupyterlab": 0, } for i, l in enumerate(lines): for pkg in indices.keys(): if pkg in l: indices[pkg] = i assert indices["libzlib"] < indices["python"] assert indices["python"] < indices["wheel"] assert indices["wheel"] < indices["pip"] assert indices["python"] < indices["jupyterlab"]<|fim_middle|>test_explicit_export_topologically_sorted<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(v): try: return float(v) except ValueError: return None<|fim_middle|>to_float<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, value): self.__float_value = value<|fim_middle|>set_float_value<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """Returns the status of the task that will provide the value for this future. This may not be in-sync with the result state of this future - for example, task_status might return 'done' but self.done() might not be true (which in turn means self.result() and self.exception() might block). The actual status description strings returned by this method are likely to change over subsequent versions of parsl, as use-cases and infrastructure are worked out. It is expected that the status values will be from a limited set of strings (so that it makes sense, for example, to group and count statuses from many futures). It is expected that might be a non-trivial cost in acquiring the status in future (for example, by communicating with a remote worker). Returns: str """ return self.task_def['status'].name<|fim_middle|>task_status<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, request: HttpRequest, **kwargs: Any) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs)<|fim_middle|>send_request<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, version, encoding, standalone) -> None: ...<|fim_middle|>xml_decl_handler<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(api): ''' test to get access group filters ''' filters = api.filters.access_group_filters() assert isinstance(filters, dict) for data in filters: check(filters[data], 'choices', list, allow_none=True) check(filters[data], 'operators', list) check(filters[data], 'pattern', str, allow_none=True)<|fim_middle|>test_access_group_filters<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, expected, args, sep=NotDefined, end=NotDefined, file=NotDefined): # Capture sys.stdout in a StringIO. Call print with args, # and with sep, end, and file, if they're defined. Result # must match expected. # Look up the actual function to call, based on if sep, end, # and file are defined. fn = dispatch[(sep is not NotDefined, end is not NotDefined, file is not NotDefined)] with support.captured_stdout() as t: fn(args, sep, end, file) self.assertEqual(t.getvalue(), expected)<|fim_middle|>check<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Optional[Sequence['outputs.NetworkManagerDeploymentStatusResponse']]: """ Gets a page of Network Manager Deployment Status """ return pulumi.get(self, "value")<|fim_middle|>value<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, response): schema_text = response.css( "script[type='application/ld+json']::text" ).extract()[-1] schema_json = json.loads(schema_text) if isinstance(schema_json, list): item = schema_json[0] else: item = schema_json start = self._parse_dt(item["startDate"]) title = self._parse_title(item["name"]) meeting = Meeting( title=title, description="", classification=self._parse_classification(title), start=start, end=self._parse_dt(item["endDate"]), all_day=False, time_notes="", location=self._parse_location(item), links=self.link_date_map[start.date()], source=response.url, ) meeting["status"] = self._get_status(meeting, text=schema_text) meeting["id"] = self._get_id(meeting) yield meeting<|fim_middle|>parse_detail<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, container_id, *args, **kwargs): return self._metadata[container_id]<|fim_middle|>load_metadata<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(prop): return hasattr(prop, 'columns') and isinstance(prop.columns[0], Label)<|fim_middle|>is_column_property<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(client, jobflow_id, job_name, jar_path, main_class, extra_args): """Submits single spark job to a running cluster""" spark_job = { 'Name': job_name, 'ActionOnFailure': 'CONTINUE', 'HadoopJarStep': { 'Jar': 'command-runner.jar' } } spark_args = ['spark-submit', "--deploy-mode", "cluster"] if main_class: spark_args.extend(['--class', main_class]) spark_args.extend([jar_path]) spark_args.extend(extra_args) spark_job['HadoopJarStep']['Args'] = spark_args try: response = client.add_job_flow_steps( JobFlowId=jobflow_id, Steps=[spark_job], ) except ClientError as e: print(e.response['Error']['Message']) exit(1) step_id = response['StepIds'][0] print("Step Id {} has been submitted".format(step_id)) return step_id<|fim_middle|>submit_spark_job<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(api_versions): for api_version in sorted(api_versions.keys(), reverse=True): swagger_files = api_versions[api_version] print(_PY_NAMESPACE.format( api_version=api_version, ns="v"+api_version.replace("-", "_")) )<|fim_middle|>print_python_namespace<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): mock = MagicMock() with patch.dict(djangomod.__salt__, {"cmd.run": mock}): djangomod.syncdb("settings.py", migrate=True) mock.assert_called_once_with( "django-admin.py syncdb --settings=settings.py --migrate --noinput", python_shell=False, env=None, runas=None, )<|fim_middle|>test_django_admin_cli_syncdb_migrate<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """get_retry_interval() returns the right retry interval""" job = Job.create(func=fixtures.say_hello) # Handle case where self.retry_intervals is None job.retries_left = 2 self.assertEqual(job.get_retry_interval(), 0) # Handle the most common case job.retry_intervals = [1, 2] self.assertEqual(job.get_retry_interval(), 1) job.retries_left = 1 self.assertEqual(job.get_retry_interval(), 2) # Handle cases where number of retries > length of interval job.retries_left = 4 job.retry_intervals = [1, 2, 3] self.assertEqual(job.get_retry_interval(), 1) job.retries_left = 3 self.assertEqual(job.get_retry_interval(), 1) job.retries_left = 2 self.assertEqual(job.get_retry_interval(), 2) job.retries_left = 1 self.assertEqual(job.get_retry_interval(), 3)<|fim_middle|>test_get_retry_interval<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertHolidayName( "Easter Monday", "2019-04-22", "2020-04-13", "2021-04-05", "2022-04-18", "2023-04-10", )<|fim_middle|>test_easter_monday<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(value: str) -> "RuntimeProcessorType": """Returns an instance of RuntimeProcessorType corresponding to the given value. Raises KeyError if parameter is not a value in the enumeration. """ for instance in RuntimeProcessorType.__members__.values(): if instance.value == value: return instance raise KeyError(f"'{value}'")<|fim_middle|>get_instance_by_value<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Test :func:`colour.models.rgb.transfer_functions.dji_d_log.\<|fim_middle|>test_nan_log_decoding_d_log<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): anc = pdl.ApplyNativeConstraintOp("anc", [type_val]) assert anc.attributes["name"] == StringAttr("anc") assert anc.args == (type_val,)<|fim_middle|>test_build_anc<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): data = DerivedNoInherit(uid=str(time()), value=2, status=1) ser = sy.serialize(data, to_bytes=True) de = sy.deserialize(ser, from_bytes=True) assert "uid" not in data.__syft_serializable__ assert "value" not in data.__syft_serializable__ assert de.status == data.status<|fim_middle|>test_derived_without_inherit<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( profile_2d, dx1, dx2, deg1, deg2 ): """ Compute error bound for spline approximation of 2D analytical profile. Parameters ---------- profile_2d : 2D analytical profile Must provide 'max_norm( n1,n2 )' method to compute max norm of its mixed derivative of degree (n1,n2) over domain. dx1 : float Grid spacing along 1st dimension. dx2 : float Grid spacing along 2nd dimension. deg1 : int Spline degree along 1st dimension. deg2 : int Spline degree along 2nd dimension. Result ------ max_error : float Error bound: max-norm of error over domain should be smaller than this. """ # Max norm of highest partial derivatives in x1 and x2 of analytical profile max_norm1 = profile_2d.max_norm( deg1+1, 0 ) max_norm2 = profile_2d.max_norm( 0 , deg2+1 ) # Error bound on function value max_error = f_tihomirov_error_bound( dx1, deg1, max_norm1 ) \ + f_tihomirov_error_bound( dx2, deg2, max_norm2 ) # Empirical correction: for linear interpolation increase estimate by 5% if (deg1 == 1 or deg2 == 1): max_error = 1.05 * max_error return max_error<|fim_middle|>spline_2d_error_bound<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(sample_features): # test the scenario when previous feature importance df is none prev_df, curr_df = None, unevaluated_fi_df_template(sample_features) assert merge_importance_dfs(prev_df, curr_df, using_prev_fit_fi=set()) is curr_df<|fim_middle|>test_merge_importance_dfs_base<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(servicer, server): rpc_method_handlers = { 'setRole': grpc.unary_unary_rpc_method_handler( servicer.setRole, request_deserializer=uac_dot_RoleV2__pb2.SetRoleV2.FromString, response_serializer=uac_dot_RoleV2__pb2.SetRoleV2.Response.SerializeToString, ), 'deleteRole': grpc.unary_unary_rpc_method_handler( servicer.deleteRole, request_deserializer=uac_dot_RoleV2__pb2.DeleteRoleV2.FromString, response_serializer=uac_dot_RoleV2__pb2.DeleteRoleV2.Response.SerializeToString, ), 'searchRoles': grpc.unary_unary_rpc_method_handler( servicer.searchRoles, request_deserializer=uac_dot_RoleV2__pb2.SearchRolesV2.FromString, response_serializer=uac_dot_RoleV2__pb2.SearchRolesV2.Response.SerializeToString, ), 'getRole': grpc.unary_unary_rpc_method_handler( servicer.getRole, request_deserializer=uac_dot_RoleV2__pb2.GetRoleV2.FromString, response_serializer=uac_dot_RoleV2__pb2.GetRoleV2.Response.SerializeToString, ), 'getEnabledActions': grpc.unary_unary_rpc_method_handler( servicer.getEnabledActions, request_deserializer=uac_dot_RoleV2__pb2.GetEnabledActions.FromString, response_serializer=uac_dot_RoleV2__pb2.GetEnabledActions.Response.SerializeToString, ), 'getSelfAllowedActionsBatchForWorkspace': grpc.unary_unary_rpc_method_handler( servicer.getSelfAllowedActionsBatchForWorkspace, request_deserializer=uac_dot_RoleV2__pb2.GetSelfAllowedActionsBatchForWorkspace.FromString, response_serializer=uac_dot_RoleV2__pb2.GetSelfAllowedActionsBatchForWorkspace.Response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'ai.verta.uac.RoleServiceV2', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))<|fim_middle|>add_role_service_v2_servicer_to_server<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, user: User): return self.user_id == user.id<|fim_middle|>can_edit<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Resource Id represents the complete path to the resource. """ return pulumi.get(self, "id")<|fim_middle|>id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(dbpath: Path) -> str: with initialised_database_at(str(dbpath)): new_experiment(sample_name="fivehundredtest_sample", name="fivehundredtest_name") p1 = Parameter('Voltage', set_cmd=None) p2 = Parameter('Current', get_cmd=np.random.randn) meas = Measurement() meas.register_parameter(p1).register_parameter(p2, setpoints=[p1]) with meas.run() as datasaver: for v in np.linspace(0, 2, 250): p1(v) datasaver.add_result((p1, cast(float, p1())), (p2, cast(float, p2()))) guid = datasaver.dataset.guid datasaver.flush_data_to_database(block=True) return guid<|fim_middle|>generate_local_run<|file_separator|>