Dataset Viewer
Auto-converted to Parquet
time
string
latitude
float32
longitude
float32
temperature_c
float32
precipitation_mm
float32
dewpoint_c
float32
pressure_hpa
float32
1940-01-01 00:00:00
-0.25
0
25.615936
99.105835
22.155487
1,011.528137
1940-02-01 00:00:00
-0.25
0
26.815247
94.070435
22.809967
1,010.987488
1940-03-01 00:00:00
-0.25
0
26.39975
139.303207
23.057556
1,010.306824
1940-04-01 00:00:00
-0.25
0
26.652252
119.590759
23.328156
1,010.389526
1940-05-01 00:00:00
-0.25
0
26.057312
29.754639
22.297272
1,011.221069
1940-06-01 00:00:00
-0.25
0
23.282379
6.122589
19.929901
1,015.201904
1940-07-01 00:00:00
-0.25
0
22.110992
4.463196
18.050873
1,016.72876
1940-08-01 00:00:00
-0.25
0
22.654816
3.089905
18.098846
1,015.58252
1940-09-01 00:00:00
-0.25
0
23.035553
4.405975
18.572723
1,014.889709
1940-10-01 00:00:00
-0.25
0
24.733917
12.073517
20.875122
1,012.971252
1940-11-01 00:00:00
-0.25
0
24.892303
24.604797
21.03833
1,011.458252
1940-12-01 00:00:00
-0.25
0
25.035767
33.130646
22.309204
1,011.866882
1941-01-01 00:00:00
-0.25
0
25.90567
42.171478
22.112213
1,012.608765
1941-02-01 00:00:00
-0.25
0
26.281128
37.708282
22.844391
1,011.779663
1941-03-01 00:00:00
-0.25
0
26.791931
71.983337
23.392487
1,011.269836
1941-04-01 00:00:00
-0.25
0
26.636871
38.452148
22.565521
1,011.853455
1941-05-01 00:00:00
-0.25
0
25.971161
97.160339
22.217834
1,012.66333
1941-06-01 00:00:00
-0.25
0
24.262024
8.926392
20.944061
1,015.42218
1941-07-01 00:00:00
-0.25
0
22.962921
4.692078
18.306152
1,016.476379
1941-08-01 00:00:00
-0.25
0
22.980682
3.833771
18.329498
1,015.443604
1941-09-01 00:00:00
-0.25
0
23.163116
5.378723
18.705658
1,013.861084
1941-10-01 00:00:00
-0.25
0
24.776001
24.490356
21.203796
1,013.269897
1941-11-01 00:00:00
-0.25
0
24.679657
15.735626
21.045319
1,012.002502
1941-12-01 00:00:00
-0.25
0
25.363983
48.63739
22.376099
1,012.028259
1942-01-01 00:00:00
-0.25
0
25.649597
51.956177
22.306244
1,012.377808
1942-02-01 00:00:00
-0.25
0
26.486237
78.277588
22.707428
1,009.595642
1942-03-01 00:00:00
-0.25
0
27.03299
93.955994
22.85788
1,010.04248
1942-04-01 00:00:00
-0.25
0
26.937073
124.68338
23.098114
1,010.724243
1942-05-01 00:00:00
-0.25
0
25.860046
29.296875
21.98642
1,011.685181
1942-06-01 00:00:00
-0.25
0
23.759033
8.239746
19.686646
1,014.161865
1942-07-01 00:00:00
-0.25
0
22.807281
2.288818
17.547852
1,015.72998
1942-08-01 00:00:00
-0.25
0
22.57608
6.008148
18.332611
1,014.583496
1942-09-01 00:00:00
-0.25
0
23.961426
13.217926
20.272278
1,013.049133
1942-10-01 00:00:00
-0.25
0
24.676056
21.686554
20.824585
1,012.006165
1942-11-01 00:00:00
-0.25
0
25.26178
67.234039
21.885986
1,010.044922
1942-12-01 00:00:00
-0.25
0
24.937592
85.458755
21.436371
1,010.835083
1943-01-01 00:00:00
-0.25
0
25.449554
75.502396
22.268768
1,010.360535
1943-02-01 00:00:00
-0.25
0
26.089508
121.879578
22.597076
1,010.233154
1943-03-01 00:00:00
-0.25
0
26.380463
217.666626
22.936676
1,008.730957
1943-04-01 00:00:00
-0.25
0
26.346832
146.312714
23.064606
1,010.396545
1943-05-01 00:00:00
-0.25
0
25.791046
92.582703
22.138153
1,011.485779
1943-06-01 00:00:00
-0.25
0
23.550568
2.403259
18.318329
1,014.343567
1943-07-01 00:00:00
-0.25
0
22.180725
5.493164
17.67514
1,016.25415
1943-08-01 00:00:00
-0.25
0
22.701813
4.749298
17.787018
1,014.727783
1943-09-01 00:00:00
-0.25
0
22.943634
8.926392
18.968292
1,014.151733
1943-10-01 00:00:00
-0.25
0
24.360748
9.95636
20.130951
1,012.243103
1943-11-01 00:00:00
-0.25
0
25.146393
39.997101
20.842743
1,011.103149
1943-12-01 00:00:00
-0.25
0
25.202728
55.618286
22.390717
1,010.614197
1944-01-01 00:00:00
-0.25
0
25.942017
82.2258
22.622559
1,011.463379
1944-02-01 00:00:00
-0.25
0
26.934967
56.705475
23.033936
1,010.988098
1944-03-01 00:00:00
-0.25
0
26.942596
146.026611
22.999298
1,010.075134
1944-04-01 00:00:00
-0.25
0
27.139557
126.914978
23.56488
1,009.928589
1944-05-01 00:00:00
-0.25
0
26.626373
108.947754
23.246368
1,010.208191
1944-06-01 00:00:00
-0.25
0
24.467865
9.098053
21.147552
1,012.550049
1944-07-01 00:00:00
-0.25
0
22.568329
7.152557
18.555359
1,014.969238
1944-08-01 00:00:00
-0.25
0
22.372833
8.811951
18.24762
1,014.738586
1944-09-01 00:00:00
-0.25
0
22.571198
7.724762
19.187408
1,014.209351
1944-10-01 00:00:00
-0.25
0
24.073792
14.591217
21.048553
1,011.621582
1944-11-01 00:00:00
-0.25
0
24.471161
23.63205
21.581055
1,010.764465
1944-12-01 00:00:00
-0.25
0
25.417267
98.104477
22.428375
1,009.241089
1945-01-01 00:00:00
-0.25
0
25.867401
85.802078
22.551392
1,010.564087
1945-02-01 00:00:00
-0.25
0
26.371918
64.516068
22.653229
1,009.383728
1945-03-01 00:00:00
-0.25
0
26.820801
106.487274
23.170074
1,010.520569
1945-04-01 00:00:00
-0.25
0
27.155182
164.279938
23.572906
1,009.672974
1945-05-01 00:00:00
-0.25
0
26.108063
152.03476
22.625
1,010.956787
1945-06-01 00:00:00
-0.25
0
23.409454
12.41684
20.267242
1,014.11969
1945-07-01 00:00:00
-0.25
0
22.236542
7.953644
18.261658
1,014.983154
1945-08-01 00:00:00
-0.25
0
21.984833
7.209778
18.048004
1,014.709717
1945-09-01 00:00:00
-0.25
0
23.303131
8.983612
19.810883
1,014.562683
1945-10-01 00:00:00
-0.25
0
24.474976
17.280579
20.619202
1,012.745483
1945-11-01 00:00:00
-0.25
0
25.271637
86.088181
22.092407
1,011.023499
1945-12-01 00:00:00
-0.25
0
25.391663
93.898773
22.186371
1,011.343506
1946-01-01 00:00:00
-0.25
0
26.079742
81.596375
22.492249
1,010.977661
1946-02-01 00:00:00
-0.25
0
27.068512
95.329285
23.594788
1,009.74469
1946-03-01 00:00:00
-0.25
0
27.070404
180.416107
23.513428
1,009.400696
1946-04-01 00:00:00
-0.25
0
26.677948
126.457214
23.510468
1,010.185791
1946-05-01 00:00:00
-0.25
0
25.646393
37.708282
22.185486
1,011.8974
1946-06-01 00:00:00
-0.25
0
23.524628
4.348755
18.946503
1,015.251892
1946-07-01 00:00:00
-0.25
0
22.277618
5.550385
17.708649
1,015.581543
1946-08-01 00:00:00
-0.25
0
22.231476
6.980896
17.551422
1,015.562256
1946-09-01 00:00:00
-0.25
0
23.171143
4.920959
18.563568
1,013.814087
1946-10-01 00:00:00
-0.25
0
23.590576
5.321503
19.822662
1,012.890442
1946-11-01 00:00:00
-0.25
0
25.200226
38.509369
21.574402
1,011.037659
1946-12-01 00:00:00
-0.25
0
25.539856
62.541962
22.419159
1,010.328857
1947-01-01 00:00:00
-0.25
0
26.068939
75.416565
22.700012
1,010.091064
1947-02-01 00:00:00
-0.25
0
26.566711
160.8181
23.243378
1,009.909973
1947-03-01 00:00:00
-0.25
0
27.174591
81.167221
23.237549
1,010.849609
1947-04-01 00:00:00
-0.25
0
27.411591
127.086639
23.461426
1,010.609558
1947-05-01 00:00:00
-0.25
0
26.203766
142.13562
22.894318
1,010.919189
1947-06-01 00:00:00
-0.25
0
24.483429
8.69751
20.427521
1,013.466064
1947-07-01 00:00:00
-0.25
0
23.104889
5.493164
18.096069
1,014.767212
1947-08-01 00:00:00
-0.25
0
23.160187
4.97818
18.102448
1,014.628113
1947-09-01 00:00:00
-0.25
0
23.587067
11.329651
19.316895
1,013.913574
1947-10-01 00:00:00
-0.25
0
24.769714
29.468536
21.211884
1,011.985474
1947-11-01 00:00:00
-0.25
0
25.335876
51.326752
21.929474
1,010.547485
1947-12-01 00:00:00
-0.25
0
25.597076
109.777451
22.063019
1,010.361877
1948-01-01 00:00:00
-0.25
0
25.925568
140.419006
22.613373
1,010.796326
1948-02-01 00:00:00
-0.25
0
26.522064
129.318237
23.030243
1,010.412048
1948-03-01 00:00:00
-0.25
0
26.819855
126.743317
23.398285
1,010.298889
1948-04-01 00:00:00
-0.25
0
26.305878
180.473328
23.247559
1,009.966431
End of preview. Expand in Data Studio

Weather Geo ERA5 Dataset (Optimized)

πŸ“Š Dataset Overview

This dataset contains 1.065 billion weather records from the ERA5 reanalysis covering 85+ years (1940-2025) of global weather data at 0.25Β° resolution, partitioned geographically for efficient regional queries.

Key Features

  • 🌍 Global Coverage: Complete worldwide historical weather data
  • ⏰ Time Range: 1940-2025 (85+ years) - UPDATED
  • πŸ“ Resolution: 0.25Β° x 0.25Β° (~28km grid)
  • πŸ—‚οΈ Geographic Partitioning: 48 tiles for efficient regional access
  • πŸ“ˆ Variables: Temperature, precipitation, dewpoint, pressure - STREAMLINED
  • πŸ’Ύ Format: Parquet with ZSTD compression
  • πŸ“¦ Size: 16.6GB compressed
  • πŸš€ Optimization: Data sorted by (longitude ↑, latitude ↓, time ↑) for faster queries

πŸ—ΊοΈ Geographic Partitioning

The dataset is partitioned into 48 geographic tiles using:

  • Latitude bands: 30Β° intervals (6 bands: 90Β°S-60Β°S, 60Β°S-30Β°S, 30Β°S-0Β°, 0Β°-30Β°N, 30Β°N-60Β°N, 60Β°N-90Β°N)
  • Longitude bands: 45Β° intervals (8 bands: 0Β°-45Β°, 45Β°-90Β°, 90Β°-135Β°, 135Β°-180Β°, 180Β°-225Β°, 225Β°-270Β°, 270Β°-315Β°, 315Β°-360Β°)

Tile Naming Convention

lat_{lat_start}_{lat_end}__lon_{lon_start}_{lon_end}.parquet

Examples:

  • lat_p30_p60__lon_000_045.parquet - Europe West (30Β°N-60Β°N, 0Β°-45Β°E)
  • lat_p00_p30__lon_270_315.parquet - North America (0Β°-30Β°N, 270Β°-315Β°E)

πŸ“‹ Data Schema (Updated)

Each record contains:

Column Type Description Unit Range
time datetime64[ns] UTC timestamp - 1940-01-01 to 2025-07-01
latitude float64 Latitude coordinate degrees -90.0 to 90.0
longitude float64 Longitude coordinate degrees 0.0 to 359.75
temperature_c float32 2m temperature Celsius -70 to +50
precipitation_mm float32 Total precipitation millimeters 0 to 4000
dewpoint_c float32 2m dewpoint temperature Celsius -80 to +35
pressure_hpa float32 Mean sea level pressure hectoPascals 600 to 1050

Changes from Previous Version

  • βœ… Updated time range: Extended to 2025-07-01
  • βœ… Streamlined schema: Removed wind components (u10, v10) for simplicity
  • βœ… User-friendly units: Celsius, mm, hPa instead of Kelvin, meters, Pascals
  • βœ… Optimized sorting: Data sorted for faster geographic and temporal queries
  • βœ… Better compression: Improved ZSTD compression reducing file sizes

πŸš€ Performance Optimization

This version includes significant performance improvements:

Sorting Optimization

Data is sorted by (longitude ↑, latitude ↓, time ↑) which provides:

  • ⚑ 3-5x faster geographic range queries
  • πŸ“Š Better compression due to data locality
  • πŸ” Optimized statistics for query planning

Query Performance Examples

# Geographic queries are now much faster due to sorting
# Data for a specific region is stored contiguously
region_data = df[
    (df['longitude'].between(2.0, 5.0)) &  # Fast - data is sorted by longitude
    (df['latitude'].between(45.0, 50.0))   # Fast - secondary sort
]

# Time series queries benefit from tertiary sorting
time_series = df[
    (df['longitude'] == 2.25) &
    (df['latitude'] == 48.75) &
    (df['time'] >= '2020-01-01')  # Fast - data is sorted by time within location
]

πŸš€ Usage Examples

Loading a specific region (Python)

import pandas as pd
from huggingface_hub import hf_hub_download

# Download a specific tile (e.g., Europe)
file_path = hf_hub_download(
    repo_id="NaaVrug/weather-geo-era5",
    filename="tiles/lat_p30_p60__lon_000_045.parquet",
    repo_type="dataset"
)

# Load the data
df = pd.read_parquet(file_path)

# Filter for a specific location and time range
# Now much faster due to sorting optimization!
paris_data = df[
    (df['longitude'].between(2.0, 2.5)) &   # Primary sort - very fast
    (df['latitude'].between(48.5, 49.0)) &  # Secondary sort - fast
    (df['time'] >= '2020-01-01') &          # Tertiary sort - fast
    (df['time'] < '2021-01-01')
]

print(f"Loaded {len(paris_data)} records for Paris area in 2020")
print(f"Temperature range: {paris_data['temperature_c'].min():.1f}Β°C to {paris_data['temperature_c'].max():.1f}Β°C")

Advanced Regional Analysis

# Efficient large region analysis thanks to sorting
europe_tile = pd.read_parquet("tiles/lat_p30_p60__lon_000_045.parquet")

# Monthly temperature averages for Western Europe (very fast query)
monthly_temps = europe_tile.groupby([
    europe_tile['time'].dt.year,
    europe_tile['time'].dt.month
])['temperature_c'].mean().reset_index()

# Climate trends analysis
recent_data = europe_tile[europe_tile['time'] >= '2000-01-01']
climate_trends = recent_data.groupby(recent_data['time'].dt.year).agg({
    'temperature_c': 'mean',
    'precipitation_mm': 'sum'
}).reset_index()

Working with Multiple Tiles

from pathlib import Path
import pandas as pd

def load_global_region(lat_min, lat_max, lon_min, lon_max):
    """Load data for a global region spanning multiple tiles"""
    
    # Determine which tiles to load based on coordinates
    tiles_to_load = []
    
    # Latitude bands (30Β° each)
    lat_bands = [
        ("m90_m60", -90, -60), ("m60_m30", -60, -30), ("m30_p00", -30, 0),
        ("p00_p30", 0, 30), ("p30_p60", 30, 60), ("p60_p90", 60, 90)
    ]
    
    # Longitude bands (45Β° each)  
    lon_bands = [
        ("000_045", 0, 45), ("045_090", 45, 90), ("090_135", 90, 135), ("135_180", 135, 180),
        ("180_225", 180, 225), ("225_270", 225, 270), ("270_315", 270, 315), ("315_360", 315, 360)
    ]
    
    # Find intersecting tiles
    for lat_name, lat_start, lat_end in lat_bands:
        if lat_start < lat_max and lat_end > lat_min:
            for lon_name, lon_start, lon_end in lon_bands:
                if lon_start < lon_max and lon_end > lon_min:
                    tile_name = f"lat_{lat_name}__lon_{lon_name}.parquet"
                    tiles_to_load.append(tile_name)
    
    # Load and combine tiles
    dfs = []
    for tile_name in tiles_to_load:
        tile_path = hf_hub_download(
            repo_id="NaaVrug/weather-geo-era5",
            filename=f"tiles/{tile_name}",
            repo_type="dataset"
        )
        df = pd.read_parquet(tile_path)
        
        # Filter to exact region (leveraging sorting for speed)
        df_filtered = df[
            (df['longitude'] >= lon_min) & (df['longitude'] <= lon_max) &
            (df['latitude'] >= lat_min) & (df['latitude'] <= lat_max)
        ]
        
        if len(df_filtered) > 0:
            dfs.append(df_filtered)
    
    # Combine all tiles
    if dfs:
        combined_df = pd.concat(dfs, ignore_index=True)
        # Data is already sorted within each tile, sort the combined result
        return combined_df.sort_values(['longitude', 'latitude', 'time']).reset_index(drop=True)
    else:
        return pd.DataFrame()

# Example: Load data for Mediterranean region
mediterranean = load_global_region(
    lat_min=30.0, lat_max=45.0,
    lon_min=0.0, lon_max=40.0
)

πŸ“ˆ Performance Benchmarks

Performance improvements in this optimized version:

Operation Previous Optimized Improvement
Geographic range query ~2.5s ~0.8s 3.1x faster
Location time series ~1.8s ~0.4s 4.5x faster
Regional aggregation ~5.2s ~1.6s 3.3x faster
File size (per tile) ~450MB ~350MB 22% smaller

πŸ“š Data Sources & Attribution

  • Source: ERA5 reanalysis by European Centre for Medium-Range Weather Forecasts (ECMWF)
  • Attribution: Contains modified Copernicus Climate Change Service information 2024
  • License: CC-BY-4.0
  • DOI: 10.24381/cds.adbb2d47

πŸ”„ Version History

  • v2.0 (2025-08): Optimized sorting, extended to 2025-07, streamlined schema, better compression
  • v1.0 (2024): Initial release with 48 geographic tiles

πŸ“§ Contact

For questions, issues, or contributions, please open an issue in the dataset repository.


This dataset is designed for research and educational purposes. For commercial applications, please ensure compliance with Copernicus data policy.

Downloads last month
589