Dataset Viewer
time
string | latitude
float32 | longitude
float32 | temperature_c
float32 | precipitation_mm
float32 | dewpoint_c
float32 | pressure_hpa
float32 |
---|---|---|---|---|---|---|
1940-01-01 00:00:00
| -0.25 | 0 | 25.615936 | 99.105835 | 22.155487 | 1,011.528137 |
1940-02-01 00:00:00
| -0.25 | 0 | 26.815247 | 94.070435 | 22.809967 | 1,010.987488 |
1940-03-01 00:00:00
| -0.25 | 0 | 26.39975 | 139.303207 | 23.057556 | 1,010.306824 |
1940-04-01 00:00:00
| -0.25 | 0 | 26.652252 | 119.590759 | 23.328156 | 1,010.389526 |
1940-05-01 00:00:00
| -0.25 | 0 | 26.057312 | 29.754639 | 22.297272 | 1,011.221069 |
1940-06-01 00:00:00
| -0.25 | 0 | 23.282379 | 6.122589 | 19.929901 | 1,015.201904 |
1940-07-01 00:00:00
| -0.25 | 0 | 22.110992 | 4.463196 | 18.050873 | 1,016.72876 |
1940-08-01 00:00:00
| -0.25 | 0 | 22.654816 | 3.089905 | 18.098846 | 1,015.58252 |
1940-09-01 00:00:00
| -0.25 | 0 | 23.035553 | 4.405975 | 18.572723 | 1,014.889709 |
1940-10-01 00:00:00
| -0.25 | 0 | 24.733917 | 12.073517 | 20.875122 | 1,012.971252 |
1940-11-01 00:00:00
| -0.25 | 0 | 24.892303 | 24.604797 | 21.03833 | 1,011.458252 |
1940-12-01 00:00:00
| -0.25 | 0 | 25.035767 | 33.130646 | 22.309204 | 1,011.866882 |
1941-01-01 00:00:00
| -0.25 | 0 | 25.90567 | 42.171478 | 22.112213 | 1,012.608765 |
1941-02-01 00:00:00
| -0.25 | 0 | 26.281128 | 37.708282 | 22.844391 | 1,011.779663 |
1941-03-01 00:00:00
| -0.25 | 0 | 26.791931 | 71.983337 | 23.392487 | 1,011.269836 |
1941-04-01 00:00:00
| -0.25 | 0 | 26.636871 | 38.452148 | 22.565521 | 1,011.853455 |
1941-05-01 00:00:00
| -0.25 | 0 | 25.971161 | 97.160339 | 22.217834 | 1,012.66333 |
1941-06-01 00:00:00
| -0.25 | 0 | 24.262024 | 8.926392 | 20.944061 | 1,015.42218 |
1941-07-01 00:00:00
| -0.25 | 0 | 22.962921 | 4.692078 | 18.306152 | 1,016.476379 |
1941-08-01 00:00:00
| -0.25 | 0 | 22.980682 | 3.833771 | 18.329498 | 1,015.443604 |
1941-09-01 00:00:00
| -0.25 | 0 | 23.163116 | 5.378723 | 18.705658 | 1,013.861084 |
1941-10-01 00:00:00
| -0.25 | 0 | 24.776001 | 24.490356 | 21.203796 | 1,013.269897 |
1941-11-01 00:00:00
| -0.25 | 0 | 24.679657 | 15.735626 | 21.045319 | 1,012.002502 |
1941-12-01 00:00:00
| -0.25 | 0 | 25.363983 | 48.63739 | 22.376099 | 1,012.028259 |
1942-01-01 00:00:00
| -0.25 | 0 | 25.649597 | 51.956177 | 22.306244 | 1,012.377808 |
1942-02-01 00:00:00
| -0.25 | 0 | 26.486237 | 78.277588 | 22.707428 | 1,009.595642 |
1942-03-01 00:00:00
| -0.25 | 0 | 27.03299 | 93.955994 | 22.85788 | 1,010.04248 |
1942-04-01 00:00:00
| -0.25 | 0 | 26.937073 | 124.68338 | 23.098114 | 1,010.724243 |
1942-05-01 00:00:00
| -0.25 | 0 | 25.860046 | 29.296875 | 21.98642 | 1,011.685181 |
1942-06-01 00:00:00
| -0.25 | 0 | 23.759033 | 8.239746 | 19.686646 | 1,014.161865 |
1942-07-01 00:00:00
| -0.25 | 0 | 22.807281 | 2.288818 | 17.547852 | 1,015.72998 |
1942-08-01 00:00:00
| -0.25 | 0 | 22.57608 | 6.008148 | 18.332611 | 1,014.583496 |
1942-09-01 00:00:00
| -0.25 | 0 | 23.961426 | 13.217926 | 20.272278 | 1,013.049133 |
1942-10-01 00:00:00
| -0.25 | 0 | 24.676056 | 21.686554 | 20.824585 | 1,012.006165 |
1942-11-01 00:00:00
| -0.25 | 0 | 25.26178 | 67.234039 | 21.885986 | 1,010.044922 |
1942-12-01 00:00:00
| -0.25 | 0 | 24.937592 | 85.458755 | 21.436371 | 1,010.835083 |
1943-01-01 00:00:00
| -0.25 | 0 | 25.449554 | 75.502396 | 22.268768 | 1,010.360535 |
1943-02-01 00:00:00
| -0.25 | 0 | 26.089508 | 121.879578 | 22.597076 | 1,010.233154 |
1943-03-01 00:00:00
| -0.25 | 0 | 26.380463 | 217.666626 | 22.936676 | 1,008.730957 |
1943-04-01 00:00:00
| -0.25 | 0 | 26.346832 | 146.312714 | 23.064606 | 1,010.396545 |
1943-05-01 00:00:00
| -0.25 | 0 | 25.791046 | 92.582703 | 22.138153 | 1,011.485779 |
1943-06-01 00:00:00
| -0.25 | 0 | 23.550568 | 2.403259 | 18.318329 | 1,014.343567 |
1943-07-01 00:00:00
| -0.25 | 0 | 22.180725 | 5.493164 | 17.67514 | 1,016.25415 |
1943-08-01 00:00:00
| -0.25 | 0 | 22.701813 | 4.749298 | 17.787018 | 1,014.727783 |
1943-09-01 00:00:00
| -0.25 | 0 | 22.943634 | 8.926392 | 18.968292 | 1,014.151733 |
1943-10-01 00:00:00
| -0.25 | 0 | 24.360748 | 9.95636 | 20.130951 | 1,012.243103 |
1943-11-01 00:00:00
| -0.25 | 0 | 25.146393 | 39.997101 | 20.842743 | 1,011.103149 |
1943-12-01 00:00:00
| -0.25 | 0 | 25.202728 | 55.618286 | 22.390717 | 1,010.614197 |
1944-01-01 00:00:00
| -0.25 | 0 | 25.942017 | 82.2258 | 22.622559 | 1,011.463379 |
1944-02-01 00:00:00
| -0.25 | 0 | 26.934967 | 56.705475 | 23.033936 | 1,010.988098 |
1944-03-01 00:00:00
| -0.25 | 0 | 26.942596 | 146.026611 | 22.999298 | 1,010.075134 |
1944-04-01 00:00:00
| -0.25 | 0 | 27.139557 | 126.914978 | 23.56488 | 1,009.928589 |
1944-05-01 00:00:00
| -0.25 | 0 | 26.626373 | 108.947754 | 23.246368 | 1,010.208191 |
1944-06-01 00:00:00
| -0.25 | 0 | 24.467865 | 9.098053 | 21.147552 | 1,012.550049 |
1944-07-01 00:00:00
| -0.25 | 0 | 22.568329 | 7.152557 | 18.555359 | 1,014.969238 |
1944-08-01 00:00:00
| -0.25 | 0 | 22.372833 | 8.811951 | 18.24762 | 1,014.738586 |
1944-09-01 00:00:00
| -0.25 | 0 | 22.571198 | 7.724762 | 19.187408 | 1,014.209351 |
1944-10-01 00:00:00
| -0.25 | 0 | 24.073792 | 14.591217 | 21.048553 | 1,011.621582 |
1944-11-01 00:00:00
| -0.25 | 0 | 24.471161 | 23.63205 | 21.581055 | 1,010.764465 |
1944-12-01 00:00:00
| -0.25 | 0 | 25.417267 | 98.104477 | 22.428375 | 1,009.241089 |
1945-01-01 00:00:00
| -0.25 | 0 | 25.867401 | 85.802078 | 22.551392 | 1,010.564087 |
1945-02-01 00:00:00
| -0.25 | 0 | 26.371918 | 64.516068 | 22.653229 | 1,009.383728 |
1945-03-01 00:00:00
| -0.25 | 0 | 26.820801 | 106.487274 | 23.170074 | 1,010.520569 |
1945-04-01 00:00:00
| -0.25 | 0 | 27.155182 | 164.279938 | 23.572906 | 1,009.672974 |
1945-05-01 00:00:00
| -0.25 | 0 | 26.108063 | 152.03476 | 22.625 | 1,010.956787 |
1945-06-01 00:00:00
| -0.25 | 0 | 23.409454 | 12.41684 | 20.267242 | 1,014.11969 |
1945-07-01 00:00:00
| -0.25 | 0 | 22.236542 | 7.953644 | 18.261658 | 1,014.983154 |
1945-08-01 00:00:00
| -0.25 | 0 | 21.984833 | 7.209778 | 18.048004 | 1,014.709717 |
1945-09-01 00:00:00
| -0.25 | 0 | 23.303131 | 8.983612 | 19.810883 | 1,014.562683 |
1945-10-01 00:00:00
| -0.25 | 0 | 24.474976 | 17.280579 | 20.619202 | 1,012.745483 |
1945-11-01 00:00:00
| -0.25 | 0 | 25.271637 | 86.088181 | 22.092407 | 1,011.023499 |
1945-12-01 00:00:00
| -0.25 | 0 | 25.391663 | 93.898773 | 22.186371 | 1,011.343506 |
1946-01-01 00:00:00
| -0.25 | 0 | 26.079742 | 81.596375 | 22.492249 | 1,010.977661 |
1946-02-01 00:00:00
| -0.25 | 0 | 27.068512 | 95.329285 | 23.594788 | 1,009.74469 |
1946-03-01 00:00:00
| -0.25 | 0 | 27.070404 | 180.416107 | 23.513428 | 1,009.400696 |
1946-04-01 00:00:00
| -0.25 | 0 | 26.677948 | 126.457214 | 23.510468 | 1,010.185791 |
1946-05-01 00:00:00
| -0.25 | 0 | 25.646393 | 37.708282 | 22.185486 | 1,011.8974 |
1946-06-01 00:00:00
| -0.25 | 0 | 23.524628 | 4.348755 | 18.946503 | 1,015.251892 |
1946-07-01 00:00:00
| -0.25 | 0 | 22.277618 | 5.550385 | 17.708649 | 1,015.581543 |
1946-08-01 00:00:00
| -0.25 | 0 | 22.231476 | 6.980896 | 17.551422 | 1,015.562256 |
1946-09-01 00:00:00
| -0.25 | 0 | 23.171143 | 4.920959 | 18.563568 | 1,013.814087 |
1946-10-01 00:00:00
| -0.25 | 0 | 23.590576 | 5.321503 | 19.822662 | 1,012.890442 |
1946-11-01 00:00:00
| -0.25 | 0 | 25.200226 | 38.509369 | 21.574402 | 1,011.037659 |
1946-12-01 00:00:00
| -0.25 | 0 | 25.539856 | 62.541962 | 22.419159 | 1,010.328857 |
1947-01-01 00:00:00
| -0.25 | 0 | 26.068939 | 75.416565 | 22.700012 | 1,010.091064 |
1947-02-01 00:00:00
| -0.25 | 0 | 26.566711 | 160.8181 | 23.243378 | 1,009.909973 |
1947-03-01 00:00:00
| -0.25 | 0 | 27.174591 | 81.167221 | 23.237549 | 1,010.849609 |
1947-04-01 00:00:00
| -0.25 | 0 | 27.411591 | 127.086639 | 23.461426 | 1,010.609558 |
1947-05-01 00:00:00
| -0.25 | 0 | 26.203766 | 142.13562 | 22.894318 | 1,010.919189 |
1947-06-01 00:00:00
| -0.25 | 0 | 24.483429 | 8.69751 | 20.427521 | 1,013.466064 |
1947-07-01 00:00:00
| -0.25 | 0 | 23.104889 | 5.493164 | 18.096069 | 1,014.767212 |
1947-08-01 00:00:00
| -0.25 | 0 | 23.160187 | 4.97818 | 18.102448 | 1,014.628113 |
1947-09-01 00:00:00
| -0.25 | 0 | 23.587067 | 11.329651 | 19.316895 | 1,013.913574 |
1947-10-01 00:00:00
| -0.25 | 0 | 24.769714 | 29.468536 | 21.211884 | 1,011.985474 |
1947-11-01 00:00:00
| -0.25 | 0 | 25.335876 | 51.326752 | 21.929474 | 1,010.547485 |
1947-12-01 00:00:00
| -0.25 | 0 | 25.597076 | 109.777451 | 22.063019 | 1,010.361877 |
1948-01-01 00:00:00
| -0.25 | 0 | 25.925568 | 140.419006 | 22.613373 | 1,010.796326 |
1948-02-01 00:00:00
| -0.25 | 0 | 26.522064 | 129.318237 | 23.030243 | 1,010.412048 |
1948-03-01 00:00:00
| -0.25 | 0 | 26.819855 | 126.743317 | 23.398285 | 1,010.298889 |
1948-04-01 00:00:00
| -0.25 | 0 | 26.305878 | 180.473328 | 23.247559 | 1,009.966431 |
End of preview. Expand
in Data Studio
Weather Geo ERA5 Dataset (Optimized)
π Dataset Overview
This dataset contains 1.065 billion weather records from the ERA5 reanalysis covering 85+ years (1940-2025) of global weather data at 0.25Β° resolution, partitioned geographically for efficient regional queries.
Key Features
- π Global Coverage: Complete worldwide historical weather data
- β° Time Range: 1940-2025 (85+ years) - UPDATED
- π Resolution: 0.25Β° x 0.25Β° (~28km grid)
- ποΈ Geographic Partitioning: 48 tiles for efficient regional access
- π Variables: Temperature, precipitation, dewpoint, pressure - STREAMLINED
- πΎ Format: Parquet with ZSTD compression
- π¦ Size: 16.6GB compressed
- π Optimization: Data sorted by (longitude β, latitude β, time β) for faster queries
πΊοΈ Geographic Partitioning
The dataset is partitioned into 48 geographic tiles using:
- Latitude bands: 30Β° intervals (6 bands: 90Β°S-60Β°S, 60Β°S-30Β°S, 30Β°S-0Β°, 0Β°-30Β°N, 30Β°N-60Β°N, 60Β°N-90Β°N)
- Longitude bands: 45Β° intervals (8 bands: 0Β°-45Β°, 45Β°-90Β°, 90Β°-135Β°, 135Β°-180Β°, 180Β°-225Β°, 225Β°-270Β°, 270Β°-315Β°, 315Β°-360Β°)
Tile Naming Convention
lat_{lat_start}_{lat_end}__lon_{lon_start}_{lon_end}.parquet
Examples:
lat_p30_p60__lon_000_045.parquet
- Europe West (30Β°N-60Β°N, 0Β°-45Β°E)lat_p00_p30__lon_270_315.parquet
- North America (0Β°-30Β°N, 270Β°-315Β°E)
π Data Schema (Updated)
Each record contains:
Column | Type | Description | Unit | Range |
---|---|---|---|---|
time |
datetime64[ns] | UTC timestamp | - | 1940-01-01 to 2025-07-01 |
latitude |
float64 | Latitude coordinate | degrees | -90.0 to 90.0 |
longitude |
float64 | Longitude coordinate | degrees | 0.0 to 359.75 |
temperature_c |
float32 | 2m temperature | Celsius | -70 to +50 |
precipitation_mm |
float32 | Total precipitation | millimeters | 0 to 4000 |
dewpoint_c |
float32 | 2m dewpoint temperature | Celsius | -80 to +35 |
pressure_hpa |
float32 | Mean sea level pressure | hectoPascals | 600 to 1050 |
Changes from Previous Version
- β Updated time range: Extended to 2025-07-01
- β Streamlined schema: Removed wind components (u10, v10) for simplicity
- β User-friendly units: Celsius, mm, hPa instead of Kelvin, meters, Pascals
- β Optimized sorting: Data sorted for faster geographic and temporal queries
- β Better compression: Improved ZSTD compression reducing file sizes
π Performance Optimization
This version includes significant performance improvements:
Sorting Optimization
Data is sorted by (longitude β, latitude β, time β) which provides:
- β‘ 3-5x faster geographic range queries
- π Better compression due to data locality
- π Optimized statistics for query planning
Query Performance Examples
# Geographic queries are now much faster due to sorting
# Data for a specific region is stored contiguously
region_data = df[
(df['longitude'].between(2.0, 5.0)) & # Fast - data is sorted by longitude
(df['latitude'].between(45.0, 50.0)) # Fast - secondary sort
]
# Time series queries benefit from tertiary sorting
time_series = df[
(df['longitude'] == 2.25) &
(df['latitude'] == 48.75) &
(df['time'] >= '2020-01-01') # Fast - data is sorted by time within location
]
π Usage Examples
Loading a specific region (Python)
import pandas as pd
from huggingface_hub import hf_hub_download
# Download a specific tile (e.g., Europe)
file_path = hf_hub_download(
repo_id="NaaVrug/weather-geo-era5",
filename="tiles/lat_p30_p60__lon_000_045.parquet",
repo_type="dataset"
)
# Load the data
df = pd.read_parquet(file_path)
# Filter for a specific location and time range
# Now much faster due to sorting optimization!
paris_data = df[
(df['longitude'].between(2.0, 2.5)) & # Primary sort - very fast
(df['latitude'].between(48.5, 49.0)) & # Secondary sort - fast
(df['time'] >= '2020-01-01') & # Tertiary sort - fast
(df['time'] < '2021-01-01')
]
print(f"Loaded {len(paris_data)} records for Paris area in 2020")
print(f"Temperature range: {paris_data['temperature_c'].min():.1f}Β°C to {paris_data['temperature_c'].max():.1f}Β°C")
Advanced Regional Analysis
# Efficient large region analysis thanks to sorting
europe_tile = pd.read_parquet("tiles/lat_p30_p60__lon_000_045.parquet")
# Monthly temperature averages for Western Europe (very fast query)
monthly_temps = europe_tile.groupby([
europe_tile['time'].dt.year,
europe_tile['time'].dt.month
])['temperature_c'].mean().reset_index()
# Climate trends analysis
recent_data = europe_tile[europe_tile['time'] >= '2000-01-01']
climate_trends = recent_data.groupby(recent_data['time'].dt.year).agg({
'temperature_c': 'mean',
'precipitation_mm': 'sum'
}).reset_index()
Working with Multiple Tiles
from pathlib import Path
import pandas as pd
def load_global_region(lat_min, lat_max, lon_min, lon_max):
"""Load data for a global region spanning multiple tiles"""
# Determine which tiles to load based on coordinates
tiles_to_load = []
# Latitude bands (30Β° each)
lat_bands = [
("m90_m60", -90, -60), ("m60_m30", -60, -30), ("m30_p00", -30, 0),
("p00_p30", 0, 30), ("p30_p60", 30, 60), ("p60_p90", 60, 90)
]
# Longitude bands (45Β° each)
lon_bands = [
("000_045", 0, 45), ("045_090", 45, 90), ("090_135", 90, 135), ("135_180", 135, 180),
("180_225", 180, 225), ("225_270", 225, 270), ("270_315", 270, 315), ("315_360", 315, 360)
]
# Find intersecting tiles
for lat_name, lat_start, lat_end in lat_bands:
if lat_start < lat_max and lat_end > lat_min:
for lon_name, lon_start, lon_end in lon_bands:
if lon_start < lon_max and lon_end > lon_min:
tile_name = f"lat_{lat_name}__lon_{lon_name}.parquet"
tiles_to_load.append(tile_name)
# Load and combine tiles
dfs = []
for tile_name in tiles_to_load:
tile_path = hf_hub_download(
repo_id="NaaVrug/weather-geo-era5",
filename=f"tiles/{tile_name}",
repo_type="dataset"
)
df = pd.read_parquet(tile_path)
# Filter to exact region (leveraging sorting for speed)
df_filtered = df[
(df['longitude'] >= lon_min) & (df['longitude'] <= lon_max) &
(df['latitude'] >= lat_min) & (df['latitude'] <= lat_max)
]
if len(df_filtered) > 0:
dfs.append(df_filtered)
# Combine all tiles
if dfs:
combined_df = pd.concat(dfs, ignore_index=True)
# Data is already sorted within each tile, sort the combined result
return combined_df.sort_values(['longitude', 'latitude', 'time']).reset_index(drop=True)
else:
return pd.DataFrame()
# Example: Load data for Mediterranean region
mediterranean = load_global_region(
lat_min=30.0, lat_max=45.0,
lon_min=0.0, lon_max=40.0
)
π Performance Benchmarks
Performance improvements in this optimized version:
Operation | Previous | Optimized | Improvement |
---|---|---|---|
Geographic range query | ~2.5s | ~0.8s | 3.1x faster |
Location time series | ~1.8s | ~0.4s | 4.5x faster |
Regional aggregation | ~5.2s | ~1.6s | 3.3x faster |
File size (per tile) | ~450MB | ~350MB | 22% smaller |
π Data Sources & Attribution
- Source: ERA5 reanalysis by European Centre for Medium-Range Weather Forecasts (ECMWF)
- Attribution: Contains modified Copernicus Climate Change Service information 2024
- License: CC-BY-4.0
- DOI: 10.24381/cds.adbb2d47
π Version History
- v2.0 (2025-08): Optimized sorting, extended to 2025-07, streamlined schema, better compression
- v1.0 (2024): Initial release with 48 geographic tiles
π§ Contact
For questions, issues, or contributions, please open an issue in the dataset repository.
This dataset is designed for research and educational purposes. For commercial applications, please ensure compliance with Copernicus data policy.
- Downloads last month
- 589