Code
stringlengths
131
28.2k
Unit Test
stringlengths
40
32.1k
__index_level_0__
int64
0
2.63k
#ifndef XLA_TOOLS_HLO_CONTROL_FLOW_FLATTENING_H_ #define XLA_TOOLS_HLO_CONTROL_FLOW_FLATTENING_H_ #include <limits> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloControlFlowFlattening : public HloModulePass { public: struct Options { int while_execution_count = 1; int max_outer_loop_count = std::numeric_limits<int>::max(); int max_loop_count = std::numeric_limits<int>::max(); bool remove_infeed_outfeed = true; bool flatten_while_loop = true; bool remove_comm = true; bool remove_host_transfer = false; }; explicit HloControlFlowFlattening(const Options& options) : while_execution_count_(options.while_execution_count), max_outer_loop_count_(options.max_outer_loop_count), max_loop_count_(options.max_loop_count), remove_infeed_outfeed_(options.remove_infeed_outfeed), flatten_while_loop_(options.flatten_while_loop), remove_host_transfer_(options.remove_host_transfer), remove_comm_(options.remove_comm) {} ~HloControlFlowFlattening() override = default; absl::string_view name() const override { return "control-flow-flattening"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::Status RemoveInfeed(HloInstruction* infeed_hlo) const; absl::Status RemoveOutfeed(HloInstruction* outfeed_hlo) const; absl::Status FlattenWhileLoop(HloInstruction* while_hlo, const CallGraph& call_graph) const; absl::Status RemoveId(HloInstruction* hlo) const; int while_execution_count_; int max_outer_loop_count_; int max_loop_count_; bool remove_infeed_outfeed_; bool flatten_while_loop_; bool remove_host_transfer_; protected: virtual absl::StatusOr<HloInstruction*> RemoveCollective( HloInstruction* hlo) const; virtual absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const; virtual absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const; bool remove_comm_; }; int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count); int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count); } #endif #include "xla/tools/hlo_control_flow_flattening.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloInstruction* CreateConstant(const Shape& shape, HloComputation* computation) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_arguments(shape.tuple_shapes_size()); for (int index = 0; index < shape.tuple_shapes_size(); ++index) { tuple_arguments[index] = CreateConstant(shape.tuple_shapes(index), computation); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_arguments)); } else { return computation->AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(shape))); } } void PrintSubexpression(HloInstruction* inst, int depth) { if (depth == 0) { return; } for (auto* operand : inst->operands()) { PrintSubexpression(operand, depth - 1); } VLOG(2) << inst->ToString(); } bool IsConstantScalarInt(const HloInstruction* inst) { return inst->opcode() == HloOpcode::kConstant && ShapeUtil::IsEffectiveScalar(inst->shape()) && inst->shape().IsInteger(); } bool IsNotContainedInLoop(const HloInstruction& while_hlo, const CallGraph& call_graph) { const HloComputation* computation = while_hlo.parent(); while (!computation->IsEntryComputation()) { auto& node = call_graph.GetNode(computation); CHECK_EQ(node.caller_callsites().size(), 1) << "The module is not flattened!"; auto& callsite = node.caller_callsites()[0]; if (callsite.instruction()->opcode() == HloOpcode::kWhile) { return false; } computation = callsite.instruction()->parent(); } return true; } } int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count) { HloInstruction* condition = while_hlo.while_condition()->root_instruction(); if (condition->opcode() == HloOpcode::kCompare) { int64_t value = 0; Comparison::Direction cmp = condition->comparison_direction(); if ((cmp == Comparison::Direction::kLt || cmp == Comparison::Direction::kLe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(1))) { value = *condition->operand(1)->literal().GetFirstInteger(); } else if ((cmp == Comparison::Direction::kGt || cmp == Comparison::Direction::kGe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(0))) { value = *condition->operand(0)->literal().GetFirstInteger(); } if (value > 0) { return std::min(value, static_cast<int64_t>(max_loop_count)); } } return default_loop_count; } int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count) { int loop_bound = GetLoopBound(while_hlo, default_loop_count, max_loop_count); if (loop_bound > max_outer_loop_count) { if (IsNotContainedInLoop(while_hlo, call_graph)) { return max_outer_loop_count; } } return loop_bound; } absl::Status HloControlFlowFlattening::FlattenWhileLoop( HloInstruction* while_hlo, const CallGraph& call_graph) const { CHECK_EQ(while_hlo->opcode(), HloOpcode::kWhile); HloComputation* computation = while_hlo->parent(); HloInstruction* initialization = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); HloInstruction* old_tuple = while_hlo->mutable_operand(0); HloInstruction* new_tuple = TupleUtil::AppendSuffix(old_tuple, {initialization}); int new_tuple_size = new_tuple->shape().tuple_shapes().size(); TF_RETURN_IF_ERROR(while_hlo->ReplaceOperandWithDifferentShape(0, new_tuple)); auto change_op_shape = [&](HloInstruction* instruction) { Shape* shape = instruction->mutable_shape(); CHECK(shape->IsTuple()); CHECK_EQ(shape->tuple_shapes().size(), new_tuple_size - 1); Shape* subshape = shape->add_tuple_shapes(); return ShapeUtil::PopulateShape(S32, {}, subshape); }; auto replace_non_gte_users = [](HloInstruction* new_tuple) -> absl::StatusOr<HloInstruction*> { CHECK(new_tuple->shape().IsTuple()); HloInstruction* prefix = nullptr; std::vector<HloInstruction*> users(new_tuple->users()); for (HloInstruction* user : users) { if (user->opcode() == HloOpcode::kGetTupleElement) { continue; } if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix( new_tuple, new_tuple->shape().tuple_shapes_size() - 1); } TF_RETURN_IF_ERROR(new_tuple->ReplaceUseWithDifferentShape(user, prefix)); } return prefix; }; { HloComputation* condition = while_hlo->while_condition(); TF_RETURN_IF_ERROR(change_op_shape(condition->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(condition->parameter_instruction(0)).status()); if (VLOG_IS_ON(2)) { VLOG(2) << "Loop condition in " << while_hlo->parent()->name(); PrintSubexpression(condition->root_instruction(), 3); } const int loop_bound = GetLoopBoundWithOuterLoopMax( *while_hlo, call_graph, while_execution_count_, max_outer_loop_count_, max_loop_count_); VLOG(1) << "loop_bound = " << loop_bound; HloInstruction* limit = condition->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(loop_bound))); Shape shape = initialization->shape(); HloInstruction* induction_variable = condition->AddInstruction(HloInstruction::CreateGetTupleElement( shape, condition->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* compare = condition->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), induction_variable, limit, ComparisonDirection::kLt)); TF_RETURN_IF_ERROR( condition->ReplaceInstruction(condition->root_instruction(), compare)); } { HloComputation* body = while_hlo->while_body(); TF_RETURN_IF_ERROR(change_op_shape(body->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(body->parameter_instruction(0)).status()); HloInstruction* old_root = body->root_instruction(); Shape shape = initialization->shape(); HloInstruction* induction_variable = body->AddInstruction(HloInstruction::CreateGetTupleElement( shape, body->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* increment = body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); induction_variable = body->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, induction_variable, increment)); HloInstruction* new_root = TupleUtil::AppendSuffix(old_root, {induction_variable}); body->set_root_instruction(new_root, true); } std::vector<HloInstruction*> while_users(while_hlo->users().begin(), while_hlo->users().end()); TF_RETURN_IF_ERROR(change_op_shape(while_hlo)); TF_ASSIGN_OR_RETURN(HloInstruction * prefix, replace_non_gte_users(while_hlo)); if (while_hlo->parent()->root_instruction() == while_hlo) { if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix(while_hlo, new_tuple_size - 1); } while_hlo->parent()->set_root_instruction(prefix, true); } return absl::OkStatus(); } absl::Status HloControlFlowFlattening::RemoveInfeed( HloInstruction* infeed_hlo) const { CHECK_EQ(infeed_hlo->opcode(), HloOpcode::kInfeed); HloComputation* computation = infeed_hlo->parent(); CHECK_EQ(infeed_hlo->shape().tuple_shapes_size(), 2); const Shape& infeed_shape = ShapeUtil::GetSubshape(infeed_hlo->shape(), {0}); HloInstruction* custom_call = computation->AddInstruction( HloInstruction::CreateCustomCall(infeed_shape, {}, kNopCustomCallTarget)); auto new_tuple = HloInstruction::CreateTuple( {custom_call, infeed_hlo->mutable_operand(0)}); TF_RETURN_IF_ERROR( computation->ReplaceWithNewInstruction(infeed_hlo, std::move(new_tuple))); custom_call->SetAndSanitizeName(infeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(recv_done->opcode(), HloOpcode::kRecvDone); CHECK_EQ(recv_done->operand_count(), 1); HloInstruction* recv = recv_done->mutable_operand(0); CHECK_EQ(recv->opcode(), HloOpcode::kRecv); HloComputation* computation = recv_done->parent(); CHECK_EQ(recv_done->shape().tuple_shapes_size(), 2); HloModule* module = computation->parent(); HloInstruction* custom_call_recv = computation->AddInstruction(HloInstruction::CreateCustomCall( recv->shape(), recv->operands(), kNopCustomCallTarget)); std::string original_recv_name(recv->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv, custom_call_recv); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(recv, custom_call_recv)); custom_call_recv->SetAndSanitizeName(original_recv_name); std::string original_recv_done_name(recv_done->name()); HloInstruction* custom_call_recv_done = computation->AddInstruction( HloInstruction::CreateCustomCall( recv_done->shape(), recv_done->operands(), kNopCustomCallTarget), recv_done->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv_done, custom_call_recv_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(recv_done, custom_call_recv_done)); custom_call_recv_done->SetAndSanitizeName(original_recv_done_name); return std::make_pair(custom_call_recv, custom_call_recv_done); } absl::Status HloControlFlowFlattening::RemoveOutfeed( HloInstruction* outfeed_hlo) const { CHECK_EQ(outfeed_hlo->opcode(), HloOpcode::kOutfeed); HloComputation* computation = outfeed_hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( outfeed_hlo->shape(), outfeed_hlo->operands(), kNopReturnTokenCustomCallTarget)); Cast<HloCustomCallInstruction>(custom_call) ->set_custom_call_has_side_effect(true); custom_call->set_sharding(HloSharding::Manual()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(outfeed_hlo, custom_call)); custom_call->SetAndSanitizeName(outfeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(send_done->opcode(), HloOpcode::kSendDone); CHECK_EQ(send_done->operand_count(), 1); HloInstruction* send = send_done->mutable_operand(0); CHECK_EQ(send->opcode(), HloOpcode::kSend); HloComputation* computation = send_done->parent(); HloModule* module = computation->parent(); HloInstruction* custom_call_send = computation->AddInstruction(HloInstruction::CreateCustomCall( send->shape(), send->operands(), kNopCustomCallTarget)); std::string original_send_name(send->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send, custom_call_send); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(send, custom_call_send)); custom_call_send->SetAndSanitizeName(original_send_name); HloInstruction* custom_call_send_done = computation->AddInstruction(HloInstruction::CreateCustomCall( send_done->shape(), send_done->operands(), kNopReturnTokenCustomCallTarget)); std::string original_send_done_name(send_done->name()); Cast<HloCustomCallInstruction>(custom_call_send_done) ->set_custom_call_has_side_effect(true); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send_done, custom_call_send_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(send_done, custom_call_send_done)); custom_call_send_done->SetAndSanitizeName(original_send_done_name); return std::make_pair(custom_call_send, custom_call_send_done); } absl::StatusOr<HloInstruction*> HloControlFlowFlattening::RemoveCollective( HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( hlo->shape(), hlo->operands(), kNopCustomCallTarget)); custom_call->CopyBackendConfigFrom(hlo); HloModule* module = computation->parent(); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, hlo, custom_call); } std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, custom_call)); custom_call->SetAndSanitizeName(original_op_name); return custom_call; } absl::Status HloControlFlowFlattening::RemoveId(HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* zero = CreateConstant(hlo->shape(), computation); std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, zero)); zero->SetAndSanitizeName(original_op_name); return absl::OkStatus(); } absl::StatusOr<bool> HloControlFlowFlattening::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto call_graph = CallGraph::Build(module); bool changed = false; absl::flat_hash_set<HloInstruction*> removed; for (HloComputation* computation : module->computations(execution_threads)) { if (computation->IsAsyncComputation()) { continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (removed.contains(instruction)) { continue; } if (flatten_while_loop_ && instruction->opcode() == HloOpcode::kWhile) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(FlattenWhileLoop(instruction, *call_graph)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kInfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveInfeed(instruction)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kOutfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveOutfeed(instruction)); changed = true; } else if (instruction->opcode() == HloOpcode::kSendDone) { auto send_done_instruction = DynCast<HloSendDoneInstruction>(instruction); CHECK(send_done_instruction); if (remove_comm_ || (remove_host_transfer_ && send_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveSendAndSendDone(instruction, &removed).status()); changed = true; } } else if (instruction->opcode() == HloOpcode::kRecvDone) { auto recv_done_instruction = DynCast<HloRecvDoneInstruction>(instruction); CHECK(recv_done_instruction); if (remove_comm_ || (remove_host_transfer_ && recv_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveRecvAndRecvDone(instruction, &removed).status()); changed = true; } } else if (remove_comm_ && IsCollective(instruction) && !instruction->parent()->IsFusionComputation() && (instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate)) { if (instruction->opcode() == HloOpcode::kAsyncDone) { while (instruction->opcode() == HloOpcode::kAsyncDone || instruction->opcode() == HloOpcode::kAsyncUpdate || instruction->opcode() == HloOpcode::kAsyncStart) { HloInstruction* operand = instruction->mutable_operand(0); VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); instruction = operand; } } else { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); } changed = true; } else if (remove_comm_ && (instruction->opcode() == HloOpcode::kPartitionId || instruction->opcode() == HloOpcode::kReplicaId || (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "SliceId"))) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveId(instruction)); changed = true; } } } HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool dce_changed, hlo_dce.Run(module, execution_threads)); changed |= dce_changed; if (changed && module->has_schedule()) { TF_RETURN_IF_ERROR(module->schedule().Update()); } XLA_VLOG_LINES(3, module->ToString()); return changed; } }
#include "xla/tools/hlo_control_flow_flattening.h" #include <memory> #include <utility> #include "absl/strings/str_replace.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/despecializer.h" #include "xla/service/hlo_verifier.h" #include "xla/service/spmd/spmd_partitioner.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class HloControlFlowFlatteningTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( std::unique_ptr<VerifiedHloModule> hlo_module, int64_t num_devices = 2) { spmd::SpmdPartitionerOptions options; auto collective_ops_creator = spmd::GetDefaultCollectiveOpsCreator(num_devices, 1); collective_ops_creator.create_cross_partition_all_gather = nullptr; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(num_devices); HloPassPipeline pass("spmd-partitioning"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<spmd::SpmdPartitioner>(num_devices, 1, options, collective_ops_creator); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(hlo_module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; constexpr int kDefaultMaxLoopCount = 1000; TEST_F(HloControlFlowFlatteningTest, WhileRoot) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileConditionCallComputation) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition.called { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] custom-call(), custom_call_target="AllocateBuffer", custom_call_has_side_effect=true less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT ROOT tuple.2 = (pred[]) tuple(less-than) } While.condition { loop_var.3 = (s32[], s32[3]{0}) parameter(0) call = (pred[]) call(loop_var.3), to_apply=While.condition.called ROOT get-tuple-element.4 = pred[] get-tuple-element(call), index=0 } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); XLA_VLOG_LINES(3, "Loaded HLO module: " + module->ToString()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileRootScheduled) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); } TEST_F(HloControlFlowFlatteningTest, WhileUser) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } FusedComputation { param = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(param), index=0 get-tuple-element.5 = s32[3]{0} get-tuple-element(param), index=1 broadcast = s32[3]{0} broadcast(get-tuple-element.4), dimensions={} ROOT add = s32[3]{0} add(broadcast, get-tuple-element.5) } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body ROOT fusion = s32[3]{0} fusion(while), kind=kLoop, calls=FusedComputation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto fusion = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(fusion, op::Fusion(op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1)))); } TEST_F(HloControlFlowFlatteningTest, Infeed) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed.23 = ((bf16[3]{0}, s32[12,5]{0,1}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->GetInstructionWithName("infeed.23"); EXPECT_THAT(custom_call, op::CustomCall()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(custom_call, op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, InfeedPreserveLayout) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed = ((bf16[3]{0}, s32[12,5]{0,1:T(8,128)}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Shape root_shape = module->entry_computation()->root_instruction()->shape(); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(op::CustomCall(), op::AfterAll())); EXPECT_EQ(tuple->shape(), root_shape); } TEST_F(HloControlFlowFlatteningTest, OutfeedCustomCallIsPartitionable) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_TRUE(custom_call->has_sharding()); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, PartitionComputation(std::move(module))); } TEST_F(HloControlFlowFlatteningTest, Outfeed) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_THAT(custom_call, op::CustomCall(op::Parameter(0), op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, AllReduce) { absl::string_view hlo_string = R"( HloModule AllReduce sum { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY AllReduce { param0 = f32[3]{0} parameter(0) param1 = f32[12,5]{0,1} parameter(1) ROOT all-reduce = (bf16[3]{0}, bf16[12,5]{0,1}) all-reduce(param0, param1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "all-reduce"); } TEST_F(HloControlFlowFlatteningTest, AllReduceStartAndDone) { absl::string_view hlo_string = R"( HloModule CRS add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "crs"); } TEST_F(HloControlFlowFlatteningTest, AllGather) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag"); } TEST_F(HloControlFlowFlatteningTest, AllToAll) { absl::string_view hlo_string = R"( HloModule AllToAll ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "a2a"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermute) { absl::string_view hlo_string = R"( HloModule CollectivePermute ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT collective-permute = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, ReplicaIdSucceedsWithChange) { absl::string_view hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Constant()); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "replica-id.18600"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteInPlaceUpdate) { absl::string_view hlo_string = R"( HloModule CollectivePermuteInPlaceUpdate ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT collective-permute = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Broadcast(op::Constant()), op::Tuple(op::Constant(), op::Constant()), op::Tuple(op::Constant(), op::Constant()))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteStartAndDone) { absl::string_view hlo_string = R"( HloModule CollectivePermuteStartAndDone ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute-done.1"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "collective-permute-start.1"); } TEST_F(HloControlFlowFlatteningTest, Recv) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, RecvHostTransfer) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, Send) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, SendHostTransfer) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, AllGatherStartAndDone) { absl::string_view hlo_string = R"( HloModule AllGatherStartAndDone ENTRY AllGatherStartAndDone { %input = f32[8,256,256] parameter(0) %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %input), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} ROOT %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "ag-start"); } TEST_F(HloControlFlowFlatteningTest, CollectiveFusion) { absl::string_view hlo_template = R"( HloModule collective-fusion, is_scheduled=true %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } %all-gather { %constant.3 = f32[] constant(0) %broadcast = f32[full_size,8,128]{2,1,0} broadcast(%constant.3), dimensions={} %input.0 = f32[4,8,128]{2,1,0} parameter(0) %input.1 = f32[4,8,128]{2,1,0} parameter(1) %replica-id.1 = u32[] replica-id() %constant.4 = u32[] constant(4)
2,187
#ifndef XLA_TOOLS_XLA_COMPILE_LIB_H_ #define XLA_TOOLS_XLA_COMPILE_LIB_H_ #include <memory> #include <optional> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/compiler.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/util.h" namespace xla { absl::StatusOr<std::string> CompileExecutable( std::unique_ptr<HloModule> hlo_module, BackendType backend, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result); absl::Status WriteResultFile(absl::string_view result_output_file, TimerStats& stats, CompilationResult& compilation_result); absl::StatusOr<std::unique_ptr<HloModule>> LoadModule( absl::string_view module_path); struct XlaCompileOptions { std::string module_path; std::string output_path; std::string platform; std::string result_output_file; struct SymbolRepoOptions { std::string symbol_repo; std::string symbol_id; std::string optimized_symbol_id; bool wait_for_uploads = false; }; struct GpuOptions { std::string gpu_target_config_path; bool use_attached_device = false; std::string autotune_results_path; }; SymbolRepoOptions repo_options; GpuOptions gpu_options; }; absl::Status XlaCompileMain(const XlaCompileOptions& compile_options); } #endif #include "xla/tools/xla_compile_lib.h" #include <cmath> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "google/protobuf/duration.pb.h" #include "absl/cleanup/cleanup.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "stablehlo/dialect/Register.h" #include "xla/client/xla_computation.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/service/compiler.h" #include "xla/service/cpu/cpu_compiler.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/executable.h" #include "xla/service/export_hlo.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tools/hlo_module_loader.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/env_time.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/gpu_symbol_repository.h" #include "xla/stream_executor/gpu/gpu_init.h" #endif #if GOOGLE_CUDA #include "xla/service/gpu/nvptx_compiler.h" #elif TENSORFLOW_USE_ROCM #include "xla/service/gpu/amdgpu_compiler.h" #endif namespace xla { static absl::StatusOr<std::string> AotCompileCpuExecutable( std::unique_ptr<HloModule> hlo_module) { cpu::CpuCompiler cpu_compiler; auto module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<Executable>> executables, cpu_compiler.Compile(std::move(module_group), {{nullptr}}, {nullptr})); TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, cpu_compiler.Export(executables[0].get())); return aot_result->SerializeAsString(); } static absl::StatusOr<std::string> CompileGpuExecutable( std::unique_ptr<HloModule> hlo_module, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM const bool aot = target_config.has_value(); #if GOOGLE_CUDA auto gpu_compiler = gpu::NVPTXCompiler(); #elif TENSORFLOW_USE_ROCM auto gpu_compiler = gpu::AMDGPUCompiler(); #endif auto module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); if (aot) { AotCompilationOptions aot_options(gpu_compiler.PlatformId()); aot_options.set_target_config(*target_config); aot_options.set_run_backend_only(true); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<AotCompilationResult>> aot_results, gpu_compiler.CompileAheadOfTime(std::move(module_group), aot_options)); TF_ASSIGN_OR_RETURN(std::string compile_result, aot_results[0]->SerializeAsString()); *result.mutable_hlo_module() = aot_results[0]->optimized_module()->ToProto(); return compile_result; } Compiler::CompileOptions compile_options; TF_RETURN_IF_ERROR(stream_executor::ValidateGPUMachineManager()); TF_ASSIGN_OR_RETURN( stream_executor::StreamExecutor * stream_executor, stream_executor::GPUMachineManager()->ExecutorForDevice(0)); auto allocator = std::make_unique<stream_executor::StreamExecutorMemoryAllocator>( stream_executor); compile_options.device_allocator = allocator.get(); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<Executable>> executables, gpu_compiler.Compile(std::move(module_group), {{stream_executor}}, compile_options)); *result.mutable_hlo_module() = executables[0]->module().ToProto(); return executables[0]->module().ToString(); #else LOG(ERROR) << "Neither ROCm nor CUDA present; returning empty."; return ""; #endif } absl::StatusOr<std::string> CompileExecutable( std::unique_ptr<HloModule> hlo_module, BackendType backend, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result) { if (backend == BackendType::kCpu) { return AotCompileCpuExecutable(std::move(hlo_module)); } return CompileGpuExecutable(std::move(hlo_module), std::move(target_config), result); } absl::Status WriteResultFile(const absl::string_view result_output_file, TimerStats& stats, CompilationResult& compilation_result) { if (result_output_file.empty()) { return absl::OkStatus(); } absl::MutexLock ml(&stats.stats_mutex); const double secs = std::floor(stats.cumulative_secs); const double nanos = (stats.cumulative_secs - secs) * tsl::EnvTime::kSecondsToNanos; google::protobuf::Duration duration; duration.set_seconds(secs); duration.set_nanos(nanos); *compilation_result.mutable_perf_stats()->mutable_compilation_duration() = duration; *compilation_result.mutable_perf_stats()->mutable_total_duration() = duration; return tsl::WriteBinaryProto( tsl::Env::Default(), std::string(result_output_file), compilation_result); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModule( const absl::string_view module_path) { auto format = std::string(tsl::io::Extension(module_path)); if (format == "hlo" || format == "txt" || format == "pb") { return LoadModuleFromFile( std::string(module_path), format, hlo_module_loader_details::Config(), [&](HloModuleConfig* c) {}, nullptr); } std::string module_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString( tsl::Env::Default(), std::string(module_path), &module_string)); mlir::DialectRegistry dialects; dialects.insert<mlir::arith::ArithDialect>(); dialects.insert<mlir::mhlo::MhloDialect>(); dialects.insert<mlir::func::FuncDialect>(); mlir::stablehlo::registerAllDialects(dialects); auto threading = mlir::MLIRContext::Threading::DISABLED; auto ctx = std::make_unique<mlir::MLIRContext>(dialects, threading); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(module_string, ctx.get()); XlaComputation xla_computation; TF_RETURN_IF_ERROR( MlirToXlaComputation(*module, xla_computation, false, false)); HloModuleProto hlo_module_proto = xla_computation.proto(); TF_ASSIGN_OR_RETURN(ProgramShape shape, xla_computation.GetProgramShape()); DebugOptions debug_options = GetDebugOptionsFromFlags(); HloModuleConfig config(shape); config.set_debug_options(debug_options); return HloModule::CreateFromProto(hlo_module_proto, config); } static absl::StatusOr<std::unique_ptr<HloModuleAndMetadata>> ReadModuleFromSymbolRepo(absl::string_view symbol_repo, absl::string_view symbol_reference, BackendType backend) { std::unique_ptr<HloModuleAndMetadata> mod; TF_ASSIGN_OR_RETURN( mod, LookupSymbolInRepository(symbol_repo, symbol_reference, backend)); if (mod == nullptr) { return absl::NotFoundError( absl::StrCat("Could not find ", symbol_reference, " in ", symbol_repo)); } return mod; } static absl::StatusOr<bool> LoadAutotuneDataFromModule( HloModuleAndMetadata* mod, BackendType backend) { if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (auto* data = static_cast<gpu::GpuBackendSpecificData*>( mod->backend_specific_data.get()); data != nullptr && data->autotune_results.has_value()) { TF_RETURN_IF_ERROR( gpu::AutotunerUtil::LoadAutotuneResults(*data->autotune_results)); return true; } #endif } return false; } static std::unique_ptr<Compiler::TargetConfig> ReadTargetConfigFromModule( HloModuleAndMetadata* mod, BackendType backend) { if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (auto* data = static_cast<gpu::GpuBackendSpecificData*>( mod->backend_specific_data.get()); data != nullptr) { return std::move(mod->target_config); } #endif } return nullptr; } absl::Status XlaCompileMain(const XlaCompileOptions& options) { std::unique_ptr<HloModule> hlo_module; std::unique_ptr<Compiler::TargetConfig> target_config; if (options.platform != "cpu" && options.platform != "gpu") { return absl::UnimplementedError( absl::StrCat("platform", options.platform, " is not supported")); } const BackendType backend = (options.platform == "gpu" ? BackendType::kGpu : BackendType::kCpu); absl::string_view symbol_repo = options.repo_options.symbol_repo; if (absl::string_view symbol_id = options.repo_options.symbol_id; !symbol_id.empty()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleAndMetadata> mod, ReadModuleFromSymbolRepo(symbol_repo, symbol_id, backend)); hlo_module = std::move(mod->hlo_module); target_config = ReadTargetConfigFromModule(mod.get(), backend); } else { TF_ASSIGN_OR_RETURN(hlo_module, LoadModule(options.module_path)); } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM bool found_autotune = false; #endif if (absl::string_view optimized_symbol_id = options.repo_options.optimized_symbol_id; !optimized_symbol_id.empty()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleAndMetadata> optimized_mod, ReadModuleFromSymbolRepo(symbol_repo, optimized_symbol_id, backend)); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN(found_autotune, LoadAutotuneDataFromModule( optimized_mod.get(), backend)); #endif } xla::TimerStats stats; xla::ScopedLoggingTimer timer("compilation", true, "xla_compile_main.cc", 1, &stats); CompilationResult compilation_result; absl::Cleanup cleanup([&] { timer.StopAndLog(); if (!options.result_output_file.empty()) { TF_QCHECK_OK(WriteResultFile(options.result_output_file, stats, compilation_result)); } }); std::optional<Compiler::TargetConfig> cfg = std::nullopt; if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (absl::string_view gpu_target_config_path = options.gpu_options.gpu_target_config_path; !gpu_target_config_path.empty()) { std::string gpu_target_config_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString( tsl::Env::Default(), std::string(gpu_target_config_path), &gpu_target_config_string)); stream_executor::GpuTargetConfigProto gpu_target_config_proto; if (!tsl::protobuf::TextFormat::ParseFromString( gpu_target_config_string, &gpu_target_config_proto)) { return FailedPrecondition("Failed to parse GpuTargetConfigProto"); } target_config = std::make_unique<Compiler::TargetConfig>(gpu_target_config_proto); if (absl::string_view autotune_results_path = options.gpu_options.autotune_results_path; !found_autotune && !autotune_results_path.empty()) { TF_RETURN_IF_ERROR(gpu::AutotunerUtil::LoadAutotuneResultsFromFile( autotune_results_path)); } } cfg = (options.gpu_options.use_attached_device) ? std::nullopt : std::make_optional(*std::move(target_config)); #endif } auto result = CompileExecutable(std::move(hlo_module), backend, std::move(cfg), compilation_result); *compilation_result.mutable_status() = tsl::StatusToProto(result.status()); if (!result.ok()) { return result.status(); } TF_RETURN_IF_ERROR(tsl::WriteStringToFile(tsl::Env::Default(), options.output_path, *result)); if (options.repo_options.wait_for_uploads) { MaybeWaitForUploads(); } return absl::OkStatus(); } }
#include "xla/tools/xla_compile_lib.h" #include <memory> #include <optional> #include <string> #include <utility> #include "google/protobuf/duration.pb.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/platform_util.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/env_time.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace xla { namespace { using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::Not; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if XLA_TEST_BACKEND_CPU static constexpr absl::string_view kPlatformName = "Host"; #elif XLA_TEST_BACKEND_GPU static constexpr absl::string_view kPlatformName = #if TENSORFLOW_USE_ROCM "ROCM"; #else "CUDA"; #endif #endif class XlaCompileLibTest : public HloTestBase { protected: XlaCompileLibTest() : HloTestBase(*PlatformUtil::GetPlatform(std::string(kPlatformName)), GetReferencePlatform()) {} void SetUp() override { const std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "data", "add.hlo"); std::string hlo; TF_ASSERT_OK(tsl::ReadFileToString(tsl::Env::Default(), hlo_path, &hlo)); TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo)); } std::unique_ptr<HloModule> module_; }; TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(CompilesForCpu)) { CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kCpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(CompilesForGpuWithDevice)) { CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kGpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); EXPECT_TRUE(result.has_hlo_module()) << result.DebugString(); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(CompilesForGpuWithoutDevice)) { const std::string target_config_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "xla_aot_compile_test_gpu_target_config.prototxt"); stream_executor::GpuTargetConfigProto target_config; TF_ASSERT_OK(tsl::ReadTextProto(tsl::Env::Default(), target_config_path, &target_config)); CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kGpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); EXPECT_TRUE(result.has_hlo_module()) << result.DebugString(); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(ErrorsOnUnexpectedPlatform)) { XlaCompileOptions options; options.platform = "tpu"; EXPECT_THAT(XlaCompileMain(options), StatusIs(tsl::error::UNIMPLEMENTED)); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(WriteResultFilePropagatesErrors)) { TimerStats stats; CompilationResult result; EXPECT_THAT(WriteResultFile("/does/not/exist", stats, result), Not(IsOk())); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(WriteResultFileWritesTheFile)) { std::string result_output_file; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&result_output_file)); TimerStats stats; { absl::MutexLock ml(&stats.stats_mutex); stats.cumulative_secs = 5.5; stats.max_secs = 5.5; } CompilationResult result; google::protobuf::Duration duration; duration.set_seconds(5); duration.set_nanos(0.5 * tsl::EnvTime::kSecondsToNanos); *result.mutable_perf_stats()->mutable_compilation_duration() = duration; *result.mutable_perf_stats()->mutable_total_duration() = duration; TF_ASSERT_OK(WriteResultFile(result_output_file, stats, result)); CompilationResult got_result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_output_file, &got_result)); EXPECT_EQ(5, got_result.perf_stats().compilation_duration().seconds()); EXPECT_EQ(0.5 * tsl::EnvTime::kSecondsToNanos, got_result.perf_stats().compilation_duration().nanos()); EXPECT_EQ(5, got_result.perf_stats().total_duration().seconds()); EXPECT_EQ(0.5 * tsl::EnvTime::kSecondsToNanos, got_result.perf_stats().total_duration().nanos()); } TEST_F(XlaCompileLibTest, LoadModuleErrors) { EXPECT_THAT(LoadModule("/does/not/exist"), Not(IsOk())); } TEST_F(XlaCompileLibTest, LoadModuleLoadsTextFormat) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); EXPECT_THAT(LoadModule(module_file), IsOkAndHolds(Not(IsNull()))); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(MainForCpu)) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); const std::string output_path = tsl::io::JoinPath(tsl::testing::TmpDir(), "cpu_output"); const std::string result_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "cpu_result.pb"); XlaCompileOptions options; options.module_path = module_file; options.output_path = output_path; options.platform = "cpu"; options.result_output_file = result_file; TF_EXPECT_OK(XlaCompileMain(options)); CompilationResult result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_file, &result)); EXPECT_TRUE(result.has_status()); EXPECT_EQ(result.status().code(), tensorflow::error::OK); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(MainForGpu)) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); const std::string output_path = tsl::io::JoinPath(tsl::testing::TmpDir(), "gpu_output"); const std::string result_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "gpu_result.pb"); XlaCompileOptions options; options.module_path = module_file; options.output_path = output_path; options.platform = "gpu"; options.result_output_file = result_file; options.gpu_options.use_attached_device = true; TF_EXPECT_OK(XlaCompileMain(options)); CompilationResult result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_file, &result)); EXPECT_TRUE(result.has_status()); EXPECT_EQ(result.status().code(), tensorflow::error::OK); } } }
2,188
#ifndef XLA_TOOLS_HLO_DECOMPOSER_H_ #define XLA_TOOLS_HLO_DECOMPOSER_H_ #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> DecomposeHloModule( const HloModule& module, bool deduplicate_modules); std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const HloInstruction& hlo); std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const std::vector<HloInstruction*>& instructions); std::unique_ptr<HloModule> ExtractProducerConsumerIntoNewModule( const HloInstruction& producer, const HloInstruction& consumer); std::unique_ptr<HloModule> ExtractComputationIntoNewModule( const HloComputation& computation); } #endif #include "xla/tools/hlo_decomposer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool ShouldIsolateOpcode(HloOpcode opcode) { switch (opcode) { case HloOpcode::kConstant: case HloOpcode::kGetTupleElement: case HloOpcode::kParameter: case HloOpcode::kTuple: return false; default: return true; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> Decompose( const HloModule& module) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<const HloComputation*> computations_to_visit{ module.entry_computation()}; absl::flat_hash_set<const HloComputation*> visited_computations; while (!computations_to_visit.empty()) { const HloComputation* computation = *computations_to_visit.begin(); computations_to_visit.erase(computations_to_visit.begin()); visited_computations.insert(computation); for (const HloInstruction* instruction : computation->instructions()) { if (GetInstructionCallContext(instruction->opcode()) != CallContext::kEmbedded) { for (const HloComputation* called_computation : instruction->called_computations()) { if (!visited_computations.contains(called_computation)) { computations_to_visit.insert(called_computation); } } } if (ShouldIsolateOpcode(instruction->opcode())) { modules.push_back(ExtractInstructionIntoNewModule(*instruction)); } } } return modules; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> DecomposeHloModule( const HloModule& module, bool deduplicate_modules) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<std::string> module_fingerprints; auto should_add_module = [&](const HloModule* module) { if (!deduplicate_modules) { return true; } const std::string fingerprint = module->GetFingerprint128(); if (module_fingerprints.contains(fingerprint)) { return false; } module_fingerprints.insert(fingerprint); return true; }; TF_ASSIGN_OR_RETURN(std::vector<std::unique_ptr<HloModule>> isolated_modules, Decompose(module)); for (auto& module : isolated_modules) { if (should_add_module(module.get())) { modules.push_back(std::move(module)); } } return modules; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const std::vector<HloInstruction*>& instructions) { CHECK(!instructions.empty()); HloInstruction& first_instruction = *instructions[0]; auto new_hlo_module = std::make_unique<HloModule>( first_instruction.GetModule()->name() + "_collective_ops", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( first_instruction.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_instructions; for (auto* hlo : instructions) { std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo->operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context); new_instructions.push_back( builder.AddInstruction(std::move(new_instruction))); } std::unique_ptr<HloInstruction> tuple_instruction = HloInstruction::CreateTuple(new_instructions); builder.AddInstruction(std::move(tuple_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const HloInstruction& hlo) { auto new_hlo_module = std::make_unique<HloModule>( std::string(hlo.name()), HloModuleConfig{}, std::make_unique<CompilationEnvironments>(hlo.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo.operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo.CloneWithNewOperands(hlo.shape(), new_operands, &clone_context); builder.AddInstruction(std::move(new_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractProducerConsumerIntoNewModule( const HloInstruction& producer, const HloInstruction& consumer) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( consumer.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); absl::InlinedVector<HloInstruction*, 8> producer_operands; for (const HloInstruction* operand : producer.operands()) { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; producer_operands.push_back(new_parameter); } HloInstruction* new_producer = builder.AddInstruction(producer.CloneWithNewOperands( producer.shape(), producer_operands, &clone_context)); absl::flat_hash_map<const HloInstruction*, HloInstruction*> operand_map; operand_map.emplace(&producer, new_producer); absl::InlinedVector<HloInstruction*, 8> consumer_operands; for (const HloInstruction* operand : consumer.operands()) { auto it = operand_map.find(operand); if (it != operand_map.end()) { consumer_operands.push_back(it->second); } else { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; consumer_operands.push_back(new_parameter); } } builder.AddInstruction(consumer.CloneWithNewOperands( consumer.shape(), consumer_operands, &clone_context)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractComputationIntoNewModule( const HloComputation& computation) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( computation.parent()->comp_envs())); HloCloneContext clone_context(new_hlo_module.get()); new_hlo_module->AddEntryComputationWithLayouts( computation.CloneInContext(clone_context)); return new_hlo_module; } }
#include "xla/tools/hlo_decomposer.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloDecomposerTest : public HloTestBase { protected: std::unique_ptr<HloModule> GetModule() { absl::string_view kHlo = R"( HloModule test_module, entry_computation_layout={(bf16[1024,8192]{1,0}, f32[8192]{0}, f32[16384]{0})->(bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0})} add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.1 = f32[] add(p0, p1) } fused_computation.1 { param_1.3 = f32[8192]{0} parameter(1) broadcast.2 = f32[1024,8192]{1,0} broadcast(param_1.3), dimensions={1} param_0.3 = bf16[1024,8192]{1,0} parameter(0) convert.5 = f32[1024,8192]{1,0} convert(param_0.3) multiply.2 = f32[1024,8192]{1,0} multiply(broadcast.2, convert.5) c0_1 = f32[] constant(0) reduce.1 = f32[1024]{0} reduce(multiply.2, c0_1), dimensions={1}, to_apply=add ROOT convert.4 = bf16[1024]{0} convert(reduce.1) } fused_computation.2 { p0.0 = bf16[1024,8192]{1,0} parameter(0) c.0 = f32[1024,8192]{1,0} convert(p0.0) co0_1.1 = f32[] constant(0) p.0 = f32[8192]{0} parameter(1) b.0 = f32[1024,8192]{1,0} broadcast(p.0), dimensions={1} m.0 = f32[1024,8192]{1,0} multiply(b.0, c.0) r.0 = f32[1024]{0} reduce(m.0, co0_1.1), dimensions={1}, to_apply=add ROOT c.1 = bf16[1024]{0} convert(r.0) } exp { param_0.5 = f32[16384]{0} parameter(0) m.4 = f32[16384]{0} multiply(param_0.5, param_0.5) e = f32[16384]{0} exponential(m.4) l.clone.1 = f32[16384]{0} log(m.4) ROOT tuple = (f32[16384]{0}, f32[16384]{0}) tuple(e, l.clone.1) } ENTRY main { p0.1 = bf16[1024,8192]{1,0} parameter(0) p1.1 = f32[8192]{0} parameter(1) fusion.1 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.1 fusion.2 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.2 p2 = f32[16384]{0} parameter(2) e.1 = (f32[16384]{0}, f32[16384]{0}) fusion(p2), kind=kInput, calls=exp get-tuple-element.1 = f32[16384]{0} get-tuple-element(e.1), index=1 get-tuple-element = f32[16384]{0} get-tuple-element(e.1), index=0 ROOT result = (bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0}) tuple(fusion.1, fusion.2, get-tuple-element.1, get-tuple-element) })"; return ParseAndReturnVerifiedModule(kHlo).value(); } void FindAndCompare(const std::vector<std::unique_ptr<HloModule>>& modules, absl::string_view module_name, absl::string_view pattern) { auto iter = absl::c_find_if(modules, [&](const std::unique_ptr<HloModule>& module) { return module->name() == module_name; }); EXPECT_NE(iter, modules.end()) << "No module named " << module_name; if (iter == modules.end()) { return; } EXPECT_TRUE(*RunFileCheck((*iter)->ToString(), pattern)); } }; TEST_F(HloDecomposerTest, DecomposeNoDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, false)); EXPECT_EQ(decomposed.size(), 3); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "fusion.2", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.2 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.2 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } TEST_F(HloDecomposerTest, DecomposeDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, true)); EXPECT_EQ(decomposed.size(), 2); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } } }
2,189
#ifndef XLA_TOOLS_HLO_SLICER_H_ #define XLA_TOOLS_HLO_SLICER_H_ #include <functional> #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { using FrontierSelector = std::function<bool(const HloInstruction*)>; class SliceOutput { public: SliceOutput(absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_instructions, const HloInstruction* nearest_common_ancestor_root = nullptr) : sliced_instructions_(sliced_instructions), frontier_instructions_(frontier_instructions), nearest_common_ancestor_root_(nearest_common_ancestor_root) {} explicit SliceOutput( absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions) : sliced_instructions_(sliced_instructions) {} SliceOutput() = default; const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& sliced_instructions() const { return sliced_instructions_; } const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& frontier_instructions() const { return frontier_instructions_; } int NumSlicedInstructions() const { return CountMapOfSet(sliced_instructions_); } int NumFrontierInstructions() const { return CountMapOfSet(frontier_instructions_); } const HloInstruction* nearest_common_ancestor_root() const { return nearest_common_ancestor_root_; } static absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> IntersectSlicedInstructions(SliceOutput slice_a, SliceOutput slice_b) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> intersect_sliced_instructions; auto& sliced_instructions_a = slice_a.sliced_instructions(); auto& sliced_instructions_b = slice_b.sliced_instructions(); for (auto& [computation, instructions] : sliced_instructions_a) { for (auto& instruction : instructions) { if (sliced_instructions_b.contains(computation) && sliced_instructions_b.at(computation).contains(instruction)) { intersect_sliced_instructions[computation].insert(instruction); } } } return intersect_sliced_instructions; } static absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> UnionSlicedInstructions(SliceOutput slice_a, SliceOutput slice_b) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> union_sliced_instructions; auto& sliced_instructions_a = slice_a.sliced_instructions(); auto& sliced_instructions_b = slice_b.sliced_instructions(); for (auto& sliced_instructions : {sliced_instructions_a, sliced_instructions_b}) { for (auto& [computation, instructions] : sliced_instructions) { for (auto& instruction : instructions) { union_sliced_instructions[computation].insert(instruction); } } } return union_sliced_instructions; } private: absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions_; absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_instructions_; const HloInstruction* nearest_common_ancestor_root_; int CountMapOfSet( const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& to_count) const { int count = 0; for (const auto& [key, set] : to_count) { count += set.size(); } return count; } }; SliceOutput SliceModule( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector = nullptr, bool ignore_control_dependency = false, bool forward_slice = true, bool nearest_common_ancestor_as_root = false); struct SlicingConfiguration { enum class ForwardSlicingConfig { kRoot, kNca }; ForwardSlicingConfig forward_slicing = ForwardSlicingConfig::kRoot; bool backward_slicing = false; bool remove_sharding = false; bool reduce_tuple_parameter = false; int slicing_group = -1; }; std::vector<std::unique_ptr<HloModule>> SliceModuleAndExtract( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, const SlicingConfiguration& slicing_configuration); } #endif #include "xla/tools/hlo_slicer.h" #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tools/hlo_extractor.h" #include "tsl/platform/status.h" namespace xla { namespace { void ReduceTupleParameterHelper(HloModule* hlo_module, HloInstruction* tuple_parameter) { for (HloInstruction* user_inst : tuple_parameter->users()) { if (user_inst->opcode() != HloOpcode::kGetTupleElement) { return; } } VLOG(1) << "Parameter instruction to be reduced: " << tuple_parameter->ToString() << " shape size: " << tuple_parameter->shape().tuple_shapes_size() << " users size: " << tuple_parameter->users().size(); std::vector<Shape> used_shapes; for (HloInstruction* user_inst : tuple_parameter->users()) { used_shapes.push_back(user_inst->shape()); } Shape new_tuple_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(used_shapes)); tuple_parameter->mutable_shape()->mutable_tuple_shapes()->clear(); for (const auto& shape : used_shapes) { tuple_parameter->mutable_shape()->mutable_tuple_shapes()->push_back(shape); } for (int i = 0; i < tuple_parameter->users().size(); ++i) { tuple_parameter->users()[i]->set_tuple_index(i); } hlo_module->mutable_config().SetComputationLayoutIfExists( hlo_module->entry_computation()->ComputeProgramShape()); } void ReduceTupleParameter(HloModule* hlo_module) { std::vector<HloInstruction*> tuple_parameters; for (HloInstruction* parameter : hlo_module->entry_computation()->parameter_instructions()) { if (parameter->shape().IsTuple()) { tuple_parameters.push_back(parameter); } } for (HloInstruction* tuple_parameter : tuple_parameters) { ReduceTupleParameterHelper(hlo_module, tuple_parameter); } } HloInstruction* FindShardingInstruction(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "Sharding") { CHECK_EQ(instruction->operand_count(), 1); return instruction; } } } return nullptr; } void RemoveSharding(HloModule* hlo_module) { while (HloInstruction* custom_call_instruction = FindShardingInstruction(hlo_module)) { for (HloInstruction* user_instruction : custom_call_instruction->users()) { CHECK_OK(custom_call_instruction->ReplaceUseWith( user_instruction, custom_call_instruction->mutable_operand(0))); } custom_call_instruction->DetachFromOperandsAndUsers(); CHECK_OK(custom_call_instruction->parent()->RemoveInstruction( custom_call_instruction)); VLOG(1) << "Removed sharding custom-call: " << custom_call_instruction->ToString(); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(hlo_module).status()); } } void IntraComputationSlicing( const HloComputation* computation, absl::flat_hash_set<const HloInstruction*>& sliced_instructions, absl::flat_hash_set<const HloInstruction*>& frontier_instructions, bool forward_slice, FrontierSelector frontier_selector, bool ignore_control_dependency) { std::deque<const HloInstruction*> worklist(sliced_instructions.begin(), sliced_instructions.end()); while (!worklist.empty()) { const HloInstruction* inst = worklist.back(); worklist.pop_back(); if (frontier_selector && !frontier_selector(inst)) { frontier_instructions.insert(inst); continue; } std::vector<HloInstruction*> instructions_to_propagate = forward_slice ? std::vector<HloInstruction*>(inst->users().begin(), inst->users().end()) : std::vector<HloInstruction*>(inst->operands().begin(), inst->operands().end()); if (!ignore_control_dependency) { if (forward_slice) { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_successors().begin(), inst->control_successors().end()); } else { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_predecessors().begin(), inst->control_predecessors().end()); } } for (auto next_inst : instructions_to_propagate) { if (!sliced_instructions.contains(next_inst)) { worklist.push_front(next_inst); sliced_instructions.insert(next_inst); } } } } SliceOutput SliceModuleHelper( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_computation_instructions_map; for (auto inst : slice_starting_instructions) { sliced_computation_instructions_map[inst->parent()].insert(inst); } absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_computation_instructions_map; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module); std::vector<HloComputation*> post_order_computations = hlo_module->MakeComputationPostOrder(); std::vector<HloComputation*> computations_to_traverse = forward_slice ? post_order_computations : std::vector<HloComputation*>(post_order_computations.rbegin(), post_order_computations.rend()); absl::flat_hash_set<const HloComputation*> nearest_common_ancestor_computations; if (nearest_common_ancestor_as_root) { std::vector<const HloComputation*> starting_computations; for (const auto& [computation, instructions] : sliced_computation_instructions_map) { starting_computations.push_back(computation); } nearest_common_ancestor_computations = call_graph->NearestCommonAncestorComputations(starting_computations); CHECK(!nearest_common_ancestor_computations.empty()); } for (auto computation : computations_to_traverse) { if (sliced_computation_instructions_map.contains(computation)) { auto slicing_starting_instructions = std::vector<const HloInstruction*>( sliced_computation_instructions_map[computation].begin(), sliced_computation_instructions_map[computation].end()); IntraComputationSlicing( computation, sliced_computation_instructions_map[computation], frontier_computation_instructions_map[computation], forward_slice, frontier_selector, ignore_control_dependency); if (forward_slice) { if (nearest_common_ancestor_as_root && nearest_common_ancestor_computations.contains(computation)) { const HloInstruction* nearest_common_ancestor_instruction = *(call_graph->NearestCommonAncestorInstructions( slicing_starting_instructions)) .begin(); CHECK_NE(nearest_common_ancestor_instruction, nullptr); return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map, nearest_common_ancestor_instruction}; } if (!sliced_computation_instructions_map[computation].contains( computation->root_instruction()) || frontier_computation_instructions_map[computation].contains( computation->root_instruction())) { continue; } for (auto caller_inst : call_graph->GetComputationCallers(computation)) { sliced_computation_instructions_map[caller_inst->parent()].insert( caller_inst); } } if (!forward_slice) { for (const auto& callsite : call_graph->GetNode(computation).callsites()) { if (sliced_computation_instructions_map[computation].contains( callsite.instruction())) { for (auto callee : callsite.called_computations()) { sliced_computation_instructions_map[callee].insert( callee->root_instruction()); } } } } } } return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map}; } } SliceOutput SliceModule( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { if (forward_slice) { if (!nearest_common_ancestor_as_root) { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, true, false); } else { CHECK(forward_slice) << "Option `nearest_common_ancestor_as_root` can " "only be enabled when " "forward slicing"; CHECK((frontier_selector == nullptr)) << "Option `nearest_common_ancestor_as_root` can not be specified " "with `frontier_selector`"; SliceOutput forward_slice_output = SliceModuleHelper(hlo_module, slice_starting_instructions, nullptr, ignore_control_dependency, true, true); std::vector<const HloInstruction*> nearest_common_ancestor( {forward_slice_output.nearest_common_ancestor_root()}); CHECK_EQ(nearest_common_ancestor.size(), 1); SliceOutput backward_slice_output = SliceModuleHelper(hlo_module, absl::MakeSpan(nearest_common_ancestor), nullptr, ignore_control_dependency, false, false); return SliceOutput{SliceOutput::IntersectSlicedInstructions( forward_slice_output, backward_slice_output), backward_slice_output.frontier_instructions(), forward_slice_output.nearest_common_ancestor_root()}; } } else { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, false, false); } } std::vector<std::unique_ptr<HloModule>> SliceModuleAndExtract( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, const SlicingConfiguration& slicing_configuration) { std::vector<std::unique_ptr<HloModule>> sliced_modules; int slicing_group = slicing_configuration.slicing_group; CHECK(slicing_group >= 1 || slicing_group == -1); std::vector<absl::Span<const HloInstruction*>> grouped_instructions; if (slicing_group == -1) { grouped_instructions = {slice_starting_instructions}; } else { for (int i = 0; i < slice_starting_instructions.size(); i += slicing_group) { grouped_instructions.push_back( slice_starting_instructions.subspan(i, slicing_group)); } } for (const auto& grouped_slice_starting_instructions : grouped_instructions) { SliceOutput forward_slice_output; if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kRoot) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, false); } else if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kNca) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, true); } VLOG(1) << "[Num of forward sliced insts]: " << forward_slice_output.NumSlicedInstructions(); SliceOutput backw
#include "xla/tools/hlo_slicer.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloSlicerTest = HloTestBase; TEST_F(HloSlicerTest, SingleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({p2, x}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, p3}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p3)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule test calculate_alpha { constant.5 = s32[] constant(2) constant.6 = s32[] constant(3) ROOT ret = s32[] subtract(constant.5, constant.6) } While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(23) add.3 = s32[] add(get_tuple_element.1, constant.1) get_tuple_element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get_tuple_element.2, get_tuple_element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add.3, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less_than = pred[] compare(get_tuple_element.3, constant.2), direction=LT } ENTRY Test { p.1 = s32[] parameter(0) p.2 = s32[] parameter(1) add.1 = s32[] add(p.1, p.2) constant.3 = s32[] call(), to_apply=calculate_alpha constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.1 = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body loop_count = s32[] get-tuple-element(while.1), index=0 ROOT add.2 = s32[] add(loop_count, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto while1 = FindInstruction(hlo_module.get(), "while.1"); EXPECT_THAT(while1, op::While()); auto loop_count = FindInstruction(hlo_module.get(), "loop_count"); EXPECT_THAT(loop_count, op::GetTupleElement()); auto add2 = FindInstruction(hlo_module.get(), "add.2"); EXPECT_THAT(add2, op::Add()); auto gte1 = FindInstruction(hlo_module.get(), "get_tuple_element.1"); EXPECT_THAT(gte1, op::GetTupleElement()); auto gte2 = FindInstruction(hlo_module.get(), "get_tuple_element.2"); EXPECT_THAT(gte2, op::GetTupleElement()); auto constant5 = FindInstruction(hlo_module.get(), "constant.5"); EXPECT_THAT(constant5, op::Constant()); auto tuple1 = FindInstruction(hlo_module.get(), "tuple.1"); EXPECT_THAT(tuple1, op::Tuple()); auto entry_comp = FindComputation(hlo_module.get(), "Test"); EXPECT_NE(entry_comp, nullptr); auto while_cond_comp = FindComputation(hlo_module.get(), "While.condition"); EXPECT_NE(while_cond_comp, nullptr); auto while_body_comp = FindComputation(hlo_module.get(), "While.body"); EXPECT_NE(while_body_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({add1, while1}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(while1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(loop_count)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({constant5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({gte2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(while_body_comp)); EXPECT_FALSE(sliced_instructions.contains(while_cond_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(tuple1)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_FALSE(sliced_instructions[while_body_comp].contains(gte1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, SingleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) p.4 = f32[10] parameter(4) p.5 = f32[10] parameter(5) sub.1 = f32[10] subtract(p.4, p.5) add.2 = f32[10] add(p.3, sub.1) ROOT add.1 = f32[10] add(x, add.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto p5 = FindInstruction(hlo_module.get(), "p.5"); EXPECT_THAT(p5, op::Parameter()); auto sub1 = FindInstruction(hlo_module.get(), "sub.1"); EXPECT_THAT(sub1, op::Subtract()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({broadcast, add0}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({add0, y, p5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 5); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p5)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(sub1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 2); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(sub1)); } } TEST_F(HloSlicerTest, MultipleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [&ret](const HloInstruction* hlo_inst) -> bool { return hlo_inst != ret; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(entry_comp)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(alpha)); } } TEST_F(HloSlicerTest, SingleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Constant()); auto p0 = FindInstruction(hlo_module.get(), "p.0"); EXPECT_THAT(p0, op::Parameter()); auto p1 = FindInstruction(hlo_module.get(), "p.1"); EXPECT_THAT(p1, op::Parameter()); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 7); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } auto broadcast_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), broadcast_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 3); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(broadcast)); } } TEST_F(HloSlicerTest, MultipleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c0 = FindInstruction(hlo_module.get(), "c.0"); EXPECT_THAT(c0, op::Constant()); auto c1 = FindInstruction(hlo_module.get(), "c.1"); EXPECT_THAT(c1, op::Constant()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 5); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto add_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; std::vector<const HloInstruction*> relevant_instructions({ret}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), add_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(c2)); } { auto mul_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kMultiply; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), mul_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 1); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } } TEST_F(HloSlicerTest, ForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule module ENTRY computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) p.2 = f32[10] parameter(2) mul.0 = f32[10] multiply(p.1, p.2) sub.0 = f32[10] subtract(add.0, mul.0) add.1 = f32[10] add(add.0, p.2) ROOT add.2 = f32[10] add(sub.0, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p0 = FindInstruction(hlo_module.get(), "p.0"); auto p2 = FindInstruction(hlo_module.get(), "p.2"); auto mul0 = FindInstruction(hlo_module.get(), "mul.0"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); auto sub0 = FindInstruction(hlo_module.get(), "sub.0"); auto add1 = FindInstruction(hlo_module.get(), "add.1"); const HloComputation* computation = hlo_module->entry_computation(); { std::vector<const HloInstruction*> relevant_instructions({p0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), p0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 1); } { std::vector<const HloInstruction*> relevant_instructions({p0, p2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_TRUE(sliced_result.nearest_common_ancestor_root() == sub0 || sliced_result.nearest_common_ancestor_root() == add1); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); } { std::vector<const HloInstruction*> relevant_instructions({p0, mul0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), sub0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(p0)); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); EXPECT_TRUE(sliced_instructions[computation].contains(mul0)); EXPECT_TRUE(sliced_instructions[computation].contains(sub0)); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) ROOT ret.0 = f32[] multiply(c.0, c.1) } calculate_y { c.2 = f32[] constant(2) c.3 = f32[] constant(3) ROOT ret.1 = f32[] add(c.2, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha y = f32[] call(), to_apply=calculate_y add.0 = f32[] add(alpha, y) p.0 = f32[] parameter(0) ROOT add.1 = f32[] add(add.0, p.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto c0 = FindInstruction(hlo_module.get(), "c.0"); auto ret0 = FindInstruction(hlo_module.get(), "ret.0"); auto c2 = FindInstruction(hlo_module.get(), "c.2"); auto ret1 = FindInstruction(hlo_module.get(), "ret.1"); auto alpha = FindInstruction(hlo_module.get(), "alpha"); auto y = FindInstruction(hlo_module.get(), "y"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); const HloComputation* computation = hlo_module->entry_computation(); const HloComputation* calculate_alpha = FindComputation(hlo_module.get(), "calculate_alpha"); const HloComputation* calculate_y = FindComputation(hlo_module.get(), "calculate_y"); { std::vector<const HloInstruction*> relevant_instructions({c0, c2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), add0); EXPECT_EQ(sliced_result.sliced_instructions().size(), 3); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_alpha)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_y)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 7); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(ret0)); EXPECT_TRUE(sliced_instructions[calculate_y].conta
2,190
#ifndef XLA_TOOLS_RUN_HLO_MODULE_H_ #define XLA_TOOLS_RUN_HLO_MODULE_H_ #include <functional> #include <memory> #include <random> #include <string> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_runner.h" #include "xla/tools/run_hlo_module.pb.h" #include "tsl/platform/status.h" namespace xla { class BufferAssignmentProto; struct RunHloModuleOptions { std::string platform; std::string reference_platform{"default"}; bool print_literals{false}; bool flatten_control_flow{false}; bool run_test_hlo_passes{true}; bool run_reference_hlo_passes{true}; bool use_large_float_range{false}; bool treat_gte_as_data_formatting{false}; float abs_error_bound{1e-3}; float rel_error_bound{1e-3}; std::string input_format; bool use_buffer_assignment_from_proto{false}; std::string input_compilation_environments; int iterations{1}; std::string output_literals_file; std::string input_literals_file; bool random_init_input_literals{true}; bool force_fake_data{false}; bool isolate_instructions{false}; }; absl::Status RunAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto = nullptr, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook = {}, std::function<void(HloModuleConfig*)> config_modifier_hook = {}); absl::Status RunAndCompare( const std::string& hlo_filename, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto = nullptr, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook = {}, std::function<void(HloModuleConfig*)> config_modifier_hook = {}, std::function<absl::Status(const RunHloModuleOptions& options, HloModule& module)> compilation_env_modifier_hook = {}); void ReadInputLiteralsFromFile(const std::string& file_path, xla::RunHloModuleLiterals* input_literals_proto); } #endif #include "xla/tools/run_hlo_module.h" #include <functional> #include <iomanip> #include <iostream> #include <map> #include <memory> #include <optional> #include <random> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_comparison.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tools/hlo_module_loader.h" #include "xla/tools/prepare_reference_module.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { enum class ModuleResult { kMatched, kRan, kSkipped, kDidntRun, kOtherError, kCompilationError, kRuntimeError, kMismatch, }; constexpr absl::string_view ModuleResultToString(ModuleResult result) { switch (result) { case ModuleResult::kMatched: return "MATCHED"; case ModuleResult::kRan: return "RAN"; case ModuleResult::kSkipped: return "SKIPPED"; case ModuleResult::kDidntRun: return "DIDN'T RUN"; case ModuleResult::kOtherError: return "OTHER ERROR"; case ModuleResult::kCompilationError: return "COMPILATION ERROR"; case ModuleResult::kRuntimeError: return "RUNTIME ERROR"; case ModuleResult::kMismatch: return "MISMATCH"; } } void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { auto* env = tsl::Env::Default(); std::string binary_filename; std::string text_filename; std::string outdir; if (tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); binary_filename = absl::StrCat(filename, ".pb"); text_filename = absl::StrCat(filename, ".txt"); } else { binary_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".pb")); text_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".txt")); } TF_CHECK_OK(tsl::WriteBinaryProto(env, binary_filename, literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, text_filename, literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " binary: " << binary_filename << " text: " << text_filename; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } absl::StatusOr<Literal> ExecuteWithRunner( std::unique_ptr<HloModule> module, const BufferAssignmentProto* buffer_assignment_proto, absl::Span<const Literal> args, HloRunnerInterface* runner, bool run_hlo_passes) { TF_RETURN_WITH_CONTEXT_IF_ERROR( VerifyHloModule(module.get(), false, true), absl::StrCat("(on ", runner->Name(), ")")); std::cerr << "Running HLO module with runner " << runner->Name() << "...\n"; XLA_VLOG_LINES(1, module->ToString()); const auto start = std::chrono::high_resolution_clock::now(); ExecutionProfile profile; auto result_status = (buffer_assignment_proto == nullptr) ? runner->Execute(std::move(module), args, run_hlo_passes, &profile) : runner->ExecuteWithBufferAssignment(std::move(module), buffer_assignment_proto, args, run_hlo_passes, &profile); const auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double> diff = end - start; std::cerr << "... compiled and ran in " << diff.count() << "s.\n"; double run_time = static_cast<double>(profile.compute_time_ns()) / 1e9; std::cerr << "execution time for runner " << runner->Name() << ": " << run_time << "s.\n"; TF_RETURN_WITH_CONTEXT_IF_ERROR( result_status.status(), absl::StrCat("Failed to execute on ", runner->Name())); return std::move(result_status).value(); } absl::Status RunAndCompareInternal( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, ModuleResult* test_run_result, ModuleResult* reference_run_result) { auto copy_result_on_failure = [](auto status, ModuleResult result, ModuleResult* out_result) { if (!status.ok() && out_result != nullptr) { *out_result = result; } return status; }; if (!config_modifier_hook) { config_modifier_hook = [](HloModuleConfig* config) { config->set_seed(42); }; } if (options.flatten_control_flow) { HloControlFlowFlattening control_flow_flattening( HloControlFlowFlattening::Options{1}); TF_RETURN_IF_ERROR( copy_result_on_failure(control_flow_flattening.Run(test_module.get()), ModuleResult::kCompilationError, test_run_result) .status()); } TF_ASSIGN_OR_RETURN( auto args, copy_result_on_failure( MakeFakeArguments(test_module.get(), engine, options.use_large_float_range, options.treat_gte_as_data_formatting), ModuleResult::kOtherError, test_run_result)); if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() != 0) { if (iteration_literals_proto->arguments_size() != args.size()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals as arguments; mismatched " "number of expected arguments."); } else { for (int i = 0; i < args.size(); ++i) { if (!literal_comparison::EqualShapes( xla::Shape(args[i].shape()), xla::Shape(iteration_literals_proto->arguments(i).shape())) .ok()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals for argument %d " "because of a shape mismatch.", i); } TF_ASSIGN_OR_RETURN( args[i], copy_result_on_failure(xla::Literal::CreateFromProto( iteration_literals_proto->arguments(i)), ModuleResult::kOtherError, test_run_result)); } } } if (options.print_literals) { for (int i = 0; i < args.size(); ++i) { std::cout << "\n** Argument " << i << " **\n" << args[i].ToString() << "\n"; } } if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() == 0) { for (int i = 0; i < args.size(); ++i) { *iteration_literals_proto->add_arguments() = args[i].ToProto(); } } std::unique_ptr<HloModule> reference_module; if (reference_runner != nullptr) { TF_ASSIGN_OR_RETURN( reference_module, copy_result_on_failure( PrepareReferenceModule(*test_module, test_runner, config_modifier_hook, reference_module_modifier_hook), ModuleResult::kCompilationError, reference_run_result)); } TF_ASSIGN_OR_RETURN( auto test_result, copy_result_on_failure( ExecuteWithRunner(std::move(test_module), buffer_assignment_proto, args, test_runner, options.run_test_hlo_passes), ModuleResult::kRuntimeError, test_run_result)); if (test_run_result != nullptr) { *test_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with test runner " << test_runner->Name() << " **\n" << test_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto test_result_proto = test_result.ToProto(); iteration_literals_proto->mutable_result()->Swap(&test_result_proto); } if (reference_module == nullptr) { std::cerr << "Skipping reference runner\n"; return absl::OkStatus(); } if (const HloInstruction* root_instruction = reference_module->entry_computation()->root_instruction(); root_instruction->opcode() == HloOpcode::kCustomCall) { std::cerr << "Skipping reference runner for a custom call " << root_instruction->custom_call_target() << "\n"; if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kSkipped; } return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( auto reference_result, copy_result_on_failure( ExecuteWithRunner(std::move(reference_module), nullptr, args, reference_runner, options.run_reference_hlo_passes), ModuleResult::kRuntimeError, reference_run_result)); if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with reference runner " << reference_runner->Name() << " **\n" << reference_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto reference_result_proto = reference_result.ToProto(); iteration_literals_proto->mutable_reference_result()->Swap( &reference_result_proto); } ErrorSpec error_spec(static_cast<float>(options.abs_error_bound), static_cast<float>(options.rel_error_bound)); absl::Status comparison_status = literal_comparison::Near(reference_result, test_result, error_spec, true, &OnMiscompare); const ModuleResult comparison_result = comparison_status.ok() ? ModuleResult::kMatched : ModuleResult::kMismatch; if (test_run_result != nullptr) { *test_run_result = comparison_result; } if (reference_run_result != nullptr) { *reference_run_result = comparison_result; } return comparison_status; } struct ChunkResult { std::string module_name; ModuleResult test_result = ModuleResult::kDidntRun; ModuleResult reference_result = ModuleResult::kDidntRun; absl::Status status; bool operator<(const ChunkResult& other) const { if (test_result != other.test_result) { return test_result < other.test_result; } return reference_result < other.reference_result; } }; std::string BuildResultsTable(absl::Span<const ChunkResult> chunk_results, size_t num_modules) { constexpr int kStatusWidth = 21; constexpr int kNameWidth = 30; constexpr int kThreeColumnsWidth = 5 + 2 * kStatusWidth + kNameWidth; constexpr int kTableWidth = kThreeColumnsWidth + 30; std::ostringstream strstr; auto print_row = [&](absl::string_view reference, absl::string_view test, absl::string_view module_name, absl::string_view error) { std::string formatted_error = absl::StrReplaceAll( error, {{"\n", absl::StrCat("\n", std::string(kThreeColumnsWidth, ' '), "|")}}); strstr << " " << std::left << std::setw(kStatusWidth) << reference << "| " << std::setw(kStatusWidth) << test << "| " << std::setw(kNameWidth) << module_name << "| " << formatted_error << "\n"; }; auto print_line = [&](int line_width) { strstr << std::string(line_width, '-') << "\n"; }; print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); std::map<std::pair<ModuleResult, ModuleResult>, int> result_counts; for (const ChunkResult& chunk_result : chunk_results) { const std::pair<ModuleResult, ModuleResult> result_pair( chunk_result.reference_result, chunk_result.test_result); ++result_counts[result_pair]; print_row(ModuleResultToString(chunk_result.reference_result), ModuleResultToString(chunk_result.test_result), chunk_result.module_name, chunk_result.status.ToString()); } print_line(kTableWidth); print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); strstr << "\n\n"; print_line(kThreeColumnsWidth); print_row("Reference", "Test", "Total count", ""); print_line(kThreeColumnsWidth); for (const auto& [result, count] : result_counts) { print_row(ModuleResultToString(result.first), ModuleResultToString(result.second), absl::StrCat(count), ""); } print_line(kThreeColumnsWidth); if (chunk_results.size() < num_modules) { strstr << "\n(did not " << (num_modules - chunk_results.size()) << " modules due to earlier failures)\n\n"; } return strstr.str(); } absl::Status RunIsolatedAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { CHECK(test_module); CHECK(iteration_literals_proto == nullptr) << "Cannot run decomposed module if input literals are provided."; if (options.run_test_hlo_passes || (options.run_reference_hlo_passes && !options.reference_platform.empty())) { LOG(WARNING) << "!!! Warning !!! When running decomposed module, running HLO " "passes is likely not what you want. If you have unoptimized " "HLO, first convert it to the optimized e.g. using the " "hlo-opt tool, and then isolate without HLO passes."; } std::vector<ChunkResult> chunk_results; TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<HloModule>> modules, DecomposeHloModule(*test_module, true)); absl::Status status = absl::OkStatus(); for (std::unique_ptr<HloModule>& module : modules) { const std::string module_name = module->name(); ModuleResult test_module_result = ModuleResult::kDidntRun; ModuleResult reference_module_result = ModuleResult::kDidntRun; absl::Status chunk_status = RunAndCompareInternal( std::move(module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, &test_module_result, &reference_module_result); chunk_results.push_back({std::move(module_name), test_module_result, reference_module_result, chunk_status}); status.Update(chunk_status); } absl::c_sort(chunk_results); std::cout << BuildResultsTable(chunk_results, modules.size()); return status; } } absl::Status RunAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { if (options.isolate_instructions) { return RunIsolatedAndCompare( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } return RunAndCompareInternal( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, nullptr, nullptr); } absl::Status RunAndCompare( const std::string& hlo_filename, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, std::function<absl::Status(const RunHloModuleOptions& options, HloModule& module)> compilation_env_modifier_hook) { std::string input_format = options.input_format; if (input_format.empty()) { input_format = std::string(tsl::io::Extension(hlo_filename)); } BufferAssignmentProto buffer_assignment_proto; TF_ASSIGN_OR_RETURN( auto test_module, LoadModuleFromFile( hlo_filename, input_format, hlo_module_loader_details::Config(), config_modifier_hook, options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr)); HloVerifier verifier( HloVerifierOpts{}.WithLayoutSensitive(false).WithAllowMixedPrecision( true)); TF_RETURN_IF_ERROR(verifier.Run(test_module.get()).status()); if (compilation_env_modifier_hook) { TF_CHECK_OK(compilation_env_modifier_hook(options, *test_module)) << "Could not adjust the compilation environment for user provided " "hlo module."; } if (options.print_literals) { std::cout << "\n** Buffer assignment proto **\n" << buffer_assignment_proto.DebugString() << "\n"; } std::unique_ptr<RunHloModuleIterationLiterals> iteration_literals_proto_local; if (iteration_literals_proto == nullptr) { if (!options.force_fake_data && !options.isolate_instructions && (input_format == "pb" || input_format == "pbtxt")) { LOG(INFO) << "Using input data from the user-provided snapshot."; TF_ASSIGN_OR_RETURN(iteration_literals_proto_local, LoadInputFromFile(hlo_filename, input_format)); iteration_literals_proto = iteration_literals_proto_local.get(); } else if (input_format == "pb" || input_format == "pbtxt") { LOG(INFO) << "Ignoring input data from snapshot and using fake data instead."; } } return RunAndCompare( std::move(test_module), options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } void ReadInputLiteralsFromFile(const std::string& file_path, RunHloModuleLiterals* input_literals_proto) { if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, input_literals_proto) .ok() || input_literals_proto->iterations().empty()) { xla::RunHloModuleIterationLiterals iteration_literals_proto; if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, &iteration_literals_proto) .ok()) { LOG(QFATAL) << "Failed to deserialize input literals from file " << file_path << "\n"; } input_literals_proto->clear_iterations(); *input_literals_proto->add_iterations() = iteration_literals_proto; } } }
#include "xla/tools/run_hlo_module.h" #include <string> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace xla { namespace { RunHloModuleIterationLiterals GetTestProto() { RunHloModuleIterationLiterals result; *result.add_arguments() = LiteralUtil::CreateR1<float>({0.1, 0.2}).ToProto(); *result.add_arguments() = LiteralUtil::CreateR1<float>({0.3, 0.4}).ToProto(); *result.mutable_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); *result.mutable_reference_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); return result; } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } } }
2,191
#ifndef XLA_TOOLS_HLO_EXPAND_H_ #define XLA_TOOLS_HLO_EXPAND_H_ #include <string> #include <vector> #include "xla/service/hlo_pass_pipeline.h" #include "xla/tsl/util/command_line_flags.h" namespace xla { struct HloExpandConfig { bool help{false}; std::string input_format; std::string output_file; std::string output_format; bool batch_norm_expander{false}; bool expand_all{false}; bool rng_bit_generator_expander{false}; bool batch_norm_grad_expander{false}; bool batch_norm_inference_expander{false}; bool batch_norm_training_expander{false}; bool cholesky_expander{false}; bool rng_expander{false}; bool rng_bit_generator_philox_expander{false}; bool rng_bit_generator_three_fry_expander{false}; bool triangular_solve_expander{false}; bool spmd_expander{false}; bool verify_hlo{false}; }; void AddPassesToPipeline(xla::HloExpandConfig& config, xla::HloPassPipeline& pipeline, const xla::HloModuleConfig& hlo_module_config); std::vector<tsl::Flag> GetFlags(xla::HloExpandConfig& config); void ParseCompoundFlags(xla::HloExpandConfig& config); } #endif #include "xla/tools/hlo_expand.h" #include <vector> #include "xla/service/batchnorm_expander.h" #include "xla/service/cholesky_expander.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/triangular_solve_expander.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/xla_data.pb.h" namespace xla { void AddPassesToPipeline(HloExpandConfig& config, HloPassPipeline& pipeline, const HloModuleConfig& hlo_module_config) { if (config.batch_norm_grad_expander || config.batch_norm_inference_expander || config.batch_norm_training_expander) { pipeline.AddPass<xla::BatchNormExpander>( config.batch_norm_training_expander, config.batch_norm_inference_expander, config.batch_norm_grad_expander); } if (config.cholesky_expander) { pipeline.AddPass<xla::CholeskyExpander>(); } if (config.rng_expander) { pipeline.AddPass<xla::RngExpander>(); } if (config.rng_bit_generator_philox_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_PHILOX); } if (config.rng_bit_generator_three_fry_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_THREE_FRY); } if (config.triangular_solve_expander) { pipeline.AddPass<xla::TriangularSolveExpander>(); } if (config.spmd_expander) { pipeline.AddPass<ShardingPropagation>( true, false, hlo_module_config.allow_spmd_sharding_propagation_to_output(), hlo_module_config.allow_spmd_sharding_propagation_to_parameters()); pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( hlo_module_config.num_partitions(), hlo_module_config.replica_count(), hlo_module_config.debug_options() .xla_gpu_threshold_for_windowed_einsum_mib()); } if (config.verify_hlo) { pipeline.AddPass<xla::HloVerifier>(false, false); } } std::vector<tsl::Flag> GetFlags(HloExpandConfig& config) { return { tsl::Flag("h", &config.help, "Alias of --help"), tsl::Flag("help", &config.help, "Display available options"), tsl::Flag( "input_format", &config.input_format, "The format of the input file. If this flag is not specified, it's" "inferred from the file extension instead. Valid values:\n " "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("o", &config.output_file, "Alias of --output_file="), tsl::Flag("output_file", &config.output_file, "Full output file path"), tsl::Flag("output_format", &config.output_format, "The format of the output file. Defaults to input_format. " "Valid values:\n" "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("batch_norm_expander", &config.batch_norm_expander, "Overrides and expands batch_norm_grad, batch_norm_inference, " "and batch_norm_training ops"), tsl::Flag("batch_norm_grad_expander", &config.batch_norm_grad_expander, "Expands batch_norm_grad op"), tsl::Flag("batch_norm_inference_expander", &config.batch_norm_inference_expander, "Expands batch_norm_inference_grad op"), tsl::Flag("batch_norm_training_expander", &config.batch_norm_training_expander, "Expands batch_norm_training_grad op"), tsl::Flag("cholesky_expander", &config.cholesky_expander, "Expands cholesky op"), tsl::Flag("spmd_expander", &config.spmd_expander, "Expands SPMD sharding"), tsl::Flag("expand_all", &config.expand_all, "Overrides and expands all supported passes below"), tsl::Flag("rng_expander", &config.rng_expander, "Expands rng op"), tsl::Flag( "rng_bit_generator_expander", &config.rng_bit_generator_expander, "Overrides and expands rng_bit_generator op on all prng algorithms"), tsl::Flag("rng_bit_generator_philox_expander", &config.rng_bit_generator_philox_expander, "Expands rng_bit_generator op using philox prng algorithm"), tsl::Flag("rng_bit_generator_three_fry_expander", &config.rng_bit_generator_three_fry_expander, "Expands rng_bit_generator op using three_fry prng algorithm"), tsl::Flag("triangular_solve_expander", &config.triangular_solve_expander, "Expands triangular_solve op"), tsl::Flag("verify_hlo", &config.verify_hlo, "Run HLO verifier after passes"), }; } void ParseCompoundFlags(HloExpandConfig& config) { config.batch_norm_grad_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_inference_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_training_expander |= config.expand_all || config.batch_norm_expander; config.cholesky_expander |= config.expand_all; config.rng_bit_generator_philox_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_bit_generator_three_fry_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_expander |= config.expand_all; config.triangular_solve_expander |= config.expand_all; } }
#include <string> #include <vector> #include <gmock/gmock.h> #include "tsl/platform/path.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloExpandTest : public ::testing::Test { protected: void HloOpt(std::vector<std::string>& additional_flags) { std::string hlo_opt_bin = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "hlo-expand"); tsl::SubProcess proc; std::vector<std::string> argv = {hlo_opt_bin}; argv.insert(argv.end(), additional_flags.begin(), additional_flags.end()); proc.SetProgram(hlo_opt_bin, argv); proc.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); proc.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(proc.Start()); stdout_output_ = stderr_output_ = ""; int status = proc.Communicate(nullptr, &stdout_output_, &stderr_output_); #if defined(_WIN32) || defined(_WIN64) exited_normally_ = (status == 0); exit_status_ = status; #else exited_normally_ = WIFEXITED(status); exit_status_ = exited_normally_ ? WEXITSTATUS(status) : -1; #endif } std::string stdout_output_; std::string stderr_output_; bool exited_normally_ = false; int exit_status_ = -1; }; TEST_F(HloExpandTest, CholeskyHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule main, entry_computation_layout={()->f64[3,3]{1,0}} ENTRY %main.3 () -> f64[3,3] { %constant.1 = f64[3,3]{1,0} constant({ { 1, 2, 3 }, { 2, 20, 26 }, { 3, 26, 70 } }) ROOT %cholesky.2 = f64[3,3]{1,0} cholesky(f64[3,3]{1,0} %constant.1), lower=true })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, SpmdHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "spmd.hlo"); std::vector<std::string> additional_flags = {"--spmd_expander", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule module, entry_computation_layout={(f32[24,64]{1,0}, f32[39296,64]{1,0})->f32[24,19648]{1,0}}, num_partitions=2 ENTRY %entry_spmd (param: f32[24,64], param.1: f32[39296,64]) -> f32[24,19648] { %param = f32[24,64]{1,0} parameter(0), sharding={replicated} %lhs.copy.1 = f32[24,64]{1,0} copy(f32[24,64]{1,0} %param) %param.1 = f32[39296,64]{1,0} parameter(1), sharding={replicated} %constant = s32[2]{0} constant({0, 19648}) %partition-id = u32[] partition-id() %dynamic-slice = s32[1]{0} dynamic-slice(s32[2]{0} %constant, u32[] %partition-id), dynamic_slice_sizes={1} %reshape = s32[] reshape(s32[1]{0} %dynamic-slice) %constant.1 = s32[] constant(0) %dynamic-slice.1 = f32[19648,64]{1,0} dynamic-slice(f32[39296,64]{1,0} %param.1, s32[] %reshape, s32[] %constant.1), dynamic_slice_sizes={19648,64} %rhs.copy.1 = f32[19648,64]{1,0} copy(f32[19648,64]{1,0} %dynamic-slice.1) ROOT %dot.1 = f32[24,19648]{1,0} dot(f32[24,64]{1,0} %lhs.copy.1, f32[19648,64]{1,0} %rhs.copy.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, CholeskyExpanderHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path, "--expand_all"}; HloOpt(additional_flags); const std::string& expected_hlo_string = "%xla.cholesky_f64"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, InvalidArgc) { std::vector<std::string> additional_flags = {"--input_format=hlo", "foo", "bar", "baz"}; HloOpt(additional_flags); const std::string& expected_string = "Cannot parse more than one argument. See usage below:"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFormat) { std::vector<std::string> additional_flags = {"--input_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::string output_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_file=" + output_path}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidFile) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Try: hlo-expand --help"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, UnsupportedOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", "--output_format=pb", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Printing to stdout must specify supported " "output_format=[hlo|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, VerificationFailure) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "invalid_concat.hlo"); std::vector<std::string> additional_flags = {"--verify_hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Cannot concatenate arrays that differ in dimensions"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } } }
2,192
#ifndef XLA_TOOLS_HLO_EXTRACTOR_H_ #define XLA_TOOLS_HLO_EXTRACTOR_H_ #include <cstdint> #include <functional> #include <memory> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { using ExtractSelector = std::function<bool(const HloInstruction*)>; enum class ReplaceType { kReplaceParam, kReplaceConst, kReplaceZeroBroadcast, kReplaceRandomBroadcast }; using ReplaceTypeSelector = std::function<ReplaceType(const HloInstruction*)>; std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height = -1, ExtractSelector extract_selector = nullptr, ReplaceTypeSelector replace_type_selector = nullptr, bool cross_computation = false); } #endif #include "xla/tools/hlo_extractor.h" #ifndef _WIN32 #include <unistd.h> #endif #include <cstdint> #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/compilation_environments.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/test_utils.h" #include "tsl/platform/status.h" namespace xla { namespace { class ExtractionVisitor : public ConstDfsHloVisitorWithDefault { public: explicit ExtractionVisitor( const HloInstruction* root_instruction, absl::flat_hash_set<const HloInstruction*>* boundary, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector) : root_instruction_(root_instruction), old_module_(root_instruction->GetModule()), module_(std::make_unique<HloModule>( "extracted", config_, std::make_unique<CompilationEnvironments>( old_module_->comp_envs()))), clone_context_(module_.get()), boundary_(boundary), extract_selector_(extract_selector), replace_type_selector_(replace_type_selector) { for (auto computation : old_module_->computations()) { old_computations_to_builders_.insert( {computation, std::make_unique<HloComputation::Builder>(computation->name())}); } for (auto computation : old_module_->computations()) { parameter_numbers_[computation] = 0; } } absl::Status HandleParameter(const HloInstruction* parameter) override { return ReplaceWithParameter(parameter); } absl::Status DefaultAction(const HloInstruction* hlo) override { if ((boundary_ != nullptr && boundary_->contains(hlo) > 0) || (extract_selector_ != nullptr && !extract_selector_(hlo))) { if (replace_type_selector_ != nullptr) { switch (replace_type_selector_(hlo)) { case ReplaceType::kReplaceConst: return ReplaceWithConstant(hlo); case ReplaceType::kReplaceParam: CHECK(hlo->parent() == root_instruction_->parent()) << "Replacing instructions at non-entry computation with " "parameters is not supported."; return ReplaceWithParameter(hlo); case ReplaceType::kReplaceZeroBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceZeroBroadcast); case ReplaceType::kReplaceRandomBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceRandomBroadcast); default: QCHECK(false) << "Unsupported replacement type"; } } return ReplaceWithParameter(hlo); } std::vector<HloInstruction*> new_operands; for (auto operand : hlo->operands()) { new_operands.push_back(clone_context_.GetInstruction(operand)); } auto instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context_); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(instruction)); if (hlo->IsRoot() && hlo != root_instruction_) { CHECK(clone_context_.FindComputation(hlo->parent()) == nullptr); auto new_computation = module_->AddEmbeddedComputation(builder->Build()); clone_context_.MapComputation(hlo->parent(), new_computation); } return absl::OkStatus(); } absl::Status FinishVisit(const HloInstruction* ) override { auto new_entry_computation = module_->AddEntryComputation( old_computations_to_builders_.at(root_instruction_->parent())->Build()); clone_context_.MapComputation(root_instruction_->parent(), new_entry_computation); for (auto computation : old_module_->MakeComputationPostOrder()) { for (auto old_instruction : computation->MakeInstructionPostOrder()) { if (auto new_instruction = clone_context_.FindInstruction(old_instruction)) { new_instruction->SetAndSanitizeName(old_instruction->name()); } } } for (HloInstruction* instruction : extra_created_instructions_) { module_->SetAndUniquifyInstrName(instruction, instruction->name()); } return absl::OkStatus(); } HloModule* module() { return module_.get(); } std::unique_ptr<HloModule> ConsumeModule() { return std::move(module_); } private: absl::Status ReplaceWithConstant(const HloInstruction* hlo) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(hlo->shape()); TF_CHECK_OK(literal_status.status()); auto new_const = HloInstruction::CreateConstant(std::move(literal_status.value())); clone_context_.MapInstruction(hlo, new_const.get()); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(new_const)); return absl::OkStatus(); } absl::Status ReplaceWithParameter(const HloInstruction* hlo) { CHECK(parameter_numbers_.contains(hlo->parent())); auto new_parameter = HloInstruction::CreateParameter( parameter_numbers_.at(hlo->parent())++, hlo->shape(), hlo->name()); clone_context_.MapInstruction(hlo, new_parameter.get()); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); builder->AddInstruction(std::move(new_parameter)); return absl::OkStatus(); } HloInstruction* ReplaceWithConstantBroadcastHelper( const Shape& shape, HloComputation::Builder* builder, ReplaceType replace_type) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_operands; for (const auto& subshape : shape.tuple_shapes()) { tuple_operands.push_back(ReplaceWithConstantBroadcastHelper( subshape, builder, replace_type)); } auto zero_tuple = builder->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); extra_created_instructions_.push_back(zero_tuple); return zero_tuple; } else { Shape constant_shape = ShapeUtil::MakeShape(shape.element_type(), {}); HloInstruction* constant_instruction; CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); if (replace_type == ReplaceType::kReplaceZeroBroadcast) { constant_instruction = builder->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(constant_shape.element_type()))); } else { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(constant_shape); TF_CHECK_OK(literal_status.status()); constant_instruction = builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal_status.value()))); } extra_created_instructions_.push_back(constant_instruction); auto broadcast_constant_instruction = builder->AddInstruction( HloInstruction::CreateBroadcast(shape, constant_instruction, {})); extra_created_instructions_.push_back(broadcast_constant_instruction); return broadcast_constant_instruction; } } absl::Status ReplaceWithConstantBroadcast(const HloInstruction* hlo, ReplaceType replace_type) { CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); HloInstruction* zero_broadcast = ReplaceWithConstantBroadcastHelper(hlo->shape(), builder, replace_type); clone_context_.MapInstruction(hlo, zero_broadcast); return absl::OkStatus(); } const HloInstruction* root_instruction_; HloModule* old_module_; HloModuleConfig config_; std::unique_ptr<HloModule> module_; HloCloneContext clone_context_; absl::flat_hash_map<const HloComputation*, std::unique_ptr<HloComputation::Builder>> old_computations_to_builders_; absl::flat_hash_map<const HloComputation*, int> parameter_numbers_; absl::flat_hash_set<const HloInstruction*>* boundary_; ExtractSelector extract_selector_; ReplaceTypeSelector replace_type_selector_; std::vector<HloInstruction*> extra_created_instructions_; }; void ComputeBoundary(const HloInstruction* root, int64_t limit, absl::flat_hash_set<const HloInstruction*>* boundary) { std::deque<const HloInstruction*> worklist; absl::flat_hash_map<const HloInstruction*, int64_t> visited; worklist.push_back(root); visited.emplace(root, 0); while (!worklist.empty()) { auto hlo = worklist.front(); worklist.pop_front(); int64_t hops = visited[hlo]; if (hops > limit) { boundary->insert(hlo); continue; } for (const HloInstruction* operand : hlo->operands()) { if (visited.count(operand)) { continue; } worklist.push_back(operand); visited.emplace(operand, hops + 1); } } } } std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector, bool cross_computation) { QCHECK(height == -1 || !cross_computation) << "Boundary cannnot be calculated across the computations."; absl::flat_hash_set<const HloInstruction*> boundary; if (height != -1) { ComputeBoundary(instruction, height, &boundary); } ExtractionVisitor visitor(instruction, &boundary, extract_selector, replace_type_selector); TF_CHECK_OK(instruction->Accept(&visitor, true, false, cross_computation)); ExtractionVisitor cleanup_visitor( visitor.module()->entry_computation()->root_instruction(), nullptr, nullptr, nullptr); TF_CHECK_OK(visitor.module()->entry_computation()->root_instruction()->Accept( &cleanup_visitor, true, false, false)); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(cleanup_visitor.module()).status()); return cleanup_visitor.ConsumeModule(); } }
#include "xla/tools/hlo_extractor.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloExtractorTest = HloTestBase; TEST_F(HloExtractorTest, ExtractTopLevel) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) negate = f32[4]{0} negate(f32[4]{0} param.0) ROOT exp = f32[4]{0} exponential(f32[4]{0} negate) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Parameter(0)))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Parameter(0))); } { auto extracted_module = ExtractModule( FindInstruction(hlo_module.get(), "negate"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Negate(op::Parameter(0))); } } TEST_F(HloExtractorTest, ExtractDag) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(f32[4]{0} param.0) negate = f32[4]{0} negate(f32[4]{0} tanh) exp = f32[4]{0} exponential(f32[4]{0} negate) ROOT add = f32[4]{0} add(f32[4]{0} negate, f32[4]{0} exp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Tanh(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Parameter(0)), op::Exp(op::Negate(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Tanh(op::Parameter(0))), op::Exp(op::Negate(op::Tanh(op::Parameter(0)))))); } } TEST_F(HloExtractorTest, ExtractWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { p = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(p) c = f32[4]{0} constant({1, 2, 3, 4}) ROOT add = f32[4]{0} add(tanh, c) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Tanh(op::Parameter(0)), op::Constant())); } } TEST_F(HloExtractorTest, ExtractFromMultipleComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) add.0 = f32[] add(c.1, c.2) c.3 = f32[] constant(4) ROOT ret = f32[] subtract(add.0, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(0) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(1) ROOT add.1 = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(inst, op::Add()); auto extract_selector = [&inst](const HloInstruction* hlo_inst) { return hlo_inst != inst; }; { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Constant(), op::Constant())); } { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Broadcast(op::Constant()), op::Constant())); } } TEST_F(HloExtractorTest, HloSelector) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), HloOpcode::kSubtract); EXPECT_NE(inst, nullptr); EXPECT_THAT(inst, op::Subtract(op::Multiply(), op::Add())); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Broadcast(op::Parameter()), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Parameter(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Constant(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { if (hlo_inst->opcode() != HloOpcode::kBroadcast && hlo_inst->opcode() != HloOpcode::kAdd) { return true; } return false; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { if (hlo_inst->opcode() == HloOpcode::kBroadcast) { return ReplaceType::kReplaceConst; } return ReplaceType::kReplaceParam; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Parameter())); } } TEST_F(HloExtractorTest, ReplaceTupleWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tuple.0 = (f32[4]{0}, f32[4]{0}) rng-bit-generator(f32[4]{0} param.0), algorithm=rng_default negate = f32[4]{0} negate(f32[4]{0} param.0) tuple.1 = ((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple(tuple.0, negate) element = f32[4]{0} get-tuple-element(((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple.1), index=1 ROOT add = f32[4]{0} add(element, param.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Constant()), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } } } }
2,193
#ifndef XLA_TOOLS_HLO_MODULE_LOADER_H_ #define XLA_TOOLS_HLO_MODULE_LOADER_H_ #include <functional> #include <memory> #include <string> #include <string_view> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tools/run_hlo_module.pb.h" namespace xla { namespace hlo_module_loader_details { struct Config { Config() {} int64_t num_replicas = 1; int64_t num_partitions = 1; }; } std::string StripLogHeaders(std::string_view hlo_string); absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromData( const std::string& data, std::string_view format, const hlo_module_loader_details::Config& ovr_config = hlo_module_loader_details::Config(), const std::function<void(HloModuleConfig*)>& config_modifier_hook = {}, BufferAssignmentProto* buffer_assignment_proto = nullptr); absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromFile( const std::string& path, std::string format = "", const hlo_module_loader_details::Config& ovr_config = hlo_module_loader_details::Config(), const std::function<void(HloModuleConfig*)>& config_modifier_hook = {}, BufferAssignmentProto* buffer_assignment_proto = nullptr); absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromData(const std::string& data, std::string_view format); absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromFile(const std::string& path, std::string format = ""); } #endif #include "xla/tools/hlo_module_loader.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { absl::Status OverrideConfig(const hlo_module_loader_details::Config& ovr_config, HloModuleConfig* config) { config->set_replica_count(ovr_config.num_replicas); config->set_num_partitions(ovr_config.num_partitions); return absl::OkStatus(); } } std::string StripLogHeaders(std::string_view hlo_string) { static RE2* matcher = new RE2( "[IWEF]\\d{4} " "\\d{2}:\\d{2}:\\d{2}\\.\\d+\\s+\\d+\\s+[^:]+:\\d+\\]\\s?(.*)"); std::string_view matches[4]; std::vector<std::string> lines = absl::StrSplit(hlo_string, '\n'); for (auto& line : lines) { if (matcher->Match(line, 0, line.size(), RE2::ANCHOR_START, matches, 4)) { line = std::string(matches[1]); } } return absl::StrJoin(lines, "\n", [](std::string* out, const std::string& line) { absl::StrAppend(out, line); }); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromData( const std::string& data, std::string_view format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto) { DebugOptions debug_options = GetDebugOptionsFromFlags(); std::unique_ptr<HloModule> module; if (format == "hlo" || format == "txt") { std::string hlo_string = StripLogHeaders(data); HloModuleConfig config; config.set_debug_options(debug_options); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } TF_ASSIGN_OR_RETURN(module, ParseAndReturnUnverifiedModule(hlo_string, config)); } else { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } if (buffer_assignment_proto != nullptr) { if (proto.hlo().has_buffer_assignment()) { *buffer_assignment_proto = proto.hlo().buffer_assignment(); } else { return InvalidArgument( "Expected buffer assignment in HLO protobuf binary."); } } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: hlo, txt, pb, " "or pbtxt", format); } TF_ASSIGN_OR_RETURN(HloModuleConfig config, HloModule::CreateModuleConfigFromProto( proto.hlo().hlo_module(), debug_options)); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } TF_ASSIGN_OR_RETURN( module, HloModule::CreateFromProto(proto.hlo().hlo_module(), config)); } return std::move(module); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromFile( const std::string& path, std::string format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadModuleFromData(data, format, ovr_config, config_modifier_hook, buffer_assignment_proto); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromData(const std::string& data, std::string_view format) { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: pb, " "or pbtxt", format); } auto iteration_literals_proto = std::make_unique<RunHloModuleIterationLiterals>(); for (const auto& i : proto.arguments()) { *iteration_literals_proto->add_arguments() = i; } return std::move(iteration_literals_proto); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromFile(const std::string& path, std::string format) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadInputFromData(data, format); } }
#include "xla/tools/hlo_module_loader.h" #include <string> #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloModuleLoaderTest : public HloTestBase {}; TEST_F(HloModuleLoaderTest, StripsLogHeaders) { const std::string& hlo_string = R"( I0521 12:04:45.883483 1509 service.cc:186] HloModule test_log_stripping I0521 12:04:45.883483 1509 service.cc:186] I0521 12:04:45.883483 1509 service.cc:186] ENTRY entry { I0521 12:04:45.883483 1509 service.cc:186] p0 = f32[4]{0} parameter(0) I0521 12:04:45.883483 1509 service.cc:186] p1 = f32[4]{0} parameter(1) I0521 12:04:45.883483 1509 service.cc:186] add = f32[4]{0} add(p0, p1) I0521 12:04:45.883483 1509 service.cc:186] ROOT rooty = (f32[4]{0}, f32[4]{0}) tuple(p1, add) I0521 12:04:45.883483 1509 service.cc:186] } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, LoadModuleFromData(hlo_string, "txt")); EXPECT_NE(FindInstruction(hlo_module.get(), "p0"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "p1"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "add"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "rooty"), nullptr); } } }
2,194
#ifndef XLA_TOOLS_MULTIHOST_HLO_RUNNER_FUNCTIONAL_HLO_RUNNER_H_ #define XLA_TOOLS_MULTIHOST_HLO_RUNNER_FUNCTIONAL_HLO_RUNNER_H_ #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <vector> #include "absl/container/btree_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/pjrt/distributed/distributed.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/xla.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { struct PjRtEnvironment { std::unique_ptr<xla::PjRtClient> client; std::unique_ptr<xla::DistributedRuntimeService> service; std::shared_ptr<xla::KeyValueStoreInterface> kv_store; std::shared_ptr<xla::DistributedRuntimeClient> distributed_client; }; absl::StatusOr<PjRtEnvironment> GetPjRtClient(absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout); enum class InputFormat { kText, kProtoText, kProtoBinary, kSnapshotProtoBinary, }; class ProfilerInterface { public: virtual ~ProfilerInterface() = default; virtual void CreateSession() = 0; virtual void UploadSession() = 0; }; bool AbslParseFlag(absl::string_view text, InputFormat* input_format, std::string* error); std::string AbslUnparseFlag(InputFormat input_format); class FunctionalHloRunner { public: FunctionalHloRunner() = delete; using LiteralVec = std::vector<Literal>; using ShapeVec = std::vector<Shape>; using PerDeviceLiteralVecType = absl::btree_map<int, LiteralVec>; using PerDeviceShapeVecType = absl::btree_map<int, ShapeVec>; using PerDeviceIndexVecType = absl::btree_map<int, std::vector<int>>; enum class LogOutputMode { kLogOutput, kNotLogOutput }; enum class HloPassesMode { kRunXLABackendOnly, kDisableAllHloPasses, kStandardCompile }; enum class SpmdMode { kUseSpmdPartitioning, kNotUseSpmdPartitioning }; enum class SpmdPartitionedMode { kIsSpmdPartitionedModule, kIsNotSpmdPartitionedModule }; enum class XlaTextDumpMode { kDumpAsText, kNotDumpAsText }; enum class XlaProtoDumpMode { kDumpAsProto, kNotDumpAsProto }; enum class ModuleArgumentMode { kUseDeviceIdAsInput, kUseRandomInputs, kUseSharedRandomInputs, kUseZerosAsInput, kUninitialized, }; enum class ModuleOutputMode { kReturnOutputs, kNotReturnOutputs, kReturnDevice0Outputs }; struct PreprocessingOptions { SpmdPartitionedMode spmd_partitioned_mode = SpmdPartitionedMode::kIsNotSpmdPartitionedModule; std::optional<int> while_execution_count = std::nullopt; bool remove_infeed_outfeed = true; bool flatten_while_loop() const { return while_execution_count.has_value(); } bool is_spmd_partitioned_module() const { return spmd_partitioned_mode == SpmdPartitionedMode::kIsSpmdPartitionedModule; } }; struct RawCompileOptions { HloPassesMode hlo_passes_mode = HloPassesMode::kStandardCompile; SpmdMode spmd_mode = SpmdMode::kNotUseSpmdPartitioning; std::optional<ExecutionOptions> execution_options = std::nullopt; std::optional<int> num_replicas = 1; std::optional<int> num_partitions = 1; std::optional<int> num_slices = std::nullopt; std::string xla_dump_to = ""; XlaTextDumpMode xla_text_dump_mode = XlaTextDumpMode::kNotDumpAsText; XlaProtoDumpMode xla_proto_dump_mode = XlaProtoDumpMode::kNotDumpAsProto; }; struct RunningOptions { ModuleArgumentMode module_argument_mode = ModuleArgumentMode::kUseRandomInputs; ModuleOutputMode module_output_mode = ModuleOutputMode::kReturnOutputs; size_t num_repeats = 1; bool recreate_buffers_between_repeats = false; LogOutputMode log_input_output_mode = LogOutputMode::kNotLogOutput; const MultiSliceConfig* multi_slice_config = nullptr; ProfilerInterface* profiler = nullptr; std::optional<bool> untuple_result = std::nullopt; bool log_input_output() const { return log_input_output_mode == LogOutputMode::kLogOutput; } }; struct HloModuleAndArguments { std::unique_ptr<HloModule> hlo_module; std::vector<Literal> arguments; }; struct ReplicasAndPartitions { int replicas = 1; int partitions = 1; }; static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateHostClient(); static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateGpuClient( GpuClientOptions options); static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateMockGpuClient( int num_nodes = 1); static absl::StatusOr<ExecutionOptions> LoadExecutionOptions( absl::string_view path); static absl::StatusOr<CompileOptions> CreateCompileOptions( const PjRtClient& client, const FunctionalHloRunner::RawCompileOptions& raw_options, int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::Status LoadAndRunAndDump( PjRtClient& client, const DebugOptions& debug_options, const xla::FunctionalHloRunner::PreprocessingOptions& preproc_options, const xla::FunctionalHloRunner::RawCompileOptions& raw_compile_options, const xla::FunctionalHloRunner::RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, std::string dump_output_to = "", int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::StatusOr<PerDeviceLiteralVecType> LoadAndRun( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, const PerDeviceLiteralVecType& arguments = {}); static absl::Status LoadAndCompile( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const RawCompileOptions& raw_compile_options, std::string_view hlo_file, InputFormat input_format, int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::StatusOr<PerDeviceLiteralVecType> CompileAndRun( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, HloModule* hlo_module, const PerDeviceLiteralVecType& arguments = {}); static absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options); static absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const PjRtTopologyDescription& topology); static absl::StatusOr<PerDeviceLiteralVecType> Run( PjRtClient& client, PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, const RunningOptions& running_options, std::minstd_rand0* engine = nullptr); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromHloTextFile( absl::string_view hlo_file); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromBinaryProtoFile(absl::string_view hlo_file); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromTextProtoFile( absl::string_view hlo_file); static absl::StatusOr<HloModuleAndArguments> ReadModuleFromSnapshotBinaryProtoFile(absl::string_view hlo_file); static absl::StatusOr<HloModuleAndArguments> LoadHloModuleAndArguments( absl::string_view hlo_file, InputFormat input_format); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromString( absl::string_view hlo_text); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromProto( const HloModuleProto& proto); static absl::Status PrepareHloModuleForCompilation( HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options); static CompileOptions CompleteCompileOptions(const HloModule& hlo_module, CompileOptions compile_options); static absl::Status DumpOutput( const FunctionalHloRunner::PerDeviceLiteralVecType& output, absl::string_view dump_output_to, int task_id); private: static ReplicasAndPartitions GetReplicasAndPartitions( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices = 1); static ExecutableBuildOptions CreateExecutableBuildOptionsFromExecutionOptions( const ExecutionOptions& execution_options); static absl::Span<PjRtDevice* const> GetLocalDevices( const PjRtClient& client); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CreateArgumentsOnDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments = false, std::minstd_rand0* engine = nullptr); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CreateUninitializedArgumentsOnDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments = false); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CopyArgumentsToDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, bool log_input, bool flattened_arguments, bool clone_device0_arguments = false); static absl::StatusOr<PerDeviceLiteralVecType> RunInternal( PjRtClient& client, PjRtLoadedExecutable* executable, std::function<absl::StatusOr< std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>>(bool)> create_argument_buffers_on_device, const RunningOptions& running_options); static absl::StatusOr<PerDeviceLiteralVecType> FetchAndLogOutput( PjRtClient& client, const std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>& output_buffers, ModuleOutputMode module_output_mode, bool log_output); static ReplicasAndPartitions GetReplicasAndPartitionsInternal( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices = 1); }; bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleArgumentMode* argument_mode, std::string* error); std::string AbslUnparseFlag( FunctionalHloRunner::ModuleArgumentMode argument_mode); bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleOutputMode* output_mode, std::string* error); std::string AbslUnparseFlag(FunctionalHloRunner::ModuleOutputMode output_mode); void AddShardingAnnotationsToSpmdPartitionedModule(HloModule* hlo_module); } #endif #include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/distributed/client.h" #include "xla/pjrt/distributed/distributed.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/service.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { static absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetPjRtClient( absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout, std::unique_ptr<xla::DistributedRuntimeService>& service, std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, std::shared_ptr<xla::DistributedRuntimeClient>& distributed_client) { if (device_type == "host") { CHECK_EQ(num_nodes, 1); return xla::FunctionalHloRunner::CreateHostClient(); } if (device_type != "gpu") { return absl::UnimplementedError(device_type); } if (enable_mock_nccl) { CHECK_GT(num_nodes, 1); return xla::FunctionalHloRunner::CreateMockGpuClient(num_nodes); } else { if (num_nodes == 1) { return xla::FunctionalHloRunner::CreateGpuClient({}); } else { TF_RET_CHECK(!address.empty()); TF_RET_CHECK(node_id >= 0) << "Node id is expected to be in range [0, num_nodes)"; TF_RET_CHECK(node_id < num_nodes) << "Node id is expected to be in range [0, num_nodes)"; CHECK_GT(address.length(), 0); if (node_id == 0) { std::string coordinator_bind_address = "[::]:" + std::string(address).substr(address.rfind(':') + 1); xla::CoordinationServiceImpl::Options options; options.num_nodes = num_nodes; auto status_or = xla::GetDistributedRuntimeService( coordinator_bind_address, options); TF_QCHECK_OK(status_or.status()); service = std::move(status_or.value()); } xla::DistributedRuntimeClient::Options options; options.node_id = node_id; options.init_timeout = init_timeout; distributed_client = GetDistributedRuntimeClient(std::string(address), options); TF_QCHECK_OK(distributed_client->Connect()); kv_store = GetDistributedKeyValueStore(distributed_client, "gpu:"); GpuClientOptions gpu_client_options; gpu_client_options.node_id = node_id; gpu_client_options.num_nodes = num_nodes; gpu_client_options.kv_store = kv_store; return xla::FunctionalHloRunner::CreateGpuClient( std::move(gpu_client_options)); } } } absl::StatusOr<PjRtEnvironment> GetPjRtClient(absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout) { PjRtEnvironment env; TF_ASSIGN_OR_RETURN(env.client, GetPjRtClient(device_type, address, node_id, num_nodes, enable_mock_nccl, init_timeout, env.service, env.kv_store, env.distributed_client)); return env; } namespace { absl::StatusOr<std::unique_ptr<HloModule>> HloTextToModule( absl::string_view hlo_text) { return ParseAndReturnUnverifiedModule(hlo_text); } absl::StatusOr<std::unique_ptr<HloModule>> HloProtoToModule( const HloModuleProto& proto) { TF_ASSIGN_OR_RETURN( HloModuleConfig config, HloModule::CreateModuleConfigFromProto(proto, DebugOptions())); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, HloModule::CreateFromProto(proto, config)); return std::move(module); } template <typename ElementType> void PopulateWithSameValue(Literal* literal, ElementType val) { for (ElementType& element : literal->data<ElementType>()) { element = static_cast<ElementType>(val); } } absl::StatusOr<Literal> MakeFakeLiteralWithSameValue(const Shape& shape, int value) { if (shape.IsArray()) { Shape new_shape = shape; new_shape.mutable_layout()->clear_tiles(); return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto type) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsArrayType(type)) { using NativeT = primitive_util::NativeTypeOf<type>; Literal literal(new_shape); PopulateWithSameValue( &literal, static_cast<NativeT>(type == PRED ? (value % 2) == 0 : value)); return literal; } return Unimplemented( "Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); }, new_shape.element_type()); } else if (shape.IsTuple()) { std::vector<Literal> subliterals; for (const Shape& subshape : shape.tuple_shapes()) { TF_ASSIGN_OR_RETURN(Literal subliteral, MakeFakeLiteralWithSameValue(subshape, value)); subliterals.push_back(std::move(subliteral)); } return LiteralUtil::MakeTupleOwned(std::move(subliterals)); } return InvalidArgument("Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); } } bool AbslParseFlag(absl::string_view text, InputFormat* input_format, std::string* error) { if (text == "text") { *input_format = InputFormat::kText; return true; } if (text == "proto_text") { *input_format = InputFormat::kProtoText; return true; } if (text == "proto_binary") { *input_format = InputFormat::kProtoBinary; return true; } if (text == "snapshot_proto_binary") { *input_format = InputFormat::kSnapshotProtoBinary; return true; } *error = "unknown value for enumeration"; return false; } std::string AbslUnparseFlag(InputFormat input_format) { switch (input_format) { case InputFormat::kText: return "text"; case InputFormat::kProtoText: return "proto_text"; case InputFormat::kProtoBinary: return "proto_binary"; case InputFormat::kSnapshotProtoBinary: return "snapshot_proto_binary"; default: return absl::StrCat(input_format); } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleArgumentMode* argument_mode, std::string* error) { if (text == "use_device_id_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput; return true; } if (text == "use_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs; return true; } if (text == "use_shared_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs; return true; } if (text == "use_zeros_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; return true; } if (text == "uninitialized") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; return true; } *error = "Unrecognized module argument mode specified. Expect " "\"use_device_id_as_input\", \"use_random_inputs\", or " "\"use_shared_random_inputs\"."; return false; } std::string AbslUnparseFlag( FunctionalHloRunner::ModuleArgumentMode argument_mode) { switch (argument_mode) { case FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput: return "use_device_id_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs: return "use_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs: return "use_shared_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput: return "use_zeros_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUninitialized: return "uninitialized"; default: LOG(FATAL) << "Unexpected argument mode."; } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleOutputMode* output_mode, std::string* error) { if (text == "return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnOutputs; return true; } if (text == "not_return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs; return true; } if (text == "return_device_0_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs; return true; } *error = "Unrecognized module output mode specified. Expect \"return_outputs\", " "\"not_return_outputs\", or \"return_device_0_outputs\"."; return false; } std::string AbslUnparseFlag(FunctionalHloRunner::ModuleOutputMode output_mode) { switch (output_mode) { case FunctionalHloRunner::ModuleOutputMode::kReturnOutputs: return "return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs: return "not_return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs: return "return_device_0_outputs"; default: LOG(FATAL) << "Unexpected output mode."; } } void AddShardingAnnotationsToSpmdPartitionedModule(HloModule* hlo_module) { auto set_manual_sharding = [](HloInstruction* hlo) { if (!hlo->has_sharding()) { hlo->set_sharding( HloSharding::Manual().NormalizeTupleSharding(hlo->shape())); } }; for (int64_t i = 0; i < hlo_module->entry_computation()->num_parameters(); ++i) { HloInstruction* param = hlo_module->entry_computation()->parameter_instruction(i); set_manual_sharding(param); } HloInstruction* entry_root = hlo_module->entry_computation()->root_instruction(); set_manual_sharding(entry_root); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateHostClient() { return GetTfrtCpuClient(CpuClientOptions()); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateGpuClient(GpuClientOptions options) { if (options.node_id < 0 || options.node_id >= options.num_nodes) { return absl::InvalidArgumentError( "Node id is expected to be in range [0, num_nodes)"); } return GetStreamExecutorGpuClient(options); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateMockGpuClient(int num_nodes) { GpuClientOptions options; options.num_nodes = num_nodes; options.enable_mock_nccl = true; return GetStreamExecutorGpuClient(options); } absl::StatusOr<ExecutionOptions> FunctionalHloRunner::LoadExecutionOptions( absl::string_view path) { ExecutionOptions execution_options; TF_RETURN_IF_ERROR(tsl::ReadTextOrBinaryProto( tsl::Env::Default(), std::string(path), &execution_options)); return execution_options; } absl::StatusOr<CompileOptions> FunctionalHloRunner::CreateCompileOptions( const PjRtClient& client, const FunctionalHloRunner::RawCompileOptions& raw_options, int task_id, int num_nodes, std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { CompileOptions compile_options; if (raw_options.execution_options.has_value()) { compile_options.executable_build_options = CreateExecutabl
#include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "xla/debug_options_flags.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/service.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/filecheck.h" #include "xla/tsl/util/command_line_flags.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::SizeIs; bool IsTestingCpu() { #ifdef XLA_TEST_BACKEND_CPU return true; #endif return false; } std::string GetHloPath(std::string file_name) { return tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "multihost_hlo_runner", "data", file_name); } absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetPjRtClient() { if (IsTestingCpu()) { return xla::FunctionalHloRunner::CreateHostClient(); } return xla::FunctionalHloRunner::CreateGpuClient({}); } using FunctionalHloRunnerTest = ::testing::Test; TEST_F(FunctionalHloRunnerTest, SingleDeviceHlo) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, Sharded2Devices) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseZerosAsInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputsWithTupledArguments) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device_tupled.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, CanCompileWithoutHavingEnoughGpus) { tsl::Env* env = tsl::Env::Default(); std::string dump_dir; ASSERT_TRUE(env->LocalTempFilename(&dump_dir)); tsl::FileSystem* fs = nullptr; TF_ASSERT_OK(env->GetFileSystemForFile(dump_dir, &fs)); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; raw_compile_options.xla_dump_to = dump_dir; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); TF_EXPECT_OK(FunctionalHloRunner::LoadAndCompile( *client, debug_options, preproc_options, raw_compile_options, GetHloPath("sharded_16_devices.hlo"), InputFormat::kText)); { std::vector<std::string> after_opt_hlo_paths; TF_ASSERT_OK( fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*after_optimizations.txt"), &after_opt_hlo_paths)); ASSERT_THAT(after_opt_hlo_paths, SizeIs(1)); std::string after_opt_hlo; TF_ASSERT_OK( tsl::ReadFileToString(env, after_opt_hlo_paths[0], &after_opt_hlo)); absl::StatusOr<bool> file_check_result = RunFileCheck(after_opt_hlo, R"( )"); TF_ASSERT_OK(file_check_result.status()); EXPECT_TRUE(file_check_result.value()); } { std::vector<std::string> ir_paths; TF_ASSERT_OK(fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*ir-no-opt.ll"), &ir_paths)); ASSERT_THAT(ir_paths, SizeIs(1)); } } static const char* binary_name; constexpr int kNumNodes = 3; TEST_F(FunctionalHloRunnerTest, ShardedAutotuningWorks) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test."; } tsl::SubProcess child[kNumNodes]; for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--xla_gpu_shard_autotuning"); argv.push_back(absl::StrFormat("--node_id=%d", node_id)); child[node_id].SetProgram(binary_name, argv); child[node_id].SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child[node_id].SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); ASSERT_TRUE(child[node_id].Start()) << "node " << node_id; } for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::string stdout_str; std::string stderr_str; int child_status = child[node_id].Communicate(nullptr, &stdout_str, &stderr_str); ASSERT_EQ(child_status, 0) << " node " << node_id << "\nstdout:\n" << stdout_str << "\nstderr:\n" << stderr_str; } } absl::Status ShardedAutotuningWorksTestBody(const int node_id) { tsl::setenv("CUDA_VISIBLE_DEVICES", std::to_string(node_id).data(), true); TF_ASSIGN_OR_RETURN( PjRtEnvironment env, xla::GetPjRtClient("gpu", "127.0.0.1:12345", node_id, kNumNodes, false, absl::Seconds(120))); CHECK(env.kv_store != nullptr); TF_RETURN_IF_ERROR(FunctionalHloRunner::LoadAndCompile( *env.client, GetDebugOptionsFromFlags(), FunctionalHloRunner::PreprocessingOptions{}, FunctionalHloRunner::RawCompileOptions{}, GetHloPath("multiple_gemm_fusions.hlo"), InputFormat::kText)); if (node_id == 0) { TF_ASSIGN_OR_RETURN(std::string results0, env.kv_store->Get("gemm_fusion_autotuning_results_1_0", absl::Seconds(1))); CHECK(absl::StrContains(results0, "run_time")); TF_ASSIGN_OR_RETURN(std::string results1, env.kv_store->Get("gemm_fusion_autotuning_results_1_1", absl::Seconds(1))); CHECK(absl::StrContains(results1, "run_time")); CHECK_NE(results0, results1); TF_ASSIGN_OR_RETURN(std::string results2, env.kv_store->Get("gemm_fusion_autotuning_results_1_2", absl::Seconds(1))); CHECK(!absl::StrContains(results2, "run_time")); } return absl::OkStatus(); } TEST_F(FunctionalHloRunnerTest, CanRunWithMockCollectives) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test"; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, FunctionalHloRunner::CreateMockGpuClient(16)); TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_16_devices.hlo")}, InputFormat::kText)); } } } int main(int argc, char* argv[]) { xla::binary_name = argv[0]; int node_id = -1; std::vector<tsl::Flag> flag_list = { tsl::Flag("node_id", &node_id, "Node ID for ShardedAutotuningWorks test."), }; xla::AppendDebugOptionsFlags(&flag_list); std::string usage = tsl::Flags::Usage(argv[0], flag_list); tsl::Flags::Parse(&argc, argv, flag_list); if (node_id >= 0) { return !xla::ShardedAutotuningWorksTestBody(node_id).ok(); } testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
2,195
#ifndef XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #define XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" namespace xla { namespace bisect { class BugCheckerInterface { public: virtual ~BugCheckerInterface() {} virtual absl::StatusOr<bool> Run(const HloModule& module) = 0; virtual absl::flat_hash_map<std::string, Literal> GetResults() = 0; }; class HloBisectState { public: explicit HloBisectState(std::unique_ptr<HloModule> module, BugCheckerInterface* bug_checker) : module_(std::move(module)), bug_checker_(bug_checker) {} absl::StatusOr<bool> ShouldProcess(); absl::StatusOr<bool> TrimEntryComputation(); std::unique_ptr<xla::HloModule>&& GetResult(); private: absl::StatusOr<bool> RunModule(const HloModule& module); absl::StatusOr<bool> TrimByOutputs(); absl::StatusOr<bool> TrimByInstructions(); absl::StatusOr<bool> TrimByUsingConstants(); absl::Status ExpectModuleIsBuggy(); std::unique_ptr<xla::HloModule> module_; BugCheckerInterface* bug_checker_; absl::flat_hash_set<std::string> foldable_instructions_; absl::flat_hash_map<std::string, Literal> foldable_instructions_values_; }; } } #endif #include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/tests/test_utils.h" #include "xla/util.h" namespace xla { namespace bisect { namespace { std::vector<HloInstruction*> GetModifiedInstructionPostOrder( HloComputation* computation) { std::vector<HloInstruction*> instructions( computation->parameter_instructions().begin(), computation->parameter_instructions().end()); absl::c_copy_if(computation->MakeInstructionPostOrder(), std::back_inserter(instructions), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kParameter; }); return instructions; } absl::Status MorphModuleWithOutputs(HloModule* module, absl::Span<HloInstruction* const> outputs) { HloComputation* entry_computation = module->entry_computation(); HloInstruction* new_root = outputs.size() == 1 ? outputs[0] : entry_computation->AddInstruction( HloInstruction::CreateTuple(outputs)); entry_computation->set_root_instruction(new_root, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); HloDCE dce; absl::StatusOr<bool> dce_result = dce.Run(module); return dce_result.status(); } absl::Status MorphModuleWithInstructions( HloModule* module, absl::Span<HloInstruction* const> instructions) { ConstHloInstructionSet in_range_instructions(instructions.begin(), instructions.end()); auto keep_result = [&](const HloInstruction* instruction) { return instruction->opcode() != HloOpcode::kParameter && !absl::c_any_of(instruction->users(), [&](const HloInstruction* user) { return in_range_instructions.count(user) != 0; }); }; std::vector<HloInstruction*> outputs; absl::c_copy_if(instructions, std::back_inserter(outputs), keep_result); return MorphModuleWithOutputs(module, outputs); } absl::Status MorphModuleWithInstructions(HloModule* module, size_t num_instructions) { std::vector<HloInstruction*> ordered_instructions = GetModifiedInstructionPostOrder(module->entry_computation()); HloInstruction* const* instructions_begin = &ordered_instructions.front(); return MorphModuleWithInstructions( module, absl::MakeSpan(instructions_begin, num_instructions)); } absl::Status MorphModuleWithLiterals( HloModule* module, absl::flat_hash_map<std::string, Literal> literal_map) { HloComputation* entry_computation = module->entry_computation(); absl::flat_hash_map<HloInstruction*, Literal> replace_map; for (HloInstruction* instruction : entry_computation->instructions()) { auto it = literal_map.find(instruction->name()); if (it != literal_map.end()) { replace_map.emplace(instruction, std::move(it->second)); } } for (auto& [instruction, literal] : replace_map) { if (!instruction->IsDead()) { HloInstruction* new_instruction = entry_computation->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); absl::Status replace_status = entry_computation->ReplaceInstruction(instruction, new_instruction); TF_RETURN_IF_ERROR(replace_status); } } xla::HloDCE dce; absl::StatusOr<bool> dce_status = dce.Run(module); return dce_status.status(); } bool InstructionNotReplaceableWithConstant(HloInstruction* instruction) { return instruction->shape().is_dynamic() || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kParameter; } } absl::StatusOr<bool> HloBisectState::ShouldProcess() { return RunModule(*module_); } absl::StatusOr<bool> HloBisectState::TrimEntryComputation() { bool changed_in_loop = false; bool changed = false; for (int iter = 0; changed || iter < 2; iter++) { if (iter % 2 == 0) { VLOG(2) << "Trimming by outputs, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByOutputs()); } else { VLOG(2) << "Trimming by instructions, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByInstructions()); } changed_in_loop |= changed; } VLOG(2) << "Trimming by replacing instructions with literals"; TF_ASSIGN_OR_RETURN(changed, TrimByUsingConstants()); VLOG(2) << "Final module: " << module_->ToString(); return changed || changed_in_loop; } std::unique_ptr<xla::HloModule>&& HloBisectState::GetResult() { return std::move(module_); } absl::StatusOr<bool> HloBisectState::RunModule(const HloModule& module) { VLOG(3) << "Modified module: " << module.ToString(); absl::StatusOr<bool> bug_result = bug_checker_->Run(module); TF_RETURN_IF_ERROR(bug_result.status()); VLOG(3) << "Bug checker result: " << bug_result.value(); if (!bug_result.value()) { for (HloInstruction* instr : module.entry_computation()->instructions()) { foldable_instructions_.emplace(instr->name()); } for (auto& [key, value] : bug_checker_->GetResults()) { foldable_instructions_values_[key] = std::move(value); } } return bug_result; } absl::StatusOr<bool> HloBisectState::TrimByOutputs() { HloInstruction* root_instruction = module_->entry_computation()->root_instruction(); if (root_instruction->opcode() != HloOpcode::kTuple || root_instruction->operand_count() < 2) { return false; } auto run_modified = [&](int64_t start, int64_t end) -> absl::StatusOr<bool> { std::unique_ptr<HloModule> new_module = module_->Clone(""); HloInstruction* const* new_operands = new_module->entry_computation()->root_instruction()->operands().begin(); TF_RETURN_IF_ERROR(MorphModuleWithOutputs( new_module.get(), absl::MakeSpan(new_operands + start, end - start + 1))); return RunModule(*new_module); }; int64_t bisect_low = 0; int64_t bisect_high = root_instruction->operand_count() - 1; while (bisect_low < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of outputs: " << (cur - bisect_low + 1) << " [" << bisect_low << ".." << cur << "]"; TF_ASSIGN_OR_RETURN(bool has_bug, run_modified(bisect_low, cur)); if (has_bug) { bisect_high = cur; } else { TF_ASSIGN_OR_RETURN(has_bug, run_modified(cur + 1, bisect_high)); if (has_bug) { bisect_low = cur + 1; } else { break; } } } bool changed = (bisect_high - bisect_low) < (root_instruction->operand_count() - 1); if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithOutputs( module_.get(), absl::MakeSpan(root_instruction->operands().begin() + bisect_low, bisect_high - bisect_low + 1))); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByInstructions() { HloComputation* computation = module_->entry_computation(); int64_t upper_bound = computation->instruction_count() - computation->root_instruction()->shape().IsTuple(); int64_t bisect_low = computation->num_parameters() - 1; int64_t bisect_high = upper_bound; while (bisect_low + 1 < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of instructions: " << cur << " (of " << computation->instruction_count() << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR(MorphModuleWithInstructions(new_module.get(), cur)); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { bisect_high = cur; } else { bisect_low = cur; } } if (bisect_high == computation->num_parameters()) { return Internal( "The checker fails on an empty computation! Something is not right. " "Can't bisect."); } bool changed = bisect_high < upper_bound; if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithInstructions(module_.get(), bisect_high)); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByUsingConstants() { absl::flat_hash_map<std::string, Literal> literal_map; int64_t random_literals_count = 0; for (HloInstruction* instr : module_->entry_computation()->instructions()) { if (InstructionNotReplaceableWithConstant(instr)) { continue; } if (foldable_instructions_values_.contains(instr->name())) { auto it = foldable_instructions_values_.extract(instr->name()); literal_map.insert(std::move(it)); } else if (foldable_instructions_.contains(instr->name())) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(instr->shape()); TF_RETURN_IF_ERROR(literal_status.status()); literal_map[instr->name()] = std::move(literal_status).value(); ++random_literals_count; } } VLOG(2) << "Number of literals: " << literal_map.size() << " (random: " << random_literals_count << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR( MorphModuleWithLiterals(new_module.get(), std::move(literal_map))); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { std::swap(module_, new_module); } return has_bug; } absl::Status HloBisectState::ExpectModuleIsBuggy() { TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*module_)); if (has_bug) { return absl::OkStatus(); } const int retry_count = 5; int bug_count = 0; for (int i = 0; i < retry_count; i++) { TF_ASSIGN_OR_RETURN(has_bug, bug_checker_->Run(*module_)); if (has_bug) { bug_count++; } } if (bug_count != 0) { return InternalStrCat("The checker is non deterministic! (only ", bug_count, " failures seen in ", (retry_count + 1), " runs)"); } return Internal("We \"lost\" the bug while bisecting!"); } } }
#include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace bisect { namespace { namespace m = match; using HloBisectStateTest = HloTestBase; class TestBugSearch : public BugCheckerInterface { public: TestBugSearch(std::initializer_list<HloOpcode> opcodes) : opcodes_(opcodes) {} absl::StatusOr<bool> Run(const HloModule& module) override { auto has_opcode = [&](HloOpcode opcode) { return absl::c_any_of(module.entry_computation()->instructions(), [opcode](const HloInstruction* instr) { return instr->opcode() == opcode; }); }; return absl::c_all_of(opcodes_, has_opcode); } absl::flat_hash_map<std::string, Literal> GetResults() override { return {}; } private: std::vector<HloOpcode> opcodes_; }; Literal CreateLiteral(float value) { Literal result = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); result.PopulateWithValue(value); return result; } TEST_F(HloBisectStateTest, TrimByOutputs) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) c = s32[8] subtract(p1, p2) ROOT sum = tuple(a, b, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByInstructions) { const char* kModuleStr = R"( HloModule axpy_module ENTRY axpy_computation { alpha = f32[] parameter(0) broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(1) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(2) ROOT add = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply, HloOpcode::kBroadcast}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT( reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Broadcast(m::Parameter(0)), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByUsingRandomConstants) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[4] parameter(0) p2 = f32[4] parameter(1) a = f32[4] multiply(p1, p2) b = f32[4] add(p1, p2) ROOT result = f32[4] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kPower}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByUsingReferenceConstants) { class TestBugSearchWithReferenceConstants : public TestBugSearch { public: TestBugSearchWithReferenceConstants() : TestBugSearch({HloOpcode::kPower}) {} absl::flat_hash_map<std::string, Literal> GetResults() override { absl::flat_hash_map<std::string, Literal> results; results["a"] = CreateLiteral(2.0f); results["b"] = CreateLiteral(3.0f); return results; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[] parameter(0) p2 = f32[] parameter(1) a = f32[] multiply(p1, p2) b = f32[] add(p1, p2) ROOT result = f32[] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearchWithReferenceConstants bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByOutputsLostBug) { class CustomBugSearch : public TestBugSearch { public: CustomBugSearch() : TestBugSearch({HloOpcode::kConstant}) {} absl::StatusOr<bool> Run(const HloModule& module) override { TF_ASSIGN_OR_RETURN(bool has_constants, TestBugSearch::Run(module)); int program_size = module.entry_computation()->instruction_count(); return program_size == 5 && !has_constants; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) ROOT sum = tuple(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); CustomBugSearch bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_FALSE(changed); } } } }
2,196
#ifndef XLA_FFI_EXECUTION_CONTEXT_H_ #define XLA_FFI_EXECUTION_CONTEXT_H_ #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tsl/lib/gtl/int_type.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::ffi { class ExecutionContext { public: template <typename T> using Deleter = std::function<void(T*)>; TSL_LIB_GTL_DEFINE_INT_TYPE(TypeId, int64_t); static absl::StatusOr<TypeId> RegisterExternalTypeId(std::string_view name); absl::Status Insert(TypeId type_id, void* data, Deleter<void> deleter = nullptr); template <typename T> absl::Status Insert(T* data, Deleter<T> deleter = nullptr); template <typename T, typename... Args> absl::Status Emplace(Args&&... args); template <typename T> absl::StatusOr<T*> Lookup() const { TF_ASSIGN_OR_RETURN(auto user_data, LookupUserData(GetTypeId<T>())); return static_cast<T*>(user_data->data()); } absl::StatusOr<void*> Lookup(TypeId type_id) const { TF_ASSIGN_OR_RETURN(auto user_data, LookupUserData(type_id)); return user_data->data(); } private: class UserData { public: UserData(void* data, Deleter<void> deleter); ~UserData(); UserData(UserData&) = delete; UserData& operator=(const UserData&) = delete; void* data() const { return data_; } private: void* data_; Deleter<void> deleter_; }; static TypeId GetNextTypeId(); template <typename T> static TypeId GetTypeId() { static const TypeId id = GetNextTypeId(); return id; } absl::Status InsertUserData(TypeId type_id, std::unique_ptr<UserData> data); absl::StatusOr<UserData*> LookupUserData(TypeId type_id) const; absl::flat_hash_map<TypeId, std::unique_ptr<UserData>> user_data_; }; template <typename T> absl::Status ExecutionContext::Insert(T* data, Deleter<T> deleter) { return InsertUserData(GetTypeId<T>(), std::make_unique<UserData>( data, [deleter = std::move(deleter)](void* data) { if (deleter) deleter(static_cast<T*>(data)); })); } template <typename T, typename... Args> absl::Status ExecutionContext::Emplace(Args&&... args) { return InsertUserData(GetTypeId<T>(), std::make_unique<UserData>( new T(std::forward<Args>(args)...), [](void* data) { delete static_cast<T*>(data); })); } } #endif #include "xla/ffi/execution_context.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" namespace xla::ffi { ABSL_CONST_INIT absl::Mutex type_registry_mutex(absl::kConstInit); using TypeRegistry = absl::flat_hash_map<std::string, ExecutionContext::TypeId>; static TypeRegistry& StaticTypeRegistry() { static auto* registry = new TypeRegistry(); return *registry; } ExecutionContext::TypeId ExecutionContext::GetNextTypeId() { static auto* counter = new std::atomic<int64_t>(1); return TypeId(counter->fetch_add(1)); } ExecutionContext::UserData::UserData(void* data, Deleter<void> deleter) : data_(data), deleter_(std::move(deleter)) {} ExecutionContext::UserData::~UserData() { if (deleter_) deleter_(data_); } absl::StatusOr<ExecutionContext::TypeId> ExecutionContext::RegisterExternalTypeId(std::string_view name) { absl::MutexLock lock(&type_registry_mutex); auto& registry = StaticTypeRegistry(); auto emplaced = registry.emplace(name, TypeId(0)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("Type id ", emplaced.first->second.value(), " already registered for type name ", name)); } return emplaced.first->second = GetNextTypeId(); } absl::Status ExecutionContext::Insert(TypeId type_id, void* data, Deleter<void> deleter) { return InsertUserData(type_id, std::make_unique<UserData>(data, std::move(deleter))); } absl::Status ExecutionContext::InsertUserData(TypeId type_id, std::unique_ptr<UserData> data) { if (!data) return absl::InvalidArgumentError("User data must be not null"); auto emplaced = user_data_.emplace(type_id, std::move(data)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("User data with type id ", type_id.value(), " already exists in execution context")); } return absl::OkStatus(); } absl::StatusOr<ExecutionContext::UserData*> ExecutionContext::LookupUserData( TypeId type_id) const { auto it = user_data_.find(type_id); if (it == user_data_.end()) { return absl::NotFoundError(absl::StrCat("User data with type id ", type_id.value(), " not found in execution context")); } return it->second.get(); } }
#include "xla/ffi/execution_context.h" #include <cstdint> #include <string> #include "absl/status/status.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { struct I32UserData { explicit I32UserData(int32_t value) : value(value) {} int32_t value; }; struct StrUserData { explicit StrUserData(std::string value) : value(value) {} std::string value; }; TEST(ExecutionContextTest, EmplaceUserData) { ExecutionContext context; TF_ASSERT_OK(context.Emplace<I32UserData>(42)); TF_ASSERT_OK(context.Emplace<StrUserData>("hello")); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); TF_ASSERT_OK_AND_ASSIGN(auto* str_data, context.Lookup<StrUserData>()); ASSERT_NE(i32_data, nullptr); ASSERT_NE(str_data, nullptr); ASSERT_EQ(i32_data->value, 42); ASSERT_EQ(str_data->value, "hello"); } TEST(ExecutionContextTest, InsertUserOwned) { I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(&user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, InsertUserOwnedWithTypeId) { TF_ASSERT_OK_AND_ASSIGN( ExecutionContext::TypeId type_id, ExecutionContext::RegisterExternalTypeId("I32UserData")); I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(type_id, &user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup(type_id)); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, UserDataNotFound) { ExecutionContext context; auto i32_data = context.Lookup<I32UserData>(); ASSERT_EQ(i32_data.status().code(), absl::StatusCode::kNotFound); } }
2,197
#ifndef XLA_TESTS_LITERAL_TEST_UTIL_H_ #define XLA_TESTS_LITERAL_TEST_UTIL_H_ #include <initializer_list> #include <memory> #include <optional> #include <random> #include <string> #include "absl/base/attributes.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/error_spec.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace xla { class LiteralTestUtil { public: [[nodiscard]] static ::testing::AssertionResult EqualShapes( const Shape& expected, const Shape& actual); [[nodiscard]] static ::testing::AssertionResult EqualShapesAndLayouts( const Shape& expected, const Shape& actual); [[nodiscard]] static ::testing::AssertionResult Equal( const LiteralSlice& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR0Equal(NativeT expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR1Equal(absl::Span<const NativeT> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR2Equal( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR3Equal( std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR2EqualArray2D(const Array2D<NativeT>& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR3EqualArray3D(const Array3D<NativeT>& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR4EqualArray4D(const Array4D<NativeT>& expected, const LiteralSlice& actual); [[nodiscard]] static ::testing::AssertionResult Near( const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error_spec, std::optional<bool> detailed_message = std::nullopt); template <typename NativeT> static void ExpectR0Near(NativeT expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR1Near(absl::Span<const NativeT> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR2Near( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR3Near( std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR4Near( std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR2NearArray2D(const Array2D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR3NearArray3D(const Array3D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR4NearArray4D(const Array4D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); [[nodiscard]] static ::testing::AssertionResult NearOrEqual( const LiteralSlice& expected, const LiteralSlice& actual, const std::optional<ErrorSpec>& error); private: LiteralTestUtil(const LiteralTestUtil&) = delete; LiteralTestUtil& operator=(const LiteralTestUtil&) = delete; }; template <typename NativeT> void LiteralTestUtil::ExpectR0Equal(NativeT expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR0<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR1Equal( absl::Span<const NativeT> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR1<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR2Equal( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR2<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR3Equal( std::initializer_list<std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR3<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR2EqualArray2D( const Array2D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR2FromArray2D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR3EqualArray3D( const Array3D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR3FromArray3D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR4EqualArray4D( const Array4D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR4FromArray4D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR0Near(NativeT expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR0<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR1Near( absl::Span<const NativeT> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR1<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR2Near( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR2<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR3Near( std::initializer_list<std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR3<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR4Near( std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR4<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR2NearArray2D( const Array2D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR2FromArray2D(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR3NearArray3D( const Array3D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR3FromArray3D(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR4NearArray4D( const Array4D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR4FromArray4D(expected), actual, error)); } } #endif #include "xla/tests/literal_test_util.h" #include "absl/strings/str_format.h" #include "xla/literal_comparison.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } auto* env = tsl::Env::Default(); std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); TF_CHECK_OK(tsl::WriteBinaryProto(env, absl::StrCat(filename, ".pb"), literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, absl::StrCat(filename, ".txt"), literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " file: " << filename << ".{pb,txt}"; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } ::testing::AssertionResult StatusToAssertion(const absl::Status& s) { if (s.ok()) { return ::testing::AssertionSuccess(); } return ::testing::AssertionFailure() << s.message(); } } ::testing::AssertionResult LiteralTestUtil::EqualShapes( const Shape& expected, const Shape& actual) { return StatusToAssertion(literal_comparison::EqualShapes(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::EqualShapesAndLayouts( const Shape& expected, const Shape& actual) { if (expected.ShortDebugString() != actual.ShortDebugString()) { return ::testing::AssertionFailure() << "want: " << expected.ShortDebugString() << " got: " << actual.ShortDebugString(); } return ::testing::AssertionSuccess(); } ::testing::AssertionResult LiteralTestUtil::Equal( const LiteralSlice& expected, const LiteralSlice& actual) { return StatusToAssertion(literal_comparison::Equal(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::Near( const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error_spec, std::optional<bool> detailed_message) { return StatusToAssertion(literal_comparison::Near( expected, actual, error_spec, detailed_message, &OnMiscompare)); } ::testing::AssertionResult LiteralTestUtil::NearOrEqual( const LiteralSlice& expected, const LiteralSlice& actual, const std::optional<ErrorSpec>& error) { if (error.has_value()) { VLOG(1) << "Expects near"; return StatusToAssertion(literal_comparison::Near( expected, actual, *error, std::nullopt, &OnMiscompare)); } VLOG(1) << "Expects equal"; return StatusToAssertion(literal_comparison::Equal(expected, actual)); } }
#include "xla/tests/literal_test_util.h" #include <vector> #include "absl/strings/str_join.h" #include "xla/literal.h" #include "xla/test_helpers.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(LiteralTestUtilTest, ComparesEqualTuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex64TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex128TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex64TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({64.0, 42.0}), LiteralUtil::CreateR0<complex64>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.42, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex128TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({64.0, 42.0}), LiteralUtil::CreateR0<complex128>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.42, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalTuplesUnequal) { auto unequal_things_are_equal = [] { Literal lhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); Literal rhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(64), LiteralUtil::CreateR0<int32_t>(42), }); CHECK(LiteralTestUtil::Equal(lhs, rhs)) << "LHS and RHS are unequal"; }; ASSERT_DEATH(unequal_things_are_equal(), "LHS and RHS are unequal"); } TEST(LiteralTestUtilTest, ExpectNearFailurePlacesResultsInTemporaryDirectory) { auto dummy_lambda = [] { auto two = LiteralUtil::CreateR0<float>(2); auto four = LiteralUtil::CreateR0<float>(4); ErrorSpec error(0.001); CHECK(LiteralTestUtil::Near(two, four, error)) << "two is not near four"; }; tsl::Env* env = tsl::Env::Default(); std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } std::string pattern = tsl::io::JoinPath(outdir, "tempfile-*.pb"); std::vector<std::string> files; TF_CHECK_OK(env->GetMatchingPaths(pattern, &files)); for (const auto& f : files) { TF_CHECK_OK(env->DeleteFile(f)) << f; } ASSERT_DEATH(dummy_lambda(), "two is not near four"); std::vector<std::string> results; TF_CHECK_OK(env->GetMatchingPaths(pattern, &results)); LOG(INFO) << "results: [" << absl::StrJoin(results, ", ") << "]"; EXPECT_EQ(3, results.size()); for (const std::string& result : results) { LiteralProto literal_proto; TF_CHECK_OK( tsl::ReadBinaryProto(tsl::Env::Default(), result, &literal_proto)); Literal literal = Literal::CreateFromProto(literal_proto).value(); if (result.find("expected") != std::string::npos) { EXPECT_EQ("f32[] 2", literal.ToString()); } else if (result.find("actual") != std::string::npos) { EXPECT_EQ("f32[] 4", literal.ToString()); } else if (result.find("mismatches") != std::string::npos) { EXPECT_EQ("pred[] true", literal.ToString()); } else { FAIL() << "unknown file in temporary directory: " << result; } } } TEST(LiteralTestUtilTest, NotEqualHasValuesInMessage) { auto expected = LiteralUtil::CreateR1<int32_t>({1, 2, 3}); auto actual = LiteralUtil::CreateR1<int32_t>({4, 5, 6}); ::testing::AssertionResult result = LiteralTestUtil::Equal(expected, actual); EXPECT_THAT(result.message(), ::testing::HasSubstr("Expected literal:\ns32[3] {1, 2, 3}")); EXPECT_THAT(result.message(), ::testing::HasSubstr("Actual literal:\ns32[3] {4, 5, 6}")); } TEST(LiteralTestUtilTest, NearComparatorR1) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex64) { auto a = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex128) { auto a = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Nan) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtil, NearComparatorDifferentLengths) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>({0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}); EXPECT_FALSE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(b, a, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectNearDoubleOutsideFloatValueRange) { auto two_times_float_max = LiteralUtil::CreateR0<double>(2.0 * std::numeric_limits<float>::max()); ErrorSpec error(0.001); EXPECT_TRUE( LiteralTestUtil::Near(two_times_float_max, two_times_float_max, error)); } TEST(LiteralTestUtilTest, DynamicEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqual) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNear) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqualWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNearWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } } }
2,198
#ifndef XLA_BACKENDS_PROFILER_CPU_HOST_TRACER_H_ #define XLA_BACKENDS_PROFILER_CPU_HOST_TRACER_H_ #include <memory> #include "tsl/profiler/lib/profiler_interface.h" namespace xla { namespace profiler { struct HostTracerOptions { int trace_level = 2; }; std::unique_ptr<tsl::profiler::ProfilerInterface> CreateHostTracer( const HostTracerOptions& options); } } #endif #include "xla/backends/profiler/cpu/host_tracer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "tsl/platform/errors.h" #include "tsl/profiler/backends/cpu/host_tracer_utils.h" #include "tsl/profiler/backends/cpu/threadpool_listener.h" #include "tsl/profiler/backends/cpu/traceme_recorder.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/time_utils.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_utils.h" namespace xla { namespace profiler { namespace { class HostTracer : public tsl::profiler::ProfilerInterface { public: explicit HostTracer(int host_trace_level); ~HostTracer() override; absl::Status Start() override; absl::Status Stop() override; absl::Status CollectData( tensorflow::profiler::XSpace* space) override; private: const int host_trace_level_; bool recording_ = false; uint64_t start_timestamp_ns_ = 0; tsl::profiler::TraceMeRecorder::Events events_; }; HostTracer::HostTracer(int host_trace_level) : host_trace_level_(host_trace_level) {} HostTracer::~HostTracer() { Stop().IgnoreError(); } absl::Status HostTracer::Start() { if (recording_) { return tsl::errors::Internal("TraceMeRecorder already started"); } start_timestamp_ns_ = tsl::profiler::GetCurrentTimeNanos(); recording_ = tsl::profiler::TraceMeRecorder::Start(host_trace_level_); if (!recording_) { return tsl::errors::Internal("Failed to start TraceMeRecorder"); } return absl::OkStatus(); } absl::Status HostTracer::Stop() { if (!recording_) { return tsl::errors::Internal("TraceMeRecorder not started"); } events_ = tsl::profiler::TraceMeRecorder::Stop(); recording_ = false; return absl::OkStatus(); } absl::Status HostTracer::CollectData( tensorflow::profiler::XSpace* space) { VLOG(2) << "Collecting data to XSpace from HostTracer."; if (recording_) { return tsl::errors::Internal("TraceMeRecorder not stopped"); } if (events_.empty()) { return absl::OkStatus(); } tensorflow::profiler::XPlane* plane = tsl::profiler::FindOrAddMutablePlaneWithName( space, tsl::profiler::kHostThreadsPlaneName); ConvertCompleteEventsToXPlane(start_timestamp_ns_, std::exchange(events_, {}), plane); return absl::OkStatus(); } } std::unique_ptr<tsl::profiler::ProfilerInterface> CreateHostTracer( const HostTracerOptions& options) { if (options.trace_level == 0) return nullptr; std::vector<std::unique_ptr<tsl::profiler::ProfilerInterface>> profilers; profilers.push_back(std::make_unique<HostTracer>(options.trace_level)); profilers.push_back( std::make_unique<tsl::profiler::ThreadpoolProfilerInterface>()); return std::make_unique<tsl::profiler::ProfilerCollection>( std::move(profilers)); } } }
#include "xla/backends/profiler/cpu/host_tracer.h" #include <cstdint> #include <memory> #include <optional> #include <ostream> #include <string> #include <gtest/gtest.h> #include "absl/types/optional.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/tf_xplane_visitor.h" #include "tsl/profiler/utils/timespan.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace xla { namespace profiler { namespace { using ::tsl::Env; using ::tsl::Thread; using ::tsl::ThreadOptions; using ::tsl::profiler::StatType; using ::tsl::profiler::Timespan; using ::tsl::profiler::TraceMe; using ::tsl::profiler::XEventVisitor; using ::tsl::profiler::XLineVisitor; using ::tsl::profiler::XPlaneVisitor; using ::tsl::profiler::XStatVisitor; TEST(HostTracerTest, CollectsTraceMeEventsAsXSpace) { tsl::uint32 thread_id; std::string thread_name = "MyThreadName"; tensorflow::profiler::XSpace space; std::unique_ptr<Thread> traced_thread( Env::Default()->StartThread(ThreadOptions(), thread_name, [&] { ASSERT_TRUE(Env::Default()->GetCurrentThreadName(&thread_name)); thread_id = Env::Default()->GetCurrentThreadId(); auto tracer = CreateHostTracer({}); TF_ASSERT_OK(tracer->Start()); { TraceMe traceme("hello"); } { TraceMe traceme("world"); } { TraceMe traceme("contains#inside"); } { TraceMe traceme("good#key1=value1#"); } { TraceMe traceme("morning#key1=value1,key2=value2#"); } { TraceMe traceme("incomplete#key1=value1,key2#"); } { TraceMe traceme("Iterator::XXX::YYY::ParallelMap"); } TF_ASSERT_OK(tracer->Stop()); TF_ASSERT_OK(tracer->CollectData(&space)); })); traced_thread.reset(); ASSERT_NO_FATAL_FAILURE(); ASSERT_EQ(space.planes_size(), 1); const auto& plane = space.planes(0); XPlaneVisitor xplane(&plane); ASSERT_EQ(plane.name(), ::tsl::profiler::kHostThreadsPlaneName); ASSERT_EQ(plane.lines_size(), 1); ASSERT_EQ(plane.event_metadata_size(), 7); ASSERT_EQ(plane.stat_metadata_size(), 4); const auto& line = plane.lines(0); EXPECT_EQ(line.id(), thread_id); EXPECT_EQ(line.name(), thread_name); ASSERT_EQ(line.events_size(), 7); const auto& events = line.events(); XEventVisitor e0(&xplane, &line, &events[0]); EXPECT_EQ(e0.Name(), "hello"); ASSERT_EQ(events[0].stats_size(), 0); XEventVisitor e1(&xplane, &line, &events[1]); EXPECT_EQ(e1.Name(), "world"); ASSERT_EQ(events[1].stats_size(), 0); XEventVisitor e2(&xplane, &line, &events[2]); EXPECT_EQ(e2.Name(), "contains#inside"); ASSERT_EQ(events[2].stats_size(), 0); XEventVisitor e3(&xplane, &line, &events[3]); EXPECT_EQ(e3.Name(), "good"); ASSERT_EQ(events[3].stats_size(), 1); { std::optional<std::string> value; e3.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") value = stat.ToString(); }); ASSERT_TRUE(value); EXPECT_EQ(*value, "value1"); } XEventVisitor e4(&xplane, &line, &events[4]); EXPECT_EQ(e4.Name(), "morning"); ASSERT_EQ(events[4].stats_size(), 2); { std::optional<std::string> value1, value2; e4.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && value2); EXPECT_EQ(*value1, "value1"); EXPECT_EQ(*value2, "value2"); } XEventVisitor e5(&xplane, &line, &events[5]); EXPECT_EQ(e5.Name(), "incomplete"); ASSERT_EQ(events[5].stats_size(), 1); { std::optional<std::string> value1, value2; e5.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && !value2); EXPECT_EQ(*value1, "value1"); } XEventVisitor e6(&xplane, &line, &events[6]); EXPECT_EQ(e6.Name(), "Iterator::XXX::YYY::ParallelMap"); EXPECT_EQ(e6.DisplayName(), "Iterator::ParallelMap"); } TEST(HostTracerTest, CollectEventsFromThreadPool) { auto thread_pool = std::make_unique<tsl::thread::ThreadPool>(Env::Default(), "HostTracerTest", 1); tsl::BlockingCounter counter(1); auto tracer = CreateHostTracer({}); TF_EXPECT_OK(tracer->Start()); thread_pool->Schedule([&counter] { TraceMe traceme("hello"); counter.DecrementCount(); }); counter.Wait(); thread_pool.reset(); TF_EXPECT_OK(tracer->Stop()); tensorflow::profiler::XSpace space; TF_EXPECT_OK(tracer->CollectData(&space)); EXPECT_THAT(space.planes(), testing::SizeIs(1)); XPlaneVisitor xplane = tsl::profiler::CreateTfXPlaneVisitor(&space.planes(0)); bool has_record_event = false; bool has_start_region_event = false; bool has_end_region_event = false; int64_t record_region_id = 0; int64_t start_region_id = 0; Timespan region_timespan; Timespan traceme_timespan; xplane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == tsl::profiler::kThreadpoolListenerRecord) { has_record_event = true; const auto& stat = event.GetStat(StatType::kProducerId); EXPECT_TRUE(stat.has_value()); record_region_id = stat->IntOrUintValue(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStartRegion) { has_start_region_event = true; const auto& stat = event.GetStat(StatType::kConsumerId); EXPECT_TRUE(stat.has_value()); start_region_id = stat->IntOrUintValue(); region_timespan = event.GetTimespan(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStopRegion) { has_end_region_event = true; region_timespan = Timespan::FromEndPoints(region_timespan.begin_ps(), event.GetTimespan().end_ps()); } else if (event.Name() == "hello") { traceme_timespan = event.GetTimespan(); } }); }); EXPECT_TRUE(has_record_event); EXPECT_TRUE(has_start_region_event); EXPECT_TRUE(has_end_region_event); EXPECT_EQ(record_region_id, start_region_id); EXPECT_TRUE(region_timespan.Includes(traceme_timespan)); } } } }
2,199
#ifndef XLA_BACKENDS_PROFILER_PLUGIN_PLUGIN_TRACER_IMPL_H_ #define XLA_BACKENDS_PROFILER_PLUGIN_PLUGIN_TRACER_IMPL_H_ #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <vector> #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/xplane.pb.h" struct PLUGIN_Profiler { std::optional<tensorflow::profiler::XSpace> space; std::unique_ptr<std::vector<uint8_t>> buffer; size_t byte_size; std::unique_ptr<tsl::profiler::ProfilerInterface> impl; bool stopped; }; namespace xla { namespace profiler { PLUGIN_Profiler_Error* PLUGIN_Profiler_Create( PLUGIN_Profiler_Create_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Destroy( PLUGIN_Profiler_Destroy_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Start(PLUGIN_Profiler_Start_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Stop(PLUGIN_Profiler_Stop_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_CollectData( PLUGIN_Profiler_CollectData_Args* args); } } #endif #include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { PLUGIN_Profiler_Error* PLUGIN_Profiler_Create( PLUGIN_Profiler_Create_Args* args) { VLOG(1) << "Creating plugin profiler"; auto profiler = std::make_unique<PLUGIN_Profiler>(); profiler->stopped = true; tensorflow::ProfileOptions options; options.ParseFromArray(args->options, args->options_size); profiler->impl = std::make_unique<tsl::profiler::ProfilerCollection>( tsl::profiler::CreateProfilers(options)); args->profiler = profiler.release(); return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Destroy( PLUGIN_Profiler_Destroy_Args* args) { VLOG(1) << "Destroying plugin profiler"; if (args->profiler != nullptr) { delete args->profiler; } return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Start(PLUGIN_Profiler_Start_Args* args) { VLOG(1) << "Starting profiler"; if (!args->profiler->stopped) { VLOG(1) << "Profiler is already started"; return nullptr; } args->profiler->byte_size = 0; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Start()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Stop(PLUGIN_Profiler_Stop_Args* args) { VLOG(1) << "Stopping profiler"; if (args->profiler->stopped) { VLOG(1) << "Profiler is already stopped"; return nullptr; } PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Stop()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_CollectData( PLUGIN_Profiler_CollectData_Args* args) { VLOG(1) << "Collecting data from profiler"; tensorflow::profiler::XSpace space; if (!args->profiler->space) { VLOG(1) << "TpuProfiler CollectData"; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->CollectData(&space)); args->profiler->byte_size = space.ByteSizeLong(); VLOG(2) << "TpuProfiler CollectData: Number of XPlanes: " << space.planes_size(); } const size_t profiler_data_size = space.ByteSizeLong(); if (args->buffer == nullptr) { args->profiler->buffer = std::make_unique<std::vector<uint8_t>>(profiler_data_size + 1); space.SerializeToArray(args->profiler->buffer->data(), profiler_data_size); args->buffer_size_in_bytes = args->profiler->buffer->size(); args->buffer = args->profiler->buffer->data(); return nullptr; } return nullptr; } } }
#include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstdint> #include <memory> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/backends/profiler/plugin/plugin_tracer.h" #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/xplane_builder.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace xla { namespace profiler { using tensorflow::ProfileOptions; using tsl::profiler::ProfilerInterface; using tsl::profiler::XPlaneBuilder; class PluginTracerImpl : public ProfilerInterface { public: explicit PluginTracerImpl(const ProfileOptions& options) : options_(options) {} absl::Status Start() override { LOG(INFO) << "Starting Tracer"; return absl::OkStatus(); } absl::Status Stop() override { LOG(INFO) << "Stopping Tracer"; return absl::OkStatus(); } absl::Status CollectData(tensorflow::profiler::XSpace* space) override { LOG(INFO) << "Collecting data"; tensorflow::profiler::XPlane* plane = space->add_planes(); XPlaneBuilder builder(plane); builder.SetName("GpuBackendTracer"); tensorflow::profiler::XStatMetadata* metadata = builder.GetOrCreateStatMetadata((int64_t)0); metadata->set_name("ProfileOptions"); builder.AddStatValue(*metadata, options_.SerializeAsString()); return absl::OkStatus(); } private: ProfileOptions options_; }; std::unique_ptr<ProfilerInterface> CreatePluginTracer( const ProfileOptions& options) { return std::make_unique<PluginTracerImpl>(options); } static auto register_test_tracer = [] { RegisterProfilerFactory(&CreatePluginTracer); return 0; }(); TEST(PluginTracerTest, TestPluginWithPluginTracer) { PLUGIN_Profiler_Api api; api.create = &PLUGIN_Profiler_Create; api.start = &PLUGIN_Profiler_Start; api.stop = &PLUGIN_Profiler_Stop; api.collect_data = &PLUGIN_Profiler_CollectData; api.destroy = &PLUGIN_Profiler_Destroy; api.error_destroy = &PLUGIN_Profiler_Error_Destroy; api.error_message = &PLUGIN_Profiler_Error_Message; api.error_get_code = &PLUGIN_Profiler_Error_GetCode; api.struct_size = PLUGIN_Profiler_Api_STRUCT_SIZE; ProfileOptions options; options.set_repository_path("TestRepositoryPath"); options.set_device_tracer_level(2); PluginTracer tracer(&api, options); tensorflow::profiler::XSpace xspace; EXPECT_TRUE(tracer.Start().ok()); EXPECT_TRUE(tracer.Stop().ok()); EXPECT_TRUE(tracer.CollectData(&xspace).ok()); ASSERT_THAT(xspace.planes(), testing::SizeIs(1)); ASSERT_THAT(xspace.planes(0).stats(), testing::SizeIs(1)); tsl::profiler::XPlaneVisitor visitor(&xspace.planes(0)); std::optional<tsl::profiler::XStatVisitor> stat = visitor.GetStat(0, *visitor.GetStatMetadata(0)); ASSERT_TRUE(stat.has_value()); EXPECT_EQ(stat->Name(), "ProfileOptions"); EXPECT_EQ(stat->StrOrRefValue(), options.SerializeAsString()); } } }
2,200
#ifndef XLA_BACKENDS_PROFILER_GPU_CUPTI_ERROR_MANAGER_H_ #define XLA_BACKENDS_PROFILER_GPU_CUPTI_ERROR_MANAGER_H_ #include <stddef.h> #include <stdint.h> #include <atomic> #include <functional> #include <memory> #include <string> #include <vector> #include "xla/backends/profiler/gpu/cupti_interface.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace xla { namespace profiler { class CuptiErrorManager : public xla::profiler::CuptiInterface { public: explicit CuptiErrorManager(std::unique_ptr<CuptiInterface> interface); bool Disabled() const override { return disabled_.load(); } CUptiResult ActivityDisable(CUpti_ActivityKind kind) override; CUptiResult ActivityEnable(CUpti_ActivityKind kind) override; CUptiResult ActivityFlushAll(uint32_t flag) override; CUptiResult ActivityGetNextRecord(uint8_t* buffer, size_t valid_buffer_size_bytes, CUpti_Activity** record) override; CUptiResult ActivityGetNumDroppedRecords(CUcontext context, uint32_t stream_id, size_t* dropped) override; CUptiResult ActivityConfigureUnifiedMemoryCounter( CUpti_ActivityUnifiedMemoryCounterConfig* config, uint32_t count) override; CUptiResult ActivityRegisterCallbacks( CUpti_BuffersCallbackRequestFunc func_buffer_requested, CUpti_BuffersCallbackCompleteFunc func_buffer_completed) override; CUptiResult ActivityUsePerThreadBuffer() override; CUptiResult GetDeviceId(CUcontext context, uint32_t* device_id) override; CUptiResult GetTimestamp(uint64_t* timestamp) override; CUptiResult Finalize() override; CUptiResult EnableCallback(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId callback_id) override; CUptiResult EnableDomain(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain) override; CUptiResult Subscribe(CUpti_SubscriberHandle* subscriber, CUpti_CallbackFunc callback, void* userdata) override; CUptiResult Unsubscribe(CUpti_SubscriberHandle subscriber) override; CUptiResult GetResultString(CUptiResult result, const char** str) override; CUptiResult GetContextId(CUcontext context, uint32_t* context_id) override; CUptiResult GetStreamIdEx(CUcontext context, CUstream stream, uint8_t per_thread_stream, uint32_t* stream_id) override; void CleanUp() override; private: typedef std::function<CUptiResult()> UndoFunction; void RegisterUndoFunction(const UndoFunction& func); void UndoAndDisable(); std::string ResultString(CUptiResult result) const; std::unique_ptr<CuptiInterface> interface_; std::vector<UndoFunction> undo_stack_ TF_GUARDED_BY(undo_stack_mu_); tsl::mutex undo_stack_mu_; std::atomic<int> disabled_; bool undo_disabled_; CuptiErrorManager(const CuptiErrorManager&) = delete; void operator=(const CuptiErrorManager&) = delete; }; } } #endif #include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <utility> #include "absl/debugging/leak_check.h" #include "tsl/platform/logging.h" namespace xla { namespace profiler { using tsl::mutex_lock; CuptiErrorManager::CuptiErrorManager(std::unique_ptr<CuptiInterface> interface) : interface_(std::move(interface)), disabled_(0), undo_disabled_(false) {} #define IGNORE_CALL_IF_DISABLED \ if (disabled_) { \ LOG(ERROR) << "cupti" << __func__ << ": ignored due to a previous error."; \ return CUPTI_ERROR_DISABLED; \ } \ VLOG(1) << "cupti" << __func__; #define ALLOW_ERROR(e, ERROR) \ if (e == ERROR) { \ VLOG(1) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e) << " (allowed)"; \ return e; \ } #define LOG_AND_DISABLE_IF_ERROR(e) \ if (e != CUPTI_SUCCESS) { \ LOG(ERROR) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e); \ UndoAndDisable(); \ } void CuptiErrorManager::RegisterUndoFunction( const CuptiErrorManager::UndoFunction& func) { mutex_lock lock(undo_stack_mu_); undo_stack_.push_back(func); } CUptiResult CuptiErrorManager::ActivityDisable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityDisable(kind); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityEnable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityEnable(kind); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::ActivityDisable, this, kind); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityFlushAll(uint32_t flag) { CUptiResult error = interface_->ActivityFlushAll(flag); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNextRecord( uint8_t* buffer, size_t valid_buffer_size_bytes, CUpti_Activity** record) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNextRecord( buffer, valid_buffer_size_bytes, record); ALLOW_ERROR(error, CUPTI_ERROR_MAX_LIMIT_REACHED); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNumDroppedRecords(CUcontext context, uint32_t stream_id, size_t* dropped) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNumDroppedRecords(context, stream_id, dropped); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityConfigureUnifiedMemoryCounter( CUpti_ActivityUnifiedMemoryCounterConfig* config, uint32_t count) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityConfigureUnifiedMemoryCounter(config, count); return error; } CUptiResult CuptiErrorManager::ActivityRegisterCallbacks( CUpti_BuffersCallbackRequestFunc func_buffer_requested, CUpti_BuffersCallbackCompleteFunc func_buffer_completed) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->ActivityRegisterCallbacks( func_buffer_requested, func_buffer_completed); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityUsePerThreadBuffer() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityUsePerThreadBuffer(); return error; } CUptiResult CuptiErrorManager::GetDeviceId(CUcontext context, uint32_t* device_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetDeviceId(context, device_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetTimestamp(uint64_t* timestamp) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetTimestamp(timestamp); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Finalize() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Finalize(); ALLOW_ERROR(error, CUPTI_ERROR_API_NOT_IMPLEMENTED); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableCallback(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId callback_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableCallback(enable, subscriber, domain, callback_id); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableCallback, this, 0 , subscriber, domain, callback_id); RegisterUndoFunction(f); } } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableDomain(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableDomain(enable, subscriber, domain); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableDomain, this, 0 , subscriber, domain); RegisterUndoFunction(f); } } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Subscribe(CUpti_SubscriberHandle* subscriber, CUpti_CallbackFunc callback, void* userdata) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->Subscribe(subscriber, callback, userdata); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::Unsubscribe, this, *subscriber); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Unsubscribe(CUpti_SubscriberHandle subscriber) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Unsubscribe(subscriber); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::UndoAndDisable() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { LOG(ERROR) << "CuptiErrorManager is disabling profiling automatically."; undo_stack_.back()(); undo_stack_.pop_back(); } undo_disabled_ = false; disabled_ = 1; } CUptiResult CuptiErrorManager::GetResultString(CUptiResult result, const char** str) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetResultString(result, str); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetContextId(CUcontext context, uint32_t* context_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetContextId(context, context_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetStreamIdEx(CUcontext context, CUstream stream, uint8_t per_thread_stream, uint32_t* stream_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetStreamIdEx(context, stream, per_thread_stream, stream_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::CleanUp() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { undo_stack_.pop_back(); } undo_disabled_ = false; } std::string CuptiErrorManager::ResultString(CUptiResult error) const { const char* error_message = nullptr; if (interface_->GetResultString(error, &error_message) == CUPTI_SUCCESS && error_message != nullptr) { return error_message; } return ""; } } }
#if GOOGLE_CUDA #include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <cstdint> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "xla/backends/profiler/gpu/cuda_test.h" #include "xla/backends/profiler/gpu/cupti_interface.h" #include "xla/backends/profiler/gpu/cupti_tracer.h" #include "xla/backends/profiler/gpu/cupti_wrapper.h" #include "xla/backends/profiler/gpu/mock_cupti.h" #include "tsl/platform/test.h" #include "tsl/profiler/utils/time_utils.h" namespace xla { namespace profiler { namespace test { using xla::profiler::CuptiInterface; using xla::profiler::CuptiTracer; using xla::profiler::CuptiTracerCollectorOptions; using xla::profiler::CuptiTracerOptions; using xla::profiler::CuptiWrapper; using ::testing::_; using ::testing::Invoke; using ::testing::Return; using ::testing::Sequence; using ::testing::StrictMock; class TestableCuptiTracer : public CuptiTracer { public: explicit TestableCuptiTracer(CuptiInterface* cupti_interface) : CuptiTracer(cupti_interface) {} }; class CuptiErrorManagerTest : public ::testing::Test { protected: CuptiErrorManagerTest() {} void SetUp() override { ASSERT_GT(CuptiTracer::NumGpus(), 0) << "No devices found"; auto mock_cupti = std::make_unique<StrictMock<MockCupti>>(); mock_ = mock_cupti.get(); cupti_error_manager_ = std::make_unique<CuptiErrorManager>(std::move(mock_cupti)); cupti_tracer_ = std::make_unique<TestableCuptiTracer>(cupti_error_manager_.get()); cupti_wrapper_ = std::make_unique<CuptiWrapper>(); CuptiTracerCollectorOptions collector_options; collector_options.num_gpus = CuptiTracer::NumGpus(); uint64_t start_gputime_ns = CuptiTracer::GetTimestamp(); uint64_t start_walltime_ns = tsl::profiler::GetCurrentTimeNanos(); cupti_collector_ = CreateCuptiCollector( collector_options, start_walltime_ns, start_gputime_ns); } void EnableProfiling(const CuptiTracerOptions& option) { cupti_tracer_->Enable(option, cupti_collector_.get()); } void DisableProfiling() { cupti_tracer_->Disable(); } bool CuptiDisabled() const { return cupti_error_manager_->Disabled(); } void RunGpuApp() { MemCopyH2D(); PrintfKernel(10); Synchronize(); MemCopyD2H(); } StrictMock<MockCupti>* mock_; std::unique_ptr<TestableCuptiTracer> cupti_tracer_ = nullptr; std::unique_ptr<CuptiInterface> cupti_error_manager_; std::unique_ptr<CuptiWrapper> cupti_wrapper_; std::unique_ptr<xla::profiler::CuptiTraceCollector> cupti_collector_; }; TEST_F(CuptiErrorManagerTest, GpuTraceActivityEnableTest) { Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); EXPECT_CALL(*mock_, EnableCallback(1, _, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_KERNEL)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, EnableCallback(0, _, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); options.cbids_selected.push_back(CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } TEST_F(CuptiErrorManagerTest, GpuTraceAutoEnableTest) { EXPECT_FALSE(CuptiDisabled()); Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); EXPECT_CALL(*mock_, EnableDomain(1, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityEnable)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY2)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, ActivityDisable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityDisable)); EXPECT_CALL(*mock_, EnableDomain(0, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY2); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } } } } #endif
2,201
#ifndef XLA_PJRT_SEMAPHORE_H_ #define XLA_PJRT_SEMAPHORE_H_ #include "absl/synchronization/mutex.h" #include "xla/types.h" namespace xla { class Semaphore { public: explicit Semaphore(int64_t capacity); void Acquire(int64_t amount); void Release(int64_t amount); class ScopedReservation { public: ScopedReservation(Semaphore* semaphore, int64_t amount) : semaphore_(semaphore), amount_(amount) {} ~ScopedReservation(); ScopedReservation(const ScopedReservation&) = delete; ScopedReservation(ScopedReservation&& other) noexcept; ScopedReservation& operator=(const ScopedReservation&) = delete; ScopedReservation& operator=(ScopedReservation&& other) noexcept; int64_t amount() const { return amount_; } private: Semaphore* semaphore_; int64_t amount_; }; ScopedReservation ScopedAcquire(int64_t amount); private: struct CanAcquireArgs { Semaphore* semaphore; int64_t amount; }; static bool CanAcquire(CanAcquireArgs* args) ABSL_EXCLUSIVE_LOCKS_REQUIRED(args->semaphore->mu_); absl::Mutex mu_; int64_t value_ ABSL_GUARDED_BY(mu_); }; } #endif #include "xla/pjrt/semaphore.h" #include "tsl/platform/logging.h" namespace xla { Semaphore::Semaphore(int64_t capacity) : value_(capacity) { CHECK_GE(capacity, 0); } bool Semaphore::CanAcquire(CanAcquireArgs* args) { return args->semaphore->value_ >= args->amount; } void Semaphore::Acquire(int64_t amount) { CHECK_GE(amount, 0); CanAcquireArgs args; args.semaphore = this; args.amount = amount; mu_.LockWhen(absl::Condition(&CanAcquire, &args)); value_ -= amount; mu_.Unlock(); } void Semaphore::Release(int64_t amount) { CHECK_GE(amount, 0); absl::MutexLock lock(&mu_); value_ += amount; } Semaphore::ScopedReservation::~ScopedReservation() { if (semaphore_) { semaphore_->Release(amount_); } } Semaphore::ScopedReservation::ScopedReservation( ScopedReservation&& other) noexcept { semaphore_ = other.semaphore_; amount_ = other.amount_; other.semaphore_ = nullptr; } Semaphore::ScopedReservation& Semaphore::ScopedReservation::operator=( ScopedReservation&& other) noexcept { semaphore_ = other.semaphore_; amount_ = other.amount_; other.semaphore_ = nullptr; return *this; } Semaphore::ScopedReservation Semaphore::ScopedAcquire(int64_t amount) { Acquire(amount); return ScopedReservation(this, amount); } }
#include "xla/pjrt/semaphore.h" #include "absl/synchronization/notification.h" #include "xla/test.h" #include "tsl/platform/env.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { TEST(SemaphoreTest, UnthreadedTests) { Semaphore semaphore(2); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(2); semaphore.Release(2); semaphore.Acquire(1); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(1); semaphore.Release(2); { auto a = semaphore.ScopedAcquire(1); EXPECT_EQ(a.amount(), 1); { auto b = semaphore.ScopedAcquire(1); } { auto c = semaphore.ScopedAcquire(1); } } { auto d = semaphore.ScopedAcquire(2); EXPECT_EQ(d.amount(), 2); } } TEST(SemaphoreTest, ConcurrentTest) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "test", 2); Semaphore semaphore(2); semaphore.Acquire(1); absl::Notification a_done; pool.Schedule([&]() { semaphore.Acquire(2); semaphore.Release(2); a_done.Notify(); }); absl::Notification b_done; pool.Schedule([&]() { semaphore.Acquire(1); semaphore.Release(1); b_done.Notify(); }); b_done.WaitForNotification(); EXPECT_FALSE(a_done.HasBeenNotified()); semaphore.Release(1); a_done.WaitForNotification(); } } }
2,202
#ifndef XLA_PJRT_MLIR_TO_HLO_H_ #define XLA_PJRT_MLIR_TO_HLO_H_ #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/xla_computation.h" namespace xla { absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ParseMlirModuleString( absl::string_view mlir_module_str, mlir::MLIRContext& context); absl::Status MlirToXlaComputation(mlir::ModuleOp module, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple); absl::Status ParseMlirModuleStringAndConvertToXlaComputation( absl::string_view mlir_module_str, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple); std::string GetDefaultStablehloVersion(); absl::StatusOr<std::string> Serialize(mlir::ModuleOp mlir_module, std::optional<int64_t> plugin_version, absl::string_view target, bool inplace = false); absl::StatusOr<std::string> SerializeUsingVersionedStablehlo( mlir::ModuleOp mlir_module, absl::string_view target, bool inplace = false); absl::Status UpgradeVersionedStablehlo(mlir::ModuleOp mlir_module); } #endif #include "xla/pjrt/mlir_to_hlo.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Bytecode/BytecodeWriter.h" #include "mlir/Conversion/ReconcileUnrealizedCasts/ReconcileUnrealizedCasts.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MLProgram/IR/MLProgram.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Visitors.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/Passes.h" #include "stablehlo/dialect/ChloOps.h" #include "stablehlo/dialect/Register.h" #include "stablehlo/dialect/Serialization.h" #include "stablehlo/dialect/StablehloOps.h" #include "stablehlo/transforms/Passes.h" #include "xla/debug_options_flags.h" #include "xla/mlir/utils/error_util.h" #include "xla/mlir_hlo/mhlo/IR/register.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/service/spmd/shardonnay/constants.h" #include "xla/service/spmd/shardonnay/utils.h" #include "xla/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { static mlir::Attribute ArrayToElements(mlir::Attribute attr) { if (auto array = mlir::dyn_cast<mlir::DenseI64ArrayAttr>(attr)) { return mlir::DenseIntElementsAttr::get( mlir::RankedTensorType::get(array.size(), array.getElementType()), array.asArrayRef()); } if (auto array = mlir::dyn_cast<mlir::DenseBoolArrayAttr>(attr)) { return mlir::DenseIntElementsAttr::get( mlir::RankedTensorType::get(array.size(), array.getElementType()), array.asArrayRef()); } return attr; } static mlir::Attribute ElementsToArray(mlir::Attribute attr) { if (auto elements = llvm::dyn_cast<mlir::DenseIntElementsAttr>(attr)) { if (elements.getElementType().isInteger(64)) { return mlir::DenseI64ArrayAttr::get( attr.getContext(), llvm::to_vector(elements.getValues<int64_t>())); } return mlir::DenseBoolArrayAttr::get( attr.getContext(), llvm::to_vector(elements.getValues<bool>())); } return attr; } static void ConvertAttr( mlir::Operation* op, llvm::StringRef attr_name, llvm::function_ref<mlir::Attribute(mlir::Attribute)> convert) { if (auto attr = op->getAttr(attr_name)) { op->setAttr(attr_name, convert(attr)); } } void ConvertStablehloDenseAttributes( mlir::Operation* root_op, llvm::function_ref<mlir::Attribute(mlir::Attribute)> convert, std::optional<int64_t> plugin_version) { llvm::TypeSwitch<mlir::Operation*>(root_op) .Case([&](mlir::stablehlo::BroadcastInDimOp op) { ConvertAttr(op, "broadcast_dimensions", convert); }) .Case([&](mlir::stablehlo::ConvolutionOp op) { ConvertAttr(op, "window_strides", convert); ConvertAttr(op, "lhs_dilation", convert); ConvertAttr(op, "rhs_dilation", convert); ConvertAttr(op, "window_reversal", convert); }) .Case([&](mlir::stablehlo::DynamicBroadcastInDimOp op) { ConvertAttr(op, "broadcast_dimensions", convert); ConvertAttr(op, "known_expanding_dimensions", convert); ConvertAttr(op, "known_nonexpanding_dimensions", convert); }) .Case([&](mlir::stablehlo::DynamicConvOp op) { ConvertAttr(op, "window_strides", convert); ConvertAttr(op, "lhs_dilation", convert); ConvertAttr(op, "rhs_dilation", convert); ConvertAttr(op, "window_reversal", convert); }) .Case([&](mlir::stablehlo::GatherOp op) { ConvertAttr(op, "slice_sizes", convert); }) .Case([&](mlir::stablehlo::MapOp op) { ConvertAttr(op, "dimensions", convert); }) .Case([&](mlir::stablehlo::ReduceOp op) { ConvertAttr(op, "dimensions", convert); }) .Case([&](mlir::stablehlo::ReduceWindowOp op) { ConvertAttr(op, "window_dimensions", convert); ConvertAttr(op, "window_strides", convert); ConvertAttr(op, "base_dilations", convert); ConvertAttr(op, "window_dilations", convert); }) .Case([&](mlir::stablehlo::SelectAndScatterOp op) { ConvertAttr(op, "window_dimensions", convert); ConvertAttr(op, "window_strides", convert); }); if (!plugin_version.has_value() || plugin_version.value() < 40) { llvm::TypeSwitch<mlir::Operation*>(root_op) .Case([&](mlir::stablehlo::BroadcastOp op) { ConvertAttr(op, "broadcast_sizes", convert); }) .Case([&](mlir::stablehlo::DynamicSliceOp op) { ConvertAttr(op, "slice_sizes", convert); }) .Case([&](mlir::stablehlo::FftOp op) { ConvertAttr(op, "fft_length", convert); }) .Case([&](mlir::stablehlo::PadOp op) { ConvertAttr(op, "edge_padding_low", convert); ConvertAttr(op, "edge_padding_high", convert); ConvertAttr(op, "interior_padding", convert); }) .Case([&](mlir::stablehlo::ReverseOp op) { ConvertAttr(op, "dimensions", convert); }) .Case([&](mlir::stablehlo::SliceOp op) { ConvertAttr(op, "start_indices", convert); ConvertAttr(op, "limit_indices", convert); ConvertAttr(op, "strides", convert); }) .Case([&](mlir::stablehlo::TransposeOp op) { ConvertAttr(op, "permutation", convert); }); } } void DowngradeStablehlo(mlir::ModuleOp module, std::optional<int64_t> plugin_version) { module->walk([&](mlir::Operation* op) { ConvertStablehloDenseAttributes(op, ArrayToElements, plugin_version); }); } void UpgradeStablehlo(mlir::ModuleOp module) { module->walk([](mlir::Operation* op) { ConvertStablehloDenseAttributes(op, ElementsToArray, std::nullopt); }); } } absl::Status MlirToXlaComputation(mlir::ModuleOp module, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple) { mlir::MLIRContext* context = module->getContext(); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context); { mlir::PassManager pm(context); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createChloLegalizeToHloPass()); pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createSinkConstantsToControlFlowPass()); if (failed(pm.run(module))) { VLOG(1) << "MHLO->HLO lowering passes failed."; module->dump(); return diagnostic_handler.ConsumeStatus(); } VLOG(5) << "MHLO module after lowering, before HLO import "; if (VLOG_IS_ON(5)) { module->dump(); } } if (use_tuple_args && GetDebugOptionsFromFlags().xla_use_shardonnay()) { sdy::addFrontendAttribute(module, sdy::kUseTupleArgs, mlir::StringAttr::get(context, "t")); use_tuple_args = false; } mlir::MlirToHloConversionOptions options; options.use_tuple_args = use_tuple_args; options.return_tuple = return_tuple; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, mlir::ConvertMlirHloToHloModule(module, options)); xla_computation = XlaComputation(hlo_module->ToProto()); return absl::OkStatus(); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ParseMlirModuleString( absl::string_view mlir_module_str, mlir::MLIRContext& context) { mlir::DialectRegistry registry; registry.insert<mlir::arith::ArithDialect>(); registry.insert<mlir::func::FuncDialect>(); registry.insert<mlir::ml_program::MLProgramDialect>(); registry.insert<mlir::shape::ShapeDialect>(); mlir::func::registerAllExtensions(registry); mlir::mhlo::registerAllMhloDialects(registry); mlir::stablehlo::registerAllDialects(registry); context.appendDialectRegistry(registry); mlir::BaseScopedDiagnosticHandler diagnostic_handler(&context); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>( llvm::StringRef(mlir_module_str.data(), mlir_module_str.size()), mlir::ParserConfig{&context, false}); if (!module) { return diagnostic_handler.ConsumeStatus(); } TF_RETURN_IF_ERROR(UpgradeVersionedStablehlo(*module)); if (failed(module->verifyInvariants())) { VLOG(1) << "MLIR verification failed."; module->dump(); return diagnostic_handler.ConsumeStatus(); } return std::move(module); } absl::Status ParseMlirModuleStringAndConvertToXlaComputation( absl::string_view mlir_module_str, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple) { mlir::MLIRContext context; TF_ASSIGN_OR_RETURN(mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(mlir_module_str, context)); return xla::MlirToXlaComputation(*module, xla_computation, use_tuple_args, return_tuple); } absl::StatusOr<std::string> SerializeUsingNativeBytecode( mlir::ModuleOp module, std::optional<int64_t> plugin_version) { std::string bytecode; llvm::raw_string_ostream os(bytecode); mlir::BytecodeWriterConfig config; config.setDesiredBytecodeVersion(1); mlir::OwningOpRef<mlir::ModuleOp> cloned = module.clone(); DowngradeStablehlo(*cloned, plugin_version); if (mlir::failed(mlir::writeBytecodeToFile(*cloned, os, config))) { return absl::InvalidArgumentError("mlir::writeBytecodeToFile failed"); } return bytecode; } absl::StatusOr<std::string> SerializeUsingVersionedStablehlo( mlir::ModuleOp mlir_module, absl::string_view target, bool inplace) { mlir::MLIRContext* context = mlir_module->getContext(); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context); mlir::PassManager pm(context); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createChloLegalizeToHighLevelMhloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createChloLegalizeToStablehloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createShapeLegalizeToStablehloPass()); pm.addPass(mlir::createReconcileUnrealizedCastsPass()); pm.addPass(mlir::mhlo::createHloLegalizeToStablehloPass()); if (!mlir::succeeded(pm.run(mlir_module))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError( absl::StrCat("CHLO => [MHLO+Shape] => StableHLO failed;\n\nDetailed " "error from MLIR: ", status.message())); } mlir::OwningOpRef<mlir::ModuleOp> cloned; if (!inplace) { cloned = mlir_module.clone(); mlir_module = *cloned; } std::string buffer; llvm::raw_string_ostream os(buffer); if (failed(mlir::stablehlo::serializePortableArtifact(mlir_module, target, os))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError(absl::StrCat( "Failed to serialize StableHLO;\n\nDetailed error from MLIR: ", status.message())); } return buffer; } absl::Status UpgradeVersionedStablehlo(mlir::ModuleOp mlir_module) { UpgradeStablehlo(mlir_module); mlir::PassManager pm(mlir_module->getContext()); mlir::stablehlo::createStablehloDeserializePipeline(pm); if (!mlir::succeeded(pm.run(mlir_module))) return xla::InvalidArgument("Failed to upgrade versioned StableHLO."); return absl::OkStatus(); } std::string GetDefaultStablehloVersion() { return "0.17.0"; } absl::StatusOr<std::string> Serialize(mlir::ModuleOp module, std::optional<int64_t> plugin_version, absl::string_view target, bool inplace) { bool all_stablehlo = true; module->walk([&](mlir::Operation* op) { if (!llvm::isa<mlir::ModuleOp>(op) && !llvm::isa<mlir::stablehlo::StablehloDialect, mlir::func::FuncDialect, mlir::chlo::ChloDialect>(op->getDialect())) { std::cout << op->getDialect()->getNamespace().str() << "\n"; all_stablehlo = false; return mlir::WalkResult::interrupt(); } return mlir::WalkResult::advance(); }); if (!all_stablehlo || (plugin_version.has_value() && plugin_version.value() < 47)) { return SerializeUsingNativeBytecode(module, plugin_version); } return SerializeUsingVersionedStablehlo(module, target, inplace); } }
#include "xla/pjrt/mlir_to_hlo.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "xla/test.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::HasSubstr; using ::testing::Not; MATCHER_P(IsVhloArtifact, version, "") { return ExplainMatchResult(HasSubstr(absl::StrCat("StableHLO_v", version)), arg, result_listener); } TEST(MlirToHloTest, StablehloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = stablehlo.constant dense<1.0> : tensor<1x2xf32> %0 = stablehlo.add %arg0, %cst : tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, 47, "1.0.0")); EXPECT_THAT(blob, IsVhloArtifact("1.0.0")); } TEST(MlirToHloTest, ChloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = stablehlo.constant dense<1.0> : tensor<1x2xf32> %0 = chlo.broadcast_add %arg0, %cst : (tensor<1x2xf32>, tensor<1x2xf32>) -> tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, 47, "1.0.0")); EXPECT_THAT(blob, IsVhloArtifact("1.0.0")); } TEST(MlirToHloTest, MhloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = mhlo.constant dense<1.0> : tensor<1x2xf32> %0 = mhlo.add %arg0, %cst : tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, 47, "1.0.0")); EXPECT_THAT(blob, Not(IsVhloArtifact("1.0.0"))); } } }
2,203
#ifndef XLA_PJRT_TRACKED_DEVICE_BUFFER_H_ #define XLA_PJRT_TRACKED_DEVICE_BUFFER_H_ #include <atomic> #include <cstdint> #include <functional> #include <memory> #include <string> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/any_invocable.h" #include "xla/pjrt/event_pool.h" #include "xla/service/executable.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/threadpool.h" namespace xla { class BufferSequencingEvent { public: explicit BufferSequencingEvent(tsl::thread::ThreadPool* thread_pool) : thread_pool_(thread_pool), defined_status_(tsl::MakeUnconstructedAsyncValueRef<absl::Status>()) {} void SetSequencingEvent(EventPool::Handle event, se::Stream* stream); void WaitForEventOnStream(se::Stream* stream); absl::Status WaitForEventOnExternalStream(std::intptr_t stream); bool DefinedOn(se::Stream* stream); bool IsComplete(); inline bool operator<(const BufferSequencingEvent& rhs) const { return sequence_number() < rhs.sequence_number(); } inline bool operator>(const BufferSequencingEvent& rhs) const { return rhs < *this; } inline bool operator<=(const BufferSequencingEvent& rhs) const { return !(*this > rhs); } inline bool operator>=(const BufferSequencingEvent& rhs) const { return !(*this < rhs); } inline bool operator==(int number) const { return sequence_number() == number; } void ExecuteOrAddToFutureTasks(const std::string& task_name, std::function<void()> task); void ExecuteFutureTasks(); bool IsDefined() { absl::MutexLock lock(&mu_); return defined_status_.IsConcrete(); } void SetDefinedStatus(absl::Status status) { { absl::MutexLock lock(&mu_); defined_status_.emplace(status); } this->ExecuteFutureTasks(); } absl::Status GetDefinedStatus() { absl::MutexLock lock(&mu_); CHECK(defined_status_.IsConcrete()); return defined_status_.get(); } bool IsPredeterminedError() { absl::MutexLock lock(&mu_); return defined_status_.IsConcrete() && !defined_status_.get().ok(); } private: bool EventHasBeenRecorded() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_); uint64_t sequence_number() const; EventPool::Handle event_; std::atomic<uint64_t> sequence_number_{0}; mutable absl::Mutex mu_; absl::InlinedVector<se::Stream*, 2> streams_defined_on_ ABSL_GUARDED_BY(mu_); absl::flat_hash_map<std::string, std::function<void()>> on_ready_tasks_callback_ ABSL_GUARDED_BY(mu_); tsl::thread::ThreadPool* thread_pool_; tsl::AsyncValueRef<absl::Status> defined_status_ ABSL_GUARDED_BY(mu_); }; class TrackedDeviceBuffer { public: struct StreamAndEvent { se::Stream* stream; std::shared_ptr<BufferSequencingEvent> event; bool reference_held; }; static std::shared_ptr<TrackedDeviceBuffer> FromScopedShapedBuffer( ScopedShapedBuffer* shaped_buffer, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events); ShapedBuffer AsShapedBuffer(const Shape& on_device_shape) const; void AddToInputAsImmutable( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end) const; void AddToInputAsDonated( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end, ExecutionInput* execution_input, se::DeviceMemoryAllocator* allocator) const; se::DeviceMemoryAllocator* allocator() const { return allocator_; } int device_ordinal() const { return device_ordinal_; } absl::InlinedVector<se::DeviceMemoryBase, 1>& device_memory() { return device_memory_; } const absl::InlinedVector<se::DeviceMemoryBase, 1>& device_memory() const { return device_memory_; } absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events() const { return definition_events_; } absl::Span<const StreamAndEvent> usage_events() const { return usage_events_; } void ReleaseDeviceMemory() { device_memory_.clear(); } void AddUsageEvent(se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held); using StreamAndEventContainer = absl::InlinedVector<StreamAndEvent, 3>; StreamAndEventContainer LockUseAndTransferUsageEvents(); TrackedDeviceBuffer() : in_use_(true) {} TrackedDeviceBuffer(se::DeviceMemoryAllocator* allocator, int device_ordinal, absl::Span<se::DeviceMemoryBase const> device_memory, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events, absl::AnyInvocable<void() &&> on_delete_callback); ~TrackedDeviceBuffer(); private: se::DeviceMemoryAllocator* allocator_; int device_ordinal_; absl::InlinedVector<se::DeviceMemoryBase, 1> device_memory_; absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 2> definition_events_; bool in_use_; StreamAndEventContainer usage_events_; absl::AnyInvocable<void() &&> on_delete_callback_; }; void GetDeviceBufferEvents(const TrackedDeviceBuffer& buffer, bool get_usage_events, absl::flat_hash_set<BufferSequencingEvent*>* events); void WaitForBufferDefinitionEventsOnStream(const TrackedDeviceBuffer& buffer, se::Stream* stream); } #endif #include "xla/pjrt/tracked_device_buffer.h" #include <algorithm> #include <atomic> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/pjrt/event_pool.h" #include "xla/service/executable.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/event.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" namespace xla { void BufferSequencingEvent::SetSequencingEvent(EventPool::Handle event, se::Stream* stream) { { absl::MutexLock lock(&mu_); defined_status_.emplace(absl::OkStatus()); CHECK(!event_.event()); event_ = std::move(event); CHECK(streams_defined_on_.empty()); streams_defined_on_.push_back(stream); sequence_number_.store(event_.sequence_number(), std::memory_order_seq_cst); } this->ExecuteFutureTasks(); } bool BufferSequencingEvent::EventHasBeenRecorded() const { return event_.event() != nullptr; } uint64_t BufferSequencingEvent::sequence_number() const { uint64_t seq = sequence_number_.load(std::memory_order_seq_cst); return seq; } void BufferSequencingEvent::WaitForEventOnStream(se::Stream* stream) { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); if (std::find(streams_defined_on_.begin(), streams_defined_on_.end(), stream) != streams_defined_on_.end()) { return; } stream->WaitFor(event_.event()).IgnoreError(); streams_defined_on_.push_back(stream); } absl::Status BufferSequencingEvent::WaitForEventOnExternalStream( std::intptr_t stream) { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); return event_.event()->WaitForEventOnExternalStream(stream); } bool BufferSequencingEvent::DefinedOn(se::Stream* stream) { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); return std::find(streams_defined_on_.begin(), streams_defined_on_.end(), stream) != streams_defined_on_.end(); } bool BufferSequencingEvent::IsComplete() { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); return event_.event()->PollForStatus() == se::Event::Status::kComplete; } void BufferSequencingEvent::ExecuteOrAddToFutureTasks( const std::string& task_name, std::function<void()> task) { absl::MutexLock lock(&mu_); tsl::profiler::TraceMeProducer producer( "BufferSequencingEvent::ExecuteOrAddToFutureTasks", tsl::profiler::ContextType::kPjRt); uint64_t context_id = producer.GetContextId(); auto wrapped_task = [task = std::move(task), context_id]() { tsl::profiler::TraceMeConsumer consumer("BufferSequencingEvent::Execute", tsl::profiler::ContextType::kPjRt, context_id); task(); }; if (defined_status_.IsConcrete()) { thread_pool_->Schedule(std::move(wrapped_task)); return; } on_ready_tasks_callback_[task_name] = std::move(wrapped_task); } void BufferSequencingEvent::ExecuteFutureTasks() { absl::MutexLock lock(&mu_); for (auto& [task_name, task_callback] : on_ready_tasks_callback_) { thread_pool_->Schedule(std::move(task_callback)); } on_ready_tasks_callback_.clear(); } std::shared_ptr<TrackedDeviceBuffer> TrackedDeviceBuffer::FromScopedShapedBuffer( ScopedShapedBuffer* shaped_buffer, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events) { ShapeTree<se::DeviceMemoryBase>::iterator iterator = shaped_buffer->buffers().begin(); std::vector<se::DeviceMemoryBase> buffers; buffers.reserve(1); ShapeUtil::ForEachSubshape( shaped_buffer->on_device_shape(), [&](const Shape&, const ShapeIndex&) { CHECK(iterator != shaped_buffer->buffers().end()); buffers.push_back(iterator->second); iterator->second = se::DeviceMemoryBase(); ++iterator; }); CHECK(iterator == shaped_buffer->buffers().end()); return std::make_shared<TrackedDeviceBuffer>( shaped_buffer->memory_allocator(), shaped_buffer->device_ordinal(), absl::Span<se::DeviceMemoryBase>(buffers), definition_events, nullptr); } ShapedBuffer TrackedDeviceBuffer::AsShapedBuffer( const Shape& on_device_shape) const { ShapedBuffer shaped_buffer(on_device_shape, device_ordinal_); ShapeTree<se::DeviceMemoryBase>::iterator iterator = shaped_buffer.buffers().begin(); for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(iterator != shaped_buffer.buffers().end()); iterator->second = buf; ++iterator; } CHECK(iterator == shaped_buffer.buffers().end()); return shaped_buffer; } void TrackedDeviceBuffer::AddToInputAsImmutable( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end) const { for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(*iterator != end); (*iterator)->second = MaybeOwningDeviceMemory(buf); ++(*iterator); } } void TrackedDeviceBuffer::AddToInputAsDonated( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end, ExecutionInput* execution_input, se::DeviceMemoryAllocator* allocator) const { for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(*iterator != end); (*iterator)->second = MaybeOwningDeviceMemory( se::OwningDeviceMemory(buf, device_ordinal_, allocator)); execution_input->SetUnownedIndex((*iterator)->first); ++(*iterator); } } TrackedDeviceBuffer::TrackedDeviceBuffer( se::DeviceMemoryAllocator* allocator, int device_ordinal, absl::Span<se::DeviceMemoryBase const> device_memory, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : allocator_(allocator), device_ordinal_(device_ordinal), device_memory_(device_memory.begin(), device_memory.end()), definition_events_(std::make_move_iterator(definition_events.begin()), std::make_move_iterator(definition_events.end())), in_use_(true), on_delete_callback_(std::move(on_delete_callback)) {} TrackedDeviceBuffer::~TrackedDeviceBuffer() { if (allocator_) { for (const se::DeviceMemoryBase& buffer : device_memory_) { absl::Status status = allocator_->Deallocate(device_ordinal_, buffer); if (!status.ok()) { LOG(ERROR) << "Buffer deallocation failed: " << status; } } } if (on_delete_callback_) { std::move(on_delete_callback_)(); } } void TrackedDeviceBuffer::AddUsageEvent( se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held) { CHECK(in_use_); if (*event == 0) { usage_events_.push_back({usage_stream, event, reference_held}); return; } for (auto& existing : usage_events_) { if (*existing.event == 0) continue; if (existing.stream == usage_stream) { if (*existing.event < *event) { existing.event = event; existing.reference_held = reference_held; } return; } } usage_events_.push_back({usage_stream, event, reference_held}); } TrackedDeviceBuffer::StreamAndEventContainer TrackedDeviceBuffer::LockUseAndTransferUsageEvents() { CHECK(in_use_); in_use_ = false; return std::move(usage_events_); } void GetDeviceBufferEvents( const TrackedDeviceBuffer& buffer, bool get_usage_events, absl::flat_hash_set<BufferSequencingEvent*>* events) { if (get_usage_events) { for (const auto& e : buffer.usage_events()) { events->insert(e.event.get()); } } else { for (const auto& e : buffer.definition_events()) { events->insert(e.get()); } } } void WaitForBufferDefinitionEventsOnStream(const TrackedDeviceBuffer& buffer, se::Stream* stream) { absl::flat_hash_set<BufferSequencingEvent*> events; GetDeviceBufferEvents(buffer, false, &events); for (BufferSequencingEvent* event : events) { event->WaitForEventOnStream(stream); } } }
#include "xla/pjrt/tracked_device_buffer.h" #include <memory> #include <vector> #include "absl/status/status.h" #include "xla/client/client_library.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/test.h" namespace xla { namespace { absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>> MakeArray( const Shape& shape, LocalClient* client) { std::vector<stream_executor::DeviceMemoryBase> device_buffers; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( client->backend().transfer_manager()->HostShapeToDeviceShape(shape), [&](const Shape& subshape, const ShapeIndex&) -> absl::Status { TF_ASSIGN_OR_RETURN( se::OwningDeviceMemory device_memory, client->backend().memory_allocator()->Allocate( 0, client->backend().transfer_manager()->GetByteSizeRequirement( subshape))); device_buffers.push_back(device_memory.Release()); return absl::OkStatus(); })); return std::make_shared<TrackedDeviceBuffer>( client->backend().memory_allocator(), 0, device_buffers, absl::Span<const std::shared_ptr<BufferSequencingEvent>>(), nullptr); } TEST(TrackedDeviceBufferTest, AsShapedBuffer) { LocalClient* client = ClientLibrary::LocalClientOrDie(); Shape a_shape = ShapeUtil::MakeShape(F32, {3, 101, 4}); Shape b_shape = ShapeUtil::MakeShape(S8, {77}); Shape c_shape = ShapeUtil::MakeShape(S64, {}); TF_ASSERT_OK_AND_ASSIGN(auto a_buffer, MakeArray(a_shape, client)); TF_ASSERT_OK_AND_ASSIGN(auto b_buffer, MakeArray(b_shape, client)); TF_ASSERT_OK_AND_ASSIGN(auto c_buffer, MakeArray(c_shape, client)); ASSERT_EQ(a_buffer->device_memory().size(), 1); ASSERT_EQ(b_buffer->device_memory().size(), 1); ASSERT_EQ(c_buffer->device_memory().size(), 1); std::vector<se::DeviceMemoryBase> expected_buffer_sequence = { a_buffer->device_memory()[0], b_buffer->device_memory()[0], c_buffer->device_memory()[0]}; ShapedBuffer shaped_a = a_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(a_shape)); ShapedBuffer shaped_b = b_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(b_shape)); ShapedBuffer shaped_c = c_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(c_shape)); auto expected_it = expected_buffer_sequence.begin(); for (auto it = shaped_a.buffers().begin(); it != shaped_a.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } for (auto it = shaped_b.buffers().begin(); it != shaped_b.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } for (auto it = shaped_c.buffers().begin(); it != shaped_c.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } EXPECT_TRUE(expected_it == expected_buffer_sequence.end()); } TEST(TrackedDeviceBufferTest, FromScopedShapedBuffer) { LocalClient* client = ClientLibrary::LocalClientOrDie(); Literal literal = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout<float>({10, 3, 7}, 33.4f), LiteralUtil::One(S64)); TF_ASSERT_OK_AND_ASSIGN( ScopedShapedBuffer shaped_buffer, client->LiteralToShapedBuffer(literal, 0)); std::shared_ptr<TrackedDeviceBuffer> device_buffer = TrackedDeviceBuffer::FromScopedShapedBuffer(&shaped_buffer, {}); EXPECT_EQ(device_buffer->device_memory().size(), ShapeUtil::SubshapeCount( client->backend().transfer_manager()->HostShapeToDeviceShape( literal.shape()))); } } }
2,204
#ifndef XLA_PJRT_PJRT_API_H_ #define XLA_PJRT_PJRT_API_H_ #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "tsl/platform/platform.h" namespace pjrt { absl::StatusOr<const PJRT_Api*> PjrtApi(absl::string_view device_type); absl::Status SetPjrtApi(absl::string_view device_type, const PJRT_Api* api); absl::StatusOr<const PJRT_Api*> LoadPjrtPlugin(absl::string_view device_type, absl::string_view library_path); absl::StatusOr<bool> IsPjrtPluginInitialized(absl::string_view device_type); absl::Status InitializePjrtPlugin(absl::string_view device_type); } #endif #include "xla/pjrt/pjrt_api.h" #include <cstdlib> #include <utility> #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/pjrt/c/pjrt_c_api.h" #if !defined(PLATFORM_WINDOWS) #include <dlfcn.h> #endif #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace pjrt { constexpr int kMinPjRtMinor = 29; static auto* pjrt_apis = new absl::flat_hash_map<std::string, std::pair<const PJRT_Api*, bool>>{}; static std::string CanonicalizeDeviceType(absl::string_view device_type) { return absl::AsciiStrToLower(device_type); } absl::StatusOr<const PJRT_Api*> PjrtApi(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return tsl::errors::NotFound("PJRT_Api not found for device type ", canonicalize_device_type); } return iter->second.first; } absl::Status SetPjrtApi(absl::string_view device_type, const PJRT_Api* api) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); if (auto iter = pjrt_apis->find(canonicalize_device_type); iter != pjrt_apis->end()) { return tsl::errors::AlreadyExists( "PJRT_Api already exists for device type ", canonicalize_device_type); } (*pjrt_apis)[canonicalize_device_type] = std::make_pair(api, false); LOG(INFO) << "PJRT_Api is set for device type " << canonicalize_device_type; return absl::OkStatus(); } typedef const PJRT_Api* (*PjrtApiInitFn)(); absl::StatusOr<const PJRT_Api*> LoadPjrtPlugin(absl::string_view device_type, absl::string_view library_path) { #ifdef PLATFORM_WINDOWS return tsl::errors::Unimplemented( "LoadPjrtPlugin is not implemented on windows yet."); #else void* library = dlopen(library_path.data(), RTLD_LAZY); if (library == nullptr) { return tsl::errors::Internal("Failed to open ", library_path, ": ", dlerror()); } PjrtApiInitFn init_fn; *reinterpret_cast<void**>(&init_fn) = dlsym(library, "GetPjrtApi"); if (init_fn == nullptr) { return tsl::errors::NotFound("GetPjrtApi not found in ", library_path); } LOG(INFO) << "GetPjrtApi was found for " << device_type << " at " << library_path; const PJRT_Api* api = init_fn(); TF_RETURN_IF_ERROR(SetPjrtApi(device_type, api)); return api; #endif } absl::StatusOr<bool> IsPjrtPluginInitialized(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return absl::NotFoundError(absl::StrCat( "PJRT_Api not found for device type ", canonicalize_device_type, ". Call SetPjrtApi before calling IsPjrtPluginInitialized.")); } return iter->second.second; } static bool IsPjRtCompatibilityEnabled() { const char* val = getenv("ENABLE_PJRT_COMPATIBILITY"); if (val == nullptr) { return false; } bool enabled = false; if (!absl::SimpleAtob(val, &enabled)) { return false; } return enabled; } absl::Status InitializePjrtPlugin(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return absl::NotFoundError(absl::StrCat( "PJRT_Api not found for device type ", canonicalize_device_type, ". Call SetPjrtApi before calling IsPjrtPluginInitialized.")); } if (iter->second.second) { return absl::InvalidArgumentError( absl::StrCat("InitializePjrtPlugin requested to run on already " "initialized plugin ", canonicalize_device_type)); } const PJRT_Api* pjrt_api = iter->second.first; LOG(INFO) << "The PJRT plugin has PJRT API version " << pjrt_api->pjrt_api_version.major_version << "." << pjrt_api->pjrt_api_version.minor_version << ". The framework PJRT API version is " << PJRT_API_MAJOR << "." << PJRT_API_MINOR << "."; if (IsPjRtCompatibilityEnabled()) { if (pjrt_api->pjrt_api_version.major_version != PJRT_API_MAJOR) { return absl::InvalidArgumentError(absl::StrCat( "Mismatched PJRT plugin PJRT API major version (", pjrt_api->pjrt_api_version.major_version, ") and framework PJRT API major version ", PJRT_API_MAJOR, ").")); } if (pjrt_api->pjrt_api_version.minor_version < kMinPjRtMinor) { return absl::InvalidArgumentError(absl::StrCat( "Plugin PJRT API version ", pjrt_api->pjrt_api_version.major_version, ".", pjrt_api->pjrt_api_version.minor_version, " is older than the minimum supported version ", PJRT_API_MAJOR, ".", kMinPjRtMinor)); } } else { if (pjrt_api->pjrt_api_version.major_version != PJRT_API_MAJOR || pjrt_api->pjrt_api_version.minor_version != PJRT_API_MINOR) { return absl::InvalidArgumentError( absl::StrCat("Mismatched PJRT plugin PJRT API version (", pjrt_api->pjrt_api_version.major_version, ".", pjrt_api->pjrt_api_version.minor_version, ") and framework PJRT API version ", PJRT_API_MAJOR, ".", PJRT_API_MINOR, ").")); } } PJRT_Plugin_Initialize_Args args; args.struct_size = PJRT_Plugin_Initialize_Args_STRUCT_SIZE; args.extension_start = nullptr; RETURN_STATUS_IF_PJRT_ERROR(pjrt_api->PJRT_Plugin_Initialize(&args), pjrt_api); iter->second.second = true; return absl::OkStatus(); } }
#include "xla/pjrt/pjrt_api.h" #include <string> #include <gtest/gtest.h> #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/protobuf/error_codes.pb.h" namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(PjRtApiTest, SetAndGetGlobalPjRtApi) { PJRT_Api api; api.struct_size = PJRT_Api_STRUCT_SIZE; api.pjrt_api_version.major_version = PJRT_API_MAJOR; api.pjrt_api_version.minor_version = PJRT_API_MINOR; TF_ASSERT_OK(pjrt::SetPjrtApi("CPU", &api)); TF_ASSERT_OK_AND_ASSIGN(const PJRT_Api* output, pjrt::PjrtApi("CPU")); TF_ASSERT_OK_AND_ASSIGN(const PJRT_Api* output_lowercase, pjrt::PjrtApi("cpu")); TF_ASSERT_OK_AND_ASSIGN(bool is_initialized, pjrt::IsPjrtPluginInitialized("CPU")); EXPECT_FALSE(is_initialized); EXPECT_EQ(output, &api); EXPECT_EQ(output_lowercase, &api); EXPECT_THAT(pjrt::SetPjrtApi("CPU", &api), StatusIs(tensorflow::error::ALREADY_EXISTS, HasSubstr("PJRT_Api already exists for device type"))); EXPECT_THAT(pjrt::PjrtApi("TPU"), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("PJRT_Api not found for device type tpu"))); } TEST(PjRtApiTest, InitPjRtPlugin) { PJRT_Api api; api.struct_size = PJRT_Api_STRUCT_SIZE; api.pjrt_api_version.major_version = PJRT_API_MAJOR; api.pjrt_api_version.minor_version = PJRT_API_MINOR; api.PJRT_Plugin_Initialize = pjrt::PJRT_Plugin_Initialize_NoOp; std::string plugin_name = "plugin"; TF_ASSERT_OK(pjrt::SetPjrtApi(plugin_name, &api)); TF_ASSERT_OK_AND_ASSIGN(bool is_initialized, pjrt::IsPjrtPluginInitialized(plugin_name)); EXPECT_FALSE(is_initialized); TF_ASSERT_OK(pjrt::InitializePjrtPlugin(plugin_name)); TF_ASSERT_OK_AND_ASSIGN(is_initialized, pjrt::IsPjrtPluginInitialized(plugin_name)); EXPECT_TRUE(is_initialized); } }
2,205
#ifndef XLA_PJRT_PJRT_FUTURE_H_ #define XLA_PJRT_PJRT_FUTURE_H_ #include <algorithm> #include <atomic> #include <cstdint> #include <functional> #include <memory> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" namespace xla { template <class T = void> class PjRtFuture; namespace internal { template <class T, bool unique> class PjRtFutureBase; } PjRtFuture<> JoinFutures(absl::Span<const PjRtFuture<>> futures); class ScopedAsyncTrackingEvent { public: virtual ~ScopedAsyncTrackingEvent() = default; private: template <class T, bool unique> friend class internal::PjRtFutureBase; virtual void AddDependency(tsl::RCReference<tsl::AsyncValue> dependency) = 0; }; struct PjRtFutureHelpers { public: struct ProfilingKeys { uint64_t traceme_context_id = -1; }; using OnBlockStartFn = std::function<ProfilingKeys()>; using OnBlockEndFn = std::function<void(ProfilingKeys)>; }; namespace internal { template <typename T> struct IsStatusOr : public std::false_type {}; template <typename T> struct IsStatusOr<absl::StatusOr<T>> : public std::true_type {}; template <bool unique> class PjRtFutureMoveControl; template <> class PjRtFutureMoveControl<true> { protected: PjRtFutureMoveControl() = default; PjRtFutureMoveControl(const PjRtFutureMoveControl&) = delete; PjRtFutureMoveControl& operator=(const PjRtFutureMoveControl&) = delete; PjRtFutureMoveControl(PjRtFutureMoveControl&&) = default; PjRtFutureMoveControl& operator=(PjRtFutureMoveControl&&) = default; }; template <> class PjRtFutureMoveControl<false> { protected: PjRtFutureMoveControl() = default; PjRtFutureMoveControl(const PjRtFutureMoveControl&) = default; PjRtFutureMoveControl& operator=(const PjRtFutureMoveControl&) = default; PjRtFutureMoveControl(PjRtFutureMoveControl&&) = default; PjRtFutureMoveControl& operator=(PjRtFutureMoveControl&&) = default; }; template <typename T, bool unique = !std::is_copy_constructible_v<T>> class PjRtFutureBase : public PjRtFutureMoveControl<unique> { protected: PjRtFutureBase(tsl::AsyncValueRef<T> promise, PjRtFutureHelpers::OnBlockStartFn on_block_start, PjRtFutureHelpers::OnBlockEndFn on_block_end) : promise_(std::move(promise)), on_block_start_(std::move(on_block_start)), on_block_end_(std::move(on_block_end)) {} public: PjRtFutureBase() = default; explicit PjRtFutureBase( T t, PjRtFutureHelpers::OnBlockStartFn on_block_start = nullptr, PjRtFutureHelpers::OnBlockEndFn on_block_end = nullptr) : PjRtFutureBase(tsl::MakeAvailableAsyncValueRef<T>(std::move(t)), std::move(on_block_start), std::move(on_block_end)) {} bool IsValid() const { return promise_ != nullptr; } bool IsReady() { CHECK(IsValid()); return promise_.IsAvailable(); } bool IsKnownReady() { CHECK(IsValid()); return promise_.IsAvailable(); } void AssertHappensBefore(ScopedAsyncTrackingEvent* event) { CHECK(IsValid()); if (event) event->AddDependency(promise_.CopyRCRef()); } protected: static constexpr bool is_unique() { return unique; } class Promise { public: Promise() = default; Promise(Promise&& other) = default; Promise& operator=(Promise&& other) = default; Promise(const Promise& other) = default; Promise& operator=(const Promise& other) = default; operator bool() const { return static_cast<bool>(promise_); } protected: explicit Promise(tsl::AsyncValueRef<T> promise) : promise_(std::move(promise)) {} template <typename... Args> void emplace(Args&&... args) const { DCHECK(promise_) << "Promise must wrap an async value"; promise_.template emplace<T>(std::forward<Args>(args)...); } tsl::AsyncValueRef<T> release() { return std::move(promise_); } tsl::AsyncValue* async_value() const { return promise_.GetAsyncValue(); } #ifndef NDEBUG int64_t AddFuture() { return num_futures_->fetch_add(1); } #endif private: tsl::AsyncValueRef<T> promise_; #ifndef NDEBUG std::shared_ptr<std::atomic<int64_t>> num_futures_ = std::make_shared<std::atomic<int64_t>>(0); #endif }; PjRtFutureHelpers::ProfilingKeys OnBlockStart() const { return on_block_start_ ? on_block_start_() : PjRtFutureHelpers::ProfilingKeys(); } void OnBlockEnd(PjRtFutureHelpers::ProfilingKeys keys) const { if (on_block_end_) on_block_end_(std::move(keys)); } void BlockUntilReady() const { CHECK(IsValid()); if (!promise_.IsAvailable()) { PjRtFutureHelpers::ProfilingKeys keys = OnBlockStart(); tsl::BlockUntilReady(promise_); OnBlockEnd(std::move(keys)); } DCHECK(promise_.IsConcrete()); } const T& Await() const& { BlockUntilReady(); return *promise_; } std::conditional_t<unique, T, const T&> Await() && { BlockUntilReady(); if constexpr (unique) { return std::move(*promise_); } else { return *promise_; } } template <typename F, std::enable_if_t<std::is_invocable_v<F, const T&> && !unique>* = nullptr> void OnReady(F&& f) const& { CHECK(IsValid()); promise_.AndThen( [promise = promise_.AsPtr(), f = std::forward<F>(f)]() mutable { DCHECK(promise.IsConcrete()); f(*promise); }); } template < typename F, std::enable_if_t<unique ? std::is_invocable_v<F, T> : std::is_invocable_v<F, const T&>>* = nullptr> void OnReady(F&& f) && { CHECK(IsValid()); promise_.AndThen( [promise = promise_.AsPtr(), f = std::forward<F>(f)]() mutable { DCHECK(promise.IsConcrete()); if constexpr (unique) { f(std::move(*promise)); } else { f(*promise); } }); } private: tsl::AsyncValueRef<T> promise_; PjRtFutureHelpers::OnBlockStartFn on_block_start_; PjRtFutureHelpers::OnBlockEndFn on_block_end_; }; } template <class T> class PjRtFuture : public internal::PjRtFutureBase<absl::StatusOr<T>> { using Base = internal::PjRtFutureBase<absl::StatusOr<T>>; static_assert(!std::is_same_v<T, absl::Status>, "Use PjRtFuture<> specialization for stateless futures"); static_assert( !internal::IsStatusOr<T>::value, "PjRtFuture<T> already has an implicit absl::StatusOr<T> semantics"); public: class Promise : public Base::Promise { public: using Base::Promise::Promise; void Set(absl::StatusOr<T> value) { Base::Promise::emplace(std::move(value)); } private: friend class PjRtFuture<T>; }; static Promise CreatePromise() { return Promise(tsl::MakeUnconstructedAsyncValueRef<absl::StatusOr<T>>()); } using Base::Base; explicit PjRtFuture( Promise promise, PjRtFutureHelpers::OnBlockStartFn on_block_start = nullptr, PjRtFutureHelpers::OnBlockEndFn on_block_end = nullptr) : Base(promise.release(), std::move(on_block_start), std::move(on_block_end)) { #ifndef NDEBUG if constexpr (Base::is_unique()) { DCHECK_EQ(promise.AddFuture(), 0) << "Unique PjRtFuture cannot share a promise object"; } #endif } using Base::Await; using Base::OnReady; }; template <> class PjRtFuture<void> : public internal::PjRtFutureBase<absl::Status> { using Base = internal::PjRtFutureBase<absl::Status>; public: class Promise : public Base::Promise { public: using Base::Promise::async_value; using Base::Promise::Promise; void Set(absl::Status status = absl::OkStatus()) { Base::Promise::emplace(std::move(status)); } private: friend class PjRtFuture<void>; }; static Promise CreatePromise() { return Promise(tsl::MakeUnconstructedAsyncValueRef<absl::Status>()); } using Base::Base; explicit PjRtFuture( Promise promise, PjRtFutureHelpers::OnBlockStartFn on_block_start = nullptr, PjRtFutureHelpers::OnBlockEndFn on_block_end = nullptr) : Base(promise.release(), std::move(on_block_start), std::move(on_block_end)) {} using Base::Await; using Base::OnReady; }; } #endif #include "xla/pjrt/pjrt_future.h" #include <atomic> #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace xla { namespace { struct State { explicit State(int32_t size) : pending_count(size), promise(PjRtFuture<>::CreatePromise()) {} std::atomic<int32_t> pending_count; PjRtFuture<>::Promise promise; absl::Mutex mu; absl::Status status ABSL_GUARDED_BY(&mu); }; } PjRtFuture<> JoinFutures(absl::Span<const PjRtFuture<>> futures) { if (futures.empty()) { return PjRtFuture<>(absl::OkStatus()); } else if (futures.size() == 1) { return futures.front(); } auto state = std::make_shared<State>(futures.size()); for (const PjRtFuture<>& future : futures) { future.OnReady([state](absl::Status status) { if (!status.ok()) { absl::MutexLock lock(&state->mu); state->status.Update(status); } const int pending_count = state->pending_count.fetch_sub(1, std::memory_order_acq_rel); CHECK_GE(pending_count, 1) << "Pending count can't drop below 0"; if (pending_count == 1) { absl::MutexLock lock(&state->mu); state->promise.Set(std::move(state->status)); } }); } return PjRtFuture<>(state->promise); } }
#include "xla/pjrt/pjrt_future.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tsl/platform/test.h" namespace xla { TEST(PjRtFutureTest, StatelessFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(); EXPECT_TRUE(future.IsReady()); EXPECT_EQ(future.Await(), absl::OkStatus()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, CopyableFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); PjRtFuture<int32_t> copy_constructed(future); PjRtFuture<int32_t> copy_assigned = future; EXPECT_FALSE(copy_constructed.IsReady()); EXPECT_FALSE(copy_assigned.IsReady()); promise.Set(42); EXPECT_TRUE(copy_constructed.IsReady()); EXPECT_TRUE(copy_assigned.IsReady()); } TEST(PjRtFutureTest, MoveConstructedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_constructed(std::move(future)); EXPECT_FALSE(move_constructed.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_constructed.IsReady()); } TEST(PjRtFutureTest, MoveAssignedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_assigned = std::move(future); EXPECT_FALSE(move_assigned.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_assigned.IsReady()); } TEST(PjRtFutureTest, AwaitMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); EXPECT_EQ(**future.Await(), 42); EXPECT_EQ(**std::move(future).Await(), 42); } TEST(PjRtFutureTest, OnReadyRvalueFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); promise.Set(42); std::move(future).OnReady( [](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, OnReadyMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); std::move(future).OnReady([](absl::StatusOr<std::unique_ptr<int32_t>> value) { EXPECT_EQ(**value, 42); }); } TEST(PjRtFutureTest, StatelessError) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::InternalError("test")); EXPECT_TRUE(future.IsReady()); absl::Status status = future.Await(); EXPECT_EQ(status, absl::InternalError("test")); future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatelessImmediate) { PjRtFuture<> ok_future(absl::OkStatus()); PjRtFuture<> error_future(absl::InternalError("test")); EXPECT_TRUE(ok_future.IsReady()); EXPECT_TRUE(error_future.IsReady()); EXPECT_EQ(ok_future.Await(), absl::OkStatus()); EXPECT_EQ(error_future.Await(), absl::InternalError("test")); ok_future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); error_future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatefulFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, StatusFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::OkStatus()); EXPECT_TRUE(future.IsReady()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, StatusOrFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, JoinFutures) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::OkStatus()); promise1.Set(); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::OkStatus()); } TEST(PjRtFutureTest, JoinErrors) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(absl::InternalError("error #0")); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::InternalError("error #0")); promise1.Set(absl::InternalError("error #1")); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::InternalError("error #0")); } }
2,206
#ifndef XLA_PJRT_PJRT_C_API_CLIENT_H_ #define XLA_PJRT_PJRT_C_API_CLIENT_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { class PjRtCApiClient; class PjRtCApiDeviceDescription : public PjRtDeviceDescription { public: PjRtCApiDeviceDescription(const PJRT_Api* c_api, PJRT_DeviceDescription* device_description); int id() const override; int process_index() const override; absl::string_view device_kind() const override; absl::string_view DebugString() const override; absl::string_view ToString() const override; const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override; private: const PJRT_Api* c_api_; PJRT_DeviceDescription* device_description_; absl::flat_hash_map<std::string, xla::PjRtDeviceAttribute> attributes_; void InitAttributes(); }; class PjRtCApiMemorySpace : public PjRtMemorySpace { public: explicit PjRtCApiMemorySpace(PJRT_Memory* c_memory, PjRtCApiClient* client) : client_(client), c_memory_(c_memory) {} PjRtClient* client() const override; absl::Span<PjRtDevice* const> devices() const override { return devices_; } int id() const override; absl::string_view kind() const override; int kind_id() const override; absl::string_view DebugString() const override; absl::string_view ToString() const override; const PJRT_Api* pjrt_c_api() const; PJRT_Memory* c_memory() const { return c_memory_; } private: friend class PjRtCApiClient; PjRtCApiClient* client_; PJRT_Memory* c_memory_; std::vector<PjRtDevice*> devices_; }; class PjRtCApiDevice : public PjRtDevice { public: explicit PjRtCApiDevice(PJRT_Device* device, PjRtCApiClient* client); PjRtClient* client() const override; bool IsAddressable() const override; int local_hardware_id() const override; PjRtLocalHardwareId local_hardware_id_typed() const override; absl::Status TransferToInfeed(const LiteralSlice& literal) override { return Unimplemented( "PJRT C API does not support TransferToInfeed. Please report an issue " "at https: } absl::Status TransferFromOutfeed(MutableBorrowingLiteral literal) override { return Unimplemented( "PJRT C API does not support TransferFromOutfeed. Please report an " "issue at https: "feature."); } absl::Span<PjRtMemorySpace* const> memory_spaces() const override { return memory_spaces_; } absl::StatusOr<PjRtMemorySpace*> default_memory_space() const override; std::unique_ptr<ScopedAsyncTrackingEvent> CreateAsyncTrackingEvent( absl::string_view description) const override { LOG(FATAL) << "PJRT C API does not support CreateAsyncTrackingEvent. Please " "report an issue at https: "need this feature."; return nullptr; } PJRT_Device* c_device() const { return device_; } const PjRtCApiDeviceDescription& description() const override { return description_; } absl::StatusOr<tsl::AllocatorStats> GetAllocatorStats() const override; absl::StatusOr<std::intptr_t> GetStreamForExternalReadyEvents() const override; private: friend class PjRtCApiClient; PjRtCApiClient* client_ = nullptr; PJRT_Device* device_; PjRtCApiDeviceDescription description_; std::vector<PjRtMemorySpace*> memory_spaces_; }; class PjRtCApiCompiler : public PjRtCompiler { public: explicit PjRtCApiCompiler(const PJRT_Api* c_api) : c_api_(c_api) {} absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) override; absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) override; private: const PJRT_Api* c_api_; }; class PjRtCApiTopologyDescription : public PjRtTopologyDescription { public: PjRtCApiTopologyDescription(const PJRT_Api* c_api, PJRT_TopologyDescription* c_topology, bool owned); PjRtPlatformId platform_id() const override { CHECK(false) << "PJRT C API does not support platform_id."; } absl::string_view platform_name() const override; absl::string_view platform_version() const override; std::optional<PjRtCompiler*> compiler() const override { return compiler_.get(); } PJRT_TopologyDescription* c_topology() const { return c_topology_; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override; absl::StatusOr<std::string> Serialize() const override; const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { return attributes_; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override { return Unimplemented("PJRT C API does not support GetDefaultLayout"); } private: std::unique_ptr<PjRtCApiCompiler> compiler_; const PJRT_Api* c_api_; std::unique_ptr<PJRT_TopologyDescription, ::pjrt::PJRT_TopologyDescriptionDeleter> owned_c_topology_; PJRT_TopologyDescription* c_topology_; absl::flat_hash_map<std::string, xla::PjRtDeviceAttribute> attributes_; void InitAttributes(); }; class PjRtCApiClient : public PjRtClient { public: PjRtCApiClient( const PJRT_Api* c_api, PJRT_Client* c_client, std::unique_ptr<::pjrt::PJRT_KeyValueCallbackData> kv_callback_data); int process_index() const override; int device_count() const override; int addressable_device_count() const override; absl::Span<PjRtDevice* const> devices() const override; absl::Span<PjRtDevice* const> addressable_devices() const override; absl::StatusOr<PjRtDevice*> LookupDevice( PjRtGlobalDeviceId global_device_id) const override; absl::StatusOr<PjRtDevice*> LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const override; absl::Span<PjRtMemorySpace* const> memory_spaces() const override; PjRtPlatformId platform_id() const override { return platform_id_; } absl::string_view platform_name() const override { return platform_name_; }; absl::string_view platform_version() const override; std::optional<PjRtPluginAttributes> plugin_attributes() const override; PjRtRuntimeType runtime_type() const override { return PjRtRuntimeType::kTfrt; } absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const override; absl::StatusOr<std::unique_ptr<HloCostAnalysis>> GetHloCostAnalysis() const override { return Unimplemented( "PJRT C API does not support GetHloCostAnalysis. Please report an " "issue at https: "feature."); } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( mlir::ModuleOp module, CompileOptions options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> DeserializeExecutable( absl::string_view serialized, std::optional<CompileOptions> options) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device) override { return Unimplemented( "PJRT C API does not support CreateUninitializedBuffer. Please report " "an issue at https: "feature."); } absl::StatusOr<const PjRtTopologyDescription*> GetTopologyDescription() const override; absl::StatusOr<std::unique_ptr<AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) override { return Unimplemented( "PJRT C API does not support CreateBuffersForAsyncHostToDevice. Please " "report an issue at https: "this feature."); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) override { return Unimplemented( "PJRT C API does not support CreateBuffersForAsyncHostToDevice. Please " "report an issue at https: "this feature."); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtDevice* device) override { return Unimplemented( "PJRT C API does not support BufferFromHostLiteral. Please report an " "issue at https: "feature."); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) override; absl::StatusOr<std::uintptr_t> UnsafeBufferPointer( PjRtBuffer* buffer) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffers(absl::Span<const Shape> shapes, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return Unimplemented( "PJRT C API does not support MakeCrossHostReceiveBuffers. Please " "report an issue at https: "this feature."); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffersForGather( absl::Span<const Shape> shapes, std::vector<GatherDetails> gather_details, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return Unimplemented( "PJRT C API does not support MakeCrossHostReceiveBuffers. Please " "report an issue at https: "this feature."); } absl::StatusOr<ChannelHandle> CreateChannelHandle() override { return Unimplemented( "PJRT C API does not support CreateChannelHandle. Please report an " "issue at https: "feature."); } absl::StatusOr<ChannelHandle> CreateDeviceToHostChannelHandle() override { return Unimplemented( "PJRT C API does not support CreateDeviceToHostChannelHandle. Please " "report an issue at https: "this feature."); } absl::StatusOr<ChannelHandle> CreateHostToDeviceChannelHandle() override { return Unimplemented( "PJRT C API does not support CreateHostToDeviceChannelHandle. Please " "report an issue at https: "this feature."); } absl::Status Defragment() override { return Unimplemented( "PJRT C API does not support Defragment. Please report an issue at " "https: } bool SupportsSendRecvCallbacks() const override { return true; } const PJRT_Api* pjrt_c_api() const; PJRT_Client* pjrt_c_client() { return c_client_.get(); } PjRtCApiDevice* GetCppDevice(PJRT_Device* c_device) const { auto it = c_to_cpp_device_map_.find(c_device); CHECK(it != c_to_cpp_device_map_.end()); return it->second; } PjRtCApiMemorySpace* GetCppMemory(PJRT_Memory* c_memory) const { auto it = c_to_cpp_memory_map_.find(c_memory); CHECK(it != c_to_cpp_memory_map_.end()); return it->second; } PjRtHostMemoryForDeviceManager* GetPjRtHostMemoryForDeviceManager() const override { return nullptr; } private: void InitDevicesAndMemorySpaces(); void InitAttributes(); absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBufferInternalImpl( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, std::variant<PjRtDevice*, PjRtMemorySpace*> device_or_memory, const Layout* device_layout); const PJRT_Api* c_api_; std::unique_ptr<PJRT_Client, ::pjrt::PJRT_ClientDeleter> c_client_; std::unique_ptr<::pjrt::PJRT_KeyValueCallbackData> kv_callback_data_; std::vector<std::unique_ptr<PjRtCApiDevice>> owned_devices_; std::vector<PjRtDevice*> devices_; std::vector<PjRtDevice*> addressable_devices_; absl::flat_hash_map<PJRT_Device*, PjRtCApiDevice*> c_to_cpp_device_map_; std::vector<std::unique_ptr<PjRtCApiMemorySpace>> owned_memory_spaces_; std::vector<PjRtMemorySpace*> addressable_memory_spaces_; absl::flat_hash_map<PJRT_Memory*, PjRtCApiMemorySpace*> c_to_cpp_memory_map_; absl::StatusOr<const PjRtCApiTopologyDescription> topo_desc_; const std::string platform_version_; const std::string platform_name_; const PjRtPlatformId platform_id_; absl::flat_hash_map<std::string, xla::PjRtValueType> attributes_; }; class PjRtCApiBuffer : public PjRtBuffer { public: PjRtCApiBuffer(PjRtCApiClient* client, PJRT_Buffer* buffer); PrimitiveType element_type() const override; absl::Span<const int64_t> dimensions() const override; std::unique_ptr<PjRtLayout> layout() const override; bool IsTuple() const override { return false; } const Shape& on_device_shape() const override { LOG(FATAL) << "PjRtBuffer::on_device_shape() not implemented in PJRT C API"; } bool has_dynamic_dimensions() const override; absl::Span<const bool> is_dynamic_dimension() const override; absl::StatusOr<std::vector<int64_t>> logical_dimensions() override; absl::StatusOr<Shape> logical_on_device_shape() override { LOG(FATAL) << "PjRtBuffer::on_logical_device_shape() not implemented in " "PJRT C API"; } PjRtMemorySpace* memory_space() const override; PjRtDevice* device() const override; PjRtClient* client() const override { return client_; } absl::StatusOr<std::unique_ptr<ExternalReference>> AcquireExternalReference() override; PjRtFuture<> ToLiteral(MutableLiteralBase* literal) override; PjRtFuture<> LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) override; absl::StatusOr<size_t> GetOnDeviceSizeInBytes() const override; PjRtFuture<> CopyRawToHost(void* dst, int64_t offset, int64_t transfer_size) override { return PjRtFuture<>(Unimplemented( "PJRT C API does not support CopyRawToHost. Please report an issue at " "https: } void Delete() override; absl::StatusOr<std::unique_ptr<ExternalReference>> ReleaseDeviceMemoryOwnership(bool wait_for_operations_to_complete) override { return Unimplemented( "PJRT C API does not support ReleaseDeviceMemoryOwnership"); } bool IsDeleted() override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToDevice( PjRtDevice* dst_device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) override; void CopyToRemoteDevice(PjRtFuture<std::string> serialized_descriptor, RemoteSendCallback on_done) override { LOG(ERROR) << "PJRT C API does not support CopyToRemoteDevice. Please " "report an issue at https: "you need this feature."; } void CopyToRemoteDeviceScattered( PjRtFuture<std::vector<std::string>> serialized_descriptors, std::vector<RemoteSendCallback> callbacks, const ScatterDetails& scatter_details) override { LOG(ERROR) << "PJRT C API does not support CopyToRemoteDeviceScattered. Please " "report an issue at https: "need this feature."; } PjRtFuture<> GetReadyFuture() override; bool IsOnCpu() const override; PJRT_Buffer* c_buffer() const { return buffer_.get(); } const PJRT_Api* pjrt_c_api() const { return client_->pjrt_c_api(); } private: PJRT_Event* GetReadyEvent(); void MakePromiseTrackEvent(); PjRtCApiClient* client_; std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer_; std::unique_ptr<PJRT_Event, ::pjrt::PJRT_EventDeleter> readiness_event_; std::shared_ptr<PjRtFuture<>::Promise> readiness_promise_; mutable std::optional<PjRtXlaLayout> layout_; mutable std::optional<absl::InlinedVector<bool, InlineRank()>> is_dynamic_dimension_; mutable absl::Mutex mu_; }; class PjRtCApiExternalReference : public PjRtBuffer::ExternalReference { public: PjRtCApiExternalReference(PjRtCApiClient* client, PjRtCApiBuffer* buffer, void* data_ptr) : client_(client), buffer_(buffer) { data_ptr_ = data_ptr; } ~PjRtCApiExternalReference() override; absl::Status WaitUntilBufferReadyOnStream(std::intptr_t stream) override; private: PjRtCApiClient* client_; PjRtCApiBuffer* buffer_; }; class PjRtCApiExecutable : public PjRtExecutable { public: PjRtCApiExecutable(const PJRT_Api* c_api, PJRT_Executable* executable); absl::string_view name() const override; int num_replicas() const override; int num_partitions() const override; int64_t SizeOfGeneratedCodeInBytes() const override; absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> GetCostAnalysis() const override; absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> GetHloModules() const override; absl::StatusOr<CompiledMemoryStats> GetCompiledMemoryStats() const override { return pjrt::GetCompiledMemoryStats(c_api_, executable_.get()); } absl::StatusOr<std::vector<Shape>> GetOutputShapes() const override { LOG(FATAL) << "PjRtExecutable::GetOutputShapes() not implemented in PJRT C " "API. Please use PjRtExecutable::GetOutputElementTypes() or " "PjRtExecutable::GetOutputDimensions()."; } absl::StatusOr<std::vector<std::vector<PrimitiveType>>> GetOutputElementTypes() const override; absl::StatusOr<std::vector<std::vector<DimensionVector>>> GetOutputDimensions() const override; absl::StatusOr<std::vector<std::vector<absl::string_view>>> GetOutputMemoryKinds() const override; const PJRT_Api* pjrt_c_api() const { return c_api_; } PJRT_Executable* c_executable() const { return executable_.get(); } absl::StatusOr<std::string> SerializeExecutable() const override; absl::StatusOr<std::string> FingerprintExecutable() const override; private: const PJRT_Api* c_api_; std::unique_ptr<PJRT_Executable, ::pjrt::PJRT_ExecutableDeleter> executable_; }; class PjRtCApiLoadedExecutable : public PjRtLoadedExecutable { public: PjRtCApiLoadedExecutable(PjRtCApiClient* client, PJRT_LoadedExecutable* executable); PjRtClient* client() const override { return client_; } absl::string_view name() const override { return executable_->name(); } int num_replicas() const override { return executable_->num_replicas(); } int num_partitions() const override { return executable_->num_partitions(); } int64_t SizeOfGeneratedCodeInBytes() const override { return executable_->SizeOfGeneratedCodeInBytes(); } absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> GetCostAnalysis() const override { return executable_->GetCostAnalysis(); } const DeviceAssignment& device_assignment() const override { CHECK(false) << "PJRT C API does not support device_assignment"; } absl::Span<const LogicalDeviceIds> addressable_device_logical_ids() const override { CHECK(false) << "PJRT C API does not support addressable_device_logical_ids"; } absl::Span<PjRtDevice* const> addressable_devices() const override { return addressable_devices_; } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> GetHloModules() const override { return executable_->GetHloModules(); } absl::StatusOr<CompiledMemoryStats> GetCompiledMemoryStats() const override { return executable_->GetCompiledMemoryStats(); } absl::StatusOr<std::vector<Shape>> GetOutputShapes() const override { LOG(FATAL) << "PjRtLoadedExecutable::GetOutputShapes() not implemented in PJRT C " "API. Please use PjRtLoadedExecutable::GetOutputElementTypes() or " "PjRtLoadedExecutable::GetOutputDimensions()."; } absl::StatusOr<std::vector<std::vector<PrimitiveType>>> GetOutputElementTypes() const override { return executable_->GetOutputElementTypes(); } absl::StatusOr<std::vector<std::vector<DimensionVector>>> GetOutputDimensions() const override { return executable_->GetOutputDimensions(); } absl::StatusOr<std::vector<std::vector<absl::string_view>>> GetOutputMemoryKinds() const override { return executable_->GetOutputMemoryKinds(); } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; void Delete() override; bool IsDeleted() override; absl::StatusOr<std::string> SerializeExecutable() const override { return executable_->SerializeExecutable(); } const PJRT_Api* pjrt_c_api() const { return client_->pjrt_c_api(); } PJRT_Executable* c_executable() const { return executable_->c_executable(); } PJRT_LoadedExecutable* c_loaded_executable() const { return loaded_executable_.get(); } bool IsReturnedFutureSupported() const override { return true; } using SendCallbackFunction = std::function<PJRT_Error*( PJRT_Chunk*, PJRT_CallbackError*, size_t, bool)>; using RecvCallbackFunction = std::function<void(PJRT_CopyToDeviceStream*)>; absl::StatusOr<std::string> FingerprintExecutable() const override; private: struct SendRecvCallbackData { std::vector<std::vector<PJRT_SendCallbackInfo>> c_send_callbacks; std::vector<PJRT_SendCallbackInfo*> c_send_callback_lists; std::vector<std::vector<PJRT_RecvCallbackInfo>> c_recv_callbacks; std::vector<PJRT_RecvCallbackInfo*> c_recv_callback_lists; std::vector<SendCallbackFunction> send_callback_functions; std::vector<RecvCallbackFunction> recv_callback_functions; }; absl::StatusOr<PJRT_LoadedExecutable_Execute_Args> GetCommonExecuteArgs( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, PJRT_ExecuteOptions& c_options, std::vector<std::vector<PJRT_Buffer*>>& c_argument_lists_storage, std::vector<PJRT_Buffer**>& c_arguments, std::vector<std::vector<PJRT_Buffer*>>& c_output_lists_storage, std::vector<PJRT_Buffer**>& c_output_lists, std::optional<std::vector<PJRT_Event*>>& device_complete_events, SendRecvCallbackData& send_recv_callback_data, std::vector<int64_t>& non_donatable_input_indices_storage); absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecuteWithSingleDevice(absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future); PjRtCApiClient* client_; std::unique_ptr<PJRT_LoadedExecutable, ::pjrt::PJRT_LoadedExecutableDeleter> loaded_executable_; std::unique_ptr<PjRtCApiExecutable> executable_; std::vector<PjRtDevice*> addressable_devices_; void InitDevices(); }; class CApiCopyToDeviceStream : public CopyToDeviceStream { public: CApiCopyToDeviceStream(PJRT_CopyToDeviceStream* c_stream, const PJRT_Api* c_api); ~CApiCopyToDeviceStream() override; PjRtFuture<> AddChunk(PjRtChunk chunk) override; private: PJRT_CopyToDeviceStream* c_stream_; const PJRT_Api* c_api_; }; absl::StatusOr<std::unique_ptr<PjRtClient>> GetCApiClient( absl::string_view device_type, const absl::flat_hash_map<std::string, PjRtValueType>& create_options = {}, std::shared_ptr<KeyValueStoreInterface> kv_store = nullptr); absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( const PJRT_Api* c_api, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options); absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( absl::string_view device_type, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options = {}); } #endif #include "xla/pjrt/pjrt_c_api_client.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/s
#include "xla/pjrt/pjrt_c_api_client.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { static void SetUpCpuPjRtApi() { std::string device_type = "cpu"; auto status = ::pjrt::PjrtApi(device_type); if (!status.ok()) { TF_ASSERT_OK( pjrt::SetPjrtApi(device_type, ::pjrt::cpu_plugin::GetCpuPjrtApi())); } } TEST(PjRtCApiClientTest, IsDynamicDimension) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); std::vector<int32_t> data0{1, 2, 3, 4, 5, 6}; Shape shape0 = ShapeUtil::MakeShape(S32, {2, 3}); TF_ASSERT_OK_AND_ASSIGN( auto param0, client->BufferFromHostBuffer( data0.data(), shape0.element_type(), shape0.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); std::vector<int32_t> data1{2}; Shape shape1 = ShapeUtil::MakeShape(S32, {}); TF_ASSERT_OK_AND_ASSIGN( auto param1, client->BufferFromHostBuffer( data1.data(), shape1.element_type(), shape1.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); XlaBuilder builder("DynamicReshape"); auto inp_0 = Parameter(&builder, 0, shape0, "input0"); auto inp_1 = Parameter(&builder, 1, shape1, "input1"); std::vector<bool> dims_are_dynamic = {false, true}; auto reshaped = DynamicReshape(inp_0, {inp_1, inp_1}, {2, 3}, dims_are_dynamic); auto computation = builder.Build(reshaped).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); ExecuteOptions execute_options; execute_options.non_donatable_input_indices = {0}; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> results = executable->Execute({{param0.get(), param1.get()}}, execute_options) .value(); ASSERT_EQ(results[0].size(), 1); auto* result_buffer = results[0][0].get(); auto is_dynamic_dimension = result_buffer->is_dynamic_dimension(); EXPECT_THAT(is_dynamic_dimension, ::testing::ElementsAreArray(dims_are_dynamic)); } TEST(PjRtCApiClientTest, PlatformId) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); EXPECT_EQ(client->platform_name(), xla::CpuName()); EXPECT_EQ(client->platform_id(), xla::CpuId()); } TEST(PjRtCApiClientTest, EmptyExecutableFingerprint) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); Shape shape = ShapeUtil::MakeShapeWithType<float>({4}); XlaBuilder builder("sum"); auto inp_0 = Parameter(&builder, 0, shape, "input0"); auto inp_1 = Parameter(&builder, 1, shape, "input1"); auto sum = Add(inp_0, inp_1); builder.SetUpAlias({}, 0, {}); auto computation = builder.Build(sum).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); PjRtCApiClient* c_client = dynamic_cast<PjRtCApiClient*>(client.get()); ASSERT_NE(c_client, nullptr); if (c_client->pjrt_c_api()->pjrt_api_version.minor_version >= 35) { EXPECT_FALSE(executable->FingerprintExecutable().ok()); } else { EXPECT_EQ(executable->FingerprintExecutable().status().code(), absl::StatusCode::kUnimplemented); } } TEST(PjRtClientTest, CreateViewAndCopyToDeviceAsyncExternalCpuOnly) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable {})); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> result, buffer->CopyToDevice(client->addressable_devices()[1])); buffer.reset(); ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } }
2,207
#ifndef XLA_PJRT_TF_PJRT_CLIENT_H_ #define XLA_PJRT_TF_PJRT_CLIENT_H_ #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_future.h" #include "tsl/platform/errors.h" namespace xla { class TfPjRtClient; class TfPjRtBuffer : public PjRtBuffer { public: TfPjRtBuffer(TfPjRtClient* client, std::unique_ptr<PjRtBuffer> wrapped); ~TfPjRtBuffer() override; PjRtBuffer* wrapped() const { return wrapped_.get(); } const Shape& on_device_shape() const override { return wrapped_->on_device_shape(); } absl::StatusOr<Shape> logical_on_device_shape() override { return wrapped_->logical_on_device_shape(); } PjRtMemorySpace* memory_space() const override { return wrapped_->memory_space(); } PjRtDevice* device() const override { return wrapped_->device(); } PjRtClient* client() const override; absl::StatusOr<std::unique_ptr<ExternalReference>> AcquireExternalReference() override { return wrapped_->AcquireExternalReference(); } PjRtFuture<> ToLiteral(MutableLiteralBase* literal) override { return wrapped_->ToLiteral(literal); } PjRtFuture<> LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) override { return wrapped_->LazyToLiteral(std::move(generator)); } absl::StatusOr<size_t> GetOnDeviceSizeInBytes() const override { return wrapped_->GetOnDeviceSizeInBytes(); } PjRtFuture<> CopyRawToHost(void* dst, int64_t offset, int64_t transfer_size) override { return wrapped_->CopyRawToHost(dst, offset, transfer_size); } void Delete() override { wrapped_->Delete(); } absl::StatusOr<std::unique_ptr<ExternalReference>> ReleaseDeviceMemoryOwnership(bool wait_for_operations_to_complete) override { return wrapped_->ReleaseDeviceMemoryOwnership( wait_for_operations_to_complete); } bool IsDeleted() override { return wrapped_->IsDeleted(); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToDevice( PjRtDevice* dst_device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) override { return Unimplemented("CopyToMemorySpace not implemented"); } void CopyToRemoteDevice(PjRtFuture<std::string> serialized_descriptor, RemoteSendCallback on_done) override { wrapped_->CopyToRemoteDevice(std::move(serialized_descriptor), std::move(on_done)); } void CopyToRemoteDeviceScattered( PjRtFuture<std::vector<std::string>> serialized_descriptors, std::vector<RemoteSendCallback> callbacks, const ScatterDetails& scatter_details) override { return wrapped_->CopyToRemoteDeviceScattered( std::move(serialized_descriptors), std::move(callbacks), scatter_details); } PjRtFuture<> GetReadyFuture() override { return wrapped_->GetReadyFuture(); } bool IsOnCpu() const override { return wrapped_->IsOnCpu(); } void DestroyWrappedBuffer() { wrapped_.reset(nullptr); } private: TfPjRtClient* client_; std::unique_ptr<PjRtBuffer> wrapped_; }; class TfPjRtExecutable : public PjRtLoadedExecutable { public: TfPjRtExecutable(TfPjRtClient* client, std::unique_ptr<PjRtLoadedExecutable> wrapped); PjRtLoadedExecutable* wrapped() const { return wrapped_.get(); } PjRtClient* client() const override; absl::string_view name() const override { return wrapped_->name(); } int num_replicas() const override { return wrapped_->num_replicas(); } int num_partitions() const override { return wrapped_->num_partitions(); } int64_t SizeOfGeneratedCodeInBytes() const override { return wrapped_->SizeOfGeneratedCodeInBytes(); } const DeviceAssignment& device_assignment() const override { return wrapped_->device_assignment(); } absl::Span<const LogicalDeviceIds> addressable_device_logical_ids() const override { return wrapped_->addressable_device_logical_ids(); } absl::Span<PjRtDevice* const> addressable_devices() const override { return wrapped_->addressable_devices(); } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> GetHloModules() const override { return wrapped_->GetHloModules(); } absl::StatusOr<std::vector<std::vector<absl::string_view>>> GetOutputMemoryKinds() const override { return wrapped_->GetOutputMemoryKinds(); } using PjRtLoadedExecutable::Execute; absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) override; using PjRtLoadedExecutable::ExecuteSharded; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; using PjRtLoadedExecutable::ExecutePortable; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; void Delete() override { return wrapped_->Delete(); } bool IsDeleted() override { return wrapped_->IsDeleted(); } bool IsReturnedFutureSupported() const override { return wrapped_->IsReturnedFutureSupported(); } absl::StatusOr<std::string> SerializeExecutable() const override { return wrapped_->SerializeExecutable(); } absl::StatusOr<struct CompileOptions> GetCompileOptions() const override { return wrapped_->GetCompileOptions(); } absl::StatusOr<std::string> FingerprintExecutable() const override { return wrapped_->FingerprintExecutable(); } private: TfPjRtClient* client_; std::unique_ptr<PjRtLoadedExecutable> wrapped_; }; class TfPjRtClient : public PjRtClient { public: static std::unique_ptr<TfPjRtClient> CreateTfPjRtClient( std::unique_ptr<PjRtClient> wrapped); explicit TfPjRtClient(std::unique_ptr<PjRtClient> wrapped); ~TfPjRtClient() override; int process_index() const override { return wrapped_->process_index(); } int device_count() const override { return wrapped_->device_count(); } int addressable_device_count() const override { return wrapped_->addressable_device_count(); } absl::Span<PjRtDevice* const> devices() const override { return wrapped_->devices(); } absl::Span<PjRtDevice* const> addressable_devices() const override { return wrapped_->addressable_devices(); } absl::StatusOr<PjRtDevice*> LookupDevice( PjRtGlobalDeviceId global_device_id) const override { return wrapped_->LookupDevice(global_device_id); } absl::StatusOr<PjRtDevice*> LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const override { if (wrapped_ == nullptr) { return tsl::errors::Internal( "Wrapped PJRT client in TfPjRtClient is already destroyed."); } return wrapped_->LookupAddressableDevice(local_device_id); } absl::Span<PjRtMemorySpace* const> memory_spaces() const override { return wrapped_->memory_spaces(); } PjRtPlatformId platform_id() const override { return wrapped_->platform_id(); } absl::string_view platform_name() const override { return wrapped_->platform_name(); } absl::string_view platform_version() const override { return wrapped_->platform_version(); } PjRtRuntimeType runtime_type() const override { return wrapped_->runtime_type(); } absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const override { return wrapped_->GetDefaultDeviceAssignment(num_replicas, num_partitions); } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) override { return wrapped_->GetDefaultLayout(element_type, dims); } absl::StatusOr<std::unique_ptr<HloCostAnalysis>> GetHloCostAnalysis() const override { return wrapped_->GetHloCostAnalysis(); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) override { return WrapExecutable(wrapped_->Compile(computation, options)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( mlir::ModuleOp module, CompileOptions options) override { return WrapExecutable(wrapped_->Compile(std::move(module), options)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> DeserializeExecutable( absl::string_view serialized, std::optional<CompileOptions> options) override { return WrapExecutable(wrapped_->DeserializeExecutable(serialized, options)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device) override { return Unimplemented( "CreateUninitializedBuffer not supported for TfPjRtClient."); } absl::StatusOr<std::unique_ptr<AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) override { return Unimplemented( "AsyncHostToDeviceTransferManager not supported for Tf."); } absl::StatusOr<std::unique_ptr<AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) override { return Unimplemented( "AsyncHostToDeviceTransferManager not supported for Tf."); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) override { return WrapBuffer(wrapped_->BufferFromHostBuffer( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) override { return WrapBuffer(wrapped_->BufferFromHostBuffer( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, device_layout)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtDevice* device) override { return WrapBuffer(wrapped_->BufferFromHostLiteral(literal, device)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) override { return WrapBuffer(wrapped_->CreateViewOfDeviceBuffer( device_ptr, shape, device, on_delete_callback, stream)); } absl::StatusOr<std::uintptr_t> UnsafeBufferPointer( PjRtBuffer* buffer) override { return wrapped_->UnsafeBufferPointer(UnwrapBuffer(buffer)); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffers(absl::Span<const Shape> shapes, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return wrapped_->MakeCrossHostReceiveBuffers(shapes, device, std::move(notifier)); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffersForGather( absl::Span<const Shape> shapes, std::vector<GatherDetails> gather_details, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return wrapped_->MakeCrossHostReceiveBuffersForGather( shapes, std::move(gather_details), device, std::move(notifier)); } absl::StatusOr<ChannelHandle> CreateChannelHandle() override { return wrapped_->CreateChannelHandle(); } absl::StatusOr<ChannelHandle> CreateDeviceToHostChannelHandle() override { return wrapped_->CreateDeviceToHostChannelHandle(); } absl::StatusOr<ChannelHandle> CreateHostToDeviceChannelHandle() override { return wrapped_->CreateHostToDeviceChannelHandle(); } absl::StatusOr<const PjRtTopologyDescription*> GetTopologyDescription() const override { return wrapped_->GetTopologyDescription(); } absl::Status Defragment() override { return wrapped_->Defragment(); } PjRtClient* wrapped() const { return wrapped_.get(); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> WrapBuffer( absl::StatusOr<std::unique_ptr<PjRtBuffer>> to_wrap); void TrackBuffer(TfPjRtBuffer* buffer); void UntrackBuffer(const TfPjRtBuffer* buffer); void DestroyWrappedBuffersAndClient(); private: PjRtBuffer* UnwrapBuffer(PjRtBuffer* buffer) const { return tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped(); } const PjRtLoadedExecutable& UnwrapExecutable( const PjRtLoadedExecutable& executable) const { return *tensorflow::down_cast<const TfPjRtExecutable*>(&executable) ->wrapped(); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> WrapExecutable( absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> to_wrap); std::unique_ptr<PjRtClient> wrapped_; absl::flat_hash_map<int, int> mutex_id_from_device_id_; struct DeviceBuffers { absl::Mutex mu; absl::flat_hash_set<TfPjRtBuffer*> alive_buffers ABSL_GUARDED_BY(mu); }; std::vector<DeviceBuffers> alive_buffers_; }; } #endif #include "xla/pjrt/tf_pjrt_client.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/pjrt_client.h" namespace xla { TfPjRtBuffer::TfPjRtBuffer(TfPjRtClient* client, std::unique_ptr<PjRtBuffer> wrapped) : client_(client), wrapped_(std::move(wrapped)) { client_->TrackBuffer(this); } TfPjRtBuffer::~TfPjRtBuffer() { client_->UntrackBuffer(this); } PjRtClient* TfPjRtBuffer::client() const { return client_; } PjRtClient* TfPjRtExecutable::client() const { return client_; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfPjRtBuffer::CopyToDevice( PjRtDevice* dst_device) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtBuffer> result, wrapped_->CopyToDevice(dst_device)); return std::unique_ptr<PjRtBuffer>( std::make_unique<TfPjRtBuffer>(client_, std::move(result))); } TfPjRtExecutable::TfPjRtExecutable( TfPjRtClient* client, std::unique_ptr<PjRtLoadedExecutable> wrapped) : client_(client), wrapped_(std::move(wrapped)) {} absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> TfPjRtExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { std::vector<std::vector<PjRtBuffer*>> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (auto& handles : argument_handles) { unwrapped_argument_handles.emplace_back(); auto& unwrapped_handles = unwrapped_argument_handles.back(); unwrapped_handles.reserve(handles.size()); for (PjRtBuffer* buffer : handles) { unwrapped_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } } TF_ASSIGN_OR_RETURN(auto out, wrapped_->Execute(unwrapped_argument_handles, options, returned_futures)); for (auto& buffer_list : out) { for (std::unique_ptr<PjRtBuffer>& buffer : buffer_list) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } } return out; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfPjRtExecutable::ExecuteSharded(absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { std::vector<PjRtBuffer*> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (PjRtBuffer* buffer : argument_handles) { unwrapped_argument_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } TF_ASSIGN_OR_RETURN(auto out, wrapped_->ExecuteSharded( unwrapped_argument_handles, device, options, returned_future, fill_future)); for (std::unique_ptr<PjRtBuffer>& buffer : out) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } return out; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfPjRtExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { std::vector<PjRtBuffer*> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (PjRtBuffer* buffer : argument_handles) { unwrapped_argument_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } TF_ASSIGN_OR_RETURN(auto out, wrapped_->ExecutePortable( unwrapped_argument_handles, device, options, returned_future, fill_future)); for (std::unique_ptr<PjRtBuffer>& buffer : out) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } return out; } TfPjRtClient::TfPjRtClient(std::unique_ptr<PjRtClient> wrapped) : wrapped_(std::move(wrapped)) { LOG(INFO) << "TfPjRtClient created."; int num_mutexes = wrapped_->addressable_device_count(); alive_buffers_ = std::vector<DeviceBuffers>(num_mutexes); for (int i = 0; i < num_mutexes; ++i) { mutex_id_from_device_id_.insert( {wrapped_->addressable_devices()[i]->id(), i}); } } TfPjRtClient::~TfPjRtClient() { LOG(INFO) << "TfPjRtClient destroyed."; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfPjRtClient::WrapBuffer( absl::StatusOr<std::unique_ptr<PjRtBuffer>> to_wrap) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtBuffer> buffer, std::move(to_wrap)); return std::unique_ptr<PjRtBuffer>( std::make_unique<TfPjRtBuffer>(this, std::move(buffer))); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfPjRtClient::WrapExecutable( absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> to_wrap) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, std::move(to_wrap)); return std::unique_ptr<PjRtLoadedExecutable>( std::make_unique<TfPjRtExecutable>(this, std::move(executable))); } static int GetMutexId( const TfPjRtBuffer* buffer, const absl::flat_hash_map<int, int>& mutex_id_from_device_id) { auto iters = mutex_id_from_device_id.find(buffer->wrapped()->device()->id()); CHECK(iters != mutex_id_from_device_id.end()) << "Mutex id not found for device id: " << buffer->wrapped()->device()->id(); return iters->second; } void TfPjRtClient::TrackBuffer(TfPjRtBuffer* buffer) { int mutex_id = GetMutexId(buffer, mutex_id_from_device_id_); { absl::MutexLock lock(&alive_buffers_[mutex_id].mu); alive_buffers_[mutex_id].alive_buffers.insert(buffer); } } void TfPjRtClient::UntrackBuffer(const TfPjRtBuffer* buffer) { if (buffer->wrapped() == nullptr) { return; } int mutex_id = GetMutexId(buffer, mutex_id_from_device_id_); { absl::MutexLock lock(&alive_buffers_[mutex_id].mu); alive_buffers_[mutex_id].alive_buffers.erase(buffer); } } void TfPjRtClient::DestroyWrappedBuffersAndClient() { int num_mutexes = alive_buffers_.size(); for (int i = 0; i < num_mutexes; ++i) { absl::MutexLock lock(&alive_buffers_[i].mu); for (auto* buffer : alive_buffers_[i].alive_buffers) { buffer->DestroyWrappedBuffer(); } } wrapped_.reset(nullptr); LOG(INFO) << "TfPjRtClient::DestroyWrappedBuffersAndClient completed."; } std::unique_ptr<TfPjRtClient> TfPjRtClient::CreateTfPjRtClient( std::unique_ptr<PjRtClient> wrapped) { return std::make_unique<TfPjRtClient>(std::move(wrapped)); } }
#include "xla/pjrt/tf_pjrt_client.h" #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/literal_util.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/service/hlo_parser.h" #include "tsl/platform/env.h" #include "tsl/platform/file_system.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(TfClientTest, ExecuteAndHloSnapshot) { constexpr char kProgram[] = R"( HloModule add ENTRY add { x = f32[3,2] parameter(0) y = f32[3,2] parameter(1) ROOT add = f32[3,2] add(x, y) })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(true)); client = TfPjRtClient::CreateTfPjRtClient(std::move(client)); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); std::string dir = tsl::testing::TmpDir(); xla::CompileOptions options; auto* debug_opts = options.executable_build_options.mutable_debug_options(); debug_opts->set_xla_dump_to(dir); debug_opts->set_xla_dump_hlo_snapshots(true); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, options)); std::vector<float> data1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector<float> data2{10.0, 20.0, 30.0, 40.0, 50.0, 60.0}; Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer1, client->BufferFromHostBuffer( data1.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); TF_ASSERT_OK_AND_ASSIGN( auto buffer2, client->BufferFromHostBuffer( data2.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute( {{buffer1.get(), buffer2.get()}}, {}); ASSERT_TRUE(result.ok()); tsl::FileSystem* fs; ASSERT_TRUE(tsl::Env::Default()->GetFileSystemForFile(dir, &fs).ok()); std::vector<std::string> paths; ASSERT_TRUE(fs->GetMatchingPaths(dir + "/*.snapshot.*.pb", &paths).ok()); ASSERT_EQ(paths.size(), 1); HloSnapshot snapshot; ASSERT_TRUE( tsl::ReadBinaryProto(tsl::Env::Default(), paths[0], &snapshot).ok()); ASSERT_EQ(*Literal::CreateFromProto(snapshot.arguments(0)), LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}})); ASSERT_EQ( *Literal::CreateFromProto(snapshot.arguments(1)), LiteralUtil::CreateR2<float>({{10.0, 20.0}, {30.0, 40.0}, {50.0, 60.0}})); ASSERT_EQ( *Literal::CreateFromProto(snapshot.result()), LiteralUtil::CreateR2<float>({{11.0, 22.0}, {33.0, 44.0}, {55.0, 66.0}})); auto* tf_pjrt_client = tensorflow::down_cast<xla::TfPjRtClient*>(client.get()); tf_pjrt_client->DestroyWrappedBuffersAndClient(); } } }
2,208
#ifndef XLA_PJRT_PJRT_STREAM_EXECUTOR_CLIENT_H_ #define XLA_PJRT_PJRT_STREAM_EXECUTOR_CLIENT_H_ #include <array> #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/executable_build_options.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/local_device_state.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/pjrt/transpose.h" #include "xla/service/computation_placer.h" #include "xla/service/executable.h" #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/stream_executor/stream.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/threadpool.h" namespace xla { class PjRtStreamExecutorDeviceDescription : public PjRtDeviceDescription { public: explicit PjRtStreamExecutorDeviceDescription(int id, std::string device_kind, int process_index = 0) : id_(id), process_index_(process_index), device_kind_(std::move(device_kind)) {} int id() const override { return id_; } int process_index() const override { return process_index_; } absl::string_view device_kind() const override { return device_kind_; } absl::string_view ToString() const override { return to_string_; } absl::string_view DebugString() const override { return debug_string_; } int core_on_chip() const { return core_index_; } absl::Span<int const> coords() const { return absl::MakeSpan(coords_); } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { return attributes_; } void SetAttributes( absl::flat_hash_map<std::string, PjRtDeviceAttribute> attributes) { attributes_ = std::move(attributes); } void SetDebugString(std::string debug_string) { debug_string_ = std::move(debug_string); } void SetToString(std::string to_string) { to_string_ = std::move(to_string); } void SetCoords(std::array<int, 1> coords) { coords_ = coords; } void SetCoreOnChip(int core_index) { core_index_ = core_index; } private: const int id_; const int process_index_; const std::string device_kind_; int core_index_ = -1; std::string debug_string_ = "<unknown SE device>"; std::string to_string_ = "<unknown SE device>"; absl::flat_hash_map<std::string, PjRtDeviceAttribute> attributes_; std::array<int, 1> coords_; }; class PjRtStreamExecutorDevice : public PjRtDevice { public: explicit PjRtStreamExecutorDevice( int id, std::unique_ptr<LocalDeviceState> local_device_state, std::string device_kind, int process_index = 0) : description_(id, std::move(device_kind), process_index), local_device_id_(local_device_state ? local_device_state->local_device_id() : PjRtLocalDeviceId(-1)), local_hardware_id_(local_device_state ? local_device_state->local_hardware_id() : PjRtLocalHardwareId(-1)), local_device_state_(std::move(local_device_state)) {} ~PjRtStreamExecutorDevice() override = default; void SetClient(PjRtClient* client) { CHECK(client_ == nullptr); client_ = client; description().SetDebugString(absl::StrCat(platform_name(), ":", id())); description().SetToString(absl::StrCat(platform_name(), "(id=", id(), ")")); } PjRtStreamExecutorDeviceDescription& description() { return description_; } const PjRtStreamExecutorDeviceDescription& description() const override { return description_; } PjRtPlatformId platform_id() const; absl::string_view platform_name() const; PjRtClient* client() const override { return client_; } bool IsAddressable() const override { return local_device_id_ != -1; } int local_hardware_id() const override { return local_hardware_id_typed().value(); } PjRtLocalDeviceId local_device_id() const override { return local_device_id_; } PjRtLocalHardwareId local_hardware_id_typed() const override { return local_hardware_id_; } LocalDeviceState* local_device_state() const { return local_device_state_.get(); } absl::StatusOr<LocalDeviceState*> GetLocalDeviceState() const; absl::Status TransferToInfeed(const LiteralSlice& literal) override; absl::Status TransferFromOutfeed(MutableBorrowingLiteral literal) override; void AttachMemorySpace(PjRtMemorySpace* memory_space); absl::Span<PjRtMemorySpace* const> memory_spaces() const override; absl::StatusOr<PjRtMemorySpace*> default_memory_space() const override; absl::StatusOr<PjRtMemorySpace*> memory_space_by_kind( absl::string_view memory_space_kind) const override; absl::StatusOr<PjRtMemorySpace*> memory_space_by_kind_id(int id) const; absl::StatusOr<std::intptr_t> GetStreamForExternalReadyEvents() const override; std::unique_ptr<ScopedAsyncTrackingEvent> CreateAsyncTrackingEvent( absl::string_view description) const override { return nullptr; } private: PjRtStreamExecutorDeviceDescription description_; const PjRtLocalDeviceId local_device_id_; const PjRtLocalHardwareId local_hardware_id_; const std::unique_ptr<LocalDeviceState> local_device_state_; PjRtClient* client_ = nullptr; absl::InlinedVector<PjRtMemorySpace*, 1> memory_spaces_; absl::flat_hash_map<int, PjRtMemorySpace*> memory_spaces_by_id_; }; class PjRtStreamExecutorMemorySpace : public PjRtMemorySpace { public: PjRtStreamExecutorMemorySpace(int id, PjRtDevice* device, absl::string_view kind, int kind_id); PjRtClient* client() const override { return device_->client(); } absl::Span<PjRtDevice* const> devices() const override { return absl::Span<PjRtDevice* const>(&device_, device_ != nullptr ? 1 : 0); } int id() const override { return id_; } absl::string_view kind() const override { return kind_; } int kind_id() const override { return kind_id_; } absl::string_view DebugString() const override { return debug_string_; } absl::string_view ToString() const override { return to_string_; } private: int id_; PjRtDevice* device_ = nullptr; absl::string_view kind_; int kind_id_; std::string debug_string_; std::string to_string_; }; class PjRtStreamExecutorClient : public PjRtClient { public: explicit PjRtStreamExecutorClient( std::string platform_name, LocalClient* client, std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices, int process_index, std::unique_ptr<se::DeviceMemoryAllocator> allocator, std::unique_ptr<tsl::Allocator> host_memory_allocator, bool should_stage_host_to_device_transfers, std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options); ~PjRtStreamExecutorClient() override = default; int process_index() const override { return process_index_; } int device_count() const override { return devices_.size(); } int addressable_device_count() const override { return addressable_devices_.size(); } absl::Span<PjRtDevice* const> devices() const override { return devices_; } absl::Span<PjRtDevice* const> addressable_devices() const override { return addressable_devices_; } absl::StatusOr<PjRtDevice*> LookupDevice( PjRtGlobalDeviceId global_device_id) const override { auto it = id_to_device_.find(global_device_id.value()); if (it != id_to_device_.end()) { return it->second; } return InvalidArgument("No matching device found for device_id %d", global_device_id.value()); } absl::StatusOr<PjRtDevice*> LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const override; absl::Span<PjRtMemorySpace* const> memory_spaces() const override; PjRtPlatformId platform_id() const override { return platform_id_; } absl::string_view platform_name() const override { return platform_name_; } absl::string_view platform_version() const override { return "<unknown>"; } PjRtRuntimeType runtime_type() const override { return kStreamExecutor; } virtual bool EnqueueD2DTransfersOnSrcStream() const { return true; } absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const override; absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( mlir::ModuleOp mlir_module, CompileOptions options) override; virtual absl::StatusOr<std::string> SerializeExecutable( const PjRtLoadedExecutable& executable) const; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> DeserializeExecutable( absl::string_view serialized, std::optional<CompileOptions> options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> LoadSerializedExecutable(absl::string_view serialized, std::optional<CompileOptions> options, const LoadOptions& load_options) override; absl::StatusOr<std::unique_ptr<HloCostAnalysis>> GetHloCostAnalysis() const override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device, std::shared_ptr<BufferSequencingEvent> definition_event); absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtMemorySpace* memory) override; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) override { return Unimplemented("Async transfer to buffers not implemented"); }; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) override { return Unimplemented("Async transfer to buffers not implemented"); }; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtMemorySpace* memory_space) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffers(absl::Span<const Shape> shapes, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffersForGather( absl::Span<const Shape> shapes, std::vector<GatherDetails> gather_details, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) override; absl::StatusOr<ChannelHandle> CreateChannelHandle() override { return client()->CreateChannelHandle(); } absl::StatusOr<ChannelHandle> CreateDeviceToHostChannelHandle() override { return client()->CreateDeviceToHostChannelHandle(); } absl::StatusOr<ChannelHandle> CreateHostToDeviceChannelHandle() override { return client()->CreateHostToDeviceChannelHandle(); } absl::Status Defragment() override { return Unimplemented("Defragment not implemented"); } LocalDeviceState& device_state(int device_ordinal) const { return *tensorflow::down_cast<PjRtStreamExecutorDevice*>( LookupAddressableDevice(xla::PjRtLocalDeviceId(device_ordinal)) .value()) ->local_device_state(); } LocalClient* client() const { return client_; } se::DeviceMemoryAllocator* allocator() const { return allocator_; } tsl::Allocator* host_memory_allocator() const { return host_memory_allocator_.get(); } bool should_stage_host_to_device_transfers() const { return should_stage_host_to_device_transfers_; } gpu::GpuExecutableRunOptions* gpu_run_options() const { return gpu_run_options_.get(); } tsl::thread::ThreadPool* thread_pool() { return &thread_pool_; } protected: friend class PjRtStreamExecutorBuffer; virtual absl::Status EnqueueCrossHostReceive( absl::Span<const std::unique_ptr<PjRtBuffer>> buffers, std::shared_ptr<BufferSequencingEvent> definition_event, PjRtCrossHostRecvNotifier notifier, std::optional<std::vector<GatherDetails>> gather_details) const { return Unimplemented("Cross host receives not implemented."); } virtual void CopyToRemoteDevice( PjRtBuffer* buffer, absl::string_view serialized_descriptor, PjRtBuffer::RemoteSendCallback on_done) const { on_done(Unimplemented("Cross host sends not implemented."), false); } virtual void CopyToRemoteDeviceScattered( PjRtBuffer* buffer, std::vector<std::string> serialized_descriptors, std::vector<PjRtBuffer::RemoteSendCallback> callbacks, const PjRtBuffer::ScatterDetails& scatter_details) const { for (const auto& cb : callbacks) { cb(Unimplemented("Scattered cross host sends not implemented."), false); } } virtual PjRtFuture<> CopyRawSubBufferToHost(PjRtBuffer* buffer, PjRtFuture<void*> dst, int64_t offset, int64_t transfer_size) { return PjRtFuture<>(Unimplemented("Raw copies to host not implemented.")); } struct ExecutableExtras { std::shared_ptr<DeviceAssignment> device_assignment; std::vector<PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids; std::vector<PjRtDevice*> addressable_devices; }; absl::StatusOr<ExecutableExtras> GetExecutableExtras(CompileOptions* options); const PjRtPlatformId platform_id_; const std::string platform_name_; LocalClient* client_; std::unique_ptr<tsl::Allocator> host_memory_allocator_; se::DeviceMemoryAllocator* allocator_; std::unique_ptr<se::DeviceMemoryAllocator> owned_allocator_; std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> owned_devices_; std::vector<PjRtDevice*> devices_; std::map<int, PjRtDevice*> id_to_device_; std::vector<PjRtDevice*> addressable_devices_; int process_index_; std::vector<std::unique_ptr<PjRtMemorySpace>> owned_memory_spaces_; std::vector<PjRtMemorySpace*> memory_spaces_; bool should_stage_host_to_device_transfers_; std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options_; tsl::thread::ThreadPool thread_pool_; absl::Mutex transpose_mu_; TransposePlanCache transpose_cache_ ABSL_GUARDED_BY(transpose_mu_); }; absl::StatusOr<DeviceAssignment> DevicesToDeviceAssignment( absl::Span<const std::vector<PjRtDevice*>> devices); class PjRtStreamExecutorBuffer : public PjRtBuffer { public: class ScopedHold { public: enum Type { kUsage = 0, kExternalReference, kDonation, kMaxValue }; enum State { kUninitialized = 0, kValid, kMoved, kConverted, kReleased, kDonated, kError }; ~ScopedHold(); ScopedHold(ScopedHold&& other); ScopedHold(const ScopedHold&) = delete; ScopedHold& operator=(const ScopedHold&) = delete; Type type() const { return type_; } absl::Status status() const { switch (state_) { case kUninitialized: return InvalidArgument("Buffer has not been initialized"); case kValid: return absl::OkStatus(); case kMoved: return InvalidArgument("Buffer has been moved."); case kConverted: return InvalidArgument("Buffer has been converted"); case kReleased: return InvalidArgument("Buffer has been released"); case kDonated: return InvalidArgument("Buffer has been donated"); case kError: return status_; default: CHECK(false) << "Unexpected state value " << state_; } } bool ok() const { return state_ == kValid; } const std::shared_ptr<TrackedDeviceBuffer>& buffer() const { CHECK_EQ(state_, kValid); CHECK_NE(buffer_, nullptr); return buffer_; } TrackedDeviceBuffer* operator->() const { return buffer().get(); } const TrackedDeviceBuffer& operator*() const { return *buffer(); } void ConvertUsageHold(se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held); void ConfirmDonation(); void AddToInput(ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end, ExecutionInput* execution_input, se::DeviceMemoryAllocator* allocator) const; private: friend class PjRtStreamExecutorBuffer; friend class PjRtStreamExecutorClient; using ForClosure = std::tuple<PjRtStreamExecutorBuffer*, Type, State, absl::Status, std::shared_ptr<TrackedDeviceBuffer>>; ScopedHold(PjRtStreamExecutorBuffer* parent, Type type) : parent_(parent), type_(type), state_(kUninitialized) {} explicit ScopedHold(const ForClosure& closure_helper) : parent_(std::get<0>(closure_helper)), type_(std::get<1>(closure_helper)), state_(std::get<2>(closure_helper)), status_(std::get<3>(closure_helper)), buffer_(std::get<4>(closure_helper)) { CHECK(status_.ok() && buffer_ != nullptr); } void SetState(State state) { state_ = state; } void Acquire( absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>>&& buffer_or); ForClosure ToClosure(); PjRtStreamExecutorBuffer* const parent_; const Type type_; State state_; absl::Status status_; std::shared_ptr<TrackedDeviceBuffer> buffer_; }; PjRtStreamExecutorBuffer(Shape on_device_shape, std::shared_ptr<TrackedDeviceBuffer> device_buffer, PjRtClient* client, PjRtDevice* device, PjRtMemorySpace* memory_space); ~PjRtStreamExecutorBuffer() override; PjRtStreamExecutorBuffer(const PjRtStreamExecutorBuffer&) = delete; PjRtStreamExecutorBuffer(PjRtStreamExecutorBuffer&&) = delete; PjRtStreamExecutorBuffer& operator=(const PjRtStreamExecutorBuffer&) = delete; PjRtStreamExecutorBuffer& operator=(PjRtStreamExecutorBuffer&&) = delete; const Shape& on_device_shape() const override { return on_device_shape_; } absl::StatusOr<Shape> logical_on_device_shape() override; PjRtMemorySpace* memory_space() const override { return memory_space_; } PjRtStreamExecutorDevice* device() const override { return device_; } PjRtPlatformId platform_id() const { return client_->platform_id(); } absl::string_view platform_name() const { return client_->platform_name(); } PjRtStreamExecutorClient* client() const override { return client_; } bool IsEmptyTuple() const { return on_device_shape_.IsTuple() && on_device_shape_.tuple_shapes_size() == 0; } absl::StatusOr<std::unique_ptr<ExternalReference>> AcquireExternalReference() override; absl::StatusOr<std::unique_ptr<ExternalReference>> ReleaseDeviceMemoryOwnership(bool wait_for_operations_to_complete) override; using PjRtBuffer::ToLiteralSync; PjRtFuture<> ToLiteral(MutableLiteralBase* literal) override; PjRtFuture<> LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) override; absl::StatusOr<size_t> GetOnDeviceSizeInBytes() const override; PjRtFuture<> CopyRawToHost(void* dst, int64_t offset, int64_t transfer_size) override; PjRtFuture<> CopyRawToHostFuture(PjRtFuture<void*> dst, int64_t offset, int64_t transfer_size) override; void Delete() override; bool IsDeleted() override; absl::StatusOr<ShapedBuffer> AsShapedBuffer() const; ScopedHold GetBufferWithHold(ScopedHold::Type type); ScopedHold GetBufferWithUsageHold() { return GetBufferWithHold(ScopedHold::kUsage); } ScopedHold GetBufferWithExternalReference() { return GetBufferWithHold(ScopedHold::kExternalReference); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToDevice( PjRtDevice* dst_device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) override; void CopyToRemoteDevice(PjRtFuture<std::string> serialized_descriptor, RemoteSendCallback on_done) override; void CopyToRemoteDeviceScattered( PjRtFuture<std::vector<std::string>> serialized_descriptors, std::vector<RemoteSendCallback> callbacks, const ScatterDetails& scatter_details) override; PjRtFuture<> GetReadyFuture() override; bool IsOnCpu() const override;
#include "xla/pjrt/pjrt_stream_executor_client.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include "absl/functional/any_invocable.h" #include "absl/synchronization/mutex.h" #include "xla/client/client_library.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/literal_comparison.h" #include "xla/literal_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<PjRtStreamExecutorClient>> GetClient() { LocalClient* local_client = xla::ClientLibrary::LocalClientOrDie(); TF_ASSIGN_OR_RETURN(se::Platform * platform, PlatformUtil::GetPlatform("Host")); se::StreamExecutorConfig config; config.ordinal = 0; TF_ASSIGN_OR_RETURN(se::StreamExecutor * executor, platform->GetExecutor(config)); auto device_state = std::make_unique<LocalDeviceState>( executor, local_client, LocalDeviceState::kSynchronous, 32, false, false); auto device = std::make_unique<PjRtStreamExecutorDevice>( 0, std::move(device_state), "cpu"); std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices; devices.emplace_back(std::move(device)); return std::make_unique<PjRtStreamExecutorClient>( "cpu", local_client, std::move(devices), 0, nullptr, nullptr, false, nullptr); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> ToyExecutable( PjRtStreamExecutorClient& client, Shape shape, absl::AnyInvocable<void(XlaBuilder&)> set_up_aliases) { CompileOptions compile_options; XlaBuilder builder("Add"); auto a = Parameter(&builder, 0, shape, "a"); auto b = Parameter(&builder, 1, shape, "b"); auto c = Add(a, b); auto d = Add(c, c); Tuple(&builder, {c, d}); set_up_aliases(builder); TF_ASSIGN_OR_RETURN(auto computation, builder.Build(true)); TF_ASSIGN_OR_RETURN(auto executable, client.Compile(computation, compile_options)); return executable; } absl::Status ExecuteWithSameInputBuffer( absl::AnyInvocable<void(XlaBuilder&)> set_up_aliases) { auto shape = xla::ShapeUtil::MakeScalarShape(xla::F32); TF_ASSIGN_OR_RETURN(auto client, GetClient()); TF_RET_CHECK(!client->addressable_devices().empty()); auto* device0 = client->addressable_devices().front(); TF_ASSIGN_OR_RETURN(auto buffer, client->CreateUninitializedBuffer(shape, device0)); TF_ASSIGN_OR_RETURN(auto executable, ToyExecutable(*client, shape, std::move(set_up_aliases))); return executable->Execute({{buffer.get(), buffer.get()}}, {}) .status(); } TEST(PjRtStreamExecutorClientTest, DonateSameBufferTwice) { auto status = ExecuteWithSameInputBuffer([](XlaBuilder& builder) {}); ASSERT_TRUE(status.ok()); status = ExecuteWithSameInputBuffer( [](XlaBuilder& builder) { builder.SetUpAlias({0}, 0, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(donate(a), a)")); status = ExecuteWithSameInputBuffer( [](XlaBuilder& builder) { builder.SetUpAlias({0}, 1, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(a, donate(a))")); status = ExecuteWithSameInputBuffer([](XlaBuilder& builder) { builder.SetUpAlias({0}, 0, {}); builder.SetUpAlias({1}, 1, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(donate(a), donate(a))")); } TEST(PjRtStreamExecutorClientTest, DonateWithControlDependency) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto literal = LiteralUtil::CreateR2({{1, 2, 3}, {4, 5, 6}}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); auto blocked_buffer = std::move(*(buffer->DonateWithControlDependency(future))); EXPECT_TRUE(buffer->IsDeleted()); buffer.reset(); absl::Mutex mu; auto result_literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(blocked_buffer->on_device_shape())); bool got_literal = false; blocked_buffer->ToLiteral(result_literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); blocked_buffer.reset(); EXPECT_FALSE(got_literal); promise.Set(); EXPECT_TRUE(future.IsReady()); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } TF_ASSERT_OK(literal_comparison::Equal(literal, *result_literal)); } } }
2,209
#ifndef XLA_PJRT_C_PJRT_C_API_HELPERS_H_ #define XLA_PJRT_C_PJRT_C_API_HELPERS_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <vector> #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/layout.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_layouts_extension.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace pjrt { ABSL_CONST_INIT extern const absl::string_view kHloFormat; ABSL_CONST_INIT extern const absl::string_view kMlirFormat; ABSL_CONST_INIT extern const absl::string_view kHloWithConfigFormat; #define RETURN_STATUS_IF_PJRT_ERROR(expr, c_api) \ do { \ PJRT_Error* error = (expr); \ std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> _error( \ error, pjrt::MakeErrorDeleter(c_api)); \ absl::Status _status = pjrt::PjrtErrorToStatus(_error.get(), c_api); \ if (!_status.ok()) { \ return _status; \ } \ } while (false) using PJRT_ClientDeleter = std::function<void(PJRT_Client*)>; PJRT_ClientDeleter MakeClientDeleter(const PJRT_Api* api); using PJRT_ErrorDeleter = std::function<void(PJRT_Error*)>; PJRT_ErrorDeleter MakeErrorDeleter(const PJRT_Api* api); using PJRT_BufferDeleter = std::function<void(PJRT_Buffer*)>; PJRT_BufferDeleter MakeBufferDeleter(const PJRT_Api* api); using PJRT_ExecutableDeleter = std::function<void(PJRT_Executable*)>; PJRT_ExecutableDeleter MakeExecutableDeleter(const PJRT_Api* api); using PJRT_LoadedExecutableDeleter = std::function<void(PJRT_LoadedExecutable*)>; PJRT_LoadedExecutableDeleter MakeLoadedExecutableDeleter(const PJRT_Api* api); using PJRT_EventDeleter = std::function<void(PJRT_Event*)>; PJRT_EventDeleter MakeEventDeleter(const PJRT_Api* api); using PJRT_SerializedExecutableDeleter = std::function<void(PJRT_SerializedExecutable*)>; using PJRT_TopologyDescriptionDeleter = std::function<void(PJRT_TopologyDescription*)>; PJRT_TopologyDescriptionDeleter MakeTopologyDescriptionDeleter( const PJRT_Api* api); using PJRT_Layouts_MemoryLayoutDeleter = std::function<void(PJRT_Layouts_MemoryLayout*)>; PJRT_Layouts_MemoryLayoutDeleter MakeMemoryLayoutDeleter(const PJRT_Api* api); void LogFatalIfPjrtError(PJRT_Error* error, const PJRT_Api* api); absl::string_view GetPjrtErrorMessage(const PJRT_Error* error, const PJRT_Api* api); PJRT_Error_Code GetErrorCode(const PJRT_Error* error, const PJRT_Api* api); absl::Status PjrtErrorToStatus(const PJRT_Error* error, const PJRT_Api* api); absl::StatusCode PjrtErrorToStatusCode(const PJRT_Error* error, const PJRT_Api* api); absl::StatusCode PjrtErrorCodeToStatusCode(PJRT_Error_Code code); PJRT_Error_Code StatusCodeToPjrtErrorCode(absl::StatusCode code); PJRT_Buffer_Type ConvertToPjRtBufferType(xla::PrimitiveType type); xla::PrimitiveType ConvertFromPjRtBufferType(PJRT_Buffer_Type type); PJRT_HostBufferSemantics ConvertToPjRtHostBufferSemantics( xla::PjRtClient::HostBufferSemantics buffer_semantics); xla::PjRtClient::HostBufferSemantics ConvertFromPjRtHostBufferSemantics( PJRT_HostBufferSemantics buffer_semantics); xla::PjRtFuture<> ConvertCEventToCppFuture(PJRT_Event* c_event, const PJRT_Api* c_api); absl::StatusOr<std::vector<PJRT_NamedValue>> ConvertToPjRtNamedValueList( const absl::flat_hash_map<std::string, xla::PjRtValueType>& cpp_value_map); absl::flat_hash_map<std::string, xla::PjRtValueType> ConvertFromPjRtNamedValueList(const PJRT_NamedValue* c_value_list, size_t list_size); absl::Status ValidateCreateOptions( const absl::flat_hash_map<std::string, xla::PjRtValueType>& value_map, const absl::flat_hash_map<std::string, PJRT_NamedValue_Type>& expected_name_and_types); const std::vector<PJRT_NamedValue>& GetXlaPluginCAttributes(); absl::Status ActualStructSizeIsGreaterOrEqual(absl::string_view struct_name, size_t expected_size, size_t actual_size); absl::string_view GetPlatformVersion(PJRT_Client* client, const PJRT_Api* api); absl::string_view GetPlatformName(PJRT_Client* client, const PJRT_Api* api); absl::StatusOr<PJRT_TopologyDescription*> GetTopologyDescription( PJRT_Client* client, const PJRT_Api* api); PJRT_Chunk ConvertFromCppChunk(xla::PjRtChunk chunk); xla::PjRtChunk ConvertToCppChunk(const PJRT_Chunk& chunk); PJRT_DeviceDescription* GetDeviceDescription(const PJRT_Api* api, PJRT_Device* device); absl::Span<PJRT_Memory* const> GetAddressableMemories(const PJRT_Api* api, PJRT_Device* device); int GetId(const PJRT_Api* api, PJRT_DeviceDescription* device_desc); using PJRT_KeyValueGetCFunc = std::function<PJRT_Error*(PJRT_KeyValueGetCallback_Args* args)>; using PJRT_KeyValuePutCFunc = std::function<PJRT_Error*(PJRT_KeyValuePutCallback_Args* args)>; struct PJRT_KeyValueCallbackData { PJRT_KeyValueCallbackData() = default; PJRT_KeyValueCallbackData(const PJRT_KeyValueCallbackData&) = delete; std::shared_ptr<xla::KeyValueStoreInterface> kv_store; pjrt::PJRT_KeyValueGetCFunc kv_get_c_func; pjrt::PJRT_KeyValuePutCFunc kv_put_c_func; PJRT_KeyValueGetCallback c_kv_get; PJRT_KeyValuePutCallback c_kv_put; }; std::unique_ptr<PJRT_KeyValueCallbackData> ConvertToCKeyValueCallbacks( std::shared_ptr<xla::KeyValueStoreInterface> kv_store); using PJRT_SendCallbackFunction = std::function<PJRT_Error*(PJRT_Chunk*, PJRT_CallbackError*, size_t, bool)>; using PJRT_RecvCallbackFunction = std::function<void(PJRT_CopyToDeviceStream*)>; PJRT_SendCallbackInfo CppSendCallbackToCSendCallback( xla::SendCallback cpp_send_callback, PJRT_SendCallbackFunction* send_callback_function); PJRT_RecvCallbackInfo CppRecvCallbackToCRecvCallback( xla::RecvCallback cpp_recv_callback, PJRT_RecvCallbackFunction* recv_callback_function); struct BufferMemoryLayoutData { PJRT_Buffer_MemoryLayout c_layout; std::vector<int64_t> minor_to_major; std::vector<int64_t> tile_dims; std::vector<size_t> tile_dim_sizes; }; absl::StatusOr<BufferMemoryLayoutData> ConvertToBufferMemoryLayoutData( const xla::Layout& cpp_layout); absl::StatusOr<BufferMemoryLayoutData> ConvertToBufferMemoryLayoutData( absl::Span<int64_t const> byte_strides); absl::StatusOr<xla::Layout> ConvertToLayout( const PJRT_Buffer_MemoryLayout_Tiled& c_tiled); PJRT_Buffer_Type GetElementType(const PJRT_Api* api, PJRT_Buffer* buffer); absl::Span<const int64_t> GetDimensions(const PJRT_Api* api, PJRT_Buffer* buffer); std::unique_ptr<PJRT_Layouts_MemoryLayout, PJRT_Layouts_MemoryLayoutDeleter> GetMemoryLayout(const PJRT_Api* api, PJRT_Buffer* buffer); absl::StatusOr<xla::Shape> BuildXlaShapeFromC(PJRT_Buffer_Type element_type, const int64_t* dims, size_t num_dims, PJRT_Buffer_MemoryLayout* layout); absl::string_view PlatformName(const PJRT_Api* api, const PJRT_TopologyDescription* topo_desc); absl::Span<PJRT_DeviceDescription* const> DeviceDescriptions( const PJRT_Api* api, const PJRT_TopologyDescription* topo_desc); absl::StatusOr<xla::CompiledMemoryStats> GetCompiledMemoryStats( const PJRT_Api* api, PJRT_Executable* executable); PJRT_Profiler_Extension CreatePjrtProfilerExtension( absl::string_view traceme_name); template <typename ExtType, typename InputType> ExtType* FindExtension(InputType* in, PJRT_Extension_Type type) { PJRT_Extension_Base* ext = in->extension_start; while (ext != nullptr) { if (ext->type == type) { return reinterpret_cast<ExtType*>(ext); } ext = ext->next; } return nullptr; } template <typename InputType> int64_t GetTracemeContextId(InputType* args) { PJRT_Profiler_Extension* profiler_extension = FindExtension<PJRT_Profiler_Extension>( args, PJRT_Extension_Type::PJRT_Extension_Type_Profiler); int64_t traceme_context_id = -1; if (profiler_extension != nullptr) { traceme_context_id = profiler_extension->traceme_context_id; } return traceme_context_id; } } #endif #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/layout.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_layouts_extension.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" namespace pjrt { const absl::string_view kHloFormat = "hlo"; const absl::string_view kMlirFormat = "mlir"; const absl::string_view kHloWithConfigFormat = "hlo_with_config"; PJRT_ClientDeleter MakeClientDeleter(const PJRT_Api* api) { return [api](PJRT_Client* client) -> void { PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = client; PJRT_Error* error = api->PJRT_Client_Destroy(&destroy_args); CHECK(error == nullptr); }; } PJRT_ErrorDeleter MakeErrorDeleter(const PJRT_Api* api) { return [api](PJRT_Error* error) -> void { PJRT_Error_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.error = error; api->PJRT_Error_Destroy(&destroy_args); }; } PJRT_BufferDeleter MakeBufferDeleter(const PJRT_Api* api) { return [api](PJRT_Buffer* buffer) -> void { PJRT_Buffer_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Buffer_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.buffer = buffer; pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Destroy(&destroy_args), api); }; } PJRT_ExecutableDeleter MakeExecutableDeleter(const PJRT_Api* api) { return [api](PJRT_Executable* executable) -> void { PJRT_Executable_Destroy_Args args; args.struct_size = PJRT_Executable_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError(api->PJRT_Executable_Destroy(&args), api); }; } PJRT_LoadedExecutableDeleter MakeLoadedExecutableDeleter(const PJRT_Api* api) { return [api](PJRT_LoadedExecutable* executable) -> void { PJRT_LoadedExecutable_Destroy_Args args; args.struct_size = PJRT_LoadedExecutable_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError(api->PJRT_LoadedExecutable_Destroy(&args), api); }; } absl::Status PjrtErrorToStatus(const PJRT_Error* error, const PJRT_Api* api) { absl::Status status; if (error != nullptr) { status = absl::Status(PjrtErrorToStatusCode(error, api), GetPjrtErrorMessage(error, api)); } return status; } PJRT_TopologyDescriptionDeleter MakeTopologyDescriptionDeleter( const PJRT_Api* api) { return [api](PJRT_TopologyDescription* topology) -> void { PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = topology; pjrt::LogFatalIfPjrtError( api->PJRT_TopologyDescription_Destroy(&destroy_args), api); }; } PJRT_Layouts_MemoryLayoutDeleter MakeMemoryLayoutDeleter(const PJRT_Api* api) { PJRT_Layouts_Extension* ext_api = FindExtension<PJRT_Layouts_Extension>(api, PJRT_Extension_Type_Layouts); CHECK_NE(ext_api, nullptr) << "MakeMemoryLayoutDeleter passed PJRT_Api that " "doesn't support layouts extension"; return [api, ext_api](PJRT_Layouts_MemoryLayout* layout) -> void { PJRT_Layouts_MemoryLayout_Destroy_Args args; args.struct_size = PJRT_Layouts_MemoryLayout_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.layout = layout; pjrt::LogFatalIfPjrtError(ext_api->PJRT_Layouts_MemoryLayout_Destroy(&args), api); }; } PJRT_Error_Code GetErrorCode(const PJRT_Error* error, const PJRT_Api* api) { PJRT_Error_GetCode_Args args; args.struct_size = PJRT_Error_GetCode_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; pjrt::LogFatalIfPjrtError(api->PJRT_Error_GetCode(&args), api); return args.code; } absl::StatusCode PjrtErrorToStatusCode(const PJRT_Error* error, const PJRT_Api* api) { return PjrtErrorCodeToStatusCode(GetErrorCode(error, api)); } absl::StatusCode PjrtErrorCodeToStatusCode(PJRT_Error_Code code) { switch (code) { case PJRT_Error_Code_CANCELLED: case PJRT_Error_Code_UNKNOWN: case PJRT_Error_Code_INVALID_ARGUMENT: case PJRT_Error_Code_DEADLINE_EXCEEDED: case PJRT_Error_Code_NOT_FOUND: case PJRT_Error_Code_ALREADY_EXISTS: case PJRT_Error_Code_PERMISSION_DENIED: case PJRT_Error_Code_RESOURCE_EXHAUSTED: case PJRT_Error_Code_FAILED_PRECONDITION: case PJRT_Error_Code_ABORTED: case PJRT_Error_Code_OUT_OF_RANGE: case PJRT_Error_Code_UNIMPLEMENTED: case PJRT_Error_Code_INTERNAL: case PJRT_Error_Code_UNAVAILABLE: case PJRT_Error_Code_DATA_LOSS: case PJRT_Error_Code_UNAUTHENTICATED: return static_cast<absl::StatusCode>(code); } } PJRT_Error_Code StatusCodeToPjrtErrorCode(absl::StatusCode code) { switch (static_cast<tsl::error::Code>(code)) { case tsl::error::CANCELLED: case tsl::error::UNKNOWN: case tsl::error::INVALID_ARGUMENT: case tsl::error::DEADLINE_EXCEEDED: case tsl::error::NOT_FOUND: case tsl::error::ALREADY_EXISTS: case tsl::error::PERMISSION_DENIED: case tsl::error::UNAUTHENTICATED: case tsl::error::RESOURCE_EXHAUSTED: case tsl::error::FAILED_PRECONDITION: case tsl::error::ABORTED: case tsl::error::OUT_OF_RANGE: case tsl::error::UNIMPLEMENTED: case tsl::error::INTERNAL: case tsl::error::UNAVAILABLE: case tsl::error::DATA_LOSS: return static_cast<PJRT_Error_Code>(code); case tsl::error::OK: CHECK(false) << "Status::OK() cannot be converted to PJRT_Error code, " "use nullptr instead"; case tensorflow::error:: DO_NOT_USE_RESERVED_FOR_FUTURE_EXPANSION_USE_DEFAULT_IN_SWITCH_INSTEAD_: CHECK(false) << "got DO_NOT_USE_RESERVED_FOR_FUTURE_EXPANSION_" "USE_DEFAULT_IN_SWITCH_INSTEAD_"; case tensorflow::error::Code_INT_MIN_SENTINEL_DO_NOT_USE_: CHECK(false) << "got Code_INT_MIN_SENTINEL_DO_NOT_USE_"; case tensorflow::error::Code_INT_MAX_SENTINEL_DO_NOT_USE_: CHECK(false) << "got Code_INT_MAX_SENTINEL_DO_NOT_USE_"; } } absl::string_view GetPjrtErrorMessage(const PJRT_Error* error, const PJRT_Api* api) { PJRT_Error_Message_Args message_args; message_args.struct_size = PJRT_Error_Message_Args_STRUCT_SIZE; message_args.extension_start = nullptr; message_args.error = error; api->PJRT_Error_Message(&message_args); return absl::string_view(message_args.message, message_args.message_size); } void LogFatalIfPjrtError(PJRT_Error* error, const PJRT_Api* api) { std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> _error( error, MakeErrorDeleter(api)); absl::Status _status = PjrtErrorToStatus(_error.get(), api); if (!_status.ok()) { LOG(FATAL) << "Unexpected error status " << _status.message(); } } PJRT_EventDeleter MakeEventDeleter(const PJRT_Api* api) { CHECK(api != nullptr); return [api](PJRT_Event* managed) { PJRT_Event_Destroy_Args args; args.struct_size = PJRT_Event_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.event = managed; LogFatalIfPjrtError(api->PJRT_Event_Destroy(&args), api); }; } PJRT_Buffer_Type ConvertToPjRtBufferType(xla::PrimitiveType type) { switch (type) { case xla::PrimitiveType::PRIMITIVE_TYPE_INVALID: return PJRT_Buffer_Type::PJRT_Buffer_Type_INVALID; case xla::PrimitiveType::PRED: return PJRT_Buffer_Type::PJRT_Buffer_Type_PRED; case xla::PrimitiveType::TOKEN: return PJRT_Buffer_Type::PJRT_Buffer_Type_TOKEN; case xla::PrimitiveType::S2: return PJRT_Buffer_Type::PJRT_Buffer_Type_S2; case xla::PrimitiveType::S4: return PJRT_Buffer_Type::PJRT_Buffer_Type_S4; case xla::PrimitiveType::S8: return PJRT_Buffer_Type::PJRT_Buffer_Type_S8; case xla::PrimitiveType::S16: return PJRT_Buffer_Type::PJRT_Buffer_Type_S16; case xla::PrimitiveType::S32: return PJRT_Buffer_Type::PJRT_Buffer_Type_S32; case xla::PrimitiveType::S64: return PJRT_Buffer_Type::PJRT_Buffer_Type_S64; case xla::PrimitiveType::U2: return PJRT_Buffer_Type::PJRT_Buffer_Type_U2; case xla::PrimitiveType::U4: return PJRT_Buffer_Type::PJRT_Buffer_Type_U4; case xla::PrimitiveType::U8: return PJRT_Buffer_Type::PJRT_Buffer_Type_U8; case xla::PrimitiveType::U16: return PJRT_Buffer_Type::PJRT_Buffer_Type_U16; case xla::PrimitiveType::U32: return PJRT_Buffer_Type::PJRT_Buffer_Type_U32; case xla::PrimitiveType::U64: return PJRT_Buffer_Type::PJRT_Buffer_Type_U64; case xla::PrimitiveType::F16: return PJRT_Buffer_Type::PJRT_Buffer_Type_F16; case xla::PrimitiveType::F32: return PJRT_Buffer_Type::PJRT_Buffer_Type_F32; case xla::PrimitiveType::BF16: return PJRT_Buffer_Type::PJRT_Buffer_Type_BF16; case xla::PrimitiveType::F64: return PJRT_Buffer_Type::PJRT_Buffer_Type_F64; case xla::PrimitiveType::F8E5M2: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2; case xla::PrimitiveType::F8E4M3FN: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FN; case xla::PrimitiveType::F8E4M3B11FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3B11FNUZ; case xla::PrimitiveType::F8E5M2FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2FNUZ; case xla::PrimitiveType::F8E4M3FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FNUZ; case xla::PrimitiveType::C64: return PJRT_Buffer_Type::PJRT_Buffer_Type_C64; case xla::PrimitiveType::C128: return PJRT_Buffer_Type::PJRT_Buffer_Type_C128; default: CHECK(false) << "Element type of the shape is not supported in C API layer: " << xla::primitive_util::LowercasePrimitiveTypeName(type); } } xla::PrimitiveType ConvertFromPjRtBufferType(PJRT_Buffer_Type type) { switch (type) { case PJRT_Buffer_Type::PJRT_Buffer_Type_PRED: return xla::PrimitiveType::PRED; case PJRT_Buffer_Type::PJRT_Buffer_Type_TOKEN: return xla::PrimitiveType::TOKEN; case PJRT_Buffer_Type::PJRT_Buffer_Type_S2: return xla::PrimitiveType::S2; case PJRT_Buffer_Type::PJRT_Buffer_Type_S4: return xla::PrimitiveType::S4; case PJRT_Buffer_Type::PJRT_Buffer_Type_S8: return xla::PrimitiveType::S8; case PJRT_Buffer_Type::PJRT_Buffer_Type_S16: return xla::PrimitiveType::S16; case PJRT_Buffer_Type::PJRT_Buffer_Type_S32: return xla::PrimitiveType::S32; case PJRT_Buffer_Type::PJRT_Buffer_Type_S64: return xla::PrimitiveType::S64; case PJRT_Buffer_Type::PJRT_Buffer_Type_U2: return xla::PrimitiveType::U2; case PJRT_Buffer_Type::PJRT_Buffer_Type_U4: return xla::PrimitiveType::U4; case PJRT_Buffer_Type::PJRT_Buffer_Type_U8: return xla::PrimitiveType::U8; case PJRT_Buffer_Type::PJRT_Buffer_Type_U16: return xla::PrimitiveType::U16; case PJRT_Buffer_Type::PJRT_Buffer_Type_U32: return xla::PrimitiveType::U32; case PJRT_Buffer_Type::PJRT_Buffer_Type_U64: return xla::PrimitiveType::U64; case PJRT_Buffer_Type::PJRT_Buffer_Type_F16: return xla::PrimitiveType::F16; case PJRT_Buffer_Type::PJRT_Buffer_Type_F32: return xla::PrimitiveType::F32; case PJRT_Buffer_Type::PJRT_Buffer_Type_BF16: return xla::PrimitiveType::BF16; case PJRT_Buffer_Type::PJRT_Buffer_Type_F64: return xla::PrimitiveType::F64; case PJRT_Buffer_Type::PJRT_Buffer_Type_C64: return xla::PrimitiveType::C64; case PJRT_Buffer_Type::PJRT_Buffer_Type_C128: return xla::PrimitiveType::C128; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2: return xla::PrimitiveType::F8E5M2; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FN: return xla::PrimitiveType::F8E4M3FN; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3B11FNUZ: return xla::PrimitiveType::F8E4M3B11FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2FNUZ: return xla::PrimitiveType::F8E5M2FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FNUZ: return xla::PrimitiveType::F8E4M3FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_INVALID: CHECK(false) << "Buffer type is not supported in C API layer."; } } const char* HostBufferSemanticsToString( xla::PjRtClient::HostBufferSemantics h) { switch (h) { case xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall: return "xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall"; case xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy: return "xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy"; case xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy: return "xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy"; case xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes: return "xla::PjRtClient::HostBufferSemantics::" "kImmutableUntilTransferCompletes"; } } PJRT_HostBufferSemantics ConvertToPjRtHostBufferSemantics( xla::PjRtClient::HostBufferSemantics buffer_semantics) { switch (buffer_semantics) { case xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableOnlyDuringCall; case xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes; case xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableZeroCopy; case xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kMutableZeroCopy; default: CHECK(false) << "Input host buffer semantics is not supported in C API layer: " << HostBufferSemanticsToString(buffer_semantics); } } xla::PjRtClient::HostBufferSemantics ConvertFromPjRtHostBufferSemantics( PJRT_HostBufferSemantics buffer_semantics) { switch (buffer_semantics) { case PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableOnlyDuringCall: return xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall; case PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes: return xla::PjRtClient::HostBufferSemantics:: kImmutableUntilTransferCompletes; case PJRT_HostBufferSemantics::PJRT_HostBufferSemantics_kImmutableZeroCopy: return xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy; case PJRT_HostBufferSemantics::PJRT_HostBufferSemantics_kMutableZeroCopy: return xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy; } } xla::PjRtFuture<> ConvertCEventToCppFuture(PJRT_Event* c_event, const PJRT_Api* c_api) { using xla::PjRtFuture; PJRT_Event_OnReady_Args event_onready_args; event_onready_args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; event_onready_args.extension_start = nullptr; event_onready_args.event = c_event; PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); event_onready_args.user_arg = new std::function<void(PJRT_Error*)>( [promise, c_event, c_api](PJRT_Error* error) mutable { if (error != nullptr) { promise.Set(::pjrt::PjrtErrorToStatus(error, c_api)); ::pjrt::MakeErrorDeleter(c_api)(error); } else { promise.Set(); } ::pjrt::MakeEventDeleter(c_api)(c_event); }); event_onready_args.callback = [](PJRT_Error* error, void* arg) { std::function<void(PJRT_Error*)>* set_future = reinterpret_
#include "xla/pjrt/c/pjrt_c_api_helpers.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "xla/layout.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace pjrt { namespace { using ::testing::HasSubstr; TEST(PjRtCApiHelperTest, ConvertValidPjRtValueType) { std::vector<int64_t> int64_list = {static_cast<int64_t>(1), static_cast<int64_t>(2)}; absl::flat_hash_map<std::string, xla::PjRtValueType> original_cpp_map = { {"string", "v1"}, {"int64", static_cast<int64_t>(1)}, {"int64_list", int64_list}, {"float", static_cast<float>(1.0)}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_map, ConvertToPjRtNamedValueList(original_cpp_map)); auto converted_back_cpp_map = ConvertFromPjRtNamedValueList(c_map.data(), c_map.size()); EXPECT_THAT(converted_back_cpp_map, testing::UnorderedElementsAreArray(original_cpp_map)); } TEST(PjRtCApiHelperTest, ValidOptionNameAndPjRtValueTypeIndex) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> valid_map = { {"string", static_cast<std::string>("v1")}, {"int64", static_cast<int64_t>(1)}}; TF_EXPECT_OK(ValidateCreateOptions(valid_map, expected)); } TEST(PjRtCApiHelperTest, InvalidOptionName) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> invalid_map = { {"invalid", "v1"}}; auto status = ValidateCreateOptions(invalid_map, expected); EXPECT_NE(status, absl::OkStatus()); EXPECT_THAT(status.message(), HasSubstr("Unexpected option name passed to PJRT_Client_Create")); } TEST(PjRtCApiHelperTest, InvalidOptionTypeIndex) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> invalid_map = { {"string", static_cast<int64_t>(1)}}; auto status = ValidateCreateOptions(invalid_map, expected); EXPECT_NE(status, absl::OkStatus()); EXPECT_THAT(status.message(), HasSubstr("Option passed to PJRT_Client_Create with name string " "has type index 2 but expected type index is 0")); } TEST(PjRtCApiHelperTest, Callback) { auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); auto kv_callback_data = ConvertToCKeyValueCallbacks(kv_store); auto converted_kv_store = ToCppKeyValueStore( kv_callback_data->c_kv_get, &kv_callback_data->kv_get_c_func, kv_callback_data->c_kv_put, &kv_callback_data->kv_put_c_func); auto s = converted_kv_store->Set("key", "value"); TF_EXPECT_OK(s); auto v = converted_kv_store->Get("key", absl::Seconds(1)); TF_EXPECT_OK(v.status()); EXPECT_EQ(*v, "value"); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromStrides) { std::vector<int64_t> strides = {4, 8}; absl::StatusOr<BufferMemoryLayoutData> layout_data = ConvertToBufferMemoryLayoutData(strides); EXPECT_TRUE(layout_data.ok()); EXPECT_EQ( layout_data->c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Strides); EXPECT_EQ(layout_data->c_layout.strides.num_byte_strides, 2); EXPECT_EQ(layout_data->c_layout.strides.byte_strides[0], strides[0]); EXPECT_EQ(layout_data->c_layout.strides.byte_strides[1], strides[1]); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromLayoutNoTiles) { std::vector<int64_t> minor_to_major = {1, 0}; xla::Layout layout(minor_to_major); TF_ASSERT_OK_AND_ASSIGN(BufferMemoryLayoutData layout_data, ConvertToBufferMemoryLayoutData(layout)); EXPECT_EQ(layout_data.c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled); EXPECT_EQ(layout_data.c_layout.tiled.num_tiles, 0); PJRT_Buffer_MemoryLayout_Tiled tiled = layout_data.c_layout.tiled; EXPECT_EQ(tiled.minor_to_major_size, 2); EXPECT_EQ(tiled.minor_to_major[0], minor_to_major[0]); EXPECT_EQ(tiled.minor_to_major[1], minor_to_major[1]); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromLayoutWithTiles) { std::vector<int64_t> minor_to_major = {1, 0}; xla::Layout layout(minor_to_major); std::vector<int64_t> tile_dims_1 = {2, 4}; std::vector<int64_t> tile_dims_2 = {1}; layout.mutable_tiles()->push_back(xla::Tile(tile_dims_1)); layout.mutable_tiles()->push_back(xla::Tile(tile_dims_2)); TF_ASSERT_OK_AND_ASSIGN(BufferMemoryLayoutData layout_data, ConvertToBufferMemoryLayoutData(layout)); EXPECT_EQ(layout_data.c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled); PJRT_Buffer_MemoryLayout_Tiled tiled = layout_data.c_layout.tiled; EXPECT_EQ(tiled.minor_to_major_size, 2); EXPECT_EQ(tiled.minor_to_major[0], minor_to_major[0]); EXPECT_EQ(tiled.minor_to_major[1], minor_to_major[1]); EXPECT_EQ(tiled.num_tiles, 2); EXPECT_EQ(tiled.tile_dim_sizes[0], tile_dims_1.size()); EXPECT_EQ(tiled.tile_dim_sizes[1], tile_dims_2.size()); EXPECT_EQ(tiled.tile_dims[0], tile_dims_1[0]); EXPECT_EQ(tiled.tile_dims[1], tile_dims_1[1]); EXPECT_EQ(tiled.tile_dims[2], tile_dims_2[0]); } TEST(PjRtCApiHelperTest, ConvertFromCLayoutToLayout) { PJRT_Buffer_MemoryLayout c_layout; c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled; std::vector<int64_t> minor_to_major = {1, 0}; c_layout.tiled.minor_to_major_size = 2; c_layout.tiled.minor_to_major = minor_to_major.data(); c_layout.tiled.num_tiles = 2; std::vector<size_t> tile_dim_sizes = {2, 1}; c_layout.tiled.tile_dim_sizes = tile_dim_sizes.data(); std::vector<int64_t> tile_dims = {2, 4, 1}; c_layout.tiled.tile_dims = tile_dims.data(); TF_ASSERT_OK_AND_ASSIGN(xla::Layout layout, ConvertToLayout(c_layout.tiled)); EXPECT_EQ(layout.ToString(), "{1,0:T(2,4)(1)}"); } TEST(PjRtCApiHelperTest, ConvertFromCLayoutToLayoutNoTile) { PJRT_Buffer_MemoryLayout c_layout; c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled; c_layout.tiled.num_tiles = 0; std::vector<int64_t> minor_to_major = {1, 0}; c_layout.tiled.minor_to_major_size = 2; c_layout.tiled.minor_to_major = minor_to_major.data(); TF_ASSERT_OK_AND_ASSIGN(xla::Layout layout, ConvertToLayout(c_layout.tiled)); EXPECT_EQ(layout.ToString(), "{1,0}"); } } }
2,210
#ifndef XLA_PJRT_C_PJRT_C_API_GPU_H_ #define XLA_PJRT_C_PJRT_C_API_GPU_H_ #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_macros.h" #ifdef __cplusplus extern "C" { #endif PJRT_CAPI_EXPORT const PJRT_Api* GetPjrtApi(); #ifdef __cplusplus } #endif #endif #include "xla/pjrt/c/pjrt_c_api_gpu.h" #include "absl/base/call_once.h" #include "absl/log/initialize.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_gpu_internal.h" #include "tsl/platform/platform.h" const PJRT_Api* GetPjrtApi() { #ifndef PLATFORM_GOOGLE static absl::once_flag once; absl::call_once(once, []() { absl::InitializeLog(); }); #endif return pjrt::gpu_plugin::GetGpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_gpu.h" #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <string> #include <thread> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/ffi/api/ffi.h" #include "xla/ffi/execution_context.h" #include "xla/ffi/ffi_api.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_ffi_extension.h" #include "xla/pjrt/c/pjrt_c_api_gpu_extension.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_test_base.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/custom_call_target_registry.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tests/literal_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace pjrt { namespace { #ifdef TENSORFLOW_USE_ROCM const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "rocm"), true); #else const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cuda"), true); #endif class PjrtCApiGpuTest : public PjrtCApiTestBase { public: PjrtCApiGpuTest() : PjrtCApiTestBase(GetPjrtApi()) {} }; TEST_F(PjrtCApiGpuTest, CreateViewOfDeviceBuffer) { std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer = create_buffer().first; PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args device_buffer_ptr_args; device_buffer_ptr_args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; device_buffer_ptr_args.extension_start = nullptr; device_buffer_ptr_args.buffer = buffer.get(); PJRT_Error* device_buffer_ptr_error = api_->PJRT_Buffer_OpaqueDeviceMemoryDataPointer(&device_buffer_ptr_args); ASSERT_EQ(device_buffer_ptr_error, nullptr); PJRT_Buffer_Device_Args device_args = PJRT_Buffer_Device_Args{ PJRT_Buffer_Device_Args_STRUCT_SIZE, nullptr, buffer.get(), }; PJRT_Error* device_error = api_->PJRT_Buffer_Device(&device_args); ASSERT_EQ(device_error, nullptr); PJRT_Client_CreateViewOfDeviceBuffer_Args create_view_args; create_view_args.struct_size = PJRT_Client_CreateViewOfDeviceBuffer_Args_STRUCT_SIZE; create_view_args.extension_start = nullptr; create_view_args.client = client_; create_view_args.device_buffer_ptr = device_buffer_ptr_args.device_memory_ptr; xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {4}); create_view_args.dims = shape.dimensions().data(); create_view_args.num_dims = shape.dimensions().size(); create_view_args.element_type = pjrt::ConvertToPjRtBufferType(shape.element_type()); pjrt::BufferMemoryLayoutData c_layout_data; TF_ASSERT_OK_AND_ASSIGN( c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(shape.layout())); create_view_args.layout = &(c_layout_data.c_layout); create_view_args.device = device_args.device; std::function<void()> on_delete_callback = []() mutable {}; create_view_args.on_delete_callback_arg = new std::function(on_delete_callback); create_view_args.on_delete_callback = [](void* device_buffer_ptr, void* user_arg) { auto c_func = reinterpret_cast<std::function<void()>*>(user_arg); (*c_func)(); delete c_func; }; create_view_args.stream = reinterpret_cast<intptr_t>(nullptr); PJRT_Error* error = api_->PJRT_Client_CreateViewOfDeviceBuffer(&create_view_args); ASSERT_EQ(error, nullptr); std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> view_buffer( create_view_args.buffer, ::pjrt::MakeBufferDeleter(api_)); PJRT_Buffer_ToHostBuffer_Args to_host_args; to_host_args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; to_host_args.extension_start = nullptr; to_host_args.src = view_buffer.get(); xla::Shape host_shape = xla::ShapeUtil::MakeShape(xla::F32, {4}); auto literal = std::make_shared<xla::Literal>(host_shape); to_host_args.host_layout = nullptr; to_host_args.dst = literal->untyped_data(); to_host_args.dst_size = xla::ShapeUtil::ByteSizeOfElements(host_shape); to_host_args.event = nullptr; PJRT_Error* to_host_error = api_->PJRT_Buffer_ToHostBuffer(&to_host_args); ASSERT_EQ(to_host_error, nullptr); xla::PjRtFuture<> transfer_to_host = ::pjrt::ConvertCEventToCppFuture(to_host_args.event, api_); TF_CHECK_OK(transfer_to_host.Await()); ASSERT_EQ(literal->data<float>().size(), 4); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); EXPECT_TRUE(xla::LiteralTestUtil::Equal( xla::LiteralUtil::CreateR1<float>(float_data), *literal)); } TEST_F(PjrtCApiGpuTest, CreateAndDestroyExecuteContext) { PJRT_ExecuteContext_Create_Args create_arg; create_arg.struct_size = PJRT_ExecuteContext_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.context = nullptr; EXPECT_EQ(api_->PJRT_ExecuteContext_Create(&create_arg), nullptr); EXPECT_NE(create_arg.context, nullptr); const PJRT_FFI_Extension* ffi_extension = pjrt::FindExtension<PJRT_FFI_Extension>( api_, PJRT_Extension_Type::PJRT_Extension_Type_FFI); ASSERT_NE(ffi_extension, nullptr); std::string string_data = "string_data"; PJRT_FFI_UserData_Add_Args add_args; add_args.struct_size = PJRT_FFI_UserData_Add_Args_STRUCT_SIZE; add_args.extension_start = nullptr; add_args.user_data.type_id = 42; add_args.user_data.data = &string_data; add_args.user_data.deleter = nullptr; add_args.context = create_arg.context; EXPECT_EQ(ffi_extension->user_data_add(&add_args), nullptr); TF_ASSERT_OK_AND_ASSIGN( auto lookup_user_data, create_arg.context->execute_context->ffi_context().Lookup( xla::ffi::ExecutionContext::TypeId(42))); EXPECT_EQ(lookup_user_data, &string_data); PJRT_ExecuteContext_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.context = create_arg.context; api_->PJRT_ExecuteContext_Destroy(&destroy_args); } absl::StatusOr<PJRT_Client_Create_Args> BuildCreateArg( ::pjrt::PJRT_KeyValueCallbackData* kv_callback_data, std::vector<PJRT_NamedValue>& c_options) { PJRT_Client_Create_Args args; args.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.create_options = c_options.data(); args.num_options = c_options.size(); args.kv_get_callback = kv_callback_data->c_kv_get; args.kv_get_user_arg = &kv_callback_data->kv_get_c_func; args.kv_put_callback = kv_callback_data->c_kv_put; args.kv_put_user_arg = &kv_callback_data->kv_put_c_func; args.client = nullptr; return args; } TEST(PjrtCApiGpuKVStoreTest, CreateClientWithKVCallback) { auto api = GetPjrtApi(); auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::shared_ptr<::pjrt::PJRT_KeyValueCallbackData> kv_callback_data = ::pjrt::ConvertToCKeyValueCallbacks(kv_store); int num_nodes = 2; std::vector<std::thread> threads; for (int i = 0; i < num_nodes; i++) { threads.emplace_back([api, i, num_nodes, kv_callback_data = kv_callback_data, kv_store = kv_store] { absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"num_nodes", static_cast<int64_t>(num_nodes)}, {"node_id", static_cast<int64_t>(i)}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); TF_ASSERT_OK_AND_ASSIGN( PJRT_Client_Create_Args create_arg, BuildCreateArg(kv_callback_data.get(), c_options)); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Devices_Args device_args; device_args.struct_size = PJRT_Client_Devices_Args_STRUCT_SIZE; device_args.extension_start = nullptr; device_args.client = create_arg.client; PJRT_Error* device_error = api->PJRT_Client_Devices(&device_args); EXPECT_EQ(device_error, nullptr); EXPECT_EQ(device_args.num_devices, 2); PJRT_Client_AddressableDevices_Args addressable_device_args; addressable_device_args.struct_size = PJRT_Client_AddressableDevices_Args_STRUCT_SIZE; addressable_device_args.extension_start = nullptr; addressable_device_args.client = create_arg.client; PJRT_Error* addressable_device_error = api->PJRT_Client_AddressableDevices(&addressable_device_args); EXPECT_EQ(addressable_device_error, nullptr); EXPECT_EQ(addressable_device_args.num_addressable_devices, 1); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); }); } for (auto& t : threads) { t.join(); } } TEST(PjrtCApiGpuAllocatorTest, ValidOptionsParsing) { auto api = GetPjrtApi(); std::vector<std::string> allocator_options = {"default", "platform", "bfc", "cuda_async"}; for (const std::string& allocator_option : allocator_options) { absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", allocator_option}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; if (allocator_option == "bfc" || allocator_option == "cuda_async") { options["memory_fraction"] = 0.5f; } if (allocator_option == "cuda_async") { options["preallocate"] = true; } TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } } TEST(PjrtCApiGpuAllocatorTest, InvalidAllocatorOptionsParsing) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", static_cast<std::string>("invalid_allocator")}, {"memory_fraction", 0.5f}, {"preallocate", true}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kUnimplemented, "Allocator invalid_allocator not supported for PJRT GPU " "plugin. Supported allocator options are: 'default', " "'platform', 'bfc' and 'cuda_async'.")); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } TEST(PjrtCApiPlatformNameTest, AvailablePlatformName) { auto api = GetPjrtApi(); std::string expected_platform_name_for_cuda = "cuda"; std::string expected_platform_name_for_rocm = "rocm"; absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("gpu")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_PlatformName_Args platform_name_args; platform_name_args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; platform_name_args.extension_start = nullptr; platform_name_args.client = create_arg.client; PJRT_Error* platform_name_error = api->PJRT_Client_PlatformName(&platform_name_args); EXPECT_EQ(platform_name_error, nullptr); #if TENSORFLOW_USE_ROCM EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_rocm); #else EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_cuda); #endif PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } TEST(PjrtCApiPlatformNameTest, UnavailablePlatformName) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("invalid_platform_name")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kNotFound, testing::StartsWith("Could not find registered platform with " "name: \"invalid_platform_name\". " "Available platform names are:"))); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } void TestCustomCallV2() {} TEST(PjrtCApiGpuExtensionTest, CustomCallUntyped) { PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "untyped_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 0; args.custom_call_function = reinterpret_cast<void*>(&TestCustomCallV2); auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); void* custom_call = xla::CustomCallTargetRegistry::Global()->Lookup( function_name, stream_executor::GpuPlatformName()); EXPECT_EQ(custom_call, reinterpret_cast<void*>(&TestCustomCallV2)); } static void* kNoop = xla::ffi::Ffi::Bind() .To([]() { return xla::ffi::Error::Success(); }) .release(); TEST(PjrtCApiGpuExtensionTest, CustomCallTyped) { PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "typed_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 1; args.custom_call_function = kNoop; auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); auto registration = xla::ffi::FindHandler(function_name, stream_executor::GpuPlatformName()) .value(); EXPECT_EQ(reinterpret_cast<void*>(registration.bundle.execute), kNoop); } } }
2,211
#ifndef XLA_PJRT_C_PJRT_C_API_CPU_H_ #define XLA_PJRT_C_PJRT_C_API_CPU_H_ #include "xla/pjrt/c/pjrt_c_api.h" #ifdef __cplusplus extern "C" { #endif const PJRT_Api* GetPjrtApi(); #ifdef __cplusplus } #endif #endif #include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" const PJRT_Api* GetPjrtApi() { return pjrt::cpu_plugin::GetCpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" namespace pjrt { namespace { const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cpu"), true); } }
2,212
#ifndef XLA_PJRT_DISTRIBUTED_TOPOLOGY_UTIL_H_ #define XLA_PJRT_DISTRIBUTED_TOPOLOGY_UTIL_H_ #include <string> #include <string_view> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/gpu/gpu_topology.pb.h" namespace xla { absl::StatusOr<std::string> GetBootIdString(); absl::Status ExchangeTopologies(std::string_view platform, int node_id, int num_nodes, absl::Duration get_local_topology_timeout, absl::Duration get_global_topology_timeout, KeyValueStoreInterface* kv_store, const LocalTopologyProto& local_topology, GlobalTopologyProto* global_topology, bool assign_global_device_ids); GlobalTopologyProto BuildGlobalTopology( absl::Span<LocalTopologyProto> local_topologies, bool assign_global_device_ids); absl::StatusOr<GpuTopologyProto> BuildGpuTopology( const GlobalTopologyProto& global_topology); } #endif #include "xla/pjrt/distributed/topology_util.h" #include <algorithm> #include <fstream> #include <map> #include <set> #include <string> #include <string_view> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/utils.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { static constexpr char kBootIdPath[] = "/proc/sys/kernel/random/boot_id"; absl::StatusOr<std::string> GetBootIdString() { std::string boot_id_str; #ifdef __linux__ std::ifstream file(kBootIdPath); if (!file) { return NotFound("%s not found.", kBootIdPath); } std::string line; while (std::getline(file, line)) { absl::StripAsciiWhitespace(&line); absl::StrAppend(&boot_id_str, line); } #endif return boot_id_str; } static std::string GetLocalTopologyKey(std::string_view platform, int node_id) { return absl::StrCat("local_topology/", platform, "/", node_id); } static std::string GetGlobalTopologyKey(std::string_view platform) { return absl::StrCat("global_topology/", platform); } static absl::StatusOr<std::vector<LocalTopologyProto>> GetAllLocalTopologies( std::string_view platform, int num_nodes, KeyValueStoreInterface* kv_store, absl::Duration timeout) { std::vector<absl::StatusOr<std::string>> local_topology_strs(num_nodes); tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "GetAllLocalTopologies", DefaultThreadPoolSize()); absl::BlockingCounter blocking_counter(num_nodes); absl::Mutex mu; for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([&, i] { absl::StatusOr<std::string> local_topology_str = kv_store->Get(GetLocalTopologyKey(platform, i), timeout); { absl::MutexLock lock(&mu); local_topology_strs[i] = local_topology_str; } blocking_counter.DecrementCount(); }); } blocking_counter.Wait(); std::vector<std::string> error_messages; std::vector<LocalTopologyProto> local_topologies; int max_num_failed_message = 10; int failed_count = 0; for (const absl::StatusOr<std::string>& str : local_topology_strs) { if (str.ok()) { LocalTopologyProto local; local.ParseFromString(*str); local_topologies.push_back(local); } else { error_messages.push_back( absl::StrCat("Error ", ++failed_count, ": ", str.status().message())); if (failed_count > max_num_failed_message) { break; } } } if (error_messages.empty()) { return local_topologies; } return absl::InternalError( absl::StrCat("Getting local topologies failed: ", absl::StrJoin(error_messages, "\n\n"))); } GlobalTopologyProto BuildGlobalTopology( absl::Span<LocalTopologyProto> local_topologies, bool assign_global_device_ids) { GlobalTopologyProto global_topology; int next_global_device_id = 0; int next_slice_index = 0; absl::flat_hash_map<std::string, int> boot_id_to_slice_index; for (LocalTopologyProto& local : local_topologies) { std::string_view boot_id = local.boot_id(); auto [it, inserted] = boot_id_to_slice_index.try_emplace(boot_id, next_slice_index); if (inserted) { ++next_slice_index; } for (DeviceProto& device : *local.mutable_devices()) { if (assign_global_device_ids) { device.set_global_device_id(next_global_device_id++); } device.set_slice_index(it->second); } global_topology.add_nodes()->Swap(&local); } if (VLOG_IS_ON(10)) { for (auto it = boot_id_to_slice_index.begin(); it != boot_id_to_slice_index.end(); ++it) { LOG(INFO) << "BuildGlobalTopology boot_id_to_slice_index " << it->first << "->" << it->second; } } return global_topology; } absl::Status ExchangeTopologies(std::string_view platform, int node_id, int num_nodes, absl::Duration get_local_topology_timeout, absl::Duration get_global_topology_timeout, KeyValueStoreInterface* kv_store, const LocalTopologyProto& local_topology, GlobalTopologyProto* global_topology, bool assign_global_device_ids) { VLOG(3) << "Local Topology for platform" << platform << ":\n" << local_topology.DebugString(); if (num_nodes == 1) { LocalTopologyProto* topology = global_topology->add_nodes(); *topology = local_topology; for (DeviceProto& device : *topology->mutable_devices()) { device.set_global_device_id(device.local_device_ordinal()); } return absl::OkStatus(); } CHECK(kv_store != nullptr); TF_RETURN_IF_ERROR(kv_store->Set(GetLocalTopologyKey(platform, node_id), local_topology.SerializeAsString())); std::string global_topology_key = GetGlobalTopologyKey(platform); if (node_id == 0) { TF_ASSIGN_OR_RETURN(std::vector<LocalTopologyProto> local_topologies, GetAllLocalTopologies(platform, num_nodes, kv_store, get_local_topology_timeout)); *global_topology = BuildGlobalTopology(absl::Span<LocalTopologyProto>(local_topologies), assign_global_device_ids); TF_RETURN_IF_ERROR(kv_store->Set(global_topology_key, global_topology->SerializeAsString())); } else { TF_ASSIGN_OR_RETURN( std::string global_topology_str, kv_store->Get(global_topology_key, get_global_topology_timeout)); global_topology->ParseFromString(global_topology_str); } VLOG(3) << "Global topology for platform " << platform << ":\n" << global_topology->DebugString(); return absl::OkStatus(); } bool IsGpuTopologySymmetric( const std::map<int, std::set<int>>& slice_id_to_node_ids, const std::map<int, int>& node_id_to_device_count) { CHECK(!slice_id_to_node_ids.empty()); CHECK(!node_id_to_device_count.empty()); int num_hosts_per_slice = slice_id_to_node_ids.begin()->second.size(); int num_devices_per_host = node_id_to_device_count.begin()->second; for (const auto& [slice_id, node_ids] : slice_id_to_node_ids) { if (node_ids.size() != num_hosts_per_slice) { LOG(INFO) << "GpuTopology is asymmetric as it has different number " "of hosts per slice."; return false; } } for (const auto& [node_id, device_count] : node_id_to_device_count) { if (device_count != num_devices_per_host) { LOG(INFO) << "GpuTopology is asymmetric as it has different number " "of devices per host."; return false; } } return true; } absl::StatusOr<GpuTopologyProto> BuildGpuTopology( const GlobalTopologyProto& global_topology) { GpuTopologyProto gpu_topology; std::map<int, std::set<int>> slice_id_to_node_ids; std::map<int, int> node_id_to_device_count; std::vector<int> device_ids; for (int i = 0; i < global_topology.nodes_size(); ++i) { const LocalTopologyProto& local_topology = global_topology.nodes(i); node_id_to_device_count[local_topology.node_id()] = local_topology.devices_size(); for (const DeviceProto& device : local_topology.devices()) { if (gpu_topology.platform_version().empty()) { gpu_topology.set_platform_version(device.name()); } slice_id_to_node_ids[device.slice_index()].insert( local_topology.node_id()); device_ids.push_back(device.global_device_id()); } } if (IsGpuTopologySymmetric(slice_id_to_node_ids, node_id_to_device_count)) { gpu_topology.set_num_slices(slice_id_to_node_ids.size()); gpu_topology.set_num_hosts_per_slice( slice_id_to_node_ids.begin()->second.size()); gpu_topology.set_num_devices_per_host( node_id_to_device_count.begin()->second); } else { gpu_topology.set_num_slices(-1); gpu_topology.set_num_hosts_per_slice(-1); gpu_topology.set_num_devices_per_host(-1); } std::sort(device_ids.begin(), device_ids.end()); gpu_topology.mutable_device_ids()->Add(device_ids.begin(), device_ids.end()); return gpu_topology; } }
#include "xla/pjrt/distributed/topology_util.h" #include <string> #include <string_view> #include <vector> #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/test_helpers.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { TEST(TopologyTest, BuildGlobalTopology) { std::vector<LocalTopologyProto> locals(2); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); EXPECT_EQ(global.nodes_size(), 2); EXPECT_EQ(global.nodes()[0].devices_size(), 2); EXPECT_EQ(global.nodes()[1].devices_size(), 2); } TEST(TopologyTest, ExchangeTopology) { int num_nodes = 2; std::vector<LocalTopologyProto> locals(num_nodes); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); InMemoryKeyValueStore kv_store; std::vector<GlobalTopologyProto> globals(num_nodes); { tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "TestPool", num_nodes); for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([&, i] { TF_ASSERT_OK(ExchangeTopologies( "cuda", i, num_nodes, absl::Seconds(10), absl::Seconds(10), &kv_store, locals[i], &globals[i], true)); }); } } for (const GlobalTopologyProto& global : globals) { EXPECT_EQ(global.nodes_size(), 2); EXPECT_EQ(global.nodes()[0].devices_size(), 2); EXPECT_EQ(global.nodes()[1].devices_size(), 2); } } TEST(TopologyTest, BuildGpuTopology) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(2); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(1); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 4); EXPECT_EQ(gpu_topology.num_slices(), 2); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), 1); EXPECT_EQ(gpu_topology.num_devices_per_host(), 2); } TEST(TopologyTest, BuildGpuTopologyWithDifferentNumHostsPerSlice) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(3); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_0_boot_id); locals[2].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); locals[2].set_node_id(2); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[1].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[2].add_devices(); d2->set_local_device_ordinal(0); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 3); EXPECT_EQ(gpu_topology.num_slices(), -1); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), -1); EXPECT_EQ(gpu_topology.num_devices_per_host(), -1); } TEST(TopologyTest, BuildGpuTopologyWithDifferentNumDevicesPerHost) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(2); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(1); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 3); EXPECT_EQ(gpu_topology.num_slices(), -1); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), -1); EXPECT_EQ(gpu_topology.num_devices_per_host(), -1); } } }
2,213
#ifndef XLA_PJRT_CPU_CPU_TOPOLOGY_H_ #define XLA_PJRT_CPU_CPU_TOPOLOGY_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "absl/types/span.h" #include "xla/pjrt/cpu/cpu_topology.pb.h" #include "xla/pjrt/pjrt_common.h" namespace xla { class CpuTopology { public: struct CpuDevice { int process_id; int local_device_id; bool operator==(const CpuDevice& other) const { return process_id == other.process_id && local_device_id == other.local_device_id; } }; explicit CpuTopology(std::vector<CpuDevice> cpu_devices, std::vector<std::string> machine_attributes) : cpu_devices_(std::move(cpu_devices)), machine_attributes_(std::move(machine_attributes)) {} int number_of_devices() const { return cpu_devices_.size(); } absl::Span<const CpuDevice> devices() const { return cpu_devices_; } absl::Span<const std::string> machine_attributes() const { return machine_attributes_; } static std::unique_ptr<const CpuTopology> FromProto( const CpuTopologyProto& proto); CpuTopologyProto ToProto() const; private: const std::vector<CpuDevice> cpu_devices_; const std::vector<std::string> machine_attributes_; }; static const int kMaxCpuDevicesPerProcess = 1 << 17; inline PjRtGlobalDeviceId PackCpuDeviceId(int process_index, int device_id) { return PjRtGlobalDeviceId(kMaxCpuDevicesPerProcess * process_index + device_id); } inline int UnpackCpuProcessIndex(PjRtGlobalDeviceId global_device_id) { return global_device_id.value() / kMaxCpuDevicesPerProcess; } inline int UnpackCpuDeviceId(PjRtGlobalDeviceId global_device_id) { return global_device_id.value() % kMaxCpuDevicesPerProcess; } } #endif #include "xla/pjrt/cpu/cpu_topology.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> namespace xla { std::unique_ptr<const CpuTopology> CpuTopology::FromProto( const CpuTopologyProto& cpu_topology_proto) { std::vector<CpuTopology::CpuDevice> devices; devices.reserve(cpu_topology_proto.cpu_devices_size()); for (size_t i = 0; i < cpu_topology_proto.cpu_devices_size(); ++i) { auto& cpu_device_proto = cpu_topology_proto.cpu_devices(i); devices.push_back(CpuDevice{cpu_device_proto.process_index(), cpu_device_proto.local_hardware_id()}); } std::vector<std::string> machine_attributes; machine_attributes.reserve(cpu_topology_proto.machine_attributes_size()); for (size_t i = 0; i < cpu_topology_proto.machine_attributes_size(); ++i) { machine_attributes.push_back(cpu_topology_proto.machine_attributes(i)); } return std::make_unique<CpuTopology>(std::move(devices), std::move(machine_attributes)); } CpuTopologyProto CpuTopology::ToProto() const { CpuTopologyProto proto; for (auto& cpu_device : cpu_devices_) { auto* cpu_device_proto = proto.add_cpu_devices(); cpu_device_proto->set_process_index(cpu_device.process_id); cpu_device_proto->set_local_hardware_id(cpu_device.local_device_id); } for (const std::string& machine_attribute : machine_attributes_) { proto.add_machine_attributes(machine_attribute); } return proto; } }
#include "xla/pjrt/cpu/cpu_topology.h" #include <memory> #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(CpuTopology, FromProto) { CpuTopologyProto msg; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( cpu_devices: [ { process_index: 2, local_hardware_id: 3 }] machine_attributes: [ "x86_64", "Intel" ] )pb", &msg)); std::unique_ptr<const CpuTopology> cpu_topology = CpuTopology::FromProto(msg); EXPECT_EQ(cpu_topology->devices().size(), 1); EXPECT_EQ(cpu_topology->devices()[0].process_id, 2); EXPECT_EQ(cpu_topology->devices()[0].local_device_id, 3); EXPECT_EQ(cpu_topology->machine_attributes().size(), 2); EXPECT_EQ(cpu_topology->machine_attributes()[0], "x86_64"); EXPECT_EQ(cpu_topology->machine_attributes()[1], "Intel"); } TEST(CpuTopology, ToProto) { CpuTopology cpu_topology({{2, 3}}, {"ab", "cd"}); CpuTopologyProto msg = cpu_topology.ToProto(); EXPECT_EQ(msg.cpu_devices_size(), 1); EXPECT_EQ(msg.cpu_devices(0).process_index(), 2); EXPECT_EQ(msg.cpu_devices(0).local_hardware_id(), 3); EXPECT_EQ(msg.machine_attributes_size(), 2); EXPECT_EQ(msg.machine_attributes(0), "ab"); EXPECT_EQ(msg.machine_attributes(1), "cd"); } } }
2,214
#ifndef XLA_PJRT_CPU_CPU_CLIENT_H_ #define XLA_PJRT_CPU_CPU_CLIENT_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "mlir/IR/BuiltinOps.h" #include "xla/client/xla_computation.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/cpu/abstract_tfrt_cpu_buffer.h" #include "xla/pjrt/cpu/cpu_topology.h" #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/semaphore.h" #include "xla/pjrt/transpose.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_event.h" #include "xla/service/executable.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/threadpool.h" namespace xla { class TfrtCpuDevice; class TfrtCpuDeviceDescription final : public PjRtDeviceDescription { public: explicit TfrtCpuDeviceDescription(int process_id, int local_device_id); int id() const override { return id_.value(); } int process_index() const override { return process_index_; } int local_hardware_id() const { return local_hardware_id_; } absl::string_view device_kind() const override; absl::string_view DebugString() const override; absl::string_view ToString() const override; const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { return attributes_; } private: PjRtGlobalDeviceId id_; int process_index_; int local_hardware_id_; std::string debug_string_; std::string to_string_; absl::flat_hash_map<std::string, PjRtDeviceAttribute> attributes_ = {}; }; class TfrtCpuTopologyDescription : public PjRtTopologyDescription { public: static TfrtCpuTopologyDescription Create( PjRtPlatformId platform_id, absl::string_view platform_name, absl::string_view platform_version, absl::Span<const std::unique_ptr<TfrtCpuDevice>> devices, absl::Span<const std::string> machine_attributes); TfrtCpuTopologyDescription( const PjRtPlatformId platform_id, const absl::string_view platform_name, const absl::string_view platform_version, const std::vector<CpuTopology::CpuDevice> cpu_devices, absl::Span<const std::string> machine_attributes) : platform_id_(platform_id), platform_name_(platform_name), platform_version_(platform_version), cpu_topology_(std::move(cpu_devices), std::vector<std::string>(machine_attributes.begin(), machine_attributes.end())) {} bool operator==(const TfrtCpuTopologyDescription& other) const { return this->platform_id() == other.platform_id() && this->platform_name() == other.platform_name() && this->platform_version() == other.platform_version() && this->cpu_topology().devices() == other.cpu_topology().devices(); } PjRtPlatformId platform_id() const override { return platform_id_; } absl::string_view platform_name() const override { return platform_name_; } absl::string_view platform_version() const override { return platform_version_; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override; const CpuTopology& cpu_topology() const { return cpu_topology_; } const CpuTopology* cpu_topology_ptr() const { return &cpu_topology_; } bool is_subslice_topology() const override { return false; } absl::StatusOr<int> ProcessCount() const override { return 1; } absl::StatusOr<int> CoreCountOfDefaultType() const override { return cpu_topology_.number_of_devices(); } absl::StatusOr<int> LogicalDeviceCountOfDefaultType() const override { return cpu_topology_.number_of_devices(); } absl::StatusOr<int> CoreCountOfDefaultTypePerProcess() const override { return cpu_topology_.number_of_devices(); } absl::StatusOr<int> CoreCountOfDefaultTypePerChip() const override { return 1; } absl::StatusOr<std::string> Serialize() const override; const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { return attributes_; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override; private: const PjRtPlatformId platform_id_; const std::string platform_name_; const std::string platform_version_; const CpuTopology cpu_topology_; absl::flat_hash_map<std::string, xla::PjRtDeviceAttribute> attributes_; }; class TfrtCpuDevice final : public PjRtDevice { public: explicit TfrtCpuDevice(int process_id, int local_device_id, int max_inflight_computations = 32); const TfrtCpuDeviceDescription& description() const override { return description_; } void SetClient(PjRtClient* client) { CHECK(client_ == nullptr); client_ = client; } PjRtClient* client() const override { return client_; } bool IsAddressable() const override { return process_index() == client()->process_index(); } int local_hardware_id() const override { return local_hardware_id_typed().value(); } PjRtLocalDeviceId local_device_id() const override { return PjRtLocalDeviceId(local_hardware_id_typed().value()); } PjRtLocalHardwareId local_hardware_id_typed() const override { return PjRtLocalHardwareId(description_.local_hardware_id()); } absl::Status TransferToInfeed(const LiteralSlice& literal) override; absl::Status TransferFromOutfeed(MutableBorrowingLiteral literal) override; void AttachMemorySpace(PjRtMemorySpace* memory_space); absl::Span<PjRtMemorySpace* const> memory_spaces() const override; absl::StatusOr<PjRtMemorySpace*> default_memory_space() const override; absl::StatusOr<PjRtMemorySpace*> memory_space_by_kind( absl::string_view memory_space_kind) const override; absl::StatusOr<PjRtMemorySpace*> memory_space_by_kind_id(int id) const; Semaphore& max_inflight_computations_semaphore() { return max_inflight_computations_semaphore_; } std::unique_ptr<ScopedAsyncTrackingEvent> CreateAsyncTrackingEvent( absl::string_view description) const override { return nullptr; } private: PjRtClient* client_ = nullptr; TfrtCpuDeviceDescription description_; absl::InlinedVector<PjRtMemorySpace*, 1> memory_spaces_; absl::flat_hash_map<int, PjRtMemorySpace*> memory_spaces_by_id_; Semaphore max_inflight_computations_semaphore_; }; class TfrtCpuClient final : public PjRtClient { public: TfrtCpuClient(int process_index, std::vector<std::unique_ptr<TfrtCpuDevice>> devices, std::shared_ptr<cpu::CollectivesInterface> collectives, size_t num_threads, bool asynchronous); ~TfrtCpuClient() override; int process_index() const override { return process_index_; } int device_count() const override { return devices_.size(); } int addressable_device_count() const override { return addressable_devices_.size(); } absl::Span<PjRtDevice* const> devices() const override { return devices_; } absl::Span<PjRtDevice* const> addressable_devices() const override { return addressable_devices_; } absl::StatusOr<PjRtDevice*> LookupDevice( PjRtGlobalDeviceId global_device_id) const override; absl::StatusOr<PjRtDevice*> LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const override; absl::Span<PjRtMemorySpace* const> memory_spaces() const override; PjRtPlatformId platform_id() const override { return tsl::Fingerprint64(CpuName()); } absl::string_view platform_name() const override { return CpuName(); } absl::string_view platform_version() const override { return "<unknown>"; } PjRtRuntimeType runtime_type() const override { return kTfrt; } absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const override; absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) override; absl::StatusOr<std::unique_ptr<HloCostAnalysis>> GetHloCostAnalysis() const override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( mlir::ModuleOp module, CompileOptions options) override; absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> DeserializeExecutable( absl::string_view serialized, std::optional<CompileOptions> options) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtMemorySpace* memory) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostLiteral( const LiteralSlice& literal, PjRtMemorySpace* memory_space) override; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffers(absl::Span<const Shape> shapes, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return Unimplemented("MakeCrossHostReceiveBuffers not implemented."); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> MakeCrossHostReceiveBuffersForGather( absl::Span<const Shape> shapes, std::vector<GatherDetails> gather_details, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) override { return Unimplemented( "MakeCrossHostReceiveBuffersForGather not implemented."); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) override; absl::StatusOr<ChannelHandle> CreateChannelHandle() override { return Unimplemented("CreateChannelHandle not implemented."); } absl::StatusOr<ChannelHandle> CreateDeviceToHostChannelHandle() override { return Unimplemented("CreateDeviceToHostChannelHandle not implemented."); } absl::StatusOr<ChannelHandle> CreateHostToDeviceChannelHandle() override { return Unimplemented("CreateHostToDeviceChannelHandle not implemented."); } absl::Status Defragment() override { return Unimplemented("Defragment not implemented."); } tsl::thread::ThreadPool* pjrt_client_thread_pool() const { return pjrt_client_thread_pool_.get(); } AsyncWorkRunner* async_work_runner() const { return async_work_runner_.get(); } Eigen::ThreadPoolDevice* eigen_intraop_device() const { return eigen_intraop_device_.get(); } tsl::AsyncValueRef<CpuEvent> GetLastCollectiveLaunchEvent() { absl::MutexLock lock(&mu_); return last_collective_launch_event_.CopyRef(); } void SetLastCollectiveLaunchEvent(tsl::AsyncValueRef<CpuEvent> event) { absl::MutexLock lock(&mu_); last_collective_launch_event_ = std::move(event); } tsl::AsyncValueRef<CpuEvent> GetLastEnqueueEvent() { return last_enqueue_event_.CopyRef(); } void SetLastEnqueueEvent(tsl::AsyncValueRef<CpuEvent> event) { last_enqueue_event_ = std::move(event); } absl::StatusOr<const xla::PjRtTopologyDescription*> GetTopologyDescription() const override { return &topology_; } private: friend class TfrtCpuExecutable; int process_index_; std::vector<std::unique_ptr<TfrtCpuDevice>> owned_devices_; std::vector<PjRtDevice*> devices_; absl::flat_hash_map<PjRtGlobalDeviceId, TfrtCpuDevice*> id_to_device_; std::vector<PjRtDevice*> addressable_devices_; std::unique_ptr<ComputationPlacer> computation_placer_; std::vector<std::unique_ptr<PjRtMemorySpace>> owned_memory_spaces_; std::vector<PjRtMemorySpace*> memory_spaces_; std::unique_ptr<tsl::thread::ThreadPool> pjrt_client_thread_pool_; std::unique_ptr<AsyncWorkRunner> async_work_runner_; std::unique_ptr<tsl::thread::ThreadPool> eigen_intraop_pool_; std::unique_ptr<Eigen::ThreadPoolDevice> eigen_intraop_device_; mutable absl::Mutex mu_; tsl::AsyncValueRef<CpuEvent> last_collective_launch_event_ ABSL_GUARDED_BY(mu_); absl::Mutex transpose_mu_; TransposePlanCache transpose_cache_ ABSL_GUARDED_BY(transpose_mu_); std::shared_ptr<cpu::CollectivesInterface> collectives_; xla::TfrtCpuTopologyDescription topology_; bool asynchronous_; inline static thread_local tsl::AsyncValueRef<CpuEvent> last_enqueue_event_ = tsl::MakeAvailableAsyncValueRef<CpuEvent>(); }; class TfrtCpuBuffer final : public AbstractTfrtCpuBuffer { public: TfrtCpuBuffer( Shape on_device_shape, std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, TfrtCpuClient* client, TfrtCpuDevice* device, PjRtMemorySpace* memory_space); TfrtCpuBuffer(const TfrtCpuBuffer&) = delete; TfrtCpuBuffer(TfrtCpuBuffer&&) = delete; TfrtCpuBuffer& operator=(const TfrtCpuBuffer&) = delete; TfrtCpuBuffer& operator=(TfrtCpuBuffer&&) = delete; PjRtMemorySpace* memory_space() const override { return memory_space_; } TfrtCpuDevice* device() const override { return device_; } TfrtCpuClient* client() const override { return client_; } using PjRtBuffer::ToLiteralSync; PjRtFuture<> ToLiteral(MutableLiteralBase* literal) override; PjRtFuture<> LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToDevice( PjRtDevice* dst_device) override; absl::StatusOr<std::unique_ptr<PjRtBuffer>> CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) override; private: absl::string_view buffer_name() const override { return "TfrtCpuBuffer"; } TfrtCpuClient* client_; TfrtCpuDevice* const device_; PjRtMemorySpace* const memory_space_; }; class TfrtCpuExecutable final : public PjRtLoadedExecutable { public: TfrtCpuExecutable( int num_replicas, int num_partitions, std::shared_ptr<DeviceAssignment> device_assignment, bool parameter_is_tupled_arguments, CompileOptions compile_options, std::unique_ptr<Executable> cpu_executable, BufferAllocation::Index result_buffer_index, absl::InlinedVector<BufferAllocation::Index, 4> result_buffer_indices, std::vector<LogicalDeviceIds> addressable_device_logical_ids, std::vector<PjRtDevice*> addressable_devices, TfrtCpuClient* client); ~TfrtCpuExecutable() override = default; TfrtCpuClient* client() const override { return client_; } absl::string_view name() const override { return cpu_executable_->shared_module()->name(); } int num_replicas() const override { return num_replicas_; } int num_partitions() const override { return num_partitions_; } int64_t SizeOfGeneratedCodeInBytes() const override { return cpu_executable_->SizeOfGeneratedCodeInBytes(); } const DeviceAssignment& device_assignment() const override { return *device_assignment_; } absl::Span<const LogicalDeviceIds> addressable_device_logical_ids() const override { return addressable_device_logical_ids_; } absl::Span<PjRtDevice* const> addressable_devices() const override { return addressable_devices_; } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> GetHloModules() const override { return std::vector<std::shared_ptr<HloModule>>{ cpu_executable_->shared_module()}; } absl::StatusOr<std::vector<std::vector<absl::string_view>>> GetOutputMemoryKinds() const override { return Unimplemented("GetOutputMemoryKinds is not supported."); } absl::StatusOr<CompiledMemoryStats> GetCompiledMemoryStats() const override { CompiledMemoryStats memory_stats = CompiledMemoryStats(); memory_stats.generated_code_size_in_bytes = SizeOfGeneratedCodeInBytes(); const HloProto* proto = cpu_executable_->hlo_proto(); if (!proto) { return tsl::errors::FailedPrecondition( "cpu_executable_ has no hlo_proto."); } memory_stats.serialized_hlo_proto = proto->SerializeAsString(); memory_stats.PopulateBufferStatsFromAllocations( cpu_executable_.get()->GetAllocations()); return memory_stats; } using PjRtLoadedExecutable::Execute; absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) override; using PjRtLoadedExecutable::ExecuteSharded; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; using PjRtLoadedExecutable::ExecutePortable; absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) override; void Delete() override; bool IsDeleted() override; absl::StatusOr<std::string> SerializeExecutable() const override; bool IsReturnedFutureSupported() const override { return true; } absl::StatusOr<std::optional<std::string>> Fingerprint() const; std::shared_ptr<Executable> cpu_executable() const { return cpu_executable_; } absl::StatusOr<std::string> FingerprintExecutable() const override { return Unimplemented("Fingerprinting executable is not supported."); } absl::StatusOr<CompileOptions> GetCompileOptions() const override { return compile_options_; } private: friend class TfrtCpuClient; absl::Status SetUpDonation(bool tuple_inputs); absl::Status CheckBufferCompatibilities( absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> input_buffers) const; absl::StatusOr<Result> ExecuteHelper( absl::Span<PjRtBuffer* const> argument_handles, int replica, int partition, const RunId& run_id, const ExecuteOptions& options, tsl::AsyncValueRef<CpuEvent> last_collective_launch_event, bool fill_future, TfrtCpuDevice* device = nullptr); TfrtCpuClient* client_; int num_replicas_; int num_partitions_; std::shared_ptr<DeviceAssignment> device_assignment_; bool parameter_is_tupled_arguments_; CompileOptions compile_options_; std::shared_ptr<Executable> cpu_executable_; BufferAllocation::Index result_buffer_index_; absl::InlinedVector<BufferAllocation::Index, 4> result_buffer_indices_; std::vector<int64_t> input_buffer_sizes_in_bytes_; std::vector<int> parameters_that_must_be_donated_; std::vector<LogicalDeviceIds> addressable_device_logical_ids_; std::vector<PjRtDevice*> addressable_devices_; bool cheap_computation_; }; struct CpuClientOptions { bool asynchronous = true; std::optional<int> cpu_device_count = std::nullopt; int max_inflight_computations_per_device = 32; int process_id = 0; std::shared_ptr<cpu::CollectivesInterface> collectives; }; absl::StatusOr<std::unique_ptr<PjRtClient>> GetTfrtCpuClient( const CpuClientOptions& options); inline absl::StatusOr<std::unique_ptr<PjRtClient>> GetTfrtCpuClient( bool asynchronous) { CpuClientOptions options; options.asynchronous = asynchronous; return GetTfrtCpuClient(options); } inline absl::StatusOr<std::unique_ptr<PjRtClient>> GetTfrtCpuClient( bool asynchronous, int cpu_device_count, int max_inflight_computations_per_device = 32) { CpuClientOptions options; options.asynchronous = asynchronous; options.cpu_device_count = cpu_device_count; options.max_inflight_computations_per_device = max_inflight_computations_per_device; return GetTfrtCpuClient(options); } } #endif #include "xla/pjrt/cpu/cpu_client.h" #define EIGEN_USE_THREADS #include <algorithm> #include <cfenv> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/dynamic_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "mlir/IR/BuiltinOps.h" #include "xla/array.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/debug_options_flags.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/cpu/abstract_tfrt_cpu_buffer.h" #include "xla/pjrt/cpu/cpu_topology.h" #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/semaphore.h" #include "xla/pjrt/transpose.h" #include "xla/pjrt/utils.h" #include "xla/service/buffer_assignment.h" #include "xla/service/compiler.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_compiler.h" #include "xla/service/cpu/cpu_event.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/cpu_xfeed.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/task.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/cpu/runtime/thunk_executor.h" #include "xla/service/cpu/simple_orc_jit.h" #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_status_internal.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_module_util.h" #include "xla/service/hlo_value.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/strings/proto_serialization.h" #include "tsl/platform/casts.h" #include "tsl/platform/denormal.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/setround.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<TfrtCpuBuffer>> AllocateDestinationBuffer( const Shape& on_device_shape, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, TfrtCpuDevice* device, TfrtCpuClient* client) { TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, AbstractTfrtCpuBuf
#include "xla/pjrt/cpu/cpu_client.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/synchronization/notification.h" #include "xla/client/xla_computation.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsFalse; using ::tsl::testing::IsOkAndHolds; static absl::Status TestError(ffi::AnyBuffer, ffi::Result<ffi::AnyBuffer>, ffi::Result<ffi::AnyBuffer>) { return absl::InternalError("test error."); } XLA_FFI_DEFINE_HANDLER(kTestError, TestError, ffi::Ffi::Bind() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$TestError", "Host", kTestError); TEST(TfrtCpuClientTest, MemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); ASSERT_GE(client->devices().size(), 1); ASSERT_EQ(client->memory_spaces().size(), client->addressable_devices().size()); for (auto* device : client->devices()) { TF_ASSERT_OK_AND_ASSIGN(auto* memory_space, device->default_memory_space()); EXPECT_THAT(device->memory_spaces(), ElementsAre(memory_space)); EXPECT_EQ(memory_space->kind(), UnpinnedHostMemorySpace::kKind); EXPECT_EQ(memory_space->kind_id(), UnpinnedHostMemorySpace::kKindId); EXPECT_THAT(device->memory_space_by_kind(UnpinnedHostMemorySpace::kKind), IsOkAndHolds(memory_space)); } } TEST(TfrtCpuClientTest, DonationWithExecutionError) { constexpr char kProgram[] = R"( HloModule DonationWithExecutionError, input_output_alias={ {}: (0, {}, must-alias) } ENTRY DonationWithExecutionError() -> f32[2, 2] { %input = f32[2, 2] parameter(0) %custom-call = (f32[2, 2], u8[0]) custom-call(%input), custom_call_target="__xla_test$$TestError", api_version=API_VERSION_TYPED_FFI, output_to_operand_aliasing={{0}: (0, {})} ROOT %result = f32[2, 2] get-tuple-element(%custom-call), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("test error.")); result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("buffer has been deleted or donated.")); } TEST(TfrtCpuClientTest, HloSnapshot) { constexpr char kProgram[] = R"( HloModule add ENTRY add { x = f32[3,2] parameter(0) y = f32[3,2] parameter(1) ROOT add = f32[3,2] add(x, y) })"; CpuClientOptions cpu_options; cpu_options.cpu_device_count = 1; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(cpu_options)); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); std::string dir = tsl::testing::TmpDir(); xla::CompileOptions options; auto* debug_opts = options.executable_build_options.mutable_debug_options(); debug_opts->set_xla_dump_to(dir); debug_opts->set_xla_dump_hlo_snapshots(true); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, options)); std::vector<float> data1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector<float> data2{10.0, 20.0, 30.0, 40.0, 50.0, 60.0}; Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer1, client->BufferFromHostBuffer( data1.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); TF_ASSERT_OK_AND_ASSIGN( auto buffer2, client->BufferFromHostBuffer( data2.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute( {{buffer1.get(), buffer2.get()}}, {}); ASSERT_TRUE(result.ok()); tsl::FileSystem* fs; ASSERT_TRUE(tsl::Env::Default()->GetFileSystemForFile(dir, &fs).ok()); std::vector<std::string> paths; ASSERT_TRUE(fs->GetMatchingPaths(dir + "false, []() {})); TF_ASSERT_OK(transfer_manager->TransferRawDataToSubBuffer( 0, raw_data_view.data(), raw_data_size - 1, 1, true, []() {})); TF_ASSERT_OK_AND_ASSIGN(auto literal, buffer->ToLiteralSync()); ASSERT_EQ(literal->element_count(), 3 * 2); EXPECT_THAT(literal->data<uint32_t>(), Each(0x42424242)); } struct MemsetValue { explicit MemsetValue(float value) : value(value) {} float value; }; static absl::Status MemsetFromValue( ffi::Result<ffi::BufferR1<PrimitiveType::F32>> result, MemsetValue* memset_value) { for (size_t i = 0; i < result->dimensions.at(0); ++i) { result->data.base()[i] = memset_value->value; } return absl::OkStatus(); } XLA_FFI_DEFINE_HANDLER(kMemsetFromValue, MemsetFromValue, ffi::Ffi::Bind() .Ret<ffi::BufferR1<PrimitiveType::F32>>() .Ctx<ffi::UserData<MemsetValue>>()); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "MemsetFromValue", "HOST", kMemsetFromValue); TEST(TfrtCpuClientTest, ForwardUserDataToFfiHandler) { static constexpr char const* kProgram = R"( HloModule ffi_handler ENTRY main { ROOT %custom-call = f32[4] custom-call(), custom_call_target="MemsetFromValue", api_version=API_VERSION_TYPED_FFI })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(xla_computation, {})); ExecuteContext context; TF_ASSERT_OK(context.ffi_context().Emplace<MemsetValue>(42.0f)); ExecuteOptions opts; opts.context = &context; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result->at(0).at(0)->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({42.0f, 42.0f, 42.0f, 42.0f}), *result_literal)); } } }
2,215
#ifndef XLA_PJRT_CPU_GLOO_COLLECTIVES_H_ #define XLA_PJRT_CPU_GLOO_COLLECTIVES_H_ #include <cstddef> #include <memory> #include <optional> #include <tuple> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "third_party/gloo/gloo/context.h" #include "third_party/gloo/gloo/rendezvous/store.h" #include "third_party/gloo/gloo/transport/device.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/xla_data.pb.h" namespace xla::cpu { class GlooCollectivesCommunicator : public CollectivesCommunicator { public: explicit GlooCollectivesCommunicator(std::shared_ptr<gloo::Context> context); ~GlooCollectivesCommunicator() override; absl::Status AllReduce(const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t num_elements, const void* input_buffer, void* output_buffer, absl::Duration timeout) override; absl::Status CollectivePermute(const RendezvousKey& key, size_t num_bytes, std::optional<int> source_rank, absl::Span<int const> target_ranks, const void* input_buffer, void* output_buffer, absl::Duration timeout) override; absl::Status AllToAll(const RendezvousKey& key, size_t chunk_bytes, absl::Span<const void* const> input_buffers, absl::Span<void* const> output_buffers, absl::Duration timeout) override; absl::Status AllGather(const RendezvousKey& key, size_t chunk_bytes, const void* input_buffer, void* output_buffer, absl::Duration timeout) override; absl::Status ReduceScatter(const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t chunk_elems, const void* input_buffer, void* output_buffer, absl::Duration timeout) override; private: std::shared_ptr<gloo::Context> context_; }; class GlooCollectives : public CollectivesInterface { public: GlooCollectives(std::unique_ptr<gloo::rendezvous::Store> store, std::shared_ptr<gloo::transport::Device> device); ~GlooCollectives() override; absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GetCommunicator( absl::Span<GlobalDeviceId const> devices, int rank) override; private: std::unique_ptr<gloo::rendezvous::Store> store_; std::shared_ptr<gloo::transport::Device> device_; absl::Mutex mu_; absl::flat_hash_map<std::tuple<std::vector<GlobalDeviceId>, int>, std::shared_ptr<GlooCollectivesCommunicator>> contexts_ ABSL_GUARDED_BY(mu_); }; } #endif #include "xla/pjrt/cpu/gloo_collectives.h" #include <complex> #include <cstddef> #include <cstdint> #include <cstring> #include <exception> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "third_party/gloo/gloo/algorithm.h" #include "third_party/gloo/gloo/allgather.h" #include "third_party/gloo/gloo/allreduce.h" #include "third_party/gloo/gloo/context.h" #include "third_party/gloo/gloo/math.h" #include "third_party/gloo/gloo/reduce_scatter.h" #include "third_party/gloo/gloo/rendezvous/context.h" #include "third_party/gloo/gloo/rendezvous/prefix_store.h" #include "third_party/gloo/gloo/rendezvous/store.h" #include "third_party/gloo/gloo/transport/device.h" #include "third_party/gloo/gloo/transport/unbound_buffer.h" #include "third_party/gloo/gloo/types.h" #include "xla/primitive_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla::cpu { GlooCollectivesCommunicator::GlooCollectivesCommunicator( std::shared_ptr<gloo::Context> context) : context_(std::move(context)) {} GlooCollectivesCommunicator::~GlooCollectivesCommunicator() = default; template <typename T> static absl::Status SetAllReduceOptions(ReductionKind reduction_kind, const void* input_buffer, void* output_buffer, size_t num_elements, gloo::AllreduceOptions& options) { options.setInput(reinterpret_cast<T*>(const_cast<void*>(input_buffer)), num_elements); options.setOutput(reinterpret_cast<T*>(const_cast<void*>(output_buffer)), num_elements); using ReductionFn = void (*)(void*, const void*, const void*, size_t); switch (reduction_kind) { case ReductionKind::SUM: options.setReduceFunction(static_cast<ReductionFn>(&gloo::sum<T>)); break; case ReductionKind::PRODUCT: options.setReduceFunction(static_cast<ReductionFn>(&gloo::product<T>)); break; case ReductionKind::MIN: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::min<T>)); } else { return absl::InvalidArgumentError( "MIN reduction not supported for complex types"); } break; case ReductionKind::MAX: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::max<T>)); } else { return absl::InvalidArgumentError( "MAX reduction not supported for complex types"); } break; } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllReduce( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t num_elements, const void* input_buffer, void* output_buffer, absl::Duration timeout) { gloo::AllreduceOptions options(context_); switch (element_type) { case S8: TF_RETURN_IF_ERROR(SetAllReduceOptions<int8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case PRED: case U8: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S16: TF_RETURN_IF_ERROR(SetAllReduceOptions<int16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U16: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S32: TF_RETURN_IF_ERROR(SetAllReduceOptions<int32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U32: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S64: TF_RETURN_IF_ERROR(SetAllReduceOptions<int64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U64: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F16: TF_RETURN_IF_ERROR(SetAllReduceOptions<gloo::float16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case BF16: TF_RETURN_IF_ERROR(SetAllReduceOptions<bfloat16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F32: TF_RETURN_IF_ERROR(SetAllReduceOptions<float>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F64: TF_RETURN_IF_ERROR(SetAllReduceOptions<double>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C64: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<float>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C128: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<double>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; default: return absl::InvalidArgumentError("Unknown datatype in allreduce"); } options.setAlgorithm(gloo::AllreduceOptions::Algorithm::RING); options.setTimeout(absl::ToChronoMilliseconds(timeout)); try { gloo::allreduce(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-reduce failed: ", e.what())); } return absl::OkStatus(); } static constexpr uint8_t kCollectivePermuteSlotPrefix = 0x40; absl::Status GlooCollectivesCommunicator::CollectivePermute( const RendezvousKey& key, size_t num_bytes, std::optional<int> source_rank, absl::Span<int const> target_ranks, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; const auto slot = gloo::Slot::build(kCollectivePermuteSlotPrefix, tag); try { std::unique_ptr<gloo::transport::UnboundBuffer> in; std::unique_ptr<gloo::transport::UnboundBuffer> out; for (int target : target_ranks) { if (target != context_->rank) { VLOG(1) << "send from " << context_->rank << " to " << target; if (!in) { in = context_->createUnboundBuffer(const_cast<void*>(input_buffer), num_bytes); } in->send(target, slot); } } if (source_rank) { if (*source_rank == context_->rank) { std::memcpy(output_buffer, input_buffer, num_bytes); } else { VLOG(1) << "recv at " << context_->rank << " from " << *source_rank; out = context_->createUnboundBuffer(output_buffer, num_bytes); out->recv(*source_rank, slot); } } else { std::memset(output_buffer, 0, num_bytes); } VLOG(1) << "wait for send at " << context_->rank; auto deadline = absl::ToChronoTime(absl::Now() + timeout); if (in) { in->waitSend(deadline); } VLOG(1) << "wait for recv at " << context_->rank; if (out) { out->waitRecv(deadline); } VLOG(1) << "done waiting at " << context_->rank; } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo collective permute failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllToAll( const RendezvousKey& key, size_t chunk_bytes, absl::Span<const void* const> input_buffers, absl::Span<void* const> output_buffers, absl::Duration timeout) { uint32_t tag = 0; int my_rank = context_->rank; int world_size = context_->size; TF_RET_CHECK(world_size == input_buffers.size()); TF_RET_CHECK(world_size == output_buffers.size()); try { const auto slot = gloo::Slot::build(gloo::kAlltoallSlotPrefix, tag); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> ins( context_->size); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> outs( context_->size); for (size_t i = 0; i < world_size; ++i) { if (i != my_rank) { ins[i] = context_->createUnboundBuffer( const_cast<void*>(input_buffers[i]), chunk_bytes); outs[i] = context_->createUnboundBuffer(output_buffers[i], chunk_bytes); } } for (int i = 1; i < world_size; i++) { int send_rank = (my_rank + i) % world_size; int recv_rank = (my_rank + world_size - i) % world_size; ins[send_rank]->send(send_rank, slot); outs[recv_rank]->recv(recv_rank, slot); } std::memcpy(output_buffers[my_rank], input_buffers[my_rank], chunk_bytes); auto deadline = absl::ToChronoTime(absl::Now() + timeout); for (int i = 0; i < world_size; i++) { if (i != my_rank) { ins[i]->waitSend(deadline); outs[i]->waitRecv(deadline); } } } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-to-all failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllGather(const RendezvousKey& key, size_t chunk_bytes, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; gloo::AllgatherOptions options(context_); options.setTag(tag); options.setTimeout(absl::ToChronoMilliseconds(timeout)); options.setInput(reinterpret_cast<char*>(const_cast<void*>(input_buffer)), chunk_bytes); options.setOutput(reinterpret_cast<char*>(output_buffer), chunk_bytes * context_->size); try { gloo::allgather(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo AllGather failed: ", e.what())); } return absl::OkStatus(); } template <typename T> absl::Status ReduceScatterHelper(std::shared_ptr<gloo::Context> context, ReductionKind reduction_kind, void* buffer, size_t chunk_elems) { const gloo::ReductionFunction<T>* reduction_function = nullptr; if constexpr (is_complex_v<T>) { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } else { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; case ReductionKind::MAX: reduction_function = gloo::ReductionFunction<T>::max; break; case ReductionKind::MIN: reduction_function = gloo::ReductionFunction<T>::min; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } try { std::vector<int> recv_elems(context->size, chunk_elems); gloo::ReduceScatterHalvingDoubling<T> algorithm( context, std::vector<T*>{reinterpret_cast<T*>(buffer)}, chunk_elems * context->size, recv_elems, reduction_function); algorithm.run(); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo ReduceScatter failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::ReduceScatter( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t chunk_elems, const void* input_buffer, void* output_buffer, absl::Duration timeout) { size_t chunk_bytes = chunk_elems * primitive_util::ByteWidth(element_type); std::unique_ptr<char[]> temp(new char[chunk_bytes * context_->size]); std::memcpy(temp.get(), input_buffer, chunk_bytes * context_->size); switch (element_type) { case S8: TF_RETURN_IF_ERROR(ReduceScatterHelper<int8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case PRED: case U8: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case S16: TF_RETURN_IF_ERROR(ReduceScatterHelper<int16_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U16: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint16_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S32: TF_RETURN_IF_ERROR(ReduceScatterHelper<int32_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U32: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint32_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S64: TF_RETURN_IF_ERROR(ReduceScatterHelper<int64_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U64: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint64_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case BF16: TF_RETURN_IF_ERROR(ReduceScatterHelper<bfloat16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F16: TF_RETURN_IF_ERROR(ReduceScatterHelper<gloo::float16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F32: TF_RETURN_IF_ERROR(ReduceScatterHelper<float>(context_, reduction_kind, temp.get(), chunk_elems)); break; case F64: TF_RETURN_IF_ERROR(ReduceScatterHelper<double>(context_, reduction_kind, temp.get(), chunk_elems)); break; case C64: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<float>>( context_, reduction_kind, temp.get(), chunk_elems)); break; case C128: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<double>>( context_, reduction_kind, temp.get(), chunk_elems)); break; default: return absl::InvalidArgumentError("Unknown datatype in reducescatter"); } std::memcpy(output_buffer, temp.get(), chunk_bytes); return absl::OkStatus(); } GlooCollectives::GlooCollectives( std::unique_ptr<gloo::rendezvous::Store> store, std::shared_ptr<gloo::transport::Device> device) : store_(std::move(store)), device_(std::move(device)) {} GlooCollectives::~GlooCollectives() = default; absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GlooCollectives::GetCommunicator( absl::Span<GlobalDeviceId const> global_devices, int rank) { absl::MutexLock lock(&mu_); auto& context = contexts_[std::make_tuple( std::vector<GlobalDeviceId>(global_devices.begin(), global_devices.end()), rank)]; if (context) { return context; } auto gloo_context = std::make_shared<gloo::rendezvous::Context>(rank, global_devices.size()); auto prefix_store = gloo::rendezvous::PrefixStore( absl::StrCat("gloo/", absl::StrJoin(global_devices, ",", [](std::string* out, GlobalDeviceId id) { absl::StrAppend(out, id.value()); })), *store_); try { gloo_context->connectFullMesh(prefix_store, device_); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo context initialization failed: ", e.what())); } context = std::make_shared<GlooCollectivesCommunicator>(std::move(gloo_context)); return context; } }
#include "xla/pjrt/cpu/gloo_collectives.h" #include <unistd.h> #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "third_party/gloo/gloo/transport/tcp/attr.h" #include "third_party/gloo/gloo/transport/tcp/device.h" #include "xla/executable_run_options.h" #include "xla/pjrt/cpu/gloo_kv_store.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { using ::testing::Each; using ::testing::Eq; constexpr int kNumParticipants = 2; constexpr size_t kBufferSize = 256; constexpr absl::Duration kTimeout = absl::Seconds(5); absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GetCommunicator( size_t kNumParticipants, absl::Span<GlobalDeviceId const> global_devices, const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, int rank) { auto collectives = std::make_shared<cpu::GlooCollectives>( std::make_unique<cpu::GlooKeyValueStore>(kv_store), gloo::transport::tcp::CreateDevice(gloo::transport::tcp::attr())); return collectives->GetCommunicator(global_devices, rank); } RendezvousKey MakeRendezvousKey(std::vector<GlobalDeviceId> global_devices) { return RendezvousKey(RunId(0), global_devices, kNumParticipants, RendezvousKey::CollectiveOpKind::kCrossModule, 0); } absl::StatusOr<std::vector<uint8_t>> AllReduce( const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, const std::vector<uint8_t>& input_buffer, std::vector<GlobalDeviceId> global_devices, int rank) { std::vector<uint8_t> output_buffer(kBufferSize); RendezvousKey rendezvous_key = MakeRendezvousKey(global_devices); TF_ASSIGN_OR_RETURN( auto communicator, GetCommunicator(kNumParticipants, global_devices, kv_store, rank)); TF_RETURN_IF_ERROR(communicator->AllReduce( rendezvous_key, xla::ReductionKind::SUM, xla::PrimitiveType::U8, kBufferSize, input_buffer.data(), output_buffer.data(), kTimeout)); return output_buffer; } TEST(GlooCollectives, AllReduce) { std::vector<GlobalDeviceId> global_devices; global_devices.reserve(kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { global_devices.push_back(GlobalDeviceId(rank)); } auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::vector<absl::StatusOr<std::vector<uint8_t>>> output_buffers( kNumParticipants); { tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "AllReduceParticipants", kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { thread_pool.Schedule( [rank, &output_buffers, &kv_store, &global_devices]() { std::vector<uint8_t> input_buffer(kBufferSize, rank + 1); output_buffers[rank] = AllReduce(kv_store, input_buffer, global_devices, rank); }); } } for (int rank = 0; rank < kNumParticipants; ++rank) { TF_ASSERT_OK(output_buffers[rank].status()); } for (int rank = 0; rank < kNumParticipants; ++rank) { EXPECT_THAT(output_buffers[rank].value(), Each(Eq(kNumParticipants * (kNumParticipants + 1) / 2))); } } } }
2,216
#ifndef XLA_PJRT_CPU_TRACKED_TFRT_CPU_DEVICE_BUFFER_H_ #define XLA_PJRT_CPU_TRACKED_TFRT_CPU_DEVICE_BUFFER_H_ #include <cstddef> #include <cstdint> #include <cstdlib> #include <memory> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/cpu_function_runtime.h" #include "xla/service/cpu/cpu_event.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/util.h" #include "tsl/platform/mem.h" #include "tsl/platform/statusor.h" namespace xla { class MaybeOwningCpuMemory { public: using OwnedDataPtr = std::unique_ptr<uint8_t[], void (*)(void*)>; MaybeOwningCpuMemory() = default; MaybeOwningCpuMemory(void* buf, size_t size) : buf_(buf), size_(size) {} MaybeOwningCpuMemory(OwnedDataPtr data, size_t size) : buf_(data.get()), data_(std::move(data)), size_(size) {} MaybeOwningCpuMemory(MaybeOwningCpuMemory&&) = default; MaybeOwningCpuMemory& operator=(MaybeOwningCpuMemory&&) = default; MaybeOwningCpuMemory(const MaybeOwningCpuMemory&) = delete; MaybeOwningCpuMemory& operator=(const MaybeOwningCpuMemory&) = delete; static absl::StatusOr<tsl::AsyncValueRef<MaybeOwningCpuMemory>> AllocateAvailableAvr(size_t size) { TF_ASSIGN_OR_RETURN(auto memory, Allocate(size)); return tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>( std::move(memory)); } static absl::StatusOr<MaybeOwningCpuMemory> Allocate(size_t size) { uint8_t* data = static_cast<uint8_t*>( tsl::port::AlignedMalloc(size, cpu_function_runtime::MinAlign())); if (!data) { return ResourceExhausted("Out of memory allocating %d bytes.", size); } return MaybeOwningCpuMemory(OwnedDataPtr{data, tsl::port::AlignedFree}, size); } void* data() const { return buf_; } size_t size() const { return size_; } bool owns_data() const { return data_ != nullptr; } private: void* buf_ = nullptr; OwnedDataPtr data_ = {nullptr, free}; size_t size_ = 0; }; class TrackedTfrtCpuDeviceBuffer { public: TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback = nullptr); TrackedTfrtCpuDeviceBuffer(TrackedTfrtCpuDeviceBuffer&&) = default; TrackedTfrtCpuDeviceBuffer& operator=(TrackedTfrtCpuDeviceBuffer&&) = default; TrackedTfrtCpuDeviceBuffer(const TrackedTfrtCpuDeviceBuffer&) = delete; TrackedTfrtCpuDeviceBuffer& operator=(const TrackedTfrtCpuDeviceBuffer&) = delete; ~TrackedTfrtCpuDeviceBuffer(); absl::Span<const tsl::AsyncValueRef<MaybeOwningCpuMemory>> Buffers() { return buffers_; } absl::Span<const size_t> BufferSizes() { return buffer_sizes_; } tsl::AsyncValueRef<MaybeOwningCpuMemory> Buffer( const ShapeIndex& shape_index); size_t BufferSize(const ShapeIndex& shape_index); const tsl::AsyncValueRef<CpuEvent>& definition_event() const { return definition_event_; } absl::Span<const tsl::AsyncValueRef<CpuEvent>> UsageEvents() const { return usage_events_; } void AddUsageEvents(absl::Span<tsl::AsyncValueRef<CpuEvent>> events); absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> LockUseAndTransferUsageEvents(); void ReleaseDeviceMemory(); bool owns_buffers() const { return owns_buffers_; } private: bool is_tuple_; bool owns_buffers_; tsl::AsyncValueRef<MaybeOwningCpuMemory> tuple_index_table_; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers_; absl::InlinedVector<size_t, 4> buffer_sizes_; tsl::AsyncValueRef<CpuEvent> definition_event_; absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> usage_events_; absl::AnyInvocable<void() &&> on_delete_callback_; }; } #endif #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <atomic> #include <cstddef> #include <cstdint> #include <utility> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/cpu/cpu_event.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/async_value_ref.h" namespace xla { namespace { tsl::AsyncValueRef<CpuEvent> AfterAll( absl::Span<const tsl::AsyncValueRef<CpuEvent>> events) { if (events.empty()) return tsl::MakeAvailableAsyncValueRef<CpuEvent>(); struct State { State(int count, tsl::AsyncValueRef<CpuEvent> after_all) : count(count), after_all(std::move(after_all)) {} std::atomic<int> count; tsl::AsyncValueRef<CpuEvent> after_all; absl::Mutex mutex; absl::Status error; }; auto after_all = tsl::MakeConstructedAsyncValueRef<CpuEvent>(); auto* state = new State(events.size(), after_all); for (auto& event : events) { event.AndThen([state, event = event.AsPtr()]() { if (event.IsError()) { absl::MutexLock lock(&state->mutex); state->error = event.GetError(); } if (state->count.fetch_sub(1, std::memory_order_acq_rel) == 1) { if (!state->error.ok()) { state->after_all.SetError(state->error); } else { state->after_all.SetStateConcrete(); } delete state; } }); } return after_all; } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer(is_tuple, owns_buffers, std::move(buffers), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer( is_tuple, owns_buffers, std::move(buffers), std::move(buffer_sizes), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); for (const auto& buffer : buffers_) { CHECK(buffer.IsConcrete()); buffer_sizes_.push_back(buffer->size()); } if (is_tuple) { size_t index_table_byte_size = buffers_.size() * sizeof(void*); tuple_index_table_ = MaybeOwningCpuMemory::AllocateAvailableAvr(index_table_byte_size) .value(); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table_->data()); for (int i = 0; i < buffers_.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers_[i]->data()); } } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), buffer_sizes_(std::move(buffer_sizes)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); if (is_tuple) { tuple_index_table_ = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); tsl::RunWhenReady( absl::MakeConstSpan(buffers_), [buffers = buffers_, tuple_index_table = tuple_index_table_] { size_t index_table_byte_size = buffers.size() * sizeof(void*); tuple_index_table.emplace( MaybeOwningCpuMemory::Allocate(index_table_byte_size).value()); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table->data()); for (int i = 0; i < buffers.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers[i]->data()); } }); } } TrackedTfrtCpuDeviceBuffer::~TrackedTfrtCpuDeviceBuffer() { ReleaseDeviceMemory(); if (on_delete_callback_) { std::move(on_delete_callback_)(); } } tsl::AsyncValueRef<MaybeOwningCpuMemory> TrackedTfrtCpuDeviceBuffer::Buffer( const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return tuple_index_table_; return buffers_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffers_[shape_index[0]]; } size_t TrackedTfrtCpuDeviceBuffer::BufferSize(const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return buffers_.size() * sizeof(void*); return buffer_sizes_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffer_sizes_[shape_index[0]]; } void TrackedTfrtCpuDeviceBuffer::AddUsageEvents( absl::Span<tsl::AsyncValueRef<CpuEvent>> events) { if (usage_events_.size() >= 1024) { int i = 0; while (i < usage_events_.size()) { auto& event = usage_events_[i]; if (event.IsAvailable()) { using std::swap; swap(event, usage_events_.back()); usage_events_.pop_back(); continue; } ++i; } } for (auto& ev : events) { usage_events_.push_back(std::move(ev)); } } absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> TrackedTfrtCpuDeviceBuffer::LockUseAndTransferUsageEvents() { return std::move(usage_events_); } void TrackedTfrtCpuDeviceBuffer::ReleaseDeviceMemory() { tuple_index_table_.reset(); buffers_.clear(); definition_event_.reset(); usage_events_.clear(); } }
#include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <cstring> #include <string> #include <gtest/gtest.h> #include "xla/service/cpu/cpu_event.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::tsl::BlockUntilReady; using ::tsl::MakeConstructedAsyncValueRef; using ::tsl::MakeUnconstructedAsyncValueRef; using ::tsl::thread::ThreadPool; TEST(TrackedTfrtCpuDeviceBufferTest, Basic) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result = tracked_buffer.Buffers()[0]; ASSERT_TRUE(result.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, Tuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_0.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_1.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_TRUE(result_0.IsAvailable()); ASSERT_TRUE(result_1.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } TEST(TrackedTfrtCpuDeviceBufferTest, BasicError) { TF_ASSERT_OK_AND_ASSIGN(auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(64)); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { definition_event.SetError("tracked_tfrt_cpu_device_buffer_test error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test error."); } TEST(TrackedTfrtCpuDeviceBufferTest, TupleError) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected.data(), expected.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { definition_event_1.SetError( "tracked_tfrt_cpu_device_buffer_test tuple error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test tuple error."); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocation) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; auto buffer = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event.AndThen([buffer_copy = buffer.CopyRef(), buffer_size = expected.size()] { buffer_copy.emplace(MaybeOwningCpuMemory::Allocate(buffer_size).value()); }); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer(false, true, {buffer}, {expected.size()}, definition_event, nullptr); auto result = tracked_buffer.Buffers()[0]; ASSERT_FALSE(result.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event.SetStateConcrete(); std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocationTuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; auto buffer_0 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_0.AndThen( [buffer_0_copy = buffer_0.CopyRef(), buffer_0_size = expected_0.size()] { buffer_0_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_0_size).value()); }); auto buffer_1 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_1.AndThen( [buffer_1_copy = buffer_1.CopyRef(), buffer_1_size = expected_1.size()] { buffer_1_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_1_size).value()); }); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {expected_0.size(), expected_1.size()}, {definition_event_0, definition_event_1}, nullptr); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_FALSE(result_0.IsAvailable()); ASSERT_FALSE(result_1.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected_0.size()); ASSERT_EQ(tracked_buffer.BufferSizes()[1], expected_1.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event_0.SetStateConcrete(); std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { malloc_event_1.SetStateConcrete(); std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } } }
2,217
#ifndef XLA_PJRT_GPU_SE_GPU_PJRT_COMPILER_H_ #define XLA_PJRT_GPU_SE_GPU_PJRT_COMPILER_H_ #include <memory> #include <optional> #include "absl/status/status.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/service/compiler.h" namespace xla { class StreamExecutorGpuCompiler : public PjRtCompiler { public: explicit StreamExecutorGpuCompiler() = default; absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) override; absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) override; }; } #endif #include "xla/pjrt/gpu/se_gpu_pjrt_compiler.h" #include <memory> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/stream_executor/platform/initialize.h" #include "tsl/platform/casts.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/client/local_client.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/stream_executor_executable.h" #include "xla/pjrt/utils.h" #include "xla/service/dump.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/hlo_module_util.h" #include "xla/service/hlo_proto_util.h" #include "xla/service/local_service.h" #include "xla/service/local_service_utils.h" #endif #if GOOGLE_CUDA #include "xla/service/gpu/nvptx_compiler.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #elif TENSORFLOW_USE_ROCM #include "xla/service/gpu/amdgpu_compiler.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #endif namespace xla { namespace { bool IsGpuClient(const PjRtClient& client) { return client.platform_id() == CudaId() || client.platform_id() == RocmId() || client.platform_id() == SyclId(); } bool IsSameTopology(const PjRtTopologyDescription& topology1, const PjRtTopologyDescription& topology2) { const StreamExecutorGpuTopologyDescription& gpu_topology1 = tensorflow::down_cast<const StreamExecutorGpuTopologyDescription&>( topology1); const StreamExecutorGpuTopologyDescription& gpu_topology2 = tensorflow::down_cast<const StreamExecutorGpuTopologyDescription&>( topology2); return gpu_topology1 == gpu_topology2; } absl::Status IsValidTopologyAndClientForCompile( const PjRtTopologyDescription& topology, PjRtClient* client) { if (client == nullptr) { return absl::UnimplementedError( "SE:GPU compiler requires non-null client."); } if (!IsGpuClient(*client)) { return absl::InvalidArgumentError( "SE:GPU compiler requires a GPU PjRtClient."); } TF_ASSIGN_OR_RETURN(auto client_topology, client->GetTopologyDescription()); if (!IsSameTopology(topology, *client_topology)) { return absl::UnimplementedError( "SE:GPU compiler requires the topology same as the one in the client."); } return absl::OkStatus(); } } absl::StatusOr<std::unique_ptr<PjRtExecutable>> StreamExecutorGpuCompiler::Compile(CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #if GOOGLE_CUDA auto gpu_compiler = gpu::NVPTXCompiler(); #else auto gpu_compiler = gpu::AMDGPUCompiler(); #endif CompileOptions input_options = options; if (!options.target_config) { if (client != nullptr) { TF_RETURN_IF_ERROR(IsValidTopologyAndClientForCompile(topology, client)); return client->Compile(computation, options); } auto attr = topology.Attributes(); if (auto it = attr.find("target_config"); it != attr.end()) { auto target_config_str = std::get<std::string>(it->second); stream_executor::GpuTargetConfigProto gpu_target_config_proto; if (!gpu_target_config_proto.ParseFromString(target_config_str)) { return FailedPrecondition("Failed to parse GpuTargetConfigProto"); } options.target_config.emplace( Compiler::TargetConfig(gpu_target_config_proto)); } else { return absl::UnimplementedError( "Compilation without client and without target_config specified is " "not implemented"); } } TF_RETURN_IF_ERROR(options.ApplyAllOptionOverrides()); std::vector<const Shape*> argument_layout_pointers; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( computation, [](Shape shape) { return LayoutUtil::GetWithDefaultLayout(shape); }, options.argument_layouts, &options.executable_build_options, &argument_layout_pointers)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModuleConfig> hlo_config, GetHloModuleConfig(computation, argument_layout_pointers, options.executable_build_options)); HloModuleProto hlo_module_proto = computation.proto(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, HloModule::CreateFromProto(hlo_module_proto, *hlo_config)); UpdateEntryComputationLayout( hlo_module.get(), std::bind(&Compiler::DefaultDeviceShapeRepresentation, &gpu_compiler, std::placeholders::_1)); DumpHloModuleIfEnabled(*hlo_module, kBeforeOptimizationsDumpName); Compiler::CompileOptions opts; opts.target_config = options.target_config; AotCompilationOptions aot_options(gpu_compiler.PlatformId()); aot_options.set_target_config(*options.target_config); aot_options.set_run_backend_only( options.executable_build_options.run_backend_only()); const int num_replicas = hlo_module->config().replica_count(); const int num_partitions = hlo_module->config().num_partitions(); const std::string name = hlo_module->name(); const std::string fingerprint = hlo_module->GetFingerprint128(); const int num_outputs = hlo_module->result_shape().IsTuple() ? hlo_module->result_shape().tuple_shapes_size() : 1; auto unique_module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<AotCompilationResult>> aot_results, gpu_compiler.CompileAheadOfTime(std::move(unique_module_group), aot_options)); std::vector<std::vector<absl::string_view>> output_memory_kinds(1); output_memory_kinds[0].resize(num_outputs, StreamExecutorGpuHbmMemorySpace::kKind); return std::make_unique<StreamExecutorExecutable>( std::move(input_options), std::move(aot_results), num_replicas, num_partitions, name, fingerprint, std::move(output_memory_kinds)); #else return absl::InternalError( "GPU Compilation requires the target to be built with CUDA or " "ROCm."); #endif } absl::StatusOr<std::unique_ptr<PjRtExecutable>> StreamExecutorGpuCompiler::Compile(CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CompileOptions input_options = options; XlaComputation xla_computation; TF_RETURN_IF_ERROR(MlirToXlaComputation( module, xla_computation, options.parameter_is_tupled_arguments, false)); return Compile(std::move(input_options), xla_computation, topology, client); #else return absl::InternalError( "GPU AOT compilation requires the target to be built with CUDA or " "ROCm."); #endif } STREAM_EXECUTOR_REGISTER_MODULE_INITIALIZER(pjrt_register_se_gpu_compiler, { PjRtRegisterCompiler( #if TENSORFLOW_USE_ROCM RocmName(), #else CudaName(), #endif std::make_unique<StreamExecutorGpuCompiler>()); }); }
#include "xla/pjrt/gpu/se_gpu_pjrt_compiler.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Parser/Parser.h" #include "xla/client/xla_computation.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::StatusIs; constexpr absl::string_view kProgram = R"(HloModule Computation ENTRY Computation() -> s32[] { ROOT result = s32[] constant(2) })"; constexpr absl::string_view mlir_str = R"mlir( module { func.func @main() -> tensor<i32> { %0 = mhlo.constant dense<2> : tensor<i32> return %0 : tensor<i32> } })mlir"; absl::StatusOr<xla::XlaComputation> GetXlaComputation( absl::string_view program) { TF_ASSIGN_OR_RETURN(auto hlo_module, xla::ParseAndReturnUnverifiedModule(program, {})); return XlaComputation(hlo_module->ToProto()); } std::shared_ptr<xla::GpuTopology> GetGpuTopology( std::vector<int> device_ids, absl::string_view platform_version, int num_slices, int num_hosts_per_slice, int num_devices_per_host) { return std::make_shared<xla::GpuTopology>(device_ids, platform_version, num_slices, num_hosts_per_slice, num_devices_per_host); } TEST(StreamExecutorGpuCompilerTest, NoClientXla) { StreamExecutorGpuCompiler compiler; StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2)); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), computation, topology, nullptr), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, TopologyNotSameXla) { StreamExecutorGpuCompiler compiler; StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2)); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), computation, topology, client.get()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, SuccessXla) { StreamExecutorGpuCompiler compiler; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); TF_ASSERT_OK_AND_ASSIGN(auto topology, client->GetTopologyDescription()); TF_ASSERT_OK_AND_ASSIGN(auto executable, compiler.Compile(xla::CompileOptions(), computation, *topology, client.get())); const LoadOptions load_options; TF_ASSERT_OK_AND_ASSIGN(auto loaded_executable, client->Load(std::move(executable), load_options)); TF_ASSERT_OK_AND_ASSIGN( auto result, loaded_executable->Execute({{}}, {})); ASSERT_EQ(result.size(), 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; ASSERT_EQ(result_buffers.size(), 1); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result_buffers[0]->ToLiteralSync()); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR0(2), *result_literal)); } TEST(StreamExecutorGpuCompilerTest, NoClientMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2)); EXPECT_THAT( compiler.Compile(xla::CompileOptions(), mlir_module.get(), topology, nullptr), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, TopologyNotSameMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2)); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), mlir_module.get(), topology, client.get()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, SuccessMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto topology, client->GetTopologyDescription()); TF_ASSERT_OK_AND_ASSIGN( auto executable, compiler.Compile(xla::CompileOptions(), mlir_module.get(), *topology, client.get())); const LoadOptions load_options; TF_ASSERT_OK_AND_ASSIGN(auto loaded_executable, client->Load(std::move(executable), load_options)); TF_ASSERT_OK_AND_ASSIGN( auto result, loaded_executable->Execute({{}}, {})); ASSERT_EQ(result.size(), 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; ASSERT_EQ(result_buffers.size(), 1); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result_buffers[0]->ToLiteralSync()); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR0(2), *result_literal)); } } }
2,218
#ifndef XLA_PJRT_GPU_SE_GPU_PJRT_CLIENT_H_ #define XLA_PJRT_GPU_SE_GPU_PJRT_CLIENT_H_ #include <cstdint> #include <map> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/layout.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/gpu/gpu_helpers.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/gpu/gpu_topology.pb.h" #include "xla/pjrt/local_device_state.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/service/computation_placer.h" #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/tsl/framework/allocator.h" #include "tsl/platform/casts.h" #include "tsl/platform/fingerprint.h" namespace stream_executor { class MultiDeviceAdapter; } namespace xla { using DeviceTopologyPair = std::pair<std::vector<std::unique_ptr<PjRtStreamExecutorDevice>>, GpuTopologyProto>; class StreamExecutorGpuTopologyDescription : public PjRtTopologyDescription { public: static StreamExecutorGpuTopologyDescription Create( const PjRtPlatformId platform_id, const absl::string_view platform_name, std::shared_ptr<const GpuTopology> gpu_topology) { return StreamExecutorGpuTopologyDescription(platform_id, platform_name, gpu_topology); } StreamExecutorGpuTopologyDescription( const PjRtPlatformId platform_id, const absl::string_view platform_name, std::shared_ptr<const GpuTopology> gpu_topology, const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& attributes = {}) : platform_id_(platform_id), platform_name_(platform_name), gpu_topology_(std::move(gpu_topology)), attributes_(attributes) {} bool operator==(const StreamExecutorGpuTopologyDescription& other) const { return this->platform_id() == other.platform_id() && this->platform_name() == other.platform_name() && this->platform_version() == other.platform_version() && this->gpu_topology() == other.gpu_topology(); } PjRtPlatformId platform_id() const override { return platform_id_; } absl::string_view platform_name() const override { return platform_name_; } absl::string_view platform_version() const override { return gpu_topology_->platform_version(); } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override { std::vector<std::unique_ptr<const PjRtDeviceDescription>> devices; devices.reserve(gpu_topology_->number_of_devices()); for (const int device_id : gpu_topology_->device_ids()) { devices.push_back(std::make_unique<PjRtStreamExecutorDeviceDescription>( device_id, std::string(platform_version()))); } return devices; } const GpuTopology& gpu_topology() const { return *gpu_topology_; } const GpuTopology* gpu_topology_ptr() const { return gpu_topology_.get(); } bool is_subslice_topology() const override { return false; } absl::StatusOr<int> ProcessCount() const override { return gpu_topology_->number_of_hosts(); } absl::StatusOr<int> CoreCountOfDefaultType() const override { return gpu_topology_->number_of_devices(); } absl::StatusOr<int> LogicalDeviceCountOfDefaultType() const override { return gpu_topology_->number_of_devices(); } absl::StatusOr<int> CoreCountOfDefaultTypePerProcess() const override { return gpu_topology_->number_of_devices(); } absl::StatusOr<int> CoreCountOfDefaultTypePerChip() const override { return 1; } absl::StatusOr<std::string> Serialize() const override; const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { return attributes_; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override; private: const PjRtPlatformId platform_id_; const std::string platform_name_; std::shared_ptr<const GpuTopology> gpu_topology_; absl::flat_hash_map<std::string, xla::PjRtDeviceAttribute> attributes_; }; class StreamExecutorGpuDevice : public PjRtStreamExecutorDevice { public: StreamExecutorGpuDevice(int id, std::unique_ptr<LocalDeviceState> local_device_state, std::string device_kind, std::string device_vendor, std::string compute_capability, int core_count, int node_id, int slice_index = 0); int slice_index() const; absl::string_view device_vendor() const; absl::StatusOr<tsl::AllocatorStats> GetAllocatorStats() const override; absl::Span<int const> coords() const; int core_on_chip() const; absl::StatusOr<PjRtMemorySpace*> default_memory_space() const override; private: std::string device_vendor_; int slice_index_; }; class StreamExecutorGpuHbmMemorySpace : public PjRtStreamExecutorMemorySpace { public: static constexpr absl::string_view kKind = "device"; static const int kKindId; StreamExecutorGpuHbmMemorySpace(int id, PjRtDevice* device); }; class StreamExecutorGpuClient : public xla::PjRtStreamExecutorClient { public: using xla::PjRtStreamExecutorClient::PjRtStreamExecutorClient; StreamExecutorGpuClient( std::string platform_name, LocalClient* client, std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices, int process_index, std::unique_ptr<se::DeviceMemoryAllocator> allocator, std::unique_ptr<tsl::Allocator> host_memory_allocator, bool should_stage_host_to_device_transfers, std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options, std::shared_ptr<KeyValueStoreInterface> kv_store, std::shared_ptr<const GpuTopology> gpu_topology); absl::StatusOr<xla::DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const override; absl::string_view platform_version() const override; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) override; absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) override; PjRtFuture<> CopyRawSubBufferToHost(PjRtBuffer* buffer, PjRtFuture<void*> dst, int64_t offset, int64_t transfer_size) override; absl::StatusOr<const xla::PjRtTopologyDescription*> GetTopologyDescription() const override { return &topology_; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Load( std::unique_ptr<PjRtExecutable> executable, const LoadOptions& load_options) override { return absl::WrapUnique<PjRtLoadedExecutable>( tensorflow::down_cast<PjRtLoadedExecutable*>(executable.release())); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Load( std::unique_ptr<PjRtExecutable> executable); absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> LoadSerialized( absl::string_view serialized, std::optional<CompileOptions> options, const LoadOptions& load_options); absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) override; private: xla::StreamExecutorGpuTopologyDescription topology_; std::shared_ptr<KeyValueStoreInterface> kv_store_; }; std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> BuildLocalDevices( std::map<int, std::unique_ptr<LocalDeviceState>> local_device_states, int node_id); std::string MakeComputeCapabilityString(const se::DeviceDescription* desc); absl::StatusOr<DeviceTopologyPair> BuildDistributedDevices( std::string_view platform_name, std::map<int, std::unique_ptr<LocalDeviceState>> local_device_states, int node_id, int num_nodes, gpu::GpuExecutableRunOptions* gpu_executable_run_options, std::shared_ptr<KeyValueStoreInterface> kv_store, bool enable_mock_nccl, absl::Duration get_local_topology_timeout = absl::Minutes(2), absl::Duration get_global_topology_timeout = absl::Minutes(5)); struct GpuClientOptions { GpuAllocatorConfig allocator_config; int node_id = 0; int num_nodes = 1; std::optional<std::set<int>> allowed_devices = std::nullopt; std::optional<std::string> platform_name = std::nullopt; bool should_stage_host_to_device_transfers = true; std::shared_ptr<KeyValueStoreInterface> kv_store = nullptr; bool enable_mock_nccl = false; }; absl::StatusOr<std::unique_ptr<PjRtClient>> GetStreamExecutorGpuClient( const GpuClientOptions& options); } #endif #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include <array> #include <cstddef> #include <cstdint> #include <cstring> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/topology_util.h" #include "xla/pjrt/event_pool.h" #include "xla/pjrt/gpu/gpu_helpers.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/gpu/gpu_topology.pb.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/local_device_state.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/pjrt/stream_executor_executable.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/service/compiler.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/service/shaped_buffer.h" #include "xla/service/transfer_manager.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/lib/strings/proto_serialization.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/traceme.h" #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) #include "xla/debug_options_flags.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/gpu/gpu_metrics.h" #include "xla/pjrt/gpu/nccl_id_store.h" #include "xla/pjrt/stream_executor_executable.pb.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/gpu/gpu_memory_space_assignment.h" #include "xla/xla.pb.h" #endif #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #include "xla/stream_executor/gpu/gpu_cudamallocasync_allocator.h" #elif TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/stream_executor/integrations/device_mem_allocator.h" #include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include "xla/util.h" namespace xla { class AsyncHostToDeviceTransferManager : public xla::PjRtClient::AsyncHostToDeviceTransferManager { public: static absl::StatusOr<std::unique_ptr<AsyncHostToDeviceTransferManager>> Create(absl::Span<const Shape> shapes, PjRtStreamExecutorDevice* device, PjRtStreamExecutorClient* client) { absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers; absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs; absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events; buffers.reserve(shapes.size()); buffer_ptrs.reserve(shapes.size()); definition_events.reserve(shapes.size()); for (const auto& shape : shapes) { if (shape.IsTuple()) { return Unimplemented( "Async buffer transfer of tuples not implemented."); } definition_events.push_back( std::make_shared<BufferSequencingEvent>(client->thread_pool())); TF_ASSIGN_OR_RETURN(Shape compact_shape, client->client() ->backend() .transfer_manager() ->ChooseCompactLayoutForShape(shape)); LocalDeviceState* local_device = device->local_device_state(); se::Stream* h2d_stream = local_device->host_to_device_stream(); TF_ASSIGN_OR_RETURN(auto buffer, AllocateDestinationBuffer( compact_shape, device, local_device, h2d_stream, true, client, definition_events.back())); auto* se_buffer = tensorflow::down_cast<PjRtStreamExecutorBuffer*>(buffer.get()); DCHECK(se_buffer); auto hold = se_buffer->GetBufferWithUsageHold(); buffer_ptrs.push_back(hold.buffer()); buffers.push_back(std::move(buffer)); } return std::make_unique<AsyncHostToDeviceTransferManager>( std::move(buffers), std::move(buffer_ptrs), std::move(definition_events), device); } AsyncHostToDeviceTransferManager( absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers, absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs, absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events, PjRtStreamExecutorDevice* device) : buffers_(std::move(buffers)), buffer_ptrs_(std::move(buffer_ptrs)), definition_events_(std::move(definition_events)), remaining_buffer_count_(buffer_ptrs_.size()), transfers_in_flight_(0), device_(device) { buffer_sizes_.reserve(buffer_ptrs_.size()); for (const auto& ptr : buffer_ptrs_) { DCHECK_EQ(ptr->device_memory().size(), 1); buffer_sizes_.push_back(ptr->device_memory()[0].size()); } last_transfer_started_.resize(buffer_ptrs_.size(), false); } ~AsyncHostToDeviceTransferManager() override { auto transfers_finished = [this]() { mu_.AssertHeld(); return transfers_in_flight_ == 0; }; { absl::MutexLock l(&mu_); mu_.Await(absl::Condition(&transfers_finished)); } } size_t buffer_count() const override { return buffers_.size(); }; size_t buffer_size(int buffer_index) const override { DCHECK_LT(buffer_index, buffer_sizes_.size()); return buffer_sizes_[buffer_index]; } PjRtDevice* device() const override { return device_; } std::unique_ptr<PjRtBuffer> RetrieveBuffer(int buffer_index) override { DCHECK_LT(buffer_index, buffers_.size()); return std::move(buffers_[buffer_index]); }; absl::Status TransferLiteralToBuffer( int buffer_index, const LiteralSlice& literal, absl::AnyInvocable<void() &&> on_done) override { tsl::profiler::TraceMe traceme( "AsyncHostToDeviceTransferManager::TransferLiteralToBuffer"); auto* stream = device_->local_device_state()->host_to_device_stream(); auto* se_client = tensorflow::down_cast<PjRtStreamExecutorClient*>(device_->client()); DCHECK(se_client); TransferManager* transfer_manager = se_client->client()->backend().transfer_manager(); TF_ASSIGN_OR_RETURN( Shape compact_shape, transfer_manager->ChooseCompactLayoutForShape(literal.shape())); std::shared_ptr<TrackedDeviceBuffer> buffer; { absl::MutexLock l(&mu_); DCHECK_LT(buffer_index, buffer_ptrs_.size()); if (last_transfer_started_[buffer_index]) { return InvalidArgument( "TransferLiteralToBuffer requested for buffer index %d which has " "already been fully transferred", buffer_index); } last_transfer_started_[buffer_index] = true; buffer = buffer_ptrs_[buffer_index]; DCHECK(buffer); if (buffer->device_memory().empty()) { return InvalidArgument( "TransferLiteralToBuffer requested for buffer index %d which has " "been donated. Async transfer of donated buffers is not supported " "in SE:GPU", buffer_index); } DCHECK_EQ(buffer->device_memory().size(), 1); auto& buffer_memory = buffer->device_memory()[0]; if (transfer_manager->GetByteSizeRequirement(compact_shape) != buffer_memory.size()) { return InvalidArgument( "TransferLiteralToBuffer shape %s has size %lld " "but buffer has size %lld", ShapeUtil::HumanStringWithLayout(compact_shape), transfer_manager->GetByteSizeRequirement(compact_shape), buffer_memory.size()); } ++transfers_in_flight_; } auto transfer_h2d = [this, buffer_index, stream, transfer_manager, literal, device_buffer = buffer.get(), compact_shape, local_device = std::move(device_->local_device_state()), on_done = std::move(on_done)]() mutable { tsl::profiler::TraceMe traceme( "AsyncHostToDeviceTransferManager::TransferLiteralToBuffer::transfer_" "h2d"); auto event = local_device->event_pool().AllocateEvent(stream->parent()); ShapedBuffer buffer = device_buffer->AsShapedBuffer(compact_shape); TF_CHECK_OK(transfer_manager->TransferLiteralToDeviceAsync( stream, literal, buffer)); local_device->event_pool().ThenRecordEvent(stream, event.value()); auto cleanup = [this, buffer_index, stream, on_done = std::move(on_done), event = std::move(event).value()]() mutable { CleanUp(buffer_index, std::move(event), stream, true, std::move(on_done)); }; auto status = stream->DoHostCallback(std::move(cleanup)); if (!status.ok()) { LOG(ERROR) << "DoHostCallback failed: " << status; } }; se_client->thread_pool()->Schedule( ([ptr = new absl::AnyInvocable<void()>(std::move(transfer_h2d))]() { (*ptr)(); delete ptr; })); return absl::OkStatus(); } absl::Status TransferRawDataToBuffer( int buffer_index, absl::string_view data, absl::AnyInvocable<void() &&> on_done) override { return TransferRawDataToSubBuffer(buffer_index, data.data(), 0, data.size(), true, std::move(on_done)); } absl::Status TransferRawDataToSubBuffer( int buffer_index, const void* data, int64_t offset, int64_t transfer_size, bool is_last_transfer, absl::AnyInvocable<void() &&> on_done) override { auto* stream = device_->local_device_state()->host_to_device_stream(); auto* client = tensorflow::down_cast<PjRtStreamExecutorClient*>(device_->client()); bool should_stage_host_to_device_transfers = client->should_stage_host_to_device_transfers(); std::shared_ptr<void> staging_buffer; if (should_stage_host_to_device_transfers) { auto* host_memory_allocator = client->host_memory_allocator(); if (host_memory_allocator == nullptr) { return InvalidArgument( "host_memory_allocator should be initialized for staging buffer " "transfer."); } void* ptr = host_memory_allocator->AllocateRaw( tsl::Allocator::kAllocatorAlignment, transfer_size); staging_buffer = std::shared_ptr<void>( ptr, [host_memory_allocator = host_memory_allocator](void* ptr) { host_memory_allocator->DeallocateRaw(ptr); }); } absl::ReleasableMutexLock l(&mu_); DCHECK_LT(buffer_index, buffer_ptrs_.size()); if (last_transfer_started_[buffer_index]) { return InvalidArgument( "TransferRawData requested for buffer index %d which has " "already been fully transferred", buffer_index); } if (is_last_transfer) { last_transfer_started_[buffer_index] = true; } DCHECK(buffer_ptrs_[buffer_index]); if (buffer_ptrs_[buffer_index]->device_memory().empty()) { return InvalidArgument( "TransferRawDataToSubBuffer requested for buffer index %d which has " "been donated. Async transfer of donated buffers is not supported " "in SE:GPU", buffer_index); } DCHECK_EQ(buffer_ptrs_[buffer_index]->device_memory().size(), 1); auto& buffer_memory = buffer_ptrs_[buffer_index]->device_memory()[0]; se::DeviceMemoryBase sub_buffer; CHECK_LE(offset, buffer_memory.size()); CHECK_LE(transfer_size, buffer_memory.size() - offset); if (transfer_size < buffer_memory.size()) { sub_buffer = buffer_memory.GetByteSlice(offset, transfer_size); } else { sub_buffer = buffer_memory; } ++transfers_in_flight_; l.Release(); auto event = device_->local_device_state()->event_pool().AllocateEvent( stream->parent()); if (transfer_size != 0) { if (staging_buffer != nullptr) { auto copy_to_staging_buffer = [data, transfer_size, staging_buffer]() mutable { std::memcpy(staging_buffer.get(), data, transfer_size); }; if (auto status = stream->DoHostCallback(std::move(copy_to_staging_buffer)); !status.ok()) { return status; } if (auto status = stream->Memcpy(&sub_buffer, staging_buffer.get(), transfer_size); !status.ok()) { return status; } } else if (auto status = stream->Memcpy(&sub_buffer, data, transfer_size); !status.ok()) { return status; } } device_->local_device_state()->event_pool().ThenRecordEvent(stream, event.value()); auto cleanup = [this, buffer_index, event = std::move(event).value(), stream, is_last_transfer, on_done = std::move(on_done), staging_buffer = std::move(staging_buffer)]() mutable { CleanUp(buffer_index, std::move(event), stream, is_last_transfer, std::move(on_done)); }; return stream->DoHostCallback(std::move(cleanup)); } void SetBufferError(int buffer_index, absl::Status error) override { { absl::MutexLock l(&mu_); CHECK(!definition_events_[buffer_index]->IsDefined()); definition_events_[buffer_index]->SetDefinedStatus(error); } VLOG(1) << "SetBufferError sets the " << buffer_index << "th buffer error: " << error; } void AddTransferMetadata(const TransferMetadata& meta) override {} private: absl::Mutex mu_; absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers_; absl::InlinedVector<size_t, 4> buffer_sizes_; absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs_ ABSL_GUARDED_BY(mu_); absl::InlinedVector<bool, 4> last_transfer_started_ ABSL_GUARDED_BY(mu_); absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events_ ABSL_GUARDED_BY(mu_); size_t remaining_buffer_count_ ABSL_GUARDED_BY(mu_); int transfers_in_flight_ ABSL_GUARDED_BY(mu_); PjRtStreamExecutorDevice* device_; void CleanUp(int buffer_index, EventPool::Handle event, se::Stream* stream, bool is_last_transfer, absl::AnyInvocable<void() &&> on_done) { { absl::MutexLock l(&mu_); CHECK_GT(transfers_in_flight_, 0); --transfers_in_flight_; if (is_last_transfer) { CHECK(buffer_ptrs_[buffer_index]); buffer_ptrs_[buffer_index] = nullptr; CHECK_GT(remaining_buffer_count_, 0); --remaining_buffer_count_; definition_events_[buffer_index]->SetSequencingEvent(std::move(event), stream); if (remaining_buffer_count_ == 0) { VLOG(1) << "TransferLiteralToBuffer for all buffers is done."; } } } std::move(on_done)(); } }; StreamExecutorGpuClient::StreamExecutorGpuClient( std::string platform_name, LocalClient* client, std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices, int process_index, std::unique_ptr<se::DeviceMemoryAllocator> allocator, std::unique_ptr<tsl::Allocator> host_memory_allocator, bool should_stage_host_to_device_transfers, std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options, std::shared_ptr<KeyValueStoreInterface> kv_store, std::shared_ptr<const GpuTopology> gpu_topology) : xla::PjRtStreamExecutorClient( platform_name, client, std::move(devices), process_index, std::move(allocator), std::move(host_memory_allocator), should_stage_host_to_device_transfers, std::move(gpu_run_options)), topology_(xla::StreamExecutorGpuTopologyDescription::Create( tsl::Fingerprint64(platform_name), platform_name, std::move(gpu_topology))), kv_store_(std::move(kv_store)) { for (auto* device : addressable_devices()) { const int id = device->id(); auto memory_space = std::make_unique<StreamExecutorGpuHbmMemorySpace>(id, device); tensorflow::down_cast<PjRtStreamExecutorDevice*>(device)->AttachMemorySpace( memory_space.get()); owned_memory_spaces_.push_back(std::move(memory_space)); const size_t basePinnedId = devices.size(); auto pinned = std::make_unique<PinnedHostMemorySpace>(basePinnedId, device); tensorflow::down_cast<PjRtStreamExecutorDevice*>(device)->AttachMemorySpace( pinned.get()); owned_memory_spaces_.push_back(std::move(pinned)); } for (const std::unique_ptr<PjRtMemorySpace>& memory_space : owned_memory_spaces_) { memory_spaces_.push_back(memory_space.get()); } absl::c_sort(memory_spaces_, [](const PjRtMemorySpace* a, const PjRtMemorySpace* b) { return a->id() < b->id(); }); } absl::string_view StreamExecutorGpuClient::platform_version() const { #define STRINGIFY2(X) #X #define STRINGIFY(X) STRINGIFY2(X) #if TENSORFLO
#include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include <stdlib.h> #include <array> #include <cstdint> #include <cstring> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/client/xla_computation.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/service/hlo_parser.h" #include "xla/service/platform_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/stream.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::unique_ptr<xla::PjRtLoadedExecutable>> CompileExecutable( absl::string_view program, xla::PjRtClient& client, xla::CompileOptions compile_options = xla::CompileOptions()) { TF_ASSIGN_OR_RETURN(auto hlo_module, ParseAndReturnUnverifiedModule(program, {})); xla::XlaComputation xla_computation(hlo_module->ToProto()); return client.Compile(xla_computation, compile_options); } absl::StatusOr<std::shared_ptr<xla::Literal>> ExtractSingleResult( absl::StatusOr<std::vector<std::vector<std::unique_ptr<xla::PjRtBuffer>>>>& result) { TF_RETURN_IF_ERROR(result.status()); TF_RET_CHECK(result->size() == 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = (*result)[0]; TF_RET_CHECK(result_buffers.size() == 1); auto literal_or = result_buffers[0]->ToLiteralSync(); if (!literal_or.status().ok()) return literal_or.status(); return *literal_or; } static constexpr char const* kProgram = R"(HloModule HostTransfer ENTRY SendRecvSynchronous() -> f32[2] { in_chain = token[] after-all() data = f32[2] constant({2, 3}) send = (f32[2], u32[], token[]) send(data, in_chain), channel_id=1, is_host_transfer=true, frontend_attributes={ _xla_host_transfer_handler_name="undef", _xla_host_transfer_rendezvous="undef" } send-done = token[] send-done(send), channel_id=1, is_host_transfer=true recv = (f32[2], u32[], token[]) recv(send-done), channel_id=2, is_host_transfer=true, frontend_attributes={ _xla_host_transfer_handler_name="undef", _xla_host_transfer_rendezvous="undef" } recv-done = (f32[2], token[]) recv-done(recv), channel_id=2, is_host_transfer=true ROOT result = f32[2] get-tuple-element(recv-done), index=0 })"; TEST(StreamExecutorGpuClientTest, MemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->devices().size(), 1); for (auto* device : client->devices()) { TF_ASSERT_OK_AND_ASSIGN(auto* memory_space, device->default_memory_space()); EXPECT_EQ(memory_space->kind(), StreamExecutorGpuHbmMemorySpace::kKind); EXPECT_EQ(memory_space->kind_id(), StreamExecutorGpuHbmMemorySpace::kKindId); EXPECT_THAT( device->memory_space_by_kind(StreamExecutorGpuHbmMemorySpace::kKind), IsOkAndHolds(memory_space)); EXPECT_EQ(device->memory_spaces().size(), 2); auto* pinned = device->memory_spaces()[1]; EXPECT_EQ(pinned->kind_id(), PinnedHostMemorySpace::kKindId); EXPECT_THAT(device->memory_space_by_kind(PinnedHostMemorySpace::kKind), IsOkAndHolds(pinned)); } } TEST(StreamExecutorGpuClientTest, PropagateError) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto shape = xla::ShapeUtil::MakeScalarShape(xla::F32); absl::Status input_error = absl::InvalidArgumentError("input error"); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateErrorBuffer( input_error, shape, *client->addressable_devices()[0]->default_memory_space())); static constexpr char const* kAddProgram = R"( HloModule Add.6, entry_computation_layout={(f32[], f32[])->(f32[], f32[])} ENTRY %Add.6 (a.1: f32[], b.2: f32[]) -> (f32[], f32[]) { %a.1 = f32[] parameter(0) %b.2 = f32[] parameter(1) %add.3 = f32[] add(f32[] %a.1, f32[] %b.2) %add.4 = f32[] add(f32[] %add.3, f32[] %add.3) ROOT %tuple.5 = (f32[], f32[]) tuple(f32[] %add.3, f32[] %add.4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kAddProgram, *client)); TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{buffer.get(), buffer.get()}}, {})); ASSERT_EQ(result.size(), 1); ASSERT_EQ(result[0].size(), 1); EXPECT_EQ(result[0][0]->GetReadyFuture().Await(), input_error); } TEST(StreamExecutorGpuClientTest, SendRecvChunked) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); std::array<float, 2> sent_value = {0.0f, 0.0f}; SendCallback send_callback = { 1, [&](const PjRtTransferMetadata& m, PjRtChunk chunk, int64_t total_size_in_bytes, bool done) { float* data = reinterpret_cast<float*>(chunk.data()); sent_value[0] = data[0]; sent_value[1] = data[1]; return absl::OkStatus(); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { auto chunk0 = PjRtChunk::AllocateDefault(sizeof(float)); *reinterpret_cast<float*>(chunk0.data()) = 5.0f; TF_CHECK_OK(stream->AddChunk(std::move(chunk0)).Await()); auto chunk1 = PjRtChunk::AllocateDefault(sizeof(float)); *reinterpret_cast<float*>(chunk1.data()) = 6.0f; TF_CHECK_OK(stream->AddChunk(std::move(chunk1)).Await()); return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, ExtractSingleResult(result)); EXPECT_EQ(sent_value[0], 2.0f); EXPECT_EQ(sent_value[1], 3.0f); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<float>({5.0f, 6.0f}), *result_literal)); } TEST(StreamExecutorGpuClientTest, SendErrorNoDeadLock) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); SendCallback send_callback = { 1, [&](const PjRtTransferMetadata&, PjRtChunk, int64_t, bool) { return Internal("Uh-oh, can send chunk to host"); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); EXPECT_TRUE(absl::StrContains(result.status().message(), "Uh-oh, can send chunk to host")); } TEST(StreamExecutorGpuClientTest, RecvErrorNoDeadLock) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); SendCallback send_callback = { 1, [&](const PjRtTransferMetadata&, PjRtChunk, int64_t, bool) { return absl::OkStatus(); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { auto chunk = PjRtChunk::AllocateDefault(10 * sizeof(float)); stream->AddChunk(std::move(chunk)).Await().IgnoreError(); return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); EXPECT_TRUE(absl::StrContains(result.status().message(), "Adding chunk of size 40 would overflow buffer " "of size 8 (0 already transferred)")); } struct MemsetValue { explicit MemsetValue(float value) : value(value) {} float value; }; static absl::Status MemsetFromValue( se::Stream* stream, ffi::Result<ffi::BufferR1<PrimitiveType::F32>> result, MemsetValue* memset_value) { uint32_t pattern; std::memcpy(&pattern, &memset_value->value, sizeof(pattern)); se::DeviceMemoryBase base = result->data; return stream->Memset32(&base, pattern, result->data.size()); } XLA_FFI_DEFINE_HANDLER(kMemsetFromValue, MemsetFromValue, ffi::Ffi::Bind() .Ctx<ffi::Stream>() .Ret<ffi::BufferR1<PrimitiveType::F32>>() .Ctx<ffi::UserData<MemsetValue>>()); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "MemsetFromValue", PlatformUtil::CanonicalPlatformName("GPU").value(), kMemsetFromValue); TEST(StreamExecutorGpuClientTest, ForwardUserDataToFfiHandler) { static constexpr char const* kProgram = R"( HloModule ffi_handler ENTRY main { ROOT %custom-call = f32[4] custom-call(), custom_call_target="MemsetFromValue", api_version=API_VERSION_TYPED_FFI })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); ExecuteContext context; TF_ASSERT_OK(context.ffi_context().Emplace<MemsetValue>(42.0f)); ExecuteOptions opts; opts.context = &context; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, ExtractSingleResult(result)); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({42.0f, 42.0f, 42.0f, 42.0f}), *result_literal)); } TEST(StreamExecutorGpuClientTest, ToLiteralAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( {src_literal.shape()}, client->addressable_devices()[0])); auto buffer = transfer_manager->RetrieveBuffer(0); absl::Mutex mu; auto literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); bool got_literal = false; TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, [&]() {})); buffer->ToLiteral(literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); buffer.reset(); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, ToLiteralAsyncBeforeBufferReady) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( {src_literal.shape()}, client->addressable_devices()[0])); auto buffer = transfer_manager->RetrieveBuffer(0); absl::Mutex mu; auto literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); bool got_literal = false; buffer->ToLiteral(literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); absl::SleepFor(absl::Milliseconds(10)); ASSERT_FALSE(got_literal); TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, [&]() {})); buffer.reset(); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, FromHostAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); std::vector<Literal> src_literals; std::vector<Shape> src_shapes; for (int i = 0; i < 4; ++i) { std::vector<float> data(i + 1); std::iota(data.begin(), data.end(), static_cast<float>(i + 10)); src_literals.emplace_back(LiteralUtil::CreateR1<float>(data)); src_shapes.push_back(src_literals.back().shape()); } TF_ASSERT_OK_AND_ASSIGN(auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( src_shapes, client->addressable_devices()[0])); std::vector<std::unique_ptr<PjRtBuffer>> buffers; for (int i = 0; i < src_shapes.size(); ++i) { buffers.emplace_back(transfer_manager->RetrieveBuffer(i)); } for (int i = 0; i < src_shapes.size(); ++i) { TF_ASSERT_OK(transfer_manager->TransferRawDataToBuffer( i, absl::string_view(static_cast<char*>(src_literals[i].untyped_data()), src_literals[i].size_bytes()), [&]() {})); } absl::Mutex mu; std::vector<std::shared_ptr<Literal>> literals; int got_literal_count = 0; int got_callback_count = 0; for (auto& buffer : buffers) { literals.push_back(std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape()))); buffer->ToLiteral(literals.back().get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_literal_count; }); buffer->GetReadyFuture().OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_callback_count; }); buffer.reset(); } { auto done = [&]() { return got_literal_count == src_literals.size() && got_callback_count == src_literals.size(); }; absl::MutexLock l(&mu); mu.Await(absl::Condition(&done)); } for (int i = 0; i < src_literals.size(); ++i) { ASSERT_TRUE( ShapeUtil::Compatible(src_literals[i].shape(), literals[i]->shape())); ASSERT_EQ( src_literals[i].data<float>(), literals[i]->Relayout(src_literals[i].shape().layout()).data<float>()); } } TEST(StreamExecutorGpuClientTest, CopyRawToHostFullBuffer) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 0, buffer->GetOnDeviceSizeInBytes().value()); TF_EXPECT_OK(result.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); EXPECT_EQ(*(static_cast<float*>(dst) + 1), 42.0f); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostSubBuffer) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 0, sizeof(float)); TF_EXPECT_OK(result.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostOutOfRange) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 1, buffer->GetOnDeviceSizeInBytes().value()); EXPECT_THAT(result.Await(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid offset 1"))); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostFuture) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); auto dst_promise = xla::PjRtFuture<void*>::CreatePromise(); xla::PjRtFuture<void*> dst_future(dst_promise); TF_ASSERT_OK_AND_ASSIGN(int64_t size, buffer->GetOnDeviceSizeInBytes()); auto ready = buffer->GetReadyFuture(); auto result = buffer->CopyRawToHostFuture(dst_future, 0, size); buffer.reset(); ready.OnReady([dst_promise = std::move(dst_promise), size](absl::Status status) mutable { dst_promise.Set(aligned_alloc(size, 0)); }); TF_EXPECT_OK(result.Await()); TF_ASSERT_OK_AND_ASSIGN(auto* dst, dst_future.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); EXPECT_EQ(*(static_cast<float*>(dst) + 1), 42.0f); free(dst); } TEST(StreamExecutorGpuClientTest, AsyncCopyToDevice) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 2); auto* d0 = client->addressable_devices()[0]; auto* d1 = client->addressable_devices()[1]; auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice({src_literal.shape()}, d0)); auto src_buffer = transfer_manager->RetrieveBuffer(0); auto local_recv_buffer = *src_buffer->CopyToDevice(d1); TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, []() {})); auto literal = std::make_shared<Literal>(src_literal.shape()); auto local_recv_literal = local_recv_buffer->ToLiteral(literal.get()); TF_EXPECT_OK(local_recv_literal.Await()); ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, CreateMixOfErrorBuffers) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); std::vector<Literal> src_literals; std::vector<Shape> src_shapes; for (int i = 0; i < 4; ++i) { std::vector<float> data(i + 1); std::iota(data.begin(), data.end(), static_cast<float>(i + 10)); src_literals.emplace_back(LiteralUtil::CreateR1<float>(data)); src_shapes.push_back(src_literals.back().shape()); } TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( src_shapes, client->addressable_devices()[0]->memory_spaces()[0])); std::vector<std::unique_ptr<PjRtBuffer>> buffers; for (int i = 0; i < src_shapes.size(); ++i) { buffers.emplace_back(transfer_manager->RetrieveBuffer(i)); } absl::Mutex mu; int got_callback_count = 0; for (int i = 0; i < 4; ++i) { auto& buffer = buffers[i]; if (i == 0 || i == 3) { TF_ASSERT_OK(transfer_manager->TransferLiteralToBuffer(i, src_literals[i], [&]() {})); buffer->GetReadyFuture().OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_callback_count; }); } else { absl::Status error = Internal("error %d", i); transfer_manager->SetBufferError(i, error); buffer->GetReadyFuture().OnReady( [error, &mu, &got_callback_count](absl::Status s) { absl::MutexLock l(&mu); ASSERT_EQ(s, error); ++got_callback_count; }); } buffer.reset(); } { auto done = [&]() { return got_callback_count == src_literals.size(); }; absl::MutexLock l(&mu); QCHECK(mu.AwaitWithTimeout(absl::Condition(&done), absl::Seconds(60))); } } TEST(GpuTopology, FromProto) { GpuTopologyProto msg; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( device_ids: [ 3, 2, 1 ] platform_version: "platform_version" num_slices: 2 num_hosts_per_slice: 1 num_devices_per_host: 3 )pb", &msg)); std::unique_ptr<const GpuTopology> gpu_topology = GpuTopology::FromProto(msg); EXPECT_THAT(gpu_topology->device_ids(), ElementsAre(3, 2, 1)); EXPECT_THAT(gpu_topology->platform_version(), "platform_version"); EXPECT_THAT(gpu_topology->num_slices(), 2); EXPECT_THAT(gpu_topology->num_hosts_per_slice(), 1); EXPECT_THAT(gpu_topology->num_devices_per_host(), 3); } TEST(GpuTopology, ToProto) { GpuTopology gpu_topology({3, 2, 1}, "platform_version", 2, 1, 3); GpuTopologyProto msg = gpu_topology.ToProto(); EXPECT_THAT(msg.device_ids(), ElementsAre(3, 2, 1)); EXPECT_THAT(msg.platform_version(), "platform_version"); EXPECT_THAT(msg.num_slices(), 2); EXPECT_THAT(msg.num_hosts_per_slice(), 1); EXPECT_THAT(msg.num_devices_per_host(), 3); } TEST(StreamExecutorGpuClientTest, DistributedInit) { auto kv_store = std::make_shared<InMemoryKeyValueStore>(); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "DistributeInit", 4); int num_nodes = 2; for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([kv_store, i, num_nodes] { GpuClientOptions options; options.node_id = i; options.num_nodes = num_nodes; options.kv_store = kv_store; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(options)); EXPECT_TRUE(client->platform_name() == "cuda" || client->platform_name() == "rocm"); EXPECT_EQ(client->addressable_device_count(), 2); EXPECT_EQ(client->device_count(), 4); }); } } TEST(StreamExecutorGpuClientTest, GetAllocatorStatsTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 2); for (auto device : client->addressable_devices()) { const xla::Literal literal = xla::LiteralUtil::CreateR0<int32_t>(0); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, device)); auto stats = device->GetAllocatorStats(); TF_ASSERT_OK(stats.status()); ASSERT_GT(stats.value().peak_bytes_in_use, 0); } } TEST(StreamExecutorGpuClientTest, GpuDeviceDescriptionTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); for (int device_index = 0; device_index < client->device_count(); device_index++) { auto coords = static_cast<PjRtStreamExecutorDevice*>(client->devices()[device_index]) ->description() .coords(); EXPECT_EQ(coords[0], device_index); } EXPECT_EQ(static_cast<PjRtStreamExecutorDevice*>(client->devices()[0]) ->description() .core_on_chip(), 0); } TEST(StreamExecutorGpuClientTest, MockNcclClientTest) { const int num_nodes = 4; GpuClientOptions options; options.num_nodes = num_nodes; options.enable_mock_nccl = true; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(options)); auto devices_per_host = client->addressable_device_count(); EXPECT_EQ(devices_per_host, 2); EXPECT_EQ(client->device_count(), devices_per_host * num_nodes); for (int i = 0; i < client->device_count(); i++) { auto device = client->devices()[i]; auto slice_index = std::get<int64_t>(device->Attributes().at("slice_index")); auto host_index = device->process_index(); EXPECT_EQ(slice_index, host_index); } } namespace { absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateDeviceBufferForTest( xla::PjRtClient* client) { auto device = client->addressable_devices()[0]; TF_EXPECT_OK(device->default_memory_space()); std::vector<int32_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {4}, {0}); TF_ASSIGN_OR_RETURN( auto input, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, device)); EXPECT_EQ(input->memory_space()->kind(), "device"); return input; } constexpr char const* kD2HProgram = R"( HloModule f ENTRY main.5 { p = s32[4]{0} parameter(0) ROOT cc = s32[4] custom-call(p), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} } )"; constexpr char const* kD2HProgramTupleOutput = R"( HloModule f ENTRY main.5 { p = s32[4]{0} parameter(0) cc = s32[4] custom-call(p), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} ROOT tuple = (s32[4]{0}, s32[4]{0}) tuple(s32[4]{0} p, s32[4]{0} cc) } )"; } TEST(StreamExecutorGpuClientTest, ExecutePinnedHostOutputTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto input, CreateDeviceBufferForTest(client.get())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kD2HProgram, *client)); TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{input.get()}}, ExecuteOptions())); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; EXPECT_EQ(result_buffers[0]->memory_space()->kind(), "pinned_host"); TF_ASSERT_OK_AND_ASSIGN(auto memory_stats, executable->GetCompiledMemoryStats()); EXPECT_EQ(memory_stats.output_size_in_bytes, 0); EXPECT_EQ(memory_stats.host_output_size_in_bytes, 16); } TEST(StreamExecutorGpuClientTest, ExecutePinnedHostOutputTupleTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto input, CreateDeviceBufferForTest(client.get())); Shape host_shape = input->on_device_shape(); host_shape.mutable_layout()->set_memory_space(Layout::kHostMemorySpace); Shape out_shape = ShapeUtil::MakeTupleShape({input->on_device_shape(), host_shape}); xla::CompileOptions options; options.executable_build_options.set_result_layout(out_shape); TF_ASSERT_OK_AND_ASSIGN( auto executable, CompileExecutable(kD2HProgramTupleOutput, *client, options)); ExecuteOptions execute_options; execute_options.untuple_result = true; TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{input.get()}}, execute_options)); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; EXPECT_EQ(result_buffers.size(), 2); EXPECT_EQ(result_buffers[0]->memory_space()->kind(), "device"); EXPECT_EQ(result_buffers[1]->memory_space()->kind(), "pinned_host"); } TEST(StreamExecutorGpuClientTest, ExecutablePinnedHostOutputMemoryKindTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kD2HProg
2,219
#ifndef XLA_CLIENT_XLA_BUILDER_H_ #define XLA_CLIENT_XLA_BUILDER_H_ #include <cstdint> #include <deque> #include <initializer_list> #include <map> #include <memory> #include <optional> #include <ostream> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/padding.h" #include "xla/client/xla_computation.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/bitmap.h" #include "tsl/platform/errors.h" #include "tsl/platform/stacktrace.h" namespace xla { class XlaBuilder; class XlaOp; class HloInstruction; namespace internal { struct XlaBuilderFriend { static XlaOp BuildAddDependency(XlaBuilder* builder, XlaOp operand, XlaOp token, const Shape& shape); static std::pair<XlaOp, int64_t> BuildAsyncStart( XlaBuilder* builder, absl::Span<const XlaOp> operands, std::string execution_thread, const XlaComputation& called_computation, const Shape& shape); static XlaOp BuildAsyncUpdate(XlaBuilder* builder, XlaOp operands, const Shape& shape); static XlaOp BuildAsyncDone(XlaBuilder* builder, XlaOp operands, const Shape& shape); static XlaOp BuildAllGatherStart( XlaBuilder* builder, XlaOp operand, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups = {}, const std::optional<ChannelHandle>& channel_id = std::nullopt, const std::optional<Layout>& layout = std::nullopt, std::optional<bool> use_global_device_ids = std::nullopt); static XlaOp BuildAllGatherDone(XlaBuilder* builder, XlaOp operands, const Shape& shape); static XlaOp BuildAllReduceStart( XlaBuilder* builder, XlaOp operand, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups = {}, const std::optional<ChannelHandle>& channel_id = std::nullopt, const std::optional<Shape>& layout = std::nullopt, std::optional<bool> use_global_device_ids = std::nullopt); static XlaOp BuildAllReduceDone(XlaBuilder* builder, XlaOp operands, const Shape& shape); static XlaOp BuildCollectivePermuteStart( XlaBuilder* builder, XlaOp operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<ChannelHandle>& channel_id = std::nullopt); static XlaOp BuildCollectivePermuteDone(XlaBuilder* builder, XlaOp operands, const Shape& shape); static XlaOp BuildCopyStart( XlaBuilder* builder, XlaOp operand, std::optional<int> cross_program_prefetch_index = std::nullopt); static XlaOp BuildCopyDone(XlaBuilder* builder, XlaOp operand, const Shape& shape); static XlaOp BuildFusion( XlaBuilder* builder, absl::Span<const XlaOp> operands, absl::string_view fusion_kind, const XlaComputation& fused_computation, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing = {}); static XlaOp BuildBitcast(XlaBuilder* builder, XlaOp operand, const Shape& shape); static XlaOp BuildPartitionId(XlaBuilder* builder, const Shape& shape); static XlaOp BuildSend(XlaBuilder* builder, XlaOp operand, XlaOp token, const ChannelHandle& handle, bool is_host_transfer); static XlaOp BuildSendDone(XlaBuilder* builder, XlaOp operand, const ChannelHandle& handle, bool is_host_transfer); static XlaOp BuildRecv(XlaBuilder* builder, XlaOp token, const Shape& shape, const ChannelHandle& handle, bool is_host_transfer); static XlaOp BuildRecvDone(XlaBuilder* builder, XlaOp token, const Shape& shape, const ChannelHandle& handle, bool is_host_transfer); static XlaOp BuildDomain(XlaBuilder* builder, XlaOp operand, OpSharding entry, OpSharding exit, const Shape& shape); static XlaOp BuildRngGetAndUpdateState(XlaBuilder* builder, int64_t delta, const Shape& shape); static HloInstructionProto* GetInstruction(XlaOp op); static HloInstructionProto* GetInstructionByHandle(XlaBuilder* builder, int64_t handle); }; } class XlaOp { public: XlaOp() : handle_(-1), builder_(nullptr) { static_assert(std::is_trivially_destructible<XlaOp>::value, "XlaOp should be trivially destructible"); } ~XlaOp() = default; XlaOp(const XlaOp& other) = default; XlaOp& operator=(const XlaOp& other) = default; XlaBuilder* builder() const { CHECK(builder_ != nullptr); return builder_; } bool valid() const { return handle_ >= 0; } bool IsUninitialized() const { return builder_ == nullptr; } bool IsIdenticalTo(XlaOp rhs) const { return handle_ == rhs.handle_ && builder_ == rhs.builder_; } friend std::ostream& operator<<(std::ostream& out, XlaOp op) { out << op.handle(); return out; } private: explicit XlaOp(XlaBuilder* builder) : handle_(-1), builder_(builder) {} XlaOp(int64_t handle, XlaBuilder* builder) : handle_(handle), builder_(builder) {} int64_t handle() const { return handle_; } friend class XlaBuilder; friend class ValueInference; friend struct internal::XlaBuilderFriend; int64_t handle_; XlaBuilder* builder_; }; XlaOp operator-(XlaOp x); XlaOp operator+(XlaOp x, XlaOp y); XlaOp operator-(XlaOp x, XlaOp y); XlaOp operator*(XlaOp x, XlaOp y); XlaOp operator/(XlaOp x, XlaOp y); XlaOp operator%(XlaOp x, XlaOp y); XlaOp operator~(XlaOp x); XlaOp operator&(XlaOp x, XlaOp y); XlaOp operator|(XlaOp x, XlaOp y); XlaOp operator^(XlaOp x, XlaOp y); XlaOp operator<<(XlaOp x, XlaOp y); XlaOp operator>>(XlaOp x, XlaOp y); class XlaBuilder { public: explicit XlaBuilder(const std::string& computation_name); XlaBuilder(const XlaBuilder&) = delete; XlaBuilder& operator=(const XlaBuilder&) = delete; virtual ~XlaBuilder(); const std::string& name() const { return name_; } void SetOpMetadata(OpMetadata metadata) { metadata_ = std::move(metadata); } OpMetadata SwapOpMetadata(OpMetadata metadata) { OpMetadata old_metadata = std::move(metadata_); metadata_ = std::move(metadata); return old_metadata; } void SetOneShotOpMetadata(OpMetadata metadata) { one_shot_metadata_ = std::move(metadata); } void ClearOpMetadata() { metadata_.Clear(); } void SetSharding(const OpSharding& sharding) { sharding_ = sharding; } virtual void SetFrontendAttributes( const FrontendAttributes& frontend_attributes) { frontend_attributes_ = frontend_attributes; } FrontendAttributes SwapFrontendAttributes( const FrontendAttributes& frontend_attributes) { FrontendAttributes old_attributes = std::move(frontend_attributes_); frontend_attributes_ = frontend_attributes; return old_attributes; } const FrontendAttributes& frontend_attributes() const { return frontend_attributes_; } void ClearFrontendAttributes() { frontend_attributes_.Clear(); } void ClearSharding() { sharding_ = std::nullopt; } const std::optional<OpSharding>& sharding() const { return sharding_; } void set_die_immediately_on_error(bool enabled) { die_immediately_on_error_ = enabled; } static constexpr int64_t kConvBatchDimension = 0; static constexpr int64_t kConvFeatureDimension = 1; static constexpr int64_t kConvFirstSpatialDimension = 2; static constexpr int64_t kConvSecondSpatialDimension = 3; static constexpr int64_t kConvKernelOutputDimension = 0; static constexpr int64_t kConvKernelInputDimension = 1; static constexpr int64_t kConvKernelFirstSpatialDimension = 2; static constexpr int64_t kConvKernelSecondSpatialDimension = 3; static ConvolutionDimensionNumbers CreateDefaultConvDimensionNumbers( int num_spatial_dims = 2); static absl::Status Validate(const ConvolutionDimensionNumbers& dnum); std::unique_ptr<XlaBuilder> CreateSubBuilder( const std::string& computation_name); absl::StatusOr<XlaComputation> Build(bool remove_dynamic_dimensions = false); absl::StatusOr<XlaComputation> Build(XlaOp root, bool remove_dynamic_dimensions = false); XlaComputation BuildAndNoteError(); absl::StatusOr<XlaComputation> BuildConstantSubGraph( XlaOp root_op, bool dynamic_dimension_is_minus_one = false); absl::Status first_error() const { return first_error_; } absl::Status GetCurrentStatus() const; absl::StatusOr<Shape> GetShape(XlaOp op) const; virtual absl::StatusOr<const Shape*> GetShapePtr(XlaOp op) const; absl::StatusOr<std::optional<OpSharding>> GetOpSharding(XlaOp op) const; absl::StatusOr<ProgramShape> GetProgramShape() const; absl::StatusOr<ProgramShape> GetProgramShape(XlaOp root) const; XlaOp ReportError(const absl::Status& error); XlaOp ReportErrorOrReturn(const absl::StatusOr<XlaOp>& op); XlaOp ReportErrorOrReturn( absl::FunctionRef<absl::StatusOr<XlaOp>()> op_creator); absl::StatusOr<bool> IsConstant(XlaOp operand) const; void SetUpAlias(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, HloInputOutputAliasConfig::AliasKind kind = HloInputOutputAliasConfig::AliasKind::kMayAlias) { input_output_aliases_.push_back( {output_index, param_number, param_index, kind}); } struct InputOutputAlias { ShapeIndex output_index; int64_t param_number; ShapeIndex param_index; HloInputOutputAliasConfig::AliasKind kind; }; void AddBufferDonor(int64_t param_number, const ShapeIndex& param_index) { buffer_donors_.insert({param_number, param_index}); } absl::Status SetInstructionFrontendAttribute(XlaOp op, std::string attribute, std::string value); absl::Status SetInstructionSharding( XlaOp op, const std::optional<OpSharding>& sharding); absl::StatusOr<std::vector<Shape>> GetOperandShapes( absl::Span<const XlaOp> operands) const; std::string OpToString(XlaOp op) const; private: void ToStringHelper(std::string* out, int ident, int64_t op_handle) const; absl::StatusOr<XlaComputation> Build(int64_t root_id, bool remove_dynamic_dimensions); XlaOp Parameter(int64_t parameter_number, const Shape& shape, const std::string& name, const std::vector<bool>& replicated_at_leaf_buffers); XlaOp Parameter(int64_t parameter_number, const Shape& shape, const std::string& name) { std::vector<bool> empty_bools; return Parameter(parameter_number, shape, name, empty_bools); } virtual XlaOp ConstantLiteral(const LiteralSlice& literal); XlaOp Broadcast(XlaOp operand, absl::Span<const int64_t> broadcast_sizes); XlaOp BroadcastInDim(XlaOp operand, absl::Span<const int64_t> out_dim_size, absl::Span<const int64_t> broadcast_dimensions); XlaOp MhloDynamicBroadcastInDim( XlaOp operand, XlaOp output_dimensions, absl::Span<const int64_t> broadcast_dimensions, const Shape& output_shape); XlaOp Pad(XlaOp operand, XlaOp padding_value, const PaddingConfig& padding_config); XlaOp PadInDim(XlaOp operand, XlaOp padding_value, int64_t dimno, int64_t pad_lo, int64_t pad_hi); virtual absl::StatusOr<XlaOp> PadInternal( const Shape& shape, XlaOp operand, XlaOp padding_value, const PaddingConfig& padding_config); XlaOp Reshape(XlaOp operand, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> new_sizes, int64_t inferred_dimension = -1); XlaOp Reshape(XlaOp operand, absl::Span<const int64_t> new_sizes, int64_t inferred_dimension = -1); XlaOp Reshape(const Shape& shape, XlaOp operand, int64_t inferred_dimension = -1); XlaOp DynamicReshape(XlaOp operand, absl::Span<const XlaOp> dim_sizes, absl::Span<const int64_t> new_size_bounds, const std::vector<bool>& dims_are_dynamic); XlaOp MhloDynamicReshape(XlaOp operand, XlaOp output_shape, const Shape& shape); XlaOp Collapse(XlaOp operand, absl::Span<const int64_t> dimensions); XlaOp Slice(XlaOp operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides); virtual absl::StatusOr<XlaOp> SliceInternal( const Shape& shape, XlaOp operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides); virtual XlaOp SliceInDim(XlaOp operand, int64_t start_index, int64_t limit_index, int64_t stride, int64_t dimno); XlaOp DynamicSlice(XlaOp operand, absl::Span<const XlaOp> start_indices, absl::Span<const int64_t> slice_sizes); virtual absl::StatusOr<XlaOp> DynamicSliceInternal( const Shape& shape, XlaOp operand, absl::Span<const XlaOp> start_indices, absl::Span<const int64_t> slice_sizes); XlaOp DynamicUpdateSlice(XlaOp operand, XlaOp update, absl::Span<const XlaOp> start_indices); virtual absl::StatusOr<XlaOp> DynamicUpdateSliceInternal( const Shape& shape, XlaOp operand, XlaOp update, absl::Span<const XlaOp> start_indices); XlaOp ConcatInDim(absl::Span<const XlaOp> operands, int64_t dimension); virtual absl::StatusOr<XlaOp> ConcatInDimInternal( const Shape& shape, absl::Span<const XlaOp> operands, int64_t dimension); XlaOp Select(XlaOp pred, XlaOp on_true, XlaOp on_false); XlaOp Tuple(absl::Span<const XlaOp> elements); virtual absl::StatusOr<XlaOp> TupleInternal(const Shape& shape, absl::Span<const XlaOp> elements); XlaOp GetTupleElement(XlaOp tuple_data, int64_t index); virtual absl::StatusOr<XlaOp> GetTupleElementInternal(const Shape& shape, XlaOp tuple_data, int64_t index); XlaOp Dot(XlaOp lhs, XlaOp rhs, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp DotGeneral( XlaOp lhs, XlaOp rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp SparseDot( XlaOp lhs, XlaOp rhs, absl::Span<const XlaOp> sparse_meta, absl::Span<const SparsityDescriptor> sparsity, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp Conv( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, int64_t feature_group_count = 1, int64_t batch_group_count = 1, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp ConvWithGeneralPadding( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, int64_t feature_group_count = 1, int64_t batch_group_count = 1, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp ConvWithGeneralDimensions( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count = 1, int64_t batch_group_count = 1, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp ConvGeneral( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count = 1, int64_t batch_group_count = 1, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp ConvGeneralDilated( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count = 1, int64_t batch_group_count = 1, const PrecisionConfig* precision_config = nullptr, std::optional<PrimitiveType> preferred_element_type = std::nullopt, std::optional<std::vector<bool>> window_reversal = std::nullopt); XlaOp DynamicConvForward( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp DynamicConvInputGrad( XlaOp input_sizes, XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type = std::nullopt); XlaOp DynamicConvKernelGrad( XlaOp activations, XlaOp gradients, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type = std::nullopt); absl::StatusOr<HloInstructionProto> DynamicConvInstruction( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type = std::nullopt); virtual absl::StatusOr<XlaOp> ConvGeneralDilatedInternal( const Shape& shape, XlaOp lhs, XlaOp rhs, const Window& window, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config); XlaOp Fft(XlaOp operand, FftType fft_type, absl::Span<const int64_t> fft_length); virtual absl::StatusOr<XlaOp> FftInternal( const Shape& shape, XlaOp operand, FftType fft_type, absl::Span<const int64_t> fft_length); virtual absl::StatusOr<XlaOp> TriangularSolveInternal( const Shape& shape, XlaOp a, XlaOp b, TriangularSolveOptions options); virtual absl::StatusOr<XlaOp> CholeskyInternal(const Shape& shape, XlaOp a, bool lower); XlaOp Infeed(const Shape& shape, const std::string& config = ""); XlaOp InfeedWithToken(XlaOp token, const Shape& shape, const std::string& config); virtual absl::StatusOr<XlaOp> InfeedWithTokenInternal( const Shape& infeed_instruction_shape, XlaOp token, const std::string& config); void Outfeed(XlaOp operand, const Shape& shape_with_layout, const std::string& outfeed_config); XlaOp OutfeedWithToken(XlaOp operand, XlaOp token, const Shape& shape_with_layout, const std::string& outfeed_config); virtual absl::StatusOr<XlaOp> OutfeedWithTokenInternal( XlaOp operand, XlaOp token, const Shape& shape_with_layout, const std::string& outfeed_config); XlaOp Call(const XlaComputation& computation, absl::Span<const XlaOp> operands); XlaOp CustomCall( const std::string& call_target_name, absl::Span<const XlaOp> operands, const Shape& shape_with_layout, const std::string& opaque, std::optional<absl::Span<const Shape>> operand_shapes_with_layout, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, std::optional<Window> window, std::optional<ConvolutionDimensionNumbers> dnums, CustomCallSchedule schedule, CustomCallApiVersion api_version); virtual absl::StatusOr<XlaOp> CustomCallInternal( const std::string& call_target_name, absl::Span<const XlaOp> operands,
#include "xla/client/xla_builder.h" #include <algorithm> #include <array> #include <complex> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/padding.h" #include "xla/client/sharding_builder.h" #include "xla/client/value_inference.h" #include "xla/client/xla_computation.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::_; using ::testing::HasSubstr; using ::testing::Test; using ::tsl::testing::StatusIs; HloInstruction* GetRoot(HloModule& module) { return module.entry_computation()->root_instruction(); } absl::StatusOr<std::unique_ptr<HloModule>> BuildHloModule(XlaBuilder& b) { TF_ASSIGN_OR_RETURN(XlaComputation computation, b.Build(false)); const HloModuleProto& proto = computation.proto(); TF_ASSIGN_OR_RETURN(const auto& config, HloModule::CreateModuleConfigFromProto( proto, GetDebugOptionsFromFlags())); return HloModule::CreateFromProto(proto, config); } absl::StatusOr<std::unique_ptr<HloModule>> BuildHloModule(XlaBuilder& b, XlaOp root) { TF_ASSIGN_OR_RETURN(XlaComputation computation, b.Build(root, false)); const HloModuleProto& proto = computation.proto(); TF_ASSIGN_OR_RETURN(const auto& config, HloModule::CreateModuleConfigFromProto( proto, GetDebugOptionsFromFlags())); return HloModule::CreateFromProto(proto, config); } std::string TestName() { return ::testing::UnitTest::GetInstance()->current_test_info()->name(); } TEST(XlaBuilderTest, OnePlusTwo) { XlaBuilder b(TestName()); Add(ConstantR0<float>(&b, 1.0), ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, UnaryOperatorsBuildExpectedHLO) { auto test_unary_operator = [&](std::function<XlaOp(XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<int32_t>(&b, 1)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, matches_pattern); }; test_unary_operator([](XlaOp x) { return -x; }, GmockMatch(m::Negate(m::Constant()))); test_unary_operator([](XlaOp x) { return ~x; }, GmockMatch(m::Not(m::Constant()))); } TEST(XlaBuilderTest, BinaryOperatorsBuildExpectedHLO) { auto test_binary_operator = [&](std::function<XlaOp(XlaOp, XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<int32_t>(&b, 1), ConstantR0<int32_t>(&b, 2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, matches_pattern); }; test_binary_operator([](XlaOp x, XlaOp y) { return x + y; }, GmockMatch(m::Add(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x - y; }, GmockMatch(m::Subtract(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x * y; }, GmockMatch(m::Multiply(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x / y; }, GmockMatch(m::Divide(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x & y; }, GmockMatch(m::And(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x | y; }, GmockMatch(m::Or(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x ^ y; }, GmockMatch(m::Xor(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x << y; }, GmockMatch(m::ShiftLeft(m::Constant(), m::Constant()))); test_binary_operator( [](XlaOp x, XlaOp y) { return x >> y; }, GmockMatch(m::ShiftRightArithmetic(m::Constant(), m::Constant()))); auto test_unsigned_binary_operator = [&](std::function<XlaOp(XlaOp, XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<uint32_t>(&b, 1), ConstantR0<uint32_t>(&b, 2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, matches_pattern); }; test_unsigned_binary_operator( [](XlaOp x, XlaOp y) { return x >> y; }, GmockMatch(m::ShiftRightLogical(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, VariadicAnd) { XlaBuilder b(TestName()); const Shape s = ShapeUtil::MakeShape(PRED, {}); And(Parameter(&b, 0, s, "p0"), Parameter(&b, 1, s, "p1"), Parameter(&b, 2, s, "p2")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->entry_computation()->root_instruction(), ::testing::AnyOf( GmockMatch(m::And(m::Parameter(0), m::And(m::Parameter(1), m::Parameter(2)))), GmockMatch(m::And(m::And(m::Parameter(0), m::Parameter(1)), m::Parameter(2))))); } TEST(XlaBuilderTest, VariadicOr) { XlaBuilder b(TestName()); const Shape s = ShapeUtil::MakeShape(PRED, {}); Or(Parameter(&b, 0, s, "p0"), Parameter(&b, 1, s, "p1"), Parameter(&b, 2, s, "p2")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->entry_computation()->root_instruction(), ::testing::AnyOf( GmockMatch(m::Or(m::Parameter(0), m::Or(m::Parameter(1), m::Parameter(2)))), GmockMatch(m::Or(m::Or(m::Parameter(0), m::Parameter(1)), m::Parameter(2))))); } TEST(XlaBuilderTest, ShiftRightOperatorOnNonIntegerProducesError) { XlaBuilder b(TestName()); ConstantR0<float>(&b, 1) >> ConstantR0<float>(&b, 2); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT( statusor.status().message(), HasSubstr("Argument to >> operator does not have an integral type")); } TEST(XlaBuilderTest, ParamPlusConstantHasScalarBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {3, 5}), "x"); Add(x, ConstantR0<float>(&b, 1.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Parameter(), m::Broadcast(m::Constant())))); } TEST(XlaBuilderTest, ParamPlusConstantHasScalarBroadcastReversed) { XlaBuilder b(TestName()); const XlaOp x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {3, 5}), "x"); Add(ConstantR0<float>(&b, 1.0), x); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Broadcast(m::Constant()), m::Parameter()))); } TEST(XlaBuilderTest, ParamPlusParamHasBroadcast) { XlaBuilder b(TestName()); const auto& x_shape = ShapeUtil::MakeShape(S32, {2, 4, 6}); const auto& y_shape = ShapeUtil::MakeShape(S32, {2, 4}); auto x = Parameter(&b, 0, x_shape, "x"); auto y = Parameter(&b, 1, y_shape, "y"); auto add = Add(x, y, {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto add_shape, b.GetShape(add)); EXPECT_TRUE(ShapeUtil::Equal(add_shape, x_shape)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Parameter(1))))); } TEST(XlaBuilderTest, XPlusX) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {1, 3, 5, 7}), "x"); Add(x, x); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Parameter(0), m::Parameter(0)))); } TEST(XlaBuilderTest, TestBinaryOpImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[2, 2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2,2]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, TestBinaryOpImplicitBroadcastBounded) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[<=2, <=2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[<=2, <=2]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, ShapeInferenceError) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(U32, {2, 4, 6}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(U32, {2, 4}), "y"); Add(x, y); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("Shapes must be equal rank")); } TEST(XlaBuilderTest, DynamicDimensionReshapeToR0) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {1}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}), "dyn_dim"); auto dx = SetDimensionSize(x, y, 0); Reshape(dx, {}); auto statusor = BuildHloModule(b); ASSERT_TRUE(statusor.ok()); } TEST(XlaBuilderTest, ParameterAlreadyRegistered) { XlaBuilder b_call("add"); Parameter(&b_call, 0, ShapeUtil::MakeShape(PRED, {}), "x"); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "x"); auto y = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "y"); Add(x, y); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("parameter 0 already registered")); } TEST(XlaBuilderTest, Call) { XlaBuilder b_call("the_only_to_apply"); auto p0 = Parameter(&b_call, 0, ShapeUtil::MakeShape(F32, {}), "p0"); auto p1 = Parameter(&b_call, 1, ShapeUtil::MakeShape(F32, {}), "p1"); Add(p0, p1); TF_ASSERT_OK_AND_ASSIGN(const auto call, b_call.Build()); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {}), "y"); auto one = ConstantR0<float>(&b, 1); auto two = ConstantR0<float>(&b, 2); Add(Call(&b, call, {x, y}), Call(&b, call, {one, two})); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Call(m::Parameter(), m::Parameter()), m::Call(m::Constant(), m::Constant())))); } TEST(XlaBuilderTest, BinopHasDegenerateBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {1, 2, 3}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {1, 2, 1}), "y"); Add(x, y); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Reshape(m::Parameter(1)))))); } TEST(XlaBuilderTest, BinopHasInDimAndDegenerateBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {2, 1, 4}), "y"); Add(x, y, {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Broadcast(m::Parameter(0)), m::Broadcast(m::Reshape(m::Parameter(1)))))); } TEST(XlaBuilderTest, BroadcastInDim) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3}), "x"); BroadcastInDim(x, {2, 4, 3}, {0, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Broadcast())); } TEST(XlaBuilderTest, BroadcastInDimWithDegeneratedDim) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 1, 4}), "x"); BroadcastInDim(x, {2, 3, 4}, {0, 1, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Broadcast(m::Reshape(m::Broadcast())))); } TEST(XlaBuilderTest, BroadcastInDimWithNegativeSize) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 1, 4}), "x"); BroadcastInDim(x, {-3, 3, 4}, {0, 1, 2}); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("invalid shape")); } TEST(XlaBuilderTest, OperandFromWrongBuilder) { XlaBuilder b1("b1"); auto p0 = Parameter(&b1, 0, ShapeUtil::MakeShape(F32, {}), "p0"); XlaBuilder builder("main"); auto p = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "p"); Add(p, p0); auto statusor = builder.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT( statusor.status().message(), HasSubstr( "built by builder 'b1', but is trying to use it in builder 'main'")); } TEST(XlaBuilderTest, ReshapeDefaultOrder) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3, 5, 7}), "x"); Reshape(x, {6, 35}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(m::Parameter()))); } TEST(XlaBuilderTest, ReshapeHasTranspose) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3, 5, 7}), "x"); Reshape(x, {3, 2, 1, 0}, {6, 35}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(m::Transpose(m::Parameter())))); } TEST(XlaBuilderTest, Transpose) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); Transpose(x, {1, 0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Transpose(m::Parameter()))); } TEST(XlaBuilderTest, AllGatherR1) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4}), "x"); AllGather(x, 0, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {16}))); } TEST(XlaBuilderTest, AllGatherR2) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); AllGather(x, 1, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 64}))); } TEST(XlaBuilderTest, AllGatherWithTuple) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4}), "x"); auto x2 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {16, 4}), "x2"); AllGather(Tuple(&b, {x, x2}), 0, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE(ShapeUtil::Equal( root->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {16}), ShapeUtil::MakeShape(F32, {64, 4})}))); } TEST(XlaBuilderTest, AllGatherTuple) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {128, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {128, 8}), "p1"); AllGatherTuple({p0, p1}, 1, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); auto tuple_shape = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {128, 16}), ShapeUtil::MakeShape(F32, {128, 32})}); EXPECT_THAT(root, GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllGather) .WithShapeEqualTo(&tuple_shape))); } TEST(XlaBuilderTest, ReduceScatter) { XlaBuilder b(TestName()); XlaComputation to_apply; { auto sub_builder = b.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); ReplicaGroup group; group.add_replica_ids(0); group.add_replica_ids(1); ReduceScatter(x, to_apply, 1, 2, {group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduceScatter); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 8}))); } TEST(XlaBuilderTest, ReduceScatterWithTuple) { XlaBuilder b(TestName()); XlaComputation to_apply; { auto sub_builder = b.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); auto x2 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {16, 4}), "x2"); ReplicaGroup group; group.add_replica_ids(0); group.add_replica_ids(1); ReduceScatter(Tuple(&b, {x, x2}), to_apply, 1, 2, {group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduceScatter); EXPECT_TRUE(ShapeUtil::Equal( root->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4, 8}), ShapeUtil::MakeShape(F32, {16, 2})}))); } TEST(XlaBuilderTest, AllToAll) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); AllToAll(x, 1, 0, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); EXPECT_EQ(root->operand(0)->operand(0)->operand(0)->opcode(), HloOpcode::kAllToAll); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {8, 8}))); } TEST(XlaBuilderTest, AllToAllSpecial) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16, 8}), "x"); AllToAll(x, 0, 0, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kAllToAll); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 16, 8}))); } TEST(XlaBuilderTest, AllToAllTuple) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {2, 4}), "p1"); ReplicaGroup replica_group; replica_group.add_replica_ids(0); replica_group.add_replica_ids(1); AllToAllTuple({p0, p1}, {replica_group}, LayoutUtil::MakeAscendingLayout(2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); auto expected_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 4}, {0, 1}); auto tuple_shape = ShapeUtil::MakeTupleShape({expected_shape, expected_shape}); auto is_replica_group_pred = [](const HloInstruction* instr) { return instr->replica_groups().size() == 1 && absl::c_equal(instr->replica_groups()[0].replica_ids(), std::vector<int64_t>{0, 1}); }; EXPECT_THAT(root, GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllToAll) .WithShapeEqualTo(&tuple_shape) .WithPredicate(is_replica_group_pred))); } TEST(XlaBuilderTest, AllReduceTuple) { XlaBuilder b(TestName()); auto shape0 = ShapeUtil::MakeShape(F32, {}); auto shape1 = ShapeUtil::MakeShape(F32, {1, 2}); auto p0 = Parameter(&b, 0, shape0, "p0"); auto p1 = Parameter(&b, 1, shape1, "p1"); XlaBuilder bsum(TestName()); auto f32Scalar = ShapeUtil::MakeShape(F32, {}); Add(Parameter(&bsum, 0, f32Scalar, "x"), Parameter(&bsum, 1, f32Scalar, "y")); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); AllReduceTuple({p0, p1}, sum); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); auto tuple_shape = ShapeUtil::MakeTupleShape({shape0, shape1}); EXPECT_THAT(root, GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllReduce) .WithShapeEqualTo(&tuple_shape))); } TEST(XlaBuilderTest, CollectiveBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); ReplicaGroup replica_group; replica_group.add_replica_ids(0); replica_group.add_replica_ids(1); CollectiveBroadcast(x, {replica_group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kCollectiveBroadcast); } TEST(XlaBuilderTest, CollectivePermute) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); CollectivePermute(x, {{0, 1}, {1, 2}, {2, 3}}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kCollectivePermute); } TEST(XlaBuilderTest, GetDimensionSize) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}, {false, true}), "x"); GetDimensionSize(x, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kGetDimensionSize); } TEST(XlaBuilderTest, GetDimensionSizeConstant) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}, {false, true}), "x"); GetDimensionSize(x, 0); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConstant); } TEST(XlaBuilderTest, ReportError) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); Add(b.ReportError(InvalidArgument("a test error")), x); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("a test error")); } TEST(XlaBuilderTest, ReportErrorOrReturnHandlesNonErrors) { XlaBuilder b(TestName()); absl::StatusOr<XlaOp> op(ConstantR0<float>(&b, 1.0)); Add(b.ReportErrorOrReturn(op), ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Add(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, ReportErrorOrReturnHandlesErrors) { XlaBuilder b(TestName()); absl::StatusOr<XlaOp> op(InvalidArgument("a test error")); Add(b.ReportErrorOrReturn(op), ConstantR0<float>(&b, 2.0)); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("a test error")); } TEST(XlaBuilderTest, BuildWithSpecificRoot) { XlaBuilder b(TestName()); const XlaOp constant = ConstantR0<float>(&b, 1.0); Add(constant, ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, constant)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); } TEST(XlaBuilderTest, BuildWithSpecificRootAndMultipleParameters) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {42, 123}); const XlaOp x = Parameter(&b, 0, shape, "x"); const XlaOp y = Parameter(&b, 1, shape, "y"); const XlaOp z = Parameter(&b, 2, shape, "z"); Add(x, Sub(y, z)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, x)); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Parameter())); EXPECT_EQ(module->entry_computation()->num_parameters(), 3); EXPECT_EQ(module->entry_computation()->instruction_count(), 5); } TEST(XlaBuilderTest, BuildWithSpecificRootWithWrongBuilder) { XlaBuilder b(TestName()); XlaBuilder other_b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {42, 123}); Parameter(&b, 0, shape, "param"); const XlaOp other_param = Parameter(&other_b, 0, shape, "other_param"); absl::Status status = b.Build(other_param).status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT( status.message(), ::testing::HasSubstr("root operation is not in this computation")); } TEST(XlaBuilderTest, ProtoMatches) { std::vector<XlaComputation> computations; const int n = 2; computations.reserve(n); for (int i = 0; i < n; ++i) { XlaBuilder b_call("the_only_to_apply"); auto p0 = Parameter(&b_call, 0, ShapeUtil::MakeShape(F32, {}), "p0"); auto p1 = Parameter(&b_call, 1, ShapeUtil::MakeShape(F32, {}), "p1"); Add(p0, Add(p1, p0)); TF_ASSERT_OK_AND_ASSIGN(const auto call, b_call.Build()); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {}), "y"); auto one = ConstantR0<float>(&b, 1); auto two = ConstantR0<float>(&b, 2); Add(Call(&b, call, {x, y}), Call(&b, call, {one, two})); computations.push_back(b.Build().value()); } auto c0_string = computations[0].proto().SerializeAsString(); auto c1_string = computations[1].proto().SerializeAsString(); EXPECT_EQ(c0_string, c1_string); } TEST(XlaBuilderTest, DynamicParameter) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {6}, {true})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); Parameter(&b, 1, ShapeUtil::MakeShape(U32, {}), "p1"); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, p0)); const Shape& param_shape = module->entry_computation() ->parameter_instruction(0) ->shape() .tuple_shapes(1); EXPECT_TRUE(param_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, SetDimensionSize) { XlaBuilder b(TestName()); auto p0 = Parame
2,220
#ifndef XLA_CLIENT_VALUE_INFERENCE_H_ #define XLA_CLIENT_VALUE_INFERENCE_H_ #include <optional> #include <utility> #include "absl/container/flat_hash_map.h" #include "xla/client/xla_builder.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { class OptionalLiteral { public: explicit OptionalLiteral(Literal value, Literal mask) : value_(std::move(value)), mask_(std::move(mask)) {} template <typename NativeT> std::optional<NativeT> Get(absl::Span<const int64_t> element_index, ShapeIndex shape_index = {}) const { if (mask_.Get<bool>(element_index, shape_index)) { return std::nullopt; } else { return value_.Get<NativeT>(element_index, shape_index); } } bool AllValid() { return mask_.IsAll(0); } std::optional<LiteralSlice> GetValue() { if (!AllValid()) { return std::nullopt; } return LiteralSlice(value_); } private: Literal value_; Literal mask_; }; enum ValueInferenceMode { kValue = 0, kUpperBound, kLowerBound, }; class ValueInference { public: explicit ValueInference(XlaBuilder* builder) : builder_(builder) { CHECK(builder_); } absl::StatusOr<Literal> AnalyzeIsDynamic(XlaOp op); absl::StatusOr<OptionalLiteral> AnalyzeConstant(XlaOp op, ValueInferenceMode mode); XlaBuilder* builder() { return builder_; } private: absl::StatusOr<Literal> SimplifyOp(int64_t handle); absl::StatusOr<std::optional<int64_t>> CseOpHandle(int64_t handle); XlaBuilder* builder_; HloEvaluator evaluator_; absl::flat_hash_map<int64_t, int64_t> cse_map_; }; } #endif #include "xla/client/value_inference.h" #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { Literal CreatePredLiteral(bool pred, const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; const auto& reference_shape_tuple_shapes = reference_shape.tuple_shapes(); sub_literals.reserve(reference_shape_tuple_shapes.size()); for (const Shape& shape : reference_shape_tuple_shapes) { sub_literals.emplace_back(CreatePredLiteral(pred, shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateR0(pred); } Literal literal = LiteralUtil::CreateR0(pred); Literal literal_broadcast = literal.Broadcast(ShapeUtil::ChangeElementType(reference_shape, PRED), {}) .value(); return literal_broadcast; } Literal CreateS64Literal(int64_t value, const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; const auto& reference_shape_tuple_shapes = reference_shape.tuple_shapes(); sub_literals.reserve(reference_shape_tuple_shapes.size()); for (const Shape& shape : reference_shape_tuple_shapes) { sub_literals.emplace_back(CreateS64Literal(value, shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateToken(); } Literal literal = LiteralUtil::CreateR0<int64_t>(value); return literal .Broadcast(ShapeUtil::ChangeElementType(reference_shape, S64), {}) .value(); } Literal CreateGarbageLiteral(const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; for (const Shape& shape : reference_shape.tuple_shapes()) { sub_literals.emplace_back(CreateGarbageLiteral(shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateToken(); } Literal literal = LiteralUtil::One(element_type); return literal.Broadcast(reference_shape, {}).value(); } struct HloProtoEvaluator { explicit HloProtoEvaluator(HloEvaluator& evaluator, HloInstructionProto inst) : evaluator(evaluator), inst(std::move(inst)), module("EmptyModuleForEvaluation", HloModuleConfig()) {} HloProtoEvaluator& WithComputation( std::unique_ptr<HloComputation> new_computation) { computation = new_computation.get(); computation->ClearUniqueIdInternal(); for (HloInstruction* inst : computation->instructions()) { inst->ClearUniqueIdInternal(); } module.AddEmbeddedComputation(std::move(new_computation)); return *this; } HloProtoEvaluator& WithPrimitiveType(PrimitiveType new_primitive_type) { primitive_type = new_primitive_type; return *this; } HloProtoEvaluator& WithOpCode(HloOpcode new_opcode) { opcode = new_opcode; return *this; } HloProtoEvaluator& WithOperands(absl::Span<Literal> operands) { this->operands = operands; return *this; } HloProtoEvaluator& WithSubshape(ShapeIndex shape_index) { this->shape_index = std::move(shape_index); return *this; } absl::StatusOr<Literal> Evaluate() { HloComputation::Builder builder("EmptyComputation"); absl::flat_hash_map<int64_t, HloInstruction*> operand_map; for (int64_t i = 0; i < inst.operand_ids_size(); ++i) { int64_t operand_handle = inst.operand_ids(i); std::unique_ptr<HloInstruction> operand = HloInstruction::CreateConstant(operands[i].Clone()); operand_map[operand_handle] = operand.get(); builder.AddInstruction(std::move(operand)); } if (primitive_type.has_value()) { *inst.mutable_shape() = ShapeUtil::ChangeElementType( Shape(inst.shape()), primitive_type.value()) .ToProto(); } if (opcode.has_value()) { *inst.mutable_opcode() = std::string(HloOpcodeString(opcode.value())); } absl::flat_hash_map<int64_t, HloComputation*> computation_map; if (inst.called_computation_ids_size() != 0) { TF_RET_CHECK(inst.called_computation_ids_size() == 1 && computation != nullptr) << inst.DebugString(); computation_map[inst.called_computation_ids(0)] = computation; } TF_ASSIGN_OR_RETURN( auto new_instruction, HloInstruction::CreateFromProto(inst, operand_map, computation_map)); new_instruction->ClearUniqueIdInternal(); builder.AddInstruction(std::move(new_instruction)); auto computation = builder.Build(); module.AddEntryComputation(std::move(computation)); if (shape_index.empty()) { return evaluator.Evaluate(module.entry_computation()->root_instruction()); } else { TF_ASSIGN_OR_RETURN( auto result, evaluator.Evaluate(module.entry_computation()->root_instruction())); return result.SubLiteral(this->shape_index); } } HloEvaluator& evaluator; HloInstructionProto inst; HloModule module; absl::Span<Literal> operands; ShapeIndex shape_index = {}; HloComputation* computation = nullptr; std::optional<PrimitiveType> primitive_type = std::nullopt; std::optional<HloOpcode> opcode = std::nullopt; }; enum PostorderDFSNodeType { kConstantValue = 0, kConstantUpperBound, kConstantLowerBound, kValueIsDynamic, kBoundIsDynamic, }; std::string PostorderDFSNodeTypeToString(PostorderDFSNodeType type) { switch (type) { case kConstantValue: return "kConstantValue"; case kConstantUpperBound: return "kConstantUpperBound"; case kConstantLowerBound: return "kConstantLowerBound"; case kValueIsDynamic: return "kValueIsDynamic"; case kBoundIsDynamic: return "kBoundIsDynamic"; } } struct InferenceContext { explicit InferenceContext(ShapeIndex shape_index, std::vector<int64_t> caller_operand_handles) : shape_index(std::move(shape_index)), caller_operand_handles(std::move(caller_operand_handles)) {} ShapeIndex shape_index; std::vector<int64_t> caller_operand_handles; }; struct PostorderDFSDep { explicit PostorderDFSDep(int64_t handle, PostorderDFSNodeType type, InferenceContext context, std::string annotation) : handle(handle), type(type), context(std::move(context)), annotation(std::move(annotation)) {} int64_t handle; PostorderDFSNodeType type; InferenceContext context; std::string annotation; }; using Visit = std::function<absl::StatusOr<Literal>(absl::Span<Literal>)>; using Visit0D = std::function<absl::StatusOr<Literal>()>; using Visit1D = std::function<absl::StatusOr<Literal>(Literal)>; using Visit2D = std::function<absl::StatusOr<Literal>(Literal, Literal)>; struct [[nodiscard]] PostorderDFSNode { PostorderDFSNode& AddDependency(int64_t handle, PostorderDFSNodeType type, InferenceContext context, std::string annotation = "") { dependencies.emplace_back(handle, type, std::move(context), std::move(annotation)); return *this; } PostorderDFSNode& AddVisit(const Visit& visit) { this->visit = visit; return *this; } PostorderDFSNode& AddVisit(const Visit0D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(); }; return *this; } PostorderDFSNode& AddVisit(const Visit1D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(std::move(literals[0])); }; return *this; } PostorderDFSNode& AddVisit(const Visit2D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(std::move(literals[0]), std::move(literals[1])); }; return *this; } std::vector<PostorderDFSDep> dependencies; Visit visit; }; using HandleToInstruction = std::function<absl::StatusOr<const HloInstructionProto*>(int64_t)>; using HandleToComputation = std::function<const HloComputationProto*(int64_t)>; struct PostorderDFSVisitor { PostorderDFSVisitor(HloEvaluator& evaluator, HandleToInstruction handle_to_instruction, HandleToComputation handle_to_computation) : evaluator(evaluator), handle_to_instruction(handle_to_instruction), handle_to_computation(handle_to_computation) {} absl::StatusOr<PostorderDFSNode> AnalyzeUpperBound(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeLowerBound(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeIsDynamic(int64_t handle, PostorderDFSNodeType type, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeConstant(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeConstantValueFallback( int64_t handle, PostorderDFSNodeType type, InferenceContext context); absl::StatusOr<Literal> PostOrderDFSVisit(int64_t handle, PostorderDFSNodeType type); bool IsValueEffectiveInteger(int64_t handle) { const HloInstructionProto* instr = handle_to_instruction(handle).value(); if (primitive_util::IsIntegralType(instr->shape().element_type())) { return true; } HloOpcode opcode = StringToHloOpcode(instr->opcode()).value(); if (opcode != HloOpcode::kConvert) { return false; } const HloInstructionProto* parent = handle_to_instruction(instr->operand_ids(0)).value(); if (primitive_util::IsIntegralType(parent->shape().element_type())) { return true; } return false; } bool IsInstructionOverLimit(const HloInstructionProto* proto, const InferenceContext& context) { auto subshape = std::make_unique<Shape>( ShapeUtil::GetSubshape(Shape(proto->shape()), context.shape_index)); if (subshape->IsArray() && ShapeUtil::ElementsIn(*subshape) > kLargeShapeElementLimit) { return true; } HloOpcode opcode = StringToHloOpcode(proto->opcode()).value(); for (int64_t operand_id : proto->operand_ids()) { const HloInstructionProto* operand = handle_to_instruction(operand_id).value(); auto operand_shape = std::make_unique<Shape>(operand->shape()); if (operand_shape->IsArray() && ShapeUtil::ElementsIn(*operand_shape) > kLargeShapeElementLimit && opcode != HloOpcode::kGetDimensionSize && opcode != HloOpcode::kSetDimensionSize) { return true; } } return false; } struct CacheKey { CacheKey(int64_t handle, InferenceContext context, PostorderDFSNodeType type) : handle(handle), context(context), type(type) {} int64_t handle; InferenceContext context; PostorderDFSNodeType type; template <typename H> friend H AbslHashValue(H h, const CacheKey& key) { h = H::combine(std::move(h), key.handle); h = H::combine(std::move(h), key.context.shape_index.ToString()); h = H::combine(std::move(h), VectorString(key.context.caller_operand_handles)); h = H::combine(std::move(h), key.type); return h; } friend bool operator==(const CacheKey& lhs, const CacheKey& rhs) { return lhs.handle == rhs.handle && lhs.context.shape_index == rhs.context.shape_index && lhs.context.caller_operand_handles == rhs.context.caller_operand_handles && lhs.type == rhs.type; } }; HloEvaluator& evaluator; absl::flat_hash_map<CacheKey, Literal> evaluated; HandleToInstruction handle_to_instruction; HandleToComputation handle_to_computation; static constexpr int64_t kLargeShapeElementLimit = 1000 * 1000; }; PostorderDFSNode CreateAllDynamicResult(const Shape& shape, const PostorderDFSNodeType& type) { return PostorderDFSNode().AddVisit( [shape, type](absl::Span<Literal>) -> Literal { if (type == PostorderDFSNodeType::kConstantValue || type == PostorderDFSNodeType::kConstantUpperBound || type == PostorderDFSNodeType::kConstantLowerBound) { return CreateGarbageLiteral(shape); } else { return CreatePredLiteral(true, shape); } }); } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeConstantValueFallback(int64_t handle, PostorderDFSNodeType type, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); PostorderDFSNode result; for (auto operand_id : root->operand_ids()) { InferenceContext dep_context = context; dep_context.shape_index = {}; result.AddDependency(operand_id, type, dep_context); } switch (opcode) { case HloOpcode::kRng: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kRngBitGenerator: case HloOpcode::kCustomCall: case HloOpcode::kWhile: case HloOpcode::kSend: case HloOpcode::kRecv: case HloOpcode::kSendDone: case HloOpcode::kRecvDone: case HloOpcode::kParameter: { if (opcode == HloOpcode::kParameter && !context.caller_operand_handles.empty()) { int64_t caller_operand = context.caller_operand_handles.back(); context.caller_operand_handles.pop_back(); return result.AddDependency(caller_operand, type, context) .AddVisit([](Literal literal) { return literal; }); } return CreateAllDynamicResult(subshape, type); } case HloOpcode::kSubtract: case HloOpcode::kCos: case HloOpcode::kSin: case HloOpcode::kTan: case HloOpcode::kNegate: case HloOpcode::kAbs: case HloOpcode::kDivide: case HloOpcode::kGetDimensionSize: { return InvalidArgument( "AnalyzeConstantValueFallback can't handle opcode: %s", root->opcode()); } case HloOpcode::kCall: { auto node = PostorderDFSNode(); auto* call_proto = root; if (call_proto->operand_ids_size() != 1) { return CreateAllDynamicResult(subshape, type); } int64_t called_root = handle_to_computation(call_proto->called_computation_ids(0)) ->root_id(); InferenceContext call_context = context; call_context.caller_operand_handles.push_back(call_proto->operand_ids(0)); node.AddDependency(called_root, PostorderDFSNodeType::kConstantValue, call_context, "callee's root instruction"); return node.AddVisit([](Literal operand) -> absl::StatusOr<Literal> { return std::move(operand); }); } case HloOpcode::kConditional: { auto node = PostorderDFSNode(); auto* conditional_proto = root; InferenceContext predicate_context = context; predicate_context.shape_index = {}; node.AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kConstantValue, predicate_context) .AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kValueIsDynamic, predicate_context); const int64_t branch_size = conditional_proto->called_computation_ids_size(); for (int64_t i = 0; i < branch_size; ++i) { int64_t branch_root = handle_to_computation(conditional_proto->called_computation_ids(i)) ->root_id(); InferenceContext branch_context = context; branch_context.caller_operand_handles.push_back( conditional_proto->operand_ids(i + 1)); node.AddDependency(branch_root, PostorderDFSNodeType::kConstantValue, branch_context); } return node.AddVisit( [](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { int64_t pred_is_dynamic = operands[1].Get<bool>({}); if (pred_is_dynamic) { return std::move(operands[2]); } else { int64_t branch_index = 0; if (operands[0].shape().element_type() == PRED) { if (operands[0].Get<bool>({})) { branch_index = 0; } else { branch_index = 1; } } else { branch_index = operands[0].GetIntegralAsS64({}).value(); } const int64_t branch_dynamism_index = 2 + branch_index; return std::move(operands[branch_dynamism_index]); } }); } case HloOpcode::kGetTupleElement: { int64_t operand_handle = root->operand_ids(0); PostorderDFSNode result; context.shape_index.push_front(root->tuple_index()); return PostorderDFSNode() .AddDependency(operand_handle, type, context) .AddVisit([](Literal operand) { return operand; }); } case HloOpcode::kReduce: case HloOpcode::kSort: case HloOpcode::kScatter: case HloOpcode::kReduceWindow: { const HloComputationProto* computation_proto = handle_to_computation(root->called_computation_ids(0)); return result.AddVisit( [root, computation_proto, context, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN( auto computation, HloComputation::CreateFromProto(*computation_proto, {})); return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithComputation(std::move(computation)) .WithSubshape(context.shape_index) .Evaluate(); }); } default: { if (opcode == HloOpcode::kTuple && !context.shape_index.empty()) { int64_t tuple_operand_index = context.shape_index.front(); InferenceContext tuple_operand_context = context; tuple_operand_context.shape_index.pop_front(); return PostorderDFSNode() .AddDependency(root->operand_ids(tuple_operand_index), type, tuple_operand_context) .AddVisit([](Literal operand) { return operand; }); } return result.AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeUpperBound( int64_t handle, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); if (IsInstructionOverLimit(root, context)) { return CreateAllDynamicResult(subshape, PostorderDFSNodeType::kConstantUpperBound); } switch (opcode) { case HloOpcode::kGetDimensionSize: { int64_t dimension = root->dimensions(0); int64_t operand_handle = root->operand_ids(0); const HloInstructionProto* operand_proto = handle_to_instruction(operand_handle).value(); return PostorderDFSNode().AddVisit( [operand_proto, dimension]() -> absl::StatusOr<Literal> { return LiteralUtil::CreateR0<int32_t>( operand_proto->shape().dimensions(dimension)); }); } case HloOpcode::kAbs: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit([this](Literal lower_bound, Literal upper_bound) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN(auto lower_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, lower_bound)); TF_ASSIGN_OR_RETURN(auto upper_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, upper_bound)); return evaluator.EvaluateElementwiseBinaryOp( HloOpcode::kMaximum, lower_bound_abs, upper_bound_abs); }); } case HloOpcode::kSort: { auto dfs = PostorderDFSNode(); InferenceContext dep_context = context; dep_context.shape_index = {}; if (!context.shape_index.empty()) { dfs.AddDependency(root->operand_ids(context.shape_index[0]), PostorderDFSNodeType::kConstantUpperBound, dep_context); } else { for (int64_t i = 0; i < root->operand_ids_size(); ++i) { dfs.AddDependency(root->operand_ids(i), PostorderDFSNodeType::kConstantUpperBound, dep_context); } } return dfs.AddVisit( [root, context](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { std::vector<Literal> results; results.reserve(operands.size()); for (int64_t i = 0; i < operands.size(); ++i) { auto max = LiteralUtil::MaxElement(operands[i]); results.emplace_back(
#include "xla/client/value_inference.h" #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/client/client_library.h" #include "xla/client/global_data.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/prng.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class ValueInferenceTest : public ::testing::Test { public: std::string TestName() const { return ::testing::UnitTest::GetInstance()->current_test_info()->name(); } }; class DynamismInferenceTest : public ValueInferenceTest { public: explicit DynamismInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<Literal> ComputeDynamismLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { TF_RETURN_IF_ERROR(builder->first_error()); ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal_slice, value_inference.AnalyzeIsDynamic(operand)); return literal_slice.Clone(); } absl::StatusOr<bool> ComputeDynamismScalar(XlaOp operand, XlaBuilder* builder, ShapeIndex index = {}) { TF_ASSIGN_OR_RETURN(auto literal, ComputeDynamismLiteral(operand, builder, nullptr)); return literal.Get<bool>({}, index); } se::Platform* platform_; }; TEST_F(DynamismInferenceTest, ScalarInt32Literal) { XlaBuilder b(TestName()); auto computation = ConstantR0<int32_t>(&b, 42); auto value = ComputeDynamismScalar(computation, &b); ASSERT_TRUE(value.ok()) << value.status(); EXPECT_EQ(value.value(), false); } TEST_F(DynamismInferenceTest, Iota) { XlaBuilder b(TestName()); auto computation = Iota(&b, S32, 2); EXPECT_FALSE(ComputeDynamismLiteral(computation, &b).value().Get<bool>({0})); } TEST_F(DynamismInferenceTest, TupleSimple) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto tuple = Tuple(&b, {c, p}); EXPECT_EQ(ComputeDynamismScalar(tuple, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, TupleGteKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto tuple = Tuple(&b, {c, p}); auto gte0 = GetTupleElement(tuple, 0); auto gte1 = GetTupleElement(tuple, 1); auto tuple_2 = Tuple(&b, {gte0, gte1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, PredValueUsedTwice) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto pred = Eq(c, p); auto result = Select(pred, p, c); EXPECT_EQ(ComputeDynamismScalar(result, &b, {}).value(), true); } TEST_F(DynamismInferenceTest, ReduceUsedTwice) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2}), "p0"); auto zero = ConstantR0<int32_t>(&b, 0); XlaComputation add_s32 = CreateScalarAddComputation(S32, &b); auto reduce = Reduce(p, zero, add_s32, {0}); auto pred = Eq(c, reduce); auto result = Select(pred, reduce, c); EXPECT_EQ(ComputeDynamismScalar(result, &b, {}).value(), true); } TEST_F(DynamismInferenceTest, VariadicReduce) { XlaBuilder b(TestName()); auto c = ConstantR2<int32_t>(&b, {{0, 0}}); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {1, 2}), "p0"); auto half_dynamic = ConcatInDim(&b, {c, p}, 0); XlaBuilder reduce_add("reduce_add"); auto p0 = Parameter(&reduce_add, 0, ShapeUtil::MakeScalarShape(S32), "p"); auto p1 = Parameter(&reduce_add, 1, ShapeUtil::MakeScalarShape(S32), "p"); auto p2 = Parameter(&reduce_add, 2, ShapeUtil::MakeScalarShape(S32), "p"); auto p3 = Parameter(&reduce_add, 3, ShapeUtil::MakeScalarShape(S32), "p"); auto reduce_result = p0; reduce_result = Add(reduce_result, p1); reduce_result = Add(reduce_result, p2); reduce_result = Add(reduce_result, p3); Tuple(&reduce_add, {reduce_result, reduce_result}); auto init = ConstantR0<int32_t>(&b, 0); auto variadic_reduce = Reduce(&b, {half_dynamic, half_dynamic}, {init, init}, reduce_add.Build().value(), {1}); auto result = GetTupleElement(variadic_reduce, 0); EXPECT_FALSE(ComputeDynamismLiteral(result, &b).value().Get<bool>({0})); EXPECT_TRUE(ComputeDynamismLiteral(result, &b).value().Get<bool>({1})); } TEST_F(DynamismInferenceTest, DynamicSelectorWithMixedValues) { XlaBuilder b(TestName()); auto constant_pred = ConstantR1<bool>(&b, {true}); auto dynamic_pred = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {1}), "p0"); auto concat = ConcatInDim(&b, {constant_pred, dynamic_pred}, 0); auto constant_values = ConstantR1<bool>(&b, {true, true}); auto result = Select(concat, constant_values, constant_values); EXPECT_FALSE(ComputeDynamismLiteral(result, &b).value().Get<bool>({0})); EXPECT_TRUE(ComputeDynamismLiteral(result, &b).value().Get<bool>({1})); } TEST_F(DynamismInferenceTest, ConcatSliceReshapeKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto concat = ConcatScalars(&b, {c, p}); auto slice0 = SliceInDim(concat, 0, 1, 1, 0); auto reshape0 = Reshape(slice0, {}); auto slice1 = SliceInDim(concat, 1, 2, 1, 0); auto reshape1 = Reshape(slice1, {}); auto tuple_2 = Tuple(&b, {reshape0, reshape1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, ParameterIsDynamic) { XlaBuilder b(TestName()); auto computation = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto value = ComputeDynamismScalar(computation, &b); ASSERT_TRUE(value.ok()) << value.status(); EXPECT_EQ(value.value(), true); } TEST_F(DynamismInferenceTest, UnaryOpKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto neg0 = Neg(c); auto neg1 = Neg(p); auto tuple_2 = Tuple(&b, {neg0, neg1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, ParameterWithToken) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeTupleShape({ShapeUtil::MakeTokenShape(), ShapeUtil::MakeScalarShape(S32)}), "p0"); EXPECT_EQ(ComputeDynamismScalar(p, &b, {0}).value(), true); EXPECT_EQ(ComputeDynamismScalar(p, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, BinaryOpsOrsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto add1 = Add(c, c); auto add2 = Add(p, c); auto tuple_2 = Tuple(&b, {add1, add2}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, GetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto tuple_2 = Tuple(&b, {gds0, gds1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), true); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), false); } TEST_F(DynamismInferenceTest, DynamicSliceWithConstantOperands) { XlaBuilder b(TestName()); auto constant = ConstantR1<int32_t>(&b, {0, 1, 2, 3}); auto slice_start = ConstantR0(&b, 1); auto dynamic_slice = DynamicSlice(constant, {slice_start}, {1}); EXPECT_FALSE( ComputeDynamismLiteral(dynamic_slice, &b).value().Get<bool>({0})); } TEST_F(DynamismInferenceTest, GatherWithCommonParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto operand1 = Parameter(&b, 0, indices_shape, "p1"); auto operand2 = Parameter(&b, 1, indices_shape, "p2"); auto indices = Sub(operand1, operand2); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(operand1, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, GatherWithConstantParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto data_operand = ConstantR1<int32_t>(&b, {1, 2}); auto indices = ConstantR1<int32_t>(&b, {1, 2}); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(data_operand, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, GatherWithSharedConstantParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto operand1 = ConstantR1<int32_t>(&b, {1, 2}); auto operand2 = ConstantR1<int32_t>(&b, {1, 2}); auto indices = Sub(operand1, operand2); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(operand1, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, InferThroughPad) { XlaBuilder b(TestName()); auto operand1 = ConstantR1<int32_t>(&b, {1, 2}); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); PaddingConfig padding_config; padding_config.add_dimensions()->set_edge_padding_high(1); auto pad = Pad(operand1, parameter, padding_config); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({0})); EXPECT_FALSE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({1})); EXPECT_TRUE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({2})); } TEST_F(DynamismInferenceTest, InferThroughConditionalBranchesAreSame) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 1)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Parameter(&false_builder, 0, s32_shape, "cond_param"); Tuple(&false_builder, {ConstantR0<int32_t>(&false_builder, 1)}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "p0"); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(parameter, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughCall) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); XlaBuilder call_builder("call"); Parameter(&call_builder, 0, s32_shape, "call_param"); auto call_computation = call_builder.Build().value(); XlaBuilder b(TestName()); auto constant = ConstantR0<int32_t>(&b, 3); auto call = Call(&b, call_computation, {constant}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_EQ(ComputeDynamismScalar(call, &b, {}).value(), false); } TEST_F(DynamismInferenceTest, InferThroughConditionalBranchesAreNotSame) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 1)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Parameter(&false_builder, 0, s32_shape, "cond_param"); Tuple(&false_builder, {ConstantR0<int32_t>(&false_builder, 2)}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "p0"); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(parameter, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughConditionalPredIsConstantTrueBranch) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 0)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Tuple(&false_builder, {Parameter(&false_builder, 0, s32_shape, "cond_param")}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto pred = ConstantR0<bool>(&b, true); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(pred, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughConditionalPredIsConstantFalseBranch) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 0)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Tuple(&false_builder, {Parameter(&false_builder, 0, s32_shape, "cond_param")}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto param = Parameter(&b, 0, s32_shape, "param"); auto pred = ConstantR0<bool>(&b, false); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(pred, constant, true_computation, param, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, ArgumentForwardingNestedTuple) { auto pred_shape = ShapeUtil::MakeShape(PRED, {}); auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto tuple_shape = ShapeUtil::MakeTupleShape({pred_shape, s32_shape}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder inner_true_builder("inner_true"); Parameter(&inner_true_builder, 0, s32_shape, "cond_param"); Tuple(&inner_true_builder, {ConstantR0<int32_t>(&inner_true_builder, 0)}); auto inner_true_computation = inner_true_builder.Build().value(); XlaBuilder inner_false_builder("inner_false"); Tuple(&inner_false_builder, {Parameter(&inner_false_builder, 0, s32_shape, "cond_param")}); auto inner_false_computation = inner_false_builder.Build().value(); XlaBuilder true_builder("true"); { auto param = Parameter(&true_builder, 0, tuple_shape, "param"); auto op = GetTupleElement(param, 1); auto pred = GetTupleElement(param, 0); Conditional(pred, op, inner_true_computation, op, inner_false_computation); } auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); { auto param = Parameter(&false_builder, 0, tuple_shape, "param"); auto op = GetTupleElement(param, 1); auto pred = GetTupleElement(param, 0); Conditional(pred, op, inner_true_computation, op, inner_false_computation); } auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto constant = ConstantR0<int32_t>(&b, 0); auto pred = Parameter(&b, 0, pred_shape, "param"); auto param = Tuple(&b, {pred, constant}); auto cond = Conditional(pred, param, true_computation, param, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } class UpperBoundInferenceTest : public ValueInferenceTest { public: explicit UpperBoundInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<OptionalLiteral> ComputeUpperBoundLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal, value_inference.AnalyzeConstant( operand, ValueInferenceMode::kUpperBound)); return literal; } se::Platform* platform_; }; TEST_F(UpperBoundInferenceTest, GetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto tuple_2 = Tuple(&b, {gds0, gds1}); EXPECT_EQ(ComputeUpperBoundLiteral(tuple_2, &b).value().Get<int32_t>({}, {0}), 2); EXPECT_EQ(ComputeUpperBoundLiteral(tuple_2, &b).value().Get<int32_t>({}, {1}), 3); } TEST_F(UpperBoundInferenceTest, GetDimensionSizeSub) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto sub = Sub(gds1, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(sub, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, GetDimensionSizeDiv) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto div = Div(gds1, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(div, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, SumSubtract) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto sub = Sub(gds1, gds0); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); auto add2 = Add(gds1, gds0); auto add3 = Add(sub, add2); EXPECT_EQ(ComputeUpperBoundLiteral(add3, &b).value().Get<int32_t>({}), 6); } TEST_F(UpperBoundInferenceTest, SumSubtractWithDataShuffling) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto broadcast = Broadcast(gds0, {1, 10}); auto convert = ConvertElementType(broadcast, S32); auto slice = SliceInDim(convert, 0, 1, 1, 1); gds0 = Reshape(slice, {}); auto sub = Sub(gds1, gds0); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); auto add2 = Add(gds1, gds0); auto add3 = Add(sub, add2); EXPECT_EQ(ComputeUpperBoundLiteral(add3, &b).value().Get<int32_t>({}), 6); } TEST_F(UpperBoundInferenceTest, SumSubtractEquivalentGetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto gds2 = GetDimensionSize(p, 0); auto sub = Sub(gds1, gds2); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, ParamCantInferBound) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2}, {true}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}, {}), "p1"); auto gds = GetDimensionSize(p0, 0); auto sub = Div(gds, p1); EXPECT_FALSE( ComputeUpperBoundLiteral(sub, &b).value().Get<int32_t>({}).has_value()); } TEST_F(UpperBoundInferenceTest, KeyValueSort) { XlaBuilder comparator_b("comparator"); auto p0 = Parameter(&comparator_b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); auto p1 = Parameter(&comparator_b, 1, ShapeUtil::MakeShape(S32, {}), "p1"); Parameter(&comparator_b, 2, ShapeUtil::MakeShape(S32, {}), "p2"); Parameter(&comparator_b, 3, ShapeUtil::MakeShape(S32, {}), "p3"); Compare(p0, p1, ComparisonDirection::kGe); TF_ASSERT_OK_AND_ASSIGN(auto comparator, comparator_b.Build()); int64_t elem_count = 17; XlaBuilder b(TestName()); auto param = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {elem_count}), "p0"); auto iota = Iota(&b, S32, elem_count); auto sort = Sort({param, iota}, comparator); auto gte = GetTupleElement(sort, 1); for (int64_t i = 0; i < elem_count; ++i) { auto result_first_elem = ComputeUpperBoundLiteral(gte, &b).value().Get<int32_t>({i}); EXPECT_TRUE(result_first_elem.has_value()); EXPECT_EQ(result_first_elem.value(), elem_count - 1); } } class ConstValueInferenceTest : public ValueInferenceTest { public: explicit ConstValueInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<OptionalLiteral> ComputeConstantValueLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal, value_inference.AnalyzeConstant( operand, ValueInferenceMode::kValue)); return literal; } se::Platform* platform_; }; TEST_F(ConstValueInferenceTest, ConstValuePassThroughSetBound) { XlaBuilder b(TestName()); auto p0 = ConstantR0<int32_t>(&b, 32); Shape shape = ShapeUtil::MakeShape(S32, {}); xla::Literal dynamism = xla::LiteralUtil::CreateR0<bool>(false); xla::Literal bound = xla::LiteralUtil::CreateR0<int32_t>(32); xla::Literal tuple = xla::LiteralUtil::MakeTupleOwned(std::move(bound), std::move(dynamism)); auto set_bound = CustomCall(&b, "SetBound", {p0}, shape, "", false, {}, &tuple); auto result = ComputeConstantValueLiteral(set_bound, &b).value().Get<int32_t>({}); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), 32); } TEST_F(ConstValueInferenceTest, ParamaterValuePassThroughSetBound) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); Shape shape = ShapeUtil::MakeShape(S32, {}); xla::Literal dynamism = xla::LiteralUtil::CreateR0<bool>(false); xla::Literal bound = xla::LiteralUtil::CreateR0<int32_t>(32); xla::Literal tuple = xla::LiteralUtil::MakeTupleOwned(std::move(bound), std::move(dynamism)); auto set_bound = CustomCall(&b, "SetBound", {p0}, shape, "", false, {}, &tuple); auto result = ComputeConstantValueLiteral(set_bound, &b).value().Get<int32_t>({}); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), 32); } } }
2,221
#ifndef XLA_CLIENT_LIB_ARITHMETIC_H_ #define XLA_CLIENT_LIB_ARITHMETIC_H_ #include <functional> #include <memory> #include <string> #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/xla_data.pb.h" namespace xla { using XlaOpGenerator = std::function<XlaOp(XlaOp, XlaOp)>; XlaComputation CreateScalarComputation(const std::string& name, PrimitiveType type, XlaBuilder* builder, XlaOpGenerator generator); XlaComputation CreateScalarAddComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarMultiplyComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarGeComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarMaxComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarMinComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarAndComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarOrComputation(PrimitiveType type, XlaBuilder* builder); XlaComputation CreateScalarIdentityWithZeroComputation(PrimitiveType type, XlaBuilder* builder); XlaOp Any(XlaOp predicates); XlaOp ArgMax(XlaOp input, PrimitiveType output_type, int axis); XlaOp ArgMinMax(XlaOp input, PrimitiveType output_type, int axis, bool is_min); } #endif #include "xla/client/lib/arithmetic.h" #include <cstdint> #include <memory> #include <numeric> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" namespace xla { XlaComputation CreateScalarComputation(const std::string& name, PrimitiveType type, XlaBuilder* builder, XlaOpGenerator generator) { std::unique_ptr<XlaBuilder> b; if (type == PRED) { b = builder->CreateSubBuilder(name); } else { b = builder->CreateSubBuilder( absl::StrCat(name, "_", PrimitiveType_Name(type))); } const Shape scalar = ShapeUtil::MakeShape(type, {}); auto lhs = Parameter(b.get(), 0, scalar, "lhs"); auto rhs = Parameter(b.get(), 1, scalar, "rhs"); generator(lhs, rhs); return b->BuildAndNoteError(); } XlaComputation CreateScalarAddComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "add", type, builder, [](XlaOp lhs, XlaOp rhs) { return Add(lhs, rhs); }); } XlaComputation CreateScalarMultiplyComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "mul", type, builder, [](XlaOp lhs, XlaOp rhs) { return Mul(lhs, rhs); }); } XlaComputation CreateScalarGeComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "ge", type, builder, [](XlaOp lhs, XlaOp rhs) { return Ge(lhs, rhs); }); } XlaComputation CreateScalarMaxComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "max", type, builder, [](XlaOp lhs, XlaOp rhs) { return Max(lhs, rhs); }); } XlaComputation CreateScalarMinComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "min", type, builder, [](XlaOp lhs, XlaOp rhs) { return Min(lhs, rhs); }); } XlaComputation CreateScalarAndComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "and", type, builder, [](XlaOp lhs, XlaOp rhs) { return And(lhs, rhs); }); } XlaComputation CreateScalarOrComputation(PrimitiveType type, XlaBuilder* builder) { return CreateScalarComputation( "or", type, builder, [](XlaOp lhs, XlaOp rhs) { return Or(lhs, rhs); }); } XlaComputation CreateScalarIdentityWithZeroComputation(PrimitiveType type, XlaBuilder* builder) { XlaComputation reducer = (primitive_util::IsIntegralType(type) || type == PRED) ? CreateScalarOrComputation(type, builder) : CreateScalarAddComputation(type, builder); return reducer; } XlaOp Any(XlaOp predicates) { XlaBuilder* builder = predicates.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto f = ConstantR0<bool>(builder, false); XlaComputation logical_or = CreateScalarOrComputation(PRED, builder); TF_ASSIGN_OR_RETURN(const Shape& predicates_shape, builder->GetShape(predicates)); std::vector<int64_t> all_dimensions(predicates_shape.rank()); std::iota(all_dimensions.begin(), all_dimensions.end(), 0); return Reduce(predicates, f, logical_or, all_dimensions); }); } static XlaComputation CreateMinMaxComputation(XlaBuilder* outer_builder, PrimitiveType value_type, PrimitiveType index_type, bool is_min) { auto sub_builder = outer_builder->CreateSubBuilder("minmax_func"); XlaBuilder* b = sub_builder.get(); XlaOp lhs_value = Parameter(b, 0, ShapeUtil::MakeShape(value_type, {}), "lhs_value"); XlaOp lhs_index = Parameter(b, 1, ShapeUtil::MakeShape(index_type, {}), "lhs_index"); XlaOp rhs_value = Parameter(b, 2, ShapeUtil::MakeShape(value_type, {}), "rhs_value"); XlaOp rhs_index = Parameter(b, 3, ShapeUtil::MakeShape(index_type, {}), "rhs_index"); XlaOp cmp = is_min ? Le(lhs_value, rhs_value) : Ge(lhs_value, rhs_value); XlaOp max = Select(cmp, lhs_value, rhs_value); XlaOp arg_max = Select(cmp, lhs_index, rhs_index); XlaOp eq = Eq(lhs_value, rhs_value); XlaOp tie_id = Min(lhs_index, rhs_index); arg_max = Select(eq, tie_id, arg_max); Tuple(b, {max, arg_max}); return b->BuildAndNoteError(); } XlaOp ArgMinMax(XlaOp input, PrimitiveType output_type, int axis, bool is_min) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); XlaOp value_init_value; if (is_min) { value_init_value = MaxValue(builder, input_shape.element_type()); } else { value_init_value = MinValue(builder, input_shape.element_type()); } int64_t dimension_size = input_shape.dimensions(axis); auto index_type = dimension_size <= INT32_MAX ? S32 : output_type; XlaOp index_init_value = Zero(builder, index_type); auto iota_shape = ShapeUtil::MakeShape(index_type, input_shape.dimensions()); XlaOp iota = Iota(builder, iota_shape, axis); XlaComputation reducer = CreateMinMaxComputation( builder, input_shape.element_type(), index_type, is_min); XlaOp max_argmax = Reduce(builder, {input, iota}, {value_init_value, index_init_value}, reducer, {axis}); XlaOp argmax = GetTupleElement(max_argmax, 1); if (index_type != output_type) { argmax = ConvertElementType(argmax, output_type); } return argmax; }); } XlaOp ArgMax(XlaOp input, PrimitiveType output_type, int axis) { return ArgMinMax(input, output_type, axis, false); } }
#include "xla/client/lib/arithmetic.h" #include <functional> #include <initializer_list> #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class ArithmeticTest : public ClientLibraryTestBase { public: template <typename NativeT> void TestArgMin(std::initializer_list<std::initializer_list<NativeT>> input, absl::Span<NativeT const> expected_output, int axis) { TestArgMinMax(input, expected_output, axis, true); } template <typename NativeT> void TestArgMax(std::initializer_list<std::initializer_list<NativeT>> input, absl::Span<NativeT const> expected_output, int axis) { TestArgMinMax(input, expected_output, axis, false); } private: template <typename NativeT> void TestArgMinMax( std::initializer_list<std::initializer_list<NativeT>> input, absl::Span<NativeT const> expected_output, int axis, bool is_min) { XlaBuilder builder(TestName()); XlaOp x = ConstantR2<NativeT>(&builder, input); ArgMinMax(x, primitive_util::NativeToPrimitiveType<NativeT>(), axis, is_min); ComputeAndCompareR1<NativeT>(&builder, expected_output, {}); } template <typename NativeT> void TestArgMinMaxImpl( std::initializer_list<std::initializer_list<NativeT>> input, absl::Span<NativeT const> expected_output, std::function<void(XlaOp, PrimitiveType)> MinMaxImpl) {} }; XLA_TEST_F(ArithmeticTest, ArgMinR2Axis0) { TestArgMin<int32_t>({{1, 7, 4}, {6, 3, 5}, {8, 3, 3}}, {0, 1, 2}, 0); } XLA_TEST_F(ArithmeticTest, ArgMinR2Axis1) { TestArgMin<int32_t>({{1, 7, 4}, {6, 3, 5}, {8, 3, 3}}, {0, 1, 1}, 1); } XLA_TEST_F(ArithmeticTest, ArgMaxR2Axis0) { TestArgMax<int32_t>({{1, 7, 4}, {6, 3, 5}, {8, 3, 3}}, {2, 0, 1}, 0); } XLA_TEST_F(ArithmeticTest, ArgMaxR2Axis1) { TestArgMax<int32_t>({{1, 7, 4}, {6, 3, 5}, {8, 3, 3}}, {1, 0, 0}, 1); } } }
2,222
#ifndef XLA_CLIENT_LIB_LOGDET_H_ #define XLA_CLIENT_LIB_LOGDET_H_ #include "xla/client/xla_builder.h" namespace xla { struct SignAndLogDet { XlaOp sign; XlaOp logdet; }; SignAndLogDet SLogDet(XlaOp a); XlaOp LogDet(XlaOp a); } #endif #include "xla/client/lib/logdet.h" #include <limits> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/qr.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { SignAndLogDet SLogDet(XlaOp a) { absl::StatusOr<SignAndLogDet> result = [&]() -> absl::StatusOr<SignAndLogDet> { TF_ASSIGN_OR_RETURN(Shape a_shape, a.builder()->GetShape(a)); auto qr = Qr(a); int64_t m = ShapeUtil::GetDimension(a_shape, -2); int64_t n = ShapeUtil::GetDimension(a_shape, -1); if (m != n) { return InvalidArgument( "Arguments to logdet must be (batched) square matrices, got: %s", a_shape.ToString()); } auto log_abs_det = Einsum(Log(Abs(qr.q_and_r)), "...aa->..."); auto sign_diag = Reduce( Sign(Einsum(qr.q_and_r, "...aa->...a")), One(a.builder(), a_shape.element_type()), CreateScalarMultiplyComputation(a_shape.element_type(), a.builder()), {a_shape.rank() - 2}); auto sliced_taus = SliceInMinorDims(qr.taus, {0}, {n - 1}); auto sign_taus = Reduce( Select(Ne(sliced_taus, ZerosLike(sliced_taus)), FullLike(sliced_taus, -1), FullLike(sliced_taus, 1)), One(a.builder(), a_shape.element_type()), CreateScalarMultiplyComputation(a_shape.element_type(), a.builder()), {a_shape.rank() - 2}); return SignAndLogDet{sign_diag * sign_taus, log_abs_det}; }(); if (!result.ok()) { XlaOp error = a.builder()->ReportError(result.status()); return SignAndLogDet{error, error}; } return result.value(); } XlaOp LogDet(XlaOp a) { SignAndLogDet slogdet = SLogDet(a); return Select( Ge(slogdet.sign, ZerosLike(slogdet.sign)), slogdet.logdet, FullLike(slogdet.logdet, std::numeric_limits<float>::quiet_NaN())); } }
#include "xla/client/lib/logdet.h" #include <limits> #include "absl/status/statusor.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/client/lib/matrix.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "tsl/lib/core/status_test_util.h" namespace { using LogDetTest = xla::ClientLibraryTestBase; XLA_TEST_F(LogDetTest, Simple) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a_vals({ {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }); xla::XlaOp a; auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR0<float>(1.f), xla::LiteralUtil::CreateR0<float>(14.1601f), xla::LiteralUtil::CreateR0<float>(14.1601f)); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, SimpleTriangle) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a_vals({ {4, 6, 8, 10}, {4, -39, 62, 73}, {0, 0, -146, 166}, {4, 6, 8, 320}, }); xla::XlaOp a; auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR0<float>(1.f), xla::LiteralUtil::CreateR0<float>(15.9131355f), xla::LiteralUtil::CreateR0<float>(15.9131355f)); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, SimpleBatched) { xla::XlaBuilder builder(TestName()); xla::Array3D<float> a_vals({ { {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }, {{2, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 8}, {10, 11, 12, 13}}, {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, }); xla::XlaOp a; auto a_data = CreateR3Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR1<float>({1.f, 1.f, -1.f, 0.f}), xla::LiteralUtil::CreateR1<float>( {14.1601f, 14.3092f, 2.4849f, -std::numeric_limits<float>::infinity()}), xla::LiteralUtil::CreateR1<float>( {14.1601f, 14.3092f, std::numeric_limits<float>::quiet_NaN(), -std::numeric_limits<float>::infinity()})); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, LogdetOfLargerMatricesBatched) { xla::XlaBuilder builder(TestName()); xla::Array<float> a_vals = { {{7.2393, 1.1413, 4.1883, -4.8272, 3.2831, -0.0568, -2.4776}, {0.4347, 3.4095, 1.6259, -4.7100, 1.5942, 1.4217, -2.8009}, {3.6964, 0.4882, 6.5276, -1.2128, 1.3851, 0.7417, -3.8515}, {-3.7986, -5.1188, -1.9410, 14.0205, -5.4515, 3.1831, 5.1488}, {1.5621, 3.0426, 1.4819, -4.5938, 10.1397, 4.9312, -2.8351}, {-1.5436, -0.0287, -0.1139, 4.4499, 2.5894, 6.1216, 2.7201}, {-3.7241, -2.7670, -3.8162, 4.5961, -1.7251, -0.4190, 8.6562}}, {{3.3789, -2.3607, -1.2471, 2.1503, 0.6062, -0.6057, 1.7748}, {-1.8670, 11.0947, 0.1229, 0.0599, 3.1714, -4.7941, -4.5442}, {-0.6905, -0.0829, 5.2156, 2.9528, 2.6200, 6.1638, 1.8652}, {3.0521, 2.2174, 0.7444, 10.7268, 0.6443, -2.7732, 1.6840}, {1.8479, 3.0821, 4.5671, 2.9254, 6.1338, 5.2066, 2.3662}, {-0.0360, -5.5341, 5.9687, -0.3297, 2.1174, 13.0016, 4.0118}, {0.4380, -4.6683, 3.1548, 0.0924, 0.7176, 6.4679, 6.1819}}, {{10.0487, 4.0350, -0.8471, -1.2887, -0.8172, -3.3698, 1.3191}, {4.8678, 4.6081, 0.8419, -0.2454, -3.2599, -1.2386, 2.4070}, {1.4877, 0.8362, 2.6077, 1.1782, -0.1116, 1.7130, -1.1883}, {-0.9245, -0.7435, -0.9456, 2.5936, 1.9887, -0.1324, -0.1453}, {0.2918, -0.5301, -0.8775, 1.0478, 8.9262, 2.4731, -0.4393}, {-3.5759, -1.5619, 2.4410, 1.3046, 4.2678, 7.3587, -4.0935}, {-1.1187, 0.9150, -1.8253, 0.0390, -2.5684, -4.0778, 4.1447}}}; xla::XlaOp a; auto a_data = CreateParameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR1<float>({1.f, 1.f, 1.f}), xla::LiteralUtil::CreateR1<float>({8.93788053, 6.77846303, 7.4852403}), xla::LiteralUtil::CreateR1<float>({8.93788053, 6.77846303, 7.4852403})); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } }
2,223
#include <functional> #include "absl/types/span.h" #include "xla/client/xla_builder.h" #include "xla/types.h" #ifndef XLA_CLIENT_LIB_SLICING_H_ #define XLA_CLIENT_LIB_SLICING_H_ namespace xla { XlaOp DynamicStridedSlice(XlaOp input, absl::Span<const XlaOp> base_indices, absl::Span<const int64_t> window_sizes, absl::Span<const int64_t> strides); XlaOp UpdateSlice(XlaOp x, XlaOp update, absl::Span<const int64_t> start); XlaOp SliceInMinorDims(XlaOp x, absl::Span<const int64_t> start, absl::Span<const int64_t> end); XlaOp UpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const int64_t> start); XlaOp DynamicSliceInMinorDims(XlaOp x, absl::Span<const XlaOp> starts, absl::Span<const int64_t> sizes); XlaOp DynamicUpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const XlaOp> starts); XlaOp TorchGather(XlaOp input, XlaOp index, int64_t dim, bool sparse = true); XlaOp TorchScatterDense(XlaOp input, XlaOp index, XlaOp src, int64_t dim, const std::function<XlaOp(XlaOp, XlaOp)>& combiner); XlaOp TorchIndexSelect(XlaOp input, XlaOp index, int64_t dim, int64_t batch_dims = 0); } #endif #include "xla/client/lib/slicing.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" namespace xla { XlaOp DynamicStridedSlice(XlaOp input, absl::Span<const XlaOp> base_indices, absl::Span<const int64_t> window_sizes, absl::Span<const int64_t> strides) { XlaOp sliced_input = DynamicSlice(input, base_indices, window_sizes); if (std::any_of(strides.begin(), strides.end(), [](int64_t stride) { return stride != 1; })) { sliced_input = Slice(sliced_input, std::vector<int64_t>(window_sizes.size()), window_sizes, strides); } return sliced_input; } XlaOp SliceInMinorDims(XlaOp x, absl::Span<const int64_t> start, absl::Span<const int64_t> end) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RET_CHECK(start.size() == end.size()); int64_t n_minor_dims = start.size(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); TF_RET_CHECK(n_minor_dims <= n_dims); auto major_dims = shape.dimensions().subspan( 0, n_dims - n_minor_dims); std::vector<int64_t> padded_start(n_dims, 0); std::copy(start.begin(), start.end(), padded_start.begin() + major_dims.size()); std::vector<int64_t> padded_end(n_dims); std::copy(major_dims.begin(), major_dims.end(), padded_end.begin()); std::copy(end.begin(), end.end(), padded_end.begin() + major_dims.size()); std::vector<int64_t> strides(n_dims, 1); return Slice(x, padded_start, padded_end, strides); }); } XlaOp UpdateSlice(XlaOp x, XlaOp update, absl::Span<const int64_t> start) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); const int64_t start_size = start.size(); TF_RET_CHECK(start_size == n_dims); std::vector<int32_t> start_as_int32(start.begin(), start.end()); std::vector<XlaOp> start_ops(start.size()); for (int i = 0, end = start.size(); i < end; ++i) { start_ops[i] = ConstantR0(builder, start_as_int32[i]); } return DynamicUpdateSlice(x, update, start_ops); }); } XlaOp UpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const int64_t> start) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); const int64_t n_minor_dims = start.size(); TF_RET_CHECK(n_minor_dims <= n_dims); std::vector<int64_t> padded_start(n_dims, 0); std::copy(start.begin(), start.end(), padded_start.begin() + (n_dims - n_minor_dims)); return UpdateSlice(x, update, padded_start); }); } namespace { std::vector<int64_t> ConcatVectors(absl::Span<const int64_t> xs, absl::Span<const int64_t> ys) { std::vector<int64_t> output(xs.size() + ys.size()); std::copy(xs.begin(), xs.end(), output.begin()); std::copy(ys.begin(), ys.end(), output.begin() + xs.size()); return output; } absl::StatusOr<std::vector<XlaOp>> PrependZerosInMajorDims( XlaOp x, absl::Span<const XlaOp> starts) { XlaBuilder* builder = x.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); auto zero = ConstantR0<int32_t>(builder, 0); std::vector<XlaOp> padded_starts(n_dims, zero); for (int i = 0; i < starts.size(); ++i) { padded_starts[n_dims - starts.size() + i] = starts[i]; } return padded_starts; } } XlaOp DynamicSliceInMinorDims(XlaOp x, absl::Span<const XlaOp> starts, absl::Span<const int64_t> sizes) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); int64_t n_minor_dims = starts.size(); TF_RET_CHECK(n_minor_dims == sizes.size()); TF_RET_CHECK(n_minor_dims <= n_dims); auto major_dims = shape.dimensions().subspan( 0, n_dims - sizes.size()); TF_ASSIGN_OR_RETURN(auto padded_starts, PrependZerosInMajorDims(x, starts)); auto padded_sizes = ConcatVectors(major_dims, sizes); return DynamicSlice(x, padded_starts, padded_sizes); }); } XlaOp DynamicUpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const XlaOp> starts) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto padded_starts, PrependZerosInMajorDims(x, starts)); return DynamicUpdateSlice(x, update, padded_starts); }); } XlaOp TorchGather(XlaOp input, XlaOp index, int64_t dim, bool sparse) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); if (ShapeUtil::ElementHasBitWidth(index_shape, 64) && input_shape.dimensions(dim) < std::numeric_limits<uint32_t>::max()) { index = ConvertElementType(index, U32); index_shape.set_element_type(U32); } if (index_shape.rank() == 1) { return TorchIndexSelect(input, index, 0); } if (!sparse) { std::vector<int64_t> index_broadcast_dims; std::vector<int64_t> input_broadcast_dims; std::vector<int64_t> sizes; sizes.reserve(index_shape.rank()); for (int64_t i = 0; i < index_shape.rank(); ++i) { if (i < dim) { input_broadcast_dims.push_back(i); index_broadcast_dims.push_back(i); } else if (i == dim) { sizes.push_back(input_shape.dimensions(i)); input_broadcast_dims.push_back(i); index_broadcast_dims.push_back(i + 1); } else { input_broadcast_dims.push_back(i + 1); index_broadcast_dims.push_back(i + 1); } sizes.push_back(index_shape.dimensions(i)); } auto mask = Eq( BroadcastInDim(index, sizes, index_broadcast_dims), Iota(builder, ShapeUtil::MakeShape(index_shape.element_type(), sizes), dim)); auto masked_input = Select( mask, BroadcastInDim(input, sizes, input_broadcast_dims), Zeros(builder, ShapeUtil::MakeShape(input_shape.element_type(), sizes))); return Reduce(masked_input, Zero(builder, input_shape.element_type()), CreateScalarIdentityWithZeroComputation( input_shape.element_type(), builder), {dim}); } ShapeUtil::AppendMajorDimension(1, &index_shape); std::vector<XlaOp> to_concat; to_concat.reserve(input_shape.rank()); for (int64_t i = 0; i < input_shape.rank(); ++i) { if (i == dim) { to_concat.push_back(Reshape(index, index_shape.dimensions())); } else { to_concat.push_back(Iota(builder, index_shape, i)); } } XlaOp gather_indices = ConcatInDim(builder, to_concat, input_shape.rank()); std::vector<int64_t> slice_sizes(input_shape.rank(), 1); GatherDimensionNumbers gather_dnums; gather_dnums.set_index_vector_dim(input_shape.rank()); for (int64_t i = 0; i < input_shape.rank(); ++i) { gather_dnums.add_collapsed_slice_dims(i); gather_dnums.add_start_index_map(i); } return Gather(input, gather_indices, gather_dnums, slice_sizes); }); } XlaOp TorchScatterDense(XlaOp input, XlaOp index, XlaOp src, int64_t dim, const std::function<XlaOp(XlaOp, XlaOp)>& combiner) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); std::vector<int64_t> index_broadcast_dims; std::vector<int64_t> sizes; const auto rank = index_shape.rank(); sizes.reserve(rank + 1); for (int64_t i = 0; i < index_shape.rank(); ++i) { if (i < dim) { index_broadcast_dims.push_back(i); } else { if (i == dim) { sizes.push_back(input_shape.dimensions(i)); } index_broadcast_dims.push_back(i + 1); } sizes.push_back(index_shape.dimensions(i)); } auto mask = Eq(BroadcastInDim(index, sizes, index_broadcast_dims), Iota(builder, ShapeUtil::MakeShape(index_shape.element_type(), sizes), dim)); auto masked_src = Select(mask, BroadcastInDim(src, sizes, index_broadcast_dims), Zeros(builder, ShapeUtil::MakeShape(input_shape.element_type(), sizes))); return combiner( input, Reduce(masked_src, Zero(builder, input_shape.element_type()), CreateScalarComputation("reducer", input_shape.element_type(), builder, combiner), {dim + 1})); }); } XlaOp TorchIndexSelect(XlaOp input, XlaOp index, int64_t dim, int64_t batch_dims) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); if (dim < batch_dims) { return InvalidArgument( "Gather dim must be greater than or equal to the number of batch " "dims"); } if (ShapeUtil::ElementHasBitWidth(index_shape, 64) && input_shape.dimensions(dim) < std::numeric_limits<uint32_t>::max()) { index = ConvertElementType(index, U32); index_shape.set_element_type(U32); } std::vector<int64_t> slice_sizes = SpanToVector(input_shape.dimensions()); GatherDimensionNumbers gather_dnums; gather_dnums.set_index_vector_dim(index_shape.rank()); if (batch_dims > 0) { ShapeUtil::AppendMajorDimension(1, &index_shape); std::vector<XlaOp> to_concat; to_concat.reserve(batch_dims + 1); xla::Shape iota_shape = xla::ShapeUtil::MakeStaticShape(index_shape); for (int64_t batch_dim = 0; batch_dim < batch_dims; ++batch_dim) { to_concat.push_back(Iota(builder, iota_shape, batch_dim)); } to_concat.push_back(Reshape(index, index_shape.dimensions())); index = ConcatInDim(builder, to_concat, gather_dnums.index_vector_dim()); } for (int64_t i = 0; i < input_shape.rank(); ++i) { if (i < batch_dims || i == dim) { slice_sizes[i] = std::min<int64_t>(slice_sizes[i], 1); gather_dnums.add_collapsed_slice_dims(i); gather_dnums.add_start_index_map(i); } else { if (i < dim) { gather_dnums.add_offset_dims(i); } else { gather_dnums.add_offset_dims(i + gather_dnums.index_vector_dim() - (1 + batch_dims)); } } } return Gather(input, index, gather_dnums, slice_sizes); }); } }
#include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" namespace xla { namespace { using SlicingTest = xla::ClientLibraryTestBase; xla::Array2D<float> BValsRight() { return {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}; } xla::Array2D<float> BValsLeft() { return {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}; } xla::Array2D<float> AValsFull() { return {{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}}; } xla::Array3D<float> BatchedAValsFull() { return {{ {2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }}; } XLA_TEST_F(SlicingTest, Simple2dLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, x, y; auto a_data = CreateR2Parameter<float>(BValsRight(), 0, "a", &builder, &a); auto x_data = CreateR0Parameter<int>(2, 1, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 2, "y", &builder, &y); DynamicSliceInMinorDims(a, {x, y}, {1, 1}); ComputeAndCompareR2<float>(&builder, {{10}}, {a_data.get(), x_data.get(), y_data.get()}, xla::ErrorSpec(1e-2, 1e-2)); } XLA_TEST_F(SlicingTest, Simple3dLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto index_data = CreateR0Parameter<int>(1, 1, "index", &builder, &index); DynamicSliceInMinorDims(a, {index, xla::ConstantR0<int32_t>(&builder, 0)}, {1, 4}); ComputeAndCompareR3<float>(&builder, {{{3, 6, 0, 1}}, {{24, 61, 82, 48}}}, {a_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, NestedLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto index_data = CreateR0Parameter<int>(1, 1, "index", &builder, &index); auto slice = DynamicSliceInMinorDims( a, {index, xla::ConstantR0<int32_t>(&builder, 0)}, {1, 4}); DynamicSliceInMinorDims(slice, {xla::ConstantR0<int32_t>(&builder, 0), index}, {1, 1}); ComputeAndCompareR3<float>(&builder, {{{6}}, {{61}}}, {a_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, SimpleSliceUpdate) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, b, x, y; auto a_data = CreateR2Parameter<float>(AValsFull(), 0, "a", &builder, &a); auto b_data = CreateR2Parameter<float>({{9, 1, -10}}, 1, "b", &builder, &b); auto x_data = CreateR0Parameter<int>(2, 2, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 3, "y", &builder, &y); DynamicUpdateSliceInMinorDims(a, b, {x, y}); xla::Array2D<float> expected( {{{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 9, 1, -10}, {5, 8, 10, 11}}}); ComputeAndCompareR2<float>( &builder, expected, {a_data.get(), b_data.get(), x_data.get(), y_data.get()}); } XLA_TEST_F(SlicingTest, NestedSliceUpdate) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, b, x, y; auto a_data = CreateR2Parameter<float>(AValsFull(), 0, "a", &builder, &a); auto b_data = CreateR2Parameter<float>({{1, -10}}, 1, "b", &builder, &b); auto x_data = CreateR0Parameter<int>(2, 2, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 3, "y", &builder, &y); auto z = xla::ConstantR0<int32_t>(&builder, 0); auto slice = DynamicSliceInMinorDims(a, {x, z}, {1, 4}); auto inner = DynamicUpdateSliceInMinorDims(slice, b, {z, y}); DynamicUpdateSlice(a, inner, {x, z}); xla::Array2D<float> expected( {{{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 1, -10, 0}, {5, 8, 10, 11}}}); ComputeAndCompareR2<float>( &builder, expected, {a_data.get(), b_data.get(), x_data.get(), y_data.get()}); } XLA_TEST_F(SlicingTest, TorchGatherSparse) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 0}, {1, 0}}, 1, "index", &builder, &index); TorchGather(input, index, 1); ComputeAndCompareR2<int>(&builder, {{1, 1}, {4, 3}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchGatherDense) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 0}, {1, 0}}, 1, "index", &builder, &index); TorchGather(input, index, 1, false); ComputeAndCompareR2<int>(&builder, {{1, 1}, {4, 3}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchScatterDense) { xla::XlaBuilder builder(TestName()); xla::XlaOp src, index, input; auto input_data = CreateR2Parameter<int>({{0, 0, 0}, {0, 0, 0}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{1, 0}, {1, 2}}, 1, "index", &builder, &index); auto src_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 2, "src", &builder, &src); TorchScatterDense(input, index, src, 1, [](XlaOp l, XlaOp r) { return l + r; }); ComputeAndCompareR2<int>( &builder, {{2, 1, 0}, {0, 3, 4}}, {input_data.get(), index_data.get(), src_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn0) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0.1427, 0.0231, -0.5414, -1.0009}, {-0.4664, 0.2647, -0.1228, -1.1068}, {-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 2}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>( &builder, {{0.1427, 0.0231, -0.5414, -1.0009}, {-1.1734, -0.6571, 0.7230, -0.6004}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn0Size1) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>( {{-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 0, 0, 0, 0, 0}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>(&builder, {{-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn1) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0.1427, 0.0231, -0.5414, -1.0009}, {-0.4664, 0.2647, -0.1228, -1.1068}, {-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 2}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1); ComputeAndCompareR2<float>( &builder, {{0.1427, -0.5414}, {-0.4664, -0.1228}, {-1.1734, 0.7230}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, EmptyIndexSelect) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0}, {0}, {0}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1); ComputeAndCompareR2<float>(&builder, {{}, {}, {}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, DoubleEmptyIndexSelect) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; Literal l(ShapeUtil::MakeShape(F32, {0, 1, 2, 0})); Literal i(ShapeUtil::MakeShape(S32, {0})); TF_ASSERT_OK_AND_ASSIGN( auto input_data, CreateParameterAndTransferLiteral(0, l, "input", &builder, &input)); TF_ASSERT_OK_AND_ASSIGN( auto index_data, CreateParameterAndTransferLiteral(1, i, "index", &builder, &index)); TorchIndexSelect(input, index, 0); ComputeAndCompareLiteral(&builder, l, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, EmptyIndexSelectNonZero) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; Literal l(ShapeUtil::MakeShape(F32, {0, 2})); TF_ASSERT_OK_AND_ASSIGN( auto input_data, CreateParameterAndTransferLiteral(0, l, "input", &builder, &input)); auto index_data = CreateR1Parameter<int>({0, 0, 0}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>(&builder, {{0.0f, 0.0f}, {0.0f, 0.0f}, {0.0f, 0.0f}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, BatchTorchIndexSelectOn0) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR3Parameter<int>({{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}}, {{3, 2, 1, 0}, {7, 6, 5, 4}, {11, 10, 9, 8}}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 2}, {1, 2}}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1, 1); ComputeAndCompareR3<int>( &builder, {{{0, 1, 2, 3}, {8, 9, 10, 11}}, {{7, 6, 5, 4}, {11, 10, 9, 8}}}, {input_data.get(), index_data.get()}); } } }
2,224
#ifndef XLA_CLIENT_LIB_QR_H_ #define XLA_CLIENT_LIB_QR_H_ #include "xla/client/xla_builder.h" #include "xla/xla_data.pb.h" namespace xla { struct QrDecomposition { XlaOp q_and_r; XlaOp taus; }; QrDecomposition Qr(XlaOp a); XlaOp ProductOfElementaryHouseholderReflectors(XlaOp a, XlaOp taus); void QrExplicit(XlaOp a, bool full_matrices, XlaOp& q, XlaOp& r); } #endif #include "xla/client/lib/qr.h" #include <algorithm> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { QrDecomposition Qr(XlaOp a) { auto result = [&]() -> absl::StatusOr<QrDecomposition> { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int num_dims = a_shape.rank(); if (num_dims < 2) { return InvalidArgument( "Arguments to QR must have rank >= 2: got shape %s", a_shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); std::vector<int64_t> taus_dims(a_shape.dimensions().begin(), a_shape.dimensions().end()); taus_dims.pop_back(); taus_dims.back() = std::min(m, n); auto taus_shape = ShapeUtil::MakeShape(a_shape.element_type(), taus_dims); Shape qr_shape = ShapeUtil::MakeTupleShape({a_shape, taus_shape}); auto qr = CustomCall(a.builder(), "Qr", {a}, qr_shape); a = GetTupleElement(qr, 0); auto taus = GetTupleElement(qr, 1); return QrDecomposition{a, taus}; }(); if (!result.ok()) { XlaOp error = a.builder()->ReportError(result.status()); return QrDecomposition{error, error}; } return result.value(); } XlaOp ProductOfElementaryHouseholderReflectors(XlaOp a, XlaOp taus) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); TF_ASSIGN_OR_RETURN(Shape taus_shape, builder->GetShape(taus)); if (a_shape.rank() < 2) { return InvalidArgument( "Matrix `a` must have >= 2 dimensions: got shape %s", a_shape.ToString()); } if (taus_shape.rank() + 1 != a_shape.rank()) { return InvalidArgument( "Matrix `taus` must have one fewer dimension than `a`: got shapes " "%s and %s", taus_shape.ToString(), a_shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); if (m < n) { return InvalidArgument( "Argument to product of elementary Householder " "reflectors must have m >= n, got shape %s", a_shape.ToString()); } absl::Span<const int64_t> a_batch_dims = absl::MakeConstSpan(a_shape.dimensions().begin(), a_shape.dimensions().begin() + a_shape.rank() - 2); absl::Span<const int64_t> taus_batch_dims = absl::MakeConstSpan( taus_shape.dimensions().begin(), taus_shape.dimensions().begin() + taus_shape.rank() - 1); const int64_t k = ShapeUtil::GetDimension(taus_shape, -1); if (a_shape.element_type() != taus_shape.element_type() || a_batch_dims != taus_batch_dims || k > n) { return InvalidArgument("Invalid shape for `taus`, got a=%s and taus=%s", taus_shape.ToString(), a_shape.ToString()); } return CustomCall(a.builder(), "ProductOfElementaryHouseholderReflectors", {a, taus}, a_shape); }); } void QrExplicit(XlaOp a, bool full_matrices, XlaOp& q, XlaOp& r) { absl::StatusOr<Shape> a_shape_or = a.builder()->GetShape(a); if (!a_shape_or.ok()) { q = a.builder()->ReportError(a_shape_or.status()); r = q; return; } Shape a_shape = a_shape_or.value(); const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); const int64_t p = std::min(m, n); auto qr = Qr(a); if (full_matrices) { XlaOp t; if (m < n) { t = SliceInMinorDims(qr.q_and_r, {0, 0}, {m, m}); } else { t = PadInDim(qr.q_and_r, Zero(a.builder(), a_shape.element_type()), a_shape.dimensions_size() - 1, 0, m - n); } q = ProductOfElementaryHouseholderReflectors(t, qr.taus); r = UpperTriangle(qr.q_and_r); } else { XlaOp t; if (m < n) { t = SliceInMinorDims(qr.q_and_r, {0, 0}, {m, m}); } else { t = qr.q_and_r; } q = ProductOfElementaryHouseholderReflectors(t, qr.taus); q = SliceInMinorDims(q, {0, 0}, {m, p}); r = UpperTriangle(SliceInMinorDims(qr.q_and_r, {0, 0}, {p, n})); } } }
#include "xla/client/lib/qr.h" #include "absl/status/statusor.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/matrix.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace { using QrTest = xla::ClientLibraryTestBase; XLA_TEST_F(QrTest, Simple) { xla::Array2D<float> data({ {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }); for (bool full_matrices : {false, true}) { for (int64_t m : {3, 4}) { for (int64_t n : {3, 4}) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, q, r; xla::Array<float> a_vals = data.Slice({0, 0}, {m, n}); auto a_data = CreateParameter<float>(a_vals, 0, "a", &builder, &a); xla::QrExplicit(a, full_matrices, q, r); xla::BatchDot(q, r, xla::PrecisionConfig::HIGHEST); TF_ASSERT_OK_AND_ASSIGN(xla::Shape q_shape, builder.GetShape(q)); TF_ASSERT_OK_AND_ASSIGN(xla::Shape r_shape, builder.GetShape(r)); EXPECT_EQ(q_shape, xla::ShapeUtil::MakeShape( xla::F32, {m, full_matrices ? m : std::min(m, n)})); EXPECT_EQ(r_shape, xla::ShapeUtil::MakeShape( xla::F32, {full_matrices ? m : std::min(m, n), n})); ComputeAndCompare<float>(&builder, a_vals, {a_data.get()}, xla::ErrorSpec(1e-4, 1e-4)); } } } } XLA_TEST_F(QrTest, ZeroDiagonal) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a_vals({ {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, }); xla::XlaOp a, q, r; auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a); xla::QrExplicit(a, true, q, r); xla::BatchDot(q, r, xla::PrecisionConfig::HIGHEST); ComputeAndCompareR2<float>(&builder, a_vals, {a_data.get()}, xla::ErrorSpec(1e-4, 1e-4)); } XLA_TEST_F(QrTest, SimpleBatched) { xla::XlaBuilder builder(TestName()); xla::Array3D<float> a_vals({ { {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }, }); xla::XlaOp a, q, r; auto a_data = CreateR3Parameter<float>(a_vals, 0, "a", &builder, &a); xla::QrExplicit(a, true, q, r); xla::BatchDot(q, r, xla::PrecisionConfig::HIGHEST); ComputeAndCompareR3<float>(&builder, a_vals, {a_data.get()}, xla::ErrorSpec(1e-4, 1e-4)); } XLA_TEST_F(QrTest, SubnormalComplex) { xla::Array2D<xla::complex64> a_vals({ {xla::complex64(4e-20, 5e-23), 6, 80}, {0, 45, 54}, {0, 54, 146}, }); xla::XlaBuilder builder(TestName()); xla::XlaOp a, q, r; auto a_data = CreateParameter<xla::complex64>(a_vals, 0, "a", &builder, &a); xla::QrExplicit(a, true, q, r); xla::BatchDot(q, r, xla::PrecisionConfig::HIGHEST); ComputeAndCompare<xla::complex64>(&builder, a_vals, {a_data.get()}, xla::ErrorSpec(1e-4, 1e-4)); } XLA_TEST_F(QrTest, DuplicateHouseholderExpansion) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a0_vals({ {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, }); xla::Array2D<float> a1_vals({ {1, 0}, {0, 1}, {1, 0}, }); xla::XlaOp a0, q0, r0; auto a0_data = CreateR2Parameter<float>(a0_vals, 0, "a0", &builder, &a0); xla::QrExplicit(a0, true, q0, r0); xla::XlaOp a1, q1, r1; auto a1_data = CreateR2Parameter<float>(a1_vals, 1, "a1", &builder, &a1); xla::QrExplicit(a1, true, q1, r1); xla::BatchDot(q1, r1, xla::PrecisionConfig::HIGHEST); ComputeAndCompareR2<float>(&builder, a1_vals, {a0_data.get(), a1_data.get()}, xla::ErrorSpec(1e-4, 1e-4)); } }
2,225
#ifndef XLA_CLIENT_LIB_MATRIX_H_ #define XLA_CLIENT_LIB_MATRIX_H_ #include <array> #include <optional> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/xla_builder.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { XlaOp IdentityMatrix(XlaBuilder* builder, PrimitiveType type, int64_t m, int64_t n); XlaOp GetDiagonalMask(XlaOp x, int diagonal = 0); XlaOp GetMatrixDiagonal(XlaOp x, int k = 0); XlaOp GetMatrixDiagonalViaGather(XlaOp x, int k = 0); XlaOp SetMatrixDiagonal(XlaOp matrix, XlaOp diag, int k = 0); XlaOp TriangleMask(XlaOp x, int diagonal); XlaOp Triangle(XlaOp x, bool lower); XlaOp UpperTriangle(XlaOp x); XlaOp LowerTriangle(XlaOp x); XlaOp Symmetrize(XlaOp x, bool lower); xla::XlaOp BatchDot( xla::XlaOp x, xla::XlaOp y, xla::PrecisionConfig::Precision precision = xla::PrecisionConfig::DEFAULT, std::optional<PrimitiveType> preferred_element_type = std::nullopt); xla::XlaOp BatchDot( xla::XlaOp x, bool transpose_x, xla::XlaOp y, bool transpose_y, xla::PrecisionConfig::Precision precision = xla::PrecisionConfig::DEFAULT, std::optional<PrimitiveType> preferred_element_type = std::nullopt, bool grad_x = false, bool grad_y = false); absl::StatusOr<std::array<std::vector<int64_t>, 3>> ParseEinsumString( absl::string_view einsum_config, int64_t x_rank, int64_t y_rank); std::string NormalizeEinsumString(absl::string_view einsum_config); xla::XlaOp Einsum( xla::XlaOp x, xla::XlaOp y, absl::string_view einsum_config, xla::PrecisionConfig::Precision precision = xla::PrecisionConfig::DEFAULT, std::optional<PrimitiveType> preferred_element_type = std::nullopt, bool grad_x = false, bool grad_y = false); xla::XlaOp Einsum( xla::XlaOp x, absl::string_view einsum_config, xla::PrecisionConfig::Precision precision = xla::PrecisionConfig::DEFAULT); xla::XlaOp Einsum( xla::XlaOp x, absl::Span<const int64_t> x_config, xla::XlaOp y, absl::Span<const int64_t> y_config, absl::Span<const int64_t> output_config, xla::PrecisionConfig::Precision precision = xla::PrecisionConfig::DEFAULT, std::optional<PrimitiveType> preferred_element_type = std::nullopt, bool grad_x = false, bool grad_y = false); xla::XlaOp TransposeInMinorDims(xla::XlaOp x); xla::XlaOp MaybeTransposeInMinorDims(xla::XlaOp x, bool transpose); } #endif #include "xla/client/lib/matrix.h" #include <algorithm> #include <array> #include <cstdint> #include <map> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { XlaOp IdentityMatrix(XlaBuilder* builder, PrimitiveType type, int64_t m, int64_t n) { auto a = Iota(builder, U32, m); auto b = Iota(builder, U32, n); auto indicator = Eq(a, Broadcast(b, {m}), {0}); return ConvertElementType(indicator, type); } XlaOp GetDiagonalMask(XlaOp x, int diagonal) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); auto m = shape.dimensions(n_dims - 2); auto n = shape.dimensions(n_dims - 1); absl::Span<const int64_t> major_dims = shape.dimensions().subspan(0, n_dims - 2); auto a = Iota(builder, S32, n); auto b = Iota(builder, S32, m) + ConstantR0WithType(builder, S32, diagonal); auto indicator = Eq(b, Broadcast(a, {m}), {0}); auto mask = Broadcast(indicator, major_dims); return mask; }); } XlaOp GetMatrixDiagonal(XlaOp x, int k) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); if (k <= -m || k >= n) { auto zero_size_shape = shape; zero_size_shape.DeleteDimension(n_dims - 1); zero_size_shape.set_dimensions(n_dims - 2, 0); return ConstantLiteral(builder, Literal{zero_size_shape}); } auto mask = GetDiagonalMask(x, k); int64_t reduce_dim = n_dims - 1; if ((k == 0 && m >= n) || k < 0) { reduce_dim = n_dims - 2; } auto result = Reduce( Select(mask, x, Zeros(builder, shape)), ScalarLike(x, 0), CreateScalarIdentityWithZeroComputation(shape.element_type(), builder), {reduce_dim}); if (k == 0) { return result; } return SliceInMinorDims(result, {0}, {k > 0 ? std::min(m, n - k) : std::min(n, m + k)}); }); } XlaOp GetMatrixDiagonalViaGather(XlaOp x, int k) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); const int64_t num_index_dims = 2; const int64_t axis = n_dims - num_index_dims; const int64_t diag_len = std::max(std::min(m + std::min(k, 0), n - std::max(k, 0)), int64_t{0}); XlaOp diag_base_indices = BroadcastInDim(Iota(builder, S32, diag_len), {diag_len, num_index_dims}, {0}); XlaOp diag_offset = Broadcast(ConstantR1<int>(builder, {std::max(-k, 0), std::max(k, 0)}), {diag_len}); XlaOp start_indices = Add(diag_base_indices, diag_offset); xla::GatherDimensionNumbers dim_numbers; std::vector<int64_t> slice_sizes; slice_sizes.reserve(n_dims); for (int64_t i = 0; i < n_dims; i++) { int64_t window_bound; if (axis <= i) { dim_numbers.add_collapsed_slice_dims(i); dim_numbers.add_start_index_map(i); window_bound = (shape.dimensions(i) != 0) ? 1 : 0; } else { dim_numbers.add_offset_dims(i); window_bound = shape.dimensions(i); } slice_sizes.push_back(window_bound); } dim_numbers.set_index_vector_dim(1); return Gather(x, start_indices, dim_numbers, slice_sizes, true); }); } XlaOp SetMatrixDiagonal(XlaOp matrix, XlaOp diag, int k) { XlaBuilder* builder = matrix.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(matrix)); TF_ASSIGN_OR_RETURN(Shape diag_shape, builder->GetShape(diag)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); const int64_t d = diag_shape.dimensions(n_dims - 2); std::vector<int64_t> broadcast_dims(n_dims - 1); absl::c_iota(broadcast_dims, 0); int64_t pad_high = m - d; if (k < 0) { ++(broadcast_dims.back()); pad_high = n - d; } if (pad_high != 0) { PaddingConfig padding_config; for (int64_t i = 0; i < diag_shape.rank() - 1; ++i) { auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(0); dims->set_interior_padding(0); dims->set_edge_padding_high(0); } auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(0); dims->set_interior_padding(0); dims->set_edge_padding_high(pad_high); diag = Pad(diag, ScalarLike(diag, 0), padding_config); } return Select(GetDiagonalMask(matrix, k), BroadcastInDim(diag, shape.dimensions(), broadcast_dims), matrix); }); } XlaOp TriangleMask(XlaOp x, int diagonal) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); absl::Span<const int64_t> major_dims = shape.dimensions().subspan(0, n_dims - 2); auto a = Iota(builder, S32, n); auto b = Iota(builder, S32, m) + ConstantR0<int32_t>(builder, diagonal); XlaOp indicator; indicator = Ge(b, Broadcast(a, {m}), {0}); return Broadcast(indicator, major_dims); }); } XlaOp Triangle(XlaOp x, bool lower) { return lower ? Select(TriangleMask(x, 0), x, ZerosLike(x)) : Select(TriangleMask(x, -1), ZerosLike(x), x); } XlaOp UpperTriangle(XlaOp x) { return Triangle(x, false); } XlaOp LowerTriangle(XlaOp x) { return Triangle(x, true); } XlaOp Symmetrize(XlaOp x, bool lower) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); if (shape.rank() < 2) { return InvalidArgument( "Argument to symmetrize must have >= 2 dimensions, got %s", shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(shape, -2); const int64_t n = ShapeUtil::GetDimension(shape, -1); if (m != n) { return InvalidArgument( "The two most minor dimensions of the argument to symmetrize must be " "equal size, got %s", shape.ToString()); } auto mask = lower ? TriangleMask(x, 0) : Not(TriangleMask(x, -1)); if (primitive_util::IsComplexType(shape.element_type())) { auto re = Select(mask, Real(x), TransposeInMinorDims(Real(x))); auto im_mask = lower ? TriangleMask(x, -1) : Not(TriangleMask(x, 0)); auto im = Select(im_mask, Imag(x), ZerosLike(Imag(x))); im = Select(mask, im, -TransposeInMinorDims(im)); return Complex(re, im); } else { return Select(mask, x, TransposeInMinorDims(x)); } }); } namespace { std::optional<std::array<std::vector<int64_t>, 3>> EinsumDiagonalLabels( absl::Span<const int64_t> config) { std::vector<int64_t> unique_labels; std::vector<int64_t> reduce_dims; std::vector<int64_t> broadcast_dims; for (auto label = config.begin(); label != config.end(); ++label) { auto first_label = absl::c_find(config, *label); auto dim = label - config.begin(); if (first_label == label) { unique_labels.push_back(*label); broadcast_dims.push_back(dim); } else { reduce_dims.push_back(dim); } } if (unique_labels.size() == config.size()) { return std::nullopt; } return {{unique_labels, reduce_dims, broadcast_dims}}; } xla::XlaOp EinsumDiagonalMask(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); Shape iota_shape = ShapeUtil::MakeShape(S32, x_shape.dimensions()); XlaOp mask = ConstantR0(builder, true); for (auto label = config.begin(); label != config.end(); ++label) { const int64_t dim = label - config.begin(); auto first_label = absl::c_find(config, *label); if (first_label != label) { const int64_t first_dim = first_label - config.begin(); mask = And(mask, Eq(Iota(builder, iota_shape, first_dim), Iota(builder, iota_shape, dim))); } } return Select(mask, x, ZerosLike(x)); }); } xla::XlaOp EinsumDiagonal(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto labels = EinsumDiagonalLabels(config); if (!labels) { return x; } auto zero = ScalarLike(x, 0); TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); return Reduce(EinsumDiagonalMask(x, config), zero, CreateScalarIdentityWithZeroComputation( x_shape.element_type(), builder), labels->at(1)); }); } xla::XlaOp EinsumInverseDiagonal(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto labels = EinsumDiagonalLabels(config); if (!labels) { return x; } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); std::vector<int64_t> broadcast_sizes; int64_t x_dim = 0; for (auto label = config.begin(); label != config.end(); ++label) { auto first_label = absl::c_find(config, *label); if (first_label == label) { broadcast_sizes.push_back(x_shape.dimensions(x_dim)); ++x_dim; } else { broadcast_sizes.push_back( broadcast_sizes[first_label - config.begin()]); } } x = BroadcastInDim(x, broadcast_sizes, labels->at(2)); return EinsumDiagonalMask(x, config); }); } } namespace { template <typename C> void DeleteDimsFromContainer(absl::Span<const int64_t> to_delete, Shape* shape, C* batch_dims, C* contracting_dims) { if (to_delete.empty()) { return; } for (int64_t i = to_delete.size() - 1; i >= 0; --i) { int64_t dim = to_delete[i]; shape->DeleteDimension(dim); for (auto& b : *batch_dims) { if (b > dim) { --b; } } for (auto& c : *contracting_dims) { if (c > dim) { --c; } } } } } xla::XlaOp Einsum(xla::XlaOp x, absl::Span<const int64_t> x_config, xla::XlaOp y, absl::Span<const int64_t> y_config, absl::Span<const int64_t> output_config, xla::PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto x_diagonal_labels = EinsumDiagonalLabels(x_config); if (x_diagonal_labels) { return Einsum(EinsumDiagonal(x, x_config), x_diagonal_labels->at(0), y, y_config, output_config, precision, preferred_element_type, grad_x, grad_y); } auto y_diagonal_labels = EinsumDiagonalLabels(y_config); if (y_diagonal_labels) { return Einsum(x, x_config, EinsumDiagonal(y, y_config), y_diagonal_labels->at(0), output_config, precision, preferred_element_type, grad_x, grad_y); } auto output_diagonal_labels = EinsumDiagonalLabels(output_config); if (output_diagonal_labels) { return EinsumInverseDiagonal( Einsum(x, x_config, y, y_config, output_diagonal_labels->at(0), precision, preferred_element_type, grad_x, grad_y), output_config); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); TF_ASSIGN_OR_RETURN(Shape y_shape, builder->GetShape(y)); const int64_t x_rank = x_config.size(); const int64_t y_rank = y_config.size(); const int64_t output_rank = output_config.size(); absl::flat_hash_set<int64_t> x_map; absl::flat_hash_set<int64_t> y_map; absl::flat_hash_set<int64_t> output_map; for (auto d : x_config) { x_map.insert(d); } for (auto d : y_config) { y_map.insert(d); } for (auto d : output_config) { output_map.insert(d); } DotDimensionNumbers dnums; auto is_batch_dim = [&](int64_t d) { return x_map.contains(d) && y_map.contains(d) && output_map.contains(d); }; auto is_contracting = [&](int64_t d) { return x_map.contains(d) && y_map.contains(d); }; auto rhs_dimension_number = [&](int64_t d) { return absl::c_find(y_config, d) - y_config.begin(); }; absl::InlinedVector<int64_t, 8> rhs_outer_dims; absl::InlinedVector<int64_t, 8> lhs_outer_dims; absl::InlinedVector<int64_t, 8> rhs_delete_dims; absl::InlinedVector<int64_t, 8> lhs_delete_dims; for (int64_t i = 0; i < x_rank; ++i) { auto dim_name = x_config[i]; const int64_t rhs_dim = rhs_dimension_number(dim_name); if (is_batch_dim(dim_name)) { if (x_shape.dimensions(i) == y_shape.dimensions(rhs_dim)) { dnums.add_lhs_batch_dimensions(i); dnums.add_rhs_batch_dimensions(rhs_dim); } else if (x_shape.dimensions(i) == 1) { rhs_outer_dims.push_back(rhs_dim); lhs_delete_dims.push_back(i); } else { lhs_outer_dims.push_back(i); rhs_delete_dims.push_back(rhs_dim); } } else if (is_contracting(dim_name)) { if (x_shape.dimensions(i) == y_shape.dimensions(rhs_dim)) { dnums.add_lhs_contracting_dimensions(i); dnums.add_rhs_contracting_dimensions(rhs_dim); } else if (x_shape.dimensions(i) == 1) { rhs_outer_dims.push_back(rhs_dim); lhs_delete_dims.push_back(i); } else { lhs_outer_dims.push_back(i); rhs_delete_dims.push_back(rhs_dim); } } else { lhs_outer_dims.push_back(i); } } for (int64_t i = 0; i < y_rank; ++i) { auto dim_name = y_config[i]; if (!is_batch_dim(dim_name) && !is_contracting(dim_name)) { rhs_outer_dims.push_back(i); } } absl::c_sort(rhs_outer_dims); absl::InlinedVector<int64_t, 8> output_transpose_dims; auto output_dimension_number = [&](int64_t d) -> std::optional<int64_t> { auto pos = absl::c_find(output_config, d); if (pos == output_config.end()) { return std::nullopt; } return pos - output_config.begin(); }; for (auto d : dnums.lhs_batch_dimensions()) { output_transpose_dims.push_back(*output_dimension_number(x_config[d])); } for (auto d : lhs_outer_dims) { if (auto output_dim = output_dimension_number(x_config[d])) { output_transpose_dims.push_back(*output_dim); continue; } lhs_delete_dims.push_back(d); } for (auto d : rhs_outer_dims) { if (auto output_dim = output_dimension_number(y_config[d])) { output_transpose_dims.push_back(*output_dim); continue; } rhs_delete_dims.push_back(d); } const int64_t transpose_rank = output_transpose_dims.size(); std::vector<int64_t> transpose_dims(output_rank); for (int64_t i = 0; i < transpose_rank; ++i) { transpose_dims[output_transpose_dims[i]] = i; } absl::c_sort(lhs_delete_dims); DeleteDimsFromContainer(lhs_delete_dims, &x_shape, dnums.mutable_lhs_batch_dimensions(), dnums.mutable_lhs_contracting_dimensions()); absl::c_sort(rhs_delete_dims); DeleteDimsFromContainer(rhs_delete_dims, &y_shape, dnums.mutable_rhs_batch_dimensions(), dnums.mutable_rhs_contracting_dimensions()); if (!lhs_delete_dims.empty()) { x = Reduce(x, ScalarLike(x, 0), CreateScalarAddComputation(x_shape.element_type(), builder), lhs_delete_dims); } if (!rhs_delete_dims.empty()) { y = Reduce(y, ScalarLike(y, 0), CreateScalarAddComputation(y_shape.element_type(), builder), rhs_delete_dims); } PrecisionConfig precision_proto; precision_proto.add_operand_precision(precision); precision_proto.add_operand_precision(precision); auto dot = DotGeneral(x, y, dnums, &precision_proto, preferred_element_type); TF_RETURN_IF_ERROR(builder->SetInstructionFrontendAttribute( dot, "grad_x", (grad_x ? "true" : "false"))); TF_RETURN_IF_ERROR(builder->SetInstructionFrontendAttribute( dot, "grad_y", (grad_y ? "true" : "false"))); dot = Transpose(dot, transpose_dims); if (transpose_rank == output_rank) { return dot; } auto is_output_only = [&](int64_t d) { return output_map.contains(d) && !x_map.contains(d) && !y_map.contains(d); }; int64_t dot_dim = 0; std::vector<int64_t> new_dims; new_dims.reserve(output_rank); TF_ASSIGN_OR_RETURN(Shape dot_shape, builder->GetShape(dot)); for (auto d : output_config) { if (is_output_only(d)) { new_dims.push_back(1); } else { new_dims.push_back(dot_shape.dimensions(dot_dim)); } } return Reshape(dot, new_dims); }); } XlaOp BatchDot(XlaOp x, XlaOp y, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type) { return BatchDot(x, false, y, false, precision, preferred_element_type); } XlaOp BatchDot(XlaOp x, bool transpose_x, XlaOp y, bool transpose_y, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::string string("...mk,...kn->...mn"); if (transpose_x) { std::swap(string[3], string[4]); } if (transpose_y) { std::swap(string[6 + 3], string[6 + 4]); } return Einsum(x, y, string, precision, preferred_element_type, grad_x, grad_y); }); } absl::StatusOr<std::array<std::vector<int64_t>, 3>> ParseEinsumString( absl::string_view einsum_config, int64_t x_rank, int64_t y_rank) { std::array<std::vector<int64_t>, 3> einsum_config_numeric; std::vector<absl::string_view> main_split = absl::StrSplit(einsum_config, ','); if (main_split.size() != 2) { return InvalidArgument("Expected one \",\" in einsum_config."); } auto maybe_invalid_character = [](char d) -> absl::Status { if (absl::ascii_isalpha(d)) { return absl::OkStatus(); } if (d == '.') { return InvalidArgument("Unsupported \".\" in einsum config."); } return InvalidArgument("Unexpected character in einsum config."); }; auto string_config_to_numeric = [&](absl::string_view config, bool is_input_config, int64_t input_rank, int64_t ellipsis_rank, std::vector<int64_t>* numeric_config) -> absl::StatusOr<int64_t> { std::vector<absl::string_view> splits = absl::StrSplit(config, "..."); if (splits.empty()) { return ellipsis_rank; } if (splits.size() > 2) { return InvalidArgument("Too many ellipses (\"...\") in einsum config."); } const bool has_ellipsis = splits.size() > 1; if (is_input_config && has_ellipsis) { ellipsis_rank = input_rank - static_cast<int64_t>(splits[0].size() + splits[1].size()); if (ellipsis_rank < 0) { return InvalidArgument( "Too few dimensions in the input for the given einsum config."); } } for (char d : splits[0]) { TF_RETURN_IF_ERROR(maybe_invalid_character(d)); numeric_config->push_back(static_cast<int64_t>(d)); } if (has_ellipsis) { for (int64_t i = ellipsis_rank; i > 0; --i) { numeric_config->push_back(-i); } for (char d : splits[1]) { TF_RETURN_IF_ERROR(maybe_invalid_character(d)); numeric_config->push_back(static_cast<int64_t>(d)); } } return ellipsis_rank; }; TF_ASSIGN_OR_RETURN( const int64_t x_ellipsis_rank, string_config_to_numeric(main_split[0], true, x_rank, 0, &einsum_config_numeric[0])); std::vector<absl::string_view> y_output_split = absl::StrSplit(main_split[1], "->"); if (y_output_split.size() != 2) { return InvalidArgument("Expected one \"->\" in einsum_config."); } TF_ASSIGN_OR_RETURN( const int64_t y_ellipsis_rank, string_config_to_numeric(y_output_split[0], true, y_rank, 0, &einsum_config_numeric[1])); TF_ASSIGN_OR_RETURN( std::ignore, string_config_to_numeric( y_output_split[1], false, 0, std::max(x_ellipsis_rank, y_ellipsis_rank), &einsum_config_numeric[2])); return einsum_config_numeric; } std::string NormalizeEinsumString(absl::string_view einsum_config) { if (einsum_config.find("->") != einsum_config.npos) { return ""; } bool has_ellipsis = einsum_config.find("...") != einsum_config.npos; std::map<char, int64_t> chars; for (char c : einsum_config) { if (absl::ascii_isalpha(c)) { ++chars[c]; } } std::string new_config(einsum_config.begin(), einsum_config.end()); new_config.append("->"); if (has_ellipsis) { new_config.append("..."); } for (auto p : chars) { if (p.second == 1) { new_config.push_back(p.first); } } return new_config; } XlaOp Einsum(XlaOp x, XlaOp y, absl::string_view einsum_config, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&](
#include "xla/client/lib/matrix.h" #include <limits> #include <map> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" namespace xla { namespace { class MatrixTest : public ClientLibraryTestBase { protected: template <typename T> void TestMatrixDiagonal(); template <typename T> void TestMatrixDiagonal4D(); template <typename T> void TestSetMatrixDiagonal(); template <typename T> std::map<int, Array2D<T>> k_and_expected() const { return std::map<int, Array2D<T>>{ {0, {{0, 5, 10}, {12, 17, 22}}}, {1, {{1, 6, 11}, {13, 18, 23}}}, {2, {{2, 7}, {14, 19}}}, {3, {{3}, {15}}}, {4, {{}, {}}}, {-1, {{4, 9}, {16, 21}}}, {-2, {{8}, {20}}}, {-3, {{}, {}}}, {-4, {{}, {}}}, }; } }; XLA_TEST_F(MatrixTest, Triangle) { XlaBuilder builder(TestName()); Array3D<int32_t> input(2, 3, 4); input.FillIota(0); XlaOp a; auto a_data = CreateR3Parameter<int32_t>(input, 0, "a", &builder, &a); LowerTriangle(a); Array3D<int32_t> expected({{{0, 0, 0, 0}, {4, 5, 0, 0}, {8, 9, 10, 0}}, {{12, 0, 0, 0}, {16, 17, 0, 0}, {20, 21, 22, 0}}}); ComputeAndCompareR3<int32_t>(&builder, expected, {a_data.get()}); } XLA_TEST_F(MatrixTest, Symmetrize) { for (bool lower : {false, true}) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); Array<float> input = { {1, nan, nan}, {2, 3, nan}, {4, 5, 6}, }; XlaOp a; auto a_data = CreateParameter<float>(input, 0, "a", &builder, &a); Symmetrize(lower ? a : TransposeInMinorDims(a), lower); Array<float> expected = { {1, 2, 4}, {2, 3, 5}, {4, 5, 6}, }; ComputeAndCompare<float>(&builder, expected, {a_data.get()}); } } XLA_TEST_F(MatrixTest, SymmetrizeComplex) { for (bool lower : {false, true}) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); Array<complex64> input = { {complex64{1, nan}, nan, nan}, {complex64{2, 7}, complex64{3, nan}, nan}, {complex64{4, 8}, complex64{5, 9}, complex64{6, nan}}, }; XlaOp a; auto a_data = CreateParameter<complex64>(input, 0, "a", &builder, &a); Symmetrize(lower ? a : Conj(TransposeInMinorDims(a)), lower); Array<complex64> expected = { {1, complex64{2, -7}, complex64{4, -8}}, {complex64{2, 7}, 3, complex64{5, -9}}, {complex64{4, 8}, complex64{5, 9}, 6}, }; ComputeAndCompare<complex64>(&builder, expected, {a_data.get()}); } } template <typename T> void MatrixTest::TestMatrixDiagonal() { XlaBuilder builder("SetMatrixDiagonal"); Array3D<T> input(2, 3, 4); input.FillIota(0); for (const auto& kv : k_and_expected<T>()) { XlaOp a; auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a); GetMatrixDiagonal(a, kv.first); ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get()}); } } template <typename T> void MatrixTest::TestSetMatrixDiagonal() { XlaBuilder builder("GetMatrixDiagonal"); Array3D<T> input(2, 3, 4); input.FillIota(0); for (const auto& kv : k_and_expected<T>()) { XlaOp a; XlaOp b; auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a); auto new_diag = CreateR2Parameter<T>(Array2D<T>{kv.second}, 1, "d", &builder, &b); GetMatrixDiagonal(SetMatrixDiagonal(a, b + ScalarLike(b, 1), kv.first), kv.first) - ScalarLike(b, 1); ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get(), new_diag.get()}); } } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S32) { TestSetMatrixDiagonal<int32_t>(); } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S64) { TestSetMatrixDiagonal<int64_t>(); } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_F32) { TestSetMatrixDiagonal<float>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S32) { TestMatrixDiagonal<int32_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S64) { TestMatrixDiagonal<int64_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_F32) { TestMatrixDiagonal<float>(); } template <typename T> void MatrixTest::TestMatrixDiagonal4D() { XlaBuilder builder("GetMatrixDiagonal"); Array4D<T> input(2, 2, 4, 3); input.FillIota(0); std::map<int, Array3D<T>> k_and_expected = { {0, {{{0, 4, 8}, {12, 16, 20}}, {{24, 28, 32}, {36, 40, 44}}}}, {1, {{{1, 5}, {13, 17}}, {{25, 29}, {37, 41}}}}, {2, {{{2}, {14}}, {{26}, {38}}}}, {3, {{{}, {}}, {{}, {}}}}, {4, {{{}, {}}, {{}, {}}}}, {-1, {{{3, 7, 11}, {15, 19, 23}}, {{27, 31, 35}, {39, 43, 47}}}}, {-2, {{{6, 10}, {18, 22}}, {{30, 34}, {42, 46}}}}, {-3, {{{9}, {21}}, {{33}, {45}}}}, {-4, {{{}, {}}, {{}, {}}}}, }; for (const auto& kv : k_and_expected) { XlaOp a; auto a_data = CreateR4Parameter<T>(input, 0, "a", &builder, &a); GetMatrixDiagonal(a, kv.first); ComputeAndCompareR3<T>(&builder, kv.second, {a_data.get()}); } } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S32) { TestMatrixDiagonal4D<int32_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S64) { TestMatrixDiagonal4D<int64_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_F32) { TestMatrixDiagonal4D<float>(); } Array3D<float> BatchedAValsFull() { return {{ {2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }}; } XLA_TEST_F(MatrixTest, RowBatchDot) { XlaBuilder builder(TestName()); int n = 4; XlaOp a, row, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1, "row", &builder, &row); auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index); auto l_index = DynamicSliceInMinorDims( a, {index, ConstantR0<int32_t>(&builder, 0)}, {1, n}); BatchDot(l_index, TransposeInMinorDims(row)); ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}}, {a_data.get(), row_data.get(), index_data.get()}); } XLA_TEST_F(MatrixTest, Einsum) { XlaBuilder builder(TestName()); int n = 4; XlaOp a, row, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1, "row", &builder, &row); auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index); auto l_index = DynamicSliceInMinorDims( a, {index, ConstantR0<int32_t>(&builder, 0)}, {1, n}); Einsum(l_index, row, "abc,adc->abd"); ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}}, {a_data.get(), row_data.get(), index_data.get()}); } XLA_TEST_F(MatrixTest, ParseEinsumString) { auto to_vec = [](absl::string_view s) { std::vector<int64_t> v; v.reserve(s.size()); int e = -3; for (auto c : s) { v.push_back(c == '.' ? e++ : int64_t{c}); } return v; }; auto to_string = [&](absl::string_view x, absl::string_view y, absl::string_view o) { return absl::StrCat(x, ",", y, "->", o); }; std::vector<std::vector<std::string>> good_test_cases = { {"ab", "bc", "ac"}, {"Bab", "Bbc", "Bac"}, {"ab", "cd", "dcba"}, {"abc", "abd", "cbd"}, {"...ab", "...bc", "...ac"}, {"a...bc", "...abd", "cbd..."}, {"...ab", "...bc", "ac"}, {"...b", "...bc", "...c"}, {"...abz", "...bc", "...ac"}, {"...ab", "...bcz", "...ac"}, {"abz", "bc", "ac"}, {"ab", "bcz", "ac"}, {"a", "b", "c"}, {"...a", "...b", "...c"}, {"abb", "bcc", "ac"}, {"ab", "bc", "ad"}, }; for (auto test_case : good_test_cases) { auto parse_result_or_status = ParseEinsumString(to_string(test_case[0], test_case[1], test_case[2]), test_case[0].size(), test_case[1].size()); EXPECT_TRUE(parse_result_or_status.status().ok()); auto parse_result = parse_result_or_status.value(); for (int i = 0; i < 3; ++i) { EXPECT_EQ(parse_result[i], to_vec(test_case[i])); } } std::vector<std::string> einsum_strings_that_fail_parsing = { "", "a", "ab->ba", "ab,bc,cd->ad", "a...b...,bc->a...c", }; for (auto test_case : einsum_strings_that_fail_parsing) { auto parse_result_or_status = ParseEinsumString(test_case, 3, 3); EXPECT_FALSE(parse_result_or_status.status().ok()); } } XLA_TEST_F(MatrixTest, NormalizeEinsumString) { EXPECT_EQ(NormalizeEinsumString("a,b->ab"), ""); EXPECT_EQ(NormalizeEinsumString("ba"), "ba->ab"); EXPECT_EQ(NormalizeEinsumString("ab,dc"), "ab,dc->abcd"); EXPECT_EQ(NormalizeEinsumString("a,b"), "a,b->ab"); EXPECT_EQ(NormalizeEinsumString("...ba,ca..."), "...ba,ca...->...bc"); } } }
2,226
#ifndef XLA_CLIENT_LIB_MATH_H_ #define XLA_CLIENT_LIB_MATH_H_ #include "xla/client/xla_builder.h" namespace xla { XlaOp IsPosInf(XlaOp operand); XlaOp IsNegInf(XlaOp operand); XlaOp IsInf(XlaOp operand); XlaOp IsNan(XlaOp operand); XlaOp IsNegZero(XlaOp operand); XlaOp NextAfter(XlaOp from, XlaOp to); XlaOp Square(XlaOp operand); XlaOp Reciprocal(XlaOp operand); XlaOp Erfc(XlaOp x); XlaOp ErfInv(XlaOp x); XlaOp Lgamma(XlaOp input); XlaOp Digamma(XlaOp input); XlaOp Igamma(XlaOp a, XlaOp x); XlaOp IgammaGradA(XlaOp a, XlaOp x); XlaOp RandomGammaGrad(XlaOp a, XlaOp x); XlaOp Igammac(XlaOp a, XlaOp x); XlaOp Polygamma(XlaOp n, XlaOp x); XlaOp Zeta(XlaOp x, XlaOp q); XlaOp RoundToEven(XlaOp x); XlaOp Acos(XlaOp x); XlaOp Asin(XlaOp x); XlaOp Atan(XlaOp x); XlaOp Acosh(XlaOp x); XlaOp Asinh(XlaOp x); XlaOp Atanh(XlaOp x); XlaOp Cosh(XlaOp x); XlaOp Sinh(XlaOp x); xla::XlaOp MaybeConjugate(xla::XlaOp x, bool conjugate); XlaOp BesselI0e(XlaOp x); XlaOp BesselI1e(XlaOp x); XlaOp RegularizedIncompleteBeta(XlaOp a, XlaOp b, XlaOp x); } #endif #include "xla/mlir/tools/mlir_interpreter/dialects/cwise_math.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value_util.h" #include "xla/mlir/tools/mlir_interpreter/framework/registration.h" namespace mlir { namespace interpreter { namespace { struct CopySign : CwiseFloat { template <typename T> static T Apply(T a, T b) { return std::copysign(a, b); } }; REGISTER_MLIR_INTERPRETER_OP("math.absf", ApplyCwiseMap<Abs>); REGISTER_MLIR_INTERPRETER_OP("math.absi", ApplyCwiseMap<Abs>); REGISTER_MLIR_INTERPRETER_OP("math.atan", ApplyCwiseMap<ATan>); REGISTER_MLIR_INTERPRETER_OP("math.atan2", ApplyCwiseBinaryMap<ATan2>); REGISTER_MLIR_INTERPRETER_OP("math.cbrt", ApplyCwiseMap<Cbrt>); REGISTER_MLIR_INTERPRETER_OP("math.ceil", ApplyCwiseMap<Ceil>); REGISTER_MLIR_INTERPRETER_OP("math.copysign", ApplyCwiseBinaryMap<CopySign>); REGISTER_MLIR_INTERPRETER_OP("math.cos", ApplyCwiseMap<Cos>); REGISTER_MLIR_INTERPRETER_OP("math.ctlz", ApplyCwiseMap<Clz>); REGISTER_MLIR_INTERPRETER_OP("math.ctpop", ApplyCwiseMap<PopCount>); REGISTER_MLIR_INTERPRETER_OP("math.cttz", ApplyCwiseMap<Ctz>); REGISTER_MLIR_INTERPRETER_OP("math.erf", ApplyCwiseMap<Erf>); REGISTER_MLIR_INTERPRETER_OP("math.exp", ApplyCwiseMap<Exp>); REGISTER_MLIR_INTERPRETER_OP("math.exp2", ApplyCwiseMap<Exp2>); REGISTER_MLIR_INTERPRETER_OP("math.expm1", ApplyCwiseMap<ExpM1>); REGISTER_MLIR_INTERPRETER_OP("math.floor", ApplyCwiseMap<Floor>); REGISTER_MLIR_INTERPRETER_OP("math.ipowi", ApplyCwiseBinaryMap<Power>); REGISTER_MLIR_INTERPRETER_OP("math.log", ApplyCwiseMap<Log>); REGISTER_MLIR_INTERPRETER_OP("math.log10", ApplyCwiseMap<Log10>); REGISTER_MLIR_INTERPRETER_OP("math.log1p", ApplyCwiseMap<Log1P>); REGISTER_MLIR_INTERPRETER_OP("math.log2", ApplyCwiseMap<Log2>); REGISTER_MLIR_INTERPRETER_OP("math.powf", ApplyCwiseBinaryMap<Power>); REGISTER_MLIR_INTERPRETER_OP("math.round", ApplyCwiseMap<Round>); REGISTER_MLIR_INTERPRETER_OP("math.roundeven", ApplyCwiseMap<NearbyInt>); REGISTER_MLIR_INTERPRETER_OP("math.rsqrt", ApplyCwiseMap<RSqrt>); REGISTER_MLIR_INTERPRETER_OP("math.sin", ApplyCwiseMap<Sin>); REGISTER_MLIR_INTERPRETER_OP("math.sqrt", ApplyCwiseMap<Sqrt>); REGISTER_MLIR_INTERPRETER_OP("math.tan", ApplyCwiseMap<Tan>); REGISTER_MLIR_INTERPRETER_OP("math.tanh", ApplyCwiseMap<TanH>); REGISTER_MLIR_INTERPRETER_OP("math.trunc", ApplyCwiseMap<Trunc>); } } }
#include "xla/client/lib/math.h" #include <cmath> #include <complex> #include <functional> #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class MathTest : public ClientLibraryTestBase { public: ErrorSpec error_spec_{0.0001}; }; template <typename T> class MathTypedTest : public MathTest { public: void TestLogEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); Log(AddParam(LiteralUtil::CreateR1<T>({T{0.0}, T{-0.0}}), &b)); ComputeAndCompareR1<T>(&b, {-std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity()}, {}, error_spec_); } void TestLog1pEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); Log1p(AddParam(LiteralUtil::CreateR1<T>({T{0.0}, T{-0.0}, T{-1.0}}), &b)); ComputeAndCompareR1<T>( &b, {T{0.0}, T{-0.0}, -std::numeric_limits<T>::infinity()}, {}, error_spec_); } void TestIsInfOrNan() { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = ConstantR1<T>(&b, { T{0}, T{100}, T{-1000}, T{std::numeric_limits<T>::max()}, T{std::numeric_limits<T>::lowest()}, T{std::numeric_limits<float>::infinity()}, T{-std::numeric_limits<float>::infinity()}, T{std::numeric_limits<float>::quiet_NaN()}, T{std::numeric_limits<float>::signaling_NaN()}, }); Tuple(&b, {IsFinite(x), IsInf(x), IsPosInf(x), IsNegInf(x), IsNan(x)}); auto expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateR1<bool>( {true, true, true, true, true, false, false, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, true, true, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, true, false, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, false, true, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, false, false, true, true})); ComputeAndCompareLiteral(&b, expected, {}); } void TestIsNegZero() { SetFastMathDisabled(true); XlaBuilder b(TestName()); T inf(std::numeric_limits<float>::infinity()); T nan(std::numeric_limits<float>::quiet_NaN()); IsNegZero(AddParam( LiteralUtil::CreateR1<T>({T{-0.0}, T{0}, T{1}, T{-1}, inf, -inf, nan}), &b)); ComputeAndCompareLiteral( &b, LiteralUtil::CreateR1<bool>( {true, false, false, false, false, false, false}), {}, error_spec_); } void TestSqrtPowInequivalence() { SetFastMathDisabled(true); mutable_debug_options()->clear_xla_disable_hlo_passes(); const T inf(std::numeric_limits<float>::infinity()); const T nan(std::numeric_limits<float>::quiet_NaN()); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({-inf}), &b); ConcatInDim( &b, {Sqrt(x), Pow(x, ScalarLike(x, 0.5)), Pow(x, ScalarLike(x, 0.3))}, 0); std::vector<T> expected = {nan, inf, inf}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } void TestErfInvEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({T{-1}, T{1}, T{0}}), &b); ErfInv(x); const T inf(std::numeric_limits<float>::infinity()); std::vector<T> expected = {-inf, inf, T{0}}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } void TestErfEdgeCases() { SetFastMathDisabled(true); const T kErfInvOneMinusHalfULP = T(3.832506856900711); const T inf(std::numeric_limits<float>::infinity()); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({T{-inf}, T{inf}, T{-0}, T{0}, T{-kErfInvOneMinusHalfULP}, T{kErfInvOneMinusHalfULP}}), &b); Erf(x); std::vector<T> expected = {T(-1), T(1), T(-0), T(0), T(-1), T(1)}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } }; using TestTypes = ::testing::Types<float #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16 , Eigen::half #endif #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT64 , double #endif >; TYPED_TEST_CASE(MathTypedTest, TestTypes); XLA_TYPED_TEST(MathTypedTest, LogEdgeCases) { this->TestLogEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, Log1pEdgeCases) { this->TestLog1pEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, IsInfOrNan) { this->TestIsInfOrNan(); } XLA_TYPED_TEST(MathTypedTest, IsNegZero) { this->TestIsNegZero(); } XLA_TYPED_TEST(MathTypedTest, DISABLED_ON_TPU(SqrtPowInequivalence)) { this->TestSqrtPowInequivalence(); } XLA_TYPED_TEST(MathTypedTest, ErfInvEdgeCases) { this->TestErfInvEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, ErfEdgeCases) { this->TestErfEdgeCases(); } XLA_TEST_F(MathTest, RealFpOnlyOps) { for (int64_t i = PrimitiveType_MIN; i <= PrimitiveType_MAX; ++i) { auto ty = static_cast<PrimitiveType>(i); SCOPED_TRACE(PrimitiveType_Name(ty)); Shape shape; if (ty == U4 || ty == S4) { continue; } if (primitive_util::IsArrayType(ty)) { shape = ShapeUtil::MakeShape(ty, {42}); } else if (ty == PrimitiveType::TUPLE) { shape = ShapeUtil::MakeTupleShape({}); } else if (ty == PrimitiveType::OPAQUE_TYPE) { shape = ShapeUtil::MakeOpaqueShape(); } else if (ty == PrimitiveType::TOKEN) { shape = ShapeUtil::MakeTokenShape(); } else { continue; } for (const auto& test : std::vector<std::pair<std::function<XlaOp(XlaOp)>, std::string>>({ {IsFinite, "is_finite"}, {IsInf, "is_inf"}, {IsPosInf, "is_pos_inf"}, {IsNegInf, "is_neg_inf"}, {IsNan, "is_nan"}, {Erf, "erf"}, {Erfc, "erfc"}, {Lgamma, "lgamma"}, {Digamma, "digamma"}, {RoundToEven, "round_to_even"}, })) { SCOPED_TRACE(test.second); XlaBuilder b(TestName()); XlaOp p = Parameter(&b, 0, shape, "p0"); test.first(p); if (primitive_util::IsFloatingPointType(ty)) { TF_EXPECT_OK(b.first_error()); } else { EXPECT_FALSE(b.first_error().ok()); } } } } XLA_TEST_F(MathTest, SqrtF32) { XlaBuilder builder(TestName()); Literal zero_literal = LiteralUtil::Zero(PrimitiveType::F32); std::unique_ptr<GlobalData> zero_data = client_->TransferToServer(zero_literal).value(); XlaOp zero = Parameter(&builder, 0, zero_literal.shape(), "zero"); Sqrt(zero); ComputeAndCompareR0<float>(&builder, 0.0f, {zero_data.get()}, error_spec_); } XLA_TEST_F(MathTest, SqrtF64) { XlaBuilder builder(TestName()); Literal zero_literal = LiteralUtil::Zero(PrimitiveType::F64); std::unique_ptr<GlobalData> zero_data = client_->TransferToServer(zero_literal).value(); XlaOp zero = Parameter(&builder, 0, zero_literal.shape(), "zero"); Sqrt(zero); ComputeAndCompareR0<double>(&builder, 0.0f, {zero_data.get()}, error_spec_); } #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT64 XLA_TEST_F(MathTest, ErfInvF64) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}); ErfInv(x); std::vector<double> expected = {-1.163087153676674, -0.9061938024368231, -0.732869077959217, -0.5951160814499948, -0.4769362762044698, -0.37080715859355795, -0.27246271472675443, -0.1791434546212916, -0.08885599049425767, 0., 0.08885599049425777, 0.1791434546212916, 0.27246271472675443, 0.37080715859355784, 0.4769362762044698, 0.5951160814499948, 0.732869077959217, 0.9061938024368231, 1.1630871536766736}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec{1e-15}); } #endif XLA_TEST_F(MathTest, SquareTenValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6}); Square(x); std::vector<float> expected = {4.41, 6.76, 6.76, 16., 4.41, 5.29, 25., 0.81, 5.76, 2.56}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ReciprocalTenValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6}); Reciprocal(x); std::vector<float> expected = { 0.47619048, -0.38461538, 0.38461538, -0.25, 0.47619048, 0.43478261, -0.2, -1.11111111, -0.41666667, 0.625}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, SqrtZeroes) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, -0.0}); Sqrt(x); ComputeAndCompareR1<float>(&builder, {0, 0}, {}, error_spec_); } XLA_TEST_F(MathTest, SqrtSixValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {16.0, 1.0, 1024.0, 0.16, 0.2, 12345}); Sqrt(x); std::vector<float> expected = {4, 1, 32, 0.4, 0.4472, 111.1080}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, CbrtSixF32Values) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {8.0, 1.0, 4096.0, -64.0, 1.728, 1331}); Cbrt(x); std::vector<float> expected = {2, 1, 16, -4, 1.2, 11}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.001)); } XLA_TEST_F(MathTest, CbrtSixF64Values) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>(&builder, {8.0, 1.0, 4096.0, -64.0, 1.728, 1331}); Cbrt(x); std::vector<double> expected = {2, 1, 16, -4, 1.2, 11}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec(0.001)); } XLA_TEST_F(MathTest, SinhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}); Sinh(x); std::vector<float> expected = {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AsinhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}); Asinh(x); std::vector<float> expected = {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AtanhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-8, 1e-9, 1e-10, 1e-11}); Atanh(x); std::vector<float> expected = {1e-8, 1e-9, 1e-10, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, Lgamma) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.5, 1.5, 2.5, -1.5, -3.5, -5.5}); Lgamma(x); std::vector<float> expected = { 0, 0, static_cast<float>(std::log(2)), static_cast<float>(std::log(6)), static_cast<float>(std::log(24)), static_cast<float>(std::log(120)), static_cast<float>(std::log(M_PI) / 2), static_cast<float>(std::log(M_PI) / 2 - std::log(2)), static_cast<float>(std::log(M_PI) / 2 - std::log(4) + std::log(3)), static_cast<float>(std::log(M_PI) / 2 - std::log(3) + std::log(4)), static_cast<float>(std::log(M_PI) / 2 - std::log(105) + std::log(16)), static_cast<float>(std::log(M_PI) / 2 - std::log(10395) + std::log(64))}; error_spec_ = ErrorSpec{0.001}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, LgammaF16) { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = ConstantR1<half>(&b, { half(-7360.0), half(-4066.0), half(-5.9605e-08), }); Lgamma(x); std::vector<half> expected = { std::numeric_limits<half>::infinity(), std::numeric_limits<half>::infinity(), half(16.64), }; ComputeAndCompareR1<half>(&b, expected, {}, ErrorSpec{0.1}); } #endif XLA_TEST_F(MathTest, Digamma) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1.0, 0.5, 1 / 3.0, 0.25, 1 / 6.0, 0.125, 2.0, 3.0, 4.0, 6.0, 8.0, 9.0}); Digamma(x); constexpr double euler_mascheroni = 0.57721566490153286060651209008240243104215933593992; std::vector<float> expected = { static_cast<float>(-euler_mascheroni), static_cast<float>(-2 * std::log(2) - euler_mascheroni), static_cast<float>(-M_PI / 2 / std::sqrt(3) - 3 * std::log(3) / 2 - euler_mascheroni), static_cast<float>(-M_PI / 2 - 3 * std::log(2) - euler_mascheroni), static_cast<float>(-M_PI * std::sqrt(3) / 2 - 2 * std::log(2) - 3 * std::log(3) / 2 - euler_mascheroni), static_cast<float>( -M_PI / 2 - 4 * std::log(2) - (M_PI + std::log(2 + std::sqrt(2)) - std::log(2 - std::sqrt(2))) / std::sqrt(2) - euler_mascheroni), static_cast<float>(1 - euler_mascheroni), static_cast<float>(1.5 - euler_mascheroni), static_cast<float>(11 / 6.0 - euler_mascheroni), static_cast<float>(137 / 60.0 - euler_mascheroni), static_cast<float>(363 / 140.0 - euler_mascheroni), static_cast<float>(761 / 280.0 - euler_mascheroni)}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, Igamma) { XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<float>( &builder, {{{0.3760359, 1.62685306, 0.53327996, 1.5111382, 0.3521143}, {1.79378175, 1.05317882, 0.85049253, 1.399534, 0.22073882}, {1.17725309, 0.90727209, 1.32418503, 1.53238533, 0.51984756}}}); auto x = ConstantR3FromArray3D<float>( &builder, {{{0.56420934, 8.97671773, 2.81068609, 4.50655124, 2.88178617}, {1.01795164, 8.86298411, 0.29232942, 8.17661015, 5.67652269}, {1.59959565, 0.54463897, 0.6585252, 9.83192283, 3.93372669}}}); Igamma(a, x); Array3D<float> expected = { {{0.78746926, 0.99940502, 0.98028261, 0.97033807, 0.99054696}, {0.33265522, 0.99983558, 0.32599159, 0.99923275, 0.99980893}, {0.74343963, 0.46703197, 0.33923541, 0.99978511, 0.99460685}}}; ComputeAndCompareR3<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, IgammaSpecialValues) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); const float nan = std::numeric_limits<float>::quiet_NaN(); auto a = ConstantR1<float>(&builder, {nan, nan, 0.53327996, -6.00773744602e+37, -1.3937809742e+31, -23.351348877}); auto x = ConstantR1<float>( &builder, {nan, 8.97671773, nan, nan, 0.0, 6.02455484352e-39}); Igamma(a, x); std::vector<float> expected = {nan, nan, nan, nan, nan, nan}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, IgammaF16) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<half>( &builder, {{{half(0.37603), half(1.6268), half(0.53327), half(1.5111)}, {half(1.79378), half(1.05317), half(0.85049), half(1.3995)}, {half(1.17725), half(0.90727), half(1.32418), half(1.5323)}}}); Igamma(a, a); Array3D<half> expected = { {{half(0.7068214), half(0.6041154), half(0.67748886), half(0.60799426)}, {half(0.599202), half(0.6288743), half(0.64280254), half(0.6121421)}, {half(0.6220287), half(0.6384635), half(0.6152258), half(0.6072449)}}}; ComputeAndCompareR3<half>(&builder, expected, {}, ErrorSpec{1e-3}); } #endif XLA_TEST_F(MathTest, Igammac) { XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<float>( &builder, {{{0.3760359, 1.62685306, 0.53327996, 1.5111382, 0.3521143}, {1.79378175, 1.05317882, 0.85049253, 1.399534, 0.22073882}, {1.17725309, 0.90727209, 1.32418503, 1.53238533, 0.51984756}}}); auto x = ConstantR3FromArray3D<float>( &builder, {{{0.56420934, 8.97671773, 2.81068609, 4.50655124, 2.88178617}, {1.01795164, 8.86298411, 0.29232942, 8.17661015, 5.67652269}, {1.59959565, 0.54463897, 0.6585252, 9.83192283, 3.93372669}}}); Igammac(a, x); Array3D<float> expected = {{{2.12530741e-01, 5.94977775e-04, 1.97173867e-02, 2.96619296e-02, 9.45303689e-03}, {6.67344782e-01, 1.64421996e-04, 6.74008406e-01, 7.67252602e-04, 1.91071108e-04}, {2.56560373e-01, 5.32968026e-01, 6.60764593e-01, 2.14889688e-04, 5.39314824e-03}}}; ComputeAndCompareR3<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, IgammacF16) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<half>( &builder, {{{half(0.37603), half(1.6268), half(0.53327), half(1.5111)}, {half(1.79378), half(1.05317), half(0.85049), half(1.3995)}, {half(1.17725), half(0.90727), half(1.32418), half(1.5323)}}}); Igammac(a, a); Array3D<half> expected = { {{half(0.29317862), half(0.39588454), half(0.32251117), half(0.39200574)}, {half(0.40079802), half(0.37112573), half(0.35719746), half(0.3878579)}, {half(0.3779713), half(0.36153653), half(0.38477424), half(0.39275512)}}}; ComputeAndCompareR3<half>(&builder, expected, {}, ErrorSpec{1e-4}); } #endif XLA_TEST_F(MathTest, RoundToEven) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-1.4, -1.5, -2.5, -0.5, 0, 0.5, 1.5, 2.5, 3.5, 4.5}); RoundToEven(x); std::vector<float> expected = {-1.0, -2.0, -2.0, -0.0, 0, 0.0, 2.0, 2.0, 4.0, 4.0}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ErfRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Erf(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, ErfcRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Erfc(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, LgammaRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Lgamma(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, DigammaRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Digamma(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, RoundToEvenRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); RoundToEven(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, BesselI0eFloat) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI0e(x); std::vector<float> expected = {0.0897803118848, 0.0947062952128, 0.100544127361, 0.107615251671, 0.116426221213, 0.127833337163, 0.143431781857, 0.16665743264, 0.207001921224, 0.308508322554, 1.0, 0.308508322554, 0.207001921224, 0.16665743264, 0.143431781857, 0.127833337163, 0.116426221213, 0.107615251671, 0.100544127361, 0.0947062952128, 0.0897803118848}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, DISABLED_ON_TPU(BesselI0eDouble)) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI0e(x); std::vector<double> expected = {0.0897803118848, 0.0947062952128, 0.100544127361, 0.107615251671, 0.116426221213, 0.127833337163, 0.143431781857, 0.16665743264, 0.207001921224, 0.308508322554, 1.0, 0.308508322554, 0.207001921224, 0.16665743264, 0.143431781857, 0.127833337163, 0.116426221213, 0.107615251671, 0.100544127361, 0.0947062952128, 0.0897803118848}; ComputeAndCompareR1<double>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, BesselI1eFloat) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI1e(x); std::vector<float> expected = {-0.0875062221833, -0.092036796872, -0.0973496147565, -0.103697667463, -0.11146429929, -0.121262681384, -0.134142493293, -0.152051459309, -0.178750839502, -0.215269289249, 0.0, 0.215269289249, 0.178750839502, 0.152051459309, 0.134142493293, 0.121262681384, 0.11146429929, 0.103697667463, 0.0973496147565, 0.092036796872, 0.0875062221833}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, DISABLED_ON_TPU(BesselI1eDouble)) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI1e(x); std::vector<double> expected = {-0.0875062221833, -0.092036796872, -0.0973496147565, -0.103697667463, -0.11146429929, -0.121262681384, -0.134142493293, -0.152051459309, -0.178750839502, -0.215269289249, 0.0, 0.215269289249, 0.178750839502, 0.152051459309, 0.134142493293, 0.121262681384, 0.11146429929, 0.103697667463, 0.0973496147565, 0.092036796872, 0.0875062221833}; ComputeAndCompareR1<double>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AcosComplexValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<std::complex<float>>( &builder, {{0, 0}, {0, 1}, {1, 1}, {0.8, 0.2}}); Acos(x); std::vector<std::complex<float>> expected = { {1.5707963267948966, 0}, {1.5707963267948966, -0.881373587019543}, {0.9045568943023814, -1.0612750619050357}, {0.7011246914497526, -0.30527648462436596}}; ComputeAndCompareR1<std::complex<float>>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ZetaF64) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>(&builder, {2.0}); auto q = ConstantR1<double>(&builder, {1.0}); Zeta(x, q); std::vector<double> expected = {1.64493406684823}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec{0.00000000000001}); } } }
2,227
#ifndef XLA_CLIENT_LIB_SVD_H_ #define XLA_CLIENT_LIB_SVD_H_ #include "xla/client/xla_builder.h" #include "xla/xla_data.pb.h" namespace xla { struct SVDResult { XlaOp u; XlaOp d; XlaOp v; }; SVDResult SVD(XlaOp a, int64_t max_iter = 100, float epsilon = 1e-6, PrecisionConfig::Precision precision = PrecisionConfig::HIGHEST); } #endif #include "xla/client/lib/svd.h" #include <memory> #include <numeric> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/comparators.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { struct HouseHolderResult { XlaOp v; XlaOp beta; XlaOp a; }; struct JacobiRotation { XlaOp c; XlaOp s; }; struct JacobiUpdate { XlaOp v; XlaOp w; }; struct OneSidedJacobiRotation { JacobiRotation rot_l; JacobiRotation rot_r; }; absl::StatusOr<HouseHolderResult> HouseRow( XlaOp a, XlaOp i, XlaOp j, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); XlaOp zero = ScalarLike(i, 0); XlaOp x = DynamicSliceInMinorDims(a, {i, zero}, {1, n}); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int k = 0; k < num_batch_dims; ++k) { batch_dims[k] = ShapeUtil::GetDimension(a_shape, k); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); auto idx = Iota(builder, ShapeUtil::MakeShape(S32, x_shape.dimensions()), num_dims - 1); auto zeros = ZerosLike(x); auto v = Select(Gt(idx, j), x, zeros); auto one = ScalarLike(v, 1.0); auto sigma = Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), CreateScalarAddComputation(x_shape.element_type(), builder), {num_dims - 1})); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); auto x_0j = DynamicSliceInMinorDims(x, {zero, j}, {1, 1}); auto mu = Mul(sigma, Sqrt(Square(Div(x_0j, sigma, broadcast_dims)) + one), broadcast_dims); auto v_0j = Select( Le(x_0j, ScalarLike(x_0j, 0.0)), Sub(x_0j, mu), -Mul(sigma, Div(sigma, Add(x_0j, mu), broadcast_dims), broadcast_dims)); auto beta = Div(ScalarLike(v_0j, 2.0), (Square(Div(sigma, v_0j, broadcast_dims)) + one)); v = Select( BroadcastInDim(Lt(sigma, eps), x_shape.dimensions(), broadcast_dims), v, v / v_0j); v = Select(Eq(idx, j), zeros + one, v); beta = Select(Lt(Add(sigma, ZerosLike(beta), broadcast_dims), eps), ZerosLike(beta), beta); HouseHolderResult result; result.v = v; result.beta = beta; result.a = Sub(a, Mul(beta, BatchDot(BatchDot(a, false, v, true, precision), v, precision))); return result; } absl::StatusOr<HouseHolderResult> HouseCol( XlaOp a, XlaOp i, XlaOp j, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t m = ShapeUtil::GetDimension(a_shape, -2); XlaOp zero = ScalarLike(i, 0); XlaOp x = DynamicSliceInMinorDims(a, {zero, j}, {m, 1}); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int k = 0; k < num_batch_dims; ++k) { batch_dims[k] = ShapeUtil::GetDimension(a_shape, k); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); auto idx = Iota(builder, ShapeUtil::MakeShape(S32, x_shape.dimensions()), num_dims - 2); auto zeros = ZerosLike(x); auto v = Select(Gt(idx, i), x, zeros); auto one = ScalarLike(v, 1.0); auto sigma = Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), CreateScalarAddComputation(x_shape.element_type(), builder), {num_dims - 2})); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; auto x_0i = DynamicSliceInMinorDims(x, {i, zero}, {1, 1}); auto mu = Mul(sigma, Sqrt(Square(Div(x_0i, sigma, broadcast_dims)) + one), broadcast_dims); auto v_0i = Select( Le(x_0i, ScalarLike(x_0i, 0.0)), Sub(x_0i, mu), -Mul(sigma, Div(sigma, Add(x_0i, mu), broadcast_dims), broadcast_dims)); auto beta = Div(ScalarLike(v_0i, 2.0), (Square(Div(sigma, v_0i, broadcast_dims)) + one)); v = Select( BroadcastInDim(Lt(sigma, eps), x_shape.dimensions(), broadcast_dims), v, v / v_0i); v = Select(Eq(idx, i), zeros + one, v); beta = Select(Lt(Add(sigma, ZerosLike(beta), broadcast_dims), eps), ZerosLike(beta), beta); HouseHolderResult result; result.v = v; result.beta = beta; result.a = Sub( a, Mul(beta, BatchDot(v, false, BatchDot(v, true, a, false, precision), false, precision))); return result; } absl::StatusOr<SVDResult> HouseHolderBidiagonalization( XlaOp a, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(a_shape, i); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); XlaOp u_init = Broadcast( IdentityMatrix(builder, a_shape.element_type(), m, m), batch_dims); XlaOp v_init = Broadcast( IdentityMatrix(builder, a_shape.element_type(), n, n), batch_dims); auto while_cond_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* cond_builder) -> absl::StatusOr<XlaOp> { auto i = values[0]; return Lt(i, ScalarLike(i, n - 2)); }; auto while_body_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto i = values[0]; auto one = ScalarLike(i, 1); auto u = values[1]; auto v = values[2]; auto a = values[3]; auto eps = values[4]; TF_ASSIGN_OR_RETURN(HouseHolderResult house_col, HouseCol(a, i, i, eps, precision)); u = Sub(u, Mul(house_col.beta, BatchDot(BatchDot(u, house_col.v, precision), false, house_col.v, true, precision))); a = house_col.a; TF_ASSIGN_OR_RETURN(HouseHolderResult house_row, HouseRow(a, i, i + one, eps, precision)); v = Sub(v, Mul(house_row.beta, BatchDot(BatchDot(v, false, house_row.v, true, precision), house_row.v, precision))); a = house_row.a; std::vector<XlaOp> updated_values; updated_values.reserve(values.size()); updated_values.push_back(i + one); updated_values.push_back(u); updated_values.push_back(v); updated_values.push_back(a); updated_values.push_back(eps); return updated_values; }; std::vector<XlaOp> values(5); values[0] = Zero(builder, S32); values[1] = u_init; values[2] = v_init; values[3] = a; values[4] = eps; TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn, values, "HouseHolderBidiagonalization", builder)); for (int k = 2; k > 0; --k) { if (n - k >= 0) { XlaOp index = ScalarLike(values[0], n - k); TF_ASSIGN_OR_RETURN(HouseHolderResult house_col, HouseCol(values[3], index, index, eps, precision)); values[1] = Sub(values[1], Mul(house_col.beta, BatchDot(BatchDot(values[1], house_col.v, precision), false, house_col.v, true, precision))); values[3] = house_col.a; } } SVDResult result; result.u = values[1]; result.v = values[2]; result.d = values[3]; return result; } absl::StatusOr<JacobiRotation> MakeJacobi(XlaOp ps, XlaOp qs, XlaOp pqs, XlaOp eps) { auto zero = ScalarLike(ps, 0.0); auto one = ScalarLike(ps, 1.0); auto two = ScalarLike(ps, 2.0); auto tau = (qs - ps) / (pqs * two); auto t_pos = one / (tau + Sqrt(one + Square(tau))); auto t_neg = -one / (-tau + Sqrt(one + Square(tau))); auto t = Select(Ge(tau, zero), t_pos, t_neg); auto c_temp = Rsqrt(one + Square(t)); auto s_temp = t * c_temp; auto c = Select(Ge(Abs(pqs), eps), c_temp, ZerosLike(c_temp) + one); auto s = Select(Ge(Abs(pqs), eps), s_temp, ZerosLike(s_temp)); auto rnorm = Rsqrt(Square(c) + Square(s)); JacobiRotation rot; rot.c = c * rnorm; rot.s = s * rnorm; return rot; } absl::StatusOr<OneSidedJacobiRotation> GetOneSidedJacobiRotation(XlaOp a, XlaOp p, XlaOp q, XlaOp eps) { XlaOp a_pp = DynamicSliceInMinorDims(a, {p, p}, {1, 1}); XlaOp a_pq = DynamicSliceInMinorDims(a, {p, q}, {1, 1}); XlaOp a_qp = DynamicSliceInMinorDims(a, {q, p}, {1, 1}); XlaOp a_qq = DynamicSliceInMinorDims(a, {q, q}, {1, 1}); XlaOp one = ScalarLike(a, 1.0); XlaOp t = a_pp + a_qq; XlaOp d = a_qp - a_pq; XlaOp u = Div(t, d); XlaOp tmp = Rsqrt(one + Square(u)); JacobiRotation rot; XlaOp zeros = ZerosLike(tmp); XlaOp ones = zeros + one; rot.s = Select(Lt(Abs(d), eps), zeros, -tmp); rot.c = Select(Lt(Abs(d), eps), ones, Mul(u, tmp)); XlaOp a_pp_new = rot.c * a_pp - rot.s * a_qp; XlaOp a_pq_new = rot.c * a_pq - rot.s * a_qq; XlaOp a_qq_new = rot.s * a_pq + rot.c * a_qq; OneSidedJacobiRotation rots; TF_ASSIGN_OR_RETURN(rots.rot_r, MakeJacobi(a_pp_new, a_qq_new, a_pq_new, eps)); rots.rot_l.c = rot.c * rots.rot_r.c - rot.s * rots.rot_r.s; rots.rot_l.s = rot.s * rots.rot_r.c + rot.c * rots.rot_r.s; return rots; } absl::StatusOr<SVDResult> OneSidedJacobiUpdate(SVDResult svd_result, XlaOp p, XlaOp q, XlaOp eps) { XlaOp u = svd_result.u; XlaOp v = svd_result.v; XlaOp d = svd_result.d; XlaBuilder* builder = d.builder(); TF_ASSIGN_OR_RETURN(Shape d_shape, builder->GetShape(d)); const int64_t num_dims = d_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(d_shape, i); } const int64_t m = ShapeUtil::GetDimension(d_shape, -2); const int64_t n = ShapeUtil::GetDimension(d_shape, -1); TF_ASSIGN_OR_RETURN(OneSidedJacobiRotation onesided_jacobi, GetOneSidedJacobiRotation(d, p, q, eps)); auto zero = ScalarLike(p, 0); std::vector<int64_t> pq_dims(batch_dims.begin(), batch_dims.end()); pq_dims.push_back(1); pq_dims.push_back(1); auto pq_zero = ScalarLike(d, 0.0); auto pq_zeros = Broadcast(pq_zero, pq_dims); std::vector<int64_t> broadcast_dims(batch_dims.size()); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims.push_back(num_dims - 1); auto slice_p = DynamicSliceInMinorDims(d, {p, zero}, {1, n}); auto slice_q = DynamicSliceInMinorDims(d, {q, zero}, {1, n}); auto slice_p_new = onesided_jacobi.rot_l.c * slice_p - onesided_jacobi.rot_l.s * slice_q; auto slice_q_new = onesided_jacobi.rot_l.s * slice_p + onesided_jacobi.rot_l.c * slice_q; d = DynamicUpdateSliceInMinorDims(d, slice_p_new, {p, zero}); d = DynamicUpdateSliceInMinorDims(d, slice_q_new, {q, zero}); slice_p = DynamicSliceInMinorDims(d, {zero, p}, {m, 1}); slice_q = DynamicSliceInMinorDims(d, {zero, q}, {m, 1}); slice_p_new = onesided_jacobi.rot_r.c * slice_p - onesided_jacobi.rot_r.s * slice_q; slice_q_new = onesided_jacobi.rot_r.s * slice_p + onesided_jacobi.rot_r.c * slice_q; d = DynamicUpdateSliceInMinorDims(d, slice_p_new, {zero, p}); d = DynamicUpdateSliceInMinorDims(d, slice_q_new, {zero, q}); d = DynamicUpdateSliceInMinorDims(d, pq_zeros, {p, q}); d = DynamicUpdateSliceInMinorDims(d, pq_zeros, {q, p}); slice_p = DynamicSliceInMinorDims(u, {zero, p}, {m, 1}); slice_q = DynamicSliceInMinorDims(u, {zero, q}, {m, 1}); slice_p_new = onesided_jacobi.rot_l.c * slice_p - onesided_jacobi.rot_l.s * slice_q; slice_p_new = Mul( slice_p_new, Rsqrt(Reduce(Square(slice_p_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); slice_q_new = onesided_jacobi.rot_l.s * slice_p + onesided_jacobi.rot_l.c * slice_q; slice_q_new = Mul( slice_q_new, Rsqrt(Reduce(Square(slice_q_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); u = DynamicUpdateSliceInMinorDims(u, slice_p_new, {zero, p}); u = DynamicUpdateSliceInMinorDims(u, slice_q_new, {zero, q}); slice_p = DynamicSliceInMinorDims(v, {zero, p}, {n, 1}); slice_q = DynamicSliceInMinorDims(v, {zero, q}, {n, 1}); slice_p_new = onesided_jacobi.rot_r.c * slice_p - onesided_jacobi.rot_r.s * slice_q; slice_p_new = Mul( slice_p_new, Rsqrt(Reduce(Square(slice_p_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); slice_q_new = onesided_jacobi.rot_r.s * slice_p + onesided_jacobi.rot_r.c * slice_q; slice_q_new = Mul( slice_q_new, Rsqrt(Reduce(Square(slice_q_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); v = DynamicUpdateSliceInMinorDims(v, slice_p_new, {zero, p}); v = DynamicUpdateSliceInMinorDims(v, slice_q_new, {zero, q}); svd_result.d = d; svd_result.u = u; svd_result.v = v; return svd_result; } absl::StatusOr<XlaOp> ComputeToleranceComparison(XlaOp w, XlaOp epsilon) { XlaBuilder* builder = w.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(w)); auto num_dims = static_cast<int32_t>(shape.rank()); int64_t n = shape.dimensions(num_dims - 1); shape.set_dimensions(num_dims - 2, n); auto w_sliced = SliceInMinorDims(w, {0, 0}, {n, n}); auto diag = GetMatrixDiagonal(w_sliced); diag = Select(Lt(diag, ZerosLike(diag)), -diag, diag); std::vector<int64_t> broadcasted_dims(num_dims - 1); std::iota(broadcasted_dims.begin(), broadcasted_dims.end(), 0); auto broadcast_to_rows = BroadcastInDim(diag, shape.dimensions(), broadcasted_dims); broadcasted_dims.back() = num_dims - 1; auto broadcast_to_columns = BroadcastInDim(diag, shape.dimensions(), broadcasted_dims); XlaOp tolerance; if (builder->GetShape(epsilon)->element_type() == BF16 || builder->GetShape(epsilon)->element_type() == F16) { auto upscale_eps = ConvertElementType(epsilon, F32); tolerance = ConvertElementType(broadcast_to_rows, F32) * ConvertElementType(broadcast_to_columns, F32) * upscale_eps * upscale_eps; tolerance = ConvertElementType(tolerance, builder->GetShape(epsilon)->element_type()); } else { tolerance = broadcast_to_rows * broadcast_to_columns * epsilon * epsilon; } return Lt(tolerance, Square(Select(GetDiagonalMask(w_sliced), ZerosLike(w_sliced), w_sliced))); } absl::StatusOr<std::vector<XlaOp>> WhileLoopFn( absl::Span<const XlaOp> initial_values, int matrix_dimension, int max_sweep_updates, absl::string_view name, XlaBuilder* builder) { auto while_cond_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* cond_builder) -> absl::StatusOr<XlaOp> { auto k = values[0]; auto max_sweeps = ScalarLike(k, max_sweep_updates); auto sweep_update_cond = Gt(max_sweeps, k); TF_ASSIGN_OR_RETURN(auto tolerance_comparison, ComputeToleranceComparison(values[3], values[4])); auto tolerance_cond = ReduceAll( tolerance_comparison, xla::ConstantR0<bool>(cond_builder, false), CreateScalarOrComputation(PRED, cond_builder)); return And(sweep_update_cond, tolerance_cond); }; auto while_body_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto while_cond_fn_inner = [&](absl::Span<const XlaOp> values_inner, XlaBuilder* inner_cond_builder) -> absl::StatusOr<XlaOp> { auto p = values_inner[0]; return Lt(p, ScalarLike(p, matrix_dimension - 1)); }; auto while_body_fn_inner = [&](absl::Span<const XlaOp> values_inner, XlaBuilder* inner_body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto while_cond_fn_innermost = [&](absl::Span<const XlaOp> values_innermost, XlaBuilder* innermost_cond_builder) -> absl::StatusOr<XlaOp> { auto q = values_innermost[1]; return Lt(q, ScalarLike(q, matrix_dimension)); }; auto while_body_fn_innermost = [&](absl::Span<const XlaOp> values_innermost, XlaBuilder* innermost_body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto p = values_innermost[0]; auto q = values_innermost[1]; SVDResult onesided_jacobi_update; onesided_jacobi_update.u = values_innermost[2]; onesided_jacobi_update.v = values_innermost[3]; onesided_jacobi_update.d = values_innermost[4]; auto eps = values_innermost[5]; TF_ASSIGN_OR_RETURN( onesided_jacobi_update, OneSidedJacobiUpdate(onesided_jacobi_update, p, q, eps)); std::vector<XlaOp> updated_values_innermost; updated_values_innermost.reserve(values_innermost.size()); updated_values_innermost.push_back(p); updated_values_innermost.push_back(q + ScalarLike(q, 1)); updated_values_innermost.push_back(onesided_jacobi_update.u); updated_values_innermost.push_back(onesided_jacobi_update.v); updated_values_innermost.push_back(onesided_jacobi_update.d); updated_values_innermost.push_back(eps); return updated_values_innermost; }; std::vector<XlaOp> values_innermost(6); auto p = values_inner[0]; auto q = p + ScalarLike(p, 1); values_innermost[0] = p; values_innermost[1] = q; values_innermost[2] = values_inner[1]; values_innermost[3] = values_inner[2]; values_innermost[4] = values_inner[3]; values_innermost[5] = values_inner[4]; TF_ASSIGN_OR_RETURN( values_innermost, WhileLoopHelper(while_cond_fn_innermost, while_body_fn_innermost, values_innermost, absl::StrCat(name, "-Innermost"), inner_body_builder)); std::vector<XlaOp> updated_values_inner; updated_values_inner.reserve(values_inner.size()); updated_values_inner.push_back(p + ScalarLike(p, 1)); updated_values_inner.push_back(values_innermost[2]); updated_values_inner.push_back(values_innermost[3]); updated_values_inner.push_back(values_innermost[4]); updated_values_inner.push_back(values_innermost[5]); return updated_values_inner; }; XlaOp k = values[0]; std::vector<XlaOp> values_inner(5); values_inner[0] = ScalarLike(k, 0); values_inner[1] = values[1]; values_inner[2] = values[2]; values_inner[3] = values[3]; values_inner[4] = values[4]; TF_ASSIGN_OR_RETURN( values_inner, WhileLoopHelper(while_cond_fn_inner, while_body_fn_inner, values_inner, absl::StrCat(name, "-Inner"), body_builder)); std::vector<XlaOp> updated_values; updated_values.reserve(values_inner.size()); updated_values.push_back(k + ScalarLike(k, 1)); updated_values.push_back(values_inner[1]); updated_values.push_back(values_inner[2]); updated_values.push_back(values_inner[3]); updated_values.push_back(values_inner[4]); return updated_values; }; std::vector<XlaOp> values; TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn, initial_values, name, builder)); return values; } absl::StatusOr<SVDResult> SortBySingularValuesAndPostProcessing( SVDResult result) { XlaBuilder* builder = result.d.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(result.d)); const int64_t num_dims = shape.rank(); auto dimensions = shape.dimensions(); const int64_t m = ShapeUtil::GetDimension(shape, -2); const int64_t n = ShapeUtil::GetDimension(shape, -1); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; auto d = GetMatrixDiagonal(result.d); auto zeros = ZerosLike(d); auto one = ScalarLike(d, 1.0); auto sign = Select(Ge(d, zeros), zeros + one, zeros - one); d = Select(Ge(d, zeros), d, -d); result.v = Mul(result.v, sign, broadcast_dims); d = BroadcastInDim(d, dimensions, broadcast_dims); XlaOp sort_u_result = Sort({d, SliceInMinorDims(result.u, {0, 0}, {m, n})}, CreateScalarGtComputation( {shape.element_type(), shape.element_type()}, builder), num_dims - 1); XlaOp sort_v_result = Sort({SliceInMinorDims(d, {0, 0}, {n, n}), result.v}, CreateScalarGtComputation( {shape.element_type(), shape.element_type()}, builder), num_dims - 1); result.d = GetMatrixDiagonal(GetTupleElement(sort_v_result, 0)); result.v = GetTupleElement(sort_v_result, 1); result.v = Mul( result.v, Rsqrt(Reduce(Square(result.v), ScalarLike(d, 0.0), CreateScalarAddComputation(shape.element_type(), builder), {num_dims - 2})), broadcast_dims); result.u = ConcatInDim(builder, {GetTupleElement(sort_u_result, 1), SliceInMinorDims(result.u, {0, n}, {m, m})}, num_dims - 1); result.u = Mul( result.u, Rsqrt(Reduce(Square(result.u), ScalarLike(d, 0.0), CreateScalarAddComputation(shape.element_type(), builder), {num_dims - 2})), broadcast_dims); return result; } } SVDResult SVD(XlaOp a, int64_t max_iter, float epsilon, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); auto return_error = [&](const absl::Status& status) { SVDResult result; result.u = builder->ReportError(status); result.v = builder->ReportError(status); result.d = builder->ReportError(status); return result; }; auto shape_with_status = builder->GetShape(a); if (!shape_with_status.status().ok()) { return return_error(shape_with_status.status()); } Shape a_shape = shape_with_status.value(); const int64_t num_dims = a_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(a_shape, i); } int64_t m = ShapeUtil::GetDimension(a_shape, -2); int64_t n = ShapeUtil::GetDimension(a_shape, -1); bool maybe_transpose = m < n; if (maybe_transpose) { a = TransposeInMinorDims(a); std::swap(
#include "xla/client/lib/svd.h" #include <numeric> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { class SVDTest : public ClientLibraryTestBase { protected: void SetUp() override { ClientLibraryTestBase::SetUp(); batch_3d_4x5_ = Array3D<float>{ { {4, 6, 8, 10, 1}, {6, 45, 54, 63, 1}, {8, 54, 146, 166, 1}, {10, 63, 166, 310, 1}, }, { {16, 24, 8, 12, 6}, {24, 61, 82, 48, 5}, {8, 82, 100, 6, 4}, {12, 48, 6, 62, 3}, }, }; } void TearDown() override { ClientLibraryTestBase::TearDown(); } Array3D<float> GetUnitMatrix3D(int32_t batch_dim, int32_t mat_dim) { Array3D<float> result(batch_dim, mat_dim, mat_dim, 0.0); for (int i = 0; i < batch_dim; ++i) { for (int j = 0; j < mat_dim; ++j) { result({i, j, j}) = 1.0; } } return result; } XlaOp ComputeMatmulUDVT(SVDResult result, XlaBuilder* builder) { Shape u_shape = builder->GetShape(result.u).value(); Shape v_shape = builder->GetShape(result.v).value(); int64_t m = ShapeUtil::GetDimension(u_shape, -1); int64_t n = ShapeUtil::GetDimension(v_shape, -1); auto v = result.v; auto u = result.u; auto d = result.d; if (m > n) { u = SliceInMinorDims(u, {0, 0}, {m, n}); } else if (m < n) { v = SliceInMinorDims(v, {0, 0}, {n, m}); } int num_dims = u_shape.rank(); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; return BatchDot(Mul(u, d, broadcast_dims), TransposeInMinorDims(v), PrecisionConfig::HIGHEST); } XlaOp GetAverageAbsoluteError(XlaOp m1, XlaOp m2, XlaBuilder* builder) { Shape shape = builder->GetShape(m1).value(); int64_t size = 1; for (auto d : shape.dimensions()) { size *= d; } return ReduceAll(Abs(m1 - m2), ConstantR0WithType(builder, F32, 0), CreateScalarAddComputation(F32, builder)) / ConstantR0WithType(builder, F32, size); } Array2D<float> GenerateRandomMatrix(int xsize, int ysize) { Array2D<float> result{xsize, ysize, 0.0}; result.FillRandom(10 , 2 ); return result; } Array3D<float> batch_3d_4x5_; }; XLA_TEST_F(SVDTest, Simple2D) { XlaBuilder builder(TestName()); Array2D<float> simple_2d_4x4_ = Array2D<float>{ {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }; XlaOp a; auto a_data = CreateR2Parameter<float>(simple_2d_4x4_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-6); ComputeMatmulUDVT(result, &builder); ComputeAndCompareR2<float>(&builder, simple_2d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Test_VWVt_EQ_A_2x4x5) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); ComputeMatmulUDVT(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x5_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Test_Orthogonality_U) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); ComputeMatmulUDVT(result, &builder); BatchDot(result.u, TransposeInMinorDims(result.u)); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(2, 4), {a_data.get()}, ErrorSpec(1e-2, 1e-2)); } XLA_TEST_F(SVDTest, Test_Orthogonality_V) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); BatchDot(result.v, TransposeInMinorDims(result.v), PrecisionConfig::HIGHEST); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(2, 5), {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, TestSingleValuesMatchNumpy) { XlaBuilder builder(TestName()); auto singular_values = Array2D<float>{ {431.05153007, 49.88334164, 20.94464584, 3.24845468}, {179.73128591, 68.05162245, 21.77679503, 13.94319712}, }; XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); Add(result.d, ZerosLike(result.d)); ComputeAndCompareR2<float>(&builder, singular_values, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_INTERPRETER(Various_Size_Random_Matrix_512x128)) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 128); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Various_Size_Random_Matrix_128x256) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(128, 256); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Various_Size_Random_Matrix_256x128) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(256, 128); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_INTERPRETER(Various_Size_Random_Matrix_128x512)) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(128, 512); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_CPU(DISABLED_ON_INTERPRETER( Various_Size_Random_Matrix_512x256))) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 256); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_GPU(DISABLED_ON_CPU(DISABLED_ON_INTERPRETER( Various_Size_Random_Matrix_512x512)))) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 512); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } }
2,228
#ifndef XLA_CLIENT_LIB_SORTING_H_ #define XLA_CLIENT_LIB_SORTING_H_ #include "xla/client/xla_builder.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { XlaOp TopK(XlaOp input, int64_t k, PrimitiveType index_type = PrimitiveType::S32); XlaOp TopKWithPartitions(XlaOp input, int64_t k, int64_t num_partitions = 1, PrimitiveType index_type = PrimitiveType::S32); } #endif #include "xla/client/lib/sorting.h" #include <vector> #include "xla/client/lib/comparators.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { XlaOp TopK(XlaOp input, int64_t k, PrimitiveType index_type) { XlaBuilder* const builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); int last_dim = input_shape.dimensions_size() - 1; int64_t last_dim_size = input_shape.dimensions(last_dim); const int64_t kPerPartitionSize = 8192; const int64_t kLastDimSizeThreshold = 524288; const int64_t kMinNumPartitions = 8; const int64_t kMinimalK = 1000; if ((k >= kMinimalK) && (k < kPerPartitionSize) && (kPerPartitionSize / k > 2) && last_dim_size >= kLastDimSizeThreshold) { int64_t num_partitions = CeilOfRatio(last_dim_size - k, kPerPartitionSize - k); if (num_partitions >= kMinNumPartitions) { return TopKWithPartitions(input, k, num_partitions, index_type); } } Shape iota_shape = ShapeUtil::MakeShape(index_type, input_shape.dimensions()); XlaOp iota = Iota(builder, iota_shape, last_dim); for (int64_t i = 0; i < input_shape.rank(); ++i) { if (input_shape.is_dynamic_dimension(i)) { iota = SetDimensionSize(iota, GetDimensionSize(input, i), i); } } auto input_dims = input_shape.dimensions(); constexpr int32_t kLow16BitsLimit = int32_t{1} << 16; constexpr int32_t kLow16BitsMask = kLow16BitsLimit - 1; constexpr int32_t kHigh16BitsMask = ~kLow16BitsMask; constexpr int kMaxLastDimSizeForSmallBatches = 1500; constexpr int kSmallBatchSizeThreshold = 8; const bool use_packed_bf16_sort = (input_shape.element_type() == BF16 && last_dim_size < kLow16BitsLimit && (last_dim_size < kMaxLastDimSizeForSmallBatches || (input_shape.rank() == 2 && input_shape.dimensions(0) >= kSmallBatchSizeThreshold))); std::vector<int64_t> start_indices(input_shape.dimensions_size(), 0); std::vector<int64_t> limit_indices(input_dims.begin(), input_dims.end()); limit_indices[last_dim] = k; std::vector<int64_t> strides(input_shape.dimensions_size(), 1); XlaOp values; XlaOp indices; if (use_packed_bf16_sort) { auto sign_magnitude_to_from_ones_complement = [builder](const XlaOp in) { constexpr int32_t kAllNonSignBits = 0x7fffffff; XlaOp in_s32 = BitcastConvertType(in, S32); return Xor( And(in_s32, ConstantR0<int32_t>(builder, kAllNonSignBits)), ShiftRightArithmetic(in_s32, ConstantR0<int32_t>(builder, 31))); }; XlaOp input_f32_trimmed = Or(sign_magnitude_to_from_ones_complement( BitcastConvertType(ConvertElementType(input, F32), S32)), ConstantR0<int32_t>(builder, kLow16BitsMask)); XlaOp input_and_iota = Xor(input_f32_trimmed, iota); XlaOp sort_result_raw = Sort({input_and_iota}, CreateScalarGtComputation({index_type}, builder), last_dim, false); sort_result_raw = Slice(sort_result_raw, start_indices, limit_indices, strides); sort_result_raw = RemoveDynamicDimension(sort_result_raw, last_dim); values = ConvertElementType( BitcastConvertType( And(sign_magnitude_to_from_ones_complement(sort_result_raw), ConstantR0<int32_t>(builder, kHigh16BitsMask)), F32), BF16); indices = And( Xor(sort_result_raw, ConstantR0<int32_t>(builder, kLow16BitsMask)), ConstantR0<int32_t>(builder, kLow16BitsMask)); } else { XlaOp sort_result = Sort({input, iota}, CreateScalarGtComputation( {input_shape.element_type(), index_type}, iota.builder()), last_dim, true); values = Slice(GetTupleElement(sort_result, 0), start_indices, limit_indices, strides); values = RemoveDynamicDimension(values, last_dim); indices = Slice(GetTupleElement(sort_result, 1), start_indices, limit_indices, strides); indices = RemoveDynamicDimension(indices, last_dim); } return Tuple(builder, {values, indices}); }); } XlaOp TopKWithPartitions(XlaOp input, int64_t k, int64_t num_partitions, PrimitiveType index_type) { XlaBuilder* const builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); int last_dim = input_shape.dimensions_size() - 1; auto input_dims = input_shape.dimensions(); int64_t last_dim_size = input_shape.dimensions(last_dim); const int64_t per_partition_size = CeilOfRatio(last_dim_size, num_partitions); if (k >= per_partition_size) { return TopK(input, k, index_type); } Shape iota_shape = ShapeUtil::MakeShape(index_type, input_shape.dimensions()); XlaOp iota = Iota(builder, iota_shape, last_dim); for (int64_t i = 0; i < input_shape.rank(); ++i) { if (input_shape.is_dynamic_dimension(i)) { iota = SetDimensionSize(iota, GetDimensionSize(input, i), i); } } auto topk_body_fn = [&](XlaOp partition, absl::Span<const XlaOp> values_and_indices, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto values = values_and_indices[0]; auto indices = values_and_indices[1]; auto input = values_and_indices[2]; auto iota = values_and_indices[3]; XlaOp start = Mul(Add(partition, One(builder, index_type)), ConstantR0WithType(builder, index_type, per_partition_size)); XlaOp sliced_input = DynamicSliceInMinorDims(input, {start}, {per_partition_size}); XlaOp sliced_indices = DynamicSliceInMinorDims(iota, {start}, {per_partition_size}); sliced_input = ConcatInDim(builder, {values, sliced_input}, last_dim); sliced_indices = ConcatInDim(builder, {indices, sliced_indices}, last_dim); XlaOp sort_result = Sort( {sliced_input, sliced_indices}, CreateScalarGtComputation({input_shape.element_type(), index_type}, sliced_indices.builder()), last_dim, true); std::vector<int64_t> start_indices(input_shape.dimensions_size(), 0); std::vector<int64_t> limit_indices(input_dims.begin(), input_dims.end()); std::vector<int64_t> strides(input_shape.dimensions_size(), 1); start_indices[last_dim] = 0; limit_indices[last_dim] = k; values = Slice(GetTupleElement(sort_result, 0), start_indices, limit_indices, strides); indices = Slice(GetTupleElement(sort_result, 1), start_indices, limit_indices, strides); return std::vector<XlaOp>{values, indices, input, iota}; }; std::vector<int64_t> start_indices(input_shape.dimensions_size(), 0); std::vector<int64_t> limit_indices(input_dims.begin(), input_dims.end()); std::vector<int64_t> strides(input_shape.dimensions_size(), 1); start_indices[last_dim] = 0; limit_indices[last_dim] = per_partition_size; XlaOp sliced_input = Slice(input, start_indices, limit_indices, strides); XlaOp sliced_indices = Slice(iota, start_indices, limit_indices, strides); XlaOp sort_result = Sort({sliced_input, sliced_indices}, CreateScalarGtComputation({input_shape.element_type(), index_type}, sliced_indices.builder()), last_dim, true); start_indices[last_dim] = 0; limit_indices[last_dim] = k; XlaOp values = Slice(GetTupleElement(sort_result, 0), start_indices, limit_indices, strides); XlaOp indices = Slice(GetTupleElement(sort_result, 1), start_indices, limit_indices, strides); TF_ASSIGN_OR_RETURN( auto values_and_indices, ForEachIndex(num_partitions - 1, index_type, topk_body_fn, {values, indices, input, iota}, "topk_with_partition", builder)); return Tuple(builder, {values_and_indices[0], values_and_indices[1]}); }); } }
#include "xla/client/lib/sorting.h" #include <algorithm> #include <functional> #include <limits> #include <random> #include <vector> #include "xla/client/xla_builder.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" namespace xla { namespace { using SortingTest = ClientLibraryTestBase; XLA_TEST_F(SortingTest, TopK3From8Values) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); xla::GetTupleElement(xla::TopK(x, 3), 0); ComputeAndCompareR1<float>(&builder, {7.0, 6.0, 5.0}, {}); } XLA_TEST_F(SortingTest, TopK3From8Indices) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<float>(&builder, {7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0}); xla::GetTupleElement(xla::TopK(x_rev, 3), 1); ComputeAndCompareR1<int>(&builder, {0, 1, 2}, {}); } XLA_TEST_F(SortingTest, TopK3From8Int16Indices) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); xla::GetTupleElement(xla::TopK(x, 3, PrimitiveType::S16), 1); ComputeAndCompareR1<int16_t>(&builder, {7, 6, 5}, {}); } XLA_TEST_F(SortingTest, TopKFullSortMinInt) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<int>(&builder, {std::numeric_limits<int>::min(), std::numeric_limits<int>::min() + 1, std::numeric_limits<int>::max()}); xla::GetTupleElement(xla::TopK(x_rev, 3), 1); ComputeAndCompareR1<int>(&builder, {2, 1, 0}, {}); } XLA_TEST_F(SortingTest, TopKFullSort) { XlaBuilder builder(TestName()); const int kSize = 16; std::mt19937 eng; std::uniform_real_distribution<float> u_dist(0.0, 100.0); auto gen = std::bind(u_dist, eng); std::vector<float> inputs(kSize); std::generate(inputs.begin(), inputs.end(), gen); auto x = ConstantR1<float>(&builder, inputs); xla::GetTupleElement(xla::TopK(x, kSize), 0); absl::c_sort(inputs, std::greater<float>()); ComputeAndCompareR1<float>(&builder, inputs, {}); } XLA_TEST_F(SortingTest, TopKFullSortWithDuplicates) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR1Parameter<int>({1, 1, 2, 2, 1}, 0, "a", &builder, &a); xla::GetTupleElement(xla::TopK(a, 5), 1); ComputeAndCompareR1<int>(&builder, {2, 3, 0, 1, 4}, {a_data.get()}); } XLA_TEST_F(SortingTest, TopK3From8Values2Partitions) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); xla::GetTupleElement(xla::TopKWithPartitions(x, 3, 2), 0); ComputeAndCompareR1<float>(&builder, {7.0, 6.0, 5.0}, {}); } XLA_TEST_F(SortingTest, TopK3From8Indices2Partitions) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<float>(&builder, {7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0}); xla::GetTupleElement(xla::TopKWithPartitions(x_rev, 3, 2), 1); ComputeAndCompareR1<int>(&builder, {0, 1, 2}, {}); } XLA_TEST_F(SortingTest, TopK3From8Values3Partitions) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); xla::GetTupleElement(xla::TopKWithPartitions(x, 3, 3), 0); ComputeAndCompareR1<float>(&builder, {7.0, 6.0, 5.0}, {}); } XLA_TEST_F(SortingTest, TopK3From8Indices3Partitions) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<float>(&builder, {7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0}); xla::GetTupleElement(xla::TopKWithPartitions(x_rev, 3, 3), 1); ComputeAndCompareR1<int>(&builder, {0, 1, 2}, {}); } XLA_TEST_F(SortingTest, TopK3From8Values5Partitions) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); xla::GetTupleElement(xla::TopKWithPartitions(x, 3, 5), 0); ComputeAndCompareR1<float>(&builder, {7.0, 6.0, 5.0}, {}); } XLA_TEST_F(SortingTest, DISABLED_TopKLargeInput) { XlaBuilder builder(TestName()); Array<float> input({2, 1000000}); input.FillRandom(1.0f, 2.0f); auto x = CreateConstantFromLiteral(LiteralUtil::CreateFromArray(input), &builder); Array2D<float> expected_array(2, 1000); expected_array.Fill(2.0f); xla::GetTupleElement(xla::TopK(x, 1000), 0); ErrorSpec error_spec(10.0f, 10.0f); ComputeAndCompareR2<float>(&builder, expected_array, {}, error_spec); } XLA_TEST_F(SortingTest, TopK3From8Indices5Partitions) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<float>(&builder, {7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0}); xla::GetTupleElement(xla::TopKWithPartitions(x_rev, 3, 5), 1); ComputeAndCompareR1<int>(&builder, {0, 1, 2}, {}); } XLA_TEST_F(SortingTest, TopK3From8Int16Indices5Partitions) { XlaBuilder builder(TestName()); auto x_rev = ConstantR1<float>(&builder, {7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0}); xla::GetTupleElement(xla::TopKWithPartitions(x_rev, 3, 5, PrimitiveType::S16), 1); ComputeAndCompareR1<int16_t>(&builder, {0, 1, 2}, {}); } XLA_TEST_F(SortingTest, TopKFullSortWithDuplicates2Partitions) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR1Parameter<int>({1, 1, 2, 2, 1}, 0, "a", &builder, &a); xla::GetTupleElement(xla::TopKWithPartitions(a, 3, 2), 1); ComputeAndCompareR1<int>(&builder, {2, 3, 0}, {a_data.get()}); } } }
2,229
#ifndef XLA_CLIENT_LIB_SELF_ADJOINT_EIG_H_ #define XLA_CLIENT_LIB_SELF_ADJOINT_EIG_H_ #include "xla/client/xla_builder.h" #include "xla/xla_data.pb.h" namespace xla { struct SelfAdjointEigResult { XlaOp v; XlaOp w; }; SelfAdjointEigResult SelfAdjointEig(XlaOp a, bool lower = true, int64_t max_iter = 15, float tol = 1e-5, bool sort_eigenvalues = true); } #endif #include "xla/client/lib/self_adjoint_eig.h" #include <memory> #include <string> #include <vector> #include "absl/status/statusor.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/comparators.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { SelfAdjointEigResult SelfAdjointEig(XlaOp a, bool lower, int64_t max_iter, float tol, bool sort_eigenvalues) { XlaBuilder* builder = a.builder(); XlaOp result = builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); if (num_dims < 2) { return InvalidArgument( "Arguments to Eigen decomposition must have rank >= 2: got shape %s.", a_shape.ToString()); } PrimitiveType type = a_shape.element_type(); if (!primitive_util::IsFloatingPointType(type) && !primitive_util::IsComplexType(type)) { return InvalidArgument( "Type of the input matrix must be floating point " "or complex: got %s.", a_shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); if (m != n) { return InvalidArgument( "Arguments to symmetric eigendecomposition must be square matrices: " "got shape (%d, %d).", m, n); } const int num_batch_dims = a_shape.dimensions().size() - 2; const std::vector<int64_t> batch_dims( a_shape.dimensions().begin(), a_shape.dimensions().begin() + num_batch_dims); PrimitiveType eigvals_type = primitive_util::IsComplexType(type) ? primitive_util::ComplexComponentType(type) : type; std::vector<int64_t> eigvals_dims = batch_dims; eigvals_dims.push_back(m); Shape eigh_shape = ShapeUtil::MakeTupleShape( {a_shape, ShapeUtil::MakeShape(eigvals_type, eigvals_dims)}); std::string opaque = absl::StrFormat("%d,%d,%d,%f", lower, sort_eigenvalues, max_iter, tol); return CustomCall(a.builder(), "Eigh", {a}, eigh_shape, opaque); }); return SelfAdjointEigResult{GetTupleElement(result, 0), GetTupleElement(result, 1)}; } }
#include "xla/client/lib/self_adjoint_eig.h" #include <algorithm> #include <numeric> #include <vector> #include "absl/status/statusor.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { class SelfAdjointEigTest : public ClientLibraryTestBase { protected: void SetUp() override { ClientLibraryTestBase::SetUp(); batch_3d_4x4_ = Array3D<float>{ { {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 100, 6}, {12, 48, 6, 62}, }, }; matrix2d_8x8_ = Array2D<float>{ {14., 123., 49., 112., 115., 173., 182., 125.}, {123., 14., 60., 118., 150., 130., 91., 72.}, {49., 60., 138., 111., 106., 101., 115., 142.}, {112., 118., 111., 142., 91., 130., 25., 61.}, {115., 150., 106., 91., 116., 121., 128., 85.}, {173., 130., 101., 130., 121., 70., 151., 132.}, {182., 91., 115., 25., 128., 151., 66., 92.}, {125., 72., 142., 61., 85., 132., 92., 156.}, }; low_rank_4x4_ = Array2D<float>{ {2, 1, 4, 3}, {1, 5, 5, 9}, {4, 5, 10, 11}, {3, 9, 11, 17}, }; } void TearDown() override { ClientLibraryTestBase::TearDown(); } Array3D<float> GetUnitMatrix3D(const Array3D<float>& matrix) { Array3D<float> result(matrix.n1(), matrix.n2(), matrix.n3(), 0.0); for (int i = 0; i < matrix.n1(); ++i) { for (int j = 0; j < matrix.n2(); ++j) { result({i, j, j}) = 1.0; } } return result; } Array3D<float> ExtractTriangularMatrix(const Array3D<float>& matrix, bool lower) { Array3D<float> result(matrix); for (int i = 0; i < result.n1(); ++i) { for (int j = 0; j < result.n2(); ++j) { if (lower) { for (int k = j + 1; k < result.n3(); ++k) { result({i, j, k}) = 0.0; } } else { for (int k = 0; k < j; ++k) { result({i, j, k}) = 0.0; } } } } return result; } Array3D<float> batch_3d_4x4_; Array2D<float> matrix2d_8x8_; Array2D<float> low_rank_4x4_; Array2D<int> wrong_type_4x4_; }; XlaOp GetAverageAbsoluteError(XlaOp m1, XlaOp m2, XlaBuilder* builder) { Shape shape = builder->GetShape(m1).value(); int64_t size = ShapeUtil::ElementsIn(shape); return ReduceAll(Abs(m1 - m2), ConstantR0WithType(builder, F32, 0), CreateScalarAddComputation(F32, builder)) / ConstantR0WithType(builder, F32, std::max<int64_t>(1, size)); } XlaOp ComputeMatmulVWVt(SelfAdjointEigResult result, XlaBuilder* builder) { Shape shape = builder->GetShape(result.v).value(); absl::Span<const int64_t> out_dims = shape.dimensions(); std::vector<int64_t> broadcast_dims(shape.rank() - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[shape.rank() - 2] = shape.rank() - 1; auto vw = Mul(result.v, BroadcastInDim(ConvertElementType(result.w, shape.element_type()), out_dims, broadcast_dims)); return BatchDot(vw, MaybeConjugate(TransposeInMinorDims(result.v), true), PrecisionConfig::HIGHEST); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_2x4x4) { for (bool sort_eigenvalues : {false, true}) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a, true, 15, 1e-5, sort_eigenvalues); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_3x3_Complex) { XlaBuilder builder(TestName()); Array<complex64> input = { {1, complex64{2, -7}, complex64{4, -8}}, {complex64{2, 7}, 3, complex64{5, -9}}, {complex64{4, 8}, complex64{5, 9}, 6}, }; XlaOp a; auto a_data = CreateParameter<complex64>(input, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompare<complex64>(&builder, input, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_Lower_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>( ExtractTriangularMatrix(batch_3d_4x4_, true), 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_Upper_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>( ExtractTriangularMatrix(batch_3d_4x4_, false), 0, "a", &builder, &a); auto result = SelfAdjointEig(a, false); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Orthogonality_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); BatchDot(result.v, TransposeInMinorDims(result.v), PrecisionConfig::HIGHEST); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(batch_3d_4x4_), {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VtWV_EQ_A_Rank_Deficient_4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR2Parameter<float>(low_rank_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR2<float>(&builder, low_rank_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Eigen_8x8) { XlaBuilder builder(TestName()); std::vector<float> expected{-182.69205, -116.86245, -105.74489, -9.545369, 37.81711, 104.732285, 120.29153, 868.00385}; XlaOp a; auto a_data = CreateR2Parameter<float>(matrix2d_8x8_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); Add(result.w, ZerosLike(result.w)); ComputeAndCompareR1<float>(&builder, expected, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Orthogonality_8x8) { XlaBuilder builder(TestName()); float expected_vals = 1e-3; XlaOp a; auto a_data = CreateR2Parameter<float>(matrix2d_8x8_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); GetAverageAbsoluteError(IdentityMatrix(&builder, F32, 8, 8), BatchDot(TransposeInMinorDims(result.v), result.v), &builder); ComputeAndCompareR0<float>(&builder, expected_vals, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Wrong_Type_Int) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR2Parameter<int>(wrong_type_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); EXPECT_FALSE(result.v.valid()); EXPECT_FALSE(result.w.valid()); } Array2D<float> GenerateRandomSymmetricMatrix(int size) { Array2D<float> result{size, size, 0.0}; result.FillRandom(10 , 2 , 12346 ); for (int i = 0; i < size; ++i) { for (int j = 0; j < i; ++j) { result({j, i}) = result({i, j}); } } return result; } using EighTestCase = int64_t; class RandomEighTest : public ClientLibraryTestBase, public ::testing::WithParamInterface<EighTestCase> {}; XLA_TEST_P(RandomEighTest, Random) { XlaBuilder builder(TestName()); int64_t size = GetParam(); Array2D<float> a_val = GenerateRandomSymmetricMatrix(size); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); GetAverageAbsoluteError(ComputeMatmulVWVt(result, &builder), a, &builder); double kExpected = 0.00300000003; ComputeAndCompareR0<float>(&builder, kExpected, {a_data.get()}, ErrorSpec(kExpected, 0)); } #ifndef XLA_TEST_BACKEND_CPU INSTANTIATE_TEST_SUITE_P( RandomEighTestInstantiation, RandomEighTest, ::testing::Values(0, 1, 2, 3, 8, 16, 32, 77, 129, 203, 256, 257, 493, 511, 512, 513, 1000), [](const ::testing::TestParamInfo<EighTestCase>& info) { const int64_t size = info.param; return absl::StrCat(size); }); #else INSTANTIATE_TEST_SUITE_P( RandomEighTestInstantiation, RandomEighTest, ::testing::Values(0, 1, 2, 3, 8, 16, 32, 77, 129, 203, 256, 257, 493, 511, 512), [](const ::testing::TestParamInfo<EighTestCase>& info) { const int64_t size = info.param; return absl::StrCat(size); }); #endif }
2,230
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_DIALECTS_COMPARATORS_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_DIALECTS_COMPARATORS_H_ #include <complex> #include <cstdint> #include <type_traits> #include "llvm/Support/ErrorHandling.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value_util.h" namespace mlir { namespace interpreter { template <int64_t v, bool r, bool nan_result> struct FloatCompare : CwiseAll { template <typename T> static bool Apply(T a, T b) { if (isnan(a) || isnan(b)) return nan_result; if constexpr (v == 0) { return (a == b) == r; } else if constexpr (std::is_floating_point_v<T> || std::is_integral_v<T>) { auto cmp = a > b ? 1 : (a < b ? -1 : 0); return (cmp == v) == r; } else { llvm_unreachable("operation not supported for this type"); } } template <typename T> static bool isnan(T a) { return std::isnan(a); } template <typename T> static bool isnan(std::complex<T> a) { return std::isnan(std::real(a)) || std::isnan(std::imag(a)); } }; using Foeq = FloatCompare<0, true, false>; using Foge = FloatCompare<-1, false, false>; using Fogt = FloatCompare<1, true, false>; using Fole = FloatCompare<1, false, false>; using Folt = FloatCompare<-1, true, false>; using Fone = FloatCompare<0, false, false>; using Ford = FloatCompare<99, false, false>; using Fueq = FloatCompare<0, true, true>; using Fuge = FloatCompare<-1, false, true>; using Fugt = FloatCompare<1, true, true>; using Fule = FloatCompare<1, false, true>; using Fult = FloatCompare<-1, true, true>; using Fune = FloatCompare<0, false, true>; using Funo = FloatCompare<99, true, true>; template <int64_t v, bool r> struct UnsignedCompare : CwiseInt { template <typename T> static bool Apply(T a, T b) { using U = std::make_unsigned_t<T>; auto a_u = static_cast<U>(a); auto b_u = static_cast<U>(b); auto cmp = a_u > b_u ? 1 : (a_u < b_u ? -1 : 0); return (cmp == v) == r; } }; using Iuge = UnsignedCompare<-1, false>; using Iule = UnsignedCompare<1, false>; using Iugt = UnsignedCompare<1, true>; using Iult = UnsignedCompare<-1, true>; struct Iumax { template <typename T> static T apply(T a, T b) { return Iuge::Apply(a, b) ? a : b; } }; struct Iumin { template <typename T> static T apply(T a, T b) { return Iule::Apply(a, b) ? a : b; } }; } } #endif #include "xla/client/lib/comparators.h" #include <limits> #include <optional> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using XlaCompareOp = XlaOp (*)(XlaOp, XlaOp, absl::Span<const int64_t>); XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder, XlaCompareOp generator) { CHECK_NE(operand_types.size(), 0); std::vector<std::optional<XlaCompareOp>> generators(operand_types.size()); generators[0] = generator; return CreateScalarComparisonComputation(name, operand_types, generators, builder); } } XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, const std::vector<std::optional<XlaCompareOp>>& generators, XlaBuilder* builder) { auto b = builder->CreateSubBuilder(name); if (operand_types.empty()) { b->ReportError(InvalidArgument("operand_types should not be empty")); return b->BuildAndNoteError(); } CHECK_EQ(operand_types.size(), generators.size()); int parameter_count = 0; int last_generator_index = 0; std::vector<XlaOp> lhs_params; std::vector<XlaOp> rhs_params; for (auto operand_type : operand_types) { auto scalar_shape = ShapeUtil::MakeShape(operand_type, {}); auto lhs_param = Parameter(b.get(), parameter_count * 2, scalar_shape, absl::StrCat("p.", parameter_count, ".lhs")); auto rhs_param = Parameter(b.get(), parameter_count * 2 + 1, scalar_shape, absl::StrCat("p.", parameter_count, ".rhs")); lhs_params.emplace_back(lhs_param); rhs_params.emplace_back(rhs_param); if (generators[parameter_count].has_value()) { last_generator_index = parameter_count; } parameter_count++; } CHECK_NE(parameter_count, 0); XlaOp result; XlaOp prev_equal; for (int i = 0; i < parameter_count; i++) { if (generators[i].has_value()) { XlaOp cmp_op = generators[i].value()(lhs_params[i], rhs_params[i], {}); result = prev_equal.valid() ? Select(prev_equal, cmp_op, result) : cmp_op; if (i != last_generator_index) { XlaOp eq_op = EqTotalOrder(lhs_params[i], rhs_params[i]); prev_equal = prev_equal.valid() ? And(prev_equal, eq_op) : eq_op; } } } CHECK(result.valid()); return b->BuildAndNoteError(); } XlaComputation CreateScalarLtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation("compare-less-than", operand_types, builder, LtTotalOrder); } XlaComputation CreateScalarGtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation( "compare-greater-than", operand_types, builder, GtTotalOrder); } }
#include "xla/client/lib/comparators.h" #include <cmath> #include <limits> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { class ComparatorsTest : public ClientLibraryTestBase { public: ComparatorsTest() : builder_(TestName()) {} XlaBuilder* builder() { return &builder_; } private: XlaBuilder builder_; }; template < PrimitiveType type, typename T = typename primitive_util::PrimitiveTypeToNative<type>::type> void BuildComparatorAndComparisons(ComparatorsTest* test, bool compare_less_than, absl::InlinedVector<bool, 10>* expected) { auto compare = compare_less_than ? CreateScalarLtComputation({type}, test->builder()) : CreateScalarGtComputation({type}, test->builder()); auto negative_nan = ConstantR0<T>( test->builder(), -T(std::numeric_limits<float>::quiet_NaN())); auto positive_nan = ConstantR0<T>(test->builder(), T(std::numeric_limits<float>::quiet_NaN())); auto negative_zero = ConstantR0<T>(test->builder(), T(-0.)); auto positive_zero = ConstantR0<T>(test->builder(), T(0.)); auto negative_infinity = MinValue(test->builder(), type); auto positive_infinity = MaxValue(test->builder(), type); std::vector<XlaOp> all_constants{negative_nan, negative_infinity, negative_zero, positive_zero, positive_infinity, positive_nan}; std::vector<XlaOp> all_comparisons; all_comparisons.reserve(std::pow(all_constants.size(), 2)); for (const XlaOp& lhs_constant : all_constants) { for (const XlaOp& rhs_constant : all_constants) { all_comparisons.push_back(Broadcast( Call(test->builder(), compare, {lhs_constant, rhs_constant}), {1})); } } ConcatInDim(test->builder(), all_comparisons, 0); expected->clear(); for (int i = 0; i < all_constants.size(); ++i) { for (int j = 0; j < all_constants.size(); ++j) { expected->push_back(compare_less_than ? i < j : i > j); } } } XLA_TEST_F(ComparatorsTest, CompareLtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } const auto kCompareStr = HloOpcodeString(xla::HloOpcode::kCompare); const auto kParameterStr = HloOpcodeString(xla::HloOpcode::kParameter); const auto kSelectStr = HloOpcodeString(xla::HloOpcode::kSelect); void ExpectCompareOp( const xla::HloInstructionProto op, xla::PrimitiveType type, absl::string_view direction, int parameter0_number, int parameter1_number, const tsl::protobuf::RepeatedPtrField<xla::HloInstructionProto>& all_ops) { EXPECT_EQ(op.opcode(), kCompareStr); const auto& operand0 = all_ops.at(op.operand_ids(0) - 1); EXPECT_EQ(operand0.opcode(), kParameterStr); EXPECT_EQ(operand0.parameter_number(), parameter0_number); EXPECT_EQ(operand0.shape().element_type(), type); const auto& operand1 = all_ops.at(op.operand_ids(1) - 1); EXPECT_EQ(operand1.opcode(), kParameterStr); EXPECT_EQ(operand1.parameter_number(), parameter1_number); EXPECT_EQ(operand1.shape().element_type(), type); } TEST(VariadicComparatorTest, OneOperandOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16}, {LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 2); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, {}}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsTwoComparisons) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); EXPECT_EQ(root.opcode(), HloOpcodeString(xla::HloOpcode::kSelect)); ExpectCompareOp(instr.at(root.operand_ids(0) - 1), U16, "EQ", 0, 1, instr); ExpectCompareOp(instr.at(root.operand_ids(1) - 1), U32, "LT", 2, 3, instr); ExpectCompareOp(instr.at(root.operand_ids(2) - 1), U16, "LT", 0, 1, instr); } } }
2,231
#ifndef XLA_CLIENT_LIB_PRNG_H_ #define XLA_CLIENT_LIB_PRNG_H_ #include <array> #include <functional> #include <utility> #include "xla/client/xla_builder.h" #include "xla/xla_data.pb.h" namespace xla { struct RngOutput { XlaOp value; XlaOp state; }; using BitGeneratorTy = std::function<RngOutput(XlaOp key, XlaOp initial_state, const xla::Shape& shape)>; RngOutput ThreeFryBitGenerator(XlaOp key, XlaOp initial_state, const xla::Shape& shape); RngOutput PhiloxBitGenerator(XlaOp key, XlaOp initial_state, const Shape& shape); std::pair<XlaOp, XlaOp> ScramblePhiloxKey(XlaOp key); RngOutput UniformFloatingPointDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const xla::Shape& shape); RngOutput UniformIntDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const xla::Shape& shape); RngOutput NormalFloatingPointDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, const xla::Shape& shape); xla::XlaOp ConcatScalars(xla::XlaBuilder* builder, absl::Span<const xla::XlaOp> scalars); xla::XlaOp PhiloxIncreaseCounter(xla::XlaOp counter, xla::XlaOp delta); } #endif #include "xla/client/lib/prng.h" #include <array> #include <cmath> #include <cstdint> #include <iterator> #include <tuple> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/primitive_util.h" #include "xla/util.h" namespace xla { xla::XlaOp ConcatScalars(xla::XlaBuilder* builder, absl::Span<const xla::XlaOp> scalars) { std::vector<xla::XlaOp> vectors; absl::c_transform(scalars, std::back_inserter(vectors), [](xla::XlaOp x) { return xla::Reshape(x, {1}); }); return ConcatInDim(builder, vectors, 0); } namespace { XlaOp RotateLeftU32(XlaOp v, int distance) { return (v << ConstantR0<uint32_t>(v.builder(), distance)) | ShiftRightLogical(v, ConstantR0<uint32_t>(v.builder(), 32 - distance)); } using ThreeFry2x32State = std::array<XlaOp, 2>; ThreeFry2x32State ThreeFry2x32(ThreeFry2x32State input, ThreeFry2x32State key) { XlaBuilder* builder = input[0].builder(); key[0] = BitcastConvertType(key[0], U32); key[1] = BitcastConvertType(key[1], U32); constexpr std::array<int, 8> rotations = {13, 15, 26, 6, 17, 29, 16, 24}; ThreeFry2x32State x; std::array<XlaOp, 3> ks; ks[2] = ConstantR0<uint32_t>(builder, 0x1BD11BDA); for (int i = 0; i < 2; ++i) { ks[i] = key[i]; x[i] = input[i]; ks[2] = ks[2] ^ key[i]; } x[0] = x[0] + ks[0]; x[1] = x[1] + ks[1]; auto round = [](ThreeFry2x32State v, int rotation) { v[0] = v[0] + v[1]; v[1] = RotateLeftU32(v[1], rotation); v[1] = v[0] ^ v[1]; return v; }; x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[1]; x[1] = x[1] + ks[2] + ConstantR0<uint32_t>(builder, 1); x = round(x, rotations[4]); x = round(x, rotations[5]); x = round(x, rotations[6]); x = round(x, rotations[7]); x[0] = x[0] + ks[2]; x[1] = x[1] + ks[0] + ConstantR0<uint32_t>(builder, 2); x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[0]; x[1] = x[1] + ks[1] + ConstantR0<uint32_t>(builder, 3); x = round(x, rotations[4]); x = round(x, rotations[5]); x = round(x, rotations[6]); x = round(x, rotations[7]); x[0] = x[0] + ks[1]; x[1] = x[1] + ks[2] + ConstantR0<uint32_t>(builder, 4); x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[2]; x[1] = x[1] + ks[0] + ConstantR0<uint32_t>(builder, 5); return x; } std::array<XlaOp, 2> Uint64ToUint32s(XlaOp u64) { XlaBuilder* builder = u64.builder(); XlaOp const32 = ConstantR0WithType(builder, U64, 32); XlaOp fst = ConvertElementType(u64, U32); XlaOp snd = ConvertElementType(ShiftRightLogical(u64, const32), U32); return {fst, snd}; } XlaOp Uint32sToUint64(std::array<XlaOp, 2> u32s) { XlaBuilder* builder = u32s[0].builder(); return ConvertElementType(u32s[0], U64) | ShiftLeft(ConvertElementType(u32s[1], U64), ConstantR0WithType(builder, U64, 32)); } std::pair<ThreeFry2x32State, XlaOp> GetThreeFryInputsAndUpdatedState( XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = initial_state.builder(); auto u64_shape = ShapeUtil::MakeShape(U64, shape.dimensions()); auto input_u64 = Broadcast(Reshape(initial_state, {}), shape.dimensions()); int64_t trailing_dims_product = 1; for (int64_t i = shape.rank() - 1; i >= 0; --i) { if (shape.dimensions(i) < 2) { continue; } input_u64 = input_u64 + (Iota(builder, u64_shape, i) * ConstantR0<uint64_t>(builder, trailing_dims_product)); trailing_dims_product *= shape.dimensions(i); } XlaOp new_state = initial_state + ConstantR0<uint64_t>(builder, ShapeUtil::ElementsIn(shape)); return std::make_pair(Uint64ToUint32s(input_u64), new_state); } struct SplitShapePair { Shape half_shape; Shape concat_shape; int64_t split_dim; int64_t new_concat_dim; }; SplitShapePair SplitShapeIntoHalves(const Shape& shape) { SplitShapePair pair; if (shape.rank() == 0) { pair.half_shape = ShapeUtil::MakeShape(shape.element_type(), {1}); pair.concat_shape = ShapeUtil::MakeShape(shape.element_type(), {2}); pair.split_dim = 0; pair.new_concat_dim = 0; return pair; } pair.split_dim = -1; for (int64_t i = 0; i < shape.rank(); ++i) { if (shape.dimensions(i) % 2 == 0) { pair.split_dim = i; break; } } if (pair.split_dim == -1) { for (int64_t i = 0; i < shape.rank(); ++i) { if (pair.split_dim == -1 || shape.dimensions(i) > shape.dimensions(pair.split_dim)) { pair.split_dim = i; } } } if (pair.split_dim < 0) { LOG(ERROR) << "This point shouldn't have been reached."; } std::vector<int64_t> half_shape_dims; std::vector<int64_t> concat_shape_dims; const auto rank = shape.rank(); half_shape_dims.reserve(rank + 1); concat_shape_dims.reserve(rank + 1); for (int64_t i = 0; i < rank; ++i) { if (i == pair.split_dim) { half_shape_dims.push_back(CeilOfRatio<int64_t>(shape.dimensions(i), 2)); half_shape_dims.push_back(1); concat_shape_dims.push_back(half_shape_dims[i]); concat_shape_dims.push_back(2); } else { half_shape_dims.push_back(shape.dimensions(i)); concat_shape_dims.push_back(shape.dimensions(i)); } } pair.new_concat_dim = pair.split_dim + 1; pair.half_shape = ShapeUtil::MakeShape(shape.element_type(), half_shape_dims); pair.concat_shape = ShapeUtil::MakeShape(shape.element_type(), concat_shape_dims); return pair; } XlaOp CombineShapePair(absl::Span<const XlaOp> pair, const SplitShapePair& shape_pair, const Shape& original_shape) { if (original_shape.rank() == 0) { return Reshape(pair[0], {}); } XlaBuilder* builder = pair[0].builder(); XlaOp result = ConcatInDim(builder, pair, shape_pair.new_concat_dim); const int64_t pre_split_size = original_shape.dimensions(shape_pair.split_dim); std::vector<int64_t> reshape_dims(original_shape.dimensions().begin(), original_shape.dimensions().end()); reshape_dims[shape_pair.split_dim] = RoundUpTo<int64_t>(pre_split_size, 2); result = Reshape(result, reshape_dims); if (reshape_dims[shape_pair.split_dim] != pre_split_size) { result = Slice(result, std::vector<int64_t>(original_shape.rank(), 0), original_shape.dimensions(), std::vector<int64_t>(original_shape.rank(), 1)); } return result; } RngOutput ThreeFryRngBit32(XlaOp key, XlaOp initial_state, const Shape& shape) { auto shape_pair = SplitShapeIntoHalves(shape); std::pair<ThreeFry2x32State, XlaOp> inputs_state = GetThreeFryInputsAndUpdatedState(initial_state, shape_pair.half_shape); ThreeFry2x32State inputs = inputs_state.first; ThreeFry2x32State outputs = ThreeFry2x32(inputs, Uint64ToUint32s(key)); XlaOp result = CombineShapePair(outputs, shape_pair, shape); return {result, inputs_state.second}; } RngOutput ThreeFryRngBitNarrow(XlaOp op_key, XlaOp initial_state, const Shape& shape) { auto new_shape = shape; new_shape.set_element_type(U32); auto output = ThreeFryRngBit32(op_key, initial_state, new_shape); output.value = ConvertElementType( output.value, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(shape.element_type()))); return output; } RngOutput ThreeFryRngBit64(XlaOp key, XlaOp initial_state, const Shape& shape) { std::pair<ThreeFry2x32State, XlaOp> inputs_state = GetThreeFryInputsAndUpdatedState(initial_state, shape); ThreeFry2x32State inputs = inputs_state.first; ThreeFry2x32State outputs = ThreeFry2x32(inputs, Uint64ToUint32s(key)); XlaOp result = Uint32sToUint64(outputs); return {result, inputs_state.second}; } using Philox4x32Key = std::array<XlaOp, 2>; using Philox4x32State = std::array<XlaOp, 4>; Philox4x32State Philox4x32(Philox4x32State state, Philox4x32Key key) { static const uint32_t kPhiloxW32A = 0x9E3779B9; static const uint32_t kPhiloxW32B = 0xBB67AE85; static const uint32_t kPhiloxM4x32A = 0xD2511F53; static const uint32_t kPhiloxM4x32B = 0xCD9E8D57; struct HighLowPair { XlaOp high; XlaOp low; }; auto mul_hi_low = [](XlaOp x, uint32_t k) { auto product = ConvertElementType(x, U64) * ConstantR0<uint64_t>(x.builder(), k); auto low = ConvertElementType(product, U32); auto high = ConvertElementType( product >> ConstantR0<uint64_t>(x.builder(), 32), U32); return HighLowPair{high, low}; }; auto philox_round = [&](Philox4x32State x, Philox4x32Key key) { auto product0 = mul_hi_low(x[0], kPhiloxM4x32A); auto product1 = mul_hi_low(x[2], kPhiloxM4x32B); return Philox4x32State{product1.high ^ x[1] ^ key[0], product1.low, product0.high ^ x[3] ^ key[1], product0.low}; }; auto raise_key = [](Philox4x32Key key) { XlaBuilder* builder = key[0].builder(); return Philox4x32Key{key[0] + ConstantR0<uint32_t>(builder, kPhiloxW32A), key[1] + ConstantR0<uint32_t>(builder, kPhiloxW32B)}; }; static const int kNumRounds = 10; for (int round = 0; round < kNumRounds; ++round, key = raise_key(key)) { state = philox_round(state, key); } return state; } std::pair<Philox4x32State, Philox4x32Key> ScramblePhiloxKey(Philox4x32Key key) { XlaBuilder* builder = key[0].builder(); XlaOp key0 = ConvertElementType(key[0], U64); XlaOp key1 = ConvertElementType(key[1], U64); Philox4x32State state = { ConvertElementType(key0, U32), ConvertElementType(key0 >> ScalarLike(key0, 32), U32), ConvertElementType(key1, U32), ConvertElementType(key1 >> ScalarLike(key1, 32), U32), }; key = {ConstantR0<uint32_t>(builder, 0x3ec8f720), ConstantR0<uint32_t>(builder, 0x02461e29)}; state = Philox4x32(state, key); XlaOp zero = ConstantR0<uint32_t>(builder, 0); return {Philox4x32State{zero, zero, state[2], state[3]}, Philox4x32Key{state[0], state[1]}}; } std::array<XlaOp, 2> Uint128AddUint64( const std::array<XlaOp, 2>& u128, XlaOp u64, absl::Span<const int64_t> broadcast_sizes = {}) { auto u128_low = u128[0]; auto u128_high = u128[1]; XlaOp new_u128_low = u128_low + u64; XlaOp one = ConstantR0<uint64_t>(u128[0].builder(), 1); XlaOp new_u128_high = Select(Lt(new_u128_low, u128_low), Broadcast(u128_high + one, broadcast_sizes), Broadcast(u128_high, broadcast_sizes)); return {new_u128_low, new_u128_high}; } std::array<XlaOp, 2> Uint32sToUint128(const std::array<XlaOp, 4>& u32s) { return {Uint32sToUint64({u32s[0], u32s[1]}), Uint32sToUint64({u32s[2], u32s[3]})}; } std::array<XlaOp, 4> Uint128ToUint32s(const std::array<XlaOp, 2>& u128) { std::array<XlaOp, 2> u128_low_32s = Uint64ToUint32s(u128[0]); std::array<XlaOp, 2> u128_high_32s = Uint64ToUint32s(u128[1]); return {u128_low_32s[0], u128_low_32s[1], u128_high_32s[0], u128_high_32s[1]}; } std::array<XlaOp, 2> Uint128FromOp(XlaOp op) { auto u128_low = xla::Reshape(xla::Slice(op, {0}, {1}, {1}), {}); auto u128_high = xla::Reshape(xla::Slice(op, {1}, {2}, {1}), {}); return {u128_low, u128_high}; } XlaOp Uint128ToOp(std::array<XlaOp, 2> u128) { return ConcatScalars(u128[0].builder(), {u128[0], u128[1]}); } std::pair<Philox4x32State, XlaOp> GetPhiloxInputsAndUpdatedState( const Philox4x32State& state, int64_t n) { XlaBuilder* builder = state[0].builder(); XlaOp iota = Iota(builder, U64, n); auto state_u128 = Uint32sToUint128(state); auto inputs = Uint128ToUint32s(Uint128AddUint64(state_u128, iota, {n})); XlaOp new_state = Uint128ToOp( Uint128AddUint64(state_u128, ConstantR0<uint64_t>(builder, n))); return std::make_pair(inputs, new_state); } std::pair<Philox4x32State, XlaOp> GeneratePhiloxBits(int64_t num_elems, XlaOp initial_state, Philox4x32Key key) { Philox4x32State state; state = Uint128ToUint32s(Uint128FromOp(initial_state)); const int64_t num_vector4 = CeilOfRatio<int64_t>(num_elems, 4); Philox4x32State inputs; XlaOp new_state; std::tie(inputs, new_state) = GetPhiloxInputsAndUpdatedState(state, num_vector4); auto outputs = Philox4x32(inputs, key); return std::make_pair(outputs, new_state); } RngOutput PhiloxRngBit32(XlaOp op_key, XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = op_key.builder(); const int64_t num_elems = ShapeUtil::ElementsIn(shape); Philox4x32Key key = Uint64ToUint32s(op_key); Philox4x32State bits; XlaOp new_state; std::tie(bits, new_state) = GeneratePhiloxBits(num_elems, initial_state, key); int64_t bits_len = (num_elems + 3) / 4; for (auto i = 0; i < 4; ++i) { bits[i] = Reshape(bits[i], {bits_len, 1}); } XlaOp numbers = ConcatInDim(builder, {bits[0], bits[1], bits[2], bits[3]}, 1); numbers = Reshape(numbers, {bits_len * 4}); numbers = Slice(numbers, {0}, {num_elems}, {1}); return {Reshape(numbers, shape.dimensions()), new_state}; } RngOutput PhiloxRngBitNarrow(XlaOp op_key, XlaOp initial_state, const Shape& shape) { auto new_shape = shape; new_shape.set_element_type(U32); auto output = PhiloxRngBit32(op_key, initial_state, new_shape); output.value = ConvertElementType( output.value, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(shape.element_type()))); return output; } RngOutput PhiloxRngBit64(XlaOp op_key, XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = op_key.builder(); const int64_t num_elems = ShapeUtil::ElementsIn(shape); Philox4x32Key key = Uint64ToUint32s(op_key); Philox4x32State bits32; XlaOp new_state; std::tie(bits32, new_state) = GeneratePhiloxBits(num_elems * 2, initial_state, key); std::array<XlaOp, 2> bits64; bits64[0] = Uint32sToUint64({bits32[0], bits32[1]}); bits64[1] = Uint32sToUint64({bits32[2], bits32[3]}); int64_t bits64_len = (num_elems + 1) / 2; for (auto i = 0; i < 2; ++i) { bits64[i] = Reshape(bits64[i], {bits64_len, 1}); } XlaOp numbers = ConcatInDim(builder, {bits64[0], bits64[1]}, 1); numbers = Reshape(numbers, {bits64_len * 2}); numbers = Slice(numbers, {0}, {num_elems}, {1}); return {Reshape(numbers, shape.dimensions()), new_state}; } XlaOp ConvertRandomBitsToUniformFloatingPoint(XlaOp bits, XlaOp minval, XlaOp maxval) { XlaBuilder* builder = bits.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* minval_shape, builder->GetShapePtr(minval)); TF_ASSIGN_OR_RETURN(const Shape* bits_shape, builder->GetShapePtr(bits)); PrimitiveType value_type = minval_shape->element_type(); PrimitiveType bit_type = bits_shape->element_type(); if (!primitive_util::IsFloatingPointType(value_type) || !primitive_util::IsIntegralType(bit_type)) { return InvalidArgument( "In ConvertRandomBitsToUniformFloatingPoint, value_type and bit_type " "can only be (floating_type, integer_type). Got combination: (%s, " "%s).", primitive_util::LowercasePrimitiveTypeName(value_type), primitive_util::LowercasePrimitiveTypeName(bit_type)); } if (value_type == F16 && bit_type == U16) { auto mantissa = bits & ScalarLike(bits, 0x3ffu); auto exponent = ScalarLike(bits, static_cast<uint16_t>(15) << 10); auto u16_result = exponent | mantissa; auto result = BitcastConvertType(u16_result, F16); return result - ScalarLike(result, 1.0); } else { int num_bits = primitive_util::BitWidth(bit_type); int num_mantissa_bits = primitive_util::SignificandWidth(value_type) - 1; if (num_mantissa_bits > num_bits) { return InvalidArgument( "%s bit type argument must have enough bits to cover the number of " "mantissa bits of the result type %s", primitive_util::LowercasePrimitiveTypeName(bit_type), primitive_util::LowercasePrimitiveTypeName(value_type)); } bits = ShiftRightLogical(bits, ScalarLike(bits, num_bits - num_mantissa_bits)); XlaOp values = ConvertElementType(bits, value_type); values = values * ScalarLike(values, std::ldexp(1., -num_mantissa_bits)); return values * (maxval - minval) + minval; } }); } XlaOp ConvertRandomBitsToUniformInt(XlaOp bits, XlaOp minval, XlaOp maxval, PrimitiveType type, PrimitiveType unsigned_type) { XlaBuilder* builder = bits.builder(); XlaOp range = BitcastConvertType(maxval, unsigned_type) - BitcastConvertType(minval, unsigned_type); XlaOp dist = Rem(bits, range); XlaOp dist_div_2 = ShiftRightLogical(dist, ConstantR0WithType(builder, unsigned_type, 1)); return minval + BitcastConvertType(dist_div_2, type) + BitcastConvertType(dist - dist_div_2, type); } std::pair<XlaOp, XlaOp> BoxMullerTransform(XlaOp x0, XlaOp x1) { XlaOp u1 = Max(x0, ScalarLike(x0, 1.0e-7f)); XlaOp v1 = ScalarLike(x1, 2.0f * M_PI) * x1; XlaOp u2 = Sqrt(ScalarLike(u1, -2.0f) * Log(u1)); return {Sin(v1) * u2, Cos(v1) * u2}; } } XlaOp PhiloxIncreaseCounter(XlaOp counter, XlaOp delta) { return Uint128ToOp(Uint128AddUint64(Uint128FromOp(counter), delta)); } RngOutput ThreeFryBitGenerator(XlaOp key, XlaOp initial_state, const Shape& shape) { PrimitiveType type = shape.element_type(); return primitive_util::PrimitiveTypeSwitch<RngOutput>( [&](auto primitive_type_constant) -> RngOutput { if constexpr (primitive_util::IsArrayType(primitive_type_constant) && !primitive_util::IsComplexType(primitive_type_constant) && primitive_type_constant != PRED) { const int kBits = primitive_util::BitWidth(primitive_type_constant); if (kBits < 32) { return ThreeFryRngBitNarrow(key, initial_state, shape); } if (kBits == 32) { return ThreeFryRngBit32(key, initial_state, shape); } if (kBits == 64) { return ThreeFryRngBit64(key, initial_state, shape); } } return { key.builder()->ReportError(Unimplemented( "Types other than F16, F32, F64, U16, S16, U32, S32, U64 and " "S64 are not implemented by ThreeFryBitGenerator; got %s", primitive_util::LowercasePrimitiveTypeName(type))), initial_state}; }, type); } RngOutput PhiloxBitGenerator(XlaOp key, XlaOp initial_state, const Shape& shape) { PrimitiveType type = shape.element_type(); return primitive_util::PrimitiveTypeSwitch<RngOutput>( [&](auto primitive_type_constant) -> RngOutput { if constexpr (primitive_util::IsArrayType(primitive_type_constant) && !primitive_util::IsComplexType(primitive_type_constant) && primitive_type_constant != PRED) { const int kBits = primitive_util::BitWidth(primitive_type_constant); if (kBits < 32) { return PhiloxRngBitNarrow(key, initial_state, shape); } if (kBits == 32) { return PhiloxRngBit32(key, initial_state, shape); } if (kBits == 64) { return PhiloxRngBit64(key, initial_state, shape); } } return { key.builder()->ReportError(Unimplemented( "Types other than F16, F32, F64, U16, S16, U32, S32, U64 and " "S64 are not implemented by PhiloxBitGenerator; got %s", primitive_util::LowercasePrimitiveTypeName(type))), initial_state}; }, type); } std::pair<XlaOp, XlaOp> ScramblePhiloxKey(XlaOp key) { Philox4x32Key pkey = Uint64ToUint32s(key); auto state_key = ScramblePhiloxKey(pkey); return std::make_pair(Uint128ToOp(Uint32sToUint128(state_key.first)), Uint32sToUint64(state_key.second)); } RngOutput UniformFloatingPointDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const Shape& shape) { RngOutput bits_state = bit_generator(key, initial_state, shape); XlaOp bits = bits_state.value; XlaOp new_state = bits_state.state; return {ConvertRandomBitsToUniformFloatingPoint(bits, minval, maxval), new_state}; } RngOutput UniformIntDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const Shape& shape) { RngOutput bits_state = bit_generator(key, initial_state, shape); XlaOp bits = bits_state.value; XlaOp new_state = bits_state.state; PrimitiveType type = shape.element_type(); PrimitiveType unsigned_type; if (type == U32 || type == S32) { unsigned_type = U32; } else if (type == U64 || type == S64) { unsigned_type = U64; } else { return {key.builder()->ReportError(Unimplemented( "Types other than U32, S32, U64 and S64 " "are not implemented by UniformIntDistribution; got %s", primitive_util::Lowercase
#include "xla/client/lib/prng.h" #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class PrngTest : public ClientLibraryTestBase { public: template <PrimitiveType value_type, PrimitiveType bit_type, typename ValueT = typename primitive_util::PrimitiveTypeToNative< value_type>::type, typename BitT = typename primitive_util::PrimitiveTypeToNative<bit_type>::type> void TestConvertRandomBitsToUniformFloatingPoint(uint32_t bits, float minval, float maxval) { XlaBuilder builder("convert_random_bits_to_uniform_floating_point"); XlaOp bits_op = ConstantR0<BitT>(&builder, static_cast<BitT>(bits)); XlaOp minval_op = ConstantR0<ValueT>(&builder, static_cast<ValueT>(minval)); XlaOp maxval_op = ConstantR0<ValueT>(&builder, static_cast<ValueT>(maxval)); XlaOp seed = ConstantR0<uint64_t>(&builder, 42); XlaOp initial_state = Zero(&builder, PrimitiveType::U64); BitGeneratorTy bit_generator = [](XlaOp key, XlaOp state, const Shape& shape) { state = ConcatScalars(key.builder(), {key, state}); XlaOp result = RngBitGenerator(RandomAlgorithm::RNG_DEFAULT, state, shape); return RngOutput{GetTupleElement(result, 1), GetTupleElement(result, 0)}; }; const Shape rng_shape = builder.GetShape(bits_op).value(); EXPECT_EQ(rng_shape.element_type(), bit_type); RngOutput rng_output = UniformFloatingPointDistribution( seed, initial_state, bit_generator, minval_op, maxval_op, rng_shape); if (rng_output.value.valid()) { XlaOp result = rng_output.value; EXPECT_EQ(builder.GetShape(result).value().element_type(), value_type); XlaOp result_ge_min = Ge(result, minval_op); XlaOp result_lt_max = Lt(result, maxval_op); And(result_ge_min, result_lt_max); ComputeAndCompareR0<bool>(&builder, true, {}); } else { EXPECT_EQ(builder.first_error().code(), absl::StatusCode::kInvalidArgument); } } }; XLA_TEST_F(PrngTest, RandomBitsToUniformFloatingPointInvalidArguments) { TestConvertRandomBitsToUniformFloatingPoint<PrimitiveType::F32, PrimitiveType::U16>(0x1234, 0.0f, 1.0f); TestConvertRandomBitsToUniformFloatingPoint<PrimitiveType::F16, PrimitiveType::U8>(0x12, 0.0f, 1.0f); } } }
2,232
#ifndef XLA_CLIENT_LIB_TRIDIAGONAL_H_ #define XLA_CLIENT_LIB_TRIDIAGONAL_H_ #include "xla/client/xla_builder.h" #include "xla/xla_data.pb.h" namespace xla { namespace tridiagonal { enum SolverAlgorithm { kThomas }; absl::StatusOr<XlaOp> TridiagonalSolver(SolverAlgorithm algo, XlaOp lower_diagonal, XlaOp main_diagonal, XlaOp upper_diagonal, XlaOp rhs); absl::StatusOr<XlaOp> TridiagonalSolver(SolverAlgorithm algo, XlaOp diagonals, XlaOp rhs); absl::StatusOr<XlaOp> TridiagonalMatMul(XlaOp upper_diagonal, XlaOp main_diagonal, XlaOp lower_diagonal, XlaOp rhs); } } #endif #include "xla/client/lib/tridiagonal.h" #include <cstdint> #include <numeric> #include <string> #include <string_view> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/loops.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/shape_util.h" #include "xla/status_macros.h" namespace xla { namespace tridiagonal { namespace { absl::Status CheckSecondToLastDimension(const Shape& op_shape, int64_t rank, int64_t expected, const std::string& op_name) { const auto actual_num_dims = ShapeUtil::GetDimension(op_shape, rank - 2); if (actual_num_dims != expected) { return InvalidArgument( "Second to last dimension of %s should be %d but is %d.", op_name, expected, actual_num_dims); } return absl::OkStatus(); } absl::StatusOr<int64_t> CheckSystemAndReturnNumEquations(XlaOp lower_diagonal, XlaOp main_diagonal, XlaOp upper_diagonal, XlaOp rhs) { XlaBuilder* builder = lower_diagonal.builder(); TF_ASSIGN_OR_RETURN(Shape lower_diagonal_shape, builder->GetShape(lower_diagonal)); TF_ASSIGN_OR_RETURN(Shape main_diagonal_shape, builder->GetShape(main_diagonal)); TF_ASSIGN_OR_RETURN(Shape upper_diagonal_shape, builder->GetShape(upper_diagonal)); TF_ASSIGN_OR_RETURN(Shape rhs_shape, builder->GetShape(rhs)); const auto lower_diagonal_rank = lower_diagonal_shape.rank(); const auto main_diagonal_rank = main_diagonal_shape.rank(); const auto upper_diagonal_rank = upper_diagonal_shape.rank(); const auto rhs_rank = rhs_shape.rank(); if (!((lower_diagonal_rank == main_diagonal_rank) && (lower_diagonal_rank == upper_diagonal_rank) && (lower_diagonal_rank == rhs_rank))) { return InvalidArgument( "All inputs should have the same rank but got rank " "%d for lower diagonal, %d for diagonal, %d for upper diagonal, " "%d for rhs", lower_diagonal_rank, main_diagonal_rank, upper_diagonal_rank, rhs_rank); } const auto rank = lower_diagonal_rank; if (rank < 2) { return InvalidArgument("Arguments must have rank >=2; got rank %d.", rank); } const auto lower_diagonal_num_eqs = ShapeUtil::GetDimension(lower_diagonal_shape, rank - 1); const auto main_diagonal_num_eqs = ShapeUtil::GetDimension(main_diagonal_shape, rank - 1); const auto upper_diagonal_num_eqs = ShapeUtil::GetDimension(upper_diagonal_shape, rank - 1); const auto rhs_num_eqs = ShapeUtil::GetDimension(rhs_shape, rank - 1); if (!((lower_diagonal_num_eqs == main_diagonal_num_eqs) && (lower_diagonal_num_eqs == upper_diagonal_num_eqs) && (lower_diagonal_num_eqs == rhs_num_eqs))) { return InvalidArgument( "All inputs should have the same innermost dimension but got " "%d for lower diagonal, %d for diagonal, %d for upper diagonal, " "%d for rhs", lower_diagonal_num_eqs, main_diagonal_num_eqs, upper_diagonal_num_eqs, rhs_num_eqs); } const auto num_equations = lower_diagonal_num_eqs; TF_RETURN_IF_ERROR(CheckSecondToLastDimension(lower_diagonal_shape, rank, 1, "lower diagonal")); TF_RETURN_IF_ERROR( CheckSecondToLastDimension(main_diagonal_shape, rank, 1, "diagonal")); TF_RETURN_IF_ERROR(CheckSecondToLastDimension(upper_diagonal_shape, rank, 1, "upper diagonal")); return num_equations; } struct TridiagonalMatMulShapeParams { int64_t rank; int64_t m; int64_t n; PrimitiveType element_type; }; absl::Status ValidateTridiagonalMatMulDiagonal( const Shape& diagonal_shape, const std::string_view diagonal_name, const Shape& rhs_shape) { const int64_t diagonal_rank = diagonal_shape.rank(); const int64_t rhs_rank = rhs_shape.rank(); if (diagonal_rank != rhs_rank) { return InvalidArgument("%s must have same rank as rhs, but got %d and %d.", diagonal_name, diagonal_rank, rhs_rank); } for (int64_t i = 0; i < rhs_rank - 2; i++) { const int64_t diagonal_dimension = ShapeUtil::GetDimension(diagonal_shape, i); const int64_t rhs_dimension = ShapeUtil::GetDimension(rhs_shape, i); if (diagonal_dimension != rhs_dimension) { return InvalidArgument( "%s must have same outer dimensions as rhs, but for index %d, got %d " "and %d.", diagonal_name, i, diagonal_dimension, rhs_dimension); } } if (const int64_t digonal_second_last_dimension = ShapeUtil::GetDimension(diagonal_shape, rhs_rank - 2); digonal_second_last_dimension != 1) { return InvalidArgument( "%s's second-to-last dimension must be 1, but got %d.", diagonal_name, digonal_second_last_dimension); } const int64_t digonal_last_dimension = ShapeUtil::GetDimension(diagonal_shape, rhs_rank - 1); const int64_t rhs_second_last_dimension = ShapeUtil::GetDimension(rhs_shape, rhs_rank - 2); if (digonal_last_dimension != rhs_second_last_dimension) { return InvalidArgument( "%s's last dimension size must be rhs's second-to-last dimension size, " "but got %d and %d.", diagonal_name, digonal_last_dimension, rhs_second_last_dimension); } return absl::OkStatus(); } absl::StatusOr<TridiagonalMatMulShapeParams> CheckMatMulSystemAndReturnShapeParams(XlaOp upper_diagonal, XlaOp main_diagonal, XlaOp lower_diagonal, XlaOp rhs) { XlaBuilder* builder = upper_diagonal.builder(); TF_ASSIGN_OR_RETURN(const Shape upper_diagonal_shape, builder->GetShape(upper_diagonal)); TF_ASSIGN_OR_RETURN(const Shape main_diagonal_shape, builder->GetShape(main_diagonal)); TF_ASSIGN_OR_RETURN(const Shape lower_diagonal_shape, builder->GetShape(lower_diagonal)); TF_ASSIGN_OR_RETURN(const Shape rhs_shape, builder->GetShape(rhs)); const int64_t rank = rhs_shape.rank(); if (rank < 2) { return InvalidArgument("Input must have rank >= 2, but got %d.", rank); } TF_RETURN_IF_ERROR(ValidateTridiagonalMatMulDiagonal(upper_diagonal_shape, "superdiag", rhs_shape)); TF_RETURN_IF_ERROR(ValidateTridiagonalMatMulDiagonal(main_diagonal_shape, "maindiag", rhs_shape)); TF_RETURN_IF_ERROR(ValidateTridiagonalMatMulDiagonal(lower_diagonal_shape, "subdiag", rhs_shape)); const int64_t rhs_height = ShapeUtil::GetDimension(rhs_shape, rank - 2); const int64_t rhs_width = ShapeUtil::GetDimension(rhs_shape, rank - 1); TridiagonalMatMulShapeParams shape_params; shape_params.rank = rank; shape_params.m = rhs_height; shape_params.n = rhs_width; shape_params.element_type = rhs_shape.element_type(); return shape_params; } XlaOp Coefficient(XlaOp operand, int32_t i) { return DynamicSliceInMinorDims(operand, {ConstantR0(operand.builder(), i)}, {1}); } XlaOp Coefficient(XlaOp operand, XlaOp i) { return DynamicSliceInMinorDims(operand, {i}, {1}); } XlaOp UpdateEq(XlaOp updated, int32_t i, XlaOp update) { return DynamicUpdateSliceInMinorDims( updated, update, {ConstantR0(updated.builder(), i)}); } XlaOp UpdateEq(XlaOp updated, XlaOp i, XlaOp update) { return DynamicUpdateSliceInMinorDims(updated, update, {i}); } template <SolverAlgorithm algo> absl::StatusOr<XlaOp> TridiagonalSolverImpl(XlaOp lower_diagonal, XlaOp main_diagonal, XlaOp upper_diagonal, XlaOp rhs); template <> absl::StatusOr<XlaOp> TridiagonalSolverImpl<kThomas>(XlaOp lower_diagonal, XlaOp main_diagonal, XlaOp upper_diagonal, XlaOp rhs) { XlaBuilder* builder = lower_diagonal.builder(); TF_ASSIGN_OR_RETURN(int64_t num_eqs, CheckSystemAndReturnNumEquations( lower_diagonal, main_diagonal, upper_diagonal, rhs)); XlaOp main_diag_after_elimination = ZerosLike(main_diagonal); XlaOp rhs_after_elimination = ZerosLike(rhs); XlaOp upper_diagonal_coeffs = ZerosLike(upper_diagonal); XlaOp x_coeffs = ZerosLike(rhs); main_diag_after_elimination = UpdateEq(main_diag_after_elimination, 0, Coefficient(main_diagonal, 0)); rhs_after_elimination = UpdateEq(rhs_after_elimination, 0, Coefficient(rhs, 0)); auto preparation_body_fn = [](XlaOp i, absl::Span<const XlaOp> values, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto upper_diagonal_coeffs = values[0]; auto upper_diagonal = values[1]; upper_diagonal_coeffs = UpdateEq(upper_diagonal_coeffs, i, Coefficient(upper_diagonal, i)); return std::vector<XlaOp>{upper_diagonal_coeffs, upper_diagonal}; }; TF_ASSIGN_OR_RETURN(auto values_after_preparation, ForEachIndex(num_eqs - 1, S32, preparation_body_fn, {upper_diagonal_coeffs, upper_diagonal}, "preparation", builder)); upper_diagonal_coeffs = values_after_preparation[0]; auto forward_transformation_fn = [](XlaOp i_minus_one, absl::Span<const XlaOp> values, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto lower_diagonal = values[0]; auto main_diagonal = values[1]; auto rhs = values[2]; auto main_diag_after_elimination = values[3]; auto upper_diagonal_coeffs = values[4]; auto rhs_after_elimination = values[5]; auto one = ScalarLike(i_minus_one, 1); auto i = i_minus_one + one; auto lower_diagonal_i = Coefficient(lower_diagonal, i); auto main_diagonal_i = Coefficient(main_diagonal, i); auto rhs_i = Coefficient(rhs, i); auto w_i = lower_diagonal_i / Coefficient(main_diag_after_elimination, i - one); main_diag_after_elimination = UpdateEq( main_diag_after_elimination, i, main_diagonal_i - w_i * Coefficient(upper_diagonal_coeffs, i - one)); rhs_after_elimination = UpdateEq(rhs_after_elimination, i, rhs_i - w_i * Coefficient(rhs_after_elimination, i - one)); return std::vector<XlaOp>{lower_diagonal, main_diagonal, rhs, main_diag_after_elimination, upper_diagonal_coeffs, rhs_after_elimination}; }; TF_ASSIGN_OR_RETURN( auto values_after_fwd_transformation, ForEachIndex( num_eqs - 1, S32, forward_transformation_fn, {lower_diagonal, main_diagonal, rhs, main_diag_after_elimination, upper_diagonal_coeffs, rhs_after_elimination}, "forward_transformation", builder)); lower_diagonal = values_after_fwd_transformation[0]; main_diagonal = values_after_fwd_transformation[1]; rhs = values_after_fwd_transformation[2]; main_diag_after_elimination = values_after_fwd_transformation[3]; upper_diagonal_coeffs = values_after_fwd_transformation[4]; rhs_after_elimination = values_after_fwd_transformation[5]; x_coeffs = UpdateEq(x_coeffs, num_eqs - 1, Coefficient(rhs_after_elimination, num_eqs - 1) / Coefficient(main_diag_after_elimination, num_eqs - 1)); auto bwd_reduction_fn = [num_eqs](XlaOp j, absl::Span<const XlaOp> values, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto x_coeffs = values[0]; auto rhs_after_elimination = values[1]; auto upper_diagonal_coeffs = values[2]; auto main_diag_after_elimination = values[3]; auto n = ScalarLike(j, num_eqs - 2); auto one = ScalarLike(j, 1); auto i = n - j; x_coeffs = UpdateEq(x_coeffs, i, (Coefficient(rhs_after_elimination, i) - Coefficient(upper_diagonal_coeffs, i) * Coefficient(x_coeffs, i + one)) / Coefficient(main_diag_after_elimination, i)); return std::vector<XlaOp>{x_coeffs, rhs_after_elimination, upper_diagonal_coeffs, main_diag_after_elimination}; }; TF_ASSIGN_OR_RETURN( auto values_after_bwd_reduction, ForEachIndex(num_eqs - 1, S32, bwd_reduction_fn, {x_coeffs, rhs_after_elimination, upper_diagonal_coeffs, main_diag_after_elimination}, "backward_reduction", builder)); x_coeffs = values_after_bwd_reduction[0]; return x_coeffs; } } absl::StatusOr<XlaOp> TridiagonalSolver(SolverAlgorithm algo, XlaOp lower_diagonal, XlaOp main_diagonal, XlaOp upper_diagonal, XlaOp rhs) { switch (algo) { case kThomas: return TridiagonalSolverImpl<kThomas>(lower_diagonal, main_diagonal, upper_diagonal, rhs); default: return Unimplemented( "Only algorithm kThomas (%d) is implemented, got: %d", static_cast<int>(kThomas), algo); } } absl::StatusOr<XlaOp> TridiagonalSolver(SolverAlgorithm algo, XlaOp diagonals, XlaOp rhs) { XlaBuilder* builder = diagonals.builder(); TF_ASSIGN_OR_RETURN(Shape diagonals_shape, builder->GetShape(diagonals)); const int64_t rank = diagonals_shape.rank(); auto upper_diagonal = SliceInDim(diagonals, 0, 1, 1, rank - 2); auto main_diagonal = SliceInDim(diagonals, 1, 2, 1, rank - 2); auto lower_diagonal = SliceInDim(diagonals, 2, 3, 1, rank - 2); std::vector<int64_t> transpose_order(rank); std::iota(transpose_order.begin(), transpose_order.end(), 0); transpose_order[rank - 2] = rank - 1; transpose_order[rank - 1] = rank - 2; rhs = Transpose(rhs, transpose_order); switch (algo) { case kThomas: { TF_ASSIGN_OR_RETURN( XlaOp x, TridiagonalSolverImpl<kThomas>(lower_diagonal, main_diagonal, upper_diagonal, rhs)); return Transpose(x, transpose_order); } default: return Unimplemented( "Only algorithm kThomas (%d) is implemented, got: %d", static_cast<int>(kThomas), algo); } } absl::StatusOr<XlaOp> TridiagonalMatMul(XlaOp upper_diagonal, XlaOp main_diagonal, XlaOp lower_diagonal, XlaOp rhs) { TF_ASSIGN_OR_RETURN(const TridiagonalMatMulShapeParams shape_params, CheckMatMulSystemAndReturnShapeParams( upper_diagonal, main_diagonal, lower_diagonal, rhs)); XlaBuilder* builder = main_diagonal.builder(); std::vector<int64_t> broadcasted_dims(shape_params.rank); std::iota(broadcasted_dims.begin(), broadcasted_dims.end(), 0); std::vector<int64_t> transpose_dims = broadcasted_dims; std::swap(transpose_dims[shape_params.rank - 2], transpose_dims[shape_params.rank - 1]); main_diagonal = xla::Transpose(main_diagonal, transpose_dims); XlaOp diag_part = xla::Mul(main_diagonal, rhs, broadcasted_dims); upper_diagonal = SliceInMinorDims(upper_diagonal, {0}, {shape_params.m - 1}); upper_diagonal = xla::Transpose(upper_diagonal, transpose_dims); XlaOp adjusted_upper_rhs = SliceInMinorDims( rhs, {1, 0}, {shape_params.m, shape_params.n}); XlaOp upper_diag_part = xla::Mul(upper_diagonal, adjusted_upper_rhs, broadcasted_dims); upper_diag_part = xla::PadInDim( upper_diag_part, xla::Zero(builder, shape_params.element_type), shape_params.rank - 2, 0, 1); lower_diagonal = SliceInMinorDims(lower_diagonal, {1}, {shape_params.m}); lower_diagonal = xla::Transpose(lower_diagonal, transpose_dims); XlaOp adjusted_lower_rhs = SliceInMinorDims( rhs, {0, 0}, {shape_params.m - 1, shape_params.n}); XlaOp lower_diag_part = xla::Mul(lower_diagonal, adjusted_lower_rhs, broadcasted_dims); lower_diag_part = xla::PadInDim( lower_diag_part, xla::Zero(builder, shape_params.element_type), shape_params.rank - 2, 1, 0); return diag_part + upper_diag_part + lower_diag_part; } } }
#include "xla/client/lib/tridiagonal.h" #include <cstdint> #include <tuple> #include <vector> #include "absl/status/status.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace tridiagonal { namespace { class TridiagonalTest : public ClientLibraryTestBase, public ::testing::WithParamInterface<std::tuple<int, int, int>> {}; XLA_TEST_P(TridiagonalTest, SimpleTridiagonalMatMulOk) { xla::XlaBuilder builder(TestName()); Array3D<float> upper_diagonal{{{34, 35, 999}}}; Array3D<float> main_diagonal{{{21, 22, 23}}}; Array3D<float> lower_diagonal{{{999, 10, 100}}}; Array3D<float> rhs{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}}; XlaOp upper_diagonal_xla; XlaOp main_diagonal_xla; XlaOp lower_diagonal_xla; XlaOp rhs_xla; auto upper_diagonal_data = CreateR3Parameter<float>( upper_diagonal, 0, "upper_diagonal", &builder, &upper_diagonal_xla); auto main_diagonal_data = CreateR3Parameter<float>( main_diagonal, 1, "main_diagonal", &builder, &main_diagonal_xla); auto lower_diagonal_data = CreateR3Parameter<float>( lower_diagonal, 2, "lower_diagonal", &builder, &lower_diagonal_xla); auto rhs_data = CreateR3Parameter<float>(rhs, 3, "rhs", &builder, &rhs_xla); TF_ASSERT_OK_AND_ASSIGN( XlaOp x, TridiagonalMatMul(upper_diagonal_xla, main_diagonal_xla, lower_diagonal_xla, rhs_xla)); ASSERT_EQ(x.builder()->first_error(), absl::OkStatus()); ASSERT_TRUE(x.valid()); std::vector<int64_t> expected_shape{1, 3, 4}; std::vector<float> expected_values{191, 246, 301, 356, 435, 502, 569, 636, 707, 830, 953, 1076}; TF_ASSERT_OK_AND_ASSIGN( auto result, ComputeAndTransfer(x.builder(), {upper_diagonal_data.get(), main_diagonal_data.get(), lower_diagonal_data.get(), rhs_data.get()})); EXPECT_EQ(result.shape().dimensions(), expected_shape); EXPECT_EQ(result.data<float>({}), expected_values); } XLA_TEST_P(TridiagonalTest, TridiagonalMatMulWrongShape) { xla::XlaBuilder builder(TestName()); Array<float> upper_diagonal = Array<float>({5, 3, 7}, 1); Array<float> main_diagonal = Array<float>({5, 3, 7}, 1); Array<float> lower_diagonal = Array<float>({5, 3, 7}, 1); Array<float> rhs = Array<float>({5, 3, 7, 6}, 1); XlaOp upper_diagonal_xla; XlaOp main_diagonal_xla; XlaOp lower_diagonal_xla; XlaOp rhs_xla; auto upper_diagonal_data = CreateParameter<float>( upper_diagonal, 0, "upper_diagonal", &builder, &upper_diagonal_xla); auto main_diagonal_data = CreateParameter<float>( main_diagonal, 1, "main_diagonal", &builder, &main_diagonal_xla); auto lower_diagonal_data = CreateParameter<float>( lower_diagonal, 2, "lower_diagonal", &builder, &lower_diagonal_xla); auto rhs_data = CreateParameter<float>(rhs, 3, "rhs", &builder, &rhs_xla); auto result = TridiagonalMatMul(upper_diagonal_xla, main_diagonal_xla, lower_diagonal_xla, rhs_xla); ASSERT_EQ(result.status(), InvalidArgument( "superdiag must have same rank as rhs, but got 3 and 4.")); } XLA_TEST_P(TridiagonalTest, Solves) { const auto& spec = GetParam(); xla::XlaBuilder builder(TestName()); const int64_t batch_size = std::get<0>(spec); const int64_t num_eqs = std::get<1>(spec); const int64_t num_rhs = std::get<2>(spec); Array3D<float> lower_diagonal(batch_size, 1, num_eqs); Array3D<float> main_diagonal(batch_size, 1, num_eqs); Array3D<float> upper_diagonal(batch_size, 1, num_eqs); Array3D<float> rhs(batch_size, num_rhs, num_eqs); lower_diagonal.FillRandom(1.0, 0.0, 0); main_diagonal.FillRandom(0.05, 1.0, batch_size * num_eqs); upper_diagonal.FillRandom(1.0, 0.0, 2 * batch_size * num_eqs); rhs.FillRandom(1.0, 0.0, 3 * batch_size * num_eqs); XlaOp lower_diagonal_xla; XlaOp main_diagonal_xla; XlaOp upper_diagonal_xla; XlaOp rhs_xla; auto lower_diagonal_data = CreateR3Parameter<float>( lower_diagonal, 0, "lower_diagonal", &builder, &lower_diagonal_xla); auto main_diagonal_data = CreateR3Parameter<float>( main_diagonal, 1, "main_diagonal", &builder, &main_diagonal_xla); auto upper_diagonal_data = CreateR3Parameter<float>( upper_diagonal, 2, "upper_diagonal", &builder, &upper_diagonal_xla); auto rhs_data = CreateR3Parameter<float>(rhs, 3, "rhs", &builder, &rhs_xla); TF_ASSERT_OK_AND_ASSIGN( XlaOp x, TridiagonalSolver(kThomas, lower_diagonal_xla, main_diagonal_xla, upper_diagonal_xla, rhs_xla)); auto Coefficient = [](auto operand, auto i) { return SliceInMinorDims(operand, {i}, {i + 1}); }; std::vector<XlaOp> relative_errors(num_eqs); for (int64_t i = 0; i < num_eqs; i++) { auto a_i = Coefficient(lower_diagonal_xla, i); auto b_i = Coefficient(main_diagonal_xla, i); auto c_i = Coefficient(upper_diagonal_xla, i); auto d_i = Coefficient(rhs_xla, i); if (i == 0) { relative_errors[i] = (b_i * Coefficient(x, i) + c_i * Coefficient(x, i + 1) - d_i) / d_i; } else if (i == num_eqs - 1) { relative_errors[i] = (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) - d_i) / d_i; } else { relative_errors[i] = (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) + c_i * Coefficient(x, i + 1) - d_i) / d_i; } } Abs(ConcatInDim(&builder, relative_errors, 2)); TF_ASSERT_OK_AND_ASSIGN( auto result, ComputeAndTransfer(&builder, {lower_diagonal_data.get(), main_diagonal_data.get(), upper_diagonal_data.get(), rhs_data.get()})); auto result_data = result.data<float>({}); for (auto result_component : result_data) { EXPECT_TRUE(result_component < 5e-3); } } INSTANTIATE_TEST_CASE_P(TridiagonalTestInstantiation, TridiagonalTest, ::testing::Combine(::testing::Values(1, 12), ::testing::Values(4, 8), ::testing::Values(1, 12))); } } }
2,233
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_CALL_OPTIONS_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_CALL_OPTIONS_H_ #include <functional> #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/types.h" namespace tsl { class CallOptions { public: CallOptions(); void StartCancel(); typedef std::function<void()> CancelFunction; void SetCancelCallback(CancelFunction cancel_func); void ClearCancelCallback(); int64_t GetTimeout(); void SetTimeout(int64_t ms); private: mutex mu_; CancelFunction cancel_func_ TF_GUARDED_BY(mu_); int64_t timeout_in_ms_ TF_GUARDED_BY(mu_) = 0; CallOptions(const CallOptions&) = delete; void operator=(const CallOptions&) = delete; }; } #endif #include "xla/tsl/distributed_runtime/call_options.h" #include <utility> #include "tsl/platform/mutex.h" namespace tsl { CallOptions::CallOptions() = default; void CallOptions::StartCancel() { mutex_lock l(mu_); if (cancel_func_ != nullptr) { cancel_func_(); } } void CallOptions::SetCancelCallback(CancelFunction cancel_func) { mutex_lock l(mu_); cancel_func_ = std::move(cancel_func); } void CallOptions::ClearCancelCallback() { mutex_lock l(mu_); cancel_func_ = nullptr; } int64_t CallOptions::GetTimeout() { mutex_lock l(mu_); return timeout_in_ms_; } void CallOptions::SetTimeout(int64_t ms) { mutex_lock l(mu_); timeout_in_ms_ = ms; } }
#include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(CallOptions, Cancel) { int num_calls = 0; CallOptions opts; opts.StartCancel(); EXPECT_EQ(num_calls, 0); opts.SetCancelCallback([&num_calls]() { num_calls++; }); EXPECT_EQ(num_calls, 0); opts.StartCancel(); EXPECT_EQ(num_calls, 1); opts.StartCancel(); EXPECT_EQ(num_calls, 2); opts.ClearCancelCallback(); EXPECT_EQ(num_calls, 2); opts.StartCancel(); EXPECT_EQ(num_calls, 2); } }
2,234
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_PREEMPTION_PREEMPTION_SYNC_MANAGER_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_PREEMPTION_PREEMPTION_SYNC_MANAGER_H_ #include <memory> #include <string> #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "tsl/platform/status.h" namespace tsl { class PreemptionSyncManager { public: virtual ~PreemptionSyncManager() = default; virtual absl::Status Initialize(CoordinationServiceAgent* agent) = 0; virtual absl::Status Initialize( CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) = 0; virtual absl::Status Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) = 0; virtual bool ReachedSyncPoint(int step_counter) = 0; }; std::unique_ptr<PreemptionSyncManager> CreatePreemptionSyncManager(); } #endif #include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <algorithm> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "tsl/lib/monitoring/gauge.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::KeyValueEntry; constexpr int64_t kPreemptionSyncUnsetCounter = -1; constexpr char kPreemptionNoticeKey[] = "RECEIVED_PREEMPTION_NOTICE"; constexpr char kPreemptionCounterDirKey[] = "PREEMPTION_CURRENT_COUNTER/"; constexpr char kPreemptionBarrier[] = "PREEMPTION_SYNC_BARRIER"; constexpr absl::Duration kPreemptionBarrierTimeout = absl::Minutes(3); auto* sync_usage_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point_usage", "Records if preempt sync manager's ReachSyncPoint() was called at least " "once."); auto* notified_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/notified", "Records receipt of preemption notification."); auto* set_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/set_sync_point", "Records that sync point is set."); auto* reached_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point", "Records that sync point is reached."); constexpr absl::Duration kProtocolDuration = absl::Minutes(15); class PreemptionSyncManagerImpl : public PreemptionSyncManager { public: PreemptionSyncManagerImpl() = default; ~PreemptionSyncManagerImpl() override { shutdown_.Notify(); } absl::Status Initialize(CoordinationServiceAgent* agent) override; absl::Status Initialize(CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) override; absl::Status Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) override; bool ReachedSyncPoint(int step_counter) override; private: void ComputeSyncCallCounter(absl::Time death_time); void CancelPreemptionBarrier(); mutex mu_; int64_t call_counter_ TF_GUARDED_BY(mu_) = 0; int64_t preemption_sync_counter_ TF_GUARDED_BY(mu_) = kPreemptionSyncUnsetCounter; std::string current_call_counter_key_; Env* env_; CoordinationServiceAgent* agent_; absl::Notification shutdown_; std::unique_ptr<Thread> sync_protocol_thread_; std::unique_ptr<PreemptionNotifier> preemption_notifier_; std::shared_ptr<CallOptions> call_opts_; }; absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent) { return Initialize(agent, "sigterm"); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); return Initialize(agent, PreemptionNotifier::CreatePreemptionNotifier( preemption_notifier_type, env)); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); env_ = env; agent_ = agent; preemption_notifier_ = std::move(notifier); TF_ASSIGN_OR_RETURN(CoordinatedTask own_task, agent->GetOwnTask()); const std::string task_name = absl::StrCat("/job:", own_task.job_name(), "/task:", own_task.task_id()); current_call_counter_key_ = absl::StrCat(kPreemptionCounterDirKey, task_name); preemption_notifier_->WillBePreemptedAtAsync( [agent = agent_, task_name](absl::StatusOr<absl::Time> death_time) { if (!death_time.ok()) { if (errors::IsCancelled(death_time.status())) { LOG(INFO) << "Preemption sync protocol cancelled by notifier: " << death_time.status() << ". This is expected during program shutdown."; } else { LOG(ERROR) << "Error from preemption notifier: " << death_time.status(); } return; } notified_metric->GetCell()->Set(true); const absl::Status s = agent->InsertKeyValue( kPreemptionNoticeKey, absl::FormatTime(*death_time)); LOG(INFO) << "Notified coordination service that this task will " "be preempted at " << *death_time << ". absl::Status: " << s; }); call_opts_ = agent_->GetKeyValueAsync( kPreemptionNoticeKey, [this, agent = agent_](absl::StatusOr<std::string> status_or_death_time) { if (errors::IsCancelled(status_or_death_time.status())) { LOG(INFO) << "Cancelled call to retrieve preemption notice. This is " "expected upon program shutdown."; return; } else if (!status_or_death_time.ok()) { LOG(WARNING) << "Failed to retrieve preemption notice from " "coordination service: " << status_or_death_time.status() << ". This is only expected if one of the tasks is unhealthy." " Check the logs for the actual root cause."; agent->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); return; } std::string err; absl::Time death_time; if (absl::ParseTime(absl::RFC3339_full, *status_or_death_time, &death_time, &err)) { LOG(INFO) << "Received preemption notice with death_time " << death_time; } else { LOG(ERROR) << "Unable to parse preemption notice's death time: " << err; CancelPreemptionBarrier(); return; } sync_protocol_thread_ = absl::WrapUnique(env_->StartThread( {}, "PreemptionSyncManager_SyncProtocol", std::bind(&PreemptionSyncManagerImpl::ComputeSyncCallCounter, this, death_time))); }); return absl::OkStatus(); } void PreemptionSyncManagerImpl::ComputeSyncCallCounter(absl::Time death_time) { const absl::Duration remaining_time = death_time - absl::Now(); if (remaining_time > kProtocolDuration) { LOG(INFO) << "Will begin preemption sync protocol in " << remaining_time; const absl::Duration sleep_time = remaining_time - kProtocolDuration; if (shutdown_.WaitForNotificationWithTimeout(sleep_time)) { LOG(WARNING) << "Shutdown is triggered before preemption sync protocol has begun."; CancelPreemptionBarrier(); return; } } mutex_lock l(mu_); const absl::Status notified_status = agent_->InsertKeyValue( current_call_counter_key_, std::to_string(call_counter_)); if (!notified_status.ok()) { LOG(ERROR) << "Preemption sync failed - could not inform service of " "current call counter: " << notified_status; CancelPreemptionBarrier(); return; } const absl::Status barrier_status = agent_->WaitAtBarrier(kPreemptionBarrier, kPreemptionBarrierTimeout, {}); if (!barrier_status.ok()) { LOG(ERROR) << "Preemption sync barrier failed: " << barrier_status; return; } absl::StatusOr<std::vector<KeyValueEntry>> all_counters = agent_->GetKeyValueDir(kPreemptionCounterDirKey); if (!all_counters.ok()) { LOG(ERROR) << "Preemption sync failed - unable to retrieve call counters: " << all_counters.status(); return; } int64_t max_counter = kPreemptionSyncUnsetCounter; for (const auto& kv : *all_counters) { int64_t call_counter; if (!absl::SimpleAtoi(kv.value(), &call_counter)) { LOG(ERROR) << "Preemption sync failed - failed to parse preemption call " "counter: " << kv.DebugString(); return; } max_counter = std::max(max_counter, call_counter); } if (max_counter == kPreemptionSyncUnsetCounter) { LOG(ERROR) << "Preemption sync failed - no call counters found."; return; } preemption_sync_counter_ = max_counter + 1; LOG(INFO) << "Preemption sync counter is set: " << preemption_sync_counter_; set_sync_point_metric->GetCell()->Set(true); } void PreemptionSyncManagerImpl::CancelPreemptionBarrier() { agent_->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); } bool PreemptionSyncManagerImpl::ReachedSyncPoint(int step_counter) { sync_usage_metric->GetCell()->Set(true); mutex_lock l(mu_); call_counter_ = step_counter; VLOG(3) << "Current call counter: " << call_counter_ << ", Preemption sync point: " << preemption_sync_counter_; const bool reached_sync_point = preemption_sync_counter_ == call_counter_; if (reached_sync_point) { reached_sync_point_metric->GetCell()->Set(true); } return reached_sync_point; } } std::unique_ptr<PreemptionSyncManager> CreatePreemptionSyncManager() { return std::make_unique<PreemptionSyncManagerImpl>(); } }
#include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <memory> #include <string> #include <utility> #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "absl/memory/memory.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/distributed_runtime/rpc/async_service_interface.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_client.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_service_impl.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tsl/protobuf/coordination_config.pb.h" namespace tsl { namespace { using tensorflow::CoordinatedJob; using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; constexpr char kJobName[] = "test_worker"; class FakePreemptionNotifier : public PreemptionNotifier { public: FakePreemptionNotifier() : PreemptionNotifier(nullptr) {} ~FakePreemptionNotifier() override { NotifyRegisteredListeners( errors::Cancelled("~FakePreemptionNotifier() was called.")); } void AnnounceDeath(absl::Time death_time) { LOG(WARNING) << "Received preemption notice with death time: " << death_time; NotifyRegisteredListeners(death_time); } }; class PreemptionSyncManagerTest : public ::testing::Test { protected: PreemptionSyncManagerTest() { StartCoordinationService(); InitializeAndConnectCoordinationAgents(); auto preempt_notifier = std::make_unique<FakePreemptionNotifier>(); preempt_notifier_ = preempt_notifier.get(); TF_CHECK_OK(preempt_sync_mgr_->Initialize(coord_agent_.get(), std::move(preempt_notifier))); auto preempt_notifier2 = std::make_unique<FakePreemptionNotifier>(); preempt_notifier2_ = preempt_notifier2.get(); TF_CHECK_OK(preempt_sync_mgr2_->Initialize(coord_agent2_.get(), std::move(preempt_notifier2))); } ~PreemptionSyncManagerTest() override { preempt_sync_mgr_ = nullptr; preempt_sync_mgr2_ = nullptr; coord_agent_ = nullptr; coord_agent2_ = nullptr; coord_service_ = nullptr; static_cast<tsl::GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()) ->SetCoordinationServiceInstance(nullptr); grpc_server_->Shutdown(); coord_rpc_service_->Shutdown(); } void SendPreemptionNotice(absl::Time death_time = absl::Now(), bool to_task1 = true) { if (to_task1) { preempt_notifier_->AnnounceDeath(death_time); } else { preempt_notifier2_->AnnounceDeath(death_time); } Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(absl::Seconds(1))); } void SimulateUnhealthyTaskTwo() { CoordinatedTask task2; task2.set_job_name(kJobName); task2.set_task_id(1); TF_CHECK_OK( coord_service_->ReportTaskError(task2, errors::Internal("test_error"))); } std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr_ = CreatePreemptionSyncManager(); std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr2_ = CreatePreemptionSyncManager(); protected: void StartCoordinationService() { ::grpc::ServerBuilder builder; coord_service_ = EnableCoordinationService(); coord_compute_pool_ = std::make_unique<thread::ThreadPool>( Env::Default(), "CoordinationServiceRpcHandler", 1); coord_rpc_service_ = std::make_unique<GrpcCoordinationServiceImpl>( coord_compute_pool_.get(), &builder); auto* grpc_coord_service = static_cast<GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()); grpc_coord_service->SetCoordinationServiceInstance(coord_service_.get()); grpc_server_ = builder.BuildAndStart(); coord_rpc_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "CoordinationServiceHandleRPCsLoop", [service = coord_rpc_service_.get()]() { service->HandleRPCsLoop(); })); } std::unique_ptr<CoordinationServiceInterface> EnableCoordinationService() { CoordinationServiceConfig config; config.set_service_type("standalone"); CoordinatedJob* job = config.mutable_coordinated_job_list()->Add(); job->set_name(kJobName); job->set_num_tasks(2); return CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); } void InitializeAndConnectCoordinationAgents() { std::unique_ptr<CoordinationClient> coord_client = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); std::unique_ptr<CoordinationClient> coord_client2 = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); auto error_fn = [](const absl::Status& status) { LOG(ERROR) << "Coordination service agent in error status: " << status; }; CoordinationServiceConfig coord_config; coord_config.set_service_leader("test_leader"); TF_CHECK_OK(coord_agent_->Initialize(Env::Default(), kJobName, 0, coord_config, std::move(coord_client), error_fn)); TF_CHECK_OK(coord_agent2_->Initialize(Env::Default(), kJobName, 1, coord_config, std::move(coord_client2), error_fn)); TF_CHECK_OK(coord_agent_->Connect()); TF_CHECK_OK(coord_agent2_->Connect()); } std::unique_ptr<CoordinationServiceInterface> coord_service_; std::unique_ptr<::grpc::Server> grpc_server_; std::unique_ptr<thread::ThreadPool> coord_compute_pool_; std::unique_ptr<AsyncServiceInterface> coord_rpc_service_; std::unique_ptr<Thread> coord_rpc_thread_; std::unique_ptr<CoordinationServiceAgent> coord_agent_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier_; std::unique_ptr<CoordinationServiceAgent> coord_agent2_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier2_; }; TEST_F(PreemptionSyncManagerTest, NoPreemption_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, Preemption_SingleSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, DelayedPreemption_NoSyncPointYet) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(absl::Now() + absl::Hours(1)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, UnhealthyTask_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SimulateUnhealthyTaskTwo(); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, ShutdownTasksWithoutPreemption) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); TF_CHECK_OK(coord_agent_->Shutdown()); TF_CHECK_OK(coord_agent2_->Shutdown()); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, PreemptSlowTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } TEST_F(PreemptionSyncManagerTest, PreemptFastTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(absl::Now(), false); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } } }
2,235
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_PREEMPTION_PREEMPTION_NOTIFIER_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_PREEMPTION_PREEMPTION_NOTIFIER_H_ #include <functional> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/strings/str_join.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" namespace tsl { #define REGISTER_PREEMPTION_NOTIFIER(notifier_type_name, factory_fn) \ REGISTER_PREEMPTION_NOTIFIER_UNIQ_HELPER(__COUNTER__, notifier_type_name, \ factory_fn) #define REGISTER_PREEMPTION_NOTIFIER_UNIQ_HELPER(counter, notifier_type_name, \ factory_fn) \ static bool static_preemption_notifier_##counter TF_ATTRIBUTE_UNUSED = \ []() { \ ::tsl::PreemptionNotifier::RegisterPreemptionNotifier( \ notifier_type_name, factory_fn); \ return true; \ }() class PreemptionNotifier { public: typedef std::function<void(absl::StatusOr<absl::Time>)> PreemptTimeCallback; using PreemptionNotifierFactory = std::function<std::unique_ptr<PreemptionNotifier>(Env* env)>; explicit PreemptionNotifier(Env* env) : env_(env) {} virtual ~PreemptionNotifier() = default; static void RegisterPreemptionNotifier(const std::string& notifier_type_name, PreemptionNotifierFactory factory_fn) { GetPreemptionNotifierFactories()->emplace(notifier_type_name, std::move(factory_fn)); } static std::unique_ptr<PreemptionNotifier> CreatePreemptionNotifier( const std::string& notifier_type, Env* env) { const auto* factories = GetPreemptionNotifierFactories(); auto it = factories->find(notifier_type); if (it == factories->end()) { std::vector<std::string> registered_types; registered_types.reserve(factories->size()); for (auto& kv : *factories) { registered_types.push_back(kv.first); } LOG(ERROR) << "No preemption notifier factory found for notifier type " << notifier_type << ". All registered preemption notifier types are: " << absl::StrJoin(registered_types, ", ") << ". Make sure the library is loaded to the program."; return nullptr; } return it->second(env); } absl::StatusOr<absl::Time> WillBePreemptedAt(); void WillBePreemptedAtAsync(PreemptTimeCallback callback); protected: Env* GetEnv() { return env_; } void NotifyRegisteredListeners(absl::StatusOr<absl::Time> death_time); private: static std::unordered_map<std::string, PreemptionNotifierFactory>* GetPreemptionNotifierFactories() { static auto* preemption_notifier_factories = new std::unordered_map<std::string, PreemptionNotifierFactory>(); return preemption_notifier_factories; } Env* env_; mutex mu_; absl::Time death_time_ TF_GUARDED_BY(mu_) = absl::InfinitePast(); std::vector<PreemptTimeCallback> callbacks_ TF_GUARDED_BY(mu_); }; } #endif #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <atomic> #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { constexpr absl::Duration kListenInterval = absl::Seconds(1); constexpr absl::Time kUnsetDeathTime = absl::InfinitePast(); static std::atomic_bool sigterm_received(false); class SigtermNotifier : public PreemptionNotifier { public: explicit SigtermNotifier(Env* env); ~SigtermNotifier() override { shutdown_notification_.Notify(); } private: void StartListenerThread(); absl::Notification shutdown_notification_; std::unique_ptr<Thread> preempt_listener_thread_; }; SigtermNotifier::SigtermNotifier(Env* env) : PreemptionNotifier(env) { sigterm_received.store(false); StartListenerThread(); #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() { sigterm_received.store(true); }, 0, &unused_token); #else std::signal(SIGTERM, [](int signal) { sigterm_received.store(true); }); #endif } void SigtermNotifier::StartListenerThread() { preempt_listener_thread_.reset( GetEnv()->StartThread({}, "PreemptionNotifier_Listen", [this]() { while (!sigterm_received.load()) { if (shutdown_notification_.WaitForNotificationWithTimeout( kListenInterval)) { NotifyRegisteredListeners( errors::Cancelled("Preemption notifier is being deleted.")); return; } } const absl::Time death_time = absl::Now(); LOG(WARNING) << "SIGTERM caught at " << death_time; NotifyRegisteredListeners(death_time); })); } } absl::StatusOr<absl::Time> PreemptionNotifier::WillBePreemptedAt() { absl::Notification n; absl::StatusOr<absl::Time> result; WillBePreemptedAtAsync( [&n, &result](absl::StatusOr<absl::Time> async_result) { result = async_result; n.Notify(); }); n.WaitForNotification(); return result; } void PreemptionNotifier::WillBePreemptedAtAsync(PreemptTimeCallback callback) { mutex_lock l(mu_); if (death_time_ == kUnsetDeathTime) { callbacks_.push_back(std::move(callback)); } else { callback(death_time_); } } void PreemptionNotifier::NotifyRegisteredListeners( absl::StatusOr<absl::Time> death_time) { mutex_lock l(mu_); if (death_time.ok()) { death_time_ = death_time.value(); } for (const auto& callback : callbacks_) { callback(death_time); } callbacks_.clear(); } REGISTER_PREEMPTION_NOTIFIER( "sigterm", [](Env* env) -> std::unique_ptr<PreemptionNotifier> { return std::make_unique<SigtermNotifier>(env); }); }
#include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { class PreemptNotifierTest : public ::testing::Test { public: PreemptNotifierTest() { #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() {}, thread::signal::kOverrideDefault, &unused_token); #endif } }; TEST_F(PreemptNotifierTest, WillBePreemptedAt) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::Seconds(1.0)); EXPECT_LT(time_diff, absl::Seconds(3)); } TEST_F(PreemptNotifierTest, WillBePreemptedAt_AlreadyPreempted_ReturnsImmediately) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); std::raise(SIGTERM); env->SleepForMicroseconds(absl::ToInt64Microseconds(absl::Seconds(2))); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::ZeroDuration()); EXPECT_LT(time_diff, absl::Seconds(2)); } TEST_F(PreemptNotifierTest, WillBePreemptedAtAsync_SameResultForAllCallbacks) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> preempt_time; absl::StatusOr<absl::Time> preempt_time_2; absl::Notification n; absl::Notification n_2; preempt_notifier->WillBePreemptedAtAsync( [&preempt_time, &n](absl::StatusOr<absl::Time> result) { preempt_time = result; n.Notify(); }); preempt_notifier->WillBePreemptedAtAsync( [&preempt_time_2, &n_2](absl::StatusOr<absl::Time> result) { preempt_time_2 = result; n_2.Notify(); }); n.WaitForNotification(); n_2.WaitForNotification(); TF_CHECK_OK(preempt_time.status()); TF_CHECK_OK(preempt_time_2.status()); EXPECT_EQ(preempt_time.value(), preempt_time_2.value()); } TEST_F(PreemptNotifierTest, Reset_TwoDifferentPreemptTimesRecorded) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::Time preempt_time_2 = preempt_notifier->WillBePreemptedAt().value(); EXPECT_NE(preempt_time, preempt_time_2); } TEST_F(PreemptNotifierTest, DestructorCancelsPendingCalls) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::StatusOr<absl::Time> result; absl::Notification n; preempt_notifier->WillBePreemptedAtAsync( [&result, &n](absl::StatusOr<absl::Time> status_or_time) { result = status_or_time; n.Notify(); }); preempt_notifier = nullptr; n.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(result.status())); } } }
2,236
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_RPC_GRPC_CHANNEL_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_RPC_GRPC_CHANNEL_H_ #include <map> #include <memory> #include <set> #include <string> #include <vector> #include "grpcpp/grpcpp.h" #include "xla/tsl/distributed_runtime/rpc/grpc_util.h" #include "tsl/protobuf/rpc_options.pb.h" namespace tsl { using tensorflow::RPCOptions; class GrpcChannelSpec { public: struct HostPortsJob { HostPortsJob(const string& job_id, const std::map<int, string>& host_ports) : job_id(job_id), host_ports(host_ports) {} const string job_id; const std::map<int, string> host_ports; }; absl::Status AddHostPortsJob(const string& job_id, const std::map<int, string>& host_ports); const std::vector<HostPortsJob>& host_ports_jobs() const { return host_ports_jobs_; } private: std::vector<HostPortsJob> host_ports_jobs_; std::set<string> job_ids_; }; class GrpcChannelCache { public: virtual ~GrpcChannelCache() {} virtual void ListWorkers(std::vector<string>* workers) = 0; virtual void ListWorkersInJob(const string& job_name, std::vector<string>* workers) = 0; virtual SharedGrpcChannelPtr FindWorkerChannel(const string& target) = 0; virtual string TranslateTask(const string& task) = 0; }; typedef std::function<SharedGrpcChannelPtr(string)> ChannelCreationFunction; GrpcChannelCache* NewGrpcChannelCache( const GrpcChannelSpec& channel_spec, ChannelCreationFunction channel_func, const RPCOptions& rpc_options = RPCOptions()); ::grpc::ChannelArguments GetChannelArguments(const RPCOptions* rpc_options); ChannelCreationFunction ConvertToChannelCreationFunction( const std::function<absl::Status(string, const RPCOptions*, SharedGrpcChannelPtr*)>& new_channel_func_ptr); absl::Status NewHostPortGrpcChannel(const string& target, const RPCOptions* rpc_options, SharedGrpcChannelPtr* channel_pointer); } #endif #include "xla/tsl/distributed_runtime/rpc/grpc_channel.h" #include <cstdlib> #include <limits> #include <map> #include <string> #include <unordered_map> #include "grpcpp/create_channel.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_split.h" #include "xla/tsl/distributed_runtime/rpc/grpc_channel_common.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/lib/gtl/map_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numbers.h" #include "tsl/platform/status.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/types.h" #include "tsl/protobuf/rpc_options.pb.h" namespace tsl { namespace { string MakeAddress(const string& job, int replica, int task) { return strings::StrCat("/job:", job, "/replica:", replica, "/task:", task); } absl::Status ValidateHostPortPair(const string& host_port) { string bns_prefix = "/bns/"; if (host_port.substr(0, bns_prefix.length()) == bns_prefix) { return absl::OkStatus(); } uint32 port; auto colon_index = host_port.find_last_of(':'); if (!strings::safe_strtou32(host_port.substr(colon_index + 1), &port) || host_port.substr(0, colon_index).find('/') != string::npos) { return errors::InvalidArgument("Could not interpret \"", host_port, "\" as a host-port pair."); } return absl::OkStatus(); } ::grpc::ChannelArguments* CreateDefaultChannelArguments() { ::grpc::ChannelArguments* args = new ::grpc::ChannelArguments(); const char* env = std::getenv("TF_GRPC_DEFAULT_OPTIONS"); if (env != nullptr) { for (auto& grpc_option : absl::StrSplit(env, ',')) { std::vector<string> name_value = absl::StrSplit(grpc_option, '='); if (name_value.size() != 2) { LOG(ERROR) << "Invalid GRPC options format: " << grpc_option; continue; } VLOG(3) << "Setting GRPC default for '" << name_value[0] << "' to '" << name_value[1] << "'"; if (name_value[1].size() >= 2 && name_value[1][0] == '"') { string ue_value = name_value[1].substr(1, name_value[1].size() - 2); string value; string error; if (!absl::CUnescape(ue_value, &value, &error)) { LOG(ERROR) << "Failed to parse escaped string for " << grpc_option << ": " << error; } else { args->SetString(name_value[0], value); } } else { int64_t value; if (strings::safe_strto64(name_value[1], &value)) { args->SetInt(name_value[0], value); } else { LOG(ERROR) << "Invalid integer value: " << grpc_option; } } } } return args; } const ::grpc::ChannelArguments* GetDefaultChannelArguments() { static const ::grpc::ChannelArguments* args = CreateDefaultChannelArguments(); return args; } } ::grpc::ChannelArguments GetChannelArguments(const RPCOptions* rpc_options) { ::grpc::ChannelArguments args = *GetDefaultChannelArguments(); args.SetInt(GRPC_ARG_MAX_MESSAGE_LENGTH, std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_MAX_RECONNECT_BACKOFF_MS, 1000); if (rpc_options != nullptr) { if (rpc_options->compression_algorithm() == "deflate") { args.SetCompressionAlgorithm(GRPC_COMPRESS_DEFLATE); args.SetInt(GRPC_COMPRESSION_CHANNEL_DEFAULT_LEVEL, rpc_options->compression_level()); VLOG(5) << "Setting GRPC compression : algo='" << rpc_options->compression_algorithm() << "' level=" << rpc_options->compression_level(); } else if (rpc_options->compression_algorithm() == "gzip") { args.SetCompressionAlgorithm(GRPC_COMPRESS_GZIP); args.SetInt(GRPC_COMPRESSION_CHANNEL_DEFAULT_LEVEL, rpc_options->compression_level()); VLOG(5) << "Setting GRPC compression : algo='" << rpc_options->compression_algorithm() << "' level=" << rpc_options->compression_level(); } else if (!rpc_options->compression_algorithm().empty()) { LOG(ERROR) << "Invalid compression algorithm: " << rpc_options->compression_algorithm(); } if (rpc_options->disable_session_connection_sharing()) { VLOG(5) << "Disabling TCP connection sharing"; args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); } } return args; } absl::Status NewHostPortGrpcChannel(const string& target, const RPCOptions* rpc_options, SharedGrpcChannelPtr* channel_pointer) { TF_RETURN_IF_ERROR(ValidateHostPortPair(target)); ::grpc::ChannelArguments args = GetChannelArguments(rpc_options); *channel_pointer = ::grpc::CreateCustomChannel( "dns: return absl::OkStatus(); } ChannelCreationFunction ConvertToChannelCreationFunction( const std::function<absl::Status(string, const RPCOptions*, SharedGrpcChannelPtr*)>& new_channel_func_ptr) { return [new_channel_func_ptr](const string& target) -> SharedGrpcChannelPtr { SharedGrpcChannelPtr channel_ptr; if (new_channel_func_ptr(target, nullptr, &channel_ptr) .ok()) { return channel_ptr; } else { return nullptr; } }; } absl::Status GrpcChannelSpec::AddHostPortsJob( const string& job_id, const std::map<int, string>& host_ports) { if (!job_ids_.insert(job_id).second) { return errors::InvalidArgument( "Duplicate job ID in cluster specification: ", job_id); } for (const auto& id_host_port : host_ports) { TF_RETURN_IF_ERROR(ValidateHostPortPair(id_host_port.second)); } host_ports_jobs_.emplace_back(job_id, host_ports); return absl::OkStatus(); } namespace { using CachingGrpcChannelCache = GenericCachingChannelCache<GrpcChannelCache>; class MultiGrpcChannelCache : public CachingGrpcChannelCache { public: explicit MultiGrpcChannelCache(const std::vector<GrpcChannelCache*>& caches, int num_channels_per_target) : CachingGrpcChannelCache(num_channels_per_target), caches_(caches) {} ~MultiGrpcChannelCache() override { for (GrpcChannelCache* cache : caches_) { delete cache; } } void ListWorkers(std::vector<string>* workers) override { for (GrpcChannelCache* cache : caches_) { cache->ListWorkers(workers); } } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) override { for (GrpcChannelCache* cache : caches_) { cache->ListWorkersInJob(job_name, workers); } } string TranslateTask(const string& target) override { mutex_lock l(mu_); GrpcChannelCache* cache = gtl::FindPtrOrNull(target_caches_, target); if (cache == nullptr) { for (GrpcChannelCache* c : caches_) { string r = c->TranslateTask(target); if (!r.empty()) { target_caches_.insert({target, c}); cache = c; break; } } } CHECK(cache) << "Could not find GrpcChannelCache holding channel for " << target; return cache->TranslateTask(target); } protected: SharedGrpcChannelPtr FindChannelOnce(const string& target) override { for (GrpcChannelCache* cache : caches_) { SharedGrpcChannelPtr ch(cache->FindWorkerChannel(target)); if (ch) { mutex_lock l(mu_); target_caches_.insert({target, cache}); return ch; } } return nullptr; } private: const std::vector<GrpcChannelCache*> caches_; mutex mu_; std::unordered_map<string, GrpcChannelCache*> target_caches_ TF_GUARDED_BY(mu_); }; class SparseGrpcChannelCache : public CachingGrpcChannelCache { public: SparseGrpcChannelCache(const string& job_id, const std::map<int, string>& host_ports, ChannelCreationFunction channel_func, int num_channels_per_target) : CachingGrpcChannelCache(num_channels_per_target), job_id_(job_id), host_ports_(host_ports), channel_func_(std::move(channel_func)) { VLOG(2) << "Initialize GrpcChannelCache for job " << ToString(); } ~SparseGrpcChannelCache() override {} void ListWorkers(std::vector<string>* workers) override { workers->reserve(workers->size() + host_ports_.size()); for (const auto& id_host_port : host_ports_) { std::vector<std::string> replicas = absl::StrSplit(id_host_port.second, ',', absl::SkipEmpty()); for (int replica = 0; replica < replicas.size(); ++replica) { workers->emplace_back( MakeAddress(job_id_, replica, id_host_port.first)); } } } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) override { if (job_name == job_id_) { ListWorkers(workers); } } string TranslateTask(const string& target) override { DeviceNameUtils::ParsedName parsed; if (!DeviceNameUtils::ParseFullName(target, &parsed)) { LOG(WARNING) << "Invalid target: " << target; return ""; } if (!parsed.has_job || parsed.job != job_id_) { return ""; } int32_t task = parsed.has_task ? parsed.task : -1; auto iter = host_ports_.find(task); if (iter == host_ports_.end()) { LOG(WARNING) << "Task " << task << " was not defined in sparse job " << job_id_ << ": " << target; return ""; } std::vector<std::string> host_ports = absl::StrSplit(iter->second, ',', absl::SkipEmpty()); if (host_ports.size() > parsed.replica) { return host_ports[parsed.replica]; } LOG(WARNING) << "Requested out-of-range replica, defaulting to 0: " << target; return host_ports[0]; } protected: SharedGrpcChannelPtr FindChannelOnce(const string& target) override { const string host_port = TranslateTask(target); if (host_port.empty()) { return nullptr; } auto chan_ptr = channel_func_(host_port); VLOG(5) << "Channel created for: job: " << job_id_ << " host_port: " << host_port << " target : " << target << " Ptr: " << chan_ptr.get(); return chan_ptr; } private: string ToString() { std::vector<string> task_strings; task_strings.reserve(host_ports_.size()); for (const auto& id_host_port : host_ports_) { task_strings.emplace_back( strings::StrCat(id_host_port.first, " -> ", id_host_port.second)); } return strings::StrCat(job_id_, " -> {", absl::StrJoin(task_strings, ", "), "}"); } const string job_id_; const std::map<int, string> host_ports_; const ChannelCreationFunction channel_func_; SparseGrpcChannelCache(const SparseGrpcChannelCache&) = delete; void operator=(const SparseGrpcChannelCache&) = delete; }; } GrpcChannelCache* NewGrpcChannelCache(const GrpcChannelSpec& spec, ChannelCreationFunction channel_func, const RPCOptions& options) { const int num_jobs = spec.host_ports_jobs().size(); if (!num_jobs) { LOG(ERROR) << "Empty channel spec."; return nullptr; } std::vector<GrpcChannelCache*> caches; caches.reserve(num_jobs); for (auto& job : spec.host_ports_jobs()) { VLOG(2) << "Creating Grpc Channel Cache for: " << job.job_id; caches.push_back( new SparseGrpcChannelCache(job.job_id, job.host_ports, channel_func, options.num_channels_per_target())); } return caches.size() == 1 ? caches[0] : new MultiGrpcChannelCache( caches, options.num_channels_per_target()); } }
#include "xla/tsl/distributed_runtime/rpc/grpc_channel.h" #include <string> #include <vector> #include "xla/tsl/util/device_name_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #include "tsl/protobuf/rpc_options.pb.h" namespace tsl { #define IsSameAddrSp DeviceNameUtils::IsSameAddressSpace TEST(GrpcChannelTest, IsSameAddressSpace) { EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:1")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/device:GPU:2")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10", "/job:mnist/replica:10/task:10/device:GPU:2")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:1", "/job:mnist/replica:10/task:10")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:10/task:9/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:9/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("/job:MNIST/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("random_invalid_target", "random_invalid_target")); EXPECT_FALSE(IsSameAddrSp("/job:/replica:10/task:10/cpu:0", "/job:/replica:10/task:10/cpu:1")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:xx/task:10/cpu:0", "/job:mnist/replica:xx/task:10/cpu:1")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:10/task:yy/cpu:0", "/job:mnist/replica:10/task:yy/cpu:1")); } TEST(GrpcChannelTest, HostPorts) { GrpcChannelSpec spec; TF_ASSERT_OK(spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}, {3, "d:4"}, {4, "e:5"}, {5, "f:6"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, tensorflow::RPCOptions())); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:6")); { auto a_1_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto a_1_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto d_4_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto d_4_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto e_5_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); auto e_5_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); EXPECT_EQ(a_1_1.get(), a_1_2.get()); EXPECT_EQ(d_4_1.get(), d_4_2.get()); EXPECT_EQ(e_5_1.get(), e_5_2.get()); EXPECT_NE(a_1_1.get(), d_4_2.get()); EXPECT_NE(a_1_1.get(), e_5_2.get()); EXPECT_NE(d_4_1.get(), e_5_2.get()); } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4", "/job:mnist/replica:0/task:5"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4", "/job:mnist/replica:0/task:5"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, HostPortsMultiChannelPerTarget) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); tensorflow::RPCOptions rpc_options; rpc_options.set_num_channels_per_target(4); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, rpc_options)); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:3")); { std::vector<SharedGrpcChannelPtr> a_1_channels, b_2_channels, c_3_channels; for (int i = 0; i < 10; i++) { a_1_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:0")); b_2_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); c_3_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:2")); } for (int i = 0; i < 6; i++) { EXPECT_EQ(a_1_channels[i].get(), a_1_channels[i + 4].get()); EXPECT_EQ(b_2_channels[i].get(), b_2_channels[i + 4].get()); EXPECT_EQ(c_3_channels[i].get(), c_3_channels[i + 4].get()); } for (int i = 0; i < 6; i++) { for (int j = 1; j < 4; j++) { EXPECT_NE(a_1_channels[i].get(), a_1_channels[i + j].get()); EXPECT_NE(b_2_channels[i].get(), b_2_channels[i + j].get()); EXPECT_NE(c_3_channels[i].get(), c_3_channels[i + j].get()); } } for (int i = 0; i < 6; i++) { for (int j = 0; j < 6; j++) { EXPECT_NE(a_1_channels[i].get(), b_2_channels[j].get()); EXPECT_NE(a_1_channels[i].get(), c_3_channels[j].get()); EXPECT_NE(b_2_channels[i].get(), c_3_channels[j].get()); } } } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, HostPortsMultiGrpcMultiChannelPerTarget) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); TF_EXPECT_OK( spec.AddHostPortsJob("mnist2", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); tensorflow::RPCOptions rpc_options; rpc_options.set_num_channels_per_target(4); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, rpc_options)); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:3")); EXPECT_NE(nullptr, cc->FindWorkerChannel("/job:mnist2/replica:0/task:0")); { std::vector<SharedGrpcChannelPtr> a_1_channels, b_2_channels, c_3_channels; for (int i = 0; i < 10; i++) { a_1_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:0")); b_2_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); c_3_channels.push_back( cc->FindWorkerChannel("/job:mnist2/replica:0/task:0")); } for (int i = 0; i < 6; i++) { EXPECT_EQ(a_1_channels[i].get(), a_1_channels[i + 4].get()); EXPECT_EQ(b_2_channels[i].get(), b_2_channels[i + 4].get()); EXPECT_EQ(c_3_channels[i].get(), c_3_channels[i + 4].get()); } for (int i = 0; i < 6; i++) { for (int j = 1; j < 4; j++) { EXPECT_NE(a_1_channels[i].get(), a_1_channels[i + j].get()); EXPECT_NE(b_2_channels[i].get(), b_2_channels[i + j].get()); EXPECT_NE(c_3_channels[i].get(), c_3_channels[i + j].get()); } } for (int i = 0; i < 6; i++) { for (int j = 0; j < 6; j++) { EXPECT_NE(a_1_channels[i].get(), b_2_channels[j].get()); EXPECT_NE(a_1_channels[i].get(), c_3_channels[j].get()); EXPECT_NE(b_2_channels[i].get(), c_3_channels[j].get()); } } } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist2/replica:0/task:0", "/job:mnist2/replica:0/task:1", "/job:mnist2/replica:0/task:2"}), workers); } { std::vector<string> workers, workers2; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); cc->ListWorkersInJob("mnist2", &workers2); EXPECT_EQ(std::vector<string>({"/job:mnist2/replica:0/task:0", "/job:mnist2/replica:0/task:1", "/job:mnist2/replica:0/task:2"}), workers2); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, SparseHostPorts) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {3, "d:4"}, {4, "e:5"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, tensorflow::RPCOptions())); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:2")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:5")); { auto a_1_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto a_1_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); LOG(WARNING) << " Getting task 3"; auto d_4_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto d_4_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); LOG(WARNING) << " Getting task 4"; auto e_5_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); auto e_5_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); EXPECT_EQ(a_1_1.get(), a_1_2.get()); EXPECT_EQ(d_4_1.get(), d_4_2.get()); EXPECT_EQ(e_5_1.get(), e_5_2.get()); EXPECT_NE(a_1_1.get(), d_4_2.get()); EXPECT_NE(a_1_1.get(), e_5_2.get()); EXPECT_NE(d_4_1.get(), e_5_2.get()); } { std::vector<string> workers; cc->ListWorkers(&workers); std::sort(workers.begin(), workers.end()); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, NewHostPortGrpcChannelValidation) { SharedGrpcChannelPtr mock_ptr; EXPECT_TRUE(NewHostPortGrpcChannel("127.0.0.1:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("example.com:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("fqdn.example.com.:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("[2002:a9c:258e::]:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE( NewHostPortGrpcChannel("[::]:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel("example.com/abc:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel("127.0.0.1:2222/", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel( "example.com/abc:", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]/:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]:2222/", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]:", nullptr, &mock_ptr).ok()); EXPECT_TRUE( NewHostPortGrpcChannel("/bns/example", nullptr, &mock_ptr) .ok()); } }
2,237
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_COORDINATION_COORDINATION_SERVICE_AGENT_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_COORDINATION_COORDINATION_SERVICE_AGENT_H_ #include <functional> #include <map> #include <memory> #include <string> #include <string_view> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "tsl/platform/status.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tensorflow { class CoordinationServiceConfig; }; namespace tsl { class Env; class CoordinationServiceAgent { public: using StatusOrValueCallback = std::function<void(const absl::StatusOr<std::string>&)>; using StatusOrValueDirCallback = std::function<void( const absl::StatusOr<std::vector<tensorflow::KeyValueEntry>>&)>; using ChangedKeyValuesCallback = std::function<void(const std::map<std::string, std::string>&)>; virtual ~CoordinationServiceAgent() = default; virtual absl::Status Initialize( tsl::Env* env, std::string_view job_name, int task_id, const tensorflow::CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) = 0; virtual absl::Status Initialize( tsl::Env* env, const tensorflow::CoordinatedTask& task, const tensorflow::CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) = 0; virtual bool IsInitialized() = 0; virtual bool IsConnected() = 0; virtual bool IsError() = 0; virtual absl::Status Connect() = 0; virtual absl::Status WaitForAllTasks( const tensorflow::DeviceInfo& local_devices) = 0; virtual const tensorflow::DeviceInfo& GetClusterDeviceInfo() = 0; virtual absl::StatusOr<tensorflow::CoordinatedTask> GetOwnTask() = 0; virtual absl::StatusOr<std::vector<tensorflow::CoordinatedTaskStateInfo>> GetTaskState(const std::vector<tensorflow::CoordinatedTask>& task) = 0; virtual absl::Status ReportError(const absl::Status& error) = 0; virtual absl::Status Shutdown() = 0; virtual absl::Status Reset() = 0; virtual absl::StatusOr<std::string> GetKeyValue(std::string_view key) = 0; virtual absl::StatusOr<std::string> GetKeyValue(std::string_view key, absl::Duration timeout) = 0; virtual std::shared_ptr<CallOptions> GetKeyValueAsync( std::string_view, StatusOrValueCallback done) = 0; virtual absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) = 0; virtual absl::StatusOr<std::vector<tensorflow::KeyValueEntry>> GetKeyValueDir( std::string_view key) = 0; virtual void GetKeyValueDirAsync(std::string_view key, StatusOrValueDirCallback done) = 0; virtual absl::Status InsertKeyValue(std::string_view key, std::string_view value) = 0; virtual absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) = 0; virtual absl::Status DeleteKeyValue(std::string_view key) = 0; virtual absl::Status UpdateKeyValue(std::string_view key, std::string_view value) = 0; virtual absl::Status StartWatchKey(std::string_view key, ChangedKeyValuesCallback on_change) = 0; virtual absl::Status StopWatchKey(std::string_view key) = 0; virtual absl::Status WaitAtBarrier( std::string_view barrier_id, absl::Duration timeout, const std::vector<tensorflow::CoordinatedTask>& tasks) = 0; virtual void WaitAtBarrierAsync( std::string_view barrier_id, absl::Duration timeout, const std::vector<tensorflow::CoordinatedTask>& tasks, StatusCallback done) = 0; virtual absl::Status CancelBarrier(std::string_view barrier_id) = 0; virtual void CancelBarrierAsync(std::string_view barrier_id, StatusCallback done) = 0; virtual absl::StatusOr<tsl::Env*> GetEnv() = 0; protected: virtual void SetError(const absl::Status& error) = 0; virtual absl::Status ActivateWatch( std::string_view, const std::map<std::string, std::string>&) = 0; private: friend class CoordinationServiceRpcHandler; }; std::unique_ptr<CoordinationServiceAgent> CreateCoordinationServiceAgent(); } #endif #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/framework/cancellation.h" #include "tsl/lib/monitoring/gauge.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" #include "tsl/platform/thread_annotations.h" #include "tsl/protobuf/coordination_config.pb.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tsl { using tensorflow::CoordinatedTask; using tensorflow::CoordinatedTaskState; using tensorflow::CoordinatedTaskStateInfo; using tensorflow::CoordinationServiceConfig; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; namespace { auto* enabled_usage_metric = monitoring::Gauge<bool, 0>::New("/coordination_service/agent/enabled", "Tracks usage of coordination service."); constexpr absl::Duration kDefaultClusterRegisterTimeout = absl::Hours(1); constexpr absl::Duration kDefaultHeartbeatTimeout = absl::Seconds(10); constexpr absl::Duration kDefaultShutdownTimeout = absl::Seconds(10); constexpr char kHeartbeatThread[] = "CoordinationServiceHeartbeatLoop"; class CoordinationServiceAgentImpl : public CoordinationServiceAgent { public: CoordinationServiceAgentImpl() = default; ~CoordinationServiceAgentImpl() override { absl::Status s = ShutdownInternal(); VLOG(3) << "Coordination agent dtor failed with status: " << s; } absl::Status Initialize(Env* env, std::string_view job_name, int task_id, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) override; absl::Status Initialize(Env* env, const CoordinatedTask& task, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) override; bool IsInitialized() override; bool IsConnected() override; bool IsError() override; absl::Status Connect() override; absl::Status WaitForAllTasks(const DeviceInfo& local_devices) override; const DeviceInfo& GetClusterDeviceInfo() override; absl::StatusOr<CoordinatedTask> GetOwnTask() override; absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> GetTaskState( const std::vector<CoordinatedTask>& task) override; absl::Status ReportError(const absl::Status& error) override; absl::Status Shutdown() override; absl::Status Reset() override; absl::StatusOr<std::string> GetKeyValue(std::string_view key) override; absl::StatusOr<std::string> GetKeyValue(std::string_view key, absl::Duration timeout) override; std::shared_ptr<CallOptions> GetKeyValueAsync( std::string_view key, StatusOrValueCallback done) override; absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) override; absl::StatusOr<std::vector<KeyValueEntry>> GetKeyValueDir( std::string_view key) override; void GetKeyValueDirAsync(std::string_view key, StatusOrValueDirCallback done) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) override; absl::Status DeleteKeyValue(std::string_view key) override; absl::Status UpdateKeyValue(std::string_view key, std::string_view value) override; absl::Status StartWatchKey(std::string_view key, ChangedKeyValuesCallback on_change) override; absl::Status StopWatchKey(std::string_view key) override; absl::Status WaitAtBarrier( std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks) override; void WaitAtBarrierAsync(std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks, StatusCallback done) override; absl::Status CancelBarrier(std::string_view barrier_id) override; void CancelBarrierAsync(std::string_view barrier_id, StatusCallback done) override; absl::StatusOr<Env*> GetEnv() override; protected: void SetError(const absl::Status& error) override; absl::Status ActivateWatch( std::string_view key, const std::map<std::string, std::string>&) override; absl::Status ValidateRunningAgent(bool allow_disconnected = false); void StopHeartbeat(); private: absl::Status ShutdownInternal(); Env* env_ = nullptr; const uint64_t incarnation_id_ = random::New64(); CoordinatedTask task_; CoordinationServiceConfig configs_; StatusCallback error_fn_; mutable absl::Mutex state_mu_; CoordinatedTaskState state_ TF_GUARDED_BY(state_mu_) = CoordinatedTaskState::TASKSTATE_UNINITIALIZED; absl::Status status_ TF_GUARDED_BY(state_mu_) = absl::OkStatus(); absl::flat_hash_set<std::string> used_barrier_ids_ TF_GUARDED_BY(state_mu_); uint64_t leader_incarnation_ = 0; DeviceInfo cluster_devices_; absl::Mutex heartbeat_thread_shutdown_mu_; absl::CondVar heartbeat_thread_cv_; bool shutting_down_ TF_GUARDED_BY(heartbeat_thread_shutdown_mu_) = false; std::unique_ptr<Thread> heartbeat_thread_; CancellationManager cancellation_manager_; std::unique_ptr<CoordinationClient> leader_client_; CoordinationServiceAgentImpl(const CoordinationServiceAgentImpl&) = delete; void operator=(const CoordinationServiceAgentImpl&) = delete; }; absl::Status CoordinationServiceAgentImpl::Initialize( Env* env, std::string_view job_name, int task_id, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) { CoordinatedTask task; task.set_job_name(std::string(job_name)); task.set_task_id(task_id); return Initialize(env, task, configs, std::move(leader_client), error_fn); } absl::Status CoordinationServiceAgentImpl::Initialize( Env* env, const CoordinatedTask& task, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) { enabled_usage_metric->GetCell()->Set(true); absl::MutexLock l(&state_mu_); if (state_ != CoordinatedTaskState::TASKSTATE_UNINITIALIZED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent has already been initialized.")); } env_ = env; task_ = task; configs_ = configs; if (configs_.service_leader().empty()) { return MakeCoordinationError(absl::InvalidArgumentError( "CoordinationServiceAgent must be initialized with a valid leader.")); } leader_client_ = std::move(leader_client); if (leader_client_ == nullptr) { return MakeCoordinationError(absl::InvalidArgumentError( "CoordinationServiceAgent must have a valid leader client.")); } error_fn_ = error_fn; state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; return absl::OkStatus(); } bool CoordinationServiceAgentImpl::IsInitialized() { absl::MutexLock l(&state_mu_); return state_ != CoordinatedTaskState::TASKSTATE_UNINITIALIZED; } bool CoordinationServiceAgentImpl::IsConnected() { absl::MutexLock l(&state_mu_); return state_ == CoordinatedTaskState::TASKSTATE_CONNECTED; } bool CoordinationServiceAgentImpl::IsError() { absl::MutexLock l(&state_mu_); return state_ == CoordinatedTaskState::TASKSTATE_ERROR; } void CoordinationServiceAgentImpl::StopHeartbeat() { { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); shutting_down_ = true; heartbeat_thread_cv_.SignalAll(); } heartbeat_thread_ = nullptr; } absl::Status CoordinationServiceAgentImpl::Connect() { VLOG(3) << "Agent has started trying to Connect()."; { absl::MutexLock l(&state_mu_); if (state_ != CoordinatedTaskState::TASKSTATE_DISCONNECTED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent is not in DISCONNECTED state.")); } } absl::Status connect_status = absl::UnknownError("Connection not attempted yet."); RegisterTaskRequest request; *request.mutable_source_task() = task_; request.set_incarnation(incarnation_id_); RegisterTaskResponse response; const int64_t register_timeout = configs_.cluster_register_timeout_in_ms() > 0 ? configs_.cluster_register_timeout_in_ms() : absl::ToInt64Milliseconds(kDefaultClusterRegisterTimeout); const absl::Time deadline = absl::Now() + absl::Milliseconds(register_timeout); int attempt = 0; std::default_random_engine generator; std::uniform_real_distribution<double> distribution(0.0, 1.0); do { ++attempt; CallOptions call_opts; call_opts.SetTimeout(absl::ToInt64Milliseconds(deadline - absl::Now())); absl::Notification n; leader_client_->RegisterTaskAsync( &call_opts, &request, &response, [&](absl::Status s) { if (s.ok()) { leader_incarnation_ = response.leader_incarnation(); { absl::MutexLock l(&state_mu_); state_ = CoordinatedTaskState::TASKSTATE_CONNECTED; } } connect_status = s; n.Notify(); }); n.WaitForNotification(); if (!connect_status.ok()) { const int backoff = 1 << std::min(14, attempt); absl::SleepFor(absl::Milliseconds(backoff * distribution(generator))); } } while (!connect_status.ok() && absl::Now() < deadline && (connect_status.GetPayload(CoordinationErrorPayloadKey()) == std::nullopt || absl::IsAborted(connect_status) || absl::IsInternal(connect_status))); if (!connect_status.ok()) { SetError(connect_status); return connect_status; } LOG(INFO) << "Coordination agent has successfully connected."; heartbeat_thread_.reset( env_->StartThread(ThreadOptions(), kHeartbeatThread, [this]() -> void { HeartbeatRequest request; *request.mutable_source_task() = task_; request.set_incarnation(incarnation_id_); HeartbeatResponse response; const int64_t heartbeat_interval_ms = configs_.heartbeat_timeout_in_ms() > 0 ? configs_.heartbeat_timeout_in_ms() / 2 : absl::ToInt64Milliseconds(kDefaultHeartbeatTimeout) / 2; CallOptions call_opts; call_opts.SetTimeout(heartbeat_interval_ms); while (true) { absl::Status status; absl::Notification n; VLOG(10) << "HeartbeatRequest: " << request.DebugString(); leader_client_->HeartbeatAsync(&call_opts, &request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); VLOG(10) << "HeartbeatResponse: " << status; if (!status.ok()) { absl::SleepFor(absl::Seconds(1)); { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); if (shutting_down_) { return; } } SetError(status); } else if (response.leader_incarnation() != leader_incarnation_) { SetError(MakeCoordinationError( absl::AbortedError("Leader incarnation ID mismatch: the " "coordination leader has restarted."))); } { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); heartbeat_thread_cv_.WaitWithTimeout( &heartbeat_thread_shutdown_mu_, absl::Milliseconds(heartbeat_interval_ms)); if (shutting_down_) { return; } } } })); return absl::OkStatus(); } absl::Status CoordinationServiceAgentImpl::WaitForAllTasks( const DeviceInfo& local_devices) { absl::Status agent_running_status = ValidateRunningAgent(); if (!agent_running_status.ok()) { return agent_running_status; } WaitForAllTasksRequest request; *request.mutable_source_task() = task_; *request.mutable_device_info() = local_devices; VLOG(3) << "WaitForAllTasksRequest: " << request.DebugString(); WaitForAllTasksResponse response; absl::Status status; absl::Notification n; leader_client_->WaitForAllTasksAsync(&request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); if (!status.ok()) { VLOG(3) << "WaitForAllTasksResponse: " << status; SetError(status); return status; } VLOG(3) << "WaitForAllTasksResponse: " << response.DebugString(); cluster_devices_ = response.device_info(); return absl::OkStatus(); } const DeviceInfo& CoordinationServiceAgentImpl::GetClusterDeviceInfo() { return cluster_devices_; } absl::StatusOr<CoordinatedTask> CoordinationServiceAgentImpl::GetOwnTask() { if (!IsInitialized()) { return MakeCoordinationError(absl::FailedPreconditionError( "Agent has not been initialized; we do not " "know the associated task yet.")); } return task_; } absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> CoordinationServiceAgentImpl::GetTaskState( const std::vector<CoordinatedTask>& tasks) { GetTaskStateRequest request; *request.mutable_source_task() = {tasks.begin(), tasks.end()}; GetTaskStateResponse response; absl::Notification n; absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> result; leader_client_->GetTaskStateAsync( &request, &response, [&](const absl::Status& s) { if (s.ok()) { result = std::vector<CoordinatedTaskStateInfo>( std::make_move_iterator(response.task_state().begin()), std::make_move_iterator(response.task_state().end())); } else { result = s; } n.Notify(); }); n.WaitForNotification(); return result; } absl::Status CoordinationServiceAgentImpl::ReportError( const absl::Status& error) { { absl::MutexLock l(&state_mu_); if (state_ == CoordinatedTaskState::TASKSTATE_UNINITIALIZED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent must be initialized first before " "reporting error.")); } else if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent is already in error state.")); } } SetError(MakeCoordinationError(error, task_, true)); LOG(INFO) << "Reporting error to coordination service: " << error; ReportErrorToServiceRequest request; request.set_error_code(error.raw_code()); request.set_error_message(std::string(error.message())); *request.mutable_error_origin() = task_; VLOG(5) << "ReportErrorToServiceRequest: " << request.DebugString(); ReportErrorToServiceResponse response; absl::Notification n; leader_client_->ReportErrorToServiceAsync( &request, &response, [&](absl::Status s) { VLOG(5) << "ReportErrorToServiceResponse: " << s; if (!s.ok()) { LOG(ERROR) << "Encountered another error when reporting error to " "coordination service: " << s << "\nThis is usually caused by an earlier error during " "execution. Check the logs (this task or the leader) for " "an earlier error to debug further."; } n.Notify(); }); n.WaitForNotification(); return absl::OkStatus(); } absl::Status CoordinationServiceAgentImpl::Shutdown() { return
#include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/protobuf/coordination_config.pb.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; using tensorflow::KeyValueEntry; using ::testing::_; using ::testing::DoAll; using ::testing::InvokeArgument; using ::testing::SetArgPointee; using ::testing::UnorderedPointwise; using ::testing::WithArgs; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.DebugString()) {} template <typename Message> bool MatchAndExplain(const Message& p, ::testing::MatchResultListener*) const { return p.DebugString() == expected_; } void DescribeTo(std::ostream* os) const { *os << expected_; } void DescribeNegationTo(std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; MATCHER(KvEq, "simple KeyValueEntry matcher") { const KeyValueEntry& kv0 = std::get<0>(arg); const KeyValueEntry& kv1 = std::get<1>(arg); return kv0.key() == kv1.key() && kv0.value() == kv1.value(); } KeyValueEntry CreateKv(const std::string& key, const std::string& value) { KeyValueEntry kv; kv.set_key(key); kv.set_value(value); return kv; } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; MOCK_METHOD(void, GetKeyValueAsync, (CallOptions * call_opts, const GetKeyValueRequest*, GetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, TryGetKeyValueAsync, (const TryGetKeyValueRequest*, TryGetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, GetKeyValueDirAsync, (const GetKeyValueDirRequest*, GetKeyValueDirResponse*, StatusCallback), (override)); MOCK_METHOD(void, InsertKeyValueAsync, (const InsertKeyValueRequest*, InsertKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, DeleteKeyValueAsync, (const DeleteKeyValueRequest*, DeleteKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, RegisterTaskAsync, (CallOptions*, const RegisterTaskRequest*, RegisterTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ShutdownTaskAsync, (CallOptions*, const ShutdownTaskRequest*, ShutdownTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ResetTaskAsync, (const ResetTaskRequest*, ResetTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ReportErrorToServiceAsync, (const ReportErrorToServiceRequest*, ReportErrorToServiceResponse*, StatusCallback), (override)); MOCK_METHOD(void, BarrierAsync, (const BarrierRequest*, BarrierResponse*, StatusCallback), (override)); MOCK_METHOD(void, GetTaskStateAsync, (const GetTaskStateRequest*, GetTaskStateResponse*, StatusCallback), (override)); MOCK_METHOD(void, HeartbeatAsync, (CallOptions*, const HeartbeatRequest*, HeartbeatResponse*, StatusCallback), (override)); #define UNIMPLEMENTED(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override { \ done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED(WaitForAllTasks); UNIMPLEMENTED(CancelBarrier); #undef UNIMPLEMENTED void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToTaskAsync")); } }; class CoordinationServiceAgentTest : public ::testing::Test { public: void SetUp() override { ON_CALL(*client_, RegisterTaskAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, HeartbeatAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, ShutdownTaskAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, ReportErrorToServiceAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, ResetTaskAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, BarrierAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, GetTaskStateAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); } void InitializeAgent(CoordinationServiceConfig config = {}) { config.set_service_leader("test_leader"); TF_ASSERT_OK(agent_->Initialize( Env::Default(), "test_job", 0, config, std::move(client_), [](absl::Status s) { LOG(ERROR) << "Coordination agent is set to error: " << s; })); } TestCoordinationClient* GetClient() { CHECK(client_ != nullptr) << "GetClient() was called after InitializeAgent()"; return client_.get(); } protected: std::unique_ptr<CoordinationServiceAgent> agent_ = CreateCoordinationServiceAgent(); std::unique_ptr<TestCoordinationClient> client_ = std::make_unique<TestCoordinationClient>(); }; TEST_F(CoordinationServiceAgentTest, GetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_WithTimeout_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_Timeout_ReturnError) { const std::string& test_key = "test_key"; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<3>([&](StatusCallback done) { owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_TRUE(absl::IsDeadlineExceeded(result.status())); owned_done(absl::CancelledError("error")); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_DelayedResponse_TimeoutWithoutMemoryError) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; auto client = std::make_unique<TestCoordinationClient>(); GetKeyValueResponse* owned_response; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<2, 3>( [&](GetKeyValueResponse* response, StatusCallback done) { owned_response = response; owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_TRUE(absl::IsDeadlineExceeded(result.status())); auto kv = owned_response->mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); owned_done(absl::OkStatus()); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_DelayedResponseBeforeTimeout_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; auto client = std::make_unique<TestCoordinationClient>(); std::unique_ptr<Thread> async_thread; GetKeyValueResponse* owned_response; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<2, 3>( [&](GetKeyValueResponse* response, StatusCallback done) { owned_response = response; owned_done = done; async_thread = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "async_thread", [&]() { absl::SleepFor(absl::Seconds(5)); auto kv = owned_response->mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); owned_done(absl::OkStatus()); })); })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, CancelGetKeyValue_Success) { const std::string test_key = "test_key"; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault( WithArgs<0, 3>([](CallOptions* call_opts, StatusCallback done) { call_opts->SetCancelCallback([callback = std::move(done)]() { callback(absl::CancelledError("RPC call cancelled.")); }); })); InitializeAgent(); absl::Status status; std::shared_ptr<CallOptions> get_kv_call_opts = agent_->GetKeyValueAsync( test_key, [&status](const absl::StatusOr<std::string>& result) { status = result.status(); }); get_kv_call_opts->StartCancel(); EXPECT_TRUE(absl::IsCancelled(status)) << status; get_kv_call_opts->ClearCancelCallback(); } TEST_F(CoordinationServiceAgentTest, TryGetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; TryGetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), TryGetKeyValueAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->TryGetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValueDir_Simple_Success) { const std::string test_key = "test_key_dir"; std::vector<KeyValueEntry> test_values; test_values.push_back(CreateKv("test_key_dir/task_0", "0")); test_values.push_back(CreateKv("test_key_dir/task_1", "1")); GetKeyValueDirResponse mocked_response; mocked_response.set_directory_key(test_key); *mocked_response.mutable_kv() = {test_values.begin(), test_values.end()}; ON_CALL(*GetClient(), GetKeyValueDirAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValueDir(test_key); TF_ASSERT_OK(result.status()); EXPECT_THAT(*result, UnorderedPointwise(KvEq(), test_values)); } TEST_F(CoordinationServiceAgentTest, ShutdownInErrorShouldReturnError) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); absl::Status s = agent_->Shutdown(); EXPECT_TRUE(absl::IsFailedPrecondition(s)); } TEST_F(CoordinationServiceAgentTest, Reset_ConnectedButNotInError_Fail) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); auto status = agent_->Reset(); EXPECT_TRUE(absl::IsFailedPrecondition(status)); } TEST_F(CoordinationServiceAgentTest, ConnectAfterResetError) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); TF_ASSERT_OK(agent_->Reset()); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, ResetCanBeRetried) { EXPECT_CALL(*GetClient(), ResetTaskAsync(_, _, _)) .WillOnce(InvokeArgument<2>(absl::InternalError("Reset error"))) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); absl::Status reset_status = agent_->Reset(); EXPECT_TRUE(absl::IsInternal(reset_status)); TF_ASSERT_OK(agent_->Reset()); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, GetOwnTask) { InitializeAgent(); auto result = agent_->GetOwnTask(); TF_ASSERT_OK(result.status()); CoordinatedTask actual_task = *result; CoordinatedTask expected_task; expected_task.set_job_name("test_job"); expected_task.set_task_id(0); EXPECT_EQ(actual_task.job_name(), expected_task.job_name()); EXPECT_EQ(actual_task.task_id(), expected_task.task_id()); } TEST_F(CoordinationServiceAgentTest, GetOwnTask_Uninitialized) { auto result = agent_->GetOwnTask(); EXPECT_TRUE(absl::IsFailedPrecondition(result.status())); } TEST_F(CoordinationServiceAgentTest, WaitAtBarrier_SameIdUsedTwice_Fails) { InitializeAgent(); const std::string barrier_id = "only_use_once"; TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK( agent_->WaitAtBarrier(barrier_id, absl::Seconds(1), {})); auto result = agent_->WaitAtBarrier(barrier_id, absl::Seconds(1), {}); EXPECT_TRUE(absl::IsFailedPrecondition(result)); } TEST_F(CoordinationServiceAgentTest, GetEnv_SucceedsAfterInit) { EXPECT_TRUE(absl::IsFailedPrecondition(agent_->GetEnv().status())); InitializeAgent(); absl::StatusOr<Env*> result = agent_->GetEnv(); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, Env::Default()); } TEST_F(CoordinationServiceAgentTest, Connect_AbortedErrorShouldBeRetried) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillOnce( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))) .WillOnce( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))) .WillOnce(InvokeArgument<3>(absl::OkStatus())); InitializeAgent(); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, Connect_AbortedErrorShouldFailEventually) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillRepeatedly( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))); CoordinationServiceConfig config; config.set_cluster_register_timeout_in_ms( absl::ToInt64Milliseconds(absl::Seconds(3))); InitializeAgent(config); absl::Status s = agent_->Connect(); EXPECT_TRUE(absl::IsAborted(s)); } TEST_F(CoordinationServiceAgentTest, Connect_InternalErrorShouldBeRetried) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillOnce(InvokeArgument<3>( absl::InternalError("Coordination service is not enabled."))) .WillOnce(InvokeArgument<3>( absl::InternalError("Coordination service is not enabled."))) .WillOnce(InvokeArgument<3>(absl::OkStatus())); InitializeAgent(); TF_EXPECT_OK(agent_->Connect()); } } }
2,238
#ifndef XLA_TSL_DISTRIBUTED_RUNTIME_COORDINATION_COORDINATION_SERVICE_H_ #define XLA_TSL_DISTRIBUTED_RUNTIME_COORDINATION_COORDINATION_SERVICE_H_ #include <cstdint> #include <functional> #include <memory> #include <string> #include <string_view> #include <unordered_map> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" #include "tsl/protobuf/coordination_config.pb.h" namespace tsl { class Env; #define REGISTER_COORDINATION_SERVICE(service_type_name, factory_fn) \ REGISTER_COORDINATION_SERVICE_UNIQ_HELPER(__COUNTER__, service_type_name, \ factory_fn) #define REGISTER_COORDINATION_SERVICE_UNIQ_HELPER(counter, service_type_name, \ factory_fn) \ static bool static_coordination_service_##counter TF_ATTRIBUTE_UNUSED = \ []() { \ ::tsl::CoordinationServiceInterface::RegisterCoordinationService( \ service_type_name, std::move(factory_fn)); \ return true; \ }() class CoordinationServiceInterface { public: using CoordinationServiceFactory = std::function<std::unique_ptr<CoordinationServiceInterface>( Env* env, const tensorflow::CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> cache)>; using StatusOrValueCallback = std::function<void(const absl::StatusOr<std::string_view>&)>; virtual ~CoordinationServiceInterface() = default; static void RegisterCoordinationService( std::string_view service_type_name, CoordinationServiceFactory factory_fn) { auto factories = GetCoordinationServiceFactories(); factories->emplace(service_type_name, factory_fn); } static std::unique_ptr<CoordinationServiceInterface> EnableCoordinationService(Env* env, const tensorflow::CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> cache) { const auto* factories = GetCoordinationServiceFactories(); auto factories_iter = factories->find(config.service_type()); if (factories_iter == factories->end()) { LOG(ERROR) << "No coordination service factory found for service type " << config.service_type(); return nullptr; } auto service = factories_iter->second(env, config, std::move(cache)); if (service != nullptr) { *GetCoordinationServiceInstancePtr() = service.get(); } return service; } static CoordinationServiceInterface* GetCoordinationServiceInstance() { return *GetCoordinationServiceInstancePtr(); } virtual void SetDeviceAggregationFunction( std::function< tensorflow::DeviceInfo(const tensorflow::DeviceInfo& devices)> post_aggregate_device_fn) = 0; virtual absl::Status RegisterTask(const tensorflow::CoordinatedTask& task, uint64_t incarnation) = 0; virtual void WaitForAllTasks(const tensorflow::CoordinatedTask& task, const tensorflow::DeviceInfo& devices, StatusCallback done) = 0; virtual void ShutdownTaskAsync(const tensorflow::CoordinatedTask& task, StatusCallback done) = 0; virtual absl::Status ResetTask(const tensorflow::CoordinatedTask& task) = 0; virtual absl::Status RecordHeartbeat(const tensorflow::CoordinatedTask& task, uint64_t incarnation) = 0; virtual absl::Status ReportTaskError(const tensorflow::CoordinatedTask& task, absl::Status error) = 0; virtual std::vector<tensorflow::CoordinatedTaskStateInfo> GetTaskState( const std::vector<tensorflow::CoordinatedTask>& task) = 0; virtual absl::Status InsertKeyValue(std::string_view key, std::string_view value) = 0; virtual absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) = 0; virtual void GetKeyValueAsync(std::string_view key, StatusOrValueCallback done) = 0; virtual absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) = 0; virtual std::vector<tensorflow::KeyValueEntry> GetKeyValueDir( std::string_view directory_key) = 0; virtual absl::Status DeleteKeyValue(std::string_view key) = 0; virtual void BarrierAsync( std::string_view barrier_id, absl::Duration timeout, const tensorflow::CoordinatedTask& task, const std::vector<tensorflow::CoordinatedTask>& participating_tasks, StatusCallback done) = 0; virtual absl::Status CancelBarrier( std::string_view barrier_id, const tensorflow::CoordinatedTask& task) = 0; private: friend class CoordinationServiceRpcHandler; friend class CoordinationServiceTest_ListClusterDevices_TfDevice_Test; friend class CoordinationServiceTest_ListClusterDevices_XlaDevice_Test; friend class CoordinationServiceTest_ListClusterDevices_DevicesAreNotAddedTwice_Test; virtual const tensorflow::DeviceInfo& ListClusterDevices() = 0; virtual uint64_t GetServiceIncarnation() = 0; static std::unordered_map<std::string, CoordinationServiceFactory>* GetCoordinationServiceFactories() { static auto* coordination_service_factories = new std::unordered_map<std::string, CoordinationServiceFactory>(); return coordination_service_factories; } static CoordinationServiceInterface** GetCoordinationServiceInstancePtr() { static CoordinationServiceInterface* instance = nullptr; return &instance; } }; } #endif #include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" #include "tsl/protobuf/coordination_config.pb.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::CoordinatedTaskState; using tensorflow::CoordinatedTaskStateInfo; using tensorflow::CoordinationServiceConfig; using tensorflow::CoordinationServiceError; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; constexpr absl::Duration kDevicePropagationTimeout = absl::Hours(1); constexpr int kDefaultHeartbeatTimeoutMs = 10 * 1000; constexpr int kServiceToClientTimeoutMs = 10 * 1000; constexpr size_t kOngoingBarriersSoftLimit = 20; constexpr char kHealthCheckThread[] = "CoordinationServiceHealthCheck"; constexpr int kPendingTaskLogLimit = 20; constexpr int kPendingStragglerLogLimit = 3; std::string GetTaskName(std::string_view job_name, int task_id) { return absl::StrCat("/job:", job_name, "/replica:", 0, "/task:", task_id); } std::string GetTaskName(const CoordinatedTask& task) { return GetTaskName(task.job_name(), task.task_id()); } CoordinatedTask GetTaskFromName(std::string_view task_name) { DeviceNameUtils::ParsedName parsed; DeviceNameUtils::ParseFullName(task_name, &parsed); CoordinatedTask task; task.set_job_name(parsed.job); task.set_task_id(parsed.task); return task; } struct CoordinatedTaskHash { uint64_t operator()(const CoordinatedTask& task) const { return absl::HashOf(task.job_name(), task.task_id()); } }; struct CoordinatedTaskEqual { bool operator()(const CoordinatedTask& lhs, const CoordinatedTask& rhs) const { return lhs.job_name() == rhs.job_name() && lhs.task_id() == rhs.task_id(); } }; class CoordinationServiceStandaloneImpl : public CoordinationServiceInterface { public: CoordinationServiceStandaloneImpl( Env* env, const CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> client_cache); ~CoordinationServiceStandaloneImpl() override { Stop(); } void SetDeviceAggregationFunction( std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn) override; void LogConnectStatusLocked() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); absl::Status RegisterTask(const CoordinatedTask& task, uint64_t incarnation) override; void WaitForAllTasks(const CoordinatedTask& task, const DeviceInfo& devices, StatusCallback done) override; void ShutdownTaskAsync(const CoordinatedTask& task, StatusCallback done) override; absl::Status ResetTask(const CoordinatedTask& task) override; absl::Status RecordHeartbeat(const CoordinatedTask& task, uint64_t incarnation) override; absl::Status ReportTaskError(const CoordinatedTask& task, absl::Status error) override; std::vector<CoordinatedTaskStateInfo> GetTaskState( const std::vector<CoordinatedTask>& task) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) override; void GetKeyValueAsync(std::string_view key, StatusOrValueCallback done) override; absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) override; std::vector<KeyValueEntry> GetKeyValueDir( std::string_view directory_key) override; absl::Status DeleteKeyValue(std::string_view key) override; void BarrierAsync(std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) override; absl::Status CancelBarrier(std::string_view barrier_id, const CoordinatedTask& task) override; private: const DeviceInfo& ListClusterDevices() override ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); uint64_t GetServiceIncarnation() override; void StartCheckStaleness(); void Stop(bool shut_staleness_thread = true); bool ServiceHasStopped() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void ReportServiceErrorToTaskAsync(const CoordinatedTask& destination_task, absl::Status error); void PropagateError(const CoordinatedTask& source_task, bool is_reported_by_task = false) ABSL_LOCKS_EXCLUDED(state_mu_); void SetTaskError(std::string_view task_name, absl::Status error) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void AggregateClusterDevices() ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); absl::Status DisconnectTask(const CoordinatedTask& task) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); struct BarrierState { bool passed = false; absl::Status result = absl::UnknownError( "Invalid barrier result."); uint64_t deadline_in_micros = 0; int num_pending_tasks = 0; absl::flat_hash_map<CoordinatedTask, bool, CoordinatedTaskHash, CoordinatedTaskEqual> tasks_at_barrier; std::vector<StatusCallback> done_callbacks; }; void PassBarrier(std::string_view barrier_id, absl::Status result, BarrierState* barrier) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); bool ValidateTaskArgs( const std::vector<CoordinatedTask>& tasks_args, const absl::flat_hash_map<CoordinatedTask, bool, CoordinatedTaskHash, CoordinatedTaskEqual>& tasks_at_barrier, int64_t cluster_size); bool isRecoverableJob(std::string_view task_name) const; class TaskState { public: CoordinatedTaskState GetState() { return state_; } absl::Status GetStatus() { return status_; } uint64_t GetTaskIncarnation() { return task_incarnation_; } void SetConnected(uint64_t task_incarnation); void Disconnect(uint64_t grace_period_duration_us); absl::Status RecordHeartbeat(uint64_t task_incarnation); int64_t TimeSinceLastHeartbeatMs(); uint64_t GetDisconnectedGracePeriodMicros(); void SetError(absl::Status status); DeviceInfo GetDeviceInfo() { return devices_; } void CollectDeviceInfo(const DeviceInfo& devices) { devices_ = devices; } bool DeviceInfoIsCollected() { return devices_.device_size() != 0; } absl::flat_hash_set<std::string> GetOngoingBarriers(); void JoinBarrier(std::string_view barrier_id); void ExitBarrier(std::string_view barrier_id); private: uint64_t task_incarnation_ = 0; CoordinatedTaskState state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; absl::Status status_; absl::Mutex last_heartbeat_mu_; uint64_t last_heartbeat_us_ ABSL_GUARDED_BY(last_heartbeat_mu_); uint64_t disconnect_grace_period_us_ = 0; DeviceInfo devices_; absl::flat_hash_set<std::string> ongoing_barriers_for_task_; }; std::unique_ptr<CoordinationClientCache> client_cache_; Env& env_; const uint64_t service_incarnation_ = random::New64(); const uint64_t heartbeat_timeout_ms_; const absl::Duration shutdown_barrier_timeout_; bool allow_new_incarnation_to_reconnect_ = false; std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn_; const std::string device_propagation_barrier_id_ = absl::StrCat("WaitForAllTasks::", std::to_string(service_incarnation_)); const std::string shutdown_barrier_id_ = absl::StrCat("Shutdown::", std::to_string(service_incarnation_)); absl::Mutex state_mu_; absl::flat_hash_map<std::string, std::unique_ptr<TaskState>> cluster_state_ ABSL_GUARDED_BY(state_mu_); DeviceInfo cluster_devices_ ABSL_GUARDED_BY(state_mu_); absl::Mutex kv_mu_; std::map<std::string, std::string> kv_store_ ABSL_GUARDED_BY(kv_mu_); absl::flat_hash_map<std::string, std::vector<StatusOrValueCallback>> get_cb_ ABSL_GUARDED_BY(kv_mu_); absl::CondVar check_staleness_thread_cv_; bool shutting_down_ ABSL_GUARDED_BY(state_mu_) = false; std::unique_ptr<Thread> check_staleness_thread_; absl::flat_hash_map<std::string, BarrierState> barriers_ ABSL_GUARDED_BY(state_mu_); absl::flat_hash_set<std::string> ongoing_barriers_ ABSL_GUARDED_BY(state_mu_); absl::flat_hash_set<std::string> recoverable_jobs_; CoordinationServiceStandaloneImpl(const CoordinationServiceStandaloneImpl&) = delete; void operator=(const CoordinationServiceStandaloneImpl&) = delete; }; void CoordinationServiceStandaloneImpl::TaskState::SetConnected( uint64_t task_incarnation) { state_ = CoordinatedTaskState::TASKSTATE_CONNECTED; status_ = absl::OkStatus(); task_incarnation_ = task_incarnation; absl::MutexLock l(&last_heartbeat_mu_); last_heartbeat_us_ = Env::Default()->NowMicros(); } void CoordinationServiceStandaloneImpl::TaskState::Disconnect( uint64_t grace_period_duration_us) { disconnect_grace_period_us_ = Env::Default()->NowMicros() + grace_period_duration_us; state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; status_ = absl::OkStatus(); } void CoordinationServiceStandaloneImpl::TaskState::SetError( const absl::Status status) { if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) return; state_ = CoordinatedTaskState::TASKSTATE_ERROR; status_ = status; } absl::Status CoordinationServiceStandaloneImpl::TaskState::RecordHeartbeat( uint64_t task_incarnation) { if (!status_.ok()) return status_; if (task_incarnation != task_incarnation_) { return MakeCoordinationError(absl::AbortedError(absl::StrCat( "Incarnation ID mismatch: expecting ", task_incarnation_, " but got ", task_incarnation, ". This means the remote task has restarted."))); } absl::MutexLock l(&last_heartbeat_mu_); last_heartbeat_us_ = Env::Default()->NowMicros(); return absl::OkStatus(); } int64_t CoordinationServiceStandaloneImpl::TaskState::TimeSinceLastHeartbeatMs() { absl::MutexLock l(&last_heartbeat_mu_); return (Env::Default()->NowMicros() - last_heartbeat_us_) / 1000; } uint64_t CoordinationServiceStandaloneImpl::TaskState:: GetDisconnectedGracePeriodMicros() { return disconnect_grace_period_us_; } absl::flat_hash_set<std::string> CoordinationServiceStandaloneImpl::TaskState::GetOngoingBarriers() { return ongoing_barriers_for_task_; } void CoordinationServiceStandaloneImpl::TaskState::JoinBarrier( std::string_view barrier_id) { ongoing_barriers_for_task_.emplace(barrier_id); } void CoordinationServiceStandaloneImpl::TaskState::ExitBarrier( std::string_view barrier_id) { ongoing_barriers_for_task_.erase(barrier_id); } void CoordinationServiceStandaloneImpl::SetDeviceAggregationFunction( std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn) { post_aggregate_device_fn_ = std::move(post_aggregate_device_fn); } CoordinationServiceStandaloneImpl::CoordinationServiceStandaloneImpl( Env* env, const CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> client_cache) : client_cache_(std::move(client_cache)), env_(*env), heartbeat_timeout_ms_([&config]() -> uint64_t { return config.heartbeat_timeout_in_ms() > 0 ? config.heartbeat_timeout_in_ms() : kDefaultHeartbeatTimeoutMs; }()), shutdown_barrier_timeout_( absl::Milliseconds(config.shutdown_barrier_timeout_in_ms())), allow_new_incarnation_to_reconnect_( config.allow_new_incarnation_to_reconnect()) { LOG(INFO) << "Initializing CoordinationService"; recoverable_jobs_ = absl::flat_hash_set<std::string>( config.recoverable_jobs().cbegin(), config.recoverable_jobs().cend()); for (const auto& job : config.coordinated_job_list()) { for (int i = 0; i < job.num_tasks(); ++i) { const std::string task_name = GetTaskName(job.name(), i); cluster_state_.emplace(task_name, std::make_unique<TaskState>()); } } StartCheckStaleness(); } void CoordinationServiceStandaloneImpl::StartCheckStaleness() { check_staleness_thread_.reset( env_.StartThread({}, kHealthCheckThread, [this]() { const bool has_service_to_client_connection = client_cache_ != nullptr; std::vector<std::string_view> stale_task_names; absl::flat_hash_map<std::string, BarrierState*> expired_barriers; while (true) { { absl::MutexLock l(&state_mu_); check_staleness_thread_cv_.WaitWithTimeout(&state_mu_, absl::Seconds(1)); if (shutting_down_) { return; } } absl::Status status = absl::OkStatus(); { absl::MutexLock l(&state_mu_); for (const auto& [task_name, task_state] : cluster_state_) { if (task_state->GetState() != CoordinatedTaskState::TASKSTATE_CONNECTED) { continue; } const bool is_stale = task_state->TimeSinceLastHeartbeatMs() > heartbeat_timeout_ms_; VLOG(10) << "Checking staleness for " << task_name << " stale?=" << is_stale; if (is_stale) { stale_task_names.push_back(task_name); status = MakeCoordinationError(absl::UnavailableError( absl::StrCat("Task ", task_name, " heartbeat timeout. This indicates that the " "remote task " "has failed, got preempted, or crashed " "unexpectedly. Check " "the task logs for an earlier error to debug " "further."))); SetTaskError(task_name, status); } } } if (!stale_task_names.empty()) { if (!has_service_to_client_connection) { LOG(ERROR) << "Stopping coordination service as the following tasks are " "unhealthy (stopped sending heartbeats):\n" << absl::StrJoin(stale_task_names, "\n") << "\nCheck the task logs for an earlier error to debug " "further."; Stop(false); return; } for (const auto& stale_task_name : stale_task_names) { PropagateError(GetTaskFromName(stale_task_name)); } stale_task_names.clear(); } uint64_t current_time_micros = Env::Default()->NowMicros(); { absl::MutexLock l(&state_mu_); for (std::string_view barrier_id : ongoing_barriers_) { auto* barrier = &barriers_[barrier_id]; if (current_time_micros > barrier->deadline_in_micros) { expired_barriers[barrier_id] = barrier; } } for (const auto& [barrier_id, barrier] : expired_barriers) { std::string pending_tasks; int pending_task_count = 0; for (const auto& [task, at_barrier] : barrier->tasks_at_barrier) { if (!at_barrier) { ++pending_task_count; if (pending_task_count <= kPendingTaskLogLimit) { absl::StrAppend(&pending_tasks, GetTaskName(task), "\n"); } else { break; } } } const absl::Status error = MakeCoordinationError( absl::DeadlineExceededError(absl::StrCat( "Barrier timed out. Barrier_id: ", barrier_id,
#include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include <cstdint> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/distributed_runtime/coordination/test_device.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/protobuf/coordination_config.pb.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tsl { namespace { using ::testing::EqualsProto; using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; using tensorflow::CoordinatedJob; using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; using tensorflow::TestDevice; using tensorflow::TestDeviceList; constexpr absl::Duration kHeartbeatTimeout = absl::Seconds(2); constexpr absl::Duration kShutdownBarrierTimeout = absl::Milliseconds(500); constexpr char kCoordinationServiceType[] = "standalone"; KeyValueEntry CreateKv(const std::string& key, const std::string& value) { KeyValueEntry kv; kv.set_key(key); kv.set_value(value); return kv; } CoordinationServiceConfig GetCoordinationServiceConfig(int num_tasks) { CoordinationServiceConfig config; config.set_service_type(kCoordinationServiceType); CoordinatedJob* job = config.mutable_coordinated_job_list()->Add(); job->set_name("worker"); job->set_num_tasks(num_tasks); return config; } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; absl::Status GetStatus() { absl::MutexLock l(&mu_); return status_; } void RegisterTaskAsync(CallOptions* opts, const RegisterTaskRequest* request, RegisterTaskResponse* response, StatusCallback done) override { done(absl::OkStatus()); } void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { absl::MutexLock l(&mu_); status_ = absl::Status(static_cast<absl::StatusCode>(request->error_code()), request->error_message()); done(absl::OkStatus()); } #define UNIMPLEMENTED(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override{done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED(WaitForAllTasks); UNIMPLEMENTED(ResetTask); UNIMPLEMENTED(ReportErrorToService); UNIMPLEMENTED(GetTaskState); UNIMPLEMENTED(InsertKeyValue); UNIMPLEMENTED(TryGetKeyValue); UNIMPLEMENTED(GetKeyValueDir); UNIMPLEMENTED(DeleteKeyValue); UNIMPLEMENTED(Barrier); UNIMPLEMENTED(CancelBarrier); #undef UNIMPLEMENTED #define UNIMPLEMENTED_WITH_CALL_OPTS(method) \ void method##Async(CallOptions* call_opts, const method##Request* request, \ method##Response* response, StatusCallback done) \ override{done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED_WITH_CALL_OPTS(GetKeyValue); UNIMPLEMENTED_WITH_CALL_OPTS(Heartbeat); UNIMPLEMENTED_WITH_CALL_OPTS(ShutdownTask); #undef UNIMPLEMENTED_WITH_CALL_OPTS private: absl::Mutex mu_; absl::Status status_ ABSL_GUARDED_BY(mu_); }; class TestCoordinationClientCache : public CoordinationClientCache { public: void AddTask(const std::string& target, CoordinationClient* client) { clients_.emplace(target, client); } CoordinationClient* GetClient(const string& target) override { auto it = clients_.find(target); if (it == clients_.end()) return nullptr; return it->second; } std::unique_ptr<CoordinationClient> GetOwnedClient( const string& target) override { LOG(ERROR) << "GetOwnedClient is not supported."; return nullptr; } private: std::unordered_map<std::string, CoordinationClient*> clients_; }; class CoordinationBarrierTest : public ::testing::Test { protected: CoordinationBarrierTest() { const int num_tasks = 3; auto client_cache = std::make_unique<TestCoordinationClientCache>(); for (int i = 0; i < num_tasks; ++i) { CoordinatedTask task; task.set_job_name("worker"); task.set_task_id(i); auto client = std::make_unique<TestCoordinationClient>(); client_cache->AddTask(absl::StrCat("/job:worker/replica:0/task:", i), client.get()); tasks_.push_back(task); clients_.push_back(std::move(client)); } CoordinationServiceConfig config = GetCoordinationServiceConfig(num_tasks); coord_service_ = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); for (int i = 0; i < num_tasks; ++i) { absl::Status s = coord_service_->RegisterTask(tasks_[i], 0); if (!s.ok()) { LOG(FATAL) << "RegisterTask() failed in CoordinationBarrierTest(): " << s; } } } CoordinationServiceInterface* GetCoordinationService() { return coord_service_.get(); } CoordinatedTask GetTask(int i) { return tasks_[i]; } std::string GetTaskName(const CoordinatedTask& task) { return absl::StrCat("/job:", task.job_name(), "/replica:", 0, "/task:", task.task_id()); } std::vector<TestCoordinationClient*> GetClients() { std::vector<TestCoordinationClient*> clients; for (const auto& client : clients_) { clients.push_back(client.get()); } return clients; } private: std::unique_ptr<CoordinationServiceInterface> coord_service_; std::vector<CoordinatedTask> tasks_; std::vector<std::unique_ptr<TestCoordinationClient>> clients_; }; class CoordinateTwoTasksTest : public ::testing::Test { protected: CoordinateTwoTasksTest() { task_0_.set_job_name("worker"); task_0_.set_task_id(0); task_1_.set_job_name("worker"); task_1_.set_task_id(1); } void EnableCoordinationService( bool has_service_to_client_connection = true, bool enable_shutdown_barrier = false, bool set_worker_job_recoverable = false, bool allow_new_incarnation_to_reconnect = false) { CoordinationServiceConfig config = GetCoordinationServiceConfig(2); auto client_cache = std::make_unique<TestCoordinationClientCache>(); if (has_service_to_client_connection) { client_cache->AddTask("/job:worker/replica:0/task:0", &client_0_); client_cache->AddTask("/job:worker/replica:0/task:1", &client_1_); } else { client_cache = nullptr; } config.set_heartbeat_timeout_in_ms(kHeartbeatTimeout / absl::Milliseconds(1)); if (set_worker_job_recoverable) { config.mutable_recoverable_jobs()->Add("worker"); } if (enable_shutdown_barrier) { config.set_shutdown_barrier_timeout_in_ms(kShutdownBarrierTimeout / absl::Milliseconds(1)); } if (allow_new_incarnation_to_reconnect) { config.set_allow_new_incarnation_to_reconnect(true); } coord_service_ = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); } CoordinatedTask task_0_; const uint64_t incarnation_0_ = random::New64(); const uint64_t incarnation_0_new_ = random::New64(); TestCoordinationClient client_0_; CoordinatedTask task_1_; const uint64_t incarnation_1_ = random::New64(); const uint64_t incarnation_1_new_ = random::New64(); TestCoordinationClient client_1_; std::unique_ptr<CoordinationServiceInterface> coord_service_; }; TestDevice CreateTestDevice(absl::string_view name, int local_id = 0) { TestDevice device; device.set_name(name); device.set_local_id(local_id); return device; } TEST_F(CoordinateTwoTasksTest, TestStandaloneService) { EnableCoordinationService(); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Notification wait_for_all; coord_service_->WaitForAllTasks(task_0_, {}, [&](absl::Status s) { ASSERT_OK(s); wait_for_all.Notify(); }); ASSERT_FALSE(wait_for_all.HasBeenNotified()); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); coord_service_->WaitForAllTasks(task_1_, {}, [&](absl::Status s) { ASSERT_OK(s); }); wait_for_all.WaitForNotification(); ASSERT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RecordHeartbeat(task_1_, incarnation_1_)); EXPECT_TRUE( absl::IsInvalidArgument(coord_service_->RecordHeartbeat(task_2, 0))); EXPECT_TRUE(absl::IsAborted(coord_service_->RecordHeartbeat(task_1_, 0))); EXPECT_TRUE(absl::IsAborted(coord_service_->RecordHeartbeat(task_1_, 0))); EXPECT_TRUE(absl::IsAborted(client_0_.GetStatus())); } TEST(CoordinationServiceTest, TestCoordinatedJobs) { CoordinatedTask chief; chief.set_job_name("chief"); chief.set_task_id(0); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask evaluator; evaluator.set_job_name("evaluator"); evaluator.set_task_id(0); CoordinationServiceConfig config; config.set_service_type(kCoordinationServiceType); CoordinatedJob* chief_job = config.mutable_coordinated_job_list()->Add(); chief_job->set_name("chief"); chief_job->set_num_tasks(1); CoordinatedJob* worker_job = config.mutable_coordinated_job_list()->Add(); worker_job->set_name("worker"); worker_job->set_num_tasks(2); auto client_cache = std::make_unique<TestCoordinationClientCache>(); TestCoordinationClient ci; client_cache->AddTask("/job:chief/replica:0/task:0", &ci); TestCoordinationClient wi0; client_cache->AddTask("/job:worker/replica:0/task:0", &wi0); TestCoordinationClient wi1; client_cache->AddTask("/job:worker/replica:0/task:1", &wi1); TestCoordinationClient ei; client_cache->AddTask("/job:evaluator/replica:0/task:0", &ei); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification register_chief; ASSERT_OK(coord_service->RegisterTask(chief, 0)); coord_service->WaitForAllTasks(chief, {}, [&](absl::Status s) { ASSERT_OK(s); register_chief.Notify(); }); absl::Notification register_task0; ASSERT_OK(coord_service->RegisterTask(task_0, 0)); coord_service->WaitForAllTasks(task_0, {}, [&](absl::Status s) { ASSERT_OK(s); register_task0.Notify(); }); absl::Notification register_task1; ASSERT_OK(coord_service->RegisterTask(task_1, 0)); coord_service->WaitForAllTasks(task_1, {}, [&](absl::Status s) { ASSERT_OK(s); register_task1.Notify(); }); register_chief.WaitForNotification(); register_task0.WaitForNotification(); register_task1.WaitForNotification(); absl::Status status = coord_service->RegisterTask(evaluator, 0); EXPECT_TRUE(absl::IsInvalidArgument(status)) << status; EXPECT_TRUE(!status.message().empty()); } TEST(CoordinationServiceTest, RegisterTask_AlreadyConnected_Succeeds) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); const absl::Status status = coord_service->RegisterTask(task_0, 0); TF_EXPECT_OK(status) << status; } TEST(CoordinationServiceTest, RegisterTask_AlreadyConnectedDifferentIncarnation_Fails) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); const absl::Status status = coord_service->RegisterTask(task_0, 1); EXPECT_TRUE(absl::IsAborted(status)) << status; EXPECT_TRUE(!status.message().empty()); } TEST(CoordinationServiceTest, RegisterTask_AlreadyInError_Fails) { CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); ASSERT_OK(coord_service->ReportTaskError(task_0, absl::InternalError("test_error"))); const absl::Status status = coord_service->RegisterTask(task_0, 0); EXPECT_TRUE(absl::IsAborted(status)) << status; EXPECT_TRUE(!status.message().empty()); } TEST_F(CoordinateTwoTasksTest, TestTaskHeartbeatTimeout) { EnableCoordinationService(); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); EXPECT_TRUE(absl::IsUnavailable( coord_service_->RecordHeartbeat(task_0_, incarnation_0_))); EXPECT_TRUE(absl::IsUnavailable( coord_service_->RecordHeartbeat(task_1_, incarnation_1_))); } TEST_F(CoordinateTwoTasksTest, HeartbeatTimeoutWithoutServerToClientConnection) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); EXPECT_TRUE(absl::IsInternal( coord_service_->RecordHeartbeat(task_0_, incarnation_0_))); EXPECT_TRUE(absl::IsInternal( coord_service_->RecordHeartbeat(task_1_, incarnation_1_))); } TEST_F(CoordinateTwoTasksTest, TestTaskRestart) { EnableCoordinationService(); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status s = coord_service_->RegisterTask(task_1_, random::New64()); EXPECT_TRUE(absl::IsAborted(s)) << s; EXPECT_TRUE(absl::IsAborted(client_0_.GetStatus())) << client_0_.GetStatus(); } TEST_F(CoordinateTwoTasksTest, InsertKeyValue_Duplicate_Fail) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "original_value")); EXPECT_TRUE(absl::IsAlreadyExists( coord_service_->InsertKeyValue("key0", "never_added"))); auto result = coord_service_->TryGetKeyValue("key0"); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value(), "original_value"); } TEST_F(CoordinateTwoTasksTest, InsertKeyValue_Duplicate_Overwrite) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "original_value")); TF_EXPECT_OK(coord_service_->InsertKeyValue("key0", "overwritten_value", true)); auto result = coord_service_->TryGetKeyValue("key0"); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value(), "overwritten_value"); } TEST_F(CoordinateTwoTasksTest, TestSetGetValues) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "value0")); ASSERT_OK(coord_service_->InsertKeyValue("/path", "value")); ASSERT_OK(coord_service_->InsertKeyValue("/path/to/key1", "value1")); ASSERT_OK(coord_service_->InsertKeyValue("path/to absl::Notification n1; absl::StatusOr<std::string_view> ret; coord_service_->GetKeyValueAsync( "key0", [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n1.Notify(); }); n1.WaitForNotification(); ASSERT_OK(ret.status()); EXPECT_EQ(ret.value(), "value0"); absl::Notification n2; coord_service_->GetKeyValueAsync( "path [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n2.Notify(); }); n2.WaitForNotification(); EXPECT_EQ(ret.value(), "value1"); ASSERT_OK(coord_service_->DeleteKeyValue("key0")); absl::Notification n3; coord_service_->GetKeyValueAsync( "key0", [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n3.Notify(); }); EXPECT_FALSE(n3.HasBeenNotified()); ASSERT_OK(coord_service_->InsertKeyValue("key0", "value0_new")); n3.WaitForNotification(); EXPECT_EQ(ret.value(), "value0_new"); ASSERT_OK(coord_service_->DeleteKeyValue("/path")); auto n4 = std::make_shared<absl::Notification>(); coord_service_->GetKeyValueAsync( "/path/to/key1", [n4](const absl::StatusOr<std::string_view>& status_or_value) { n4->Notify(); }); EXPECT_FALSE(n4->HasBeenNotified()); } TEST(CoordinationServiceTest, TryGetKeyValue) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::StatusOr<std::string> result = coord_service->TryGetKeyValue("test_key"); EXPECT_TRUE(absl::IsNotFound(result.status())); ASSERT_OK(coord_service->InsertKeyValue("test_key", "test_value")); result = coord_service->TryGetKeyValue("test_key"); EXPECT_EQ(result.value(), "test_value"); ASSERT_OK(coord_service->DeleteKeyValue("test_key")); result = coord_service->TryGetKeyValue("test_key"); EXPECT_TRUE(absl::IsNotFound(result.status())); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_SingleValueInDirectory) { EnableCoordinationService(); KeyValueEntry kv = CreateKv("dir/path", "value0"); ASSERT_OK(coord_service_->InsertKeyValue(kv.key(), kv.value())); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, UnorderedElementsAre(EqualsProto(kv))); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_MultipleValuesInDirectory) { EnableCoordinationService(); KeyValueEntry kv = CreateKv("dir/path", "value0"); KeyValueEntry kv2 = CreateKv("dir/path2", "value1"); KeyValueEntry kv_sub = CreateKv("dir/sub_dir/path", "value_sub"); ASSERT_OK(coord_service_->InsertKeyValue(kv.key(), kv.value())); ASSERT_OK(coord_service_->InsertKeyValue(kv2.key(), kv2.value())); ASSERT_OK(coord_service_->InsertKeyValue(kv_sub.key(), kv_sub.value())); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, UnorderedElementsAre(EqualsProto(kv), EqualsProto(kv2), EqualsProto(kv_sub))); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_Empty_ReturnsEmptyList) { EnableCoordinationService(); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_WrongDir_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir0/path", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_WrongDirPrefix_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("wrong_dir/dir/path", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_NonDirectoryPrefix_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir_key", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_NonDirectoryKey_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } } TEST(CoordinationServiceTest, ListClusterDevices_TfDevice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(3); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; DeviceInfo local_devices_2; local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device0")); local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device1")); local_devices_1.mutable_device()->Add()->PackFrom( CreateTestDevice("task1_device0")); local_devices_2.mutable_device()->Add()->PackFrom( CreateTestDevice("task2_device0")); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_0, local_devices_0, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_1, local_devices_1, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_2, local_devices_2, [&](absl::Status s) { ASSERT_OK(s); cluster_devices = coord_service->ListClusterDevices(); n.Notify(); }); n.WaitForNotification(); DeviceInfo expected_cluster_devices; auto expected_devices = expected_cluster_devices.mutable_device(); expected_devices->Add(local_devices_0.device().begin(), local_devices_0.device().end()); expected_devices->Add(local_devices_1.device().begin(), local_devices_1.device().end()); expected_devices->Add(local_devices_2.device().begin(), local_devices_2.device().end()); EXPECT_THAT(cluster_devices, EqualsProto(expected_cluster_devices)); } TEST(CoordinationServiceTest, ListClusterDevices_XlaDevice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(3); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); coord_service->SetDeviceAggregationFunction( [](const DeviceInfo& raw_global_devices) { TestDeviceList global_device_list; int global_id = 0; for (const auto& device : raw_global_devices.device()) { TestDevice local_device; device.UnpackTo(&local_device); local_device.set_global_id(global_id++); *global_device_list.mutable_device()->Add() = local_device; } DeviceInfo global_devices; global_devices.mutable_device()->Add()->PackFrom(global_device_list); return global_devices; }); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; DeviceInfo local_devices_2; TestDevice local_0 = CreateTestDevice("task0_device0", 0); TestDevice local_0_1 = CreateTestDevice("task0_device1", 1); TestDevice local_1 = CreateTestDevice("task1_device0", 0); TestDevice local_2 = CreateTestDevice("task2_device0", 0); local_devices_0.mutable_device()->Add()->PackFrom(local_0); local_devices_0.mutable_device()->Add()->PackFrom(local_0_1); local_devices_1.mutable_device()->Add()->PackFrom(local_1); local_devices_2.mutable_device()->Add()->PackFrom(local_2); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_1, local_devices_1, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_0, local_devices_0, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_2, local_devices_2, [&](absl::Status s) { ASSERT_OK(s); cluster_devices = coord_service->ListClusterDevices(); n.Notify(); }); n.WaitForNotification(); DeviceInfo expected_cluster_devices; TestDeviceList global_device_list; local_0.set_global_id(0); local_0_1.set_global_id(1); local_1.set_global_id(2); local_2.set_global_id(3); *global_device_list.add_device() = local_0; *global_device_list.add_device() = local_0_1; *global_device_list.add_device() = local_1; *global_device_list.add_device() = local_2; expected_cluster_devices.mutable_device()->Add()->PackFrom( global_device_list); EXPECT_THAT(cluster_devices, EqualsProto(expected_cluster_devices)); } TEST(CoordinationServiceTest, ListClusterDevices_DevicesAreNotAddedTwice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(2); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device0")); local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device1")); local_devices_1.mutable_device()->Add()->PackFrom( CreateTestDevice("task1_device0")); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_0, local_devices_0, [](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_0, local_devices_0, [](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_1, local_devices_1, [coord_servi
2,239
#ifndef XLA_TSL_C_TSL_STATUS_H_ #define XLA_TSL_C_TSL_STATUS_H_ #ifdef __cplusplus extern "C" { #endif typedef struct TSL_Status TSL_Status; typedef enum TSL_Code { TSL_OK = 0, TSL_CANCELLED = 1, TSL_UNKNOWN = 2, TSL_INVALID_ARGUMENT = 3, TSL_DEADLINE_EXCEEDED = 4, TSL_NOT_FOUND = 5, TSL_ALREADY_EXISTS = 6, TSL_PERMISSION_DENIED = 7, TSL_UNAUTHENTICATED = 16, TSL_RESOURCE_EXHAUSTED = 8, TSL_FAILED_PRECONDITION = 9, TSL_ABORTED = 10, TSL_OUT_OF_RANGE = 11, TSL_UNIMPLEMENTED = 12, TSL_INTERNAL = 13, TSL_UNAVAILABLE = 14, TSL_DATA_LOSS = 15, } TSL_Code; extern TSL_Status* TSL_NewStatus(void); extern void TSL_DeleteStatus(TSL_Status*); extern void TSL_SetStatus(TSL_Status* s, TSL_Code code, const char* msg); extern void TSL_SetPayload(TSL_Status* s, const char* key, const char* value); typedef void (*TSL_PayloadVisitor)(const char* key, const char* value, void* capture); extern void TSL_ForEachPayload(const TSL_Status* s, TSL_PayloadVisitor visitor, void* capture); extern void TSL_SetStatusFromIOError(TSL_Status* s, int error_code, const char* context); extern TSL_Code TSL_GetCode(const TSL_Status* s); extern const char* TSL_Message(const TSL_Status* s); #ifdef __cplusplus } #endif #endif #include "xla/tsl/c/tsl_status.h" #include <string> #include "xla/tsl/c/tsl_status_internal.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" using ::tsl::Status; using ::tsl::error::Code; using ::tsl::errors::IOError; TSL_Status* TSL_NewStatus() { return new TSL_Status; } void TSL_DeleteStatus(TSL_Status* s) { delete s; } void TSL_SetStatus(TSL_Status* s, TSL_Code code, const char* msg) { if (code == TSL_OK) { s->status = absl::OkStatus(); return; } s->status = Status(static_cast<absl::StatusCode>(code), tsl::StringPiece(msg)); } void TSL_SetPayload(TSL_Status* s, const char* key, const char* value) { s->status.SetPayload(key, absl::Cord(absl::string_view(value))); } void TSL_ForEachPayload(const TSL_Status* s, TSL_PayloadVisitor visitor, void* capture) { s->status.ForEachPayload([visitor, capture](absl::string_view type_url, const absl::Cord& payload) { std::string type_url_str(type_url); std::string payload_str(payload); visitor(type_url_str.c_str(), payload_str.c_str(), capture); }); } void TSL_SetStatusFromIOError(TSL_Status* s, int error_code, const char* context) { s->status = IOError(context, error_code); } TSL_Code TSL_GetCode(const TSL_Status* s) { return static_cast<TSL_Code>(s->status.code()); } const char* TSL_Message(const TSL_Status* s) { return absl::StatusMessageAsCStr(s->status); }
#include "xla/tsl/c/tsl_status.h" #include <string> #include <unordered_map> #include <utility> #include "xla/tsl/c/tsl_status_internal.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(TSL_Status, PayloadsSet) { TSL_Status* tsl_status = TSL_NewStatus(); TSL_SetStatus(tsl_status, TSL_CANCELLED, "Error Message"); TSL_SetPayload(tsl_status, "a", "1"); TSL_SetPayload(tsl_status, "b", "2"); TSL_SetPayload(tsl_status, "c", "3"); std::unordered_map<std::string, std::string> payloads; TSL_ForEachPayload( tsl_status, [](const char* key, const char* value, void* capture) { std::unordered_map<std::string, std::string>* payloads = static_cast<std::unordered_map<std::string, std::string>*>(capture); payloads->emplace(key, value); }, &payloads); EXPECT_EQ(payloads.size(), 3); EXPECT_EQ(payloads.at("a"), "1"); EXPECT_EQ(payloads.at("b"), "2"); EXPECT_EQ(payloads.at("c"), "3"); TSL_DeleteStatus(tsl_status); } } }
2,240
#ifndef XLA_TSL_CONCURRENCY_ASYNC_VALUE_H_ #define XLA_TSL_CONCURRENCY_ASYNC_VALUE_H_ #include <algorithm> #include <atomic> #include <cassert> #include <cstddef> #include <cstdint> #include <iostream> #include <memory> #include <type_traits> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/concurrent_vector.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/mem.h" namespace tsl { class NotifierListNode; namespace internal { template <typename T> class ConcreteAsyncValue; template <typename T> constexpr bool kMaybeBase = std::is_class<T>::value && !std::is_final<T>::value; } class AsyncValue { public: class Executor; ~AsyncValue(); bool IsUnconstructed() const; bool IsConstructed() const; bool IsConcrete() const; bool IsError() const; bool IsAvailable() const; bool IsUnavailable() const { return !IsAvailable(); } bool IsUnresolvedIndirect() const; bool IsIndirect() const; uint32_t NumRef() const { return refcount_.load(std::memory_order_acquire); } bool IsUnique() const; AsyncValue* AddRef() { return AddRef(1); } AsyncValue* AddRef(uint32_t count); void DropRef() { DropRef(1); } void DropRef(uint32_t count); template <typename T> const T& get() const; template <typename T> T& get(); const absl::Status& GetError() const; const absl::Status* GetErrorIfPresent() const; template <typename T> bool IsType() const { return GetTypeId<T>() == type_id_; } void SetStateConcrete(); template <typename T, typename... Args> void emplace(Args&&... args); void SetError(absl::Status status); template <typename Waiter> void AndThen(Waiter&& waiter); template <typename Waiter> void AndThen(Executor& executor, Waiter&& waiter); static size_t GetNumAsyncValueInstances() { assert(AsyncValueAllocationTrackingEnabled() && "AsyncValue instance tracking disabled!"); return total_allocated_async_values_.load(std::memory_order_relaxed); } static bool AsyncValueAllocationTrackingEnabled() { #ifdef NDEBUG return false; #else return true; #endif } enum class Kind : uint8_t { kConcrete = 0, kIndirect = 1, }; Kind kind() const { return kind_; } class State { public: enum StateEnum : int8_t { kUnconstructed = 0, kConstructed = 1, kConcrete = 2, kError = 3, }; State(StateEnum s) : state_(s) {} operator StateEnum() { return state_; } bool IsUnconstructed() const { return state_ == kUnconstructed; } bool IsConstructed() const { return state_ == kConstructed; } bool IsConcrete() const { return state_ == kConcrete; } bool IsError() const { return state_ == kError; } bool IsAvailable() const { return state_ == kConcrete || state_ == kError; } bool IsUnavailable() const { return !IsAvailable(); } const char* DebugString() const { switch (state_) { case kUnconstructed: return "kUnconstructed"; case kConstructed: return "kConstructed"; case kConcrete: return "kConcrete"; case kError: return "kError"; } } private: StateEnum state_; }; State state() const { return waiters_and_state_.load(std::memory_order_acquire).state(); } class Executor { public: using Task = absl::AnyInvocable<void()>; virtual ~Executor() = default; virtual void Execute(Task task) = 0; }; protected: friend class IndirectAsyncValue; static constexpr uint16_t kUnknownTypeId = 0; template <typename T> struct TypeTag {}; template <typename T> AsyncValue(Kind kind, State state, bool is_refcounted, TypeTag<T>) : refcount_(1), kind_(kind), has_vtable_(std::is_polymorphic<T>()), is_refcounted_(is_refcounted), type_id_(GetTypeId<T>()), waiters_and_state_(WaitersAndState(nullptr, state)) { if (AsyncValueAllocationTrackingEnabled() && is_refcounted) total_allocated_async_values_.fetch_add(1, std::memory_order_relaxed); } AsyncValue(Kind kind, State state, bool is_refcounted) : refcount_(1), kind_(kind), has_vtable_(false), is_refcounted_(is_refcounted), type_id_(kUnknownTypeId), waiters_and_state_(WaitersAndState(nullptr, state)) { if (AsyncValueAllocationTrackingEnabled() && is_refcounted) total_allocated_async_values_.fetch_add(1, std::memory_order_relaxed); } AsyncValue(const AsyncValue&) = delete; AsyncValue& operator=(const AsyncValue&) = delete; void NotifyAvailable(State available_state); void Destroy(); void RunWaiters(NotifierListNode* list); template <typename T, std::enable_if_t<internal::kMaybeBase<T>>* = nullptr> bool IsTypeIdCompatible() const { return true; } template <typename T, std::enable_if_t<!internal::kMaybeBase<T>>* = nullptr> bool IsTypeIdCompatible() const { return GetTypeId<T>() == type_id_; } template <typename T> static uint16_t GetTypeId() { return internal::ConcreteAsyncValue<T>::concrete_type_id_; } template <typename T> static uint16_t CreateTypeInfoAndReturnTypeId() { return CreateTypeInfoAndReturnTypeIdImpl( MakeTypeInfo<internal::ConcreteAsyncValue<T>>()); } std::atomic<uint32_t> refcount_{1}; Kind kind_ : 2; const bool has_vtable_ : 1; const bool is_refcounted_ : 1; uint16_t type_id_ = 0; struct WaitersAndState { static_assert(alignof(std::max_align_t) >= 8 && sizeof(NotifierListNode*) == 8); static constexpr uint64_t kStateMask = (1ull << 2) - 1; static constexpr uint64_t kPointerMask = ~kStateMask; WaitersAndState(NotifierListNode* ptr, State state) { value = (reinterpret_cast<uintptr_t>(ptr) & kPointerMask) | (state & kStateMask); } State state() const { return State(static_cast<State::StateEnum>(value & kStateMask)); } NotifierListNode* waiter() const { return reinterpret_cast<NotifierListNode*>(value & kPointerMask); } uintptr_t value; }; std::atomic<WaitersAndState> waiters_and_state_; static constexpr int kDataOffset = 64; private: struct TypeInfo { using DestructorFn = size_t (*)(AsyncValue*); using GetErrorFn = const absl::Status& (*)(const AsyncValue*); using SetErrorFn = void (*)(AsyncValue*, absl::Status); using HasDataFn = bool (*)(const AsyncValue*); DestructorFn destructor; GetErrorFn get_error; SetErrorFn set_error; HasDataFn has_data; }; template <typename Derived> static TypeInfo MakeTypeInfo() { return TypeInfo{ [](AsyncValue* v) { static_cast<Derived*>(v)->~Derived(); return sizeof(Derived); }, [](const AsyncValue* v) -> const absl::Status& { return static_cast<const Derived*>(v)->GetError(); }, [](AsyncValue* v, absl::Status status) { static_cast<Derived*>(v)->SetError(std::move(status)); }, [](const AsyncValue* v) { return static_cast<const Derived*>(v)->HasData(); }, }; } static uint16_t CreateTypeInfoAndReturnTypeIdImpl(const TypeInfo& type_info); template <typename T> const T& GetConcreteValue() const; const TypeInfo& GetTypeInfo() const; using TypeInfoTable = internal::ConcurrentVector<TypeInfo>; static TypeInfoTable* GetTypeInfoTableSingleton(); void EnqueueWaiter(absl::AnyInvocable<void()> waiter, WaitersAndState old_value); static std::atomic<size_t> total_allocated_async_values_; }; static_assert(sizeof(AsyncValue) == 16 || sizeof(void*) != 8, "Unexpected size for AsyncValue"); void BlockUntilReady(AsyncValue* async_value); void RunWhenReady(absl::Span<AsyncValue* const> values, absl::AnyInvocable<void()> callee); void RunWhenReady(absl::Span<RCReference<AsyncValue> const> values, absl::AnyInvocable<void()> callee); struct AsyncPayload { struct KeepOnError {}; }; namespace internal { template <typename T> class ConcreteAsyncValue : public AsyncValue { public: struct UnconstructedPayload { bool is_refcounted = true; }; struct ConstructedPayload { bool is_refcounted = true; }; struct ConcretePayload { bool is_refcounted = true; }; explicit ConcreteAsyncValue(UnconstructedPayload payload) : AsyncValue(Kind::kConcrete, State::kUnconstructed, payload.is_refcounted, TypeTag<T>()) { VerifyOffsets(); } explicit ConcreteAsyncValue(absl::Status status) : AsyncValue(Kind::kConcrete, State::kError, true, TypeTag<T>()), data_store_{std::move(status)} { VerifyOffsets(); } template <typename... Args> explicit ConcreteAsyncValue(ConstructedPayload payload, Args&&... args) : AsyncValue(Kind::kConcrete, State::kConstructed, payload.is_refcounted, TypeTag<T>()), data_store_{TypeTag<T>(), std::forward<Args>(args)...} { VerifyOffsets(); } template <typename... Args> explicit ConcreteAsyncValue(ConcretePayload payload, Args&&... args) : AsyncValue(Kind::kConcrete, State::kConcrete, payload.is_refcounted, TypeTag<T>()), data_store_{TypeTag<T>(), std::forward<Args>(args)...} { VerifyOffsets(); } ~ConcreteAsyncValue() { Destroy(); } const absl::Status& GetError() const { assert(IsError()); return data_store_.error(); } void SetError(absl::Status status) { data_store_.SetError(state(), std::move(status)); NotifyAvailable(State::kError); } const T& get() const { assert(HasData()); return data_store_.data(); } T& get() { assert(HasData()); return data_store_.data(); } template <typename... Args> void emplace(Args&&... args) { data_store_.EmplaceData(std::forward<Args>(args)...); NotifyAvailable(State::kConcrete); } static bool classof(const AsyncValue* v) { return v->kind() == AsyncValue::Kind::kConcrete; } private: friend class AsyncValue; class DataOrError { public: DataOrError() {} explicit DataOrError(absl::Status status) : error_{new absl::Status(std::move(status))} {} template <typename... Args> explicit DataOrError(TypeTag<T>, Args&&... args) : data_{std::forward<Args>(args)...} {} ~DataOrError() {} void Destroy(State s) { if (s == State::kError) { delete error_; } else if (s == State::kConstructed || s == State::kConcrete) { data_.~T(); } } void SetError(State s, absl::Status status) { assert(s == State::kUnconstructed || s == State::kConstructed); if (s == State::kConstructed) { data_.~T(); } error_ = new absl::Status(std::move(status)); } template <typename... Args> void EmplaceData(Args&&... args) { new (&data_) T(std::forward<Args>(args)...); } bool HasData(State s) const { return s == State::kConstructed || s == State::kConcrete; } absl::Status& error() { return *error_; } T& data() { return data_; } const absl::Status& error() const { return *error_; } const T& data() const { return data_; } private: friend class ConcreteAsyncValue; union { absl::Status* error_; T data_; }; }; class DataAndError { public: explicit DataAndError(absl::Status status) { SetError(std::move(status)); } template <typename... Args> explicit DataAndError(TypeTag<T>, Args&&... args) { EmplaceData(std::forward<Args>(args)...); } void Destroy(State s) { if (HasData()) data().~T(); error_.reset(); has_data_ = false; } void SetError(State s, absl::Status status) { assert(!error_); error_ = std::make_unique<absl::Status>(std::move(status)); } template <typename... Args> void EmplaceData(Args&&... args) { assert(!HasData()); new (&data_) T(std::forward<Args>(args)...); has_data_ = true; } T& data() { return *reinterpret_cast<T*>(&data_); } const T& data() const { return *reinterpret_cast<const T*>(&data_); } bool HasData(State s) const { return has_data_; } bool HasData() const { return has_data_; } const absl::Status& error() const { return *error_; } absl::Status& error() { return *error_; } private: friend class ConcreteAsyncValue; using StorageT = typename std::aligned_storage<sizeof(T), alignof(T)>::type; StorageT data_; bool has_data_ = false; std::unique_ptr<absl::Status> error_; }; using DataStoreT = std::conditional_t<std::is_base_of_v<AsyncPayload::KeepOnError, T>, DataAndError, DataOrError>; alignas(AsyncValue::kDataOffset) DataStoreT data_store_; void Destroy() { data_store_.Destroy(state()); } bool HasData() const { return data_store_.HasData(state()); } static void VerifyOffsets() { static_assert(offsetof(ConcreteAsyncValue<T>, data_store_.data_) == AsyncValue::kDataOffset, "Offset of ConcreteAsyncValue data payload is assumed to be " "AsyncValue::kDataOffset == 64"); } static const uint16_t concrete_type_id_; }; template <typename T> const uint16_t ConcreteAsyncValue<T>::concrete_type_id_ = AsyncValue::CreateTypeInfoAndReturnTypeId<T>(); } struct DummyValueForErrorAsyncValue {}; class ErrorAsyncValue : public internal::ConcreteAsyncValue<DummyValueForErrorAsyncValue> { public: ErrorAsyncValue(absl::Status status) : internal::ConcreteAsyncValue<DummyValueForErrorAsyncValue>( std::move(status)) {} }; class IndirectAsyncValue : public AsyncValue { friend class AsyncValue; public: IndirectAsyncValue() : AsyncValue(Kind::kIndirect, State::kUnconstructed, true) {} IndirectAsyncValue* AddRef() { return AddRef(1); } IndirectAsyncValue* AddRef(uint32_t count) { return static_cast<IndirectAsyncValue*>(AsyncValue::AddRef(count)); } void ForwardTo(RCReference<AsyncValue> value); static bool classof(const AsyncValue* v) { return v->kind() == AsyncValue::Kind::kIndirect; } bool IsUnique() const { return (refcount_.load(std::memory_order_acquire) == 1) && IsAvailable() && value_->IsUnique(); } protected: template <typename T> explicit IndirectAsyncValue(TypeTag<T>) : AsyncValue(Kind::kIndirect, State::kUnconstructed, true, TypeTag<T>()) {} ~IndirectAsyncValue() { Destroy(); } private: void Destroy() { if (value_) { value_->DropRef(); value_ = nullptr; } } AsyncValue* value_ = nullptr; }; template <typename T> class TypedIndirectAsyncValue : public IndirectAsyncValue { public: TypedIndirectAsyncValue() : IndirectAsyncValue(TypeTag<T>()) { static_assert(sizeof(TypedIndirectAsyncValue) == sizeof(IndirectAsyncValue)); } }; inline AsyncValue::~AsyncValue() { assert(waiters_and_state_.load().waiter() == nullptr && "An async value with waiters should never have refcount of zero"); if (AsyncValueAllocationTrackingEnabled() && is_refcounted_) total_allocated_async_values_.fetch_sub(1, std::memory_order_relaxed); type_id_ = ~0; } inline bool AsyncValue::IsAvailable() const { auto s = state(); return s == State::kConcrete || s == State::kError; } inline bool AsyncValue::IsError() const { return state() == State::kError; } inline bool AsyncValue::IsUnconstructed() const { return state() == State::kUnconstructed; } inline bool AsyncValue::IsConstructed() const { return state() == State::kConstructed; } inline bool AsyncValue::IsConcrete() const { return state() == State::kConcrete; } inline bool AsyncValue::IsUnresolvedIndirect() const { return IsUnavailable() && (kind() == Kind::kIndirect); } inline bool AsyncValue::IsIndirect() const { return kind() == Kind::kIndirect; } inline AsyncValue* AsyncValue::AddRef(uint32_t count) { #if defined(NDEBUG) if (!is_refcounted_) return this; #endif if (count > 0) { assert(refcount_.load(std::memory_order_relaxed) > 0); refcount_.fetch_add(count, std::memory_order_relaxed); } return this; } inline void AsyncValue::DropRef(uint32_t count) { #if defined(NDEBUG) if (!is_refcounted_) return; #endif assert(refcount_.load(std::memory_order_relaxed) > 0); auto is_last_ref = refcount_.load(std::memory_order_acquire) == count; if (!is_last_ref) { is_last_ref = refcount_.fetch_sub(count, std::memory_order_acq_rel) == count; } if (is_last_ref) { Destroy(); } } template <typename T> const T& AsyncValue::GetConcreteValue() const { assert(std::is_polymorphic<T>::value == has_vtable_); assert(IsTypeIdCompatible<T>() && "Incorrect accessor"); const char* this_ptr = reinterpret_cast<const char*>(this); return *reinterpret_cast<const T*>(this_ptr + AsyncValue::kDataOffset); } template <typename T> const T& AsyncValue::get() const { auto s = state(); (void)s; switch (kind()) { case Kind::kConcrete: #ifndef NDEBUG if (!GetTypeInfo().has_data(this)) { std::cerr << "Cannot call get() when ConcreteAsyncValue" << " isn't constructed; state: " << s.DebugString() << "," << " error message: " << (IsError() ? GetError().message() : "None"); std::abort(); } #endif return GetConcreteValue<T>(); case K
#include "xla/tsl/concurrency/async_value.h" #include <cstdint> #include <memory> #include <utility> #include "absl/status/status.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/test.h" namespace tsl { TEST(AsyncValueTest, ConstructedToError) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); bool callback_triggered = false; EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([&] { callback_triggered = true; }); EXPECT_FALSE(callback_triggered); value->SetError(absl::InternalError("test error")); EXPECT_TRUE(callback_triggered); EXPECT_TRUE(value->IsAvailable()); EXPECT_FALSE(value->IsConcrete()); EXPECT_TRUE(value->IsError()); value->DropRef(); } TEST(AsyncValueTest, ConstructedToConcrete) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_FALSE(value->IsError()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, UnconstructedEmplace) { AsyncValue* value = MakeUnconstructedAsyncValueRef<int32_t>().release(); EXPECT_FALSE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->emplace<int32_t>(123); EXPECT_FALSE(value->IsConstructed()); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, AddAndDropRef) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsConcrete()); EXPECT_TRUE(value->IsUnique()); value->AddRef(); EXPECT_FALSE(value->IsUnique()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); EXPECT_TRUE(value->IsUnique()); value->DropRef(); } TEST(AsyncValueTest, KeepPayloadOnError) { int payload_value = 0; struct Payload : AsyncPayload::KeepOnError { explicit Payload(int* value) : value{value} { *value = 1; } ~Payload() { *value = 2; } int* value; }; { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_EQ(1, *value->value); value.SetStateConcrete(); EXPECT_EQ(1, *value->value); EXPECT_TRUE(!value.IsError()); } EXPECT_EQ(2, payload_value); { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_TRUE(!value.IsError()); value.SetError("error"); EXPECT_EQ(1, *value->value); EXPECT_TRUE(value.IsError()); EXPECT_EQ("error", value.GetError().message()); } EXPECT_EQ(2, payload_value); } TEST(AsyncValueTest, StackAllocatedAsyncValue) { int32_t counter = 0; class Payload { public: explicit Payload(int32_t& counter) : counter_{counter} { counter_++; } ~Payload() { counter_++; } int32_t count() const { return counter_; } private: int32_t& counter_; }; internal::AsyncValueStorage<Payload> storage; AsyncValueOwningRef<Payload> owner = MakeConstructedAsyncValueRef<Payload>(storage, counter); AsyncValuePtr<Payload> ptr = owner.AsPtr(); AsyncValue* value = ptr.value(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsAvailable()); EXPECT_EQ(1, counter); EXPECT_EQ(1, ptr->count()); ptr.SetStateConcrete(); EXPECT_TRUE(ptr.IsAvailable()); std::make_unique<AsyncValueOwningRef<Payload>>(std::move(owner)); EXPECT_EQ(2, counter); } }
2,241
#ifndef XLA_TSL_CONCURRENCY_ASYNC_VALUE_REF_H_ #define XLA_TSL_CONCURRENCY_ASYNC_VALUE_REF_H_ #include <algorithm> #include <cstddef> #include <string_view> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" namespace tsl { template <typename T> class AsyncValueRef; template <typename T> class AsyncValuePtr; RCReference<ErrorAsyncValue> MakeErrorAsyncValueRef(absl::Status status); ABSL_DEPRECATED("Use the error async value constructor that takes absl::Status") RCReference<ErrorAsyncValue> MakeErrorAsyncValueRef(std::string_view message); RCReference<IndirectAsyncValue> MakeIndirectAsyncValue(); template <typename T> RCReference<IndirectAsyncValue> MakeIndirectAsyncValue(); template <typename T> AsyncValueRef<T> MakeUnconstructedAsyncValueRef(); template <typename T, typename... Args> AsyncValueRef<T> MakeConstructedAsyncValueRef(Args&&... args); template <typename T, typename... Args> AsyncValueRef<T> MakeAvailableAsyncValueRef(Args&&... args); template <typename T> class AsyncValueRef { public: using value_type = T; AsyncValueRef() = default; AsyncValueRef(const AsyncValueRef&) = default; AsyncValueRef& operator=(const AsyncValueRef&) = default; AsyncValueRef(AsyncValueRef&&) = default; AsyncValueRef& operator=(AsyncValueRef&&) = default; explicit AsyncValueRef(RCReference<AsyncValue> value) : value_(std::move(value)) {} template <typename Derived, internal::DerivedFrom<Derived, AsyncValue>* = nullptr> explicit AsyncValueRef(RCReference<Derived> value) : AsyncValueRef(RCReference<AsyncValue>(std::move(value))) {} AsyncValueRef(std::nullptr_t) {} AsyncValueRef(T value) : AsyncValueRef(MakeAvailableAsyncValueRef<T>(std::move(value))) {} template <typename Status, std::enable_if_t<std::is_convertible_v<Status, absl::Status> && !std::is_same_v<T, absl::Status>>* = nullptr> AsyncValueRef(Status&& status) : AsyncValueRef(MakeErrorAsyncValueRef(std::forward<Status>(status))) {} template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef(AsyncValueRef<Derived> derived) : value_(derived.ReleaseRCRef()) {} AsyncValueRef(RCReference<ErrorAsyncValue> value) : value_(std::move(value)) {} AsyncValueRef& operator=(RCReference<ErrorAsyncValue> new_value) { value_ = std::move(new_value); return *this; } operator RCReference<AsyncValue>() && { return std::move(value_); } bool IsAvailable() const { return value_->IsAvailable(); } bool IsUnavailable() const { return value_->IsUnavailable(); } bool IsConcrete() const { return value_->IsConcrete(); } bool IsUnconstructed() const { return value_->IsUnconstructed(); } T& get() const { return value_->get<T>(); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> Derived& get() const { return value_->get<Derived>(); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> bool Isa() const { return value_ && (std::is_same_v<Derived, T> || value_->IsType<Derived>() || value_->IsType<DummyValueForErrorAsyncValue>()); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> Cast() const { DCHECK(DynCast<Derived>()) << "Illegal async value cast"; return AsyncValueRef<Derived>(value_); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> DynCast() const { DCHECK(value_) << "Async value must be not null"; return Isa<Derived>() ? AsyncValueRef<Derived>(value_) : AsyncValueRef<Derived>(nullptr); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> DynCastOrNull() const { return value_ ? DynCast<Derived>(value_) : AsyncValueRef<Derived>(nullptr); } T* operator->() const { return &get(); } T& operator*() const { return get(); } template <typename Waiter> void AndThen(Waiter&& waiter) const { AsPtr().AndThen(std::forward<Waiter>(waiter)); } template <typename Waiter> void AndThen(AsyncValue::Executor& executor, Waiter&& waiter) const { AsPtr().AndThen(executor, std::forward<Waiter>(waiter)); } template <typename R, typename F> AsyncValueRef<R> Map(F&& f) { return AsPtr().template Map<R>(std::forward<F>(f)); } template <typename R, typename F> AsyncValueRef<R> Map(AsyncValue::Executor& executor, F&& f) { return AsPtr().template Map<R>(executor, std::forward<F>(f)); } template <typename F> auto Map(F&& f) { return AsPtr().template Map<F>(std::forward<F>(f)); } template <typename F> auto Map(AsyncValue::Executor& executor, F&& f) { return AsPtr().template Map<F>(executor, std::forward<F>(f)); } template <typename R, typename F> AsyncValueRef<R> TryMap(F&& f) { return AsPtr().template TryMap<R>(std::forward<F>(f)); } template <typename R, typename F> AsyncValueRef<R> TryMap(AsyncValue::Executor& executor, F&& f) { return AsPtr().template TryMap<R>(executor, std::forward<F>(f)); } template <typename F> auto TryMap(F&& f) { return AsPtr().TryMap(std::forward<F>(f)); } template <typename F> auto TryMap(AsyncValue::Executor& executor, F&& f) { return AsPtr().TryMap(executor, std::forward<F>(f)); } template <typename F> auto FlatMap(F&& f) { return AsPtr().FlatMap(std::forward<F>(f)); } template <typename F> auto FlatMap(AsyncValue::Executor& executor, F&& f) { return AsPtr().FlatMap(executor, std::forward<F>(f)); } void SetStateConcrete() const { value_->SetStateConcrete(); } template <typename... Args> void emplace(Args&&... args) const { value_->emplace<T>(std::forward<Args>(args)...); } void emplace(absl::StatusOr<T> v) const { if (v.ok()) { emplace(std::move(*v)); } else { SetError(std::move(v.status())); } } bool IsError() const { return value_->IsError(); } const absl::Status& GetError() const { return value_->GetError(); } const absl::Status* GetErrorIfPresent() const { return value_->GetErrorIfPresent(); } void SetError(absl::Status status) const { DCHECK(!status.ok()) << "expected non-ok status"; return value_->SetError(std::move(status)); } void SetError(std::string_view message) const { SetError(absl::InternalError(message)); } explicit operator bool() const { return value_.get() != nullptr; } bool operator==(const AsyncValueRef& r) const { return value_ == r.value_; } bool operator!=(const AsyncValueRef& r) const { return value_ != r.value_; } AsyncValue* GetAsyncValue() const { return value_.get(); } AsyncValuePtr<T> AsPtr() const { return AsyncValuePtr<T>(GetAsyncValue()); } bool IsUnique() const { return value_->IsUnique(); } AsyncValueRef<T> CopyRef() const { return AsyncValueRef(CopyRCRef()); } RCReference<AsyncValue> CopyRCRef() const { return value_; } AsyncValue* release() { return value_.release(); } void reset() { value_.reset(); } RCReference<AsyncValue> ReleaseRCRef() { return std::move(value_); } private: RCReference<AsyncValue> value_; }; template <typename T> struct IsAsyncValueRef : std::false_type {}; template <typename T> struct IsAsyncValueRef<AsyncValueRef<T>> : std::true_type {}; template <typename T> inline constexpr bool is_async_value_ref_v = IsAsyncValueRef<T>::value; template <typename T> class AsyncValuePtr { template <typename R> struct IsStatusOr : std::false_type {}; template <typename R> struct IsStatusOr<absl::StatusOr<R>> : std::true_type {}; template <class R> static constexpr bool is_status_v = std::is_same_v<R, absl::Status>; template <class R> static constexpr bool is_status_or_v = IsStatusOr<R>::value; template <class R> static constexpr bool is_status_like_v = is_status_v<R> || is_status_or_v<R>; template <typename Waiter> using SimpleWaiter = std::enable_if_t<std::is_invocable_v<Waiter>>; template <typename Waiter> using StatusOrWaiter = std::enable_if_t<std::is_invocable_v<Waiter, absl::StatusOr<T*>>>; template <typename Waiter> using StatusWaiter = std::enable_if_t<(std::is_invocable_v<Waiter, absl::Status> && !std::is_invocable_v<Waiter, absl::StatusOr<T*>> && !is_status_v<T>)>; template <typename R, typename U> using MapFunctor = std::enable_if_t<std::is_constructible_v<R, U>>; template <typename R, typename U> using TryMapFunctor = std::enable_if_t<!is_status_like_v<R> && is_status_or_v<U> && std::is_constructible_v<R, typename U::value_type> && !std::is_constructible_v<R, U>>; public: using value_type = T; AsyncValuePtr() : value_(nullptr) {} explicit AsyncValuePtr(AsyncValue* value) : value_(value) {} explicit AsyncValuePtr(const AsyncValueRef<T>& ref) : value_(ref.GetAsyncValue()) {} AsyncValue* value() const { return value_; } AsyncValueRef<T> CopyRef() const { return AsyncValueRef<T>(FormRef(value_)); } T& get() const { return value_->template get<T>(); } T* operator->() const { return &get(); } T& operator*() const { return get(); } explicit operator bool() const { return value_ != nullptr; } bool operator!=(std::nullptr_t) const { return value_ != nullptr; } AsyncValuePtr& operator=(std::nullptr_t) { value_ = nullptr; return *this; } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> bool Isa() const { return value_ && (std::is_same_v<Derived, T> || value_->IsType<Derived>() || value_->IsType<DummyValueForErrorAsyncValue>()); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> Cast() const { DCHECK(DynCast<Derived>()) << "Illegal async value cast"; return AsyncValuePtr<Derived>(value_); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> DynCast() const { DCHECK(value_) << "Async value must be not null"; return Isa<Derived>() ? AsyncValuePtr<Derived>(value_) : AsyncValuePtr<Derived>(nullptr); } template <typename Derived, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> DynCastOrNull() const { return value_ ? DynCast<Derived>(value_) : AsyncValuePtr<Derived>(nullptr); } bool IsAvailable() const { return value_->IsAvailable(); } bool IsUnavailable() const { return value_->IsUnavailable(); } bool IsConcrete() const { return value_->IsConcrete(); } void SetStateConcrete() const { value_->SetStateConcrete(); } template <typename... Args> void emplace(Args&&... args) const { value_->emplace<T>(std::forward<Args>(args)...); } bool IsError() const { return value_->IsError(); } const absl::Status& GetError() const { return value_->GetError(); } void SetError(absl::Status status) const { DCHECK(!status.ok()) << "expected non-ok status"; return value_->SetError(std::move(status)); } template <typename Waiter, SimpleWaiter<Waiter>* = nullptr> void AndThen(Waiter&& waiter) const { value_->AndThen(std::forward<Waiter>(waiter)); } template <typename Waiter, SimpleWaiter<Waiter>* = nullptr> void AndThen(AsyncValue::Executor& executor, Waiter&& waiter) const { value_->AndThen(executor, std::forward<Waiter>(waiter)); } template <typename Waiter, StatusOrWaiter<Waiter>* = nullptr> void AndThen(Waiter&& waiter) const { AndThen([waiter = std::forward<Waiter>(waiter), ptr = *this]() mutable { if (ABSL_PREDICT_FALSE(ptr.IsError())) { return waiter(ptr.GetError()); } else { return waiter(&ptr.get()); } }); } template <typename Waiter, StatusOrWaiter<Waiter>* = nullptr> void AndThen(AsyncValue::Executor& executor, Waiter&& waiter) const { AndThen(executor, [waiter = std::forward<Waiter>(waiter), ref = CopyRef()]() mutable { if (ABSL_PREDICT_FALSE(ref.IsError())) { return waiter(ref.GetError()); } else { return waiter(&ref.get()); } }); } template <typename Waiter, StatusWaiter<Waiter>* = nullptr> void AndThen(Waiter&& waiter) const { AndThen([waiter = std::forward<Waiter>(waiter), ptr = *this]() mutable { if (ABSL_PREDICT_FALSE(ptr.IsError())) { return waiter(ptr.GetError()); } else { return waiter(absl::OkStatus()); } }); } template <typename Waiter, StatusWaiter<Waiter>* = nullptr> void AndThen(AsyncValue::Executor& executor, Waiter&& waiter) const { AndThen(executor, [waiter = std::forward<Waiter>(waiter), ref = CopyRef()]() mutable { if (ABSL_PREDICT_FALSE(ref.IsError())) { return waiter(ref.GetError()); } else { return waiter(absl::OkStatus()); } }); } template <typename R, typename F, typename U = std::invoke_result_t<F, T&>, MapFunctor<R, U>* = nullptr> AsyncValueRef<R> Map(F&& f) { auto result = MakeUnconstructedAsyncValueRef<R>(); AndThen([f = std::forward<F>(f), result, ptr = *this]() mutable { if (ABSL_PREDICT_FALSE(ptr.IsError())) { result.SetError(ptr.GetError()); } else { result.emplace(f(*ptr)); } }); return result; } template <typename R, typename F, typename U = std::invoke_result_t<F, T&>, MapFunctor<R, U>* = nullptr> AsyncValueRef<R> Map(AsyncValue::Executor& executor, F&& f) { auto result = MakeUnconstructedAsyncValueRef<R>(); AndThen(executor, [f = std::forward<F>(f), result, ref = CopyRef()]() mutable { if (ABSL_PREDICT_FALSE(ref.IsError())) { result.SetError(ref.GetError()); } else { result.emplace(f(*ref)); } }); return result; } template <typename R, typename F, typename U = std::invoke_result_t<F, T&>, TryMapFunctor<R, U>* = nullptr> AsyncValueRef<R> TryMap(F&& f) { auto result = MakeUnconstructedAsyncValueRef<R>(); AndThen([f = std::forward<F>(f), result, ptr = *this]() mutable { if (ABSL_PREDICT_FALSE(ptr.IsError())) { result.SetError(ptr.GetError()); } else { auto status_or = f(*ptr); if (status_or.ok()) { result.emplace(std::move(status_or.value())); } else { result.SetError(status_or.status()); } } }); return result; } template <typename R, typename F, typename U = std::invoke_result_t<F, T&>, TryMapFunctor<R, U>* = nullptr> AsyncValueRef<R> TryMap(AsyncValue::Executor& executor, F&& f) { auto result = MakeUnconstructedAsyncValueRef<R>(); AndThen(executor, [f = std::forward<F>(f), result, ref = CopyRef()]() mutable { if (ABSL_PREDICT_FALSE(ref.IsError())) { result.SetError(ref.GetError()); } else { auto status_or = f(*ref); if (status_or.ok()) { result.emplace(std::move(status_or.value())); } else { result.SetError(status_or.status()); } } }); return result; } template <typename F, typename R = std::invoke_result_t<F, T&>> auto Map(F&& f) { return Map<R>(std::forward<F>(f)); } template <typename F, typename R = std::invoke_result_t<F, T&>> auto Map(AsyncValue::Executor& executor, F&& f) { return Map<R>(executor, std::forward<F>(f)); } template <typename F, typename R = std::invoke_result_t<F, T&>, std::enable_if_t<is_status_or_v<R>>* = nullptr> auto TryMap(F&& f) { return TryMap<typename R::value_type>(std::forward<F>(f)); } template <typename F, typename R = std::invoke_result_t<F, T&>, std::enable_if_t<is_status_or_v<R>>* = nullptr> auto TryMap(AsyncValue::Executor& executor, F&& f) { return TryMap<typename R::value_type>(executor, std::forward<F>(f)); } template <typename F, typename R = std::invoke_result_t<F, T&>, std::enable_if_t<is_async_value_ref_v<R>>* = nullptr> AsyncValueRef<typename R::value_type> FlatMap(F&& f) { auto promise = MakePromise<R>(); AndThen([f = std::forward<F>(f), promise, ptr = *this]() mutable { if (ABSL_PREDICT_FALSE(ptr.IsError())) { promise->SetError(ptr.GetError()); } else { promise->ForwardTo(f(*ptr)); } }); return AsyncValueRef<typename R::value_type>(promise); } template <typename F, typename R = std::invoke_result_t<F, T&>, std::enable_if_t<is_async_value_ref_v<R>>* = nullptr> AsyncValueRef<typename R::value_type> FlatMap(AsyncValue::Executor& executor, F&& f) { auto promise = MakePromise<R>(); AndThen(executor, [f = std::forward<F>(f), promise, ref = CopyRef()]() mutable { if (ABSL_PREDICT_FALSE(ref.IsError())) { promise->SetError(ref.GetError()); } else { promise->ForwardTo(f(*ref)); } }); return AsyncValueRef<typename R::value_type>(promise); } private: template <typename R> RCReference<IndirectAsyncValue> MakePromise() { if constexpr (std::is_final_v<typename R::value_type>) { return MakeIndirectAsyncValue<typename R::value_type>(); } else { return MakeIndirectAsyncValue(); }; } AsyncValue* value_; }; template <typename T> void BlockUntilReady(const AsyncValueRef<T>& ref) { BlockUntilReady(ref.GetAsyncValue()); } template <typename T> void BlockUntilReady(const AsyncValuePtr<T>& ptr) { BlockUntilReady(ptr.value()); } template <typename T> void RunWhenReady(absl::Span<const AsyncValueRef<T>> refs, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 8> values(refs.size()); for (size_t i = 0; i < refs.size(); ++i) { values[i] = refs[i].GetAsyncValue(); } RunWhenReady(values, std::move(callee)); } template <typename T> void RunWhenReady(absl::Span<const AsyncValuePtr<T>> ptrs, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 8> values(ptrs.size()); for (size_t i = 0; i < ptrs.size(); ++i) { values[i] = ptrs[i].value(); } RunWhenReady(values, std::move(callee)); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> bool Isa(const AsyncValueRef<T>& ref) { return ref.template Isa<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> Cast(const AsyncValueRef<T>& ref) { return ref.template Cast<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> DynCast(const AsyncValueRef<T>& ref) { return ref.template DynCast<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValueRef<Derived> DynCastOrNull(const AsyncValueRef<T>& ref) { return ref.template DynCastOrNull<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> bool Isa(AsyncValuePtr<T> ptr) { return ptr.template Isa<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> Cast(AsyncValuePtr<T> ptr) { return ptr.template Cast<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> DynCast(AsyncValuePtr<T> ptr) { return ptr.template DynCast<Derived>(); } template <typename Derived, typename T, internal::DerivedFrom<Derived, T>* = nullptr> AsyncValuePtr<Derived> DynCastOrNull(AsyncValuePtr<T> ptr) { return ptr.template DynCastOrNull<Derived>(); } namespace internal { template <typename T, typename... Args> T* PlacementCons
#include "xla/tsl/concurrency/async_value_ref.h" #include <any> #include <atomic> #include <cstddef> #include <cstdint> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/test.h" namespace tsl { class WrappedInt32 { public: explicit WrappedInt32(int32_t value) : value_(value) {} int32_t value() const { return value_; } private: int32_t value_; }; constexpr int32_t kTestValue = 42; TEST(AsyncValueRefTest, MakeUnconstructedStatusOrOfAny) { auto value = MakeUnconstructedAsyncValueRef<absl::StatusOr<std::any>>(); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeUnconstructedStatusOr) { auto value = MakeUnconstructedAsyncValueRef<absl::StatusOr<int32_t>>(); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeConstructedStatusOr) { auto value = MakeConstructedAsyncValueRef<absl::StatusOr<int32_t>>(42); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeAvailableStatusOr) { auto value = MakeAvailableAsyncValueRef<absl::StatusOr<int32_t>>(42); EXPECT_TRUE(value.IsAvailable()); EXPECT_EQ(**value, 42); } TEST(AsyncValueRefTest, ImplicitValueConversion) { auto payload = []() -> AsyncValueRef<WrappedInt32> { return WrappedInt32{42}; }(); EXPECT_TRUE(payload.IsConcrete()); EXPECT_EQ(payload->value(), 42); } TEST(AsyncValueRefTest, ImplicitStatusConversion) { auto error = []() -> AsyncValueRef<WrappedInt32> { return absl::InternalError("Error"); }(); EXPECT_TRUE(error.IsAvailable()); EXPECT_TRUE(error.IsError()); EXPECT_EQ(error.GetError(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ImplicitStatusConversionWithStatusPayload) { auto status = []() -> absl::StatusOr<absl::Status> { return absl::InternalError("Error"); }(); auto error = []() -> AsyncValueRef<absl::Status> { return absl::InternalError("Error"); }(); ASSERT_TRUE(status.ok()); ASSERT_EQ(*status, absl::InternalError("Error")); EXPECT_TRUE(error.IsConcrete()); EXPECT_EQ(error.get(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ImplicitStatusConversionWithStatusOrPayload) { auto status = []() -> absl::StatusOr<absl::StatusOr<int32_t>> { return absl::StatusOr<int32_t>(absl::InternalError("Error")); }(); auto error = []() -> AsyncValueRef<absl::StatusOr<int32_t>> { return absl::StatusOr<int32_t>(absl::InternalError("Error")); }(); ASSERT_TRUE(status.ok()); ASSERT_EQ(status->status(), absl::InternalError("Error")); EXPECT_TRUE(error.IsConcrete()); EXPECT_EQ(error->status(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ImplicitStatusConversionWithStatusOrPayloadAndStatus) { auto status = []() -> absl::StatusOr<absl::StatusOr<int32_t>> { return absl::InternalError("Error"); }(); auto error = []() -> AsyncValueRef<absl::StatusOr<int32_t>> { return absl::InternalError("Error"); }(); ASSERT_FALSE(status.ok()); ASSERT_EQ(status.status(), absl::InternalError("Error")); EXPECT_TRUE(error.IsError()); EXPECT_EQ(error.GetError(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ValueCheck) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); EXPECT_EQ(wrapped_int_value.get().value(), kTestValue); EXPECT_EQ(wrapped_int_value->value(), kTestValue); EXPECT_EQ((*wrapped_int_value).value(), kTestValue); } TEST(AsyncValueRefTest, ValueCheckFromRCReference) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); RCReference<AsyncValue> generic_value = std::move(wrapped_int_value); EXPECT_EQ(generic_value->get<WrappedInt32>().value(), kTestValue); } TEST(AsyncValueRefTest, ValueCheckFromAliasedRCReference) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); RCReference<AsyncValue> generic_value = std::move(wrapped_int_value); AsyncValueRef<WrappedInt32> aliased_int_value(std::move(generic_value)); EXPECT_EQ(aliased_int_value.get().value(), kTestValue); EXPECT_EQ(aliased_int_value->value(), kTestValue); EXPECT_EQ((*aliased_int_value).value(), kTestValue); } TEST(AsyncValueRefTest, ConstructedToError) { auto value = MakeConstructedAsyncValueRef<int32_t>(kTestValue); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.SetError(absl::InternalError("test error")); EXPECT_TRUE(value.IsAvailable()); EXPECT_FALSE(value.IsConcrete()); EXPECT_TRUE(value.IsError()); } TEST(AsyncValueRefTest, ConstructedToConcrete) { auto value = MakeConstructedAsyncValueRef<int32_t>(kTestValue); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.SetStateConcrete(); EXPECT_TRUE(value.IsAvailable()); EXPECT_TRUE(value.IsConcrete()); EXPECT_FALSE(value.IsError()); EXPECT_EQ(kTestValue, value.get()); } TEST(AsyncValueRefTest, UnconstructedEmplace) { auto value = MakeUnconstructedAsyncValueRef<int32_t>(); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.emplace(kTestValue); EXPECT_TRUE(value.IsAvailable()); EXPECT_TRUE(value.IsConcrete()); EXPECT_EQ(kTestValue, value.get()); } TEST(AsyncValueRefTest, CopyRef) { auto value = MakeAvailableAsyncValueRef<int32_t>(kTestValue); EXPECT_TRUE(value.IsConcrete()); EXPECT_TRUE(value.IsUnique()); auto copied_value = value.CopyRef(); EXPECT_FALSE(value.IsUnique()); EXPECT_EQ(value.GetAsyncValue(), copied_value.GetAsyncValue()); } TEST(AsyncValueRefTest, AndThen) { AsyncValueRef<int32_t> ref = MakeUnconstructedAsyncValueRef<int32_t>(); EXPECT_FALSE(ref.IsConcrete()); EXPECT_FALSE(ref.IsAvailable()); bool executed = false; ref.AndThen([&]() { executed = true; }); ref.emplace(42); EXPECT_TRUE(executed); } TEST(AsyncValueRefTest, AndThenError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); auto error = absl::InternalError("test error"); ref.SetError(error); ref.AndThen([&](absl::Status status) { EXPECT_EQ(status, error); }); } TEST(AsyncValueRefTest, AndThenNoError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); ref.AndThen([](absl::Status status) { EXPECT_TRUE(status.ok()); }); } TEST(AsyncValueRefTest, AndThenStatusOrError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); auto error = absl::InternalError("test error"); ref.SetError(error); ref.AndThen([&](absl::StatusOr<int32_t*> v) { EXPECT_FALSE(v.ok()); EXPECT_EQ(v.status(), error); }); } TEST(AsyncValueRefTest, AndThenStatusOrNoError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); ref.AndThen([&](absl::StatusOr<int32_t*> v) { EXPECT_EQ(**v, 42); }); } TEST(AsyncValueRefTest, Nullptr) { AsyncValueRef<int> av_int = nullptr; EXPECT_FALSE(av_int); AsyncValueRef<int> av_int2 = MakeConstructedAsyncValueRef<int>(kTestValue); EXPECT_TRUE(av_int2); av_int2 = nullptr; EXPECT_FALSE(av_int2); } TEST(AsyncValueRefTest, MapAvailable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapUnvailable) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); ref.SetStateConcrete(); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapToNonMoveable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<std::atomic<int32_t>> mapped_to_atomic = ref.Map<std::atomic<int32_t>>([](int32_t value) { return value; }); EXPECT_TRUE(mapped_to_atomic.IsAvailable()); EXPECT_EQ(mapped_to_atomic->load(), 42); } TEST(AsyncValueRefTest, MapError) { AsyncValueRef<int32_t> ref = MakeErrorAsyncValueRef(absl::InternalError("error")); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapUnvailableError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); ref.SetError(absl::InternalError("error")); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapMultipleTimes) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); auto plus_one = [](int32_t value) { return value + 1; }; AsyncValueRef<int32_t> mapped = ref.Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one); EXPECT_TRUE(mapped.IsAvailable()); EXPECT_EQ(mapped.get(), 42 + 6); } TEST(AsyncValuePtrTest, MapToStatus) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<absl::Status> mapped_to_status = ref.Map([](int32_t value) -> absl::Status { return absl::OkStatus(); }); EXPECT_TRUE(mapped_to_status.IsAvailable()); EXPECT_EQ(mapped_to_status.get(), absl::OkStatus()); } TEST(AsyncValueRefTest, MapToStatusOr) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<absl::StatusOr<float>> mapped_to_float = ref.Map([](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(*mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMap) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.TryMap([](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.TryMap([](int32_t value) -> absl::StatusOr<float> { return absl::InternalError("error"); }); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, TryMapConstructible) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); struct X { explicit X(float value) : value(value) {} float value; }; AsyncValueRef<X> mapped_to_x = ref.TryMap<X>( [](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_x.IsAvailable()); EXPECT_EQ(mapped_to_x->value, 42.0f); } TEST(AsyncValueRefTest, FlatMapAvailable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(1.0f * value); }); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, FlatMapUnavailable) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(1.0f * value); }); EXPECT_FALSE(fmapped_to_float.IsAvailable()); ref.SetStateConcrete(); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } struct DeferredExecutor : public AsyncValue::Executor { void Execute(Task task) final { tasks.push_back(std::move(task)); } size_t Quiesce() { size_t n = 0; while (!tasks.empty()) { Task task = std::move(tasks.back()); tasks.pop_back(); task(); ++n; } return n; } std::vector<Task> tasks; }; TEST(AsyncValueRefTest, MapAvailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapErrorOnExecutor) { AsyncValueRef<int32_t> ref = MakeErrorAsyncValueRef(absl::InternalError("error")); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapUnavailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.TryMap( executor, [](int32_t value) -> absl::StatusOr<float> { return value; }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapErrorOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.TryMap(executor, [](int32_t value) -> absl::StatusOr<float> { return absl::InternalError("error"); }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, FlatMapAvailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> fmapped_to_float = ref.FlatMap(executor, [](int32_t value) { return MakeAvailableAsyncValueRef<float>(1.0f * value); }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, BlockUntilReady) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); BlockUntilReady(ref); } TEST(AsyncValueRefTest, RunWhenReady) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); bool executed = false; RunWhenReady(absl::MakeConstSpan({ref}), [&] { executed = true; }); EXPECT_TRUE(executed); } namespace { struct A { alignas(16) int32_t a; }; struct B : public A { alignas(32) int32_t b; }; struct C : public B { alignas(64) int32_t c; }; struct D : public B { alignas(64) int32_t d; }; } TEST(AsyncValueRefTest, AlignedPayload) { AsyncValueRef<D> d_ref = MakeAvailableAsyncValueRef<D>(); d_ref->a = 1; d_ref->b = 2; d_ref->d = 3; EXPECT_EQ(d_ref->a, 1); EXPECT_EQ(d_ref->b, 2); EXPECT_EQ(d_ref->d, 3); AsyncValueRef<B> b_ref = d_ref.CopyRef(); EXPECT_EQ(b_ref->a, 1); EXPECT_EQ(b_ref->b, 2); AsyncValueRef<A> a_ref = d_ref.CopyRef(); EXPECT_EQ(a_ref->a, 1); } TEST(AsyncValueRefTest, Isa) { AsyncValueRef<A> null_ref; EXPECT_FALSE(Isa<A>(null_ref)); AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(Isa<A>(a_ref)); EXPECT_TRUE(Isa<B>(b_ref)); EXPECT_TRUE(Isa<C>(c_ref)); EXPECT_TRUE(Isa<D>(d_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(err)); EXPECT_TRUE(Isa<B>(err)); EXPECT_TRUE(Isa<C>(err)); EXPECT_TRUE(Isa<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(a_err)); EXPECT_TRUE(Isa<B>(b_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(Isa<A>(c_indirect)); EXPECT_FALSE(Isa<C>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Isa<A>(c_indirect)); EXPECT_TRUE(Isa<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(Isa<A>(c_typed_indirect)); EXPECT_TRUE(Isa<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Isa<A>(c_typed_indirect)); EXPECT_TRUE(Isa<C>(c_typed_indirect)); auto typed_indirect_err = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect_err(typed_indirect_err); EXPECT_TRUE(Isa<A>(c_typed_indirect.AsPtr())); EXPECT_TRUE(Isa<C>(c_typed_indirect.AsPtr())); typed_indirect_err->SetError(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(c_typed_indirect_err.AsPtr())); EXPECT_TRUE(Isa<C>(c_typed_indirect_err.AsPtr())); } TEST(AsyncValueRefTest, DynCast) { AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(DynCast<A>(a_ref)); EXPECT_TRUE(DynCast<B>(b_ref)); EXPECT_TRUE(DynCast<C>(c_ref)); EXPECT_TRUE(DynCast<D>(d_ref)); EXPECT_TRUE(DynCast<A>(c_ref)); EXPECT_FALSE(DynCast<B>(c_ref)); EXPECT_FALSE(DynCast<C>(d_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(DynCast<A>(err)); EXPECT_TRUE(DynCast<B>(err)); EXPECT_TRUE(DynCast<C>(err)); EXPECT_TRUE(DynCast<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(DynCast<A>(a_err)); EXPECT_TRUE(DynCast<B>(b_err)); EXPECT_FALSE(DynCast<C>(a_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(DynCast<A>(c_indirect)); EXPECT_FALSE(DynCast<C>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(DynCast<A>(c_indirect)); EXPECT_TRUE(DynCast<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(DynCast<A>(c_typed_indirect)); EXPECT_TRUE(DynCast<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(DynCast<A>(c_typed_indirect)); EXPECT_TRUE(DynCast<C>(c_typed_indirect)); } TEST(AsyncValueRefTest, Cast) { AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(Cast<A>(a_ref)); EXPECT_TRUE(Cast<B>(b_ref)); EXPECT_TRUE(Cast<C>(c_ref)); EXPECT_TRUE(Cast<D>(d_ref)); EXPECT_TRUE(Cast<A>(c_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(Cast<A>(err)); EXPECT_TRUE(Cast<B>(err)); EXPECT_TRUE(Cast<C>(err)); EXPECT_TRUE(Cast<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(Cast<A>(a_err)); EXPECT_TRUE(Cast<B>(b_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(Cast<A>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Cast<A>(c_indirect)); EXPECT_TRUE(Cast<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(Cast<A>(c_typed_indirect)); EXPECT_TRUE(Cast<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Cast<A>(c_typed_indirect)); EXPECT_TRUE(Cast<C>(c_typed_indirect)); } }
2,242
#ifndef XLA_TSL_FRAMEWORK_DEVICE_ID_MANAGER_H_ #define XLA_TSL_FRAMEWORK_DEVICE_ID_MANAGER_H_ #include <vector> #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_type.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tsl { class DeviceIdManager { public: static absl::Status InsertTfPlatformDeviceIdPair( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId platform_device_id); static absl::Status TfToPlatformDeviceId( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId* platform_device_id); static absl::StatusOr<std::vector<TfDeviceId>> GetTfDevicesOnPlatform( const DeviceType& type, PlatformDeviceId platform_device_id); static void TestOnlyReset(); }; } #endif #include "xla/tsl/framework/device_id_manager.h" #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tsl { namespace { class TfToPlatformDeviceIdMap { public: static TfToPlatformDeviceIdMap* singleton() { static auto* id_map = new TfToPlatformDeviceIdMap; return id_map; } absl::Status Insert(const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId platform_device_id) TF_LOCKS_EXCLUDED(mu_) { std::pair<IdMapType::iterator, bool> result; { mutex_lock lock(mu_); TypeIdMapType::iterator device_id_map_iter = id_map_.insert({type.type_string(), IdMapType()}).first; result = device_id_map_iter->second.insert( {tf_device_id.value(), platform_device_id.value()}); } if (!result.second && platform_device_id.value() != result.first->second) { return errors::AlreadyExists( "TensorFlow device (", type, ":", tf_device_id.value(), ") is being mapped to multiple devices (", platform_device_id.value(), " now, and ", result.first->second, " previously), which is not supported. " "This may be the result of providing different ", type, " configurations (ConfigProto.gpu_options, for example ", "different visible_device_list) when creating multiple Sessions in ", "the same process. This is not currently supported, see ", "https: } return absl::OkStatus(); } bool Find(const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId* platform_device_id) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock lock(mu_); auto type_id_map_iter = id_map_.find(type.type_string()); if (type_id_map_iter == id_map_.end()) return false; auto id_map_iter = type_id_map_iter->second.find(tf_device_id.value()); if (id_map_iter == type_id_map_iter->second.end()) return false; *platform_device_id = id_map_iter->second; return true; } absl::StatusOr<std::vector<TfDeviceId>> GetTfDevicesOnPlatform( const DeviceType& type, PlatformDeviceId platform_device_id) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock lock(mu_); auto type_id_map_iter = id_map_.find(type.type_string()); if (type_id_map_iter == id_map_.end()) { return absl::NotFoundError( absl::StrCat("TensorFlow device type: ", type.type_string(), " was not registered")); } std::vector<TfDeviceId> tf_device_ids; for (const auto& [tf_device, platform_device] : type_id_map_iter->second) { if (platform_device == platform_device_id.value()) { tf_device_ids.push_back(TfDeviceId(tf_device)); } } return tf_device_ids; } private: TfToPlatformDeviceIdMap() = default; void TestOnlyReset() TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); id_map_.clear(); } using IdMapType = std::unordered_map<int32, int32>; using TypeIdMapType = std::unordered_map<std::string, IdMapType>; mutable mutex mu_; TypeIdMapType id_map_ TF_GUARDED_BY(mu_); friend class ::tsl::DeviceIdManager; TfToPlatformDeviceIdMap(const TfToPlatformDeviceIdMap&) = delete; void operator=(const TfToPlatformDeviceIdMap&) = delete; }; } absl::Status DeviceIdManager::InsertTfPlatformDeviceIdPair( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId platform_device_id) { return TfToPlatformDeviceIdMap::singleton()->Insert(type, tf_device_id, platform_device_id); } absl::Status DeviceIdManager::TfToPlatformDeviceId( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId* platform_device_id) { if (TfToPlatformDeviceIdMap::singleton()->Find(type, tf_device_id, platform_device_id)) { return absl::OkStatus(); } return errors::NotFound("TensorFlow device ", type, ":", tf_device_id.value(), " was not registered"); } absl::StatusOr<std::vector<TfDeviceId>> DeviceIdManager::GetTfDevicesOnPlatform( const DeviceType& type, PlatformDeviceId platform_device_id) { return TfToPlatformDeviceIdMap::singleton()->GetTfDevicesOnPlatform( type, platform_device_id); } void DeviceIdManager::TestOnlyReset() { TfToPlatformDeviceIdMap::singleton()->TestOnlyReset(); } }
#include "tensorflow/core/common_runtime/device/device_id_manager.h" #include <vector> #include <gmock/gmock.h> #include "tensorflow/core/common_runtime/device/device_id.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; PlatformDeviceId TfToPlatformDeviceId(const DeviceType& type, TfDeviceId tf) { PlatformDeviceId platform_device_id; TF_CHECK_OK( DeviceIdManager::TfToPlatformDeviceId(type, tf, &platform_device_id)); return platform_device_id; } TEST(DeviceIdManagerTest, Basics) { DeviceType device_type("GPU"); TfDeviceId key_0(0); PlatformDeviceId value_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_0, value_0)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type, key_0)); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_0, value_0)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type, key_0)); TfDeviceId key_1(3); PlatformDeviceId value_1(2); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_1, value_1)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type, key_1)); TfDeviceId key_2(10); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_2, value_1)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type, key_2)); ASSERT_FALSE( DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_2, value_0) .ok()); ASSERT_FALSE(DeviceIdManager::TfToPlatformDeviceId(device_type, TfDeviceId(100), &value_0) .ok()); } TEST(DeviceIdManagerTest, TwoDevices) { DeviceType device_type0("GPU"); TfDeviceId key_0(0); PlatformDeviceId value_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type0, key_0, value_0)); DeviceType device_type1("XPU"); TfDeviceId key_1(2); PlatformDeviceId value_1(3); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type1, key_1, value_1)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type0, key_0)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type1, key_1)); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId(device_type0, key_1, &value_0) .ok()); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId(device_type1, key_0, &value_1) .ok()); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId("FOO", key_0, &value_0).ok()); } TEST(DeviceIdManagerTest, GetTfDevicesOnSamePlatform) { DeviceType device_gpu("GPU"); TfDeviceId tf_device_0(0); PlatformDeviceId platform_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_gpu, tf_device_0, platform_0)); TfDeviceId tf_device_1(1); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_gpu, tf_device_1, platform_0)); DeviceType device_xpu("XPU"); TfDeviceId tf_device_2(2); PlatformDeviceId platform_1(3); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_xpu, tf_device_2, platform_1)); TF_ASSERT_OK_AND_ASSIGN( std::vector<TfDeviceId> tf_device_ids_gpu, DeviceIdManager::GetTfDevicesOnPlatform(device_gpu, platform_0)); EXPECT_THAT(tf_device_ids_gpu, UnorderedElementsAre(tf_device_0, tf_device_1)); TF_ASSERT_OK_AND_ASSIGN( tf_device_ids_gpu, DeviceIdManager::GetTfDevicesOnPlatform(device_gpu, platform_1)); EXPECT_THAT(tf_device_ids_gpu, IsEmpty()); TF_ASSERT_OK_AND_ASSIGN( std::vector<TfDeviceId> tf_device_ids_xpu, DeviceIdManager::GetTfDevicesOnPlatform(device_xpu, platform_1)); EXPECT_THAT(tf_device_ids_xpu, UnorderedElementsAre(tf_device_2)); } } }
2,243
#ifndef XLA_TSL_FRAMEWORK_TRACKING_ALLOCATOR_H_ #define XLA_TSL_FRAMEWORK_TRACKING_ALLOCATOR_H_ #include <unordered_map> #include "xla/tsl/framework/allocator.h" #include "tsl/lib/gtl/inlined_vector.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/types.h" namespace tsl { struct AllocRecord { AllocRecord(int64_t a_btyes, int64_t a_micros) : alloc_bytes(a_btyes), alloc_micros(a_micros) {} AllocRecord() : AllocRecord(0, 0) {} int64_t alloc_bytes; int64_t alloc_micros; }; class TrackingAllocator : public Allocator { public: explicit TrackingAllocator(Allocator* allocator, bool track_ids); std::string Name() override { return allocator_->Name(); } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return AllocateRaw(alignment, num_bytes, AllocationAttributes()); } void* AllocateRaw(size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) override; void DeallocateRaw(void* ptr) override; bool TracksAllocationSizes() const override; size_t RequestedSize(const void* ptr) const override; size_t AllocatedSize(const void* ptr) const override; int64_t AllocationId(const void* ptr) const override; absl::optional<AllocatorStats> GetStats() override; bool ClearStats() override; AllocatorMemoryType GetMemoryType() const override { return allocator_->GetMemoryType(); } std::tuple<size_t, size_t, size_t> GetSizes(); absl::InlinedVector<AllocRecord, 4UL> GetRecordsAndUnRef(); absl::InlinedVector<AllocRecord, 4UL> GetCurrentRecords(); protected: ~TrackingAllocator() override {} private: bool UnRef() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Allocator* allocator_; mutable mutex mu_; int ref_ TF_GUARDED_BY(mu_); size_t allocated_ TF_GUARDED_BY(mu_); size_t high_watermark_ TF_GUARDED_BY(mu_); size_t total_bytes_ TF_GUARDED_BY(mu_); absl::InlinedVector<AllocRecord, 4UL> allocations_ TF_GUARDED_BY(mu_); const bool track_sizes_locally_; struct Chunk { size_t requested_size; size_t allocated_size; int64_t allocation_id; }; std::unordered_map<const void*, Chunk> in_use_ TF_GUARDED_BY(mu_); int64_t next_allocation_id_ TF_GUARDED_BY(mu_); }; } #endif #include "xla/tsl/framework/tracking_allocator.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" namespace tsl { TrackingAllocator::TrackingAllocator(Allocator* allocator, bool track_sizes) : allocator_(allocator), ref_(1), allocated_(0), high_watermark_(0), total_bytes_(0), track_sizes_locally_(track_sizes && !allocator_->TracksAllocationSizes()), next_allocation_id_(0) {} void* TrackingAllocator::AllocateRaw( size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) { void* ptr = allocator_->AllocateRaw(alignment, num_bytes, allocation_attr); if (nullptr == ptr) { return ptr; } if (allocator_->TracksAllocationSizes()) { size_t allocated_bytes = allocator_->AllocatedSize(ptr); { mutex_lock lock(mu_); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } } else if (track_sizes_locally_) { size_t allocated_bytes = allocator_->AllocatedSizeSlow(ptr); allocated_bytes = std::max(num_bytes, allocated_bytes); mutex_lock lock(mu_); next_allocation_id_ += 1; Chunk chunk = {num_bytes, allocated_bytes, next_allocation_id_}; in_use_.emplace(std::make_pair(ptr, chunk)); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } else { mutex_lock lock(mu_); total_bytes_ += num_bytes; allocations_.emplace_back(num_bytes, Env::Default()->NowMicros()); ++ref_; } return ptr; } void TrackingAllocator::DeallocateRaw(void* ptr) { if (nullptr == ptr) { return; } bool should_delete; bool tracks_allocation_sizes = allocator_->TracksAllocationSizes(); size_t allocated_bytes = 0; if (tracks_allocation_sizes) { allocated_bytes = allocator_->AllocatedSize(ptr); } else if (track_sizes_locally_) { mutex_lock lock(mu_); auto itr = in_use_.find(ptr); if (itr != in_use_.end()) { tracks_allocation_sizes = true; allocated_bytes = (*itr).second.allocated_size; in_use_.erase(itr); } } Allocator* allocator = allocator_; { mutex_lock lock(mu_); if (tracks_allocation_sizes) { CHECK_GE(allocated_, allocated_bytes); allocated_ -= allocated_bytes; allocations_.emplace_back(-allocated_bytes, Env::Default()->NowMicros()); } should_delete = UnRef(); } allocator->DeallocateRaw(ptr); if (should_delete) { delete this; } } bool TrackingAllocator::TracksAllocationSizes() const { return track_sizes_locally_ || allocator_->TracksAllocationSizes(); } size_t TrackingAllocator::RequestedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.requested_size; } return 0; } else { return allocator_->RequestedSize(ptr); } } size_t TrackingAllocator::AllocatedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocated_size; } return 0; } else { return allocator_->AllocatedSize(ptr); } } int64_t TrackingAllocator::AllocationId(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocation_id; } return 0; } else { return allocator_->AllocationId(ptr); } } absl::optional<AllocatorStats> TrackingAllocator::GetStats() { return allocator_->GetStats(); } bool TrackingAllocator::ClearStats() { return allocator_->ClearStats(); } std::tuple<size_t, size_t, size_t> TrackingAllocator::GetSizes() { size_t high_watermark; size_t total_bytes; size_t still_live_bytes; { mutex_lock lock(mu_); high_watermark = high_watermark_; total_bytes = total_bytes_; still_live_bytes = allocated_; } return std::make_tuple(total_bytes, high_watermark, still_live_bytes); } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetRecordsAndUnRef() { bool should_delete; absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); allocations.swap(allocations_); should_delete = UnRef(); } if (should_delete) { delete this; } return allocations; } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetCurrentRecords() { absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); for (const AllocRecord& alloc : allocations_) { allocations.push_back(alloc); } } return allocations; } bool TrackingAllocator::UnRef() { CHECK_GE(ref_, 1); --ref_; return (ref_ == 0); } }
#include "tensorflow/core/framework/tracking_allocator.h" #include <unordered_map> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestableSizeTrackingAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { void* ptr = port::Malloc(num_bytes); size_map_[ptr] = num_bytes; return ptr; } void DeallocateRaw(void* ptr) override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); size_map_.erase(iter); port::Free(ptr); } bool TracksAllocationSizes() const override { return true; } size_t RequestedSize(const void* ptr) const override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); return iter->second; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } private: std::unordered_map<const void*, size_t> size_map_; }; class NoMemoryAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { return nullptr; } void DeallocateRaw(void* ptr) override {} bool TracksAllocationSizes() const override { return true; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } }; TEST(TrackingAllocatorTest, SimpleNoTracking) { Allocator* a = cpu_allocator(); EXPECT_FALSE(a->TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(a, false); void* p1 = ta->AllocateRaw(4, 4); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 12); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(4, records[0].alloc_bytes); EXPECT_EQ(12, records[1].alloc_bytes); ta = new TrackingAllocator(a, true); p1 = ta->AllocateRaw(4, 4); EXPECT_EQ(4, ta->RequestedSize(p1)); EXPECT_LE(4, ta->AllocatedSize(p1)); EXPECT_EQ(1, ta->AllocationId(p1)); ta->DeallocateRaw(p1); p2 = ta->AllocateRaw(4, 12); EXPECT_EQ(12, ta->RequestedSize(p2)); EXPECT_LE(12, ta->AllocatedSize(p2)); EXPECT_EQ(2, ta->AllocationId(p2)); sizes = ta->GetSizes(); EXPECT_LE(16, std::get<0>(sizes)); EXPECT_LE(12, std::get<1>(sizes)); EXPECT_LE(12, std::get<2>(sizes)); ta->DeallocateRaw(p2); records = ta->GetRecordsAndUnRef(); EXPECT_LE(4, records[0].alloc_bytes); EXPECT_GE(-4, records[1].alloc_bytes); EXPECT_LE(12, records[2].alloc_bytes); EXPECT_GE(-12, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, SimpleTracking) { TestableSizeTrackingAllocator a = TestableSizeTrackingAllocator(); EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 4); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(12, std::get<1>(sizes)); EXPECT_EQ(4, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(12, records[0].alloc_bytes); EXPECT_EQ(-12, records[1].alloc_bytes); EXPECT_EQ(4, records[2].alloc_bytes); EXPECT_EQ(-4, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, OutOfMemory) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); EXPECT_EQ(nullptr, p1); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } TEST(TrackingAllocatorTest, FreeNullPtr) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); ta->DeallocateRaw(nullptr); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } }
2,244
#ifndef XLA_TSL_FRAMEWORK_CANCELLATION_H_ #define XLA_TSL_FRAMEWORK_CANCELLATION_H_ #include <atomic> #include <functional> #include "tsl/lib/gtl/flatmap.h" #include "tsl/platform/hash.h" #include "tsl/platform/mutex.h" #include "tsl/platform/notification.h" #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/types.h" namespace tsl { typedef int64_t CancellationToken; typedef std::function<void()> CancelCallback; class CancellationManager { public: static const CancellationToken kInvalidToken; CancellationManager(); explicit CancellationManager(CancellationManager* parent); ~CancellationManager(); void StartCancel(); void StartCancelWithStatus(const absl::Status& status); bool IsCancelled() { return is_cancelled_.load(std::memory_order_acquire); } CancellationToken get_cancellation_token() { return next_cancellation_token_.fetch_add(1); } bool RegisterCallback(CancellationToken token, CancelCallback callback); bool RegisterCallbackWithErrorLogging(CancellationToken token, CancelCallback callback, tsl::StringPiece callback_name); bool DeregisterCallback(CancellationToken token); bool TryDeregisterCallback(CancellationToken token); bool IsCancelling(); private: struct CallbackConfiguration { CancelCallback callback; std::string name; bool log_error = false; }; struct State { Notification cancelled_notification; gtl::FlatMap<CancellationToken, CallbackConfiguration> callbacks; CancellationManager* first_child = nullptr; }; bool RegisterCallbackConfig(CancellationToken token, CallbackConfiguration config); bool RegisterChild(CancellationManager* child); void DeregisterChild(CancellationManager* child); bool is_cancelling_; std::atomic_bool is_cancelled_; std::atomic<CancellationToken> next_cancellation_token_; CancellationManager* const parent_ = nullptr; bool is_removed_from_parent_ TF_GUARDED_BY(parent_->mu_) = false; CancellationManager* prev_sibling_ TF_GUARDED_BY(parent_->mu_) = nullptr; CancellationManager* next_sibling_ TF_GUARDED_BY(parent_->mu_) = nullptr; mutex mu_; std::unique_ptr<State> state_ TF_GUARDED_BY(mu_); }; absl::Status RegisterCancellationCallback( CancellationManager* cancellation_manager, std::function<void()> callback, std::function<void()>* deregister_fn); } #endif #include "xla/tsl/framework/cancellation.h" #include <forward_list> #include "absl/memory/memory.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace tsl { const CancellationToken CancellationManager::kInvalidToken = -1; CancellationManager::CancellationManager() : is_cancelling_(false), is_cancelled_(false), next_cancellation_token_(0) {} CancellationManager::CancellationManager(CancellationManager* parent) : is_cancelling_(false), next_cancellation_token_(0), parent_(parent) { is_cancelled_ = parent->RegisterChild(this); } void CancellationManager::StartCancel() { StartCancelWithStatus(absl::OkStatus()); } void CancellationManager::StartCancelWithStatus(const absl::Status& status) { gtl::FlatMap<CancellationToken, CallbackConfiguration> callbacks_to_run; std::forward_list<CancellationManager*> children_to_cancel; Notification* cancelled_notification = nullptr; { mutex_lock l(mu_); if (is_cancelled_.load(std::memory_order_relaxed) || is_cancelling_) { return; } is_cancelling_ = true; if (state_) { std::swap(state_->callbacks, callbacks_to_run); CancellationManager* child = state_->first_child; while (child != nullptr) { children_to_cancel.push_front(child); child->is_removed_from_parent_ = true; child = child->next_sibling_; } state_->first_child = nullptr; cancelled_notification = &state_->cancelled_notification; } } for (auto key_and_value : callbacks_to_run) { CallbackConfiguration& config = key_and_value.second; if (!status.ok() && config.log_error) { LOG(WARNING) << "Cancellation callback \"" << config.name << "\" is triggered due to a " << (StatusGroup::IsDerived(status) ? "derived" : "root") << " error: " << status.ToString(); } config.callback(); } for (CancellationManager* child : children_to_cancel) { child->StartCancelWithStatus(status); } { mutex_lock l(mu_); is_cancelling_ = false; is_cancelled_.store(true, std::memory_order_release); } if (cancelled_notification) { cancelled_notification->Notify(); } } bool CancellationManager::RegisterCallback(CancellationToken token, CancelCallback callback) { return RegisterCallbackConfig( token, CallbackConfiguration{callback, "", false}); } bool CancellationManager::RegisterCallbackWithErrorLogging( CancellationToken token, CancelCallback callback, tsl::StringPiece callback_name) { return RegisterCallbackConfig( token, CallbackConfiguration{callback, std::string(callback_name), true}); } bool CancellationManager::RegisterCallbackConfig(CancellationToken token, CallbackConfiguration config) { DCHECK_LT(token, next_cancellation_token_) << "Invalid cancellation token"; mutex_lock l(mu_); bool should_register = !is_cancelled_ && !is_cancelling_; if (should_register) { if (!state_) { state_ = absl::make_unique<State>(); } std::swap(state_->callbacks[token], config); } return should_register; } bool CancellationManager::DeregisterCallback(CancellationToken token) { mu_.lock(); if (is_cancelled_) { mu_.unlock(); return false; } else if (is_cancelling_) { Notification* cancelled_notification = state_ ? &state_->cancelled_notification : nullptr; mu_.unlock(); if (cancelled_notification) { cancelled_notification->WaitForNotification(); } return false; } else { if (state_) { state_->callbacks.erase(token); } mu_.unlock(); return true; } } bool CancellationManager::RegisterChild(CancellationManager* child) { mutex_lock l(mu_); if (is_cancelled_.load(std::memory_order_relaxed) || is_cancelling_) { child->is_removed_from_parent_ = true; return true; } if (!state_) { state_ = absl::make_unique<State>(); } CancellationManager* current_head = state_->first_child; state_->first_child = child; child->prev_sibling_ = nullptr; child->next_sibling_ = current_head; if (current_head) { current_head->prev_sibling_ = child; } return false; } void CancellationManager::DeregisterChild(CancellationManager* child) { DCHECK_EQ(child->parent_, this); Notification* cancelled_notification = nullptr; { mutex_lock l(mu_); if (!child->is_removed_from_parent_) { DCHECK(state_); if (child->prev_sibling_ == nullptr) { DCHECK_EQ(state_->first_child, child); state_->first_child = child->next_sibling_; } else { child->prev_sibling_->next_sibling_ = child->next_sibling_; } if (child->next_sibling_ != nullptr) { child->next_sibling_->prev_sibling_ = child->prev_sibling_; } child->is_removed_from_parent_ = true; } if (is_cancelling_) { cancelled_notification = &state_->cancelled_notification; } } if (cancelled_notification) { cancelled_notification->WaitForNotification(); } } bool CancellationManager::TryDeregisterCallback(CancellationToken token) { mutex_lock lock(mu_); if (is_cancelled_ || is_cancelling_) { return false; } else { if (state_) { state_->callbacks.erase(token); } return true; } } CancellationManager::~CancellationManager() { if (parent_) { parent_->DeregisterChild(this); } if (state_) { StartCancel(); } } bool CancellationManager::IsCancelling() { mutex_lock lock(mu_); return is_cancelling_; } absl::Status RegisterCancellationCallback( CancellationManager* cancellation_manager, CancelCallback callback, std::function<void()>* deregister_fn) { if (cancellation_manager) { CancellationToken token = cancellation_manager->get_cancellation_token(); if (!cancellation_manager->RegisterCallback(token, std::move(callback))) { return errors::Cancelled("Operation was cancelled"); } *deregister_fn = [cancellation_manager, token]() { cancellation_manager->DeregisterCallback(token); }; } else { VLOG(1) << "Cancellation manager is not set. Cancellation callback will " "not be registered."; *deregister_fn = []() {}; } return absl::OkStatus(); } }
#include "xla/tsl/framework/cancellation.h" #include <algorithm> #include <memory> #include <numeric> #include <random> #include <vector> #include "tsl/platform/notification.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { TEST(Cancellation, SimpleNoCancel) { bool is_cancelled = false; CancellationManager* manager = new CancellationManager(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); bool deregistered = manager->DeregisterCallback(token); EXPECT_TRUE(deregistered); delete manager; EXPECT_FALSE(is_cancelled); } TEST(Cancellation, SimpleCancel) { bool is_cancelled = false; CancellationManager* manager = new CancellationManager(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); delete manager; } TEST(Cancellation, StartCancelTriggersAllCallbacks) { bool is_cancelled_1 = false; bool is_cancelled_2 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallbackWithErrorLogging( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }, "TestCallback")); auto token_2 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; })); manager->StartCancel(); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); } TEST(Cancellation, StartCancelWithStatusTriggersAllCallbacks) { bool is_cancelled_1 = false; bool is_cancelled_2 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallbackWithErrorLogging( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }, "TestCallback")); auto token_2 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; })); manager->StartCancelWithStatus(absl::OkStatus()); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); } TEST(Cancellation, CancelBeforeRegister) { auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); manager->StartCancel(); bool registered = manager->RegisterCallback(token, nullptr); EXPECT_FALSE(registered); } TEST(Cancellation, DeregisterAfterCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); bool deregistered = manager->DeregisterCallback(token); EXPECT_FALSE(deregistered); } TEST(Cancellation, CancelMultiple) { bool is_cancelled_1 = false, is_cancelled_2 = false, is_cancelled_3 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); bool registered_1 = manager->RegisterCallback( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }); EXPECT_TRUE(registered_1); auto token_2 = manager->get_cancellation_token(); bool registered_2 = manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; }); EXPECT_TRUE(registered_2); EXPECT_FALSE(is_cancelled_1); EXPECT_FALSE(is_cancelled_2); manager->StartCancel(); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); EXPECT_FALSE(is_cancelled_3); auto token_3 = manager->get_cancellation_token(); bool registered_3 = manager->RegisterCallback( token_3, [&is_cancelled_3]() { is_cancelled_3 = true; }); EXPECT_FALSE(registered_3); EXPECT_FALSE(is_cancelled_3); } TEST(Cancellation, IsCancelled) { auto cm = std::make_unique<CancellationManager>(); thread::ThreadPool w(Env::Default(), "test", 4); std::vector<Notification> done(8); for (size_t i = 0; i < done.size(); ++i) { Notification* n = &done[i]; w.Schedule([n, &cm]() { while (!cm->IsCancelled()) { } ASSERT_FALSE(cm->IsCancelling()); n->Notify(); }); } Env::Default()->SleepForMicroseconds(1000000 ); cm->StartCancel(); for (size_t i = 0; i < done.size(); ++i) { done[i].WaitForNotification(); } } TEST(Cancellation, IsCancelling) { CancellationManager cm; Notification started_cancelling; Notification can_finish_cancel; Notification cancel_done; thread::ThreadPool w(Env::Default(), "test", 1); auto token = cm.get_cancellation_token(); ASSERT_TRUE( cm.RegisterCallback(token, [&started_cancelling, &can_finish_cancel]() { started_cancelling.Notify(); can_finish_cancel.WaitForNotification(); })); w.Schedule([&cm, &cancel_done]() { cm.StartCancel(); cancel_done.Notify(); }); started_cancelling.WaitForNotification(); ASSERT_TRUE(cm.IsCancelling()); can_finish_cancel.Notify(); cancel_done.WaitForNotification(); ASSERT_FALSE(cm.IsCancelling()); ASSERT_TRUE(cm.IsCancelled()); } TEST(Cancellation, TryDeregisterWithoutCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_TRUE(deregistered); EXPECT_FALSE(is_cancelled); } TEST(Cancellation, TryDeregisterAfterCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_FALSE(deregistered); } TEST(Cancellation, TryDeregisterDuringCancel) { Notification cancel_started, finish_callback, cancel_complete; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback(token, [&]() { cancel_started.Notify(); finish_callback.WaitForNotification(); }); EXPECT_TRUE(registered); thread::ThreadPool w(Env::Default(), "test", 1); w.Schedule([&]() { manager->StartCancel(); cancel_complete.Notify(); }); cancel_started.WaitForNotification(); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_FALSE(deregistered); finish_callback.Notify(); cancel_complete.WaitForNotification(); } TEST(Cancellation, Parent_CancelManyChildren) { CancellationManager parent; std::vector<std::unique_ptr<CancellationManager>> children; for (size_t i = 0; i < 5; ++i) { children.push_back(absl::make_unique<CancellationManager>(&parent)); EXPECT_FALSE(children.back()->IsCancelled()); } parent.StartCancel(); for (auto& child : children) { EXPECT_TRUE(child->IsCancelled()); } } TEST(Cancellation, Parent_NotCancelled) { CancellationManager parent; { CancellationManager child(&parent); child.StartCancel(); EXPECT_TRUE(child.IsCancelled()); } EXPECT_FALSE(parent.IsCancelled()); } TEST(Cancellation, Parent_AlreadyCancelled) { CancellationManager parent; parent.StartCancel(); EXPECT_TRUE(parent.IsCancelled()); CancellationManager child(&parent); EXPECT_TRUE(child.IsCancelled()); } TEST(Cancellation, Parent_RandomDestructionOrder) { CancellationManager parent; std::random_device rd; std::mt19937 g(rd()); for (int rounds = 0; rounds < 100; ++rounds) { std::vector<std::unique_ptr<CancellationManager>> children; std::uniform_int_distribution<int> dist(1, 9); const size_t round_size = dist(rd); for (size_t i = 0; i < round_size; ++i) { children.push_back(absl::make_unique<CancellationManager>(&parent)); EXPECT_FALSE(children.back()->IsCancelled()); } std::vector<size_t> destruction_order(round_size); std::iota(destruction_order.begin(), destruction_order.end(), 0); std::shuffle(destruction_order.begin(), destruction_order.end(), g); for (size_t index : destruction_order) { children[index].reset(); } } } }
2,245
#ifndef XLA_TSL_FRAMEWORK_DEVICE_ID_UTILS_H_ #define XLA_TSL_FRAMEWORK_DEVICE_ID_UTILS_H_ #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_type.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tsl { void CheckValidTfDeviceId(const DeviceType& type, int visible_device_count, TfDeviceId tf_device_id); absl::Status ParseVisibleDeviceList( const std::string& visible_device_list, int visible_device_count, std::vector<PlatformDeviceId>* visible_device_order); absl::StatusOr<size_t> GetNumberTfDevicesAndConfigurePlatformDeviceId( const absl::flat_hash_map<std::string, int64_t>& session_option_device_counts, absl::string_view device_type, absl::string_view visible_device_list, int visible_device_count); absl::StatusOr<int> GetPlatformDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name, const DeviceType& device_type); absl::StatusOr<int> GetDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name, const DeviceType& device_type); } #endif #include "xla/tsl/framework/device_id_utils.h" #include <numeric> #include <set> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_id_manager.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" namespace tsl { namespace { int GetTfDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name) { return device_name.id; } } void CheckValidTfDeviceId(const DeviceType& type, const int visible_device_count, const TfDeviceId tf_device_id) { PlatformDeviceId platform_device_id; TF_CHECK_OK(DeviceIdManager::TfToPlatformDeviceId(type, tf_device_id, &platform_device_id)); CHECK_LT(platform_device_id.value(), visible_device_count) << "platform_device_id is outside discovered device range." << " TF " << type << " id: " << tf_device_id << ", platform " << type << " id: " << platform_device_id << ", visible device count: " << visible_device_count; } absl::Status ParseVisibleDeviceList( const std::string& visible_device_list, const int visible_device_count, std::vector<PlatformDeviceId>* visible_device_order) { visible_device_order->clear(); if (visible_device_list.empty()) { visible_device_order->resize(visible_device_count); std::iota(visible_device_order->begin(), visible_device_order->end(), 0); } else { const std::vector<std::string> order_str = tsl::str_util::Split(visible_device_list, ','); for (const std::string& platform_device_id_str : order_str) { int32_t platform_device_id; if (!absl::SimpleAtoi(platform_device_id_str, &platform_device_id)) { return tsl::errors::InvalidArgument( "Could not parse entry in 'visible_device_list': '", platform_device_id_str, "'. visible_device_list = ", visible_device_list); } if (platform_device_id < 0 || platform_device_id >= visible_device_count) { return tsl::errors::InvalidArgument( "'visible_device_list' listed an invalid Device id '", platform_device_id, "' but visible device count is ", visible_device_count); } visible_device_order->push_back( tsl::PlatformDeviceId(platform_device_id)); } } std::set<PlatformDeviceId> visible_device_set(visible_device_order->begin(), visible_device_order->end()); if (visible_device_set.size() != visible_device_order->size()) { return tsl::errors::InvalidArgument( "visible_device_list contained a duplicate entry: ", visible_device_list); } return absl::OkStatus(); } absl::StatusOr<size_t> GetNumberTfDevicesAndConfigurePlatformDeviceId( const absl::flat_hash_map<std::string, int64_t>& session_option_device_counts, absl::string_view device_type, absl::string_view visible_device_list, const int visible_device_count) { size_t num_tf_devices = INT_MAX; const auto iter = session_option_device_counts.find(device_type); if (iter != session_option_device_counts.end()) { num_tf_devices = iter->second; } if (num_tf_devices == 0) { return 0; } std::vector<PlatformDeviceId> visible_device_order; TF_RETURN_IF_ERROR(ParseVisibleDeviceList(std::string(visible_device_list), visible_device_count, &visible_device_order)); if (num_tf_devices > visible_device_order.size()) { num_tf_devices = visible_device_order.size(); } for (int i = 0; i < num_tf_devices; ++i) { const PlatformDeviceId platform_device_id = visible_device_order[i]; const TfDeviceId tf_device_id(i); TF_RETURN_IF_ERROR(tsl::DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(device_type), tf_device_id, platform_device_id)); } return num_tf_devices; } absl::StatusOr<int> GetPlatformDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name, const DeviceType& device_type) { const TfDeviceId tf_device_id(GetTfDeviceIdFromDeviceParsedName(device_name)); PlatformDeviceId platform_device_id; absl::Status platform_id_status = DeviceIdManager::TfToPlatformDeviceId( device_type, tf_device_id, &platform_device_id); if (platform_id_status.ok()) { return platform_device_id.value(); } return platform_id_status; } absl::StatusOr<int> GetDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name, const DeviceType& device_type) { auto platform_id = GetPlatformDeviceIdFromDeviceParsedName(device_name, device_type); if (platform_id.ok()) { return *platform_id; } return GetTfDeviceIdFromDeviceParsedName(device_name); } }
#include "xla/tsl/framework/device_id_utils.h" #include <string_view> #include <vector> #include "xla/tsl/framework/device_id_manager.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" namespace tsl { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; constexpr std::string_view kTestDeviceType = "CPU"; PlatformDeviceId TfToPlatformDeviceId(TfDeviceId tf_device_id) { PlatformDeviceId platform_device_id; TF_CHECK_OK(DeviceIdManager::TfToPlatformDeviceId( DeviceType(kTestDeviceType), tf_device_id, &platform_device_id)); return platform_device_id; } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdPass) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); tsl::CheckValidTfDeviceId("CPU", 2, tf_device_id); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdNotFound) { TfDeviceId tf_device_id(0); EXPECT_DEATH( tsl::CheckValidTfDeviceId(DeviceType(kTestDeviceType), 2, tf_device_id), "NOT_FOUND: TensorFlow device CPU:0 was not registered"); } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdOutsideVisibleDeviceRange) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); EXPECT_DEATH(tsl::CheckValidTfDeviceId("CPU", 1, tf_device_id), "platform_device_id is outside discovered device range."); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, ParseEmptyVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; TF_EXPECT_OK(ParseVisibleDeviceList("", 2, &visible_device_order)); PlatformDeviceId platform_device_id0(0), platform_device_id1(1); std::vector<PlatformDeviceId> expected = {platform_device_id0, platform_device_id1}; EXPECT_EQ(visible_device_order, expected); } TEST(DeviceIdUtilsTest, ParseVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; TF_EXPECT_OK(ParseVisibleDeviceList("2,1", 3, &visible_device_order)); PlatformDeviceId platform_device_id2(2), platform_device_id1(1); std::vector<PlatformDeviceId> expected = {platform_device_id2, platform_device_id1}; EXPECT_EQ(visible_device_order, expected); } TEST(DeviceIdUtilsTest, ParseInvalidVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; EXPECT_THAT( ParseVisibleDeviceList("3,1", 3, &visible_device_order), StatusIs(tensorflow::error::INVALID_ARGUMENT, HasSubstr("'visible_device_list' listed an invalid Device id " "'3' but visible device count is 3"))); } TEST(DeviceIdUtilsTest, ParseDuplicateVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; EXPECT_THAT( ParseVisibleDeviceList("1,1", 3, &visible_device_order), StatusIs( tensorflow::error::INVALID_ARGUMENT, HasSubstr("visible_device_list contained a duplicate entry: 1,1"))); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesDefault) { TF_ASSERT_OK_AND_ASSIGN(size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {}, kTestDeviceType, "", 2)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_1(1); EXPECT_EQ(expected_1, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesWithVisibleDeviceList) { TF_ASSERT_OK_AND_ASSIGN(size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {}, kTestDeviceType, "2,0", 3)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_2(2); EXPECT_EQ(expected_2, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesWithSessionOptionDeviceCount) { TF_ASSERT_OK_AND_ASSIGN( size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {{std::string(kTestDeviceType), 2}}, kTestDeviceType, "1,0,2", 3)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_1(1); EXPECT_EQ(expected_1, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetPlatformDeviceId) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); DeviceNameUtils::ParsedName device_name; device_name.id = 0; TF_ASSERT_OK_AND_ASSIGN(int device_id, GetPlatformDeviceIdFromDeviceParsedName( device_name, DeviceType(kTestDeviceType))); EXPECT_EQ(device_id, 1); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetPlatformDeviceIdNotFound) { DeviceNameUtils::ParsedName device_name; device_name.id = 0; EXPECT_THAT( GetPlatformDeviceIdFromDeviceParsedName(device_name, DeviceType(kTestDeviceType)), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("TensorFlow device CPU:0 was not registered"))); } TEST(DeviceIdUtilsTest, GetDeviceIdWithPlatformDeviceId) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); DeviceNameUtils::ParsedName device_name; device_name.id = 0; TF_ASSERT_OK_AND_ASSIGN(int device_id, GetDeviceIdFromDeviceParsedName( device_name, DeviceType(kTestDeviceType))); EXPECT_EQ(device_id, 1); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetDeviceIdWithoutPlatformDeviceId) { DeviceNameUtils::ParsedName device_name; device_name.id = 0; TF_ASSERT_OK_AND_ASSIGN(int device_id, GetDeviceIdFromDeviceParsedName( device_name, DeviceType(kTestDeviceType))); EXPECT_EQ(device_id, 0); } } }
2,246
#ifndef XLA_TSL_FRAMEWORK_ALLOCATOR_H_ #define XLA_TSL_FRAMEWORK_ALLOCATOR_H_ #include <stdlib.h> #include <functional> #include <limits> #include <optional> #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/framework/numeric_types.h" #include "xla/tsl/framework/type_traits.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/numa.h" #include "tsl/platform/types.h" namespace tsl { struct AllocationAttributes { AllocationAttributes() = default; AllocationAttributes(bool retry_on_failure, bool allocation_will_be_logged, std::function<uint64()>* freed_by_func) : retry_on_failure(retry_on_failure), allocation_will_be_logged(allocation_will_be_logged), freed_by_func(freed_by_func) {} bool retry_on_failure = true; bool allocation_will_be_logged = false; std::function<uint64()>* freed_by_func = nullptr; AllocationAttributes(const AllocationAttributes&) = delete; void operator=(const AllocationAttributes&) = delete; }; struct AllocatorStats { int64_t num_allocs; int64_t bytes_in_use; int64_t peak_bytes_in_use; int64_t largest_alloc_size; std::optional<int64_t> bytes_limit; int64_t bytes_reserved; int64_t peak_bytes_reserved; std::optional<int64_t> bytes_reservable_limit; int64_t largest_free_block_bytes; std::optional<int64_t> pool_bytes; std::optional<int64_t> peak_pool_bytes; AllocatorStats() : num_allocs(0), bytes_in_use(0), peak_bytes_in_use(0), largest_alloc_size(0), bytes_reserved(0), peak_bytes_reserved(0), largest_free_block_bytes(0) {} std::string DebugString() const; }; enum class AllocatorMemoryType { kUnknown = 0, kDevice = 1, kHostPageable = 2, kHostPinned = 3, }; class Allocator { public: static constexpr size_t kAllocatorAlignment = 64; virtual ~Allocator(); virtual std::string Name() = 0; virtual void* AllocateRaw(size_t alignment, size_t num_bytes) = 0; virtual void* AllocateRaw(size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) { return AllocateRaw(alignment, num_bytes); } virtual void DeallocateRaw(void* ptr) = 0; virtual bool TracksAllocationSizes() const { return false; } virtual bool AllocatesOpaqueHandle() const { return false; } virtual size_t RequestedSize(const void* ptr) const { CHECK(false) << "allocator doesn't track sizes"; return size_t(0); } virtual size_t AllocatedSize(const void* ptr) const { return RequestedSize(ptr); } virtual int64_t AllocationId(const void* ptr) const { return 0; } virtual size_t AllocatedSizeSlow(const void* ptr) const { if (TracksAllocationSizes()) { return AllocatedSize(ptr); } return 0; } virtual absl::optional<AllocatorStats> GetStats() { return absl::nullopt; } virtual bool ClearStats() TF_MUST_USE_RESULT { return false; } virtual void SetSafeFrontier(uint64 count) {} virtual void SetStreamAndPreallocateMemory(void* stream) {} virtual AllocatorMemoryType GetMemoryType() const { return AllocatorMemoryType::kUnknown; } }; class AllocatorWrapper : public Allocator { public: explicit AllocatorWrapper(Allocator* wrapped) : wrapped_(wrapped) {} ~AllocatorWrapper() override {} Allocator* wrapped() const { return wrapped_; } std::string Name() override { return wrapped_->Name(); } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return wrapped_->AllocateRaw(alignment, num_bytes); } void* AllocateRaw(size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) override { return wrapped_->AllocateRaw(alignment, num_bytes, allocation_attr); } void DeallocateRaw(void* ptr) override { wrapped_->DeallocateRaw(ptr); } bool TracksAllocationSizes() const override { return wrapped_->TracksAllocationSizes(); } bool AllocatesOpaqueHandle() const override { return wrapped_->AllocatesOpaqueHandle(); } size_t RequestedSize(const void* ptr) const override { return wrapped_->RequestedSize(ptr); } size_t AllocatedSize(const void* ptr) const override { return wrapped_->AllocatedSize(ptr); } int64_t AllocationId(const void* ptr) const override { return wrapped_->AllocationId(ptr); } size_t AllocatedSizeSlow(const void* ptr) const override { return wrapped_->AllocatedSizeSlow(ptr); } AllocatorMemoryType GetMemoryType() const override { return wrapped_->GetMemoryType(); } private: Allocator* const wrapped_; }; struct AllocatorAttributes { void set_on_host(bool v) { value |= (static_cast<int>(v)); } bool on_host() const { return value & 0x1; } void set_nic_compatible(bool v) { value |= (static_cast<int>(v) << 1); } bool nic_compatible() const { return value & (0x1 << 1); } void set_gpu_compatible(bool v) { value |= (static_cast<int>(v) << 2); } bool gpu_compatible() const { return value & (0x1 << 2); } void set_use_pjrt_allocator(bool v) { value |= (static_cast<int>(v) << 3); } bool use_pjrt_allocator() const { return value & (0x1 << 3); } void Merge(AllocatorAttributes other) { value |= other.value; if (scope_id != other.scope_id) { CHECK(scope_id == 0 || other.scope_id == 0) << "At least one scope_id should be zero to merge " "AllocatorAttributes but found this.scope_id=" << scope_id << " and other.scope_id=" << other.scope_id; scope_id = scope_id == 0 ? other.scope_id : scope_id; } } bool IsEqualOrLessRestrictiveThan(const AllocatorAttributes& other) const { return (value | other.value) == other.value; } uint32 value = 0; int32 scope_id = 0; std::string DebugString() const; }; Allocator* cpu_allocator_base(); Allocator* cpu_allocator(int numa_node = port::kNUMANoAffinity); void EnableCPUAllocatorStats(); void DisableCPUAllocatorStats(); bool CPUAllocatorStatsEnabled(); void EnableCPUAllocatorFullStats(); bool CPUAllocatorFullStatsEnabled(); class SubAllocator { public: typedef std::function<void(void*, int index, size_t)> Visitor; SubAllocator(const std::vector<Visitor>& alloc_visitors, const std::vector<Visitor>& free_visitors); virtual ~SubAllocator() {} virtual void* Alloc(size_t alignment, size_t num_bytes, size_t* bytes_received) = 0; virtual void Free(void* ptr, size_t num_bytes) = 0; virtual bool SupportsCoalescing() const = 0; virtual AllocatorMemoryType GetMemoryType() const { return AllocatorMemoryType::kUnknown; } protected: void VisitAlloc(void* ptr, int index, size_t num_bytes); void VisitFree(void* ptr, int index, size_t num_bytes); const std::vector<Visitor> alloc_visitors_; const std::vector<Visitor> free_visitors_; }; } #endif #include "xla/tsl/framework/allocator.h" #include <atomic> #include "xla/tsl/framework/allocator_registry.h" #include "xla/tsl/framework/tracking_allocator.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/types.h" namespace tsl { string AllocatorStats::DebugString() const { return strings::Printf( "Limit: %20lld\n" "InUse: %20lld\n" "MaxInUse: %20lld\n" "NumAllocs: %20lld\n" "MaxAllocSize: %20lld\n" "Reserved: %20lld\n" "PeakReserved: %20lld\n" "LargestFreeBlock: %20lld\n", static_cast<long long>(this->bytes_limit ? *this->bytes_limit : 0), static_cast<long long>(this->bytes_in_use), static_cast<long long>(this->peak_bytes_in_use), static_cast<long long>(this->num_allocs), static_cast<long long>(this->largest_alloc_size), static_cast<long long>(this->bytes_reserved), static_cast<long long>(this->peak_bytes_reserved), static_cast<long long>(this->largest_free_block_bytes)); } constexpr size_t Allocator::kAllocatorAlignment; Allocator::~Allocator() {} static bool cpu_allocator_collect_full_stats = false; void EnableCPUAllocatorFullStats() { cpu_allocator_collect_full_stats = true; } bool CPUAllocatorFullStatsEnabled() { return cpu_allocator_collect_full_stats; } string AllocatorAttributes::DebugString() const { return strings::StrCat("AllocatorAttributes(on_host=", on_host(), " nic_compatible=", nic_compatible(), " gpu_compatible=", gpu_compatible(), ")"); } Allocator* cpu_allocator_base() { static Allocator* cpu_alloc = AllocatorFactoryRegistry::singleton()->GetAllocator(); if (cpu_allocator_collect_full_stats && !cpu_alloc->TracksAllocationSizes()) { cpu_alloc = new TrackingAllocator(cpu_alloc, true); } return cpu_alloc; } Allocator* cpu_allocator(int numa_node) { static ProcessStateInterface* ps = AllocatorFactoryRegistry::singleton()->process_state(); if (ps) { return ps->GetCPUAllocator(numa_node); } else { return cpu_allocator_base(); } } SubAllocator::SubAllocator(const std::vector<Visitor>& alloc_visitors, const std::vector<Visitor>& free_visitors) : alloc_visitors_(alloc_visitors), free_visitors_(free_visitors) {} void SubAllocator::VisitAlloc(void* ptr, int index, size_t num_bytes) { for (const auto& v : alloc_visitors_) { v(ptr, index, num_bytes); } } void SubAllocator::VisitFree(void* ptr, int index, size_t num_bytes) { for (int i = free_visitors_.size() - 1; i >= 0; --i) { free_visitors_[i](ptr, index, num_bytes); } } }
#include "tensorflow/core/framework/allocator.h" #include <algorithm> #include <vector> #include "tensorflow/core/framework/typed_allocator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/profiler/lib/profiler_session.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" #include "tsl/profiler/utils/xplane_utils.h" namespace tensorflow { static void CheckStats(Allocator* a, int64_t num_allocs, int64_t bytes_in_use, int64_t peak_bytes_in_use, int64_t largest_alloc_size) { absl::optional<AllocatorStats> stats = a->GetStats(); EXPECT_TRUE(stats); if (!stats) { return; } LOG(INFO) << "Alloc stats: \n" << stats->DebugString(); #if defined(PLATFORM_GOOGLE) && defined(NDEBUG) static const int64 kSlop = 5 * 1024; EXPECT_GT(stats->bytes_in_use, bytes_in_use - kSlop); EXPECT_LT(stats->bytes_in_use, bytes_in_use + kSlop); EXPECT_GT(stats->peak_bytes_in_use, peak_bytes_in_use - kSlop); EXPECT_LT(stats->peak_bytes_in_use, peak_bytes_in_use + kSlop); EXPECT_EQ(stats->num_allocs, num_allocs); EXPECT_EQ(stats->largest_alloc_size, largest_alloc_size); #endif } TEST(AllocatorAttributesTest, AllCombos) { for (bool on_host : {false, true}) { for (bool nic_compatible : {false, true}) { for (bool gpu_compatible : {false, true}) { AllocatorAttributes aa; aa.set_on_host(on_host); aa.set_nic_compatible(nic_compatible); aa.set_gpu_compatible(gpu_compatible); EXPECT_EQ(on_host, aa.on_host()); EXPECT_EQ(nic_compatible, aa.nic_compatible()); EXPECT_EQ(gpu_compatible, aa.gpu_compatible()); } } } } TEST(AllocatorAttributesTest, IsEqualOrLessRestrictiveThan) { AllocatorAttributes a, b; EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(b)); b.set_gpu_compatible(true); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_FALSE(b.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(b)); a.set_nic_compatible(true); EXPECT_FALSE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_FALSE(b.IsEqualOrLessRestrictiveThan(a)); a.set_gpu_compatible(true); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(a)); EXPECT_FALSE(a.IsEqualOrLessRestrictiveThan(b)); } TEST(AllocatorAttributesTest, Merge) { AllocatorAttributes a, b; EXPECT_EQ(a.value, 0); EXPECT_EQ(b.value, 0); EXPECT_FALSE(a.nic_compatible()); EXPECT_FALSE(b.nic_compatible()); b.set_nic_compatible(true); a.Merge(b); EXPECT_TRUE(a.nic_compatible()); EXPECT_TRUE(b.nic_compatible()); EXPECT_EQ(a.scope_id, 0); EXPECT_EQ(b.scope_id, 0); a.scope_id = 1; a.Merge(b); EXPECT_EQ(a.scope_id, 1); EXPECT_EQ(b.scope_id, 0); a.scope_id = 1; b.scope_id = 0; b.Merge(a); EXPECT_EQ(a.scope_id, 1); EXPECT_EQ(b.scope_id, 1); a.scope_id = 2; b.scope_id = 2; a.Merge(b); EXPECT_EQ(a.scope_id, 2); EXPECT_EQ(b.scope_id, 2); } TEST(AllocatorAttributesDeathTest, MergeDifferentScopeIds) { AllocatorAttributes a, b; a.scope_id = 3; b.scope_id = 4; EXPECT_DEATH({ a.Merge(b); }, ""); } TEST(CPUAllocatorTest, Simple) { EnableCPUAllocatorStats(); Allocator* a = cpu_allocator(); std::vector<void*> ptrs; for (int s = 1; s < 1024; s++) { void* raw = a->AllocateRaw(1, s); ptrs.push_back(raw); } std::sort(ptrs.begin(), ptrs.end()); CheckStats(a, 1023, 552640, 552640, 1024); for (size_t i = 0; i < ptrs.size(); i++) { if (i > 0) { CHECK_NE(ptrs[i], ptrs[i - 1]); } a->DeallocateRaw(ptrs[i]); } CheckStats(a, 1023, 0, 552640, 1024); float* t1 = TypedAllocator::Allocate<float>(a, 1024, {}); double* t2 = TypedAllocator::Allocate<double>(a, 1048576, {}); CheckStats(a, 1025, 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double)); TypedAllocator::Deallocate(a, t1, 1024); TypedAllocator::Deallocate(a, t2, 1048576); CheckStats(a, 1025, 0, 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double)); CHECK(a->ClearStats()); CheckStats(a, 0, 0, 0, 0); DisableCPUAllocatorStats(); } struct TestStruct { int x; }; TEST(CPUAllocatorTest, CheckStructSize) { CHECK_GT(sizeof(TestStruct), 1); } TEST(CPUAllocatorTest, AllocateOverflowMaxSizeT) { Allocator* a = cpu_allocator(); size_t count_to_allocate = std::numeric_limits<size_t>::max(); TestStruct* const test_pointer = TypedAllocator::Allocate<TestStruct>(a, count_to_allocate, {}); CHECK_EQ(test_pointer, reinterpret_cast<TestStruct*>(NULL)); } TEST(CPUAllocatorTest, AllocateOverflowSmallest) { Allocator* a = cpu_allocator(); const size_t count_to_allocate = (std::numeric_limits<size_t>::max() / sizeof(TestStruct)) + 1; TestStruct* const test_pointer = TypedAllocator::Allocate<TestStruct>(a, count_to_allocate, {}); CHECK_EQ(test_pointer, reinterpret_cast<TestStruct*>(NULL)); } TEST(CPUAllocatorTest, Sizes) { Allocator* a = cpu_allocator(); EXPECT_EQ(false, a->TracksAllocationSizes()); } TEST(CPUAllocatorTest, ProfilerReporting) { void* p = port::AlignedMalloc(8, 1); const std::size_t alloc_size = port::MallocExtension_GetAllocatedSize(p); port::AlignedFree(p); if (alloc_size == 0) { LOG(WARNING) << "Skipping Memory Debugging test. It requires " << "port::MallocExtension_GetAllocatedSize to work."; return; } EnableCPUAllocatorStats(); Allocator* a = cpu_allocator(); void* p1 = a->AllocateRaw(1, 16); std::unique_ptr<ProfilerSession> profiler = tensorflow::ProfilerSession::Create( tensorflow::ProfilerSession::DefaultOptions()); void* p2 = a->AllocateRaw(1, 32); a->DeallocateRaw(p1); tensorflow::profiler::XSpace xspace; EXPECT_EQ(OkStatus(), profiler->CollectData(&xspace)); const auto plane = ::tsl::profiler::FindPlaneWithName( xspace, ::tensorflow::profiler::kHostThreadsPlaneName); ::tensorflow::profiler::XPlaneVisitor xplane(plane); ASSERT_EQ(plane->name(), ::tensorflow::profiler::kHostThreadsPlaneName) << "XSpace: " << xspace.DebugString(); ASSERT_EQ(plane->event_metadata_size(), 2) << "XSpace: " << xspace.DebugString(); const auto& line = plane->lines(0); ASSERT_EQ(line.events_size(), 2) << "XSpace: " << xspace.DebugString(); const auto& events = line.events(); ::tensorflow::profiler::XEventVisitor e0(&xplane, &line, &events[0]); EXPECT_EQ(e0.Name(), "MemoryAllocation") << "XSpace: " << xspace.DebugString(); { absl::optional<std::string> bytes_allocated, peak_bytes_in_use, requested_bytes, allocation_bytes; e0.ForEachStat([&](const ::tensorflow::profiler::XStatVisitor& stat) { LOG(ERROR) << "STAT " << stat.Name() << ": " << stat.ToString(); if (stat.Name() == "bytes_allocated") { bytes_allocated = stat.ToString(); } else if (stat.Name() == "peak_bytes_in_use") { peak_bytes_in_use = stat.ToString(); } else if (stat.Name() == "requested_bytes") { requested_bytes = stat.ToString(); } else if (stat.Name() == "allocation_bytes") { allocation_bytes = stat.ToString(); } }); ASSERT_TRUE(bytes_allocated && peak_bytes_in_use && requested_bytes && allocation_bytes) << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*bytes_allocated, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*peak_bytes_in_use, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*requested_bytes, "32") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*allocation_bytes, "32") << "XSpace: " << xspace.DebugString(); } ::tensorflow::profiler::XEventVisitor e1(&xplane, &line, &events[1]); EXPECT_EQ(e1.Name(), "MemoryDeallocation") << "XSpace: " << xspace.DebugString(); { absl::optional<std::string> bytes_allocated, peak_bytes_in_use, allocation_bytes; e1.ForEachStat([&](const ::tensorflow::profiler::XStatVisitor& stat) { if (stat.Name() == "bytes_allocated") { bytes_allocated = stat.ToString(); } else if (stat.Name() == "peak_bytes_in_use") { peak_bytes_in_use = stat.ToString(); } else if (stat.Name() == "allocation_bytes") { allocation_bytes = stat.ToString(); } }); ASSERT_TRUE(bytes_allocated && peak_bytes_in_use && allocation_bytes) << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*bytes_allocated, "32") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*peak_bytes_in_use, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*allocation_bytes, "16") << "XSpace: " << xspace.DebugString(); } a->DeallocateRaw(p2); DisableCPUAllocatorStats(); } namespace { AllocatorAttributes DeviceAllocatorAttribute() { AllocatorAttributes attr; attr.value |= (0x1 << 24); return attr; } bool HasDeviceAllocatorAttribute(const AllocatorAttributes& attr) { return attr.value & (0x1 << 24); } } TEST(CustomAllocatorAttributes, TestSetterAndGetter) { AllocatorAttributes attr = DeviceAllocatorAttribute(); EXPECT_TRUE(HasDeviceAllocatorAttribute(attr)); EXPECT_FALSE(HasDeviceAllocatorAttribute(AllocatorAttributes())); } static void BM_Allocation(::testing::benchmark::State& state) { const int arg = state.range(0); Allocator* a = cpu_allocator(); std::vector<int> sizes = {256, 4096, 16384, 524288, 512, 1048576}; int size_index = 0; if (arg) EnableCPUAllocatorStats(); for (auto s : state) { int bytes = sizes[size_index++ % sizes.size()]; void* p = a->AllocateRaw(1, bytes); a->DeallocateRaw(p); } if (arg) DisableCPUAllocatorStats(); } BENCHMARK(BM_Allocation)->Arg(0)->Arg(1); }
2,247
#ifndef XLA_TSL_UTIL_REPORTER_H_ #define XLA_TSL_UTIL_REPORTER_H_ #include <cstdlib> #include <memory> #include <string> #include <unordered_set> #include "tsl/platform/env.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" #include "tsl/protobuf/test_log.pb.h" namespace tsl { class TestReportFile { public: TestReportFile(const string& fname, const string& test_name); absl::Status Initialize(); absl::Status Append(const string& content); absl::Status Close(); bool IsClosed() const { return closed_; } ~TestReportFile() { Close().IgnoreError(); } private: bool closed_; string fname_; string test_name_; std::unique_ptr<WritableFile> log_file_; TestReportFile(const TestReportFile&) = delete; void operator=(const TestReportFile&) = delete; }; class TestReporter { public: static constexpr const char* kTestReporterEnv = "TEST_REPORT_FILE_PREFIX"; explicit TestReporter(const string& test_name) : TestReporter(GetLogEnv(), test_name) {} TestReporter(const string& fname, const string& test_name); absl::Status Initialize(); absl::Status Close(); absl::Status Benchmark(int64_t iters, double cpu_time, double wall_time, double throughput); absl::Status SetProperty(const string& name, double value); absl::Status SetProperty(const string& name, const string& value); absl::Status AddMetric(const string& name, double value); ~TestReporter() { Close().IgnoreError(); } private: static string GetLogEnv() { const char* fname_ptr = getenv(kTestReporterEnv); return (fname_ptr != nullptr) ? fname_ptr : ""; } TestReportFile report_file_; tensorflow::BenchmarkEntry benchmark_entry_; TestReporter(const TestReporter&) = delete; void operator=(const TestReporter&) = delete; }; } #endif #include "xla/tsl/util/reporter.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/str_util.h" namespace tsl { TestReportFile::TestReportFile(const string& fname, const string& test_name) : closed_(true), fname_(fname), test_name_(test_name) {} absl::Status TestReportFile::Append(const string& content) { if (closed_) return absl::OkStatus(); return log_file_->Append(content); } absl::Status TestReportFile::Close() { if (closed_) return absl::OkStatus(); closed_ = true; return log_file_->Close(); } absl::Status TestReportFile::Initialize() { if (fname_.empty()) { return absl::OkStatus(); } string mangled_fname = strings::StrCat( fname_, absl::StrJoin(str_util::Split(test_name_, '/'), "__")); Env* env = Env::Default(); if (env->FileExists(mangled_fname).ok()) { return errors::InvalidArgument( "Cannot create TestReportFile, file exists: ", mangled_fname); } TF_RETURN_IF_ERROR(env->NewWritableFile(mangled_fname, &log_file_)); TF_RETURN_IF_ERROR(log_file_->Flush()); closed_ = false; return absl::OkStatus(); } TestReporter::TestReporter(const string& fname, const string& test_name) : report_file_(fname, test_name) { benchmark_entry_.set_name(test_name); } absl::Status TestReporter::Close() { if (report_file_.IsClosed()) return absl::OkStatus(); tensorflow::BenchmarkEntries entries; *entries.add_entry() = benchmark_entry_; TF_RETURN_IF_ERROR(report_file_.Append(entries.SerializeAsString())); benchmark_entry_.Clear(); return report_file_.Close(); } absl::Status TestReporter::Benchmark(int64_t iters, double cpu_time, double wall_time, double throughput) { if (report_file_.IsClosed()) return absl::OkStatus(); benchmark_entry_.set_iters(iters); benchmark_entry_.set_cpu_time(cpu_time / iters); benchmark_entry_.set_wall_time(wall_time / iters); benchmark_entry_.set_throughput(throughput); return absl::OkStatus(); } absl::Status TestReporter::SetProperty(const string& name, const string& value) { if (report_file_.IsClosed()) return absl::OkStatus(); (*benchmark_entry_.mutable_extras())[name].set_string_value(value); return absl::OkStatus(); } absl::Status TestReporter::SetProperty(const string& name, double value) { if (report_file_.IsClosed()) return absl::OkStatus(); (*benchmark_entry_.mutable_extras())[name].set_double_value(value); return absl::OkStatus(); } absl::Status TestReporter::AddMetric(const string& name, double value) { if (report_file_.IsClosed()) return absl::OkStatus(); auto* metric = benchmark_entry_.add_metrics(); metric->set_name(name); metric->set_value(value); return absl::OkStatus(); } absl::Status TestReporter::Initialize() { return report_file_.Initialize(); } }
#define _XOPEN_SOURCE #include <cstdlib> #include "tensorflow/core/util/reporter.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << s << " does not contain " << expected; } TEST(TestReporter, NoLogging) { TestReporter test_reporter("b1"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Close()); } TEST(TestReporter, UsesEnv) { const char* old_env = std::getenv(TestReporter::kTestReporterEnv); setenv(TestReporter::kTestReporterEnv, "/cant/find/me:!", 1); CHECK_EQ(string(std::getenv(TestReporter::kTestReporterEnv)), string("/cant/find/me:!")); TestReporter test_reporter("b1"); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "/cant/find/me"); unsetenv(TestReporter::kTestReporterEnv); CHECK_EQ(std::getenv(TestReporter::kTestReporterEnv), nullptr); TestReporter test_reporter_empty("b1"); s = test_reporter_empty.Initialize(); TF_EXPECT_OK(s); s = test_reporter_empty.Close(); TF_EXPECT_OK(s); if (old_env == nullptr) { unsetenv(TestReporter::kTestReporterEnv); } else { setenv(TestReporter::kTestReporterEnv, old_env, 1); } } TEST(TestReporter, CreateTwiceFails) { { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_dupe"), "t1"); TF_EXPECT_OK(test_reporter.Initialize()); } { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_dupe"), "t1"); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "file exists:"); } } TEST(TestReporter, CreateCloseCreateAgainSkipsSecond) { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_create_close"), "t1"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Close()); TF_EXPECT_OK(test_reporter.Benchmark(1, 1.0, 2.0, 3.0)); TF_EXPECT_OK(test_reporter.Close()); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "file exists:"); } TEST(TestReporter, Benchmark) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b1/2/3"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Benchmark(1, 1.0, 2.0, 3.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b1__2__3"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); EXPECT_EQ(benchmark_entry.name(), "b1/2/3"); EXPECT_EQ(benchmark_entry.iters(), 1); EXPECT_EQ(benchmark_entry.cpu_time(), 1.0); EXPECT_EQ(benchmark_entry.wall_time(), 2.0); EXPECT_EQ(benchmark_entry.throughput(), 3.0); } TEST(TestReporter, SetProperties) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b2/3/4"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.SetProperty("string_prop", "abc")); TF_EXPECT_OK(test_reporter.SetProperty("double_prop", 4.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b2__3__4"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); const auto& extras = benchmark_entry.extras(); ASSERT_EQ(2, extras.size()); EXPECT_EQ("abc", extras.at("string_prop").string_value()); EXPECT_EQ(4.0, extras.at("double_prop").double_value()); } TEST(TestReporter, AddMetrics) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b3/4/5"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.AddMetric("metric1", 2.0)); TF_EXPECT_OK(test_reporter.AddMetric("metric2", 3.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b3__4__5"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); const auto& metrics = benchmark_entry.metrics(); ASSERT_EQ(2, metrics.size()); EXPECT_EQ("metric1", metrics.at(0).name()); EXPECT_EQ(2.0, metrics.at(0).value()); EXPECT_EQ("metric2", metrics.at(1).name()); EXPECT_EQ(3.0, metrics.at(1).value()); } } }
2,248
#ifndef XLA_TSL_UTIL_STATS_CALCULATOR_H_ #define XLA_TSL_UTIL_STATS_CALCULATOR_H_ #include <stdlib.h> #include <algorithm> #include <cmath> #include <limits> #include <map> #include <sstream> #include <string> #include <vector> #include "xla/tsl/util/stat_summarizer_options.h" namespace tsl { template <typename ValueType, typename HighPrecisionValueType = double> class Stat { public: void UpdateStat(ValueType v) { if (count_ == 0) { first_ = v; } newest_ = v; max_ = std::max(v, max_); min_ = std::min(v, min_); ++count_; sum_ += v; squared_sum_ += static_cast<HighPrecisionValueType>(v) * v; } void Reset() { new (this) Stat<ValueType, HighPrecisionValueType>(); } bool empty() const { return count_ == 0; } ValueType first() const { return first_; } ValueType newest() const { return newest_; } ValueType max() const { return max_; } ValueType min() const { return min_; } int64_t count() const { return count_; } ValueType sum() const { return sum_; } HighPrecisionValueType squared_sum() const { return squared_sum_; } bool all_same() const { return (count_ == 0 || min_ == max_); } HighPrecisionValueType avg() const { return empty() ? std::numeric_limits<ValueType>::quiet_NaN() : static_cast<HighPrecisionValueType>(sum_) / count_; } ValueType sample_variance() const { return all_same() ? 0 : (squared_sum_ - std::pow(sum_, 2.0) / count_) / (count_ - 1); } ValueType variance() const { return all_same() ? 0 : (squared_sum_ / count_) - (avg() * avg()); } ValueType std_deviation() const { return all_same() ? 0 : std::sqrt(variance()); } void OutputToStream(std::ostream* stream) const { if (empty()) { *stream << "count=0"; } else if (all_same()) { *stream << "count=" << count_ << " curr=" << newest_; if (count_ > 1) *stream << "(all same)"; } else { *stream << "count=" << count_ << " first=" << first_ << " curr=" << newest_ << " min=" << min_ << " max=" << max_ << " avg=" << avg() << " std=" << std_deviation(); } } friend std::ostream& operator<<(std::ostream& stream, const Stat<ValueType>& stat) { stat.OutputToStream(&stream); return stream; } private: ValueType first_ = 0; ValueType newest_ = 0; ValueType max_ = std::numeric_limits<ValueType>::min(); ValueType min_ = std::numeric_limits<ValueType>::max(); int64_t count_ = 0; ValueType sum_ = 0; HighPrecisionValueType squared_sum_ = 0; }; class StatsCalculator { public: enum SortingMetric { BY_NAME, BY_RUN_ORDER, BY_TIME, BY_MEMORY, BY_TYPE, }; explicit StatsCalculator(const StatSummarizerOptions& options); std::string GetOutputString() const; std::string GetShortSummary() const; void ComputeStatsByType( std::map<std::string, int64_t>* node_type_map_count, std::map<std::string, int64_t>* node_type_map_time, std::map<std::string, int64_t>* node_type_map_memory, std::map<std::string, int64_t>* node_type_map_times_called, int64_t* accumulated_us) const; std::string GetStatsByNodeType() const; std::string GetStatsByMetric(const std::string& title, SortingMetric sorting_metric, int num_stats) const; int num_runs() const { return static_cast<int>(run_total_us_.count()); } const Stat<int64_t>& run_total_us() const { return run_total_us_; } void UpdateRunTotalUs(int64_t run_total_us) { run_total_us_.UpdateStat(run_total_us); } void UpdateMemoryUsed(int64_t memory) { memory_.UpdateStat(memory); } struct Detail { std::string name; std::string type; int64_t run_order; Stat<int64_t> elapsed_time; Stat<int64_t> mem_used; int64_t times_called; }; const std::map<std::string, Detail>& GetDetails() const { return details_; } void AddNodeStats(const std::string& name, const std::string& type, int64_t run_order, int64_t rel_end_us, int64_t mem_used); private: void OrderNodesByMetric(SortingMetric sorting_metric, std::vector<const Detail*>* details) const; std::string HeaderString(const std::string& title) const; std::string ColumnString(const Detail& detail, const int64_t cumulative_stat_on_node, const Stat<int64_t>& stat) const; Stat<int64_t> run_total_us_; Stat<int64_t> memory_; std::map<std::string, Detail> details_; StatSummarizerOptions options_; }; } #endif #include "xla/tsl/util/stats_calculator.h" #include <iomanip> #include <map> #include <queue> #include <sstream> #include <string> namespace tsl { constexpr int kNodeTypeWidth = 40; StatsCalculator::StatsCalculator(const StatSummarizerOptions& options) : options_(options) {} std::string StatsCalculator::GetShortSummary() const { std::stringstream stream; stream << "Timings (microseconds): "; run_total_us_.OutputToStream(&stream); stream << std::endl; stream << "Memory (bytes): "; memory_.OutputToStream(&stream); stream << std::endl; stream << details_.size() << " nodes observed" << std::endl; return stream.str(); } std::ostream& InitField(std::ostream& stream, int width) { stream << "\t" << std::right << std::setw(width) << std::fixed << std::setprecision(3); return stream; } std::string StatsCalculator::HeaderString(const std::string& title) const { std::stringstream stream; stream << "============================== " << title << " ==============================" << std::endl; if (options_.format_as_csv) { stream << "node type, first, avg_ms, %, cdf%, mem KB, times called, " "name"; } else { InitField(stream, kNodeTypeWidth) << "[node type]"; InitField(stream, 9) << "[first]"; InitField(stream, 9) << "[avg ms]"; InitField(stream, 8) << "[%]"; InitField(stream, 8) << "[cdf%]"; InitField(stream, 10) << "[mem KB]"; InitField(stream, 9) << "[times called]"; stream << "\t" << "[Name]"; } return stream.str(); } std::string StatsCalculator::ColumnString(const Detail& detail, const int64_t cumulative_stat_on_node, const Stat<int64_t>& stat) const { const double first_time_ms = detail.elapsed_time.first() / 1000.0; const double avg_time_ms = detail.elapsed_time.avg() / 1000.0; const double percentage = detail.elapsed_time.sum() * 100.0 / stat.sum(); const double cdf_percentage = (cumulative_stat_on_node * 100.0f) / stat.sum(); const int64_t times_called = detail.times_called / num_runs(); std::stringstream stream; if (options_.format_as_csv) { std::string name(detail.name); std::replace(name.begin(), name.end(), ',', '\t'); stream << detail.type << ", " << first_time_ms << ", " << avg_time_ms << ", " << percentage << "%, " << cdf_percentage << "%, " << detail.mem_used.newest() / 1000.0 << ", " << times_called << ", " << name; } else { InitField(stream, kNodeTypeWidth) << detail.type; InitField(stream, 9) << first_time_ms; InitField(stream, 9) << avg_time_ms; InitField(stream, 7) << percentage << "%"; InitField(stream, 7) << cdf_percentage << "%"; InitField(stream, 10) << detail.mem_used.newest() / 1000.0; InitField(stream, 9) << times_called; stream << "\t" << detail.name; } return stream.str(); } void StatsCalculator::OrderNodesByMetric( SortingMetric metric, std::vector<const Detail*>* details) const { std::priority_queue<std::pair<std::string, const Detail*>> sorted_list; const int num_nodes = details_.size(); for (const auto& det : details_) { const Detail* detail = &(det.second); std::stringstream stream; stream << std::setw(20) << std::right << std::setprecision(10) << std::fixed; switch (metric) { case BY_NAME: stream << detail->name; break; case BY_RUN_ORDER: stream << num_nodes - detail->run_order; break; case BY_TIME: stream << detail->elapsed_time.avg(); break; case BY_MEMORY: stream << detail->mem_used.avg(); break; case BY_TYPE: stream << detail->type; break; default: stream << ""; break; } sorted_list.emplace(stream.str(), detail); } while (!sorted_list.empty()) { auto entry = sorted_list.top(); sorted_list.pop(); details->push_back(entry.second); } } void StatsCalculator::ComputeStatsByType( std::map<std::string, int64_t>* node_type_map_count, std::map<std::string, int64_t>* node_type_map_time, std::map<std::string, int64_t>* node_type_map_memory, std::map<std::string, int64_t>* node_type_map_times_called, int64_t* accumulated_us) const { int64_t run_count = run_total_us_.count(); for (const auto& det : details_) { const std::string node_name = det.first; const Detail& detail = det.second; int64_t curr_time_val = static_cast<int64_t>(detail.elapsed_time.sum() / run_count); *accumulated_us += curr_time_val; int64_t curr_memory_val = detail.mem_used.newest(); const std::string& node_type = detail.type; (*node_type_map_count)[node_type] += 1; (*node_type_map_time)[node_type] += curr_time_val; (*node_type_map_memory)[node_type] += curr_memory_val; (*node_type_map_times_called)[node_type] += detail.times_called / run_count; } } std::string StatsCalculator::GetStatsByNodeType() const { std::stringstream stream; stream << "Number of nodes executed: " << details_.size() << std::endl; stream << "============================== Summary by node type " "==============================" << std::endl; std::map<std::string, int64_t> node_type_map_count; std::map<std::string, int64_t> node_type_map_time; std::map<std::string, int64_t> node_type_map_memory; std::map<std::string, int64_t> node_type_map_times_called; int64_t accumulated_us = 0; ComputeStatsByType(&node_type_map_count, &node_type_map_time, &node_type_map_memory, &node_type_map_times_called, &accumulated_us); std::priority_queue<std::pair<int64_t, std::pair<std::string, int64_t>>> timings; for (const auto& node_type : node_type_map_time) { const int64_t mem_used = node_type_map_memory[node_type.first]; timings.emplace(node_type.second, std::pair<std::string, int64_t>(node_type.first, mem_used)); } if (options_.format_as_csv) { stream << "node type, count, avg_ms, avg %, cdf %, mem KB, times called\n"; } else { InitField(stream, kNodeTypeWidth) << "[Node type]"; InitField(stream, 9) << "[count]"; InitField(stream, 10) << "[avg ms]"; InitField(stream, 11) << "[avg %]"; InitField(stream, 11) << "[cdf %]"; InitField(stream, 10) << "[mem KB]"; InitField(stream, 10) << "[times called]"; stream << std::endl; } float cdf = 0.0f; while (!timings.empty()) { auto entry = timings.top(); timings.pop(); const std::string node_type = entry.second.first; const float memory = entry.second.second / 1000.0f; const int64_t node_type_total_us = entry.first; const float time_per_run_ms = node_type_total_us / 1000.0f; const float percentage = ((entry.first / static_cast<float>(accumulated_us)) * 100.0f); cdf += percentage; if (options_.format_as_csv) { stream << node_type << ", " << node_type_map_count[node_type] << ", " << time_per_run_ms << ", " << percentage << "%, " << cdf << "%, " << memory << ", " << node_type_map_times_called[node_type] << std::endl; } else { InitField(stream, kNodeTypeWidth) << node_type; InitField(stream, 9) << node_type_map_count[node_type]; InitField(stream, 10) << time_per_run_ms; InitField(stream, 10) << percentage << "%"; InitField(stream, 10) << cdf << "%"; InitField(stream, 10) << memory; InitField(stream, 9) << node_type_map_times_called[node_type]; stream << std::endl; } } stream << std::endl; return stream.str(); } std::string StatsCalculator::GetStatsByMetric(const std::string& title, SortingMetric sorting_metric, int num_stats) const { std::vector<const Detail*> details; OrderNodesByMetric(sorting_metric, &details); double cumulative_stat_on_node = 0; std::stringstream stream; stream << HeaderString(title) << std::endl; int stat_num = 0; for (auto detail : details) { ++stat_num; if (num_stats > 0 && stat_num > num_stats) { break; } cumulative_stat_on_node += detail->elapsed_time.sum(); stream << ColumnString(*detail, cumulative_stat_on_node, run_total_us_) << std::endl; } stream << std::endl; return stream.str(); } std::string StatsCalculator::GetOutputString() const { std::stringstream stream; if (options_.show_run_order) { stream << GetStatsByMetric("Run Order", BY_RUN_ORDER, options_.run_order_limit); } if (options_.show_time) { stream << GetStatsByMetric("Top by Computation Time", BY_TIME, options_.time_limit); } if (options_.show_memory) { stream << GetStatsByMetric("Top by Memory Use", BY_MEMORY, options_.memory_limit); } if (options_.show_type) { stream << GetStatsByNodeType(); } if (options_.show_summary) { stream << GetShortSummary() << std::endl; } return stream.str(); } void StatsCalculator::AddNodeStats(const std::string& name, const std::string& type, int64_t run_order, int64_t elapsed_time, int64_t mem_used) { Detail* detail = nullptr; if (details_.find(name) == details_.end()) { details_.insert({name, {}}); detail = &details_.at(name); detail->type = type; detail->name = name; detail->run_order = run_order; } else { detail = &details_.at(name); } detail->elapsed_time.UpdateStat(elapsed_time); detail->mem_used.UpdateStat(mem_used); detail->times_called++; } }
#include "xla/tsl/util/stats_calculator.h" #include <cfloat> #include "tsl/platform/test.h" namespace tsl { namespace { using Detail = StatsCalculator::Detail; TEST(StatsCalculatorTest, TotalTimeMs) { auto options = StatSummarizerOptions(); StatsCalculator calc(options); EXPECT_EQ(0, calc.num_runs()); calc.UpdateRunTotalUs(1); EXPECT_EQ(1, calc.num_runs()); calc.UpdateRunTotalUs(2); EXPECT_EQ(2, calc.num_runs()); auto run_time_us = calc.run_total_us(); EXPECT_EQ(1, run_time_us.min()); EXPECT_FLOAT_EQ(1.5, run_time_us.avg()); } TEST(StatsCalculatorTest, AddNodeStatsUpdate) { auto options = StatSummarizerOptions(); StatsCalculator calc(options); EXPECT_TRUE(calc.GetDetails().empty()); const int64_t node1_run_order = 1; const int64_t run1_start_us = 1; const int64_t run1_end_us = 2; const int64_t run1_mem_used = 45; calc.AddNodeStats("node1", "type_1", node1_run_order, run1_end_us - run1_start_us, run1_mem_used); ASSERT_EQ(1, calc.GetDetails().size()); const Detail& detail = calc.GetDetails().at("node1"); EXPECT_EQ(1, detail.times_called); EXPECT_EQ("node1", detail.name); EXPECT_EQ("type_1", detail.type); EXPECT_EQ(node1_run_order, detail.run_order); const int64_t run2_start_us = 3; const int64_t run2_end_us = 5; const int64_t run2_mem_used = 145; calc.AddNodeStats("node1", "type_1", node1_run_order, run2_end_us - run2_start_us, run2_mem_used); EXPECT_EQ(1, calc.GetDetails().size()); EXPECT_EQ(2, detail.times_called); EXPECT_EQ("node1", detail.name); EXPECT_EQ("type_1", detail.type); EXPECT_EQ(node1_run_order, detail.run_order); EXPECT_EQ((run1_end_us - run1_start_us) + (run2_end_us - run2_start_us), detail.elapsed_time.sum()); EXPECT_EQ(run1_mem_used + run2_mem_used, detail.mem_used.sum()); } TEST(StatsCalculatorTest, UpdateStat) { Stat<double> stat; EXPECT_TRUE(stat.empty()); EXPECT_TRUE(stat.all_same()); stat.UpdateStat(1); EXPECT_TRUE(stat.all_same()); stat.UpdateStat(-1.0); EXPECT_FALSE(stat.all_same()); stat.UpdateStat(100); stat.UpdateStat(0); EXPECT_EQ(4, stat.count()); EXPECT_EQ(-1, stat.min()); EXPECT_EQ(100, stat.max()); EXPECT_EQ(25, stat.avg()); EXPECT_EQ(1, stat.first()); EXPECT_EQ(0, stat.newest()); EXPECT_EQ(10002, stat.squared_sum()); EXPECT_EQ(625, stat.avg() * stat.avg()); EXPECT_EQ(7502.0 / 3, stat.sample_variance()); EXPECT_NEAR(50.00666622228147160678152, std::sqrt(stat.sample_variance()), FLT_EPSILON); EXPECT_NEAR(7502.0 / 4, stat.variance(), FLT_EPSILON); EXPECT_NEAR(43.30704330706496060826769, stat.std_deviation(), FLT_EPSILON); } } }
2,249
#ifndef XLA_TSL_UTIL_DEVICE_NAME_UTILS_H_ #define XLA_TSL_UTIL_DEVICE_NAME_UTILS_H_ #include <string> #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" namespace tsl { class DeviceNameUtils { public: static std::string FullName(const std::string& job, int replica, int task, const std::string& type, int id); struct ParsedName { void Clear() { has_job = false; has_replica = false; has_task = false; has_type = false; has_id = false; job.clear(); replica = 0; task = 0; type.clear(); id = 0; } bool operator==(const ParsedName& other) const { return (has_job ? (other.has_job && job == other.job) : !other.has_job) && (has_replica ? (other.has_replica && replica == other.replica) : !other.has_replica) && (has_task ? (other.has_task && task == other.task) : !other.has_task) && (has_type ? (other.has_type && type == other.type) : !other.has_type) && (has_id ? (other.has_id && id == other.id) : !other.has_id); } bool operator!=(const ParsedName& other) const { return !operator==(other); } bool operator<(const ParsedName& other) const { if (has_job != other.has_job) return !has_job; if (has_job) { if (job < other.job) { return true; } if (job > other.job) { return false; } } if (has_replica != other.has_replica) return !has_replica; if (has_replica) { if (replica < other.replica) { return true; } if (replica > other.replica) { return false; } } if (has_task != other.has_task) return !has_task; if (has_task) { if (task < other.task) { return true; } if (task > other.task) { return false; } } if (has_type != other.has_type) return !has_type; if (has_type) { if (type < other.type) { return true; } if (type > other.type) { return false; } } if (has_id != other.has_id) return !has_id; if (has_id) { if (id < other.id) { return true; } if (id > other.id) { return false; } } return false; } template <typename H> friend H AbslHashValue(H h, const ParsedName& n) { return H::combine(std::move(h), n.has_job ? n.job : "", n.has_replica ? n.replica : 0, n.has_task ? n.task : 0, n.has_type ? n.type : "", n.has_id ? n.id : 0); } bool has_job = false; std::string job; bool has_replica = false; int replica = 0; bool has_task = false; int task = 0; bool has_type = false; std::string type; bool has_id = false; int id = 0; }; static bool ParseFullOrLocalName(StringPiece fullname, ParsedName* parsed); static bool ParseFullName(StringPiece fullname, ParsedName* parsed); static absl::Status CanonicalizeDeviceName(StringPiece fullname, StringPiece basename, std::string* canonical_name); static bool HasSomeDetails(const ParsedName& name) { return name.has_job || name.has_replica || name.has_task || name.has_type || name.has_id; } static bool IsSpecification(const ParsedName& less_specific, const ParsedName& more_specific); static void EnsureSpecification(ParsedName* more_specific, const ParsedName& less_specific); static bool IsCompleteSpecification(const ParsedName& pattern, const ParsedName& name); static bool AreCompatibleDevNames(const ParsedName& a, const ParsedName& b); static absl::Status MergeDevNames(ParsedName* target, const ParsedName& other) { return MergeDevNames(target, other, false); } static absl::Status MergeDevNames(ParsedName* target, const ParsedName& other, bool allow_soft_placement); static absl::Status MergeOverrideDevNames(ParsedName* target, const ParsedName& other); static void MergeUnsetDevNames(ParsedName* target, const ParsedName& other); static bool IsSameAddressSpace(StringPiece src, StringPiece dst); static bool IsSameAddressSpace(const ParsedName& src, const ParsedName& dst); static bool IsDifferentAddressSpace(const ParsedName& a, const ParsedName& b); static const ParsedName AddressSpace(const ParsedName& name); static std::string LocalName(StringPiece type, int id); static std::string LocalName(StringPiece fullname); static bool ParseLocalName(StringPiece name, ParsedName* parsed); static bool SplitDeviceName(StringPiece name, std::string* task, std::string* device); static bool GetTaskName(const ParsedName& pn, std::string* task); static std::string ParsedNameToString(const ParsedName& pn); static std::vector<string> GetNamesForDeviceMappings(const ParsedName& pn); static std::vector<string> GetLocalNamesForDeviceMappings( const ParsedName& pn); static absl::Status DeviceNameToCpuDeviceName(const std::string& device_name, std::string* host_device_name); static bool CompareFullNames(const StringPiece& a, const StringPiece& b) { ParsedName parsed_a; ParsedName parsed_b; bool a_status = ParseFullName(a, &parsed_a); bool b_status = ParseFullName(b, &parsed_b); if (a_status != b_status) return !a_status; if (!a_status) return a < b; return parsed_a < parsed_b; } }; std::ostream& operator<<(std::ostream& os, const DeviceNameUtils::ParsedName& x); } #endif #include "xla/tsl/util/device_name_utils.h" #include <algorithm> #include "tsl/platform/errors.h" namespace tsl { static bool IsAlpha(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } static bool IsAlphaNumOrUnderscore(char c) { return IsAlpha(c) || (c >= '0' && c <= '9') || c == '_'; } static bool IsJobName(StringPiece in) { return !in.empty() && IsAlpha(in.front()) && std::all_of(in.begin(), in.end(), IsAlphaNumOrUnderscore); } static bool ConsumePrefix(StringPiece* in, string* out, StringPiece prefix_terminators) { if (in->empty() || !IsAlpha(in->front())) return false; const auto end_it = std::find_first_of(in->begin(), in->end(), prefix_terminators.begin(), prefix_terminators.end()); if (!std::all_of(in->begin(), end_it, IsAlphaNumOrUnderscore)) { return false; } out->assign(in->begin(), end_it); in->remove_prefix(end_it - in->begin()); return true; } static bool ConsumeJobName(StringPiece* in, string* job) { return ConsumePrefix(in, job, "/"); } static bool ConsumeDeviceType(StringPiece* in, string* device_type) { return ConsumePrefix(in, device_type, "/:"); } static bool ConsumeNumber(StringPiece* in, int* val) { uint64 tmp; if (str_util::ConsumeLeadingDigits(in, &tmp)) { *val = tmp; return true; } else { return false; } } static string DeviceName(const string& job, int replica, int task, const string& device_prefix, const string& device_type, int id) { CHECK(IsJobName(job)) << job; CHECK_LE(0, replica); CHECK_LE(0, task); CHECK(!device_type.empty()); CHECK_LE(0, id); return strings::StrCat("/job:", job, "/replica:", replica, "/task:", task, device_prefix, device_type, ":", id); } string DeviceNameUtils::FullName(const string& job, int replica, int task, const string& type, int id) { return DeviceName(job, replica, task, "/device:", type, id); } namespace { string LegacyName(const string& job, int replica, int task, const string& type, int id) { return DeviceName(job, replica, task, "/", absl::AsciiStrToLower(type), id); } } bool DeviceNameUtils::ParseFullName(StringPiece fullname, ParsedName* p) { p->Clear(); if (fullname == "/") { return true; } while (!fullname.empty()) { bool progress = false; if (absl::ConsumePrefix(&fullname, "/job:")) { p->has_job = !absl::ConsumePrefix(&fullname, "*"); if (p->has_job && !ConsumeJobName(&fullname, &p->job)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/replica:")) { p->has_replica = !absl::ConsumePrefix(&fullname, "*"); if (p->has_replica && !ConsumeNumber(&fullname, &p->replica)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/task:")) { p->has_task = !absl::ConsumePrefix(&fullname, "*"); if (p->has_task && !ConsumeNumber(&fullname, &p->task)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/device:")) { p->has_type = !absl::ConsumePrefix(&fullname, "*"); if (p->has_type && !ConsumeDeviceType(&fullname, &p->type)) { return false; } if (!absl::ConsumePrefix(&fullname, ":")) { p->has_id = false; } else { p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } } progress = true; } if (absl::ConsumePrefix(&fullname, "/cpu:") || absl::ConsumePrefix(&fullname, "/CPU:")) { p->has_type = true; p->type = "CPU"; p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/gpu:") || absl::ConsumePrefix(&fullname, "/GPU:")) { p->has_type = true; p->type = "GPU"; p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } progress = true; } if (!progress) { return false; } } return true; } bool DeviceNameUtils::ParseFullOrLocalName(StringPiece fullname, ParsedName* p) { return ParseFullName(fullname, p) || ParseLocalName(fullname, p); } namespace { void CompleteName(const DeviceNameUtils::ParsedName& parsed_basename, DeviceNameUtils::ParsedName* parsed_name) { if (!parsed_name->has_job) { parsed_name->job = parsed_basename.job; parsed_name->has_job = true; } if (!parsed_name->has_replica) { parsed_name->replica = parsed_basename.replica; parsed_name->has_replica = true; } if (!parsed_name->has_task) { parsed_name->task = parsed_basename.task; parsed_name->has_task = true; } if (!parsed_name->has_type) { parsed_name->type = parsed_basename.type; parsed_name->has_type = true; } if (!parsed_name->has_id) { parsed_name->id = parsed_basename.id; parsed_name->has_id = true; } } } absl::Status DeviceNameUtils::CanonicalizeDeviceName(StringPiece fullname, StringPiece basename, string* canonical_name) { *canonical_name = ""; ParsedName parsed_basename; if (!ParseFullName(basename, &parsed_basename)) { return errors::InvalidArgument("Could not parse basename: ", basename, " into a device specification."); } if (!(parsed_basename.has_job && parsed_basename.has_replica && parsed_basename.has_task && parsed_basename.has_type && parsed_basename.has_id)) { return errors::InvalidArgument("Basename: ", basename, " should be fully " "specified."); } ParsedName parsed_name; if (ParseLocalName(fullname, &parsed_name)) { CompleteName(parsed_basename, &parsed_name); *canonical_name = ParsedNameToString(parsed_name); return absl::OkStatus(); } if (ParseFullName(fullname, &parsed_name)) { CompleteName(parsed_basename, &parsed_name); *canonical_name = ParsedNameToString(parsed_name); return absl::OkStatus(); } return errors::InvalidArgument("Could not parse ", fullname, " into a device " "specification."); } string DeviceNameUtils::ParsedNameToString(const ParsedName& pn) { string buf; if (pn.has_job) strings::StrAppend(&buf, "/job:", pn.job); if (pn.has_replica) strings::StrAppend(&buf, "/replica:", pn.replica); if (pn.has_task) strings::StrAppend(&buf, "/task:", pn.task); if (pn.has_type) { strings::StrAppend(&buf, "/device:", pn.type, ":"); if (pn.has_id) { strings::StrAppend(&buf, pn.id); } else { strings::StrAppend(&buf, "*"); } } return buf; } bool DeviceNameUtils::IsSpecification(const ParsedName& less_specific, const ParsedName& more_specific) { if (less_specific.has_job && (!more_specific.has_job || (less_specific.job != more_specific.job))) { return false; } if (less_specific.has_replica && (!more_specific.has_replica || (less_specific.replica != more_specific.replica))) { return false; } if (less_specific.has_task && (!more_specific.has_task || (less_specific.task != more_specific.task))) { return false; } if (less_specific.has_type && (!more_specific.has_type || (less_specific.type != more_specific.type))) { return false; } if (less_specific.has_id && (!more_specific.has_id || (less_specific.id != more_specific.id))) { return false; } return true; } bool DeviceNameUtils::AreCompatibleDevNames(const ParsedName& a, const ParsedName& b) { if (a.has_job && b.has_job && (a.job != b.job)) { return false; } if (a.has_replica && b.has_replica && (a.replica != b.replica)) { return false; } if (a.has_task && b.has_task && (a.task != b.task)) { return false; } if (a.has_type && b.has_type && (a.type != b.type)) { return false; } if (a.has_id && b.has_id && (a.id != b.id)) { return false; } return true; } void DeviceNameUtils::EnsureSpecification(ParsedName* more_specific, const ParsedName& less_specific) { if (less_specific.has_job) { more_specific->has_job = true; more_specific->job = less_specific.job; } if (less_specific.has_replica) { more_specific->has_replica = true; more_specific->replica = less_specific.replica; } if (less_specific.has_task) { more_specific->has_task = true; more_specific->task = less_specific.task; } if (less_specific.has_type) { more_specific->has_type = true; more_specific->type = less_specific.type; } if (less_specific.has_id) { more_specific->has_id = true; more_specific->id = less_specific.id; } } bool DeviceNameUtils::IsCompleteSpecification(const ParsedName& pattern, const ParsedName& name) { CHECK(name.has_job && name.has_replica && name.has_task && name.has_type && name.has_id); if (pattern.has_job && (pattern.job != name.job)) return false; if (pattern.has_replica && (pattern.replica != name.replica)) return false; if (pattern.has_task && (pattern.task != name.task)) return false; if (pattern.has_type && (pattern.type != name.type)) return false; if (pattern.has_id && (pattern.id != name.id)) return false; return true; } namespace { absl::Status MergeDevNamesImpl(DeviceNameUtils::ParsedName* target, const DeviceNameUtils::ParsedName& other, bool allow_soft_placement, bool override_conflicts) { const auto& ParsedNameToString = DeviceNameUtils::ParsedNameToString; if (other.has_job) { if (target->has_job && target->job != other.job) { return errors::InvalidArgument( "Cannot merge devices with incompatible jobs: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_job = other.has_job; target->job = other.job; } } if (other.has_replica) { if (target->has_replica && target->replica != other.replica) { return errors::InvalidArgument( "Cannot merge devices with incompatible replicas: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_replica = other.has_replica; target->replica = other.replica; } } if (other.has_task) { if (target->has_task && target->task != other.task) { return errors::InvalidArgument( "Cannot merge devices with incompatible tasks: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_task = other.has_task; target->task = other.task; } } if (other.has_type) { if (target->has_type && target->type != other.type) { if (!allow_soft_placement) { return errors::InvalidArgument( "Cannot merge devices with incompatible types: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else if (override_conflicts) { target->type = other.type; } else { target->has_id = false; target->has_type = false; return absl::OkStatus(); } } else { target->has_type = other.has_type; target->type = other.type; } } if (other.has_id) { if (target->has_id && target->id != other.id) { if (!allow_soft_placement) { return errors::InvalidArgument( "Cannot merge devices with incompatible ids: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else if (override_conflicts) { target->id = other.id; } else { target->has_id = false; return absl::OkStatus(); } } else { target->has_id = other.has_id; target->id = other.id; } } return absl::OkStatus(); } } absl::Status DeviceNameUtils::MergeDevNames(ParsedName* target, const ParsedName& other, bool allow_soft_placement) { return MergeDevNamesImpl(target, other, allow_soft_placement, false); } absl::Status DeviceNameUtils::MergeOverrideDevNames(ParsedName* target, const ParsedName& other) { return MergeDevNamesImpl(target, other, true, true); } void DeviceNameUtils::MergeUnsetDevNames(ParsedName* target, const ParsedName& other) { if (other.has_job && !target->has_job) { target->has_job = other.has_job; target->job = other.job; } if (other.has_replica && !target->has_replica) { target->has_replica = other.has_replica; target->replica = other.replica; } if (other.has_task && !target->has_task) { target->has_task = other.has_task; target->task = other.task; } if (other.has_type && !target->has_type) { target->has_type = other.has_type; target->type = other.type; } if (other.has_id && !target->has_id) { target->has_id = other.has_id; target->id = other.id; } } bool DeviceNameUtils::IsSameAddressSpace(const ParsedName& a, const ParsedName& b) { return (a.has_job && b.has_job && (a.job == b.job)) && (a.has_replica && b.has_replica && (a.replica == b.replica)) && (a.has_task && b.has_task && (a.task == b.task)); } bool DeviceNameUtils::IsSameAddressSpace(StringPiece src, StringPiece dst) { ParsedName x; ParsedName y; return ParseFullName(src, &x) && ParseFullName(dst, &y) && IsSameAddressSpace(x, y); } bool DeviceNameUtils::IsDifferentAddressSpace(const ParsedName& a, const ParsedName& b) { return (a.has_job && b.has_job && (a.job != b.job)) || (a.has_replica && b.has_replica && (a.replica != b.replica)) || (a.has_task && b.has_task && (a.task != b.task)); } const DeviceNameUtils::ParsedName DeviceNameUtils::AddressSpace( const ParsedName& name) { ParsedName address_space; address_space.has_job = name.has_job; address_space.has_replica = name.has_replica; address_space.has_task = name.has_task; address_space.job = name.job; address_space.replica = name.replica; address_space.task = name.task; return address_space; } string DeviceNameUtils::LocalName(StringPiece type, int id) { return strings::StrCat("/device:", type, ":", id); } namespace { string LegacyLocalName(StringPiece type, int id) { return strings::StrCat(type, ":", id); } } string DeviceNameUtils::LocalName(StringPiece fullname) { ParsedName x; CHECK(ParseFullName(fullname, &x)) << fullname; return LocalName(x.type, x.id); } bool DeviceNameUtils::ParseLocalName(StringPiece name, ParsedName* p) { if (!ConsumeDeviceType(&name, &p->type)) { return false; } p->has_type = true; if (!absl::ConsumePrefix(&name, ":")) { return false; } if (!ConsumeNumber(&name, &p->id)) { return false; } p->has_id = true; return name.empty(); } bool DeviceNameUtils::SplitDeviceName(StringPiece name, string* task, string* device) { ParsedName pn; if (ParseFullName(name, &pn) && pn.has_type && pn.has_id) { task->clear(); task->reserve( (pn.has_job ? (5 + pn.job.size()) : 0) + (pn.has_replica ? (9 + 4 ) : 0) + (pn.has_task ? (6 + 4 ) : 0)); if (pn.has_job) { strings::StrAppend(task, "/job:", pn.job); } if (pn.has_replica) { strings::StrAppend(task, "/replica:", pn.replica); } if (pn.has_task) { strings::StrAppend(task, "/task:", pn.task); } device->clear(); strings::StrAppend(device, pn.type, ":", pn.id); return true; } return false; } bool DeviceNameUtils::GetTaskName(const ParsedName& pn, string* task) { if (pn.has_job && pn.has_replica && pn.has_task) { task->clear(); task->reserve((5 + pn.job.size()) + (9 + 4 ) + (6 + 4 )); strings::StrAppend(task, "/job:", pn.job); strings::StrAppend(task, "/replica:", pn.replica); strings::StrAppend(task, "/task:", pn.task); return true; } return false; } std::vector<string> DeviceNameUtils::GetNamesForDeviceMappings( const ParsedName& pn) { if (pn.has_job && pn.has_replica && pn.has_task && pn.has_type && pn.has_id) { return { DeviceNameUtils::FullName(pn.job, pn.replica, pn.task, pn.type, pn.id), LegacyName(pn.job, pn.replica, pn.task, pn.type, pn.id)}; } else { return {}; } } std::vector<string> DeviceNameUtils::GetLocalNamesForDeviceMappings( const ParsedName& pn) { if (pn.has_type && pn.has_id) { return {DeviceNameUtils::LocalName(pn.type, pn.id), LegacyLocalName(pn.type, pn.id)}; } else { return {}; } } absl::Status DeviceNameUtils::DeviceNameToCpuDeviceName( const string& device_name, string* host_device_name) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(device_name, &device)) { return errors::Internal("Could not parse device name ", device_name); } device.type = "CPU"; device.has_type = true; device.id = 0; device.has_id = true; *host_device_name = DeviceNameUtils::ParsedNameToString(device); return absl::OkStatus(); } std::ostream& operator<<(std::ostream& os, const DeviceNameUtils::ParsedName& x) { os << DeviceNameUtils::ParsedNameToString(x); return os; } }
#include "xla/tsl/util/device_name_utils.h" #include <vector> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace { bool RoundTripParsedName(const string& original, const string& expected) { DeviceNameUtils::ParsedName p; if (!DeviceNameUtils::ParseFullName(original, &p)) { return false; } string round_tripped = DeviceNameUtils::ParsedNameToString(p); return (round_tripped == expected); } enum NamePart { kJob = 0x01, kReplica = 0x02, kTask = 0x04, kDevice = 0x08 }; bool RoundTripPartialName(int parts_to_test, const std::vector<string>& parts, bool explicitDevice) { string original, expected; if (parts_to_test & kJob) { strings::StrAppend(&original, "/job:", parts[0]); strings::StrAppend(&expected, "/job:", parts[0]); } if (parts_to_test & kReplica) { strings::StrAppend(&original, "/replica:", parts[1]); strings::StrAppend(&expected, "/replica:", parts[1]); } if (parts_to_test & kTask) { strings::StrAppend(&original, "/task:", parts[2]); strings::StrAppend(&expected, "/task:", parts[2]); } if (parts_to_test & kDevice) { if (explicitDevice) { strings::StrAppend(&original, "/device:", parts[3]); strings::StrAppend(&expected, "/device:", parts[3]); } else { strings::StrAppend(&original, "/", parts[3]); strings::StrAppend(&expected, "/device:", absl::AsciiStrToUpper(parts[3])); } } return RoundTripParsedName(original, expected); } } TEST(DeviceNameUtilsTest, Basic) { EXPECT_EQ(DeviceNameUtils::FullName("hello", 1, 2, "CPU", 3), "/job:hello/replica:1/task:2/device:CPU:3"); { DeviceNameUtils::ParsedName p; EXPECT_FALSE(DeviceNameUtils::ParseFullName("foobar", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:123/replica:1/task:2/device:GPU:3", &p)); EXPECT_FALSE( DeviceNameUtils::ParseFullName("/job:123/replica:1/task:2/gpu:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:123/replica:1/task:2/device:gpu:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:-1/task:2/device:GPU:3", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:-2/device:GPU:3", &p)); EXPECT_FALSE( DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:2/bar:3", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:2/device:GPU:3/extra", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullOrLocalName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo_bar"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo_bar"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/job:*/replica:4/gpu:*", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/replica:4/device:GPU:*", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/device:GPU/replica:4", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:*/replica:4/device:myspecialdevice:13", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "myspecialdevice"); EXPECT_EQ(p.id, 13); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/", &p)); EXPECT_FALSE(p.has_job); EXPECT_FALSE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_FALSE(p.has_type); EXPECT_FALSE(p.has_id); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/replica:4/device:GPU:5", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 5); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/gpu:*/job:*/replica:4", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } EXPECT_TRUE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:2/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:3/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:10/task:2/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:bar/replica:1/task:2/device:GPU:4")); EXPECT_EQ(DeviceNameUtils::LocalName("CPU", 1), "/device:CPU:1"); EXPECT_EQ(DeviceNameUtils::LocalName("GPU", 2), "/device:GPU:2"); EXPECT_EQ(DeviceNameUtils::LocalName("MySpecialDevice", 13), "/device:MySpecialDevice:13"); EXPECT_EQ( DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/device:CPU:3"), "/device:CPU:3"); EXPECT_EQ(DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/cpu:3"), "/device:CPU:3"); EXPECT_EQ( DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/device:abc:73"), "/device:abc:73"); { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseLocalName("CPU:10", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullOrLocalName("CPU:10", &p)); EXPECT_EQ(p.type, "CPU"); EXPECT_EQ(p.id, 10); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("cpu:abc", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("abc:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("abc", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("myspecialdevice", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullOrLocalName("myspecialdevice", &p)); } { for (int i = 0; i < 0x10; ++i) { EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "CPU:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "GPU:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "cpu:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "gpu:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "CPU:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "GPU:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "cpu:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "gpu:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "someDevice:3"}, true)); } } { DeviceNameUtils::ParsedName x, y; DeviceNameUtils::ParseFullName("/job:work/replica:1/task:3/device:GPU:*", &x); DeviceNameUtils::ParseFullName("/device:CPU:*", &y); EXPECT_FALSE(DeviceNameUtils::AreCompatibleDevNames(x, y)); } { DeviceNameUtils::ParsedName x, y; DeviceNameUtils::ParseFullName("/job:work/replica:1/task:3", &x); DeviceNameUtils::ParseFullName("/device:CPU:*", &y); EXPECT_TRUE(DeviceNameUtils::AreCompatibleDevNames(x, y)); } } static bool IsCSHelper(StringPiece pattern, StringPiece actual) { DeviceNameUtils::ParsedName p, a; EXPECT_TRUE(DeviceNameUtils::ParseFullName(pattern, &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName(actual, &a)); return DeviceNameUtils::IsCompleteSpecification(p, a); } TEST(DeviceNameUtilsTest, IsCompleteSpecification) { EXPECT_TRUE(IsCSHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE( IsCSHelper("/job:*/task:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*/task:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*/gpu:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsCSHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsCSHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1")); EXPECT_TRUE( IsCSHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); } static bool IsSpecHelper(StringPiece pattern, StringPiece actual) { DeviceNameUtils::ParsedName p, a; EXPECT_TRUE(DeviceNameUtils::ParseFullName(pattern, &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName(actual, &a)); return DeviceNameUtils::IsSpecification(p, a); } TEST(DeviceNameUtilsTest, IsSpecification) { EXPECT_TRUE( IsSpecHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1")); EXPECT_TRUE(IsSpecHelper("/job:*", "/replica:1")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work")); EXPECT_TRUE(IsSpecHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/gpu:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/device:GPU:3", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/task:2", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:*/task:2", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/task:*", "/job:*/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/task:2", "/job:*/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/cpu:1")); EXPECT_TRUE(IsSpecHelper("/cpu:0", "/cpu:0")); EXPECT_TRUE( IsSpecHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsSpecHelper("/job:worker/replica:1/task:2/device:GPU:3", "/gpu:*")); EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2")); EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/device:GPU:1")); EXPECT_FALSE( IsSpecHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE(IsSpecHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1")); EXPECT_FALSE(IsSpecHelper("/job:work/replica:*/task:0", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_FALSE(IsSpecHelper("/job:work/replica:0/task:2", "/job:work/replica:*/task:2/device:GPU:3")); } TEST(DeviceNameUtilsTest, SplitDeviceName) { string task; string device; EXPECT_TRUE(DeviceNameUtils::SplitDeviceName( "/job:foo/replica:1/task:2/cpu:1", &task, &device)); EXPECT_EQ("/job:foo/replica:1/task:2", task); EXPECT_EQ("CPU:1", device); EXPECT_TRUE(DeviceNameUtils::SplitDeviceName( "/job:foo/cpu:1/task:2/replica:1", &task, &device)); EXPECT_EQ("/job:foo/replica:1/task:2", task); EXPECT_EQ("CPU:1", device); EXPECT_TRUE( DeviceNameUtils::SplitDeviceName("/device:GPU:3", &task, &device)); EXPECT_EQ("", task); EXPECT_EQ("GPU:3", device); EXPECT_FALSE(DeviceNameUtils::SplitDeviceName("gpu:3", &task, &device)); EXPECT_FALSE(DeviceNameUtils::SplitDeviceName("/job:foo/task:2/replica:1", &task, &device)); EXPECT_TRUE(DeviceNameUtils::SplitDeviceName("/device:myspecialdevice:3", &task, &device)); EXPECT_EQ("", task); EXPECT_EQ("myspecialdevice:3", device); } static DeviceNameUtils::ParsedName Name(const string& str) { DeviceNameUtils::ParsedName ret; CHECK(DeviceNameUtils::ParseFullName(str, &ret)) << "Invalid name: " << str; return ret; } static void MergeDevNamesHelperImpl(const string& name_a, const string& name_b, const string& expected_merge_name, bool allow_soft_placement) { DeviceNameUtils::ParsedName target_a = Name(name_a); TF_EXPECT_OK(DeviceNameUtils::MergeDevNames(&target_a, Name(name_b), allow_soft_placement)); DeviceNameUtils::ParsedName target_b = Name(name_b); TF_EXPECT_OK(DeviceNameUtils::MergeDevNames(&target_b, Name(name_a), allow_soft_placement)); EXPECT_EQ(target_a, target_b); EXPECT_EQ(target_a, Name(expected_merge_name)); EXPECT_EQ(target_b, Name(expected_merge_name)); } static void MergeDevNamesHelper(const string& name_a, const string& name_b, const string& expected_merge_name) { MergeDevNamesHelperImpl(name_a, name_b, expected_merge_name, false); } static void MergeDevNamesHelperAllowSoftPlacement( const string& name_a, const string& name_b, const string& expected_merge_name) { MergeDevNamesHelperImpl(name_a, name_b, expected_merge_name, true); } static void MergeDevNamesError(const string& name_a, const string& name_b, const string& expected_error_substr) { DeviceNameUtils::ParsedName target_a = Name(name_a); absl::Status s = DeviceNameUtils::MergeDevNames(&target_a, Name(name_b)); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), expected_error_substr)) << s; } static void MergeOverrideHelper(const string& target, const string& name, const string& expected_merge_name) { DeviceNameUtils::ParsedName parsed_target = Name(target); TF_EXPECT_OK( DeviceNameUtils::MergeOverrideDevNames(&parsed_target, Name(name))); DeviceNameUtils::ParsedName parsed_expected = Name(expected_merge_name); EXPECT_EQ(parsed_target, parsed_expected) << "parsed_target: " << DeviceNameUtils::ParsedNameToString(parsed_target) << " expected_name: " << DeviceNameUtils::ParsedNameToString(parsed_expected); } static void MergeUnsetDevNamesHelper(const string& name_a, const string& name_b, const string& expected_merge_name_ab, const string& expected_merge_name_ba) { DeviceNameUtils::ParsedName target_a = Name(name_a); DeviceNameUtils::MergeUnsetDevNames(&target_a, Name(name_b)); EXPECT_EQ(target_a, Name(expected_merge_name_ab)); DeviceNameUtils::ParsedName target_b = Name(name_b); DeviceNameUtils::MergeUnsetDevNames(&target_b, Name(name_a)); EXPECT_EQ(target_b, Name(expected_merge_name_ba)); } TEST(DeviceNameUtilsTest, MergeDevNames) { MergeDevNamesHelper("", "", ""); MergeDevNamesHelper("/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeDevNamesHelper("", "/job:foo", "/job:foo"); MergeDevNamesHelper("", "/replica:2", "/replica:2"); MergeDevNamesHelper("", "/task:7", "/task:7"); MergeDevNamesHelper("", "/device:GPU:1", "/device:GPU:1"); MergeDevNamesHelper("/job:foo", "/task:7", "/job:foo/task:7"); MergeDevNamesHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1"); MergeDevNamesHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeDevNamesHelper("", "/gpu:*", "/gpu:*"); MergeDevNamesHelper("/gpu:*", "/gpu:*", "/gpu:*"); MergeDevNamesHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1"); MergeDevNamesError("/job:foo", "/job:bar", "incompatible jobs"); MergeDevNamesError("/replica:0", "/replica:1", "incompatible replicas"); MergeDevNamesError("/task:0", "/task:1", "incompatible tasks"); MergeDevNamesError("/gpu:*", "/cpu:*", "incompatible types"); MergeDevNamesError("/device:GPU:0", "/device:GPU:1", "incompatible ids"); } TEST(DeviceNameUtilsTest, MergeDevNamesAllowSoftPlacement) { MergeDevNamesHelperAllowSoftPlacement("/gpu:*", "/cpu:1", ""); MergeDevNamesHelperAllowSoftPlacement("/cpu:*", "/device:GPU:1", ""); MergeDevNamesHelperAllowSoftPlacement("/device:GPU:1", "/device:GPU:2", "/device:GPU:*"); } TEST(DeviceNameUtilsTest, MergeOverrideDevNames) { MergeOverrideHelper("", "", ""); MergeOverrideHelper("/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeOverrideHelper("", "/job:foo", "/job:foo"); MergeOverrideHelper("", "/replica:2", "/replica:2"); MergeOverrideHelper("", "/task:7", "/task:7"); MergeOverrideHelper("", "/device:GPU:1", "/device:GPU:1"); MergeOverrideHelper("/job:foo", "/task:7", "/job:foo/task:7"); MergeOverrideHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1"); MergeOverrideHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeOverrideHelper("", "/gpu:*", "/gpu:*"); MergeOverrideHelper("/gpu:*", "/gpu:*", "/gpu:*"); MergeOverrideHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1"); MergeOverrideHelper("/gpu:0", "/cpu:1", "/cpu:1"); MergeOverrideHelper("/gpu:*", "/cpu:1", "/cpu:1"); MergeOverrideHelper("/cpu:*", "/device:GPU:1", "/gpu:1"); MergeOverrideHelper("/device:GPU:1", "/device:GPU:2", "/device:GPU:2"); MergeOverrideHelper("/job:foo/CPU:*", "/device:GPU:1", "/job:foo/GPU:1"); MergeOverrideHelper("/cpu:*", "/job:foo/device:GPU:1", "/job:foo/GPU:1"); MergeOverrideHelper("/task:0/cpu:*", "/device:GPU:1", "/task:0/GPU:1"); MergeOverrideHelper("/cpu:*", "/task:0/device:GPU:1", "/task:0/GPU:1"); } TEST(DeviceNameUtilsTest, MergeUnsetDevNames) { MergeUnsetDevNamesHelper("", "", "", ""); MergeUnsetDevNamesHelper( "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeUnsetDevNamesHelper("", "/job:foo", "/job:foo", "/job:foo"); MergeUnsetDevNamesHelper("", "/replica:2", "/replica:2", "/replica:2"); MergeUnsetDevNamesHelper("", "/task:7", "/task:7", "/task:7"); MergeUnsetDevNamesHelper("", "/device:GPU:1", "/device:GPU:1", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo", "/task:7", "/job:foo/task:7", "/job:foo/task:7"); MergeUnsetDevNamesHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1", "/job:foo/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeUnsetDevNamesHelper("", "/gpu:*", "/gpu:*", "/gpu:*"); MergeUnsetDevNamesHelper("/gpu:*", "/gpu:*", "/gpu:*", "/gpu:*"); MergeUnsetDevNamesHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo", "/job:bar", "/job:foo", "/job:bar"); MergeUnsetDevNamesHelper("/replica:0", "/replica:1", "/replica:0", "/replica:1"); MergeUnsetDevNamesHelper("/task:0", "/task:1", "/task:0", "/task:1"); MergeUnsetDevNamesHelper("/gpu:*", "/cpu:*", "/gpu:*", "/cpu:*"); MergeUnsetDevNamesHelper("/device:GPU:0", "/device:GPU:1", "/device:GPU:0", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo/device:GPU", "/job:bar", "/job:foo/device:GPU", "/job:bar/device:GPU"); } TEST(DeviceNameUtilsTest, GetNamesForDeviceMappings) { DeviceNameUtils::ParsedName p = Name("/job:foo/replica:10/task:0/device:GPU:1"); EXPECT_EQ(absl::StrJoin(DeviceNameUtils::GetNamesForDeviceMappings(p), ","), "/job:foo/replica:10/task:0/device:GPU:1," "/job:foo/replica:10/task:0/gpu:1"); p.has_task = false; EXPECT_EQ(absl::StrJoin(DeviceNameUtils::GetNamesForDeviceMappings(p), ","), ""); } TEST(DeviceNameUtilsTest, CanonicalizeDeviceName) { string canonical_name; { string basename = "/job:foo/replica:10/task:0/device:CPU:0"; TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/replica:10/task:0/device:CPU:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica:10/device:CPU:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica:10/cpu:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName("CPU:0", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:0", canonical_name); absl::Status s = DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica/cpu:1", basename, &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); } { string fullname = "/device:CPU:0"; absl::Status s = DeviceNameUtils::CanonicalizeDeviceName( fullname, "/device:CPU:0", &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); s = DeviceNameUtils::CanonicalizeDeviceName( fullname, "/job:foo/task:0/replica/cpu:1", &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); } } TEST(DeviceNameUtilsTest, CompareFullNames) { EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/cpu:0", "/job:foo/replica:0/task:0/cpu:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:1", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:1/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:1/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:goo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:GPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:1/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:1/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:goo/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:GPU:0")); EXPECT_FALSE( DeviceNameUtils::CompareFullNames("/device:CPU:1", "unparseablename")); EXPECT_TRUE( DeviceNameUtils::CompareFullNames("unparseablename", "/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/replica:0/task:0/device:CPU:1", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/replica:0/task:0/device:CPU:0", "/replica:0/task:0/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames("/task:0/device:CPU:0", "/task:0/device:CPU:1")); EXPECT_TRUE( DeviceNameUtils::CompareFullNames("/device:CPU:0", "/device:CPU:1")); } static void BM_ParseFullName(::testing::benchmark::State& state) { DeviceNameUtils::ParsedName p; for (auto s : state) { DeviceNameUtils::ParseFullName("/job:worker/replica:3/task:0/cpu:0", &p); } } BENCHMARK(BM_ParseFullName); }
2,250
#ifndef XLA_MLIR_TOOLS_MLIR_REPLAY_PUBLIC_EXECUTION_TRACE_UTILS_H_ #define XLA_MLIR_TOOLS_MLIR_REPLAY_PUBLIC_EXECUTION_TRACE_UTILS_H_ #include "absl/status/statusor.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Region.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_replay/public/execution_trace.pb.h" #include "xla/xla_data.pb.h" namespace mlir { namespace interpreter { class ExecutionTraceListener : public InterpreterListener { public: explicit ExecutionTraceListener(ExecutionTrace* trace) : trace_(trace) {} void BeforeOp(ArrayRef<InterpreterValue> args, Operation* op) override; void AfterOp(ArrayRef<InterpreterValue> results) override; void EnterRegion(ArrayRef<InterpreterValue> bbargs, Region& region) override; void LeaveRegion(ArrayRef<InterpreterValue> yielded) override; private: ExecutionTrace* trace_; SmallVector<RegionTrace*> regions_; }; llvm::SmallVector<mlir::Attribute> ValueToAttribute( const InterpreterValue& value, mlir::Type type); absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal); absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal, mlir::Type type); absl::StatusOr<InterpreterValue> LiteralToValue(const xla::Literal& literal); TracedValue ValueToTracedValue(const InterpreterValue& value); absl::StatusOr<InterpreterValue> TracedValueToValue( const TracedValue& traced_value); llvm::SmallVector<const InstructionTrace*> FindOpExecutionsInTrace( const ExecutionTrace& trace, mlir::Operation* op); } } #endif #include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Region.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "xla/mlir/tools/mlir_replay/public/execution_trace.pb.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { struct TraceInterpreterValueVisitor { TracedValue out; void Add(float v) { out.add_floats(v); } void Add(double v) { out.add_doubles(v); } void Add(std::complex<float> v) { out.add_floats(v.real()); out.add_floats(v.imag()); } void Add(std::complex<double> v) { out.add_doubles(v.real()); out.add_doubles(v.imag()); } void Add(int64_t v) { out.add_ints(v); } void Add(int32_t v) { out.add_ints(v); } void Add(int16_t v) { out.add_ints(v); } void Add(int8_t v) { out.add_ints(v); } void Add(uint64_t v) { out.add_uints(v); } void Add(uint32_t v) { out.add_uints(v); } void Add(uint16_t v) { out.add_uints(v); } void Add(uint8_t v) { out.add_uints(v); } void Add(bool v) { out.add_ints(static_cast<int64_t>(v)); } template <typename T> void operator()(T v) { SetElementType<T>(); out.set_is_scalar(true); Add(v); } void operator()(const Tuple& t) { out.set_element_type(TracedValue::TUPLE); for (const auto& v : t.values) { *out.add_tuple_elements() = ValueToTracedValue(*v); } } template <typename T> void operator()(const TensorOrMemref<T>& v) { for (int64_t size : v.view.sizes) { out.add_shape(size); } SetElementType<T>(); for (const auto& index : v.view.Indices()) { Add(v.at(index)); } } template <typename T> void SetElementType() { out.set_element_type(GetElementType(T{})); if constexpr (std::is_same_v<T, bool>) { out.set_bit_width(1); } else { out.set_bit_width(sizeof(T) * 8); } } template <typename T> static TracedValue::ElementType GetElementType(const T&) { if constexpr (std::is_floating_point_v<T>) { return TracedValue::FLOAT; } else if constexpr (std::is_integral_v<T>) { if constexpr (std::is_unsigned_v<T>) { return TracedValue::UNSIGNED; } else { return TracedValue::INTEGRAL; } } else { T{"invalid type"} + 0; return TracedValue::UNKNOWN; } } template <typename T> static TracedValue::ElementType GetElementType(const std::complex<T>&) { return TracedValue::COMPLEX; } static TracedValue::ElementType GetElementType(const Tuple&) { return TracedValue::UNKNOWN; } }; } void ExecutionTraceListener::BeforeOp(ArrayRef<InterpreterValue> args, Operation* op) { auto* inst = regions_.back()->add_instructions(); inst->set_name(op->getName().getStringRef().str()); for (const auto& arg : args) { *inst->add_args() = ValueToTracedValue(arg); } } void ExecutionTraceListener::AfterOp(ArrayRef<InterpreterValue> results) { auto* traced_results = regions_.back()->mutable_instructions()->rbegin()->mutable_results(); for (const auto& result : results) { *traced_results->Add() = ValueToTracedValue(result); } } void ExecutionTraceListener::EnterRegion(ArrayRef<InterpreterValue> bbargs, Region& region) { if (regions_.empty()) { regions_.push_back(trace_->mutable_trace()); } else { regions_.push_back( regions_.back()->mutable_instructions()->rbegin()->add_regions()); } auto& traced_region = *regions_.back(); traced_region.set_region_number(region.getRegionNumber()); for (const auto& bbarg : bbargs) { *traced_region.add_bbargs() = ValueToTracedValue(bbarg); } } void ExecutionTraceListener::LeaveRegion(ArrayRef<InterpreterValue> yielded) { for (const auto& result : yielded) { *regions_.back()->add_results() = ValueToTracedValue(result); } regions_.pop_back(); } llvm::SmallVector<mlir::Attribute> ValueToAttribute( const InterpreterValue& value, mlir::Type type) { if (std::holds_alternative<Tuple>(value.storage)) { auto types = type.cast<TupleType>().getTypes(); const auto& t = std::get<Tuple>(value.storage); llvm::SmallVector<mlir::Attribute> attrs; for (const auto& [v, ty] : llvm::zip(t.values, types)) { auto attr = ValueToAttribute(*v, ty); assert(attr.size() == 1 && "nested tuples not supported"); attrs.push_back(attr.front()); } return attrs; } if (!value.IsTensor()) { return {cast<DenseElementsAttr>( ValueToAttribute(value.AsUnitTensor(), mlir::RankedTensorType::get({}, type)) .front()) .getValues<mlir::Attribute>()[0]}; } if (!type.isa<ShapedType>()) { return {}; } auto shaped_ty = type.cast<ShapedType>(); return {DispatchScalarType(shaped_ty, [&](auto dummy) -> mlir::Attribute { using T = decltype(dummy); auto& t = std::get<TensorOrMemref<T>>(value.storage); SmallVector<T> vals; for (const auto& index : t.view.Indices()) { vals.push_back(t.at(index)); } auto attr_ty = shaped_ty.cloneWith(t.view.sizes, shaped_ty.getElementType()); if constexpr (std::is_same_v<T, bool>) { return mlir::DenseElementsAttr::get(attr_ty, vals); } else { return mlir::DenseElementsAttr::get<T>(attr_ty, vals); } })}; } namespace { template <typename T> TensorOrMemref<T> ArrayLiteralToTensor(const xla::Literal& literal) { SmallVector<int64_t> layout; if (literal.shape().has_layout()) { llvm::copy(literal.shape().layout().minor_to_major(), std::back_inserter(layout)); } SmallVector<int64_t> shape{literal.shape().dimensions().begin(), literal.shape().dimensions().end()}; auto result = TensorOrMemref<T>::Empty(shape, layout); assert(literal.size_bytes() == result.buffer->GetByteSize() && "expected buffer sizes to match"); memcpy(result.buffer->at(0, 0), literal.untyped_data(), result.buffer->GetByteSize()); return result; } } absl::StatusOr<InterpreterValue> LiteralToValue(const xla::Literal& literal) { if (literal.shape().IsTuple()) { auto elements = literal.Clone().DecomposeTuple(); Tuple result; for (auto& element : elements) { TF_ASSIGN_OR_RETURN(auto converted, LiteralToValue(element)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{result}}; } if (literal.shape().IsToken()) { return absl::UnimplementedError("token arguments are not implemented"); } if (literal.shape().IsArray()) { switch (literal.shape().element_type()) { case xla::PRED: return {{ArrayLiteralToTensor<bool>(literal)}}; case xla::S8: return {{ArrayLiteralToTensor<int8_t>(literal)}}; case xla::S16: return {{ArrayLiteralToTensor<int16_t>(literal)}}; case xla::S32: return {{ArrayLiteralToTensor<int32_t>(literal)}}; case xla::S64: return {{ArrayLiteralToTensor<int64_t>(literal)}}; case xla::U8: return {{ArrayLiteralToTensor<uint8_t>(literal)}}; case xla::U16: return {{ArrayLiteralToTensor<uint16_t>(literal)}}; case xla::U32: return {{ArrayLiteralToTensor<uint32_t>(literal)}}; case xla::U64: return {{ArrayLiteralToTensor<uint64_t>(literal)}}; case xla::F16: return absl::UnimplementedError("F16 not implemented"); case xla::F32: return {{ArrayLiteralToTensor<float>(literal)}}; case xla::BF16: return absl::UnimplementedError("BF16 not implemented"); case xla::F64: return {{ArrayLiteralToTensor<double>(literal)}}; case xla::F8E5M2: return absl::UnimplementedError("F8E5M2 not implemented"); case xla::F8E4M3FN: return absl::UnimplementedError("F8E4M3FN not implemented"); case xla::F8E4M3B11FNUZ: return absl::UnimplementedError("F8E4M3B11FNUZ not implemented"); case xla::F8E5M2FNUZ: return absl::UnimplementedError("F8E5M2FNUZ not implemented"); case xla::F8E4M3FNUZ: return absl::UnimplementedError("F8E4M3FNUZ not implemented"); case xla::C64: return {{ArrayLiteralToTensor<std::complex<float>>(literal)}}; case xla::C128: return {{ArrayLiteralToTensor<std::complex<double>>(literal)}}; default: break; } } return absl::InvalidArgumentError("unexpected literal type"); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal) { TF_ASSIGN_OR_RETURN(auto deserialized, xla::Literal::CreateFromProto(literal)); return LiteralToValue(deserialized); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal, mlir::Type type) { TF_ASSIGN_OR_RETURN(auto result, LiteralToValue(literal)); return {DispatchScalarType(type, [&](auto dummy) -> InterpreterValue { TensorOrMemref<decltype(dummy)> cast; cast.view = result.View(); cast.buffer = result.GetBuffer(); return {cast}; })}; } TracedValue ValueToTracedValue(const InterpreterValue& value) { TraceInterpreterValueVisitor visitor; std::visit(visitor, value.storage); return visitor.out; } absl::StatusOr<InterpreterValue> TracedValueToValue( const TracedValue& traced_value) { auto extract = [&](auto dummy, auto& elements) -> InterpreterValue { using T = decltype(dummy); if (traced_value.is_scalar()) { return {static_cast<T>(elements[0])}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); for (auto [index, element] : llvm::zip(result.view.Indices(), elements)) { result.at(index) = element; } return {result}; }; auto extract_complex = [&](auto& elements) -> InterpreterValue { using T = std::complex<std::decay_t<decltype(elements[0])>>; if (traced_value.is_scalar()) { return {T{elements[0], elements[1]}}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); int64_t i = 0; for (auto it = result.view.Indices().begin(), end = result.view.Indices().end(); it != end; ++it, i += 2) { result.at(*it) = {elements[i], elements[i + 1]}; } return {result}; }; switch (traced_value.element_type()) { case TracedValue::UNKNOWN: break; case TracedValue::FLOAT: if (traced_value.bit_width() == 32) { return extract(float{}, traced_value.floats()); } return extract(double{}, traced_value.doubles()); case TracedValue::UNSIGNED: switch (traced_value.bit_width()) { case 1: return extract(bool{}, traced_value.ints()); case 8: return extract(uint8_t{}, traced_value.uints()); case 16: return extract(uint16_t{}, traced_value.uints()); case 32: return extract(uint32_t{}, traced_value.uints()); case 64: return extract(uint64_t{}, traced_value.uints()); } break; case TracedValue::INTEGRAL: switch (traced_value.bit_width()) { case 8: return extract(int8_t{}, traced_value.ints()); case 16: return extract(int16_t{}, traced_value.ints()); case 32: return extract(int32_t{}, traced_value.ints()); case 64: return extract(int64_t{}, traced_value.ints()); } break; case TracedValue::COMPLEX: switch (traced_value.bit_width()) { case 64: return extract_complex(traced_value.floats()); case 128: return extract_complex(traced_value.doubles()); } break; case TracedValue::TUPLE: Tuple result; for (const auto& elem : traced_value.tuple_elements()) { TF_ASSIGN_OR_RETURN(auto converted, TracedValueToValue(elem)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{std::move(result)}}; } return absl::InvalidArgumentError("unexpected type: " + traced_value.DebugString()); } llvm::SmallVector<const InstructionTrace*> FindOpExecutionsInTrace( const ExecutionTrace& trace, mlir::Operation* op) { llvm::SmallVector<int64_t> region_indices; llvm::SmallVector<int64_t> op_indices; std::function<void(mlir::Operation*)> get_op_path; get_op_path = [&](mlir::Operation* op) { auto* parent = op->getParentOp(); if (!llvm::isa<func::FuncOp>(parent)) { get_op_path(parent); region_indices.push_back(op->getParentRegion()->getRegionNumber()); } int64_t index = 0; while ((op = op->getPrevNode()) != nullptr) ++index; op_indices.push_back(index); }; get_op_path(op); llvm::SmallVector<const InstructionTrace*> result; std::function<void(const RegionTrace& trace, int index)> step; step = [&](const RegionTrace& trace, int index) { auto& instruction_trace = trace.instructions(op_indices[index]); if (region_indices.size() > index) { for (const auto& region : instruction_trace.regions()) { if (region.region_number() == region_indices[index]) { step(region, index + 1); } } } else { result.push_back(&instruction_trace); } }; step(trace.trace(), 0); return result; } } }
#include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cmath> #include <complex> #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "llvm/ADT/STLExtras.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { class TracedValueRoundTripTest : public ::testing::TestWithParam<InterpreterValue> {}; TEST_P(TracedValueRoundTripTest, Run) { auto traced_value = ValueToTracedValue(GetParam()); TF_ASSERT_OK_AND_ASSIGN(auto value, TracedValueToValue(traced_value)); EXPECT_EQ(GetParam(), value) << GetParam().ToString(); } template <typename T> InterpreterValue MakeTensor(ArrayRef<int64_t> shape, ArrayRef<T> values) { auto result = TensorOrMemref<T>::Empty(shape); for (auto [indices, value] : llvm::zip(result.view.Indices(), values)) { result.at(indices) = value; } return {result}; } template <typename T> std::shared_ptr<T> WrapShared(T value) { return std::make_shared<T>(std::move(value)); } INSTANTIATE_TEST_SUITE_P( RoundTrip, TracedValueRoundTripTest, ::testing::ValuesIn(std::vector<InterpreterValue>{ {uint8_t{42}}, {uint16_t{43}}, {uint32_t{44}}, {uint64_t{45}}, {int8_t{-47}}, {int16_t{-48}}, {int32_t{-49}}, {int64_t{-50}}, {float{42.0}}, {double{42.0}}, {std::complex<float>{1.0, 2.0}}, {std::complex<double>{3.0, 4.0}}, {true}, {false}, {MakeTensor<int16_t>({1, 2}, {42, 43})}, {MakeTensor<double>({2, 2}, {1.0, -INFINITY, INFINITY, NAN})}, {MakeTensor<std::complex<double>>({}, {{1.0, 2.0}})}, {Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ WrapShared(InterpreterValue{42}), WrapShared(InterpreterValue{43.0}), }}}})); class FromLiteralTest : public ::testing::TestWithParam< std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> {}; TEST_P(FromLiteralTest, Run) { TF_ASSERT_OK_AND_ASSIGN(auto value, LiteralToValue(*GetParam().first)); EXPECT_EQ(value, GetParam().second) << value.ToString() << " vs " << GetParam().second.ToString(); } std::vector<std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> MakeInputs() { using ::xla::LiteralUtil; return { {WrapShared(LiteralUtil::CreateR2<uint8_t>({{41, 42}})), MakeTensor<uint8_t>({1, 2}, {41, 42})}, {WrapShared(LiteralUtil::CreateR0<uint16_t>(43)), MakeTensor<uint16_t>({}, {43})}, {WrapShared(LiteralUtil::CreateR0<uint32_t>(44)), MakeTensor<uint32_t>({}, {44})}, {WrapShared(LiteralUtil::CreateR0<uint64_t>(45)), MakeTensor<uint64_t>({}, {45})}, {WrapShared(LiteralUtil::CreateR0<int8_t>(46)), MakeTensor<int8_t>({}, {46})}, {WrapShared(LiteralUtil::CreateR0<int16_t>(47)), MakeTensor<int16_t>({}, {47})}, {WrapShared(LiteralUtil::CreateR0<int32_t>(48)), MakeTensor<int32_t>({}, {48})}, {WrapShared(LiteralUtil::CreateR0<int64_t>(49)), MakeTensor<int64_t>({}, {49})}, {WrapShared(LiteralUtil::CreateR0<float>(50.0)), MakeTensor<float>({}, {50.0})}, {WrapShared(LiteralUtil::CreateR0<double>(51.0)), MakeTensor<double>({}, {51.0})}, {WrapShared(LiteralUtil::CreateR0<std::complex<float>>({52.0, 53.0})), MakeTensor<std::complex<float>>({}, {{52.0, 53.0}})}, {WrapShared(LiteralUtil::CreateR0<std::complex<double>>({54.0, 55.0})), MakeTensor<std::complex<double>>({}, {{54.0, 55.0}})}, {WrapShared(LiteralUtil::CreateR1<bool>({true, false})), MakeTensor<bool>({2}, {true, false})}, {WrapShared( LiteralUtil::MakeTupleOwned(LiteralUtil::CreateR0<bool>(true), LiteralUtil::CreateR0<int8_t>(56))), InterpreterValue{Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ std::make_shared<InterpreterValue>(MakeTensor<bool>({}, {true})), std::make_shared<InterpreterValue>( MakeTensor<int8_t>({}, {56}))}}}}}; } INSTANTIATE_TEST_SUITE_P(Test, FromLiteralTest, ::testing::ValuesIn(MakeInputs())); } } }
2,251
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_REGISTRATION_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_REGISTRATION_H_ #include <cstddef> #include <cstdint> #include <functional> #include <optional> #include <type_traits> #include <utility> #include "absl/strings/str_cat.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/TypeName.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value_util.h" #define MLIR_INTERPRETER_CONCAT_IMPL(x, y) x##y #define MLIR_INTERPRETER_CONCAT(x, y) MLIR_INTERPRETER_CONCAT_IMPL(x, y) #define REGISTER_MLIR_INTERPRETER_OP(args...) \ static int MLIR_INTERPRETER_CONCAT(init_, __COUNTER__) = []() { \ ::mlir::interpreter::detail::RegisterInterpreterOp(args); \ return 1; \ }(); namespace mlir { namespace interpreter { namespace detail { using InterpreterFunction = std::function<SmallVector<InterpreterValue>( MutableArrayRef<InterpreterValue>, mlir::Operation*, InterpreterState&)>; InterpreterFunction GetFunction(llvm::StringRef name); void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&)); void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&, const InterpreterValue&)); template <typename T> struct is_optional : std::false_type {}; template <typename T> struct is_optional<std::optional<T>> : std::true_type {}; template <typename ArgT> auto TypedInterpreterOpConvertArg(MutableArrayRef<InterpreterValue> args, InterpreterState& state) { constexpr bool optional = is_optional<ArgT>::value; constexpr bool single = std::is_same_v<ArgT, InterpreterValue> || is_valid_interpreter_value_v<ArgT>; if constexpr (optional) { if (args.empty()) { return ArgT{}; } } if constexpr (single || optional) { if (args.size() != 1) { state.AddFailure("Expected a single argument for the operand"); return ArgT{}; } } auto fail = [&]() { state.AddFailure(absl::StrCat("Unable to convert argument (variant index ", args[0].storage.index(), ") to ", llvm::getTypeName<ArgT>().str())); return ArgT{}; }; if constexpr (single) { if (auto arg = InterpreterValueDynCast<ArgT>(args[0])) { return ArgT{*arg}; } return fail(); } else if constexpr (optional) { using T = std::decay_t<decltype(*std::declval<ArgT>())>; if (auto arg = InterpreterValueDynCast<T>(args[0])) { return arg; } return fail(); } else { using E = std::decay_t<decltype(*std::declval<ArgT>().begin())>; if constexpr (std::is_same_v<E, InterpreterValue>) { return ArgT{args}; } else { return UnpackInterpreterValues<E>(args); } } } template <typename RetT> SmallVector<InterpreterValue> TypedInterpreterOpConvertRet(RetT ret) { if constexpr (std::is_same_v<RetT, InterpreterValue>) { return {ret}; } else if constexpr (is_valid_interpreter_value_v<RetT>) { return {InterpreterValue{ret}}; } else if constexpr (std::is_same_v<RetT, SmallVector<InterpreterValue>>) { return ret; } else { using E = std::decay_t<decltype(*std::declval<RetT>().begin())>; return PackInterpreterValues(ArrayRef<E>(ret)); } } template <typename Op, typename Ret, typename... T, size_t... Indices> void RegisterTypedInterpreterOpImpl(Ret (*fn)(InterpreterState&, Op, T... args), std::index_sequence<Indices...>) { RegisterInterpreterOp( Op::getOperationName(), [fn](MutableArrayRef<InterpreterValue> args, mlir::Operation* op, InterpreterState& state) -> SmallVector<InterpreterValue> { auto cast = llvm::dyn_cast<Op>(op); if (!cast) { state.AddFailure(absl::StrCat( "failed to cast op '", op->getName().getStringRef().str(), "' to expected type (", llvm::getTypeName<Op>().str(), ")")); return {}; } int64_t used_args = 0; for (auto i : llvm::seq(0ul, sizeof...(T))) { used_args += cast.getODSOperandIndexAndLength(i).second; } if (args.size() != used_args) { state.AddFailure("Op handler did not use all arguments"); return {}; } auto extract_arg = [&](auto index, auto* dummy) { auto [pos, length] = cast.getODSOperandIndexAndLength(index); using ArgT = std::decay_t<decltype(*dummy)>; return TypedInterpreterOpConvertArg<ArgT>(args.slice(pos, length), state); }; if constexpr (std::is_same_v<Ret, void>) { fn(state, cast, extract_arg(Indices, (std::decay_t<T>*){nullptr})...); return {}; } else { Ret ret = fn(state, cast, extract_arg(Indices, (std::decay_t<T>*){nullptr})...); return TypedInterpreterOpConvertRet(ret); } }); } template <typename Op, typename Ret, typename... T> void RegisterInterpreterOp(Ret (*fn)(InterpreterState&, Op, T...)) { RegisterTypedInterpreterOpImpl(fn, std::index_sequence_for<T...>{}); } void RegisterInterpreterOp( llvm::StringRef name, InterpreterValue (*fn)(MutableArrayRef<InterpreterValue>)); void RegisterInterpreterOp(llvm::StringRef name, void (*fn)(MutableArrayRef<InterpreterValue>)); void RegisterInterpreterOp( llvm::StringRef name, std::function<llvm::SmallVector<InterpreterValue>( MutableArrayRef<InterpreterValue>, mlir::Operation*, InterpreterState&)> fn); void RegisterInterpreterOp(llvm::StringRef name, llvm::StringRef original); } } } #endif #include "xla/mlir/tools/mlir_interpreter/framework/registration.h" #include <cassert> #include <functional> #include <utility> #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" namespace mlir { namespace interpreter { namespace detail { namespace { DenseMap<llvm::StringRef, llvm::StringRef>& GetOpAliases() { static DenseMap<llvm::StringRef, llvm::StringRef>* aliases = nullptr; if (!aliases) { aliases = new DenseMap<llvm::StringRef, llvm::StringRef>(); } return *aliases; } DenseMap<llvm::StringRef, InterpreterFunction>& GetFunctions() { static DenseMap<llvm::StringRef, InterpreterFunction>* functions = nullptr; if (!functions) { functions = new DenseMap<llvm::StringRef, InterpreterFunction>(); } return *functions; } } InterpreterFunction GetFunction(llvm::StringRef name) { const auto& fns = GetFunctions(); auto fn = fns.find(name); if (fn != fns.end()) { return fn->second; } const auto& aliases = GetOpAliases(); auto alias = aliases.find(name); if (alias != aliases.end()) { return fns.find(alias->second)->second; } return nullptr; } void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { assert(operands.size() == 1 && "unexpected number of operands"); return {fn(operands[0])}; }); } void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&, const InterpreterValue&)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { assert(operands.size() == 2 && "unexpected number of operands"); return {fn(operands[0], operands[1])}; }); } void RegisterInterpreterOp( llvm::StringRef name, InterpreterValue (*fn)(MutableArrayRef<InterpreterValue>)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { return {fn(operands)}; }); } void RegisterInterpreterOp(llvm::StringRef name, void (*fn)(MutableArrayRef<InterpreterValue>)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { fn(operands); return {}; }); } void RegisterInterpreterOp( llvm::StringRef name, std::function<llvm::SmallVector<InterpreterValue>( MutableArrayRef<InterpreterValue>, mlir::Operation*, InterpreterState&)> fn) { GetFunctions()[name] = std::move(fn); } void RegisterInterpreterOp(llvm::StringRef name, llvm::StringRef original) { GetOpAliases()[name] = original; } } } }
#include "tensorflow/core/framework/registration/registration.h" #include <gmock/gmock.h> #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::testing::Eq; #define STORE_NEXT_ID_IMPL(id, name) constexpr int name = id #define STORE_NEXT_ID(name) TF_NEW_ID_FOR_INIT(STORE_NEXT_ID_IMPL, name) STORE_NEXT_ID(kBaseId); STORE_NEXT_ID(kNextId1); STORE_NEXT_ID(kNextId2); TEST(NewIdForInitTest, SequentialIds) { static_assert(kBaseId >= 0, "kBaseId < 0"); static_assert(kNextId1 == kBaseId + 1, "kNextId1 != kBaseId+1"); static_assert(kNextId2 == kBaseId + 2, "kNextId2 != kBaseId+2"); } int observed_unconditional_init; InitOnStartupMarker const kUnconditionalInitMarker = InitOnStartupMarker{} << []() { observed_unconditional_init++; return InitOnStartupMarker{}; }; TEST(InitOnStartupTest, Unconditional) { EXPECT_THAT(observed_unconditional_init, Eq(1)); } template <bool Enable> int observed_conditional_init; template <bool Enable> InitOnStartupMarker const kConditionalInitMarker = TF_INIT_ON_STARTUP_IF(Enable) << []() { (observed_conditional_init<Enable>)++; return InitOnStartupMarker{}; }; template InitOnStartupMarker const kConditionalInitMarker<true>; template InitOnStartupMarker const kConditionalInitMarker<false>; TEST(InitOnStartupTest, DISABLED_Conditional) { EXPECT_THAT(observed_conditional_init<true>, Eq(1)); EXPECT_THAT(observed_conditional_init<false>, Eq(0)); } template <bool Enable> int observed_conditional_init_immediate; template <bool Enable> InitOnStartupMarker const kConditionalInitImmediateMarker = TF_INIT_ON_STARTUP_IF(Enable) << ([]() { (observed_conditional_init_immediate<Enable>)++; return InitOnStartupMarker{}; })(); template InitOnStartupMarker const kConditionalInitImmediateMarker<true>; template InitOnStartupMarker const kConditionalInitImmediateMarker<false>; TEST(InitOnStartupTest, DISABLED_ConditionalImmediate) { EXPECT_THAT(observed_conditional_init_immediate<true>, Eq(1)); EXPECT_THAT(observed_conditional_init_immediate<false>, Eq(0)); } } }
2,252
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_INTERPRETER_VALUE_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_INTERPRETER_VALUE_H_ #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <variant> #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" namespace mlir { namespace interpreter { struct InterpreterValue; struct Tuple { bool operator==(const Tuple& other) const; SmallVector<std::shared_ptr<InterpreterValue>> values; }; struct InterpreterValue { void Print(llvm::raw_ostream& os) const; std::string ToString() const; InterpreterValue ExtractElement(llvm::ArrayRef<int64_t> indices) const; void InsertElement(llvm::ArrayRef<int64_t> indices, const InterpreterValue& value); void Fill( const std::function<InterpreterValue(llvm::ArrayRef<int64_t> indices)>& f); InterpreterValue AsUnitTensor(bool is_vector = false) const; int64_t AsInt() const; uint64_t AsUInt() const; double AsDouble() const; int64_t GetByteSizeOfElement() const; InterpreterValue Clone(ArrayRef<int64_t> layout = {}) const; InterpreterValue CoerceLayout(llvm::ArrayRef<int64_t> layout) const; InterpreterValue TypedAlike(llvm::ArrayRef<int64_t> shape) const; static InterpreterValue MakeTensor(mlir::Type element_type, SmallVector<int64_t> shape); BufferView& View(); const BufferView& View() const; std::shared_ptr<Buffer> GetBuffer() const; bool IsTensor() const; bool operator==(const InterpreterValue& other) const { if (storage.index() != other.storage.index()) return false; if (IsTensor() || std::holds_alternative<Tuple>(storage)) return storage == other.storage; return AsUnitTensor() == other.AsUnitTensor(); } std::variant< Tuple, bool, float, double, uint8_t, int8_t, uint16_t, int16_t, uint32_t, int32_t, uint64_t, int64_t, std::complex<float>, std::complex<double>, TensorOrMemref<bool>, TensorOrMemref<float>, TensorOrMemref<double>, TensorOrMemref<uint8_t>, TensorOrMemref<int8_t>, TensorOrMemref<uint16_t>, TensorOrMemref<int16_t>, TensorOrMemref<uint32_t>, TensorOrMemref<int32_t>, TensorOrMemref<uint64_t>, TensorOrMemref<int64_t>, TensorOrMemref<std::complex<float>>, TensorOrMemref<std::complex<double>>> storage; }; template <typename T> constexpr static bool is_valid_interpreter_value_v = std::is_constructible_v<decltype(InterpreterValue::storage), T>; template <typename T> std::optional<T> InterpreterValueDynCast(InterpreterValue v) { if constexpr (std::is_same_v<T, InterpreterValue>) { return v; } if constexpr (is_valid_interpreter_value_v<T>) { if (std::holds_alternative<T>(v.storage)) { return std::get<T>(v.storage); } } if (v.IsTensor() && !is_tensor_or_memref_v<T>) { if (v.View().GetNumElements() != 1) { return std::nullopt; } return InterpreterValueDynCast<T>(v.ExtractElement({})); } return std::visit( [](auto v) -> std::optional<T> { if constexpr (std::is_convertible_v<decltype(v), T>) { return v; } else { return std::nullopt; } }, v.storage); } template <typename T> T InterpreterValueCast(InterpreterValue v) { auto ret = InterpreterValueDynCast<T>(v); assert(ret && "cast failed"); return *std::move(ret); } template <class Fn> auto DispatchScalarType(mlir::Type ty, Fn&& functor) { ty = getElementTypeOrSelf(ty); if (ty.isF32()) { return functor(float{}); } if (ty.isF64()) { return functor(double{}); } if (ty.isUnsignedInteger(64)) { return functor(uint64_t{}); } if (ty.isInteger(64) || ty.isIndex()) { return functor(int64_t{}); } if (ty.isUnsignedInteger(32)) { return functor(uint32_t{}); } if (ty.isInteger(32)) { return functor(int32_t{}); } if (ty.isUnsignedInteger(16)) { return functor(uint16_t{}); } if (ty.isInteger(16)) { return functor(int16_t{}); } if (ty.isUnsignedInteger(8)) { return functor(uint8_t{}); } if (ty.isInteger(8)) { return functor(int8_t{}); } if (ty.isInteger(1)) { return functor(bool{}); } if (auto complex = mlir::dyn_cast<ComplexType>(ty)) { if (complex.getElementType().isF32()) { return functor(std::complex<float>{}); } if (complex.getElementType().isF64()) { return functor(std::complex<double>{}); } } llvm::errs() << "DispatchScalarType unimplemented for " << ty << "\n"; llvm_unreachable("unimplemented"); } } } #endif #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <string> #include <string_view> #include <type_traits> #include <variant> #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" namespace mlir { namespace interpreter { namespace { struct TypeStr { static std::string_view Get(bool) { return "i1"; } static std::string_view Get(int64_t) { return "i64"; } static std::string_view Get(int32_t) { return "i32"; } static std::string_view Get(int16_t) { return "i16"; } static std::string_view Get(int8_t) { return "i8"; } static std::string_view Get(uint64_t) { return "ui64"; } static std::string_view Get(uint32_t) { return "ui32"; } static std::string_view Get(uint16_t) { return "ui16"; } static std::string_view Get(uint8_t) { return "ui8"; } static std::string_view Get(float) { return "f32"; } static std::string_view Get(double) { return "f64"; } static std::string_view Get(std::complex<float>) { return "complex<f32>"; } static std::string_view Get(std::complex<double>) { return "complex<f64>"; } }; struct InterpreterValuePrinter { llvm::raw_ostream& os; template <typename T> void operator()(const TensorOrMemref<T>& t) { if (!t.buffer) { os << "Memref: null"; return; } if (t.view.is_vector) { os << "vector<"; } else { os << "TensorOrMemref<"; } ArrayRef<int64_t> sizes = t.view.sizes; for (int64_t size : sizes.drop_back(t.view.num_vector_dims.value_or(0))) { os << size << "x"; } if (t.view.num_vector_dims) { os << "vector<"; for (int64_t size : sizes.take_back(*t.view.num_vector_dims)) { os << size << "x"; } os << TypeStr::Get(T{}) << ">>: "; } else { os << TypeStr::Get(T{}) << ">: "; } SmallVector<int64_t> indices(t.view.Rank() + t.view.num_vector_dims.value_or(0)); std::function<void(int64_t)> print; print = [&](int64_t dim) { if (dim == indices.size()) { PrintScalar(t.at(indices)); } else { os << "["; for (int64_t i = 0; i < t.view.sizes[dim]; ++i) { if (i > 0) os << ", "; indices[dim] = i; print(dim + 1); } os << "]"; } }; if (t.buffer->Deallocated()) { os << "<<deallocated>>"; } else { print(0); } } void operator()(const Tuple& t) { os << "("; bool first = true; for (const auto& v : t.values) { if (!first) os << ", "; first = false; v->Print(os); } os << ")"; } template <typename T> void operator()(const T& t) { os << TypeStr::Get(t) << ": "; PrintScalar(t); } template <typename T> void PrintScalar(const T& v) { os << v; } template <typename T> void PrintScalar(const std::complex<T>& v) { os << v.real() << (v.imag() >= 0 ? "+" : "") << v.imag() << "i"; } void PrintScalar(bool v) { os << (v ? "true" : "false"); } void PrintScalar(int8_t v) { os << (int)v; } void PrintScalar(uint8_t v) { os << (int)v; } }; } void InterpreterValue::Print(llvm::raw_ostream& os) const { std::visit(InterpreterValuePrinter{os}, storage); } std::string InterpreterValue::ToString() const { std::string buf; llvm::raw_string_ostream os(buf); Print(os); return buf; } InterpreterValue InterpreterValue::ExtractElement( llvm::ArrayRef<int64_t> indices) const { return std::visit( [&](auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { if (it.view.num_vector_dims) { return {it.VectorAt(indices)}; } else { return {it.at(indices)}; } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("extracting from tuples is unsupported"); } else { return {it}; } }, storage); } void InterpreterValue::InsertElement(llvm::ArrayRef<int64_t> indices, const InterpreterValue& value) { std::visit( [&](auto& it) { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { if (it.view.num_vector_dims) { auto subview = it.VectorAt(indices); const auto& values = std::get<T>(value.storage); assert(values.view.sizes == subview.view.sizes && "mismatched sizes"); for (const auto& index : subview.view.Indices()) { subview.at(index) = values.at(index); } } else { it.at(indices) = std::get<typename T::element_type>(value.storage); } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("inserting into tuples is unsupported"); } else { it = std::get<T>(value.storage); } }, storage); } void InterpreterValue::Fill( const std::function<InterpreterValue(llvm::ArrayRef<int64_t> indices)>& f) { std::visit( [&](auto& it) { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { for (const auto& indices : it.view.Indices()) { if (it.view.num_vector_dims) { auto subview = it.VectorAt(indices); auto value = std::get<T>(f(indices).storage); for (const auto& index : subview.view.Indices()) { subview.at(index) = value.at(index); } } else { it.at(indices) = std::get<typename T::element_type>(f(indices).storage); } } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("Filling tuples is unsupported"); } else { it = std::get<T>(f({}).storage); } }, storage); } InterpreterValue InterpreterValue::Clone(ArrayRef<int64_t> layout) const { return std::visit( [&](const auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return {it.Clone(layout)}; } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("cloning tuples is unsupported"); } else { return {it}; } }, storage); } InterpreterValue InterpreterValue::CoerceLayout( ArrayRef<int64_t> layout) const { const auto& view = this->View(); if (view.strides == BufferView::GetStridesForLayout(view.sizes, layout)) { return *this; } return Clone(layout); } InterpreterValue InterpreterValue::TypedAlike( llvm::ArrayRef<int64_t> shape) const { return std::visit( [&](const auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return {T::Empty(shape)}; } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("TypedAlike for tuples is unsupported"); } else { return {TensorOrMemref<T>::Empty(shape)}; } }, storage); } InterpreterValue InterpreterValue::MakeTensor(mlir::Type element_type, SmallVector<int64_t> shape) { auto vector_ty = llvm::dyn_cast<VectorType>(element_type); if (vector_ty) { llvm::copy(vector_ty.getShape(), std::back_inserter(shape)); } return DispatchScalarType(element_type, [&](auto dummy) -> InterpreterValue { auto tensor = TensorOrMemref<decltype(dummy)>::Empty(shape); if (vector_ty) { tensor.view.num_vector_dims = vector_ty.getRank(); } return {tensor}; }); } BufferView& InterpreterValue::View() { return std::visit( [](auto& it) -> BufferView& { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.view; } llvm_unreachable("view is only supported for tensors"); }, storage); } const BufferView& InterpreterValue::View() const { return std::visit( [](const auto& it) -> const BufferView& { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.view; } llvm_unreachable("view is only supported for tensors"); }, storage); } bool InterpreterValue::IsTensor() const { return std::visit( [](const auto& it) { return is_tensor_or_memref_v<decltype(it)>; }, storage); } InterpreterValue InterpreterValue::AsUnitTensor(bool is_vector) const { auto result = TypedAlike({}); result.InsertElement({}, *this); result.View().is_vector = is_vector; return result; } bool Tuple::operator==(const Tuple& other) const { if (other.values.size() != values.size()) return false; for (const auto& [lhs, rhs] : llvm::zip(values, other.values)) { if (!(*lhs == *rhs)) return false; } return true; } std::shared_ptr<Buffer> InterpreterValue::GetBuffer() const { return std::visit( [](const auto& it) -> std::shared_ptr<interpreter::Buffer> { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.buffer; } else { llvm_unreachable("buffer() is only supported for tensors"); } }, storage); } int64_t InterpreterValue::AsInt() const { auto visit = [](auto value) -> int64_t { if constexpr (std::is_integral_v<decltype(value)>) { return static_cast<int64_t>(value); } else { llvm_unreachable("only integral types can be converted to ints"); } }; return std::visit(visit, storage); } uint64_t InterpreterValue::AsUInt() const { auto visit = [](auto value) -> uint64_t { if constexpr (std::is_integral_v<decltype(value)>) { if constexpr (std::is_signed_v<decltype(value)>) { return static_cast<uint64_t>( static_cast<std::make_unsigned_t<decltype(value)>>(value)); } else { return static_cast<uint64_t>(value); } } else { llvm_unreachable("only integral types can be converted to ints"); } }; return std::visit(visit, storage); } double InterpreterValue::AsDouble() const { auto visit = [](auto value) -> int64_t { if constexpr (std::is_floating_point_v<decltype(value)>) { return static_cast<double>(value); } else { llvm_unreachable("only float types can be converted to ints"); } }; return std::visit(visit, storage); } int64_t InterpreterValue::GetByteSizeOfElement() const { return std::visit( [](const auto& it) -> int64_t { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return sizeof(typename T::element_type); } else { llvm_unreachable("scalars have no element sizes"); } }, storage); } } }
#include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include <complex> #include <cstdint> #include <optional> #include <variant> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/ArrayRef.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" namespace mlir { namespace interpreter { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; TEST(InterpreterValueTest, FillUnitTensor) { auto t = TensorOrMemref<int64_t>::Empty({}); t.at({}) = 42; InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t>) { return InterpreterValue{int64_t{43}}; }); ASSERT_EQ(t.at({}), 43); } TEST(InterpreterValueTest, Fill1DTensor) { auto t = TensorOrMemref<int64_t>::Empty({3}); InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t> indices) { return InterpreterValue{indices[0]}; }); ASSERT_EQ(t.at(0), 0); ASSERT_EQ(t.at(1), 1); ASSERT_EQ(t.at(2), 2); } TEST(InterpreterValueTest, FillTensorOfVector) { auto t = TensorOrMemref<int64_t>::Empty({4, 2}); t.view.num_vector_dims = 1; InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t> indices) -> InterpreterValue { EXPECT_EQ(indices.size(), 1); auto r = TensorOrMemref<int64_t>::Empty({2}); r.view.is_vector = true; r.at(0) = indices[0]; r.at(1) = indices[0] * 10; return {r}; }); ASSERT_EQ( v.ToString(), "TensorOrMemref<4xvector<2xi64>>: [[0, 0], [1, 10], [2, 20], [3, 30]]"); } TEST(InterpreterValueTest, FillZeroSizedTensor) { auto t = TensorOrMemref<int64_t>::Empty({0, 1}); InterpreterValue v{t}; bool was_called = false; v.Fill([&](llvm::ArrayRef<int64_t> indices) { was_called = true; return InterpreterValue{indices[0]}; }); EXPECT_FALSE(was_called); } TEST(InterpreterValueTest, TypedAlike) { InterpreterValue v{TensorOrMemref<int32_t>::Empty({})}; auto TypedAlike = v.TypedAlike({1, 2, 3}); ASSERT_TRUE( std::holds_alternative<TensorOrMemref<int32_t>>(TypedAlike.storage)); ASSERT_THAT(TypedAlike.View().sizes, ElementsAre(1, 2, 3)); } TEST(InterpreterValueTest, AsUnitTensor) { InterpreterValue v{42}; InterpreterValue wrapped = v.AsUnitTensor(); ASSERT_THAT(wrapped.View().sizes, IsEmpty()); ASSERT_EQ(std::get<TensorOrMemref<int32_t>>(wrapped.storage).at({}), 42); } TEST(InterpreterValueTest, IsTensor) { ASSERT_FALSE(InterpreterValue{42}.IsTensor()); ASSERT_TRUE(InterpreterValue{TensorOrMemref<int32_t>::Empty({})}.IsTensor()); } TEST(InterpreterValueTest, AsInt) { ASSERT_EQ(InterpreterValue{int64_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int32_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int16_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int8_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int8_t{-1}}.AsInt(), -1); } TEST(InterpreterValueTest, AsUInt) { ASSERT_EQ(InterpreterValue{int16_t{-1}}.AsUInt(), 65535); ASSERT_EQ(InterpreterValue{int8_t{-1}}.AsUInt(), 255); } TEST(InterpreterValueTest, CloneTensor) { auto tensor = TensorOrMemref<int64_t>::Empty({3}); tensor.at(0) = 1; tensor.at(1) = 2; tensor.at(2) = 3; InterpreterValue wrapped{tensor}; auto clone = wrapped.Clone(); tensor.at(0) = 4; auto& cloned_tensor = std::get<TensorOrMemref<int64_t>>(clone.storage); ASSERT_EQ(cloned_tensor.at(0), 1); ASSERT_EQ(cloned_tensor.at(1), 2); ASSERT_EQ(cloned_tensor.at(2), 3); } TEST(InterpreterValueTest, CloneWithLayouts) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}, {0, 1}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto clone = wrapped.Clone(); ASSERT_EQ(clone.View().strides, BufferView::GetStridesForLayout({3, 5}, {1, 0})); ASSERT_EQ(clone.ExtractElement({2, 4}).AsInt(), 42); } TEST(InterpreterValueTest, CoerceLayoutNoop) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}, {0, 1}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto coerced = wrapped.CoerceLayout({0, 1}); ASSERT_EQ(tensor.buffer, std::get<TensorOrMemref<int64_t>>(coerced.storage).buffer); } TEST(InterpreterValueTest, CoerceLayout) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto clone = wrapped.CoerceLayout({0, 1}); ASSERT_EQ(clone.View().strides, BufferView::GetStridesForLayout({3, 5}, {0, 1})); ASSERT_EQ(clone.ExtractElement({2, 4}).AsInt(), 42); } TEST(InterpreterValueTest, CoerceLayoutSquare) { auto tensor = TensorOrMemref<float>::Empty({2, 2}); tensor.at({0, 0}) = 1; tensor.at({0, 1}) = 2; tensor.at({1, 0}) = 3; tensor.at({1, 1}) = 4; InterpreterValue wrapped{tensor}; auto clone = wrapped.CoerceLayout({0, 1}); auto& cloned_tensor = std::get<TensorOrMemref<float>>(clone.storage); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(0, sizeof(float))), 1); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(1, sizeof(float))), 3); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(2, sizeof(float))), 2); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(3, sizeof(float))), 4); } TEST(InterpreterValueTest, CloneScalar) { InterpreterValue value{42}; auto clone = value.Clone(); ASSERT_THAT(std::get<int32_t>(clone.storage), 42); } TEST(InterpreterValueTest, ToString) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({3})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<3xi64>: [0, 0, 0]"); } TEST(InterpreterValueTest, ToString2d) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({3, 2})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<3x2xi64>: [[0, 0], [0, 0], [0, 0]]"); } TEST(InterpreterValueTest, ToString0d) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<i64>: 0"); } TEST(InterpreterValueTest, ToStringComplex) { InterpreterValue value{std::complex<float>{}}; ASSERT_EQ(value.ToString(), "complex<f32>: 0.000000e+00+0.000000e+00i"); } TEST(CastTest, UnpackTensor) { InterpreterValue value{TensorOrMemref<int8_t>::Empty({1, 1})}; value.InsertElement({0, 0}, {int8_t{1}}); ASSERT_EQ(InterpreterValueCast<int64_t>(value), 1); ASSERT_EQ(InterpreterValueCast<uint8_t>(value), 1); ASSERT_EQ(InterpreterValueCast<float>(value), 1.0f); ASSERT_EQ(InterpreterValueCast<double>(value), 1.0); InterpreterValue non_unit{TensorOrMemref<int8_t>::Empty({2, 2})}; ASSERT_EQ(InterpreterValueDynCast<int64_t>(non_unit), std::nullopt); } TEST(CastTest, IdentityCast) { InterpreterValue value{TensorOrMemref<float>::Empty({1, 1})}; ASSERT_EQ(InterpreterValueCast<InterpreterValue>(value), value); } TEST(CastTest, CastToUnsigned) { InterpreterValue value{int8_t{-1}}; ASSERT_EQ(InterpreterValueCast<uint8_t>(value), 255); ASSERT_EQ(InterpreterValueCast<uint16_t>(value), 65535); } } } }
2,253
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_TENSOR_OR_MEMREF_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_TENSOR_OR_MEMREF_H_ #include <math.h> #include <cmath> #include <complex> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" namespace mlir { namespace interpreter { template <typename T> bool IsEqual(T a, T b) { return a == b; } #ifndef MLIR_INTERPRETER_COMPARE_DOUBLES_EXACT template <> inline bool IsEqual(double a, double b) { if (isinf(a) || isinf(b)) { return a == b; } return fabs(a - b) < 1e-14; } template <> inline bool IsEqual(std::complex<double> a, std::complex<double> b) { return IsEqual(a.real(), b.real()) && IsEqual(a.imag(), b.imag()); } #endif struct BufferView { int64_t offset; llvm::SmallVector<int64_t> sizes; llvm::SmallVector<int64_t> strides; std::optional<int64_t> num_vector_dims = std::nullopt; bool is_vector = false; int64_t Rank() const { return sizes.size() - num_vector_dims.value_or(0); } LogicalResult Slice(int64_t dim_index, int64_t dim_offset); LogicalResult Slice(int64_t dim_index, int64_t dim_offset, int64_t dim_size, int64_t dim_stride = 1); LogicalResult Subview(ArrayRef<int64_t> subview_offsets, ArrayRef<int64_t> subview_sizes, ArrayRef<int64_t> subview_strides); int64_t GetNumElements(bool include_vector_dimsms = false) const; class LogicalIndexView { public: class Iterator { public: using iterator_category = std::forward_iterator_tag; using value_type = llvm::SmallVector<int64_t>; using difference_type = std::ptrdiff_t; using pointer = llvm::SmallVector<int64_t>*; using reference = llvm::SmallVector<int64_t>&; const llvm::SmallVector<int64_t>& operator*() const { return view_indices_; } const llvm::SmallVector<int64_t>* operator->() const { return &view_indices_; } Iterator& operator++() { auto index_it = view_indices_.rbegin(); auto size_it = view_->sizes.rbegin(); if (!include_vector_dims_) { std::advance(size_it, view_->num_vector_dims.value_or(0)); } for (auto e = view_indices_.rend(); index_it != e; ++index_it, ++size_it) { ++*index_it; if (*index_it < *size_it) { return *this; } *index_it = 0; } view_indices_.clear(); view_indices_.push_back(-1); return *this; } Iterator operator++(int) { auto tmp = *this; ++(*this); return tmp; } bool operator==(const Iterator& other) const { return view_indices_ == other.view_indices_; } bool operator!=(const Iterator& other) const { return !(*this == other); } private: friend class LogicalIndexView; Iterator(const BufferView* view, llvm::SmallVector<int64_t> indices, bool include_vector_dims) : view_(view), view_indices_(std::move(indices)), include_vector_dims_(include_vector_dims) {} const BufferView* view_; llvm::SmallVector<int64_t> view_indices_; bool include_vector_dims_; }; Iterator begin() const { if (view_->GetNumElements() == 0) return end(); return { view_, llvm::SmallVector<int64_t>( view_->Rank() + (include_vector_dims_ ? view_->num_vector_dims.value_or(0) : 0)), include_vector_dims_}; } Iterator end() const { return {view_, {-1}, false}; } private: friend class BufferView; LogicalIndexView(const BufferView* view, bool include_vector_dims) : view_(view), include_vector_dims_(include_vector_dims) {} const BufferView* view_; bool include_vector_dims_; }; std::optional<int64_t> GetPhysicalIndex( llvm::ArrayRef<int64_t> view_indices) const; LogicalIndexView Indices(bool include_vector_dims = false) const { return LogicalIndexView{this, include_vector_dims}; } std::optional<int64_t> GetCollapsedStride(llvm::ArrayRef<int64_t> dims) const; bool InBounds(llvm::ArrayRef<int64_t> view_indices) const; static SmallVector<int64_t> GetDefaultStrides(ArrayRef<int64_t> sizes); static SmallVector<int64_t> GetStridesForLayout(ArrayRef<int64_t> sizes, ArrayRef<int64_t> layout); }; class Buffer { private: struct Dummy {}; public: template <typename T> static std::shared_ptr<Buffer> Allocate(size_t size) { return std::make_shared<Buffer>(Dummy{}, size, sizeof(T)); } char* at(std::optional<int64_t> idx, int64_t element_size) { auto byte_offset = GetByteOffset(idx, element_size); if (!byte_offset) { return &storage_.data()[0]; } return &storage_.data()[*byte_offset]; } const char* at(std::optional<int64_t> idx, int64_t element_size) const { auto byte_offset = GetByteOffset(idx, element_size); if (!byte_offset) { return &storage_.data()[0]; } return &storage_.data()[*byte_offset]; } Buffer(Dummy, size_t num_elements, size_t element_size) : storage_(num_elements * element_size) {} int64_t GetByteSize() const { return storage_.size(); } void Deallocate(mlir::Operation* op) { if (is_alloca_) { SetFailure("deallocated stack buffer"); } else if (freed_by_ != nullptr) { std::string failure; llvm::raw_string_ostream os(failure); os << "double-free\n"; os << " Note: allocated by " << *allocated_by_ << "\n"; os << " Note: previously freed by " << *freed_by_ << "\n"; SetFailure(failure); } else { freed_by_ = op; } } bool Deallocated() const { return freed_by_ != nullptr; } mlir::Operation* FreedByOp() const { return freed_by_; } void SetAllocatedBy(mlir::Operation* allocated_by) { this->allocated_by_ = allocated_by; } void SetFailure(llvm::StringRef failure) const { this->failure_ = failure.str(); } llvm::StringRef GetFailure() const { return failure_; } void SetIsAlloca() { is_alloca_ = true; } private: std::optional<size_t> GetByteOffset(std::optional<int64_t> idx, int64_t element_size) const { if (!idx) { SetFailure("out of bounds access"); return std::nullopt; } if (freed_by_ != nullptr) { std::string failure; llvm::raw_string_ostream os(failure); os << "use-after-free\n"; os << " Note: allocated by " << *allocated_by_ << "\n"; os << " Note: previously freed by " << *freed_by_ << "\n"; SetFailure(failure); return std::nullopt; } return *idx * element_size; } llvm::SmallVector<char> storage_; mlir::Operation* freed_by_ = nullptr; mlir::Operation* allocated_by_ = nullptr; bool is_alloca_ = false; mutable std::string failure_; }; template <typename T> struct TensorOrMemref { using element_type = T; static TensorOrMemref<T> Empty(ArrayRef<int64_t> sizes, ArrayRef<int64_t> layout = {}) { BufferView dummy{0, SmallVector<int64_t>(sizes), {}}; return EmptyLike(dummy, layout); } static TensorOrMemref<T> EmptyLike(const BufferView& view, ArrayRef<int64_t> layout = {}) { BufferView new_view = view; new_view.offset = 0; new_view.strides = BufferView::GetStridesForLayout(view.sizes, layout); return {Buffer::Allocate<T>(view.GetNumElements(true)), new_view}; } TensorOrMemref<T> Clone(ArrayRef<int64_t> layout = {}) const { auto out = EmptyLike(view, layout); for (auto [src_index, dst_index] : llvm::zip(view.Indices(true), out.view.Indices(true))) { out.at(dst_index) = at(src_index); } return out; } const T& at(ArrayRef<int64_t> indices) const { return *reinterpret_cast<const T*>( buffer->at(view.GetPhysicalIndex(indices), sizeof(T))); } T& at(ArrayRef<int64_t> indices) { return *reinterpret_cast<T*>( buffer->at(view.GetPhysicalIndex(indices), sizeof(T))); } TensorOrMemref VectorAt(ArrayRef<int64_t> indices) const { auto offset = view.GetPhysicalIndex(indices); BufferView subview; subview.strides = {view.strides.begin() + view.Rank(), view.strides.end()}; subview.sizes = {view.sizes.begin() + view.Rank(), view.sizes.end()}; if (offset) { subview.offset = *offset; } else { buffer->SetFailure("out of bounds access"); } subview.is_vector = true; subview.num_vector_dims = std::nullopt; return {buffer, subview}; } bool operator==(const TensorOrMemref& other) const { if (buffer->Deallocated() || other.buffer->Deallocated()) return false; if (other.view.sizes != view.sizes) return false; if (other.view.num_vector_dims != view.num_vector_dims) return false; for (const auto& indices : view.Indices(true)) { if constexpr (std::is_floating_point_v<T>) { bool thisnan = isnan(at(indices)); bool othernan = isnan(other.at(indices)); if (thisnan || othernan) { if (thisnan && othernan) continue; return false; } } if (!IsEqual(at(indices), other.at(indices))) return false; } return true; } std::shared_ptr<Buffer> buffer; BufferView view; }; template <typename T> struct is_tensor_or_memref : std::false_type {}; template <typename T> struct is_tensor_or_memref<TensorOrMemref<T>> : std::true_type {}; template <typename T> inline constexpr bool is_tensor_or_memref_v = is_tensor_or_memref<std::decay_t<T>>::value; } } #endif #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include <cstddef> #include <cstdint> #include <optional> #include <utility> #include "mlir/Dialect/Utils/IndexingUtils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" namespace mlir { namespace interpreter { std::optional<int64_t> BufferView::GetPhysicalIndex( llvm::ArrayRef<int64_t> view_indices) const { int64_t result = offset; if (!InBounds(view_indices)) { return std::nullopt; } for (int64_t i = 0; i < view_indices.size(); ++i) { result += view_indices[i] * strides[i]; } return result; } bool BufferView::InBounds(llvm::ArrayRef<int64_t> view_indices) const { if (view_indices.size() > sizes.size()) { return false; } for (auto [index, size] : llvm::zip(view_indices, sizes)) { if (index < 0 || index >= size) { return false; } } return true; } SmallVector<int64_t> BufferView::GetDefaultStrides(ArrayRef<int64_t> sizes) { SmallVector<int64_t> result(sizes.size()); int64_t stride = 1; for (int64_t i = result.size() - 1; i >= 0; --i) { result[i] = stride; stride *= sizes[i]; } return result; } SmallVector<int64_t> BufferView::GetStridesForLayout(ArrayRef<int64_t> sizes, ArrayRef<int64_t> layout) { if (layout.empty()) return GetDefaultStrides(sizes); auto inverse_layout = invertPermutationVector(layout); SmallVector<int64_t> result(sizes.size()); int64_t stride = 1; for (int64_t i = 0; i < layout.size(); ++i) { result[inverse_layout[i]] = stride; stride *= sizes[inverse_layout[i]]; } return result; } LogicalResult BufferView::Slice(int64_t dim_index, int64_t dim_offset) { llvm::SmallVector<int64_t> offsets(Rank(), 0); offsets[dim_index] = dim_offset; if (auto new_offset = GetPhysicalIndex(offsets)) { offset = *new_offset; } else { return failure(); } if (dim_index >= Rank()) --*num_vector_dims; strides.erase(strides.begin() + dim_index); sizes.erase(sizes.begin() + dim_index); return success(); } LogicalResult BufferView::Slice(int64_t dim_index, int64_t dim_offset, int64_t dim_size, int64_t dim_stride) { llvm::SmallVector<int64_t> offsets(Rank(), 0); offsets[dim_index] = dim_offset; if (dim_size == 0) { offset = 0; } else if (auto new_offset = GetPhysicalIndex(offsets)) { offset = *new_offset; } else { return failure(); } sizes[dim_index] = dim_size; strides[dim_index] *= dim_stride; return success(); } LogicalResult BufferView::Subview(ArrayRef<int64_t> subview_offsets, ArrayRef<int64_t> subview_sizes, ArrayRef<int64_t> subview_strides) { if (auto new_offset = GetPhysicalIndex(subview_offsets)) { offset = *new_offset; } else { return failure(); } for (auto [in_size, subview_offset, subview_size, subview_stride] : llvm::zip(sizes, subview_offsets, subview_sizes, subview_strides)) { int64_t limit_index = subview_offset + (subview_size - 1) * subview_stride; if (subview_offset < 0 || subview_offset >= in_size || limit_index < 0 || limit_index >= in_size) { return failure(); } } for (auto [in_stride, subview_stride] : llvm::zip(strides, subview_strides)) { in_stride *= subview_stride; } sizes = llvm::to_vector(subview_sizes); return success(); } int64_t BufferView::GetNumElements(bool include_vector_dims) const { size_t n = 1; for (auto size : ArrayRef<int64_t>(sizes).drop_back( include_vector_dims ? 0 : num_vector_dims.value_or(0))) { n *= size; } return n; } std::optional<int64_t> BufferView::GetCollapsedStride( llvm::ArrayRef<int64_t> dims) const { using StrideAndDim = std::pair<int64_t, int64_t>; llvm::SmallVector<StrideAndDim> strides_and_dims; for (auto dim : dims) { if (sizes[dim] != 1) { strides_and_dims.emplace_back(strides[dim], dim); } } if (strides_and_dims.empty()) { return 0; } llvm::sort(strides_and_dims); int64_t next_stride = strides_and_dims.front().first; for (auto [stride, dim] : strides_and_dims) { if (stride != next_stride) { return std::nullopt; } next_stride *= sizes[dim]; } return strides_and_dims.front().first; } } }
#include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include <algorithm> #include <cstdint> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_join.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Support/LLVM.h" namespace mlir { namespace interpreter { namespace { using ::testing::ElementsAre; TEST(TensorOrMemrefTest, DefaultStrides) { EXPECT_THAT(BufferView::GetDefaultStrides({1, 2, 3}), ElementsAre(6, 3, 1)); } TEST(TensorOrMemrefTest, StridesForLayout) { EXPECT_THAT(BufferView::GetStridesForLayout({1, 2, 3}, {2, 1, 0}), ElementsAre(6, 3, 1)); EXPECT_THAT(BufferView::GetStridesForLayout({1, 2, 3}, {0, 1, 2}), ElementsAre(1, 1, 2)); EXPECT_THAT(BufferView::GetStridesForLayout({3, 3, 3, 3}, {3, 0, 1, 2}), ElementsAre(27, 1, 3, 9)); } std::optional<int64_t> GetCollapsedStrideNaive(llvm::ArrayRef<int64_t> dims, const BufferView& view) { BufferView f; for (int64_t dim : dims) { f.sizes.push_back(view.sizes[dim]); } llvm::SmallBitVector v(view.GetNumElements()); for (const auto& indices : f.Indices()) { SmallVector<int64_t> view_indices(view.Rank()); for (auto [dim, index] : llvm::zip(dims, indices)) { view_indices[dim] = index; } v[*view.GetPhysicalIndex(view_indices)] = true; } if (v.count() != f.GetNumElements()) return std::nullopt; if (f.GetNumElements() <= 1) return 0; int64_t min = v.find_first(); int64_t expected_stride = (v.find_last() - min) / (f.GetNumElements() - 1); for (int64_t i = 0; i < f.GetNumElements(); ++i) { if (!v[i * expected_stride + min]) { return std::nullopt; } } return expected_stride; } TEST(TensorOrMemrefTest, CollapsedStride) { BufferView view{.sizes = {1, 2, 3, 1, 5}, .strides = BufferView::GetDefaultStrides({1, 2, 3, 1, 5})}; auto check_all = [&]() { for (int64_t i = 0; i < (1 << view.Rank()); ++i) { SmallVector<int64_t> dims; for (int64_t dim = 0; dim < view.Rank(); ++dim) { if (i & (1 << dim)) dims.push_back(dim); } do { auto v = view.GetCollapsedStride(dims); auto n = GetCollapsedStrideNaive(dims, view); EXPECT_EQ(n, v) << "checking " << absl::StrJoin(dims, ", "); } while (std::next_permutation(dims.begin(), dims.end())); } }; check_all(); ASSERT_TRUE(view.Slice(3, 0).succeeded()); check_all(); } } } }
2,254
#ifndef XLA_RUNTIME_BUFFER_USE_H_ #define XLA_RUNTIME_BUFFER_USE_H_ #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" namespace xla { class BufferUse { public: enum class MemoryAccess { kRead, kWrite }; static constexpr MemoryAccess kRead = MemoryAccess::kRead; static constexpr MemoryAccess kWrite = MemoryAccess::kWrite; BufferUse(BufferAllocation::Slice slice, MemoryAccess access) : slice_(slice), access_(access) {} static BufferUse Read(BufferAllocation::Slice slice) { return BufferUse(slice, MemoryAccess::kRead); } static BufferUse Write(BufferAllocation::Slice slice) { return BufferUse(slice, MemoryAccess::kWrite); } class ReadWriteSet { public: ReadWriteSet(); void Add(BufferUse use); void AddRead(BufferAllocation::Slice slice); void AddWrite(BufferAllocation::Slice slice); void AddAll(absl::Span<const BufferUse> uses); bool HasConflicts(const BufferUse& use) const; bool HasConflicts(absl::Span<const BufferUse> uses) const; bool HasConflicts(const ReadWriteSet& other); private: absl::flat_hash_set<BufferAllocation::Slice> read_; absl::flat_hash_set<BufferAllocation::Slice> write_; }; bool operator==(const BufferUse& other) const { return slice_ == other.slice_ && access_ == other.access_; } bool operator!=(const BufferUse& other) const { return !(*this == other); } const BufferAllocation::Slice& slice() const { return slice_; } MemoryAccess access() const { return access_; } template <typename H> friend H AbslHashValue(H h, const BufferUse& use) { return H::combine(std::move(h), use.slice_, use.access_); } private: BufferAllocation::Slice slice_; MemoryAccess access_; }; } #endif #include "xla/runtime/buffer_use.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" namespace xla { BufferUse::ReadWriteSet::ReadWriteSet() = default; void BufferUse::ReadWriteSet::Add(BufferUse use) { switch (use.access()) { case BufferUse::kRead: AddRead(use.slice()); break; case BufferUse::kWrite: AddWrite(use.slice()); break; } } void BufferUse::ReadWriteSet::AddRead(BufferAllocation::Slice slice) { read_.insert(slice); } void BufferUse::ReadWriteSet::AddWrite(BufferAllocation::Slice slice) { write_.insert(slice); } void BufferUse::ReadWriteSet::AddAll(absl::Span<const BufferUse> uses) { for (const auto& use : uses) Add(use); } bool BufferUse::ReadWriteSet::HasConflicts(const BufferUse& use) const { auto overlaps = [](const absl::flat_hash_set<BufferAllocation::Slice>& set, const BufferUse& use) { return set.contains(use.slice()) || absl::c_any_of(set, [&](const BufferAllocation::Slice& slice) { return slice.OverlapsWith(use.slice()); }); }; return use.access() == MemoryAccess::kWrite ? overlaps(write_, use) || overlaps(read_, use) : overlaps(write_, use); } bool BufferUse::ReadWriteSet::HasConflicts( absl::Span<const BufferUse> uses) const { return absl::c_any_of( uses, [&](const BufferUse& use) { return HasConflicts(use); }); } bool BufferUse::ReadWriteSet::HasConflicts(const ReadWriteSet& other) { return absl::c_any_of(other.read_, [&](const BufferAllocation::Slice& slice) { return HasConflicts({slice, BufferUse::kRead}); }) || absl::c_any_of(other.write_, [&](const BufferAllocation::Slice& slice) { return HasConflicts({slice, BufferUse::kWrite}); }); } }
#include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(BufferUseTest, Equality) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); BufferUse use0(slice0, BufferUse::MemoryAccess::kRead); BufferUse use1(slice0, BufferUse::MemoryAccess::kWrite); BufferUse use2(slice0, BufferUse::MemoryAccess::kRead); EXPECT_NE(use0, use1); EXPECT_EQ(use0, use2); } TEST(BufferUseTest, ReadWriteSet) { BufferUse::ReadWriteSet rwset; BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); BufferAllocation::Slice slice1(&alloc, 5, 10); BufferAllocation::Slice slice2(&alloc, 10, 10); rwset.Add(BufferUse::Read(slice0)); EXPECT_FALSE(rwset.HasConflicts({BufferUse::Read(slice1)})); EXPECT_TRUE(rwset.HasConflicts({BufferUse::Write(slice1)})); EXPECT_FALSE(rwset.HasConflicts({BufferUse::Write(slice2)})); rwset.Add(BufferUse::Read(slice1)); EXPECT_TRUE(rwset.HasConflicts({BufferUse::Write(slice2)})); } } }
2,255
#ifndef TENSORFLOW_TSL_PLATFORM_SCANNER_H_ #define TENSORFLOW_TSL_PLATFORM_SCANNER_H_ #include <string> #include "tsl/platform/macros.h" #include "tsl/platform/str_util.h" #include "tsl/platform/stringpiece.h" namespace tsl { namespace strings { class Scanner { public: enum CharClass { ALL, DIGIT, LETTER, LETTER_DIGIT, LETTER_DIGIT_DASH_UNDERSCORE, LETTER_DIGIT_DASH_DOT_SLASH, LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE, LETTER_DIGIT_DOT, LETTER_DIGIT_DOT_PLUS_MINUS, LETTER_DIGIT_DOT_UNDERSCORE, LETTER_DIGIT_UNDERSCORE, LOWERLETTER, LOWERLETTER_DIGIT, LOWERLETTER_DIGIT_UNDERSCORE, NON_ZERO_DIGIT, SPACE, UPPERLETTER, RANGLE, }; explicit Scanner(StringPiece source) : cur_(source) { RestartCapture(); } Scanner& One(CharClass clz) { if (cur_.empty() || !Matches(clz, cur_[0])) { return Error(); } cur_.remove_prefix(1); return *this; } Scanner& ZeroOrOneLiteral(StringPiece s) { str_util::ConsumePrefix(&cur_, s); return *this; } Scanner& OneLiteral(StringPiece s) { if (!str_util::ConsumePrefix(&cur_, s)) { error_ = true; } return *this; } Scanner& Any(CharClass clz) { while (!cur_.empty() && Matches(clz, cur_[0])) { cur_.remove_prefix(1); } return *this; } Scanner& Many(CharClass clz) { return One(clz).Any(clz); } Scanner& RestartCapture() { capture_start_ = cur_.data(); capture_end_ = nullptr; return *this; } Scanner& StopCapture() { capture_end_ = cur_.data(); return *this; } Scanner& Eos() { if (!cur_.empty()) error_ = true; return *this; } Scanner& AnySpace() { return Any(SPACE); } Scanner& ScanUntil(char end_ch) { ScanUntilImpl(end_ch, false); return *this; } Scanner& ScanEscapedUntil(char end_ch) { ScanUntilImpl(end_ch, true); return *this; } char Peek(char default_value = '\0') const { return cur_.empty() ? default_value : cur_[0]; } int empty() const { return cur_.empty(); } bool GetResult(StringPiece* remaining = nullptr, StringPiece* capture = nullptr); private: void ScanUntilImpl(char end_ch, bool escaped); Scanner& Error() { error_ = true; return *this; } static bool IsLetter(char ch) { return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'); } static bool IsLowerLetter(char ch) { return ch >= 'a' && ch <= 'z'; } static bool IsDigit(char ch) { return ch >= '0' && ch <= '9'; } static bool IsSpace(char ch) { return (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\v' || ch == '\f' || ch == '\r'); } static bool Matches(CharClass clz, char ch) { switch (clz) { case ALL: return true; case DIGIT: return IsDigit(ch); case LETTER: return IsLetter(ch); case LETTER_DIGIT: return IsLetter(ch) || IsDigit(ch); case LETTER_DIGIT_DASH_UNDERSCORE: return (IsLetter(ch) || IsDigit(ch) || ch == '-' || ch == '_'); case LETTER_DIGIT_DASH_DOT_SLASH: return IsLetter(ch) || IsDigit(ch) || ch == '-' || ch == '.' || ch == '/'; case LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE: return (IsLetter(ch) || IsDigit(ch) || ch == '-' || ch == '.' || ch == '/' || ch == '_'); case LETTER_DIGIT_DOT: return IsLetter(ch) || IsDigit(ch) || ch == '.'; case LETTER_DIGIT_DOT_PLUS_MINUS: return IsLetter(ch) || IsDigit(ch) || ch == '+' || ch == '-' || ch == '.'; case LETTER_DIGIT_DOT_UNDERSCORE: return IsLetter(ch) || IsDigit(ch) || ch == '.' || ch == '_'; case LETTER_DIGIT_UNDERSCORE: return IsLetter(ch) || IsDigit(ch) || ch == '_'; case LOWERLETTER: return ch >= 'a' && ch <= 'z'; case LOWERLETTER_DIGIT: return IsLowerLetter(ch) || IsDigit(ch); case LOWERLETTER_DIGIT_UNDERSCORE: return IsLowerLetter(ch) || IsDigit(ch) || ch == '_'; case NON_ZERO_DIGIT: return IsDigit(ch) && ch != '0'; case SPACE: return IsSpace(ch); case UPPERLETTER: return ch >= 'A' && ch <= 'Z'; case RANGLE: return ch == '>'; } return false; } StringPiece cur_; const char* capture_start_ = nullptr; const char* capture_end_ = nullptr; bool error_ = false; friend class ScannerTest; Scanner(const Scanner&) = delete; void operator=(const Scanner&) = delete; }; } } #endif #include "tsl/platform/scanner.h" namespace tsl { namespace strings { void Scanner::ScanUntilImpl(char end_ch, bool escaped) { for (;;) { if (cur_.empty()) { Error(); return; } const char ch = cur_[0]; if (ch == end_ch) { return; } cur_.remove_prefix(1); if (escaped && ch == '\\') { if (cur_.empty()) { Error(); return; } cur_.remove_prefix(1); } } } bool Scanner::GetResult(StringPiece* remaining, StringPiece* capture) { if (error_) { return false; } if (remaining != nullptr) { *remaining = cur_; } if (capture != nullptr) { const char* end = capture_end_ == nullptr ? cur_.data() : capture_end_; *capture = StringPiece(capture_start_, end - capture_start_); } return true; } } }
#include "tsl/platform/scanner.h" #include "tsl/platform/test.h" namespace tsl { namespace strings { class ScannerTest : public ::testing::Test { protected: string ClassStr(Scanner::CharClass clz) { string s; for (int i = 0; i < 256; ++i) { char ch = i; if (Scanner::Matches(clz, ch)) { s += ch; } } return s; } }; TEST_F(ScannerTest, Any) { StringPiece remaining, match; EXPECT_TRUE(Scanner(" horse0123") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ(" horse", match); EXPECT_EQ("0123", remaining); EXPECT_TRUE(Scanner("") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); EXPECT_TRUE(Scanner("----") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("----", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, AnySpace) { StringPiece remaining, match; EXPECT_TRUE(Scanner(" a b ") .AnySpace() .One(Scanner::LETTER) .AnySpace() .GetResult(&remaining, &match)); EXPECT_EQ(" a ", match); EXPECT_EQ("b ", remaining); } TEST_F(ScannerTest, AnyEscapedNewline) { StringPiece remaining, match; EXPECT_TRUE(Scanner("\\\n") .Any(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &match)); EXPECT_EQ("\\\n", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, AnyEmptyString) { StringPiece remaining, match; EXPECT_TRUE(Scanner("") .Any(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, Eos) { EXPECT_FALSE(Scanner("a").Eos().GetResult()); EXPECT_TRUE(Scanner("").Eos().GetResult()); EXPECT_FALSE(Scanner("abc").OneLiteral("ab").Eos().GetResult()); EXPECT_TRUE(Scanner("abc").OneLiteral("abc").Eos().GetResult()); } TEST_F(ScannerTest, Many) { StringPiece remaining, match; EXPECT_TRUE(Scanner("abc").Many(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("0").Many(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("").Many(Scanner::LETTER).GetResult()); EXPECT_TRUE( Scanner("abc ").Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ(" ", remaining); EXPECT_EQ("abc", match); EXPECT_TRUE( Scanner("abc").Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("abc", match); } TEST_F(ScannerTest, One) { StringPiece remaining, match; EXPECT_TRUE(Scanner("abc").One(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("0").One(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("").One(Scanner::LETTER).GetResult()); EXPECT_TRUE(Scanner("abc") .One(Scanner::LETTER) .One(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("c", remaining); EXPECT_EQ("ab", match); EXPECT_TRUE(Scanner("a").One(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("a", match); } TEST_F(ScannerTest, OneLiteral) { EXPECT_FALSE(Scanner("abc").OneLiteral("abC").GetResult()); EXPECT_TRUE(Scanner("abc").OneLiteral("ab").OneLiteral("c").GetResult()); } TEST_F(ScannerTest, ScanUntil) { StringPiece remaining, match; EXPECT_TRUE(Scanner(R"(' \1 \2 \3 \' \\'rest)") .OneLiteral("'") .ScanUntil('\'') .OneLiteral("'") .GetResult(&remaining, &match)); EXPECT_EQ(R"( \\'rest)", remaining); EXPECT_EQ(R"(' \1 \2 \3 \')", match); remaining = match = "unset"; EXPECT_FALSE(Scanner(R"(' \1 \2 \3 \\rest)") .OneLiteral("'") .ScanUntil('\'') .GetResult(&remaining, &match)); EXPECT_EQ("unset", remaining); EXPECT_EQ("unset", match); remaining = match = ""; EXPECT_TRUE( Scanner(R"(123\456)").ScanUntil('\\').GetResult(&remaining, &match)); EXPECT_EQ(R"(\456)", remaining); EXPECT_EQ("123", match); } TEST_F(ScannerTest, ScanEscapedUntil) { StringPiece remaining, match; EXPECT_TRUE(Scanner(R"(' \1 \2 \3 \' \\'rest)") .OneLiteral("'") .ScanEscapedUntil('\'') .OneLiteral("'") .GetResult(&remaining, &match)); EXPECT_EQ("rest", remaining); EXPECT_EQ(R"(' \1 \2 \3 \' \\')", match); remaining = match = "unset"; EXPECT_FALSE(Scanner(R"(' \1 \2 \3 \' \\rest)") .OneLiteral("'") .ScanEscapedUntil('\'') .GetResult(&remaining, &match)); EXPECT_EQ("unset", remaining); EXPECT_EQ("unset", match); } TEST_F(ScannerTest, ZeroOrOneLiteral) { StringPiece remaining, match; EXPECT_TRUE( Scanner("abc").ZeroOrOneLiteral("abC").GetResult(&remaining, &match)); EXPECT_EQ("abc", remaining); EXPECT_EQ("", match); EXPECT_TRUE( Scanner("abcd").ZeroOrOneLiteral("ab").ZeroOrOneLiteral("c").GetResult( &remaining, &match)); EXPECT_EQ("d", remaining); EXPECT_EQ("abc", match); EXPECT_TRUE( Scanner("").ZeroOrOneLiteral("abc").GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, CaptureAndGetResult) { StringPiece remaining, match; Scanner scan(" first second"); EXPECT_TRUE(scan.Any(Scanner::SPACE) .RestartCapture() .One(Scanner::LETTER) .Any(Scanner::LETTER_DIGIT) .StopCapture() .Any(Scanner::SPACE) .GetResult(&remaining, &match)); EXPECT_EQ("second", remaining); EXPECT_EQ("first", match); EXPECT_TRUE(scan.GetResult()); remaining = ""; EXPECT_TRUE(scan.GetResult(&remaining)); EXPECT_EQ("second", remaining); remaining = ""; match = ""; EXPECT_TRUE(scan.GetResult(&remaining, &match)); EXPECT_EQ("second", remaining); EXPECT_EQ("first", match); scan.RestartCapture().One(Scanner::LETTER).One(Scanner::LETTER); remaining = ""; match = ""; EXPECT_TRUE(scan.GetResult(&remaining, &match)); EXPECT_EQ("cond", remaining); EXPECT_EQ("se", match); } TEST_F(ScannerTest, MultipleGetResultExtendsCapture) { StringPiece remaining, match; Scanner scan("one2three"); EXPECT_TRUE(scan.Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("2three", remaining); EXPECT_EQ("one", match); EXPECT_TRUE(scan.Many(Scanner::DIGIT).GetResult(&remaining, &match)); EXPECT_EQ("three", remaining); EXPECT_EQ("one2", match); EXPECT_TRUE(scan.Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("one2three", match); } TEST_F(ScannerTest, FailedMatchDoesntChangeResult) { Scanner scan("name"); StringPiece remaining = "rem"; StringPiece match = "match"; EXPECT_FALSE(scan.One(Scanner::SPACE).GetResult(&remaining, &match)); EXPECT_EQ("rem", remaining); EXPECT_EQ("match", match); } TEST_F(ScannerTest, DefaultCapturesAll) { Scanner scan("a b"); StringPiece remaining = "rem"; StringPiece match = "match"; EXPECT_TRUE(scan.Any(Scanner::LETTER) .AnySpace() .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("a b", match); } TEST_F(ScannerTest, AllCharClasses) { EXPECT_EQ(256, ClassStr(Scanner::ALL).size()); EXPECT_EQ("0123456789", ClassStr(Scanner::DIGIT)); EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER)); EXPECT_EQ("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT)); EXPECT_EQ( "-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_UNDERSCORE)); EXPECT_EQ( "-./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_DOT_SLASH)); EXPECT_EQ( "-./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE)); EXPECT_EQ(".0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT)); EXPECT_EQ("+-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT_PLUS_MINUS)); EXPECT_EQ(".0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT_UNDERSCORE)); EXPECT_EQ("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_UNDERSCORE)); EXPECT_EQ("abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER)); EXPECT_EQ("0123456789abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER_DIGIT)); EXPECT_EQ("0123456789_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER_DIGIT_UNDERSCORE)); EXPECT_EQ("123456789", ClassStr(Scanner::NON_ZERO_DIGIT)); EXPECT_EQ("\t\n\v\f\r ", ClassStr(Scanner::SPACE)); EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZ", ClassStr(Scanner::UPPERLETTER)); EXPECT_EQ(">", ClassStr(Scanner::RANGLE)); } TEST_F(ScannerTest, Peek) { EXPECT_EQ('a', Scanner("abc").Peek()); EXPECT_EQ('a', Scanner("abc").Peek('b')); EXPECT_EQ('\0', Scanner("").Peek()); EXPECT_EQ('z', Scanner("").Peek('z')); EXPECT_EQ('A', Scanner("0123A").Any(Scanner::DIGIT).Peek()); EXPECT_EQ('\0', Scanner("0123A").Any(Scanner::LETTER_DIGIT).Peek()); } } }
2,256
#ifndef TENSORFLOW_TSL_PLATFORM_STRINGPRINTF_H_ #define TENSORFLOW_TSL_PLATFORM_STRINGPRINTF_H_ #include <stdarg.h> #include <string> #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace tsl { namespace strings { std::string Printf(const char* format, ...) TF_PRINTF_ATTRIBUTE(1, 2); void Appendf(std::string* dst, const char* format, ...) TF_PRINTF_ATTRIBUTE(2, 3); void Appendv(std::string* dst, const char* format, va_list ap); } } #endif #include "tsl/platform/stringprintf.h" #include <errno.h> #include <stdarg.h> #include <stdio.h> namespace tsl { namespace strings { void Appendv(string* dst, const char* format, va_list ap) { static const int kSpaceLength = 1024; char space[kSpaceLength]; va_list backup_ap; va_copy(backup_ap, ap); int result = vsnprintf(space, kSpaceLength, format, backup_ap); va_end(backup_ap); if (result < kSpaceLength) { if (result >= 0) { dst->append(space, result); return; } #ifdef _MSC_VER va_copy(backup_ap, ap); result = vsnprintf(nullptr, 0, format, backup_ap); va_end(backup_ap); #endif if (result < 0) { return; } } int length = result + 1; char* buf = new char[length]; va_copy(backup_ap, ap); result = vsnprintf(buf, length, format, backup_ap); va_end(backup_ap); if (result >= 0 && result < length) { dst->append(buf, result); } delete[] buf; } string Printf(const char* format, ...) { va_list ap; va_start(ap, format); string result; Appendv(&result, format, ap); va_end(ap); return result; } void Appendf(string* dst, const char* format, ...) { va_list ap; va_start(ap, format); Appendv(dst, format, ap); va_end(ap); } } }
#include "tsl/platform/stringprintf.h" #include <string> #include "tsl/platform/test.h" namespace tsl { namespace strings { namespace { TEST(PrintfTest, Empty) { EXPECT_EQ("", Printf("%s", string().c_str())); EXPECT_EQ("", Printf("%s", "")); } TEST(PrintfTest, Misc) { #if !defined(_MSC_VER) EXPECT_EQ("123hello w", Printf("%3$d%2$s %1$c", 'w', "hello", 123)); #endif } TEST(AppendfTest, Empty) { string value("Hello"); const char* empty = ""; Appendf(&value, "%s", empty); EXPECT_EQ("Hello", value); } TEST(AppendfTest, EmptyString) { string value("Hello"); Appendf(&value, "%s", ""); EXPECT_EQ("Hello", value); } TEST(AppendfTest, String) { string value("Hello"); Appendf(&value, " %s", "World"); EXPECT_EQ("Hello World", value); } TEST(AppendfTest, Int) { string value("Hello"); Appendf(&value, " %d", 123); EXPECT_EQ("Hello 123", value); } TEST(PrintfTest, Multibyte) { char* old_locale = setlocale(LC_CTYPE, nullptr); setlocale(LC_CTYPE, "en_US.utf8"); const char kInvalidCodePoint[] = "\375\067s"; string value = Printf("%.*s", 3, kInvalidCodePoint); EXPECT_TRUE(value.empty() || value == kInvalidCodePoint); int n = 2048; char* buf = new char[n + 1]; memset(buf, ' ', n - 3); memcpy(buf + n - 3, kInvalidCodePoint, 4); value = Printf("%.*s", n, buf); EXPECT_TRUE(value.empty() || value == buf); delete[] buf; setlocale(LC_CTYPE, old_locale); } TEST(PrintfTest, NoMultibyte) { char* old_locale = setlocale(LC_CTYPE, nullptr); setlocale(LC_CTYPE, "POSIX"); string value = Printf("%.*s", 3, "\375\067s"); setlocale(LC_CTYPE, old_locale); EXPECT_EQ("\375\067s", value); } TEST(PrintfTest, DontOverwriteErrno) { errno = ECHILD; string value = Printf("Hello, %s!", "World"); EXPECT_EQ(ECHILD, errno); } TEST(PrintfTest, LargeBuf) { int n = 2048; char* buf = new char[n + 1]; memset(buf, ' ', n); buf[n] = 0; string value = Printf("%s", buf); EXPECT_EQ(buf, value); delete[] buf; } } } }
2,257
#ifndef TENSORFLOW_TSL_PLATFORM_CODING_H_ #define TENSORFLOW_TSL_PLATFORM_CODING_H_ #include "tsl/platform/stringpiece.h" #include "tsl/platform/tstring.h" #include "tsl/platform/types.h" namespace tsl { namespace core { static const int kMaxVarint32Bytes = 5; static const int kMaxVarint64Bytes = 10; extern void EncodeFixed16(char* dst, uint16 value); extern void EncodeFixed32(char* dst, uint32 value); extern void EncodeFixed64(char* dst, uint64 value); extern void PutFixed16(string* dst, uint16 value); extern void PutFixed32(string* dst, uint32 value); extern void PutFixed64(string* dst, uint64 value); extern void PutVarint32(string* dst, uint32 value); extern void PutVarint64(string* dst, uint64 value); extern void PutVarint32(tstring* dst, uint32 value); extern void PutVarint64(tstring* dst, uint64 value); extern bool GetVarint32(StringPiece* input, uint32* value); extern bool GetVarint64(StringPiece* input, uint64* value); extern const char* GetVarint32Ptr(const char* p, const char* limit, uint32* v); extern const char* GetVarint64Ptr(const char* p, const char* limit, uint64* v); extern const char* GetVarint32PtrFallback(const char* p, const char* limit, uint32* value); extern const char* GetVarint32Ptr(const char* p, const char* limit, uint32* value); extern char* EncodeVarint32(char* dst, uint32 v); extern char* EncodeVarint64(char* dst, uint64 v); extern int VarintLength(uint64_t v); } } #endif #include "tsl/platform/coding.h" #include "tsl/platform/byte_order.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/tstring.h" #include "tsl/platform/types.h" namespace tsl { namespace core { void EncodeFixed16(char* buf, uint16 value) { if (port::kLittleEndian) { memcpy(buf, &value, sizeof(value)); } else { buf[0] = value & 0xff; buf[1] = (value >> 8) & 0xff; } } void EncodeFixed32(char* buf, uint32 value) { if (port::kLittleEndian) { memcpy(buf, &value, sizeof(value)); } else { buf[0] = value & 0xff; buf[1] = (value >> 8) & 0xff; buf[2] = (value >> 16) & 0xff; buf[3] = (value >> 24) & 0xff; } } void EncodeFixed64(char* buf, uint64 value) { if (port::kLittleEndian) { memcpy(buf, &value, sizeof(value)); } else { buf[0] = value & 0xff; buf[1] = (value >> 8) & 0xff; buf[2] = (value >> 16) & 0xff; buf[3] = (value >> 24) & 0xff; buf[4] = (value >> 32) & 0xff; buf[5] = (value >> 40) & 0xff; buf[6] = (value >> 48) & 0xff; buf[7] = (value >> 56) & 0xff; } } void PutFixed16(string* dst, uint16 value) { char buf[sizeof(value)]; EncodeFixed16(buf, value); dst->append(buf, sizeof(buf)); } void PutFixed32(string* dst, uint32 value) { char buf[sizeof(value)]; EncodeFixed32(buf, value); dst->append(buf, sizeof(buf)); } void PutFixed64(string* dst, uint64 value) { char buf[sizeof(value)]; EncodeFixed64(buf, value); dst->append(buf, sizeof(buf)); } char* EncodeVarint32(char* dst, uint32 v) { unsigned char* ptr = reinterpret_cast<unsigned char*>(dst); static const int B = 128; if (v < (1 << 7)) { *(ptr++) = v; } else if (v < (1 << 14)) { *(ptr++) = v | B; *(ptr++) = v >> 7; } else if (v < (1 << 21)) { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = v >> 14; } else if (v < (1 << 28)) { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = (v >> 14) | B; *(ptr++) = v >> 21; } else { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = (v >> 14) | B; *(ptr++) = (v >> 21) | B; *(ptr++) = v >> 28; } return reinterpret_cast<char*>(ptr); } void PutVarint32(string* dst, uint32 v) { char buf[5]; char* ptr = EncodeVarint32(buf, v); dst->append(buf, ptr - buf); } void PutVarint32(tstring* dst, uint32 v) { char buf[5]; char* ptr = EncodeVarint32(buf, v); dst->append(buf, ptr - buf); } char* EncodeVarint64(char* dst, uint64 v) { static const int B = 128; unsigned char* ptr = reinterpret_cast<unsigned char*>(dst); while (v >= B) { *(ptr++) = (v & (B - 1)) | B; v >>= 7; } *(ptr++) = static_cast<unsigned char>(v); return reinterpret_cast<char*>(ptr); } void PutVarint64(string* dst, uint64 v) { char buf[10]; char* ptr = EncodeVarint64(buf, v); dst->append(buf, ptr - buf); } void PutVarint64(tstring* dst, uint64 v) { char buf[10]; char* ptr = EncodeVarint64(buf, v); dst->append(buf, ptr - buf); } int VarintLength(uint64_t v) { int len = 1; while (v >= 128) { v >>= 7; len++; } return len; } const char* GetVarint32Ptr(const char* p, const char* limit, uint32* value) { if (p < limit) { uint32 result = *(reinterpret_cast<const unsigned char*>(p)); if ((result & 128) == 0) { *value = result; return p + 1; } } return GetVarint32PtrFallback(p, limit, value); } const char* GetVarint32PtrFallback(const char* p, const char* limit, uint32* value) { uint32 result = 0; for (uint32 shift = 0; shift <= 28 && p < limit; shift += 7) { uint32 byte = *(reinterpret_cast<const unsigned char*>(p)); p++; if (byte & 128) { result |= ((byte & 127) << shift); } else { result |= (byte << shift); *value = result; return reinterpret_cast<const char*>(p); } } return nullptr; } bool GetVarint32(StringPiece* input, uint32* value) { const char* p = input->data(); const char* limit = p + input->size(); const char* q = GetVarint32Ptr(p, limit, value); if (q == nullptr) { return false; } else { *input = StringPiece(q, limit - q); return true; } } const char* GetVarint64Ptr(const char* p, const char* limit, uint64* value) { uint64 result = 0; for (uint32 shift = 0; shift <= 63 && p < limit; shift += 7) { uint64 byte = *(reinterpret_cast<const unsigned char*>(p)); p++; if (byte & 128) { result |= ((byte & 127) << shift); } else { result |= (byte << shift); *value = result; return reinterpret_cast<const char*>(p); } } return nullptr; } bool GetVarint64(StringPiece* input, uint64* value) { const char* p = input->data(); const char* limit = p + input->size(); const char* q = GetVarint64Ptr(p, limit, value); if (q == nullptr) { return false; } else { *input = StringPiece(q, limit - q); return true; } } } }
#include "tensorflow/core/lib/core/coding.h" #include <vector> #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace core { TEST(Coding, Fixed16) { static const uint16 N = 50000; string s; for (uint16 v = 0; v < N; v++) { char buf[sizeof(uint16)]; EncodeFixed16(buf, v); s.append(buf, sizeof(buf)); } const char* p = s.data(); for (uint16 v = 0; v < N; v++) { uint16 actual = DecodeFixed16(p); ASSERT_EQ(v, actual); p += sizeof(uint16); } } TEST(Coding, Fixed32) { static const uint32 N = 100000; string s; for (uint32 v = 0; v < N; v++) { char buf[sizeof(uint32)]; EncodeFixed32(buf, v); s.append(buf, sizeof(buf)); } const char* p = s.data(); for (uint32 v = 0; v < N; v++) { uint32 actual = DecodeFixed32(p); ASSERT_EQ(v, actual); p += sizeof(uint32); } } TEST(Coding, Fixed64) { string s; for (int power = 0; power <= 63; power++) { uint64 v = static_cast<uint64>(1) << power; char buf[sizeof(uint64)]; EncodeFixed64(buf, v - 1); s.append(buf, sizeof(buf)); EncodeFixed64(buf, v + 0); s.append(buf, sizeof(buf)); EncodeFixed64(buf, v + 1); s.append(buf, sizeof(buf)); } const char* p = s.data(); for (int power = 0; power <= 63; power++) { uint64 v = static_cast<uint64>(1) << power; uint64 actual; actual = DecodeFixed64(p); ASSERT_EQ(v - 1, actual); p += sizeof(uint64); actual = DecodeFixed64(p); ASSERT_EQ(v + 0, actual); p += sizeof(uint64); actual = DecodeFixed64(p); ASSERT_EQ(v + 1, actual); p += sizeof(uint64); } } TEST(Coding, EncodingOutput) { char dst[8]; EncodeFixed16(dst, 0x0201); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); EncodeFixed32(dst, 0x04030201); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); EncodeFixed64(dst, 0x0807060504030201ull); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); ASSERT_EQ(0x05, static_cast<int>(dst[4])); ASSERT_EQ(0x06, static_cast<int>(dst[5])); ASSERT_EQ(0x07, static_cast<int>(dst[6])); ASSERT_EQ(0x08, static_cast<int>(dst[7])); } TEST(Coding, Varint32) { string s; for (uint32 i = 0; i < (32 * 32); i++) { uint32 v = (i / 32) << (i % 32); PutVarint32(&s, v); } const char* p = s.data(); const char* limit = p + s.size(); for (uint32 i = 0; i < (32 * 32); i++) { uint32 expected = (i / 32) << (i % 32); uint32 actual; p = GetVarint32Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(expected, actual); } ASSERT_EQ(p, s.data() + s.size()); } TEST(Coding, Varint64) { std::vector<uint64> values; values.push_back(0); values.push_back(100); values.push_back(~static_cast<uint64>(0)); values.push_back(~static_cast<uint64>(0) - 1); for (uint32 k = 0; k < 64; k++) { const uint64 power = 1ull << k; values.push_back(power); values.push_back(power - 1); values.push_back(power + 1); } string s; for (size_t i = 0; i < values.size(); i++) { PutVarint64(&s, values[i]); } const char* p = s.data(); const char* limit = p + s.size(); for (size_t i = 0; i < values.size(); i++) { ASSERT_TRUE(p < limit); uint64 actual; p = GetVarint64Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(values[i], actual); } ASSERT_EQ(p, limit); } TEST(Coding, Varint32Overflow) { uint32 result; string input("\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint32Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint32Truncation) { uint32 large_value = (1u << 31) + 100; string s; PutVarint32(&s, large_value); uint32 result; for (size_t len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } TEST(Coding, Varint64Overflow) { uint64 result; string input("\x81\x82\x83\x84\x85\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint64Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint64Truncation) { uint64 large_value = (1ull << 63) + 100ull; string s; PutVarint64(&s, large_value); uint64 result; for (size_t len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } } }
2,258
#ifndef TENSORFLOW_TSL_PLATFORM_ABI_H_ #define TENSORFLOW_TSL_PLATFORM_ABI_H_ #include <string> #include "tsl/platform/types.h" namespace tsl { namespace port { std::string MaybeAbiDemangle(const char* name); } } #endif #include "tsl/platform/abi.h" #include "tsl/platform/types.h" #if defined(_MSC_VER) #include <windows.h> #include <cstring> #else #include <cxxabi.h> #include <cstdlib> #endif #include <memory> #include <string> #if defined(_MSC_VER) extern "C" char* __unDName(char* output_string, const char* name, int max_string_length, void* (*p_alloc)(std::size_t), void (*p_free)(void*), unsigned short disable_flags); #endif namespace tsl { namespace port { string MaybeAbiDemangle(const char* name) { #if defined(_MSC_VER) std::unique_ptr<char> demangled{__unDName(nullptr, name, 0, std::malloc, std::free, static_cast<unsigned short>(0))}; return string(demangled.get() != nullptr ? demangled.get() : name); #else int status = 0; std::unique_ptr<char, void (*)(void*)> res{ abi::__cxa_demangle(name, nullptr, nullptr, &status), std::free}; return (status == 0) ? res.get() : name; #endif } } }
#include "tsl/platform/abi.h" #include <typeinfo> #include "tsl/platform/test.h" namespace tsl { struct MyRandomPODType {}; TEST(AbiTest, AbiDemangleTest) { EXPECT_EQ(port::MaybeAbiDemangle(typeid(int).name()), "int"); #ifdef PLATFORM_WINDOWS const char pod_type_name[] = "struct tsl::MyRandomPODType"; #else const char pod_type_name[] = "tsl::MyRandomPODType"; #endif EXPECT_EQ(port::MaybeAbiDemangle(typeid(MyRandomPODType).name()), pod_type_name); EXPECT_EQ( port::MaybeAbiDemangle("help! i'm caught in a C++ mangle factoryasdf"), "help! i'm caught in a C++ mangle factoryasdf"); } }
2,259
#ifndef TENSORFLOW_TSL_PLATFORM_FILE_SYSTEM_H_ #define TENSORFLOW_TSL_PLATFORM_FILE_SYSTEM_H_ #include <stdint.h> #include <functional> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "tsl/platform/cord.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_statistics.h" #include "tsl/platform/macros.h" #include "tsl/platform/platform.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" #ifdef PLATFORM_WINDOWS #undef DeleteFile #undef CopyFile #undef TranslateName #endif namespace tsl { class FileAcl; class RandomAccessFile; class ReadOnlyMemoryRegion; class WritableFile; class FileSystem; struct TransactionToken { FileSystem* owner; void* token; }; class FileSystem { public: virtual absl::Status NewRandomAccessFile( const std::string& fname, std::unique_ptr<RandomAccessFile>* result) { return NewRandomAccessFile(fname, nullptr, result); } virtual absl::Status NewRandomAccessFile( const std::string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) { return absl::OkStatus(); } virtual absl::Status NewWritableFile(const std::string& fname, std::unique_ptr<WritableFile>* result) { return NewWritableFile(fname, nullptr, result); } virtual absl::Status NewWritableFile(const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { return absl::OkStatus(); } virtual absl::Status NewAppendableFile( const std::string& fname, std::unique_ptr<WritableFile>* result) { return NewAppendableFile(fname, nullptr, result); } virtual absl::Status NewAppendableFile( const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { return absl::OkStatus(); } virtual absl::Status NewReadOnlyMemoryRegionFromFile( const std::string& fname, std::unique_ptr<ReadOnlyMemoryRegion>* result) { return NewReadOnlyMemoryRegionFromFile(fname, nullptr, result); } virtual absl::Status NewReadOnlyMemoryRegionFromFile( const std::string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) { return absl::OkStatus(); } virtual absl::Status FileExists(const std::string& fname) { return FileExists(fname, nullptr); } virtual absl::Status FileExists(const std::string& fname, TransactionToken* token) { return absl::OkStatus(); } virtual bool FilesExist(const std::vector<string>& files, std::vector<absl::Status>* status) { return FilesExist(files, nullptr, status); } virtual bool FilesExist(const std::vector<string>& files, TransactionToken* token, std::vector<absl::Status>* status); virtual absl::Status GetChildren(const std::string& dir, std::vector<string>* result) { return GetChildren(dir, nullptr, result); } virtual absl::Status GetChildren(const std::string& dir, TransactionToken* token, std::vector<string>* result) { return absl::OkStatus(); } virtual absl::Status GetMatchingPaths(const std::string& pattern, std::vector<string>* results) { return GetMatchingPaths(pattern, nullptr, results); } virtual absl::Status GetMatchingPaths(const std::string& pattern, TransactionToken* token, std::vector<string>* results) { return absl::OkStatus(); } virtual bool Match(const std::string& filename, const std::string& pattern); virtual absl::Status Stat(const std::string& fname, FileStatistics* stat) { return Stat(fname, nullptr, stat); } virtual absl::Status Stat(const std::string& fname, TransactionToken* token, FileStatistics* stat) { return absl::OkStatus(); } virtual absl::Status DeleteFile(const std::string& fname) { return DeleteFile(fname, nullptr); } virtual absl::Status DeleteFile(const std::string& fname, TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status CreateDir(const std::string& dirname) { return CreateDir(dirname, nullptr); } virtual absl::Status CreateDir(const std::string& dirname, TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status RecursivelyCreateDir(const std::string& dirname) { return RecursivelyCreateDir(dirname, nullptr); } virtual absl::Status RecursivelyCreateDir(const std::string& dirname, TransactionToken* token); virtual absl::Status DeleteDir(const std::string& dirname) { return DeleteDir(dirname, nullptr); } virtual absl::Status DeleteDir(const std::string& dirname, TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status DeleteRecursively(const std::string& dirname, int64_t* undeleted_files, int64_t* undeleted_dirs) { return DeleteRecursively(dirname, nullptr, undeleted_files, undeleted_dirs); } virtual absl::Status DeleteRecursively(const std::string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs); virtual absl::Status GetFileSize(const std::string& fname, uint64* file_size) { return GetFileSize(fname, nullptr, file_size); } virtual absl::Status GetFileSize(const std::string& fname, TransactionToken* token, uint64* file_size) { return absl::OkStatus(); } virtual absl::Status RenameFile(const std::string& src, const std::string& target) { return RenameFile(src, target, nullptr); } virtual absl::Status RenameFile(const std::string& src, const std::string& target, TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status CopyFile(const std::string& src, const std::string& target) { return CopyFile(src, target, nullptr); } virtual absl::Status CopyFile(const std::string& src, const std::string& target, TransactionToken* token); virtual std::string TranslateName(const std::string& name) const; virtual absl::Status IsDirectory(const std::string& fname) { return IsDirectory(fname, nullptr); } virtual absl::Status IsDirectory(const std::string& fname, TransactionToken* token); virtual absl::Status HasAtomicMove(const std::string& path, bool* has_atomic_move); virtual absl::Status CanCreateTempFile(const std::string& fname, bool* can_create_temp_file); virtual void FlushCaches() { FlushCaches(nullptr); } virtual void FlushCaches(TransactionToken* token); virtual char Separator() const; std::pair<StringPiece, StringPiece> SplitPath(StringPiece uri) const; virtual StringPiece Basename(StringPiece path) const; StringPiece Dirname(StringPiece path) const; StringPiece Extension(StringPiece path) const; std::string CleanPath(StringPiece path) const; std::string CreateURI(StringPiece scheme, StringPiece host, StringPiece path) const; bool IsAbsolutePath(tsl::StringPiece path) const; #ifndef SWIG template <typename... T> std::string JoinPath(const T&... args) { return JoinPathImpl({args...}); } #endif std::string JoinPathImpl(std::initializer_list<tsl::StringPiece> paths); void ParseURI(StringPiece remaining, StringPiece* scheme, StringPiece* host, StringPiece* path) const; virtual absl::Status StartTransaction(TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } virtual absl::Status AddToTransaction(const std::string& path, TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status EndTransaction(TransactionToken* token) { return absl::OkStatus(); } virtual absl::Status GetTokenOrStartTransaction(const std::string& path, TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } virtual absl::Status GetTransactionForPath(const std::string& path, TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } virtual std::string DecodeTransaction(const TransactionToken* token); virtual absl::Status SetOption(const string& key, const string& value) { return errors::Unimplemented("SetOption"); } virtual absl::Status SetOption(const std::string& name, const std::vector<string>& values) { return errors::Unimplemented("SetOption"); } virtual absl::Status SetOption(const std::string& name, const std::vector<int64_t>& values) { return errors::Unimplemented("SetOption"); } virtual absl::Status SetOption(const std::string& name, const std::vector<double>& values) { return errors::Unimplemented("SetOption"); } virtual absl::Status SetFileAcl(std::shared_ptr<FileAcl> file_acl) { return errors::Unimplemented("SetFileAcl"); } FileSystem() {} virtual ~FileSystem() = default; }; #define TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT \ using FileSystem::NewRandomAccessFile; \ using FileSystem::NewWritableFile; \ using FileSystem::NewAppendableFile; \ using FileSystem::NewReadOnlyMemoryRegionFromFile; \ using FileSystem::FileExists; \ using FileSystem::GetChildren; \ using FileSystem::GetMatchingPaths; \ using FileSystem::Stat; \ using FileSystem::DeleteFile; \ using FileSystem::RecursivelyCreateDir; \ using FileSystem::DeleteDir; \ using FileSystem::DeleteRecursively; \ using FileSystem::GetFileSize; \ using FileSystem::RenameFile; \ using FileSystem::CopyFile; \ using FileSystem::IsDirectory; \ using FileSystem::FlushCaches class WrappedFileSystem : public FileSystem { public: TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT; absl::Status NewRandomAccessFile( const std::string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) override { return fs_->NewRandomAccessFile(fname, (token ? token : token_), result); } absl::Status NewWritableFile(const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override { return fs_->NewWritableFile(fname, (token ? token : token_), result); } absl::Status NewAppendableFile( const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override { return fs_->NewAppendableFile(fname, (token ? token : token_), result); } absl::Status NewReadOnlyMemoryRegionFromFile( const std::string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) override { return fs_->NewReadOnlyMemoryRegionFromFile(fname, (token ? token : token_), result); } absl::Status FileExists(const std::string& fname, TransactionToken* token) override { return fs_->FileExists(fname, (token ? token : token_)); } bool FilesExist(const std::vector<string>& files, TransactionToken* token, std::vector<absl::Status>* status) override { return fs_->FilesExist(files, (token ? token : token_), status); } absl::Status GetChildren(const std::string& dir, TransactionToken* token, std::vector<string>* result) override { return fs_->GetChildren(dir, (token ? token : token_), result); } absl::Status GetMatchingPaths(const std::string& pattern, TransactionToken* token, std::vector<string>* results) override { return fs_->GetMatchingPaths(pattern, (token ? token : token_), results); } bool Match(const std::string& filename, const std::string& pattern) override { return fs_->Match(filename, pattern); } absl::Status Stat(const std::string& fname, TransactionToken* token, FileStatistics* stat) override { return fs_->Stat(fname, (token ? token : token_), stat); } absl::Status DeleteFile(const std::string& fname, TransactionToken* token) override { return fs_->DeleteFile(fname, (token ? token : token_)); } absl::Status CreateDir(const std::string& dirname, TransactionToken* token) override { return fs_->CreateDir(dirname, (token ? token : token_)); } absl::Status RecursivelyCreateDir(const std::string& dirname, TransactionToken* token) override { return fs_->RecursivelyCreateDir(dirname, (token ? token : token_)); } absl::Status DeleteDir(const std::string& dirname, TransactionToken* token) override { return fs_->DeleteDir(dirname, (token ? token : token_)); } absl::Status DeleteRecursively(const std::string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) override { return fs_->DeleteRecursively(dirname, (token ? token : token_), undeleted_files, undeleted_dirs); } absl::Status GetFileSize(const std::string& fname, TransactionToken* token, uint64* file_size) override { return fs_->GetFileSize(fname, (token ? token : token_), file_size); } absl::Status RenameFile(const std::string& src, const std::string& target, TransactionToken* token) override { return fs_->RenameFile(src, target, (token ? token : token_)); } absl::Status CopyFile(const std::string& src, const std::string& target, TransactionToken* token) override { return fs_->CopyFile(src, target, (token ? token : token_)); } std::string TranslateName(const std::string& name) const override { return fs_->TranslateName(name); } absl::Status IsDirectory(const std::string& fname, TransactionToken* token) override { return fs_->IsDirectory(fname, (token ? token : token_)); } absl::Status HasAtomicMove(const std::string& path, bool* has_atomic_move) override { return fs_->HasAtomicMove(path, has_atomic_move); } void FlushCaches(TransactionToken* token) override { return fs_->FlushCaches((token ? token : token_)); } char Separator() const override { return fs_->Separator(); } StringPiece Basename(StringPiece path) const override { return fs_->Basename(path); } absl::Status StartTransaction(TransactionToken** token) override { return fs_->StartTransaction(token); } absl::Status AddToTransaction(const std::string& path, TransactionToken* token) override { return fs_->AddToTransaction(path, (token ? token : token_)); } absl::Status EndTransaction(TransactionToken* token) override { return fs_->EndTransaction(token); } absl::Status GetTransactionForPath(const std::string& path, TransactionToken** token) override { return fs_->GetTransactionForPath(path, token); } absl::Status GetTokenOrStartTransaction(const std::string& path, TransactionToken** token) override { return fs_->GetTokenOrStartTransaction(path, token); } std::string DecodeTransaction(const TransactionToken* token) override { return fs_->DecodeTransaction((token ? token : token_)); } WrappedFileSystem(FileSystem* file_system, TransactionToken* token) : fs_(file_system), token_(token) {} ~WrappedFileSystem() override = default; private: FileSystem* fs_; TransactionToken* token_; }; class RandomAccessFile { public: RandomAccessFile() {} virtual ~RandomAccessFile() = default; virtual absl::Status Name(StringPiece* result) const { return errors::Unimplemented("This filesystem does not support Name()"); } virtual absl::Status Read(uint64 offset, size_t n, StringPiece* result, char* scratch) const = 0; #if defined(TF_CORD_SUPPORT) virtual absl::Status Read(uint64 offset, size_t n, absl::Cord* cord) const { return errors::Unimplemented( "Read(uint64, size_t, absl::Cord*) is not " "implemented"); } #endif private: RandomAccessFile(const RandomAccessFile&) = delete; void operator=(const RandomAccessFile&) = delete; }; class WritableFile { public: WritableFile() {} virtual ~WritableFile() = default; virtual absl::Status Append(StringPiece data) = 0; #if defined(TF_CORD_SUPPORT) virtual absl::Status Append(const absl::Cord& cord) { for (StringPiece chunk : cord.Chunks()) { TF_RETURN_IF_ERROR(Append(chunk)); } return absl::OkStatus(); } #endif virtual absl::Status Close() = 0;
#include "tensorflow/core/platform/file_system.h" #include <sys/stat.h> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/null_file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { static const char* const kPrefix = "ipfs: class InterPlanetaryFileSystem : public NullFileSystem { public: TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT; Status FileExists(const string& fname, TransactionToken* token) override { string parsed_path; ParsePath(fname, &parsed_path); if (BodyExists(parsed_path)) { return absl::OkStatus(); } return Status(absl::StatusCode::kNotFound, "File does not exist"); } Status CreateDir(const string& dirname, TransactionToken* token) override { string parsed_path; ParsePath(dirname, &parsed_path); if (celestial_bodies_.find(parsed_path) != celestial_bodies_.end()) { return Status(absl::StatusCode::kAlreadyExists, "dirname already exists."); } std::vector<string> split_path = str_util::Split(parsed_path, '/'); if (split_path.size() > 3) { return Status(absl::StatusCode::kInvalidArgument, "Bad dirname"); } if (split_path.empty()) { return absl::OkStatus(); } if (split_path.size() == 1) { celestial_bodies_[""].insert(parsed_path); celestial_bodies_.insert( std::pair<string, std::set<string>>(parsed_path, {})); return absl::OkStatus(); } if (split_path.size() == 2) { if (!BodyExists(split_path[0])) { return Status(absl::StatusCode::kFailedPrecondition, "Base dir not created"); } celestial_bodies_[split_path[0]].insert(split_path[1]); celestial_bodies_.insert( std::pair<string, std::set<string>>(parsed_path, {})); return absl::OkStatus(); } if (split_path.size() == 3) { const string& parent_path = this->JoinPath(split_path[0], split_path[1]); if (!BodyExists(parent_path)) { return Status(absl::StatusCode::kFailedPrecondition, "Base dir not created"); } celestial_bodies_[parent_path].insert(split_path[2]); celestial_bodies_.insert( std::pair<string, std::set<string>>(parsed_path, {})); return absl::OkStatus(); } return Status(absl::StatusCode::kFailedPrecondition, "Failed to create"); } Status IsDirectory(const string& dirname, TransactionToken* token) override { string parsed_path; ParsePath(dirname, &parsed_path); if (parsed_path == "evil_directory") { LOG(FATAL) << "evil_directory cannot be accessed"; } std::vector<string> split_path = str_util::Split(parsed_path, '/'); if (split_path.size() > 2) { return Status(absl::StatusCode::kFailedPrecondition, "Not a dir"); } if (celestial_bodies_.find(parsed_path) != celestial_bodies_.end()) { return absl::OkStatus(); } return Status(absl::StatusCode::kFailedPrecondition, "Not a dir"); } Status GetChildren(const string& dir, TransactionToken* token, std::vector<string>* result) override { TF_RETURN_IF_ERROR(IsDirectory(dir, nullptr)); string parsed_path; ParsePath(dir, &parsed_path); result->insert(result->begin(), celestial_bodies_[parsed_path].begin(), celestial_bodies_[parsed_path].end()); return absl::OkStatus(); } private: bool BodyExists(const string& name) { return celestial_bodies_.find(name) != celestial_bodies_.end(); } void ParsePath(const string& name, string* parsed_path) { StringPiece scheme, host, path; this->ParseURI(name, &scheme, &host, &path); ASSERT_EQ(scheme, "ipfs"); ASSERT_EQ(host, "solarsystem"); absl::ConsumePrefix(&path, "/"); *parsed_path = string(path); } std::map<string, std::set<string>> celestial_bodies_ = { std::pair<string, std::set<string>>( "", {"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"}), std::pair<string, std::set<string>>("Mercury", {}), std::pair<string, std::set<string>>("Venus", {}), std::pair<string, std::set<string>>("Earth", {"Moon"}), std::pair<string, std::set<string>>("Mars", {}), std::pair<string, std::set<string>>("Jupiter", {"Europa", "Io", "Ganymede"}), std::pair<string, std::set<string>>("Saturn", {}), std::pair<string, std::set<string>>("Uranus", {}), std::pair<string, std::set<string>>("Neptune", {}), std::pair<string, std::set<string>>("Earth/Moon", {}), std::pair<string, std::set<string>>("Jupiter/Europa", {}), std::pair<string, std::set<string>>("Jupiter/Io", {}), std::pair<string, std::set<string>>("Jupiter/Ganymede", {})}; }; string Match(InterPlanetaryFileSystem* ipfs, const string& suffix_pattern) { std::vector<string> results; Status s = ipfs->GetMatchingPaths(ipfs->JoinPath(kPrefix, suffix_pattern), nullptr, &results); if (!s.ok()) { return s.ToString(); } else { std::vector<StringPiece> trimmed_results; std::sort(results.begin(), results.end()); for (const string& result : results) { StringPiece trimmed_result(result); EXPECT_TRUE( absl::ConsumePrefix(&trimmed_result, strings::StrCat(kPrefix, "/"))); trimmed_results.push_back(trimmed_result); } return absl::StrJoin(trimmed_results, ","); } } TEST(InterPlanetaryFileSystemTest, IPFSMatch) { InterPlanetaryFileSystem ipfs; EXPECT_EQ(Match(&ipfs, "thereisnosuchfile"), ""); EXPECT_EQ(Match(&ipfs, "*"), "Earth,Jupiter,Mars,Mercury,Neptune,Saturn,Uranus,Venus"); EXPECT_EQ(Match(&ipfs, "Jupiter*"), "Earth/Moon,Jupiter/Europa,Jupiter/Ganymede,Jupiter/Io"); TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "Planet0"), nullptr)); TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "Planet1"), nullptr)); EXPECT_EQ(Match(&ipfs, "Planet[0-1]"), "Planet0,Planet1"); EXPECT_EQ(Match(&ipfs, "Planet?"), "Planet0,Planet1"); } TEST(InterPlanetaryFileSystemTest, MatchSimple) { InterPlanetaryFileSystem ipfs; TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "match-00"), nullptr)); TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "match-0a"), nullptr)); TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "match-01"), nullptr)); TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "match-aaa"), nullptr)); EXPECT_EQ(Match(&ipfs, "match-*"), "match-00,match-01,match-0a,match-aaa"); EXPECT_EQ(Match(&ipfs, "match-0[0-9]"), "match-00,match-01"); EXPECT_EQ(Match(&ipfs, "match-?[0-9]"), "match-00,match-01"); EXPECT_EQ(Match(&ipfs, "match-?a*"), "match-0a,match-aaa"); EXPECT_EQ(Match(&ipfs, "match-??"), "match-00,match-01,match-0a"); } TEST(InterPlanetaryFileSystemTest, MatchOnlyNeeded) { InterPlanetaryFileSystem ipfs; TF_EXPECT_OK(ipfs.CreateDir(ipfs.JoinPath(kPrefix, "abcd"), nullptr)); TF_EXPECT_OK( ipfs.CreateDir(ipfs.JoinPath(kPrefix, "evil_directory"), nullptr)); EXPECT_EQ(Match(&ipfs, "abcd"), "abcd"); } TEST(InterPlanetaryFileSystemTest, MatchDirectory) { InterPlanetaryFileSystem ipfs; TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-00/abc/x"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-0a/abc/x"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-01/abc/x"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-aaa/abc/x"), nullptr)); EXPECT_EQ(Match(&ipfs, "match-*/abc/x"), "match-00/abc/x,match-01/abc/x,match-0a/abc/x,match-aaa/abc/x"); EXPECT_EQ(Match(&ipfs, "match-0[0-9]/abc/x"), "match-00/abc/x,match-01/abc/x"); EXPECT_EQ(Match(&ipfs, "match-?[0-9]/abc/x"), "match-00/abc/x,match-01/abc/x"); EXPECT_EQ(Match(&ipfs, "match-?a*/abc/x"), "match-0a/abc/x,match-aaa/abc/x"); EXPECT_EQ(Match(&ipfs, "match-?[^a]/abc/x"), "match-00/abc/x,match-01/abc/x"); } TEST(InterPlanetaryFileSystemTest, MatchMultipleWildcards) { InterPlanetaryFileSystem ipfs; TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-00/abc/00"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-00/abc/01"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-00/abc/09"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-01/abc/00"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-01/abc/04"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-01/abc/10"), nullptr)); TF_EXPECT_OK(ipfs.RecursivelyCreateDir( ipfs.JoinPath(kPrefix, "match-02/abc/00"), nullptr)); EXPECT_EQ(Match(&ipfs, "match-0[0-1]/abc/0[0-8]"), "match-00/abc/00,match-00/abc/01,match-01/abc/00,match-01/abc/04"); } TEST(InterPlanetaryFileSystemTest, RecursivelyCreateAlreadyExistingDir) { InterPlanetaryFileSystem ipfs; const string dirname = ipfs.JoinPath(kPrefix, "match-00/abc/00"); TF_EXPECT_OK(ipfs.RecursivelyCreateDir(dirname)); } TEST(InterPlanetaryFileSystemTest, HasAtomicMove) { InterPlanetaryFileSystem ipfs; const string dirname = io::JoinPath(kPrefix, "match-00/abc/00"); bool has_atomic_move; TF_EXPECT_OK(ipfs.HasAtomicMove(dirname, &has_atomic_move)); EXPECT_EQ(has_atomic_move, true); } TEST(InterPlanetaryFileSystemTest, CanCreateTempFile) { InterPlanetaryFileSystem ipfs; const string dirname = io::JoinPath(kPrefix, "match-00/abc/00"); bool can_create_temp_file; TF_EXPECT_OK(ipfs.CanCreateTempFile(dirname, &can_create_temp_file)); EXPECT_EQ(can_create_temp_file, true); } class TestFileSystem : public NullFileSystem { public: Status IsDirectory(const string& dirname, TransactionToken* token) override { if (dirname == "." || dirname.empty()) { return absl::OkStatus(); } return Status(absl::StatusCode::kFailedPrecondition, "Not a dir"); } Status GetChildren(const string& dir, TransactionToken* token, std::vector<string>* result) override { if (dir == "." || dir.empty()) { result->push_back("test"); } return absl::OkStatus(); } }; TEST(TestFileSystemTest, RootDirectory) { TestFileSystem fs; std::vector<string> results; auto ret = fs.GetMatchingPaths("./te*", nullptr, &results); EXPECT_EQ(1, results.size()); EXPECT_EQ("./test", results[0]); ret = fs.GetMatchingPaths("te*", nullptr, &results); EXPECT_EQ(1, results.size()); EXPECT_EQ("./test", results[0]); } }
2,260
#ifndef TENSORFLOW_TSL_PLATFORM_RETRYING_UTILS_H_ #define TENSORFLOW_TSL_PLATFORM_RETRYING_UTILS_H_ #include <functional> #include "absl/time/time.h" #include "tsl/platform/status.h" namespace tsl { struct RetryConfig { RetryConfig(int64_t init_delay_time_us = 100 * 1000, int64_t max_delay_time_us = 32 * 1000 * 1000, int max_retries = 10) { this->init_delay_time_us = init_delay_time_us; this->max_delay_time_us = max_delay_time_us; this->max_retries = max_retries; } int max_retries; int64_t init_delay_time_us; int64_t max_delay_time_us; }; class RetryingUtils { public: static absl::Status CallWithRetries(const std::function<absl::Status()>& f, const RetryConfig& config); static absl::Status CallWithRetries( const std::function<absl::Status()>& f, const std::function<void(int64_t)>& sleep_usec, const RetryConfig& config); static absl::Status DeleteWithRetries( const std::function<absl::Status()>& delete_func, const RetryConfig& config); }; absl::Duration ComputeRetryBackoff( int current_retry_attempt, absl::Duration min_delay = absl::Milliseconds(1), absl::Duration max_delay = absl::Seconds(10)); } #endif #include "tsl/platform/retrying_utils.h" #include <algorithm> #include <cmath> #include <cstdint> #include <limits> #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/logging.h" #include "tsl/platform/random.h" namespace tsl { namespace { bool IsRetriable(absl::StatusCode code) { switch (code) { case absl::StatusCode::kUnavailable: case absl::StatusCode::kDeadlineExceeded: case absl::StatusCode::kUnknown: return true; default: return false; } } double GenerateUniformRandomNumber() { return random::New64() * (1.0 / std::numeric_limits<uint64_t>::max()); } double GenerateUniformRandomNumberBetween(double a, double b) { if (a == b) return a; DCHECK_LT(a, b); return a + GenerateUniformRandomNumber() * (b - a); } } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const RetryConfig& config) { return CallWithRetries( f, [](int64_t micros) { return Env::Default()->SleepForMicroseconds(micros); }, config); } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const std::function<void(int64_t)>& sleep_usec, const RetryConfig& config) { int retries = 0; while (true) { auto status = f(); if (!IsRetriable(status.code())) { return status; } if (retries >= config.max_retries) { return absl::Status( absl::StatusCode::kAborted, strings::StrCat( "All ", config.max_retries, " retry attempts failed. The last failure: ", status.message())); } int64_t delay_micros = 0; if (config.init_delay_time_us > 0) { const int64_t random_micros = random::New64() % 1000000; delay_micros = std::min(config.init_delay_time_us << retries, config.max_delay_time_us) + random_micros; } VLOG(1) << "The operation failed and will be automatically retried in " << (delay_micros / 1000000.0) << " seconds (attempt " << (retries + 1) << " out of " << config.max_retries << "), caused by: " << status.ToString(); sleep_usec(delay_micros); retries++; } } absl::Status RetryingUtils::DeleteWithRetries( const std::function<absl::Status()>& delete_func, const RetryConfig& config) { bool is_retried = false; return RetryingUtils::CallWithRetries( [delete_func, &is_retried]() { const absl::Status status = delete_func(); if (is_retried && status.code() == error::NOT_FOUND) { return absl::OkStatus(); } is_retried = true; return status; }, config); } absl::Duration ComputeRetryBackoff(int current_retry_attempt, absl::Duration min_delay, absl::Duration max_delay) { DCHECK_GE(current_retry_attempt, 0); constexpr double kBackoffBase = 1.3; constexpr double kBackoffRandMult = 0.4; const absl::Duration first_term = min_delay * kBackoffRandMult; absl::Duration uncapped_second_term = min_delay * std::pow(kBackoffBase, current_retry_attempt); absl::Duration second_term = std::min(uncapped_second_term, max_delay - first_term); second_term *= GenerateUniformRandomNumberBetween(1.0 - kBackoffRandMult, 1.0); return std::max(first_term + second_term, min_delay); } }
#include "tsl/platform/retrying_utils.h" #include <cmath> #include <fstream> #include "absl/time/time.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(RetryingUtilsTest, CallWithRetries_RetryDelays) { std::vector<double> requested_delays; std::function<void(int64_t)> sleep = [&requested_delays](int64_t delay) { requested_delays.emplace_back(delay / 1000000.0); }; std::function<absl::Status()> f = []() { return errors::Unavailable("Failed."); }; const auto& status = RetryingUtils::CallWithRetries( f, sleep, RetryConfig(500000 )); EXPECT_TRUE(errors::IsAborted(status)); EXPECT_TRUE(absl::StrContains( status.message(), "All 10 retry attempts failed. The last failure: Failed.")) << status; EXPECT_EQ(10, requested_delays.size()); EXPECT_NEAR(0.5, requested_delays[0], 1.0); EXPECT_NEAR(1.0, requested_delays[1], 1.0); EXPECT_NEAR(2.0, requested_delays[2], 1.0); EXPECT_NEAR(4.0, requested_delays[3], 1.0); EXPECT_NEAR(8.0, requested_delays[4], 1.0); EXPECT_NEAR(16.0, requested_delays[5], 1.0); EXPECT_NEAR(32.0, requested_delays[6], 1.0); EXPECT_NEAR(32.0, requested_delays[7], 1.0); EXPECT_NEAR(32.0, requested_delays[8], 1.0); EXPECT_NEAR(32.0, requested_delays[9], 1.0); } TEST(RetryingUtilsTest, CallWithRetries_NotFoundIsNotRetried) { std::vector<absl::Status> results( {errors::Unavailable("Failed."), errors::NotFound("Not found.")}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; EXPECT_TRUE(errors::IsNotFound(RetryingUtils::CallWithRetries( f, RetryConfig(0 )))); } TEST(RetryingUtilsTest, CallWithRetries_ImmediateSuccess) { std::vector<absl::Status> results({absl::OkStatus()}); std::function<void(int64_t)> sleep = [](int64_t delay) { ADD_FAILURE() << "Unexpected call to sleep."; }; std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, sleep, RetryConfig(1L ))); } TEST(RetryingUtilsTest, CallWithRetries_EventualSuccess) { std::vector<absl::Status> results({errors::Unavailable("Failed."), errors::Unavailable("Failed again."), absl::OkStatus()}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_ImmediateSuccess) { std::vector<absl::Status> delete_results({absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_EventualSuccess) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_PermissionDeniedNotRetried) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::PermissionDenied("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_TRUE(errors::IsPermissionDenied(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )))); } TEST(RetryingUtilsTest, DeleteWithRetries_SuccessThroughFileNotFound) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_FirstNotFoundReturnedAsIs) { std::vector<absl::Status> delete_results({errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_EQ(error::NOT_FOUND, RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )) .code()); } TEST(RetryingUtilsTest, ComputeRetryBackoff) { for (int i = 0; i < 30; ++i) { EXPECT_LE(0.4 * absl::Milliseconds(1) + 0.6 * absl::Milliseconds(1) * std::pow(1.3, i), ComputeRetryBackoff(i)); EXPECT_LE( ComputeRetryBackoff(i), 0.4 * absl::Milliseconds(1) + absl::Milliseconds(1) * std::pow(1.3, i)); } } TEST(RetryingUtilsTest, ComputeRetryBackoff_MinMaxDelays) { for (int i = 0; i < 30; ++i) { EXPECT_EQ(ComputeRetryBackoff(i, absl::Seconds(10)), absl::Seconds(10)); EXPECT_EQ(ComputeRetryBackoff(i, absl::Microseconds(1), absl::Microseconds(1)), absl::Microseconds(1)); } } } }
2,261
#ifndef TENSORFLOW_TSL_PLATFORM_STATUS_MATCHERS_H_ #define TENSORFLOW_TSL_PLATFORM_STATUS_MATCHERS_H_ #include <ostream> #include <string> #include <utility> #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { inline void PrintTo(const tsl::error::Code code, std::ostream* os) { *os << Code_Name(code); } template <typename T> void PrintTo(const StatusOr<T>& status_or, std::ostream* os) { *os << ::testing::PrintToString(status_or.status()); if (status_or.ok()) { *os << ": " << ::testing::PrintToString(status_or.value()); } } namespace testing { namespace internal_status { inline const absl::Status& GetStatus(const absl::Status& status) { return status; } template <typename T> inline const absl::Status& GetStatus(const StatusOr<T>& status) { return status.status(); } template <typename StatusOrType> class IsOkAndHoldsMatcherImpl : public ::testing::MatcherInterface<StatusOrType> { public: typedef typename std::remove_reference<StatusOrType>::type::value_type value_type; template <typename InnerMatcher> explicit IsOkAndHoldsMatcherImpl(InnerMatcher&& inner_matcher) : inner_matcher_(::testing::SafeMatcherCast<const value_type&>( std::forward<InnerMatcher>(inner_matcher))) {} void DescribeTo(std::ostream* os) const override { *os << "is OK and has a value that "; inner_matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const override { *os << "isn't OK or has a value that "; inner_matcher_.DescribeNegationTo(os); } bool MatchAndExplain( StatusOrType actual_value, ::testing::MatchResultListener* result_listener) const override { if (!actual_value.ok()) { *result_listener << "which has status " << actual_value.status(); return false; } ::testing::StringMatchResultListener inner_listener; const bool matches = inner_matcher_.MatchAndExplain(*actual_value, &inner_listener); const std::string inner_explanation = inner_listener.str(); if (!inner_explanation.empty()) { *result_listener << "which contains value " << ::testing::PrintToString(*actual_value) << ", " << inner_explanation; } return matches; } private: const ::testing::Matcher<const value_type&> inner_matcher_; }; template <typename InnerMatcher> class IsOkAndHoldsMatcher { public: explicit IsOkAndHoldsMatcher(InnerMatcher inner_matcher) : inner_matcher_(std::move(inner_matcher)) {} template <typename StatusOrType> operator ::testing::Matcher<StatusOrType>() const { return ::testing::Matcher<StatusOrType>( new IsOkAndHoldsMatcherImpl<const StatusOrType&>(inner_matcher_)); } private: const InnerMatcher inner_matcher_; }; class StatusIsMatcherCommonImpl { public: StatusIsMatcherCommonImpl( ::testing::Matcher<const absl::StatusCode> code_matcher, ::testing::Matcher<const std::string&> message_matcher) : code_matcher_(std::move(code_matcher)), message_matcher_(std::move(message_matcher)) {} void DescribeTo(std::ostream* os) const; void DescribeNegationTo(std::ostream* os) const; bool MatchAndExplain(const absl::Status& status, ::testing::MatchResultListener* result_listener) const; private: const ::testing::Matcher<const absl::StatusCode> code_matcher_; const ::testing::Matcher<const std::string&> message_matcher_; }; template <typename T> class MonoStatusIsMatcherImpl : public ::testing::MatcherInterface<T> { public: explicit MonoStatusIsMatcherImpl(StatusIsMatcherCommonImpl common_impl) : common_impl_(std::move(common_impl)) {} void DescribeTo(std::ostream* os) const override { common_impl_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const override { common_impl_.DescribeNegationTo(os); } bool MatchAndExplain( T actual_value, ::testing::MatchResultListener* result_listener) const override { return common_impl_.MatchAndExplain(GetStatus(actual_value), result_listener); } private: StatusIsMatcherCommonImpl common_impl_; }; class StatusIsMatcher { public: StatusIsMatcher(::testing::Matcher<const absl::StatusCode> code_matcher, ::testing::Matcher<const std::string&> message_matcher) : common_impl_( ::testing::MatcherCast<const absl::StatusCode>(code_matcher), ::testing::MatcherCast<const std::string&>(message_matcher)) {} template <typename T> operator ::testing::Matcher<T>() const { return ::testing::MakeMatcher(new MonoStatusIsMatcherImpl<T>(common_impl_)); } private: const StatusIsMatcherCommonImpl common_impl_; }; template <typename T> class MonoIsOkMatcherImpl : public ::testing::MatcherInterface<T> { public: void DescribeTo(std::ostream* os) const override { *os << "is OK"; } void DescribeNegationTo(std::ostream* os) const override { *os << "is not OK"; } bool MatchAndExplain(T actual_value, ::testing::MatchResultListener*) const override { return GetStatus(actual_value).ok(); } }; class IsOkMatcher { public: template <typename T> operator ::testing::Matcher<T>() const { return ::testing::Matcher<T>(new MonoIsOkMatcherImpl<const T&>()); } }; } template <typename InnerMatcher> internal_status::IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type> IsOkAndHolds(InnerMatcher&& inner_matcher) { return internal_status::IsOkAndHoldsMatcher< typename std::decay<InnerMatcher>::type>( std::forward<InnerMatcher>(inner_matcher)); } template <typename CodeMatcher, typename MessageMatcher> internal_status::StatusIsMatcher StatusIs(CodeMatcher code_matcher, MessageMatcher message_matcher) { return internal_status::StatusIsMatcher(std::move(code_matcher), std::move(message_matcher)); } template <typename MessageMatcher> internal_status::StatusIsMatcher StatusIs(tensorflow::error::Code code_matcher, MessageMatcher message_matcher) { return internal_status::StatusIsMatcher( static_cast<absl::StatusCode>(code_matcher), std::move(message_matcher)); } template <typename CodeMatcher> internal_status::StatusIsMatcher StatusIs(CodeMatcher code_matcher) { return StatusIs(std::move(code_matcher), ::testing::_); } template <> inline internal_status::StatusIsMatcher StatusIs( tensorflow::error::Code code_matcher) { return StatusIs(static_cast<absl::StatusCode>(code_matcher), ::testing::_); } inline internal_status::IsOkMatcher IsOk() { return internal_status::IsOkMatcher(); } } } #endif #include "tsl/platform/status_matchers.h" #include <ostream> #include <string> #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace testing { namespace internal_status { void StatusIsMatcherCommonImpl::DescribeTo(std::ostream* os) const { *os << "has a status code that "; code_matcher_.DescribeTo(os); *os << ", and has an error message that "; message_matcher_.DescribeTo(os); } void StatusIsMatcherCommonImpl::DescribeNegationTo(std::ostream* os) const { *os << "has a status code that "; code_matcher_.DescribeNegationTo(os); *os << ", or has an error message that "; message_matcher_.DescribeNegationTo(os); } bool StatusIsMatcherCommonImpl::MatchAndExplain( const absl::Status& status, ::testing::MatchResultListener* result_listener) const { ::testing::StringMatchResultListener inner_listener; inner_listener.Clear(); if (!code_matcher_.MatchAndExplain( static_cast<absl::StatusCode>(status.code()), &inner_listener)) { *result_listener << (inner_listener.str().empty() ? "whose status code is wrong" : "which has a status code " + inner_listener.str()); return false; } if (!message_matcher_.Matches(std::string(status.message()))) { *result_listener << "whose error message is wrong"; return false; } return true; } } } }
#include "tsl/platform/status_matchers.h" #include <sstream> #include <string> #include <vector> #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace testing { namespace { using ::testing::_; using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::Matcher; using ::testing::MatchesRegex; using ::testing::Ne; using ::testing::Not; using ::testing::PrintToString; MATCHER_P(LessThan, upper, "") { if (arg < upper) { *result_listener << "which is " << (upper - arg) << " less than " << upper; return true; } *result_listener << "which is " << (arg - upper) << " more than " << upper; return false; } template <typename T> std::string Describe(const Matcher<T>& matcher) { std::stringstream ss; matcher.DescribeTo(&ss); return ss.str(); } template <typename T> std::string DescribeNegation(const Matcher<T>& matcher) { std::stringstream ss; matcher.DescribeNegationTo(&ss); return ss.str(); } template <typename T, typename V> std::string ExplainMatch(const Matcher<T>& matcher, const V& value) { ::testing::StringMatchResultListener listener; matcher.MatchAndExplain(value, &listener); return listener.str(); } TEST(IsOkAndHoldsTest, MatchesValue) { absl::StatusOr<std::string> status_or_message("Hello, world"); EXPECT_THAT(status_or_message, IsOkAndHolds("Hello, world")); EXPECT_THAT(status_or_message, IsOkAndHolds(HasSubstr("Hello,"))); } TEST(IsOkAndHoldsTest, MatchesContainer) { absl::StatusOr<std::vector<std::string>> status_or_messages = std::vector<std::string>{"Hello, world", "Hello, tf"}; EXPECT_THAT(status_or_messages, IsOkAndHolds(ElementsAre("Hello, world", "Hello, tf"))); EXPECT_THAT(status_or_messages, IsOkAndHolds(ElementsAre(HasSubstr("world"), HasSubstr("tf")))); } TEST(IsOkAndHoldsTest, DoesNotMatchStatus) { absl::StatusOr<std::string> status_or_message = errors::InvalidArgument("Invalid argument"); EXPECT_THAT(status_or_message, Not(IsOkAndHolds("Hello, world"))); } TEST(IsOkAndHoldsTest, DoesNotMatchValue) { absl::StatusOr<std::string> status_or_message("Hello, tf"); EXPECT_THAT(status_or_message, Not(IsOkAndHolds("Hello, world"))); } TEST(IsOkAndHoldsTest, DoesNotMatchContainer) { absl::StatusOr<std::vector<int>> status_or_container({1, 2, 3}); EXPECT_THAT(status_or_container, Not(IsOkAndHolds(ElementsAre(4, 5, 6)))); } TEST(IsOkAndHoldsTest, DescribeExpectedValue) { Matcher<absl::StatusOr<std::string>> is_ok_and_has_substr = IsOkAndHolds(HasSubstr("Hello")); EXPECT_EQ(Describe(is_ok_and_has_substr), "is OK and has a value that has substring \"Hello\""); EXPECT_EQ(DescribeNegation(is_ok_and_has_substr), "isn't OK or has a value that has no substring \"Hello\""); } TEST(IsOkAndHoldsTest, ExplainNotMatchingStatus) { Matcher<absl::StatusOr<int>> is_ok_and_less_than = IsOkAndHolds(LessThan(100)); absl::StatusOr<int> status = errors::Unknown("Unknown"); EXPECT_THAT(ExplainMatch(is_ok_and_less_than, status), HasSubstr("which has status UNKNOWN: Unknown")); } TEST(IsOkAndHoldsTest, ExplainNotMatchingValue) { Matcher<absl::StatusOr<int>> is_ok_and_less_than = IsOkAndHolds(LessThan(100)); EXPECT_EQ(ExplainMatch(is_ok_and_less_than, 120), "which contains value 120, which is 20 more than 100"); } TEST(IsOkAndHoldsTest, ExplainNotMatchingContainer) { Matcher<absl::StatusOr<std::vector<int>>> is_ok_and_less_than = IsOkAndHolds(ElementsAre(1, 2, 3)); std::vector<int> actual{4, 5, 6}; EXPECT_THAT(ExplainMatch(is_ok_and_less_than, actual), HasSubstr("which contains value " + PrintToString(actual))); } TEST(StatusIsTest, MatchesOK) { EXPECT_THAT(absl::OkStatus(), StatusIs(error::OK)); absl::StatusOr<std::string> message("Hello, world"); EXPECT_THAT(message, StatusIs(error::OK)); } TEST(StatusIsTest, DoesNotMatchOk) { EXPECT_THAT(errors::DeadlineExceeded("Deadline exceeded"), Not(StatusIs(error::OK))); absl::StatusOr<std::string> status = errors::NotFound("Not found"); EXPECT_THAT(status, Not(StatusIs(error::OK))); } TEST(StatusIsTest, MatchesStatus) { absl::Status s = errors::Cancelled("Cancelled"); EXPECT_THAT(s, StatusIs(error::CANCELLED)); EXPECT_THAT(s, StatusIs(error::CANCELLED, "Cancelled")); EXPECT_THAT(s, StatusIs(_, "Cancelled")); EXPECT_THAT(s, StatusIs(error::CANCELLED, _)); EXPECT_THAT(s, StatusIs(Ne(error::INVALID_ARGUMENT), _)); EXPECT_THAT(s, StatusIs(error::CANCELLED, HasSubstr("Can"))); EXPECT_THAT(s, StatusIs(error::CANCELLED, MatchesRegex("Can.*"))); } TEST(StatusIsTest, StatusOrMatchesStatus) { absl::StatusOr<int> s = errors::InvalidArgument("Invalid Argument"); EXPECT_THAT(s, StatusIs(error::INVALID_ARGUMENT)); EXPECT_THAT(s, StatusIs(error::INVALID_ARGUMENT, "Invalid Argument")); EXPECT_THAT(s, StatusIs(_, "Invalid Argument")); EXPECT_THAT(s, StatusIs(error::INVALID_ARGUMENT, _)); EXPECT_THAT(s, StatusIs(Ne(error::CANCELLED), _)); EXPECT_THAT(s, StatusIs(error::INVALID_ARGUMENT, HasSubstr("Argument"))); EXPECT_THAT(s, StatusIs(error::INVALID_ARGUMENT, MatchesRegex(".*Argument"))); } TEST(StatusIsTest, DoesNotMatchStatus) { absl::Status s = errors::Internal("Internal"); EXPECT_THAT(s, Not(StatusIs(error::FAILED_PRECONDITION))); EXPECT_THAT(s, Not(StatusIs(error::INTERNAL, "Failed Precondition"))); EXPECT_THAT(s, Not(StatusIs(_, "Failed Precondition"))); EXPECT_THAT(s, Not(StatusIs(error::FAILED_PRECONDITION, _))); } TEST(StatusIsTest, StatusOrDoesNotMatchStatus) { absl::StatusOr<int> s = errors::FailedPrecondition("Failed Precondition"); EXPECT_THAT(s, Not(StatusIs(error::INTERNAL))); EXPECT_THAT(s, Not(StatusIs(error::FAILED_PRECONDITION, "Internal"))); EXPECT_THAT(s, Not(StatusIs(_, "Internal"))); EXPECT_THAT(s, Not(StatusIs(error::INTERNAL, _))); } TEST(StatusIsTest, DescribeExpectedValue) { Matcher<absl::Status> status_is = StatusIs(error::UNAVAILABLE, std::string("Unavailable")); EXPECT_EQ(Describe(status_is), "has a status code that is equal to UNAVAILABLE, " "and has an error message that is equal to \"Unavailable\""); } TEST(StatusIsTest, DescribeNegatedExpectedValue) { Matcher<absl::StatusOr<std::string>> status_is = StatusIs(error::ABORTED, std::string("Aborted")); EXPECT_EQ(DescribeNegation(status_is), "has a status code that isn't equal to ABORTED, " "or has an error message that isn't equal to \"Aborted\""); } TEST(StatusIsTest, ExplainNotMatchingErrorCode) { Matcher<absl::Status> status_is = StatusIs(error::NOT_FOUND, _); const absl::Status status = errors::AlreadyExists("Already exists"); EXPECT_EQ(ExplainMatch(status_is, status), "whose status code is wrong"); } TEST(StatusIsTest, ExplainNotMatchingErrorMessage) { Matcher<absl::Status> status_is = StatusIs(error::NOT_FOUND, "Not found"); const absl::Status status = errors::NotFound("Already exists"); EXPECT_EQ(ExplainMatch(status_is, status), "whose error message is wrong"); } TEST(StatusIsTest, ExplainStatusOrNotMatchingErrorCode) { Matcher<absl::StatusOr<int>> status_is = StatusIs(error::ALREADY_EXISTS, _); const absl::StatusOr<int> status_or = errors::NotFound("Not found"); EXPECT_EQ(ExplainMatch(status_is, status_or), "whose status code is wrong"); } TEST(StatusIsTest, ExplainStatusOrNotMatchingErrorMessage) { Matcher<absl::StatusOr<int>> status_is = StatusIs(error::ALREADY_EXISTS, "Already exists"); const absl::StatusOr<int> status_or = errors::AlreadyExists("Not found"); EXPECT_EQ(ExplainMatch(status_is, status_or), "whose error message is wrong"); } TEST(StatusIsTest, ExplainStatusOrHasValue) { Matcher<absl::StatusOr<int>> status_is = StatusIs(error::RESOURCE_EXHAUSTED, "Resource exhausted"); const absl::StatusOr<int> value = -1; EXPECT_EQ(ExplainMatch(status_is, value), "whose status code is wrong"); } TEST(IsOkTest, MatchesOK) { EXPECT_THAT(absl::OkStatus(), IsOk()); absl::StatusOr<std::string> message = std::string("Hello, world"); EXPECT_THAT(message, IsOk()); } TEST(IsOkTest, DoesNotMatchOK) { EXPECT_THAT(errors::PermissionDenied("Permission denied"), Not(IsOk())); absl::StatusOr<std::string> status = errors::Unauthenticated("Unauthenticated"); EXPECT_THAT(status, Not(IsOk())); } TEST(IsOkTest, DescribeExpectedValue) { Matcher<absl::Status> status_is_ok = IsOk(); EXPECT_EQ(Describe(status_is_ok), "is OK"); Matcher<absl::StatusOr<std::string>> status_or_is_ok = IsOk(); EXPECT_EQ(Describe(status_or_is_ok), "is OK"); } TEST(IsOkTest, DescribeNegatedExpectedValue) { Matcher<absl::Status> status_is_ok = IsOk(); EXPECT_EQ(DescribeNegation(status_is_ok), "is not OK"); Matcher<absl::StatusOr<std::string>> status_or_is_ok = IsOk(); EXPECT_EQ(DescribeNegation(status_or_is_ok), "is not OK"); } } } }
2,262
#ifndef TENSORFLOW_TSL_PLATFORM_DENORMAL_H_ #define TENSORFLOW_TSL_PLATFORM_DENORMAL_H_ #include "tsl/platform/macros.h" namespace tsl { namespace port { class DenormalState { public: DenormalState(bool flush_to_zero, bool denormals_are_zero) : flush_to_zero_(flush_to_zero), denormals_are_zero_(denormals_are_zero) {} inline bool flush_to_zero() const { return flush_to_zero_; } inline bool denormals_are_zero() const { return denormals_are_zero_; } bool operator==(const DenormalState& other) const; bool operator!=(const DenormalState& other) const; private: bool flush_to_zero_; bool denormals_are_zero_; }; DenormalState GetDenormalState(); bool SetDenormalState(const DenormalState& state); class ScopedRestoreFlushDenormalState { public: ScopedRestoreFlushDenormalState(); ~ScopedRestoreFlushDenormalState(); private: DenormalState denormal_state_; ScopedRestoreFlushDenormalState(const ScopedRestoreFlushDenormalState&) = delete; void operator=(const ScopedRestoreFlushDenormalState&) = delete; }; class ScopedFlushDenormal { public: ScopedFlushDenormal(); private: ScopedRestoreFlushDenormalState restore_; ScopedFlushDenormal(const ScopedFlushDenormal&) = delete; void operator=(const ScopedFlushDenormal&) = delete; }; class ScopedDontFlushDenormal { public: ScopedDontFlushDenormal(); private: ScopedRestoreFlushDenormalState restore_; ScopedDontFlushDenormal(const ScopedDontFlushDenormal&) = delete; void operator=(const ScopedDontFlushDenormal&) = delete; }; } } #endif #include "tsl/platform/denormal.h" #include <cstdint> #include "tsl/platform/cpu_info.h" #include "tsl/platform/platform.h" #if !defined(__SSE3__) && !defined(__clang__) && \ (defined(__GNUC__) && (__GNUC__ < 4) || \ ((__GNUC__ == 4) && (__GNUC_MINOR__ < 9))) #define GCC_WITHOUT_INTRINSICS #endif #if defined(PLATFORM_IS_X86) && !defined(IS_MOBILE_PLATFORM) && \ !defined(GCC_WITHOUT_INTRINSICS) #define X86_DENORM_USE_INTRINSICS #endif #ifdef X86_DENORM_USE_INTRINSICS #include <pmmintrin.h> #endif #if defined(PLATFORM_IS_ARM) && defined(__ARM_FP) && (__ARM_FP > 0) #define ARM_DENORM_AVAILABLE #define ARM_FPCR_FZ (1 << 24) #endif namespace tsl { namespace port { bool DenormalState::operator==(const DenormalState& other) const { return flush_to_zero() == other.flush_to_zero() && denormals_are_zero() == other.denormals_are_zero(); } bool DenormalState::operator!=(const DenormalState& other) const { return !(this->operator==(other)); } #ifdef ARM_DENORM_AVAILABLE static inline void ArmSetFloatingPointControlRegister(uint32_t fpcr) { #ifdef PLATFORM_IS_ARM64 __asm__ __volatile__("msr fpcr, %[fpcr]" : : [fpcr] "r"(static_cast<uint64_t>(fpcr))); #else __asm__ __volatile__("vmsr fpscr, %[fpcr]" : : [fpcr] "r"(fpcr)); #endif } static inline uint32_t ArmGetFloatingPointControlRegister() { uint32_t fpcr; #ifdef PLATFORM_IS_ARM64 uint64_t fpcr64; __asm__ __volatile__("mrs %[fpcr], fpcr" : [fpcr] "=r"(fpcr64)); fpcr = static_cast<uint32_t>(fpcr64); #else __asm__ __volatile__("vmrs %[fpcr], fpscr" : [fpcr] "=r"(fpcr)); #endif return fpcr; } #endif bool SetDenormalState(const DenormalState& state) { #ifdef X86_DENORM_USE_INTRINSICS if (TestCPUFeature(SSE3)) { _MM_SET_FLUSH_ZERO_MODE(state.flush_to_zero() ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF); _MM_SET_DENORMALS_ZERO_MODE(state.denormals_are_zero() ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF); return true; } #endif #ifdef ARM_DENORM_AVAILABLE if (state.flush_to_zero() == state.denormals_are_zero()) { uint32_t fpcr = ArmGetFloatingPointControlRegister(); if (state.flush_to_zero()) { fpcr |= ARM_FPCR_FZ; } else { fpcr &= ~ARM_FPCR_FZ; } ArmSetFloatingPointControlRegister(fpcr); return true; } #endif return false; } DenormalState GetDenormalState() { #ifdef X86_DENORM_USE_INTRINSICS if (TestCPUFeature(SSE3)) { bool flush_zero_mode = _MM_GET_FLUSH_ZERO_MODE() == _MM_FLUSH_ZERO_ON; bool denormals_zero_mode = _MM_GET_DENORMALS_ZERO_MODE() == _MM_DENORMALS_ZERO_ON; return DenormalState(flush_zero_mode, denormals_zero_mode); } #endif #ifdef ARM_DENORM_AVAILABLE uint32_t fpcr = ArmGetFloatingPointControlRegister(); if ((fpcr & ARM_FPCR_FZ) != 0) { return DenormalState(true, true); } #endif return DenormalState(false, false); } ScopedRestoreFlushDenormalState::ScopedRestoreFlushDenormalState() : denormal_state_(GetDenormalState()) {} ScopedRestoreFlushDenormalState::~ScopedRestoreFlushDenormalState() { SetDenormalState(denormal_state_); } ScopedFlushDenormal::ScopedFlushDenormal() { SetDenormalState( DenormalState(true, true)); } ScopedDontFlushDenormal::ScopedDontFlushDenormal() { SetDenormalState( DenormalState(false, false)); } } }
#include "tsl/platform/denormal.h" #include <cstring> #include <limits> #include "tsl/platform/test.h" namespace tsl { namespace port { TEST(DenormalStateTest, ConstructorAndAccessorsWork) { const bool flush_to_zero[] = {true, true, false, false}; const bool denormals_are_zero[] = {true, false, true, false}; for (int i = 0; i < 4; ++i) { const DenormalState state = DenormalState(flush_to_zero[i], denormals_are_zero[i]); EXPECT_EQ(state.flush_to_zero(), flush_to_zero[i]); EXPECT_EQ(state.denormals_are_zero(), denormals_are_zero[i]); } } uint32_t bits(float x) { uint32_t out; memcpy(&out, &x, sizeof(float)); return out; } void CheckDenormalHandling(const DenormalState& state) { volatile float denormal_output = std::numeric_limits<float>::min(); denormal_output *= 0.25f; if (state.flush_to_zero()) { EXPECT_EQ(bits(denormal_output), 0x0); } else { EXPECT_NE(bits(denormal_output), 0x0); } volatile float normal_output = std::numeric_limits<float>::denorm_min(); normal_output *= std::numeric_limits<float>::max(); if (state.denormals_are_zero()) { EXPECT_EQ(bits(normal_output), 0x0); } else { EXPECT_NE(bits(normal_output), 0x0); } } TEST(DenormalTest, GetAndSetStateWorkWithCorrectFlushing) { const DenormalState states[] = { DenormalState(true, true), DenormalState(true, false), DenormalState(false, true), DenormalState(false, false)}; for (const DenormalState& state : states) { if (SetDenormalState(state)) { EXPECT_EQ(GetDenormalState(), state); CheckDenormalHandling(state); } } } TEST(ScopedRestoreFlushDenormalStateTest, RestoresState) { const DenormalState flush_denormals(true, true); const DenormalState dont_flush_denormals(false, false); const bool can_set_denormal_state = SetDenormalState(flush_denormals) && SetDenormalState(dont_flush_denormals); if (can_set_denormal_state) { SetDenormalState(flush_denormals); { ScopedRestoreFlushDenormalState restore_state; SetDenormalState(dont_flush_denormals); EXPECT_EQ(GetDenormalState(), dont_flush_denormals); } EXPECT_EQ(GetDenormalState(), flush_denormals); SetDenormalState(dont_flush_denormals); { ScopedRestoreFlushDenormalState restore_state; SetDenormalState(flush_denormals); EXPECT_EQ(GetDenormalState(), flush_denormals); } EXPECT_EQ(GetDenormalState(), dont_flush_denormals); } } TEST(ScopedFlushDenormalTest, SetsFlushingAndRestoresState) { const DenormalState flush_denormals(true, true); const DenormalState dont_flush_denormals(false, false); const bool can_set_denormal_state = SetDenormalState(flush_denormals) && SetDenormalState(dont_flush_denormals); if (can_set_denormal_state) { SetDenormalState(dont_flush_denormals); { ScopedFlushDenormal scoped_flush_denormal; EXPECT_EQ(GetDenormalState(), flush_denormals); } EXPECT_EQ(GetDenormalState(), dont_flush_denormals); } } TEST(ScopedDontFlushDenormalTest, SetsNoFlushingAndRestoresState) { const DenormalState flush_denormals(true, true); const DenormalState dont_flush_denormals(false, false); const bool can_set_denormal_state = SetDenormalState(flush_denormals) && SetDenormalState(dont_flush_denormals); if (can_set_denormal_state) { SetDenormalState(flush_denormals); { ScopedDontFlushDenormal scoped_dont_flush_denormal; EXPECT_EQ(GetDenormalState(), dont_flush_denormals); } EXPECT_EQ(GetDenormalState(), flush_denormals); } } } }
2,263
#ifndef TENSORFLOW_TSL_PLATFORM_ERRORS_H_ #define TENSORFLOW_TSL_PLATFORM_ERRORS_H_ #include <sstream> #include <string> #include <type_traits> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_join.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" namespace tsl { namespace error { using tensorflow::error::ABORTED; using tensorflow::error::ALREADY_EXISTS; using tensorflow::error::CANCELLED; using tensorflow::error::Code; using tensorflow::error::DATA_LOSS; using tensorflow::error::DEADLINE_EXCEEDED; using tensorflow::error::FAILED_PRECONDITION; using tensorflow::error::INTERNAL; using tensorflow::error::INVALID_ARGUMENT; using tensorflow::error::NOT_FOUND; using tensorflow::error::OK; using tensorflow::error::OUT_OF_RANGE; using tensorflow::error::PERMISSION_DENIED; using tensorflow::error::RESOURCE_EXHAUSTED; using tensorflow::error::UNAUTHENTICATED; using tensorflow::error::UNAVAILABLE; using tensorflow::error::UNIMPLEMENTED; using tensorflow::error::UNKNOWN; } namespace errors { namespace internal { template <typename T> typename std::enable_if<!std::is_convertible<T, strings::AlphaNum>::value, std::string>::type PrepareForStrCat(const T& t) { std::stringstream ss; ss << t; return ss.str(); } inline const strings::AlphaNum& PrepareForStrCat(const strings::AlphaNum& a) { return a; } } absl::Status IOError(const string& context, int err_number); inline std::unordered_map<std::string, std::string> GetPayloads( const absl::Status& status) { std::unordered_map<std::string, std::string> payloads; status.ForEachPayload( [&payloads](::tsl::StringPiece key, const absl::Cord& value) { payloads[std::string(key)] = std::string(value); }); return payloads; } inline void InsertPayloads( absl::Status& status, const std::unordered_map<std::string, std::string>& payloads) { for (const auto& payload : payloads) { status.SetPayload(payload.first, absl::Cord(payload.second)); } } inline void CopyPayloads(const absl::Status& from, absl::Status& to) { from.ForEachPayload([&to](::tsl::StringPiece key, const absl::Cord& value) { to.SetPayload(key, value); }); } #if defined(PLATFORM_GOOGLE) inline absl::Status Create( absl::StatusCode code, ::tsl::StringPiece message, const std::unordered_map<std::string, std::string>& payloads, absl::SourceLocation loc = absl::SourceLocation::current()) { absl::Status status(code, message, loc); InsertPayloads(status, payloads); return status; } inline absl::Status CreateWithUpdatedMessage(const absl::Status& status, ::tsl::StringPiece message) { auto locations = status.GetSourceLocations(); auto initial_loc = locations.empty() ? absl::SourceLocation::current() : locations[0]; absl::Status new_status = Create(static_cast<absl::StatusCode>(status.code()), message, GetPayloads(status), initial_loc); if (locations.size() > 1) { for (auto loc : locations.subspan(1)) { new_status.AddSourceLocation(loc); } } return new_status; } #else inline ::absl::Status Create( absl::StatusCode code, ::tsl::StringPiece message, const std::unordered_map<std::string, std::string>& payloads) { Status status(code, message); InsertPayloads(status, payloads); return status; } inline ::tsl::Status CreateWithUpdatedMessage(const ::tsl::Status& status, ::tsl::StringPiece message) { return Create(static_cast<absl::StatusCode>(status.code()), message, GetPayloads(status)); } #endif template <typename... Args> void AppendToMessage(absl::Status* status, Args... args) { auto new_status = CreateWithUpdatedMessage( *status, ::tsl::strings::StrCat(status->message(), "\n\t", args...)); CopyPayloads(*status, new_status); *status = std::move(new_status); } #define TF_RETURN_IF_ERROR(...) \ do { \ ::absl::Status _status = (__VA_ARGS__); \ if (TF_PREDICT_FALSE(!_status.ok())) { \ MAYBE_ADD_SOURCE_LOCATION(_status) \ return _status; \ } \ } while (0) #define TF_RETURN_WITH_CONTEXT_IF_ERROR(expr, ...) \ do { \ ::tsl::Status _status = (expr); \ if (TF_PREDICT_FALSE(!_status.ok())) { \ ::tsl::errors::AppendToMessage(&_status, __VA_ARGS__); \ return _status; \ } \ } while (0) template <typename... Args> absl::Status Cancelled(Args... args) { return absl::Status(absl::StatusCode::kCancelled, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status CancelledWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kCancelled, message, payloads); } template <typename... Args> absl::Status InvalidArgument(Args... args) { return absl::Status(absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } #if defined(PLATFORM_GOOGLE) template <typename Arg1, typename Arg2, typename Arg3, typename Arg4> ::absl::Status InvalidArgument( Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2), ::tsl::errors::internal::PrepareForStrCat(arg3), ::tsl::errors::internal::PrepareForStrCat(arg4)), loc); } template <typename Arg1, typename Arg2, typename Arg3> ::absl::Status InvalidArgument( Arg1 arg1, Arg2 arg2, Arg3 arg3, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2), ::tsl::errors::internal::PrepareForStrCat(arg3)), loc); } template <typename Arg1, typename Arg2> ::absl::Status InvalidArgument( Arg1 arg1, Arg2 arg2, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2)), loc); } template <typename Arg1> ::absl::Status InvalidArgument( Arg1 arg1, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1)), loc); } template <typename... Args> ::absl::Status InvalidArgumentWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads, absl::SourceLocation loc = absl::SourceLocation::current()) { return errors::Create(absl::StatusCode::kInvalidArgument, message, payloads, loc); } #else template <typename Arg1, typename Arg2, typename Arg3> ::absl::Status InvalidArgument(Arg1 arg1, Arg2 arg2, Arg3 arg3) { return ::absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2), ::tsl::errors::internal::PrepareForStrCat(arg3))); } template <typename Arg1, typename Arg2> ::absl::Status InvalidArgument(Arg1 arg1, Arg2 arg2) { return ::absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2))); } template <typename Arg1> ::absl::Status InvalidArgument(Arg1 arg1) { return ::absl::Status( absl::StatusCode::kInvalidArgument, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1))); } template <typename... Args> ::absl::Status InvalidArgumentWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kInvalidArgument, message, payloads); } #endif template <typename... Args> absl::Status NotFound(Args... args) { return absl::Status(absl::StatusCode::kNotFound, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } #if defined(PLATFORM_GOOGLE) template <typename Arg1, typename Arg2, typename Arg3> ::absl::Status NotFound( Arg1 arg1, Arg2 arg2, Arg3 arg3, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2), ::tsl::errors::internal::PrepareForStrCat(arg3)), loc); } template <typename Arg1, typename Arg2> ::absl::Status NotFound( Arg1 arg1, Arg2 arg2, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2)), loc); } template <typename Arg1> ::absl::Status NotFound( Arg1 arg1, absl::SourceLocation loc = absl::SourceLocation::current()) { return absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1)), loc); } template <typename... Args> ::absl::Status NotFoundWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads, absl::SourceLocation loc = absl::SourceLocation::current()) { return errors::Create(absl::StatusCode::kNotFound, message, payloads, loc); } #else template <typename Arg1, typename Arg2, typename Arg3> ::absl::Status NotFound(Arg1 arg1, Arg2 arg2, Arg3 arg3) { return ::absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2), ::tsl::errors::internal::PrepareForStrCat(arg3))); } template <typename Arg1, typename Arg2> ::absl::Status NotFound(Arg1 arg1, Arg2 arg2) { return ::absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1), ::tsl::errors::internal::PrepareForStrCat(arg2))); } template <typename Arg1> ::absl::Status NotFound(Arg1 arg1) { return ::absl::Status( absl::StatusCode::kNotFound, ::tsl::strings::StrCat(::tsl::errors::internal::PrepareForStrCat(arg1))); } template <typename... Args> ::absl::Status NotFoundWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kNotFound, message, payloads); } #endif template <typename... Args> absl::Status AlreadyExists(Args... args) { return absl::Status(absl::StatusCode::kAlreadyExists, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status AlreadyExistsWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kAlreadyExists, message, payloads); } template <typename... Args> absl::Status ResourceExhausted(Args... args) { return absl::Status(absl::StatusCode::kResourceExhausted, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status ResourceExhaustedWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kResourceExhausted, message, payloads); } template <typename... Args> absl::Status Unavailable(Args... args) { return absl::Status(absl::StatusCode::kUnavailable, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status UnavailableWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kUnavailable, message, payloads); } template <typename... Args> absl::Status FailedPrecondition(Args... args) { return absl::Status(absl::StatusCode::kFailedPrecondition, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status FailedPreconditionWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kFailedPrecondition, message, payloads); } template <typename... Args> absl::Status OutOfRange(Args... args) { return absl::Status(absl::StatusCode::kOutOfRange, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status OutOfRangeWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kOutOfRange, message, payloads); } template <typename... Args> absl::Status Unimplemented(Args... args) { return absl::Status(absl::StatusCode::kUnimplemented, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status UnimplementedWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kUnimplemented, message, payloads); } template <typename... Args> absl::Status Internal(Args... args) { return absl::Status(absl::StatusCode::kInternal, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status InternalWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kInternal, message, payloads); } template <typename... Args> absl::Status Aborted(Args... args) { return absl::Status(absl::StatusCode::kAborted, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status AbortedWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kAborted, message, payloads); } template <typename... Args> absl::Status DeadlineExceeded(Args... args) { return absl::Status(absl::StatusCode::kDeadlineExceeded, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status DeadlineExceededWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kDeadlineExceeded, message, payloads); } template <typename... Args> absl::Status DataLoss(Args... args) { return absl::Status(absl::StatusCode::kDataLoss, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status DataLossWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kDataLoss, message, payloads); } template <typename... Args> absl::Status Unknown(Args... args) { return absl::Status(absl::StatusCode::kUnknown, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status UnknownPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kUnknown, message, payloads); } template <typename... Args> absl::Status PermissionDenied(Args... args) { return absl::Status(absl::StatusCode::kPermissionDenied, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status PermissionDeniedWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kPermissionDenied, message, payloads); } template <typename... Args> absl::Status Unauthenticated(Args... args) { return absl::Status(absl::StatusCode::kUnauthenticated, ::tsl::strings::StrCat( ::tsl::errors::internal::PrepareForStrCat(args)...)); } template <typename... Args> absl::Status UnauthenticatedWithPayloads( const ::tsl::StringPiece& message, const std::unordered_map<std::string, std::string>& payloads) { return errors::Create(absl::StatusCode::kUnauthenticated, message, payloads); } bool IsAborted(const absl::Status& status); bool IsAlreadyExists(const absl::Status& status); bool IsCancelled(const absl::Status& status); bool IsDataLoss(const absl::Status& status); bool IsDeadlineExceeded(const absl::Status& status); bool IsFailedPrecondition(const absl::Status& status); bool IsInternal(const absl::Status& status); bool IsInvalidArgument(const absl::Status& status); bool IsNotFound(const absl::Status& status); bool IsOutOfRange(const absl::Status& status); bool IsPermissionDenied(const absl::Status& status); bool IsResourceExhausted(const absl::Status& status); bool IsUnauthenticated(const absl::Status& status); bool IsUnavailable(const absl::Status& status); bool IsUnimplemented(const absl::Status& status); bool IsUnknown(const absl::Status& status); inline std::string FormatNodeNameForError(absl::string_view name) { return strings::StrCat("{{node ", name, "}}"); } template <typename T> std::string FormatNodeNamesForError(const T& names) { return absl::StrJoin( names, ", ", [](std::string* output, absl::string_view s) { ::tsl::strings::StrAppend(output, FormatNodeNameForError(s)); }); } inline std::string FormatColocationNodeForError(absl::string_view name) { return strings::StrCat("{{colocation_node ", name, "}}"); } template <typename T, typename = std::enable_if_t< !std::is_convertible_v<T, absl::string_view>>> std::string FormatColocationNodeForError(const T& names) { return absl::StrJoin( names, ", ", [](std::string* output, absl::string_view s) { ::tsl::strings::StrAppend(output, FormatColocationNodeForError(s)); }); } inline std::string FormatFunctionForError(absl::string_view name) { return strings::StrCat("{{function_node ", name, "}}"); } inline absl::Status ReplaceErrorFromNonCommunicationOps( const absl::Status s, absl::string_view op_name) { assert(::tsl::errors::IsUnavailable(s)); return absl::Status( absl::StatusCode::kInternal, strings::StrCat( s.message(), "\nExecuting non-communication op <", op_name, "> originally returned UnavailableError, and was replaced by " "InternalError to avoid invoking TF network error handling logic.")); } template <typename T> std::string FormatOriginalNodeLocationForError(const T& node_names, const T& func_names) { std::vector<std::string> error_message; for (int i = 0; i != node_names.size(); ++i) { if (i != 0) { error_message.push_back(", "); } if (i < func_names.size()) { error_message.push_back(FormatFunctionForError(func_names[i])); } error_message.push_back(FormatNodeNameForError(node_names[i])); } return absl::StrJoin(error_message, ""); } using ::tsl::error::OK; } } #endif #include "tsl/platform/errors.h" #include <errno.h> #include <string.h> #include "tsl/platform/status.h" #include "tsl/platform/strcat.h" namespace tsl { namespace errors { namespace { absl::StatusCode ErrnoToCode(int err_number) { absl::StatusCode code; switch (err_number) { case 0: code = absl::StatusCode::kOk; break; case EINVAL: case ENAMETOOLONG: case E2BIG: case EDESTADDRREQ: case EDOM: case EFAULT: case EILSEQ: case ENOPROTOOPT: case ENOSTR: case ENOTSOCK: case ENOTTY: case EPROTOTYPE: case ESPIPE: code = absl::StatusCode::kInvalidArgument; break; case ETIMEDOUT: case ETIME: code = absl::StatusCode::kDeadlineExceeded; break; case ENODEV: case ENOENT: case ENXIO: case ESRCH: code = absl::StatusCode::kNotFound; break; case EEXIST: case EADDRNOTAVAIL: case EALREADY: code = absl::StatusCode::kAlreadyExists; break; case EPERM: case EACCES: case EROFS: code = absl::StatusCode::kPermissionDenied; break; case ENOTEMPTY: case EISDIR: case ENOTDIR: case EADDRINUSE: case EBADF: case EBUSY: case ECHILD: case EISCONN: #if !defined(_WIN32) && !defined(__HAIKU__) case ENOTBLK: #endif case ENOTCONN: case EPIPE: #if !defined(_WIN32) case ESHUTDOWN: #endif case ETXTBSY: code = absl::StatusCode::kFailedPrecondition; break; case ENOSPC: #if !defined(_WIN32) case EDQUOT: #endif case EMFILE: case EMLINK: case ENFILE: case ENOBUFS: case ENODATA: case ENOMEM: case ENOSR: #if !defined(_WIN32) && !defined(__HAIKU__) case EUSERS: #endif code = absl::StatusCode::kResourceExhausted; break; case EFBIG: case EOVERFLOW: case ERANGE: code = absl::StatusCode::kOutOfRange; break; case ENOSYS: case ENOTSUP: case EAFNOSUPPORT: #if !defined(_WIN32) case EPFNOSUPPORT: #endif case EPROTONOSUPPORT: #if !defined(_WIN32) && !defined(__HAIKU__) case ESOCKTNOSUPPORT: #endif case EXDEV: code = absl::StatusCode::kUnimplemented; break; case EAGAIN: case ECONNREFUSED: case ECONNABORTED: case ECONNRESET: case EINTR: #if !defined(_WIN32) case EHOSTDOWN: #endif case EHOSTUNREACH: case ENETDOWN: case ENETRESET: case ENETUNREACH: case ENOLCK: case ENOLINK: #if !(defined(__APPLE__) || defined(__FreeBSD__) || defined(_WIN32) || \ defined(__HAIKU__)) case ENONET: #endif code = absl::StatusCode::kUnavailable; break; case EDEADLK: #if !defined(_WIN32) case ESTALE: #endif code = absl::StatusCode::kAborted; break; case ECANCELED: code = absl::StatusCode::kCancelled; break; case EBADMSG: case EIDRM: case EINPROGRESS: case EIO: case ELOOP: case ENOEXEC: case ENOMSG: case EPROTO: #if !defined(_WIN32) && !defined(__HAIKU__) case EREMOTE: #endif code = absl::StatusCode::kUnknown; break; default: { code = absl::StatusCode::kUnknown; break; } } return code; } } absl::Status IOError(const string& context, int err_number) { auto code = ErrnoToCode(err_number); return absl::Status(code, strings::StrCat(context, "; ", strerror(err_number))); } bool IsAborted(const absl::Status& status) { return status.code() == tsl::error::Code::ABORTED; } bool IsAlreadyExists(const absl::Status& status) { return status.code() == tsl::error::Code::ALREADY_EXISTS; } bool IsCancelled(const absl::Status& status) { return status.code() == tsl::error::Code::CANCELLED; } bool IsDataLoss(const absl::Status& status) { return status.code() == tsl::error::Code::DATA_LOSS; } bool IsDeadlineExceeded(const absl::Status& status) { return status.code() == tsl::error::Code::DEADLINE_EXCEEDED; } bool IsFailedPrecondition(const absl::Status& status) { return status.code() == tsl::error::Code::FAILED_PRECONDITION; } bool IsInternal(const absl::Status& status) { return status.code() == tsl::error::Code::INTERNAL; } bool IsInvalidArgument(const absl::Status& status) { return status.code() == tsl::error::Code::INVALID_ARGUMENT; } bool IsNotFound(const absl::Status& status) { return status.code() == tsl::error::Code::NOT_FOUND; } bool IsOutOfRange(const absl::Status& status) { return status.code() == tsl::error::Code::OUT_OF_RANGE; } bool IsPermissionDenied(const absl::Status& status) { r
#include "tsl/platform/errors.h" #include "absl/status/status.h" #include "tsl/platform/test.h" namespace tsl { TEST(AppendToMessageTest, PayloadsAreCopied) { absl::Status status = errors::Aborted("Aborted Error Message"); status.SetPayload("payload_key", absl::Cord("payload_value")); errors::AppendToMessage(&status, "Appended Message"); EXPECT_EQ(status.message(), "Aborted Error Message\n\tAppended Message"); EXPECT_EQ(status.GetPayload("payload_key"), absl::Cord("payload_value")); } TEST(Status, GetAllPayloads) { absl::Status s_error(absl::StatusCode::kInternal, "Error message"); s_error.SetPayload("Error key", absl::Cord("foo")); auto payloads_error_status = errors::GetPayloads(s_error); ASSERT_EQ(payloads_error_status.size(), 1); ASSERT_EQ(payloads_error_status["Error key"], "foo"); absl::Status s_ok = absl::Status(); auto payloads_ok_status = errors::GetPayloads(s_ok); ASSERT_TRUE(payloads_ok_status.empty()); } TEST(Status, OKStatusInsertPayloadsFromErrorStatus) { absl::Status s_error(absl::StatusCode::kInternal, "Error message"); s_error.SetPayload("Error key", absl::Cord("foo")); absl::Status s_ok = absl::Status(); errors::InsertPayloads(s_ok, errors::GetPayloads(s_error)); auto payloads_ok_status = errors::GetPayloads(s_ok); ASSERT_TRUE(payloads_ok_status.empty()); } TEST(Status, ErrorStatusInsertPayloadsFromOKStatus) { absl::Status s_error(absl::StatusCode::kInternal, "Error message"); s_error.SetPayload("Error key", absl::Cord("foo")); absl::Status s_ok = absl::Status(); errors::InsertPayloads(s_error, errors::GetPayloads(s_ok)); ASSERT_EQ(s_error.GetPayload("Error key"), "foo"); } TEST(Status, ErrorStatusInsertPayloadsFromErrorStatus) { absl::Status s_error1(absl::StatusCode::kInternal, "Error message"); s_error1.SetPayload("Error key 1", absl::Cord("foo")); s_error1.SetPayload("Error key 2", absl::Cord("bar")); absl::Status s_error2(absl::StatusCode::kInternal, "Error message"); s_error2.SetPayload("Error key", absl::Cord("bar")); ASSERT_EQ(s_error2.GetPayload("Error key"), "bar"); errors::InsertPayloads(s_error2, errors::GetPayloads(s_error1)); ASSERT_EQ(s_error2.GetPayload("Error key 1"), "foo"); ASSERT_EQ(s_error2.GetPayload("Error key 2"), "bar"); auto payloads_error_status = errors::GetPayloads(s_error2); ASSERT_EQ(payloads_error_status.size(), 3); } #if defined(PLATFORM_GOOGLE) absl::Status GetError() { return absl::InvalidArgumentError("An invalid argument error"); } absl::Status PropagateError() { TF_RETURN_IF_ERROR(GetError()); return absl::OkStatus(); } absl::Status PropagateError2() { TF_RETURN_IF_ERROR(PropagateError()); return absl::OkStatus(); } TEST(Status, StackTracePropagation) { absl::Status s = PropagateError2(); auto sources = s.GetSourceLocations(); ASSERT_EQ(sources.size(), 3); for (int i = 0; i < 3; ++i) { ASSERT_EQ(sources[i].file_name(), "third_party/tensorflow/tsl/platform/errors_test.cc"); } } TEST(Status, SourceLocationsPreservedByAppend) { absl::Status s = PropagateError2(); ASSERT_EQ(s.GetSourceLocations().size(), 3); errors::AppendToMessage(&s, "A new message."); ASSERT_EQ(s.GetSourceLocations().size(), 3); } TEST(Status, SourceLocationsPreservedByUpdate) { absl::Status s = PropagateError2(); ASSERT_EQ(s.GetSourceLocations().size(), 3); absl::Status s2 = errors::CreateWithUpdatedMessage(s, "New message."); ASSERT_EQ(s2.GetSourceLocations().size(), 3); } #endif }
2,264
#ifndef TENSORFLOW_TSL_PLATFORM_RESOURCE_LOADER_H_ #define TENSORFLOW_TSL_PLATFORM_RESOURCE_LOADER_H_ #include <string> namespace tsl { std::string GetDataDependencyFilepath(const std::string& relative_path); } #endif #include "tsl/platform/resource_loader.h" #include <cstdlib> #include <string> #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tsl { std::string GetDataDependencyFilepath(const std::string& relative_path) { const char* srcdir = std::getenv("TEST_SRCDIR"); if (!srcdir) { LOG(FATAL) << "Environment variable TEST_SRCDIR unset!"; } const char* workspace = std::getenv("TEST_WORKSPACE"); if (!workspace) { LOG(FATAL) << "Environment variable TEST_WORKSPACE unset!"; } return testing::kIsOpenSource ? io::JoinPath(srcdir, workspace, relative_path) : io::JoinPath(srcdir, workspace, "third_party", relative_path); } }
#include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { string DataDependencyPath() { return io::JoinPath("tensorflow", "core", "platform", "resource_loader.h"); } TEST(ResourceLoaderTest, FindsAndOpensFile) { string filepath = GetDataDependencyFilepath(DataDependencyPath()); Status s = Env::Default()->FileExists(filepath); EXPECT_TRUE(s.ok()) << "No file found at this location: " << filepath; } } }
2,265
#ifndef TENSORFLOW_TSL_PLATFORM_NUMBERS_H_ #define TENSORFLOW_TSL_PLATFORM_NUMBERS_H_ #include <cstdint> #include <string> #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace strings { static const int kFastToBufferSize = 32; size_t FastInt32ToBufferLeft(int32_t i, char* buffer); size_t FastUInt32ToBufferLeft(uint32_t i, char* buffer); size_t FastInt64ToBufferLeft(int64_t i, char* buffer); size_t FastUInt64ToBufferLeft(uint64_t i, char* buffer); size_t DoubleToBuffer(double value, char* buffer); size_t FloatToBuffer(float value, char* buffer); std::string FpToString(Fprint fp); bool StringToFp(const std::string& s, Fprint* fp); StringPiece Uint64ToHexString(uint64_t v, char* buf); bool HexStringToUint64(const StringPiece& s, uint64_t* result); bool safe_strto32(StringPiece str, int32_t* value); bool safe_strtou32(StringPiece str, uint32_t* value); bool safe_strto64(StringPiece str, int64_t* value); bool safe_strtou64(StringPiece str, uint64_t* value); bool safe_strtof(StringPiece str, float* value); bool safe_strtod(StringPiece str, double* value); inline bool ProtoParseNumeric(StringPiece s, int32_t* value) { return safe_strto32(s, value); } inline bool ProtoParseNumeric(StringPiece s, uint32_t* value) { return safe_strtou32(s, value); } inline bool ProtoParseNumeric(StringPiece s, int64_t* value) { return safe_strto64(s, value); } inline bool ProtoParseNumeric(StringPiece s, uint64_t* value) { return safe_strtou64(s, value); } inline bool ProtoParseNumeric(StringPiece s, float* value) { return safe_strtof(s, value); } inline bool ProtoParseNumeric(StringPiece s, double* value) { return safe_strtod(s, value); } template <typename T> bool SafeStringToNumeric(StringPiece s, T* value) { return ProtoParseNumeric(s, value); } std::string HumanReadableNum(int64_t value); std::string HumanReadableNumBytes(int64_t num_bytes); std::string HumanReadableElapsedTime(double seconds); } } #endif #include "tsl/platform/numbers.h" #include <ctype.h> #include <float.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <cinttypes> #include <cmath> #include <cstdint> #include <locale> #include <unordered_map> #include "double-conversion/double-conversion.h" #include "tsl/platform/str_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/types.h" namespace tsl { namespace { template <typename T> const std::unordered_map<std::string, T>* GetSpecialNumsSingleton() { static const std::unordered_map<std::string, T>* special_nums = CHECK_NOTNULL((new const std::unordered_map<std::string, T>{ {"inf", std::numeric_limits<T>::infinity()}, {"+inf", std::numeric_limits<T>::infinity()}, {"-inf", -std::numeric_limits<T>::infinity()}, {"infinity", std::numeric_limits<T>::infinity()}, {"+infinity", std::numeric_limits<T>::infinity()}, {"-infinity", -std::numeric_limits<T>::infinity()}, {"nan", std::numeric_limits<T>::quiet_NaN()}, {"+nan", std::numeric_limits<T>::quiet_NaN()}, {"-nan", -std::numeric_limits<T>::quiet_NaN()}, })); return special_nums; } template <typename T> T locale_independent_strtonum(const char* str, const char** endptr) { auto special_nums = GetSpecialNumsSingleton<T>(); std::stringstream s(str); std::string special_num_str; s >> special_num_str; for (size_t i = 0; i < special_num_str.length(); ++i) { special_num_str[i] = std::tolower(special_num_str[i], std::locale::classic()); } auto entry = special_nums->find(special_num_str); if (entry != special_nums->end()) { *endptr = str + (s.eof() ? static_cast<std::iostream::pos_type>(strlen(str)) : s.tellg()); return entry->second; } else { if (special_num_str.compare(0, 2, "0x") == 0 || special_num_str.compare(0, 3, "-0x") == 0) { return strtol(str, const_cast<char**>(endptr), 16); } } s.str(str); s.clear(); s.imbue(std::locale::classic()); T result; s >> result; if (s.fail()) { if (result == std::numeric_limits<T>::max() || result == std::numeric_limits<T>::infinity()) { result = std::numeric_limits<T>::infinity(); s.clear(s.rdstate() & ~std::ios::failbit); } else if (result == -std::numeric_limits<T>::max() || result == -std::numeric_limits<T>::infinity()) { result = -std::numeric_limits<T>::infinity(); s.clear(s.rdstate() & ~std::ios::failbit); } } if (endptr) { *endptr = str + (s.fail() ? static_cast<std::iostream::pos_type>(0) : (s.eof() ? static_cast<std::iostream::pos_type>(strlen(str)) : s.tellg())); } return result; } static inline const double_conversion::StringToDoubleConverter& StringToFloatConverter() { static const double_conversion::StringToDoubleConverter converter( double_conversion::StringToDoubleConverter::ALLOW_LEADING_SPACES | double_conversion::StringToDoubleConverter::ALLOW_HEX | double_conversion::StringToDoubleConverter::ALLOW_TRAILING_SPACES | double_conversion::StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY, 0., 0., "inf", "nan"); return converter; } } namespace strings { size_t FastInt32ToBufferLeft(int32_t i, char* buffer) { uint32_t u = i; size_t length = 0; if (i < 0) { *buffer++ = '-'; ++length; u = 0 - u; } length += FastUInt32ToBufferLeft(u, buffer); return length; } size_t FastUInt32ToBufferLeft(uint32_t i, char* buffer) { char* start = buffer; do { *buffer++ = ((i % 10) + '0'); i /= 10; } while (i > 0); *buffer = 0; std::reverse(start, buffer); return buffer - start; } size_t FastInt64ToBufferLeft(int64_t i, char* buffer) { uint64_t u = i; size_t length = 0; if (i < 0) { *buffer++ = '-'; ++length; u = 0 - u; } length += FastUInt64ToBufferLeft(u, buffer); return length; } size_t FastUInt64ToBufferLeft(uint64_t i, char* buffer) { char* start = buffer; do { *buffer++ = ((i % 10) + '0'); i /= 10; } while (i > 0); *buffer = 0; std::reverse(start, buffer); return buffer - start; } static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001; size_t DoubleToBuffer(double value, char* buffer) { static_assert(DBL_DIG < 20, "DBL_DIG is too big"); if (std::isnan(value)) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%snan", std::signbit(value) ? "-" : ""); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } if (std::abs(value) <= kDoublePrecisionCheckMax) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", DBL_DIG, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); if (locale_independent_strtonum<double>(buffer, nullptr) == value) { return snprintf_result; } } int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", DBL_DIG + 2, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } namespace { char SafeFirstChar(StringPiece str) { if (str.empty()) return '\0'; return str[0]; } void SkipSpaces(StringPiece* str) { while (isspace(SafeFirstChar(*str))) str->remove_prefix(1); } } bool safe_strto64(StringPiece str, int64_t* value) { SkipSpaces(&str); int64_t vlimit = kint64max; int sign = 1; if (absl::ConsumePrefix(&str, "-")) { sign = -1; vlimit = kint64min; } if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; if (sign == 1) { do { int digit = SafeFirstChar(str) - '0'; if ((vlimit - digit) / 10 < result) { return false; } result = result * 10 + digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); } else { do { int digit = SafeFirstChar(str) - '0'; if ((vlimit + digit) / 10 > result) { return false; } result = result * 10 - digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); } SkipSpaces(&str); if (!str.empty()) return false; *value = result; return true; } bool safe_strtou64(StringPiece str, uint64_t* value) { SkipSpaces(&str); if (!isdigit(SafeFirstChar(str))) return false; uint64_t result = 0; do { int digit = SafeFirstChar(str) - '0'; if ((kuint64max - digit) / 10 < result) { return false; } result = result * 10 + digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = result; return true; } bool safe_strto32(StringPiece str, int32_t* value) { SkipSpaces(&str); int64_t vmax = kint32max; int sign = 1; if (absl::ConsumePrefix(&str, "-")) { sign = -1; ++vmax; } if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; do { result = result * 10 + SafeFirstChar(str) - '0'; if (result > vmax) { return false; } str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = static_cast<int32_t>(result * sign); return true; } bool safe_strtou32(StringPiece str, uint32_t* value) { SkipSpaces(&str); if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; do { result = result * 10 + SafeFirstChar(str) - '0'; if (result > kuint32max) { return false; } str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = static_cast<uint32_t>(result); return true; } bool safe_strtof(StringPiece str, float* value) { int processed_characters_count = -1; auto len = str.size(); if (len >= kFastToBufferSize) return false; if (len > std::numeric_limits<int>::max()) return false; *value = StringToFloatConverter().StringToFloat( str.data(), static_cast<int>(len), &processed_characters_count); return processed_characters_count > 0; } bool safe_strtod(StringPiece str, double* value) { int processed_characters_count = -1; auto len = str.size(); if (len >= kFastToBufferSize) return false; if (len > std::numeric_limits<int>::max()) return false; *value = StringToFloatConverter().StringToDouble( str.data(), static_cast<int>(len), &processed_characters_count); return processed_characters_count > 0; } size_t FloatToBuffer(float value, char* buffer) { static_assert(FLT_DIG < 10, "FLT_DIG is too big"); if (std::isnan(value)) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%snan", std::signbit(value) ? "-" : ""); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); float parsed_value; if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) { snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 3, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); } return snprintf_result; } std::string FpToString(Fprint fp) { char buf[17]; snprintf(buf, sizeof(buf), "%016llx", static_cast<long long>(fp)); return std::string(buf); } bool StringToFp(const std::string& s, Fprint* fp) { char junk; uint64_t result; if (sscanf(s.c_str(), "%" SCNx64 "%c", &result, &junk) == 1) { *fp = result; return true; } else { return false; } } StringPiece Uint64ToHexString(uint64_t v, char* buf) { static const char* hexdigits = "0123456789abcdef"; const int num_byte = 16; buf[num_byte] = '\0'; for (int i = num_byte - 1; i >= 0; i--) { buf[i] = hexdigits[v & 0xf]; v >>= 4; } return StringPiece(buf, num_byte); } bool HexStringToUint64(const StringPiece& s, uint64_t* result) { uint64_t v = 0; if (s.empty()) { return false; } for (size_t i = 0; i < s.size(); i++) { char c = s[i]; if (c >= '0' && c <= '9') { v = (v << 4) + (c - '0'); } else if (c >= 'a' && c <= 'f') { v = (v << 4) + 10 + (c - 'a'); } else if (c >= 'A' && c <= 'F') { v = (v << 4) + 10 + (c - 'A'); } else { return false; } } *result = v; return true; } std::string HumanReadableNum(int64_t value) { std::string s; if (value < 0) { s += "-"; value = -value; } if (value < 1000) { Appendf(&s, "%lld", static_cast<long long>(value)); } else if (value >= static_cast<int64_t>(1e15)) { Appendf(&s, "%0.3G", static_cast<double>(value)); } else { static const char units[] = "kMBT"; const char* unit = units; while (value >= static_cast<int64_t>(1000000)) { value /= static_cast<int64_t>(1000); ++unit; CHECK(unit < units + TF_ARRAYSIZE(units)); } Appendf(&s, "%.2f%c", value / 1000.0, *unit); } return s; } std::string HumanReadableNumBytes(int64_t num_bytes) { if (num_bytes == kint64min) { return "-8E"; } const char* neg_str = (num_bytes < 0) ? "-" : ""; if (num_bytes < 0) { num_bytes = -num_bytes; } if (num_bytes < 1024) { char buf[8]; snprintf(buf, sizeof(buf), "%s%lldB", neg_str, static_cast<long long>(num_bytes)); return std::string(buf); } static const char units[] = "KMGTPE"; const char* unit = units; while (num_bytes >= static_cast<int64_t>(1024) * 1024) { num_bytes /= 1024; ++unit; CHECK(unit < units + TF_ARRAYSIZE(units)); } char buf[16]; snprintf(buf, sizeof(buf), ((*unit == 'K') ? "%s%.1f%ciB" : "%s%.2f%ciB"), neg_str, num_bytes / 1024.0, *unit); return std::string(buf); } std::string HumanReadableElapsedTime(double seconds) { std::string human_readable; if (seconds < 0) { human_readable = "-"; seconds = -seconds; } const double microseconds = seconds * 1.0e6; if (microseconds < 999.5) { strings::Appendf(&human_readable, "%0.3g us", microseconds); return human_readable; } double milliseconds = seconds * 1e3; if (milliseconds >= .995 && milliseconds < 1) { milliseconds = 1.0; } if (milliseconds < 999.5) { strings::Appendf(&human_readable, "%0.3g ms", milliseconds); return human_readable; } if (seconds < 60.0) { strings::Appendf(&human_readable, "%0.3g s", seconds); return human_readable; } seconds /= 60.0; if (seconds < 60.0) { strings::Appendf(&human_readable, "%0.3g min", seconds); return human_readable; } seconds /= 60.0; if (seconds < 24.0) { strings::Appendf(&human_readable, "%0.3g h", seconds); return human_readable; } seconds /= 24.0; if (seconds < 30.0) { strings::Appendf(&human_readable, "%0.3g days", seconds); return human_readable; } if (seconds < 365.2425) { strings::Appendf(&human_readable, "%0.3g months", seconds / 30.436875); return human_readable; } seconds /= 365.2425; strings::Appendf(&human_readable, "%0.3g years", seconds); return human_readable; } } }
#include "tsl/platform/numbers.h" #include <cmath> #include <string> #include "tsl/platform/test.h" namespace tsl { namespace strings { TEST(FpToString, Ints) { for (int s = 0; s < 64; s++) { for (int delta = -1; delta <= 1; delta++) { uint64 fp = (1ull << s) + delta; string s = FpToString(fp); uint64 fp2; EXPECT_TRUE(StringToFp(s, &fp2)); EXPECT_EQ(fp, fp2); } } Fprint dummy; EXPECT_FALSE(StringToFp("", &dummy)); EXPECT_FALSE(StringToFp("xyz", &dummy)); EXPECT_FALSE(StringToFp("0000000000000000xyz", &dummy)); } TEST(Uint64ToHexString, Ints) { for (int s = 0; s < 64; s++) { for (int delta = -1; delta <= 1; delta++) { uint64 fp = (1ull << s) + delta; char buf[kFastToBufferSize]; StringPiece s = Uint64ToHexString(fp, buf); uint64 fp2; EXPECT_TRUE(HexStringToUint64(s, &fp2)); EXPECT_EQ(fp, fp2) << s; } } uint64 dummy; EXPECT_FALSE(HexStringToUint64("", &dummy)); EXPECT_FALSE(HexStringToUint64("xyz", &dummy)); EXPECT_FALSE(HexStringToUint64("0000000000000000xyz", &dummy)); } TEST(HumanReadableNum, Basic) { EXPECT_EQ(HumanReadableNum(823), "823"); EXPECT_EQ(HumanReadableNum(1024), "1.02k"); EXPECT_EQ(HumanReadableNum(4000), "4.00k"); EXPECT_EQ(HumanReadableNum(999499), "999.50k"); EXPECT_EQ(HumanReadableNum(1000000), "1.00M"); EXPECT_EQ(HumanReadableNum(1048575), "1.05M"); EXPECT_EQ(HumanReadableNum(1048576), "1.05M"); EXPECT_EQ(HumanReadableNum(23956812342), "23.96B"); EXPECT_EQ(HumanReadableNum(123456789012345678), "1.23E+17"); } TEST(HumanReadableNumBytes, Bytes) { EXPECT_EQ("0B", HumanReadableNumBytes(0)); EXPECT_EQ("4B", HumanReadableNumBytes(4)); EXPECT_EQ("1023B", HumanReadableNumBytes(1023)); EXPECT_EQ("1.0KiB", HumanReadableNumBytes(1024)); EXPECT_EQ("1.0KiB", HumanReadableNumBytes(1025)); EXPECT_EQ("1.5KiB", HumanReadableNumBytes(1500)); EXPECT_EQ("1.9KiB", HumanReadableNumBytes(1927)); EXPECT_EQ("2.0KiB", HumanReadableNumBytes(2048)); EXPECT_EQ("1.00MiB", HumanReadableNumBytes(1 << 20)); EXPECT_EQ("11.77MiB", HumanReadableNumBytes(12345678)); EXPECT_EQ("1.00GiB", HumanReadableNumBytes(1 << 30)); EXPECT_EQ("1.00TiB", HumanReadableNumBytes(1LL << 40)); EXPECT_EQ("1.00PiB", HumanReadableNumBytes(1LL << 50)); EXPECT_EQ("1.00EiB", HumanReadableNumBytes(1LL << 60)); EXPECT_EQ("-1B", HumanReadableNumBytes(-1)); EXPECT_EQ("-4B", HumanReadableNumBytes(-4)); EXPECT_EQ("-1000B", HumanReadableNumBytes(-1000)); EXPECT_EQ("-11.77MiB", HumanReadableNumBytes(-12345678)); EXPECT_EQ("-8E", HumanReadableNumBytes(kint64min)); } TEST(HumanReadableElapsedTime, Basic) { EXPECT_EQ(HumanReadableElapsedTime(-10), "-10 s"); EXPECT_EQ(HumanReadableElapsedTime(-0.001), "-1 ms"); EXPECT_EQ(HumanReadableElapsedTime(-60.0), "-1 min"); EXPECT_EQ(HumanReadableElapsedTime(0.00000001), "0.01 us"); EXPECT_EQ(HumanReadableElapsedTime(0.0000012), "1.2 us"); EXPECT_EQ(HumanReadableElapsedTime(0.0012), "1.2 ms"); EXPECT_EQ(HumanReadableElapsedTime(0.12), "120 ms"); EXPECT_EQ(HumanReadableElapsedTime(1.12), "1.12 s"); EXPECT_EQ(HumanReadableElapsedTime(90.0), "1.5 min"); EXPECT_EQ(HumanReadableElapsedTime(600.0), "10 min"); EXPECT_EQ(HumanReadableElapsedTime(9000.0), "2.5 h"); EXPECT_EQ(HumanReadableElapsedTime(87480.0), "1.01 days"); EXPECT_EQ(HumanReadableElapsedTime(7776000.0), "2.96 months"); EXPECT_EQ(HumanReadableElapsedTime(78840000.0), "2.5 years"); EXPECT_EQ(HumanReadableElapsedTime(382386614.40), "12.1 years"); EXPECT_EQ(HumanReadableElapsedTime(DBL_MAX), "5.7e+300 years"); } TEST(safe_strto32, Int32s) { int32 result; EXPECT_EQ(true, safe_strto32("1", &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto32("123", &result)); EXPECT_EQ(123, result); EXPECT_EQ(true, safe_strto32(" -123 ", &result)); EXPECT_EQ(-123, result); EXPECT_EQ(true, safe_strto32("2147483647", &result)); EXPECT_EQ(2147483647, result); EXPECT_EQ(true, safe_strto32("-2147483648", &result)); EXPECT_EQ(-2147483648, result); EXPECT_EQ(false, safe_strto32(" 132as ", &result)); EXPECT_EQ(false, safe_strto32(" 132.2 ", &result)); EXPECT_EQ(false, safe_strto32(" -", &result)); EXPECT_EQ(false, safe_strto32("", &result)); EXPECT_EQ(false, safe_strto32(" ", &result)); EXPECT_EQ(false, safe_strto32("123 a", &result)); EXPECT_EQ(false, safe_strto32("2147483648", &result)); EXPECT_EQ(false, safe_strto32("-2147483649", &result)); EXPECT_EQ(true, safe_strto32(StringPiece("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto32(StringPiece(" -123", 4), &result)); EXPECT_EQ(-12, result); EXPECT_EQ(false, safe_strto32(StringPiece(nullptr, 0), &result)); } TEST(safe_strtou32, UInt32s) { uint32 result; EXPECT_TRUE(safe_strtou32("0", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtou32("1", &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou32("123", &result)); EXPECT_EQ(123, result); EXPECT_TRUE(safe_strtou32("4294967295", &result)); EXPECT_EQ(4294967295, result); EXPECT_FALSE(safe_strtou32(" 132as ", &result)); EXPECT_FALSE(safe_strtou32(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou32(" -", &result)); EXPECT_FALSE(safe_strtou32("", &result)); EXPECT_FALSE(safe_strtou32(" ", &result)); EXPECT_FALSE(safe_strtou32("123 a", &result)); EXPECT_FALSE(safe_strtou32("123 456", &result)); EXPECT_FALSE(safe_strtou32("4294967296", &result)); EXPECT_FALSE(safe_strtou32("-1", &result)); EXPECT_TRUE(safe_strtou32(StringPiece("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou32(StringPiece(" 123", 3), &result)); EXPECT_EQ(12, result); EXPECT_FALSE(safe_strtou32(StringPiece(nullptr, 0), &result)); } TEST(safe_strto64, Int64s) { int64 result; EXPECT_EQ(true, safe_strto64("1", &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto64("123", &result)); EXPECT_EQ(123, result); EXPECT_EQ(true, safe_strto64(" -123 ", &result)); EXPECT_EQ(-123, result); EXPECT_EQ(true, safe_strto64("9223372036854775807", &result)); EXPECT_EQ(9223372036854775807, result); EXPECT_EQ(true, safe_strto64("-9223372036854775808", &result)); EXPECT_EQ(kint64min, result); EXPECT_EQ(false, safe_strto64(" 132as ", &result)); EXPECT_EQ(false, safe_strto64(" 132.2 ", &result)); EXPECT_EQ(false, safe_strto64(" -", &result)); EXPECT_EQ(false, safe_strto64("", &result)); EXPECT_EQ(false, safe_strto64(" ", &result)); EXPECT_EQ(false, safe_strto64("123 a", &result)); EXPECT_EQ(false, safe_strto64("9223372036854775808", &result)); EXPECT_EQ(false, safe_strto64("-9223372036854775809", &result)); EXPECT_EQ(true, safe_strto64(StringPiece("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto64(StringPiece(" -123", 4), &result)); EXPECT_EQ(-12, result); EXPECT_EQ(false, safe_strto64(StringPiece(nullptr, 0), &result)); } TEST(safe_strtou64, UInt64s) { uint64 result; EXPECT_TRUE(safe_strtou64("0", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtou64("1", &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou64("123", &result)); EXPECT_EQ(123, result); EXPECT_TRUE(safe_strtou64(" 345 ", &result)); EXPECT_EQ(345, result); EXPECT_TRUE(safe_strtou64("18446744073709551615", &result)); EXPECT_EQ(18446744073709551615UL, result); EXPECT_FALSE(safe_strtou64(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou64(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou64(" -", &result)); EXPECT_FALSE(safe_strtou64("", &result)); EXPECT_FALSE(safe_strtou64(" ", &result)); EXPECT_FALSE(safe_strtou64("123 a", &result)); EXPECT_FALSE(safe_strtou64("123 456", &result)); EXPECT_FALSE(safe_strtou64("18446744073709551616", &result)); EXPECT_FALSE(safe_strtou64("-1", &result)); EXPECT_TRUE(safe_strtou64(StringPiece("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou64(StringPiece(" 123", 3), &result)); EXPECT_EQ(12, result); EXPECT_FALSE(safe_strtou64(StringPiece(nullptr, 0), &result)); } TEST(safe_strtof, Float) { float result = 0; EXPECT_TRUE(safe_strtof("0.123456", &result)); EXPECT_EQ(0.123456f, result); EXPECT_FALSE(safe_strtof("0.12345abc", &result)); EXPECT_TRUE(safe_strtof("1e39", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("-1e39", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("1e-50", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtof("0xF", &result)); EXPECT_EQ(0xF, result); EXPECT_TRUE(safe_strtof("-0x2A", &result)); EXPECT_EQ(-42.0f, result); EXPECT_TRUE(safe_strtof(" -0x2", &result)); EXPECT_EQ(-2.0f, result); EXPECT_TRUE(safe_strtof("8 \t", &result)); EXPECT_EQ(8.0f, result); EXPECT_TRUE(safe_strtof("\t20.0\t ", &result)); EXPECT_EQ(20.0f, result); EXPECT_FALSE(safe_strtof("-infinity is awesome", &result)); char test_str[2 * kFastToBufferSize]; for (int i = 0; i < 2 * kFastToBufferSize; ++i) test_str[i] = 'a'; test_str[kFastToBufferSize + 1] = '\0'; EXPECT_FALSE(safe_strtof(test_str, &result)); EXPECT_TRUE(safe_strtof("-inf", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("+inf", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("InF", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("-INF", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("-nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("-NaN", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("+NAN", &result)); EXPECT_TRUE(std::isnan(result)); } TEST(safe_strtod, Double) { double result = 0; EXPECT_TRUE(safe_strtod("0.1234567890123", &result)); EXPECT_EQ(0.1234567890123, result); EXPECT_FALSE(safe_strtod("0.1234567890123abc", &result)); char test_str[2 * kFastToBufferSize]; for (int i = 0; i < 2 * kFastToBufferSize; ++i) test_str[i] = 'a'; test_str[kFastToBufferSize + 1] = '\0'; EXPECT_FALSE(safe_strtod(test_str, &result)); EXPECT_TRUE(safe_strtod("1e310", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("-1e310", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("1e-325", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtod(" -0x1c", &result)); EXPECT_EQ(-28.0, result); EXPECT_TRUE(safe_strtod("50 \t", &result)); EXPECT_EQ(50.0, result); EXPECT_TRUE(safe_strtod("\t82.0\t ", &result)); EXPECT_EQ(82.0, result); EXPECT_FALSE(safe_strtod("infinity", &result)); EXPECT_TRUE(safe_strtod("-inf", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("+inf", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("InF", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("-INF", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("-nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("-NaN", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("+NAN", &result)); EXPECT_TRUE(std::isnan(result)); } } }
2,266
#ifndef TENSORFLOW_TSL_PLATFORM_THREADPOOL_H_ #define TENSORFLOW_TSL_PLATFORM_THREADPOOL_H_ #include <functional> #include <memory> #include "absl/types/optional.h" #include "tsl/platform/env.h" #include "tsl/platform/macros.h" #include "tsl/platform/threadpool_interface.h" #include "tsl/platform/types.h" namespace Eigen { class Allocator; class ThreadPoolInterface; struct ThreadPoolDevice; template <typename Environment> class ThreadPoolTempl; } namespace tsl { namespace thread { struct EigenEnvironment; class ThreadPool { public: enum class SchedulingStrategy { kAdaptive, kFixedBlockSize }; class SchedulingParams { public: explicit SchedulingParams(SchedulingStrategy strategy, absl::optional<int64_t> cost_per_unit, absl::optional<int64_t> block_size) : strategy_(strategy), cost_per_unit_(cost_per_unit), block_size_(block_size) {} SchedulingStrategy strategy() const { return strategy_; } absl::optional<int64_t> cost_per_unit() const { return cost_per_unit_; } absl::optional<int64_t> block_size() const { return block_size_; } private: SchedulingStrategy strategy_; absl::optional<int64_t> cost_per_unit_; absl::optional<int64_t> block_size_; }; ThreadPool(Env* env, const ThreadOptions& thread_options, const std::string& name, int num_threads, bool low_latency_hint, Eigen::Allocator* allocator = nullptr); ThreadPool(Env* env, const std::string& name, int num_threads); ThreadPool(Env* env, const ThreadOptions& thread_options, const std::string& name, int num_threads); explicit ThreadPool(thread::ThreadPoolInterface* user_threadpool); ~ThreadPool(); void Schedule(std::function<void()> fn); void SetStealPartitions( const std::vector<std::pair<unsigned, unsigned>>& partitions); void ScheduleWithHint(std::function<void()> fn, int start, int limit); int NumShardsUsedByFixedBlockSizeScheduling(const int64_t total, const int64_t block_size); int NumShardsUsedByTransformRangeConcurrently(const int64_t block_size, const int64_t total); void ParallelFor(int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t)>& fn); void ParallelFor(int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t)>& fn); void TransformRangeConcurrently( const int64_t block_size, const int64_t total, const std::function<void(int64_t, int64_t)>& fn); void ParallelForWithWorkerId( int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t, int)>& fn); void ParallelForWithWorkerId( int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t, int)>& fn); int NumThreads() const; int CurrentThreadId() const; Eigen::ThreadPoolInterface* AsEigenThreadPool() const; private: void ParallelForFixedBlockSizeScheduling( const int64_t total, const int64_t block_size, const std::function<void(int64_t, int64_t)>& fn); Eigen::ThreadPoolInterface* underlying_threadpool_; std::unique_ptr<Eigen::ThreadPoolTempl<EigenEnvironment>> eigen_threadpool_; std::unique_ptr<Eigen::ThreadPoolDevice> threadpool_device_; ThreadPool(const ThreadPool&) = delete; void operator=(const ThreadPool&) = delete; }; } } #endif #include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "absl/types/optional.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/context.h" #include "tsl/platform/denormal.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numa.h" #include "tsl/platform/setround.h" #include "tsl/platform/tracing.h" #ifdef DNNL_AARCH64_USE_ACL #include "tsl/platform/cpu_info.h" #endif #ifdef TENSORFLOW_THREADSCALING_EXPERIMENTAL ABSL_FLAG(float, tensorflow_num_threads_scale_factor, 1.0, "Allows to scale all Tensorflow ThreadPools. Total number of threads " "in a given ThreadPool equals to num_threads * " "tensorflow_num_threads_scale_factor. Default scale factor of 1 is a " "no-op."); #endif namespace tsl { namespace thread { struct EigenEnvironment { typedef Thread EnvThread; struct TaskImpl { std::function<void()> f; Context context; uint64 trace_id; }; struct Task { std::unique_ptr<TaskImpl> f; }; Env* const env_; const ThreadOptions thread_options_; const string name_; EigenEnvironment(Env* env, const ThreadOptions& thread_options, const string& name) : env_(env), thread_options_(thread_options), name_(name) {} EnvThread* CreateThread(std::function<void()> f) { return env_->StartThread(thread_options_, name_, [=]() { port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); if (thread_options_.numa_node != port::kNUMANoAffinity) { port::NUMASetThreadNodeAffinity(thread_options_.numa_node); } f(); }); } Task CreateTask(std::function<void()> f) { uint64 id = 0; if (tracing::EventCollector::IsEnabled()) { id = tracing::GetUniqueArg(); tracing::RecordEvent(tracing::EventCategory::kScheduleClosure, id); } return Task{ std::unique_ptr<TaskImpl>(new TaskImpl{ std::move(f), Context(ContextKind::kThread), id, }), }; } void ExecuteTask(const Task& t) { WithContext wc(t.f->context); tracing::ScopedRegion region(tracing::EventCategory::kRunClosure, t.f->trace_id); t.f->f(); } }; ThreadPool::ThreadPool(Env* env, const string& name, int num_threads) : ThreadPool(env, ThreadOptions(), name, num_threads, true, nullptr) {} ThreadPool::ThreadPool(Env* env, const ThreadOptions& thread_options, const string& name, int num_threads) : ThreadPool(env, thread_options, name, num_threads, true, nullptr) {} ThreadPool::ThreadPool(Env* env, const ThreadOptions& thread_options, const string& name, int num_threads, bool low_latency_hint, Eigen::Allocator* allocator) { CHECK_GE(num_threads, 1); #ifdef DNNL_AARCH64_USE_ACL if (num_threads == tsl::port::NumTotalCPUs() && num_threads >= 16) { num_threads = num_threads - 1; } #endif #ifdef TENSORFLOW_THREADSCALING_EXPERIMENTAL CHECK_GT(absl::GetFlag(FLAGS_tensorflow_num_threads_scale_factor), 0); num_threads *= absl::GetFlag(FLAGS_tensorflow_num_threads_scale_factor); if (num_threads < 1) num_threads = 1; #endif eigen_threadpool_.reset(new Eigen::ThreadPoolTempl<EigenEnvironment>( num_threads, low_latency_hint, EigenEnvironment(env, thread_options, "tf_" + name))); underlying_threadpool_ = eigen_threadpool_.get(); threadpool_device_.reset(new Eigen::ThreadPoolDevice(underlying_threadpool_, num_threads, allocator)); } ThreadPool::ThreadPool(thread::ThreadPoolInterface* user_threadpool) { underlying_threadpool_ = user_threadpool; threadpool_device_.reset(new Eigen::ThreadPoolDevice( underlying_threadpool_, underlying_threadpool_->NumThreads(), nullptr)); } ThreadPool::~ThreadPool() {} void ThreadPool::Schedule(std::function<void()> fn) { CHECK(fn != nullptr); underlying_threadpool_->Schedule(std::move(fn)); } int ThreadPool::NumShardsUsedByFixedBlockSizeScheduling( const int64_t total, const int64_t block_size) { if (block_size <= 0 || total <= 1 || total <= block_size || NumThreads() == 1) { return 1; } return (total + block_size - 1) / block_size; } int ThreadPool::NumShardsUsedByTransformRangeConcurrently( const int64_t block_size, const int64_t total) { return NumShardsUsedByFixedBlockSizeScheduling(total, block_size); } void ThreadPool::ParallelFor(int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t)>& fn) { switch (scheduling_params.strategy()) { case SchedulingStrategy::kAdaptive: { if (scheduling_params.cost_per_unit().has_value()) { ParallelFor(total, *scheduling_params.cost_per_unit(), fn); } break; } case SchedulingStrategy::kFixedBlockSize: { if (scheduling_params.block_size().has_value()) { ParallelForFixedBlockSizeScheduling( total, *scheduling_params.block_size(), fn); } break; } } } void ThreadPool::TransformRangeConcurrently( const int64_t block_size, const int64_t total, const std::function<void(int64_t, int64_t)>& fn) { ParallelFor(total, SchedulingParams(SchedulingStrategy::kFixedBlockSize, absl::nullopt , block_size), fn); } void ThreadPool::ParallelForFixedBlockSizeScheduling( const int64_t total, const int64_t block_size, const std::function<void(int64_t, int64_t)>& fn) { const int num_shards_used = NumShardsUsedByFixedBlockSizeScheduling(total, block_size); if (num_shards_used == 1) { fn(0, total); return; } BlockingCounter counter(num_shards_used); std::function<void(int64_t, int64_t)> handle_range = [=, &handle_range, &counter, &fn](int64_t first, int64_t last) { while (last - first > block_size) { const int64_t mid = first + ((last - first) / 2 + block_size - 1) / block_size * block_size; Schedule([=, &handle_range]() { handle_range(mid, last); }); last = mid; } fn(first, last); counter.DecrementCount(); }; if (num_shards_used <= NumThreads()) { handle_range(0, total); } else { Schedule([=, &handle_range]() { handle_range(0, total); }); } counter.Wait(); } void ThreadPool::ParallelFor(int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t)>& fn) { CHECK_GE(total, 0); CHECK_EQ(total, (int64_t)(Eigen::Index)total); threadpool_device_->parallelFor( total, Eigen::TensorOpCost(0, 0, cost_per_unit), [&fn](Eigen::Index first, Eigen::Index last) { fn(first, last); }); } void ThreadPool::ParallelForWithWorkerId( int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t, int)>& fn) { CHECK_GE(total, 0); CHECK_EQ(total, (int64_t)(Eigen::Index)total); threadpool_device_->parallelFor(total, Eigen::TensorOpCost(0, 0, cost_per_unit), [this, &fn](int64_t start, int64_t limit) { int id = CurrentThreadId() + 1; fn(start, limit, id); }); } void ThreadPool::ParallelForWithWorkerId( int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t, int)>& fn) { ParallelFor(total, scheduling_params, [this, &fn](int64_t start, int64_t limit) { int id = CurrentThreadId() + 1; fn(start, limit, id); }); } int ThreadPool::NumThreads() const { return underlying_threadpool_->NumThreads(); } int ThreadPool::CurrentThreadId() const { return underlying_threadpool_->CurrentThreadId(); } void ThreadPool::ScheduleWithHint(std::function<void()> fn, int start, int limit) { underlying_threadpool_->ScheduleWithHint(std::move(fn), start, limit); } void ThreadPool::SetStealPartitions( const std::vector<std::pair<unsigned, unsigned>>& partitions) { DCHECK(eigen_threadpool_ != nullptr); eigen_threadpool_->SetStealPartitions(partitions); } Eigen::ThreadPoolInterface* ThreadPool::AsEigenThreadPool() const { DCHECK(underlying_threadpool_ != nullptr); return underlying_threadpool_; } } }
#include "tensorflow/core/lib/core/threadpool.h" #include <atomic> #include <optional> #include "absl/synchronization/barrier.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/optional.h" #include "tensorflow/core/platform/context.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace thread { static const int kNumThreads = 30; TEST(ThreadPool, Empty) { for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); ThreadPool pool(Env::Default(), "test", num_threads); } } TEST(ThreadPool, DoWork) { Context outer_context(ContextKind::kThread); for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; for (int i = 0; i < kWorkItems; i++) { work[i] = false; } { ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { pool.Schedule([&outer_context, &work, i]() { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); ASSERT_FALSE(work[i].exchange(true)); }); } } for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } void RunWithFixedBlockSize(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_shards = 0; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } threads->ParallelFor( total, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kFixedBlockSize , std::nullopt , block_size ), [=, &mu, &num_shards, &num_done_work, &work](int64_t start, int64_t end) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); mutex_lock l(mu); ++num_shards; for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { ASSERT_TRUE(work[i]); } const int64_t num_workers = (total + block_size - 1) / block_size; if (num_workers < threads->NumThreads()) { EXPECT_LE(num_shards, 1 + num_workers); } } TEST(ThreadPoolTest, ParallelForFixedBlockSizeScheduling) { ThreadPool threads(Env::Default(), "test", 16); for (auto block_size : {1, 7, 10, 64, 100, 256, 1000, 9999}) { for (auto diff : {0, 1, 11, 102, 1003, 10005, 1000007}) { const int64_t total = block_size + diff; RunWithFixedBlockSize(block_size, total, &threads); } } } void RunWithFixedBlockSizeTransformRangeConcurrently(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_shards = 0; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } threads->TransformRangeConcurrently( block_size, total, [=, &mu, &num_shards, &num_done_work, &work](int64_t start, int64_t end) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); mutex_lock l(mu); ++num_shards; for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { ASSERT_TRUE(work[i]); } const int64_t num_workers = (total + block_size - 1) / block_size; if (num_workers < threads->NumThreads()) { EXPECT_LE(num_shards, 1 + num_workers); } } TEST(ThreadPoolTest, TransformRangeConcurrently) { ThreadPool threads(Env::Default(), "test", 16); for (auto block_size : {1, 7, 10, 64, 100, 256, 1000, 9999}) { for (auto diff : {0, 1, 11, 102, 1003, 10005, 1000007}) { const int64_t total = block_size + diff; RunWithFixedBlockSizeTransformRangeConcurrently(block_size, total, &threads); } } } TEST(ThreadPoolTest, NumShardsUsedByFixedBlockSizeScheduling) { ThreadPool threads(Env::Default(), "test", 16); EXPECT_EQ(1, threads.NumShardsUsedByFixedBlockSizeScheduling( 3 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 4 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 5 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 6 , 3 )); EXPECT_EQ(3, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 3 )); EXPECT_EQ(7, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 1 )); EXPECT_EQ(1, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 0 )); } TEST(ThreadPoolTest, NumShardsUsedByTransformRangeConcurrently) { ThreadPool threads(Env::Default(), "test", 16); EXPECT_EQ(1, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 4 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 5 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 6 )); EXPECT_EQ(3, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 7 )); EXPECT_EQ(7, threads.NumShardsUsedByTransformRangeConcurrently( 1 , 7 )); EXPECT_EQ(1, threads.NumShardsUsedByTransformRangeConcurrently( 0 , 7 )); } void RunFixedBlockSizeShardingWithWorkerId(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } const int64_t num_threads = threads->NumThreads(); std::vector<std::atomic<bool>> threads_running(num_threads + 1); for (int i = 0; i < num_threads + 1; i++) { threads_running[i] = false; } threads->ParallelForWithWorkerId( total, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kFixedBlockSize , std::nullopt , block_size ), [=, &mu, &num_done_work, &work, &threads_running](int64_t start, int64_t end, int id) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); EXPECT_GE(id, 0); EXPECT_LE(id, num_threads); EXPECT_FALSE(threads_running[id].exchange(true)); mutex_lock l(mu); for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } EXPECT_TRUE(threads_running[id].exchange(false)); }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { EXPECT_TRUE(work[i]); } } TEST(ThreadPoolTest, ParallelForFixedBlockSizeSchedulingWithWorkerId) { for (int32_t num_threads : {1, 2, 3, 9, 16, 31}) { ThreadPool threads(Env::Default(), "test", num_threads); for (int64_t block_size : {1, 7, 10, 64, 100, 256, 1000}) { for (int64_t diff : {0, 1, 11, 102, 1003}) { const int64_t total = block_size + diff; RunFixedBlockSizeShardingWithWorkerId(block_size, total, &threads); } } } } TEST(ThreadPool, ParallelFor) { Context outer_context(ContextKind::kThread); int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } pool.ParallelFor(kWorkItems, kHugeCost, [&outer_context, &work](int64_t begin, int64_t end) { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } TEST(ThreadPool, ParallelForWithAdaptiveSchedulingStrategy) { Context outer_context(ContextKind::kThread); int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } pool.ParallelFor( kWorkItems, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kAdaptive , kHugeCost , std::nullopt ), [&outer_context, &work](int64_t begin, int64_t end) { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } TEST(ThreadPool, ParallelForWithWorkerId) { int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } std::atomic<bool> threads_running[kNumThreads + 1]; for (int i = 0; i < num_threads + 1; i++) { threads_running[i] = false; } pool.ParallelForWithWorkerId( kWorkItems, kHugeCost, [&threads_running, &work](int64_t begin, int64_t end, int64_t id) { ASSERT_LE(0, id); ASSERT_LE(id, kNumThreads); ASSERT_FALSE(threads_running[id].exchange(true)); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } ASSERT_TRUE(threads_running[id].exchange(false)); threads_running[id] = false; }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } for (int i = 0; i < num_threads + 1; i++) { ASSERT_FALSE(threads_running[i]); } } } TEST(ThreadPool, Parallelism) { ThreadPool pool(Env::Default(), "test", kNumThreads); for (int iter = 0; iter < 2000; iter++) { absl::Barrier barrier(kNumThreads); absl::BlockingCounter counter(kNumThreads); for (int t = 0; t < kNumThreads; ++t) { pool.Schedule([&]() { barrier.Block(); counter.DecrementCount(); }); } counter.Wait(); } } static void BM_Sequential(::testing::benchmark::State& state) { for (auto s : state) { state.PauseTiming(); ThreadPool pool(Env::Default(), "test", kNumThreads); int count = state.range(0); mutex done_lock; bool done_flag = false; std::function<void()> work = [&pool, &count, &done_lock, &done_flag, &work]() { if (count--) { pool.Schedule(work); } else { mutex_lock l(done_lock); done_flag = true; } }; state.ResumeTiming(); work(); mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } } BENCHMARK(BM_Sequential)->Arg(200)->Arg(300); static void BM_Parallel(::testing::benchmark::State& state) { ThreadPool pool(Env::Default(), "test", kNumThreads); std::atomic_int_fast32_t count(state.max_iterations); mutex done_lock; bool done_flag = false; for (auto s : state) { pool.Schedule([&count, &done_lock, &done_flag]() { if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; } }); } mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } BENCHMARK(BM_Parallel); static void BM_ParallelFor(::testing::benchmark::State& state) { int total = state.range(0); int cost_per_unit = state.range(1); ThreadPool pool(Env::Default(), "test", kNumThreads); std::atomic_int_fast32_t count(state.max_iterations); mutex done_lock; bool done_flag = false; for (auto s : state) { pool.ParallelFor( total, cost_per_unit, [&count, &done_lock, &done_flag](int64_t begin, int64_t end) { for (int64_t i = begin; i < end; ++i) { if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; } } }); mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } } BENCHMARK(BM_ParallelFor) ->ArgPair(1 << 10, 1) ->ArgPair(1 << 20, 1) ->ArgPair(1 << 10, 1 << 10) ->ArgPair(1 << 20, 1 << 10) ->ArgPair(1 << 10, 1 << 20) ->ArgPair(1 << 20, 1 << 20) ->ArgPair(1 << 10, 1 << 30) ->ArgPair(1 << 20, 1 << 30); } }
2,267
#ifndef TENSORFLOW_TSL_PLATFORM_STR_UTIL_H_ #define TENSORFLOW_TSL_PLATFORM_STR_UTIL_H_ #include <cstdint> #include <string> #include <vector> #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "tsl/platform/macros.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace str_util { std::string CEscape(StringPiece src); bool CUnescape(StringPiece source, std::string* dest, std::string* error); void StripTrailingWhitespace(std::string* s); size_t RemoveLeadingWhitespace(StringPiece* text); size_t RemoveTrailingWhitespace(StringPiece* text); size_t RemoveWhitespaceContext(StringPiece* text); bool ConsumeLeadingDigits(StringPiece* s, uint64_t* val); bool ConsumeNonWhitespace(StringPiece* s, StringPiece* val); bool ConsumePrefix(StringPiece* s, StringPiece expected); bool ConsumeSuffix(StringPiece* s, StringPiece expected); TF_MUST_USE_RESULT StringPiece StripPrefix(StringPiece s, StringPiece expected); TF_MUST_USE_RESULT StringPiece StripSuffix(StringPiece s, StringPiece expected); std::string Lowercase(StringPiece s); std::string Uppercase(StringPiece s); void TitlecaseString(std::string* s, StringPiece delimiters); std::string StringReplace(StringPiece s, StringPiece oldsub, StringPiece newsub, bool replace_all); template <typename T> std::string Join(const T& s, const char* sep) { return absl::StrJoin(s, sep); } template <typename T, typename Formatter> std::string Join(const T& s, const char* sep, Formatter f) { return absl::StrJoin(s, sep, f); } struct AllowEmpty { bool operator()(StringPiece sp) const { return true; } }; struct SkipEmpty { bool operator()(StringPiece sp) const { return !sp.empty(); } }; struct SkipWhitespace { bool operator()(StringPiece sp) const { return !absl::StripTrailingAsciiWhitespace(sp).empty(); } }; inline std::vector<string> Split(StringPiece text, StringPiece delims) { return text.empty() ? std::vector<string>() : absl::StrSplit(text, absl::ByAnyChar(delims)); } template <typename Predicate> std::vector<string> Split(StringPiece text, StringPiece delims, Predicate p) { return text.empty() ? std::vector<string>() : absl::StrSplit(text, absl::ByAnyChar(delims), p); } inline std::vector<string> Split(StringPiece text, char delim) { return text.empty() ? std::vector<string>() : absl::StrSplit(text, delim); } template <typename Predicate> std::vector<string> Split(StringPiece text, char delim, Predicate p) { return text.empty() ? std::vector<string>() : absl::StrSplit(text, delim, p); } bool StartsWith(StringPiece text, StringPiece prefix); bool EndsWith(StringPiece text, StringPiece suffix); bool StrContains(StringPiece haystack, StringPiece needle); size_t Strnlen(const char* str, const size_t string_max_len); std::string ArgDefCase(StringPiece s); } } #endif #include "tsl/platform/str_util.h" #include <cctype> #include <cstdint> #include <string> #include <vector> #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/strip.h" #include "tsl/platform/logging.h" #include "tsl/platform/stringpiece.h" namespace tsl { namespace str_util { string CEscape(StringPiece src) { return absl::CEscape(src); } bool CUnescape(StringPiece source, string* dest, string* error) { return absl::CUnescape(source, dest, error); } void StripTrailingWhitespace(string* s) { absl::StripTrailingAsciiWhitespace(s); } size_t RemoveLeadingWhitespace(StringPiece* text) { absl::string_view new_text = absl::StripLeadingAsciiWhitespace(*text); size_t count = text->size() - new_text.size(); *text = new_text; return count; } size_t RemoveTrailingWhitespace(StringPiece* text) { absl::string_view new_text = absl::StripTrailingAsciiWhitespace(*text); size_t count = text->size() - new_text.size(); *text = new_text; return count; } size_t RemoveWhitespaceContext(StringPiece* text) { absl::string_view new_text = absl::StripAsciiWhitespace(*text); size_t count = text->size() - new_text.size(); *text = new_text; return count; } bool ConsumeLeadingDigits(StringPiece* s, uint64_t* val) { const char* p = s->data(); const char* limit = p + s->size(); uint64_t v = 0; while (p < limit) { const char c = *p; if (c < '0' || c > '9') break; uint64_t new_v = (v * 10) + (c - '0'); if (new_v / 8 < v) { return false; } v = new_v; p++; } if (p > s->data()) { s->remove_prefix(p - s->data()); *val = v; return true; } else { return false; } } bool ConsumeNonWhitespace(StringPiece* s, StringPiece* val) { const char* p = s->data(); const char* limit = p + s->size(); while (p < limit) { const char c = *p; if (isspace(c)) break; p++; } const size_t n = p - s->data(); if (n > 0) { *val = StringPiece(s->data(), n); s->remove_prefix(n); return true; } else { *val = StringPiece(); return false; } } bool ConsumePrefix(StringPiece* s, StringPiece expected) { return absl::ConsumePrefix(s, expected); } bool ConsumeSuffix(StringPiece* s, StringPiece expected) { return absl::ConsumeSuffix(s, expected); } StringPiece StripPrefix(StringPiece s, StringPiece expected) { return absl::StripPrefix(s, expected); } StringPiece StripSuffix(StringPiece s, StringPiece expected) { return absl::StripSuffix(s, expected); } string Lowercase(StringPiece s) { return absl::AsciiStrToLower(s); } string Uppercase(StringPiece s) { return absl::AsciiStrToUpper(s); } void TitlecaseString(string* s, StringPiece delimiters) { bool upper = true; for (string::iterator ss = s->begin(); ss != s->end(); ++ss) { if (upper) { *ss = toupper(*ss); } upper = (delimiters.find(*ss) != StringPiece::npos); } } string StringReplace(StringPiece s, StringPiece oldsub, StringPiece newsub, bool replace_all) { string res(s); size_t pos = 0; while ((pos = res.find(oldsub.data(), pos, oldsub.size())) != string::npos) { res.replace(pos, oldsub.size(), newsub.data(), newsub.size()); pos += newsub.size(); if (oldsub.empty()) { pos++; } if (!replace_all) { break; } } return res; } bool StartsWith(StringPiece text, StringPiece prefix) { return absl::StartsWith(text, prefix); } bool EndsWith(StringPiece text, StringPiece suffix) { return absl::EndsWith(text, suffix); } bool StrContains(StringPiece haystack, StringPiece needle) { return absl::StrContains(haystack, needle); } size_t Strnlen(const char* str, const size_t string_max_len) { size_t len = 0; while (len < string_max_len && str[len] != '\0') { ++len; } return len; } string ArgDefCase(StringPiece s) { const size_t n = s.size(); size_t extra_us = 0; size_t to_skip = 0; for (size_t i = 0; i < n; ++i) { if (i == to_skip && !isalpha(s[i])) { ++to_skip; continue; } if (isupper(s[i]) && i != to_skip && i > 0 && isalnum(s[i - 1])) { ++extra_us; } } string result(n + extra_us - to_skip, '_'); for (size_t i = to_skip, j = 0; i < n; ++i, ++j) { DCHECK_LT(j, result.size()); char c = s[i]; if (isalnum(c)) { if (isupper(c)) { if (i != to_skip) { DCHECK_GT(j, 0); if (result[j - 1] != '_') ++j; } result[j] = tolower(c); } else { result[j] = c; } } } return result; } } }
#include "tsl/platform/str_util.h" #include <vector> #include "tsl/platform/test.h" namespace tsl { TEST(CEscape, Basic) { EXPECT_EQ(str_util::CEscape("hello"), "hello"); EXPECT_EQ(str_util::CEscape("hello\n"), "hello\\n"); EXPECT_EQ(str_util::CEscape("hello\r"), "hello\\r"); EXPECT_EQ(str_util::CEscape("\t\r\"'"), "\\t\\r\\\"\\'"); EXPECT_EQ(str_util::CEscape("\320hi\200"), "\\320hi\\200"); } string ExpectCUnescapeSuccess(StringPiece source) { string dest; string error; EXPECT_TRUE(str_util::CUnescape(source, &dest, &error)) << error; return dest; } TEST(CUnescape, Basic) { EXPECT_EQ("hello", ExpectCUnescapeSuccess("hello")); EXPECT_EQ("hello\n", ExpectCUnescapeSuccess("hello\\n")); EXPECT_EQ("hello\r", ExpectCUnescapeSuccess("hello\\r")); EXPECT_EQ("\t\r\"'", ExpectCUnescapeSuccess("\\t\\r\\\"\\'")); EXPECT_EQ("\320hi\200", ExpectCUnescapeSuccess("\\320hi\\200")); } TEST(CUnescape, HandlesCopyOnWriteStrings) { string dest = "hello"; string read = dest; string error; StringPiece source = "llohe"; EXPECT_TRUE(str_util::CUnescape(source, &dest, &error)); EXPECT_EQ("hello", read); } TEST(StripTrailingWhitespace, Basic) { string test; test = "hello"; str_util::StripTrailingWhitespace(&test); EXPECT_EQ(test, "hello"); test = "foo "; str_util::StripTrailingWhitespace(&test); EXPECT_EQ(test, "foo"); test = " "; str_util::StripTrailingWhitespace(&test); EXPECT_EQ(test, ""); test = ""; str_util::StripTrailingWhitespace(&test); EXPECT_EQ(test, ""); test = " abc\t"; str_util::StripTrailingWhitespace(&test); EXPECT_EQ(test, " abc"); } TEST(RemoveLeadingWhitespace, Basic) { string text = " \t \n \r Quick\t"; StringPiece data(text); EXPECT_EQ(str_util::RemoveLeadingWhitespace(&data), 11); EXPECT_EQ(data, StringPiece("Quick\t")); EXPECT_EQ(str_util::RemoveLeadingWhitespace(&data), 0); EXPECT_EQ(data, StringPiece("Quick\t")); } TEST(RemoveLeadingWhitespace, TerminationHandling) { string text = "\t"; StringPiece data(text); EXPECT_EQ(str_util::RemoveLeadingWhitespace(&data), 1); EXPECT_EQ(data, StringPiece("")); EXPECT_EQ(str_util::RemoveLeadingWhitespace(&data), 0); EXPECT_EQ(data, StringPiece("")); } TEST(RemoveTrailingWhitespace, Basic) { string text = " \t \n \r Quick \t"; StringPiece data(text); EXPECT_EQ(str_util::RemoveTrailingWhitespace(&data), 2); EXPECT_EQ(data, StringPiece(" \t \n \r Quick")); EXPECT_EQ(str_util::RemoveTrailingWhitespace(&data), 0); EXPECT_EQ(data, StringPiece(" \t \n \r Quick")); } TEST(RemoveTrailingWhitespace, TerminationHandling) { string text = "\t"; StringPiece data(text); EXPECT_EQ(str_util::RemoveTrailingWhitespace(&data), 1); EXPECT_EQ(data, StringPiece("")); EXPECT_EQ(str_util::RemoveTrailingWhitespace(&data), 0); EXPECT_EQ(data, StringPiece("")); } TEST(RemoveWhitespaceContext, Basic) { string text = " \t \n \r Quick \t"; StringPiece data(text); EXPECT_EQ(str_util::RemoveWhitespaceContext(&data), 13); EXPECT_EQ(data, StringPiece("Quick")); EXPECT_EQ(str_util::RemoveWhitespaceContext(&data), 0); EXPECT_EQ(data, StringPiece("Quick")); text = ""; data = text; EXPECT_EQ(str_util::RemoveWhitespaceContext(&data), 0); EXPECT_EQ(data, StringPiece("")); } void TestConsumeLeadingDigits(StringPiece s, int64_t expected, StringPiece remaining) { uint64 v; StringPiece input(s); if (str_util::ConsumeLeadingDigits(&input, &v)) { EXPECT_EQ(v, static_cast<uint64>(expected)); EXPECT_EQ(input, remaining); } else { EXPECT_LT(expected, 0); EXPECT_EQ(input, remaining); } } TEST(ConsumeLeadingDigits, Basic) { using str_util::ConsumeLeadingDigits; TestConsumeLeadingDigits("123", 123, ""); TestConsumeLeadingDigits("a123", -1, "a123"); TestConsumeLeadingDigits("9_", 9, "_"); TestConsumeLeadingDigits("11111111111xyz", 11111111111ll, "xyz"); TestConsumeLeadingDigits("1111111111111111111111111111111xyz", -1, "1111111111111111111111111111111xyz"); TestConsumeLeadingDigits("18446744073709551616xyz", -1, "18446744073709551616xyz"); TestConsumeLeadingDigits("18446744073709551615xyz", 18446744073709551615ull, "xyz"); TestConsumeLeadingDigits("184467440737095516159yz", -1, "184467440737095516159yz"); } void TestConsumeNonWhitespace(StringPiece s, StringPiece expected, StringPiece remaining) { StringPiece v; StringPiece input(s); if (str_util::ConsumeNonWhitespace(&input, &v)) { EXPECT_EQ(v, expected); EXPECT_EQ(input, remaining); } else { EXPECT_EQ(expected, ""); EXPECT_EQ(input, remaining); } } TEST(ConsumeNonWhitespace, Basic) { TestConsumeNonWhitespace("", "", ""); TestConsumeNonWhitespace(" ", "", " "); TestConsumeNonWhitespace("abc", "abc", ""); TestConsumeNonWhitespace("abc ", "abc", " "); } TEST(ConsumePrefix, Basic) { string s("abcdef"); StringPiece input(s); EXPECT_FALSE(str_util::ConsumePrefix(&input, "abcdefg")); EXPECT_EQ(input, "abcdef"); EXPECT_FALSE(str_util::ConsumePrefix(&input, "abce")); EXPECT_EQ(input, "abcdef"); EXPECT_TRUE(str_util::ConsumePrefix(&input, "")); EXPECT_EQ(input, "abcdef"); EXPECT_FALSE(str_util::ConsumePrefix(&input, "abcdeg")); EXPECT_EQ(input, "abcdef"); EXPECT_TRUE(str_util::ConsumePrefix(&input, "abcdef")); EXPECT_EQ(input, ""); input = s; EXPECT_TRUE(str_util::ConsumePrefix(&input, "abcde")); EXPECT_EQ(input, "f"); } TEST(StripPrefix, Basic) { EXPECT_EQ(str_util::StripPrefix("abcdef", "abcdefg"), "abcdef"); EXPECT_EQ(str_util::StripPrefix("abcdef", "abce"), "abcdef"); EXPECT_EQ(str_util::StripPrefix("abcdef", ""), "abcdef"); EXPECT_EQ(str_util::StripPrefix("abcdef", "abcdeg"), "abcdef"); EXPECT_EQ(str_util::StripPrefix("abcdef", "abcdef"), ""); EXPECT_EQ(str_util::StripPrefix("abcdef", "abcde"), "f"); } TEST(JoinStrings, Basic) { std::vector<string> s; s = {"hi"}; EXPECT_EQ(str_util::Join(s, " "), "hi"); s = {"hi", "there", "strings"}; EXPECT_EQ(str_util::Join(s, " "), "hi there strings"); std::vector<StringPiece> sp; sp = {"hi"}; EXPECT_EQ(str_util::Join(sp, ",,"), "hi"); sp = {"hi", "there", "strings"}; EXPECT_EQ(str_util::Join(sp, "--"), "hi--there--strings"); } TEST(JoinStrings, Join3) { std::vector<string> s; s = {"hi"}; auto l1 = [](string* out, string s) { *out += s; }; EXPECT_EQ(str_util::Join(s, " ", l1), "hi"); s = {"hi", "there", "strings"}; auto l2 = [](string* out, string s) { *out += s[0]; }; EXPECT_EQ(str_util::Join(s, " ", l2), "h t s"); } TEST(Split, Basic) { EXPECT_TRUE(str_util::Split("", ',').empty()); EXPECT_EQ(str_util::Join(str_util::Split("a", ','), "|"), "a"); EXPECT_EQ(str_util::Join(str_util::Split(",", ','), "|"), "|"); EXPECT_EQ(str_util::Join(str_util::Split("a,b,c", ','), "|"), "a|b|c"); EXPECT_EQ(str_util::Join(str_util::Split("a,,,b,,c,", ','), "|"), "a|||b||c|"); EXPECT_EQ(str_util::Join(str_util::Split("a!,!b,!c,", ",!"), "|"), "a|||b||c|"); EXPECT_EQ(str_util::Join( str_util::Split("a,,,b,,c,", ',', str_util::SkipEmpty()), "|"), "a|b|c"); EXPECT_EQ( str_util::Join( str_util::Split("a, ,b,,c,", ',', str_util::SkipWhitespace()), "|"), "a|b|c"); EXPECT_EQ(str_util::Join(str_util::Split("a. !b,;c,", ".,;!", str_util::SkipWhitespace()), "|"), "a|b|c"); } TEST(Lowercase, Basic) { EXPECT_EQ("", str_util::Lowercase("")); EXPECT_EQ("hello", str_util::Lowercase("hello")); EXPECT_EQ("hello world", str_util::Lowercase("Hello World")); } TEST(Uppercase, Basic) { EXPECT_EQ("", str_util::Uppercase("")); EXPECT_EQ("HELLO", str_util::Uppercase("hello")); EXPECT_EQ("HELLO WORLD", str_util::Uppercase("Hello World")); } TEST(SnakeCase, Basic) { EXPECT_EQ("", str_util::ArgDefCase("")); EXPECT_EQ("", str_util::ArgDefCase("!")); EXPECT_EQ("", str_util::ArgDefCase("5")); EXPECT_EQ("", str_util::ArgDefCase("!:")); EXPECT_EQ("", str_util::ArgDefCase("5-5")); EXPECT_EQ("", str_util::ArgDefCase("_!")); EXPECT_EQ("", str_util::ArgDefCase("_5")); EXPECT_EQ("a", str_util::ArgDefCase("_a")); EXPECT_EQ("a", str_util::ArgDefCase("_A")); EXPECT_EQ("i", str_util::ArgDefCase("I")); EXPECT_EQ("i", str_util::ArgDefCase("i")); EXPECT_EQ("i_", str_util::ArgDefCase("I%")); EXPECT_EQ("i_", str_util::ArgDefCase("i%")); EXPECT_EQ("i", str_util::ArgDefCase("%I")); EXPECT_EQ("i", str_util::ArgDefCase("-i")); EXPECT_EQ("i", str_util::ArgDefCase("3i")); EXPECT_EQ("i", str_util::ArgDefCase("32i")); EXPECT_EQ("i3", str_util::ArgDefCase("i3")); EXPECT_EQ("i_a3", str_util::ArgDefCase("i_A3")); EXPECT_EQ("i_i", str_util::ArgDefCase("II")); EXPECT_EQ("i_i", str_util::ArgDefCase("I_I")); EXPECT_EQ("i__i", str_util::ArgDefCase("I__I")); EXPECT_EQ("i_i_32", str_util::ArgDefCase("II-32")); EXPECT_EQ("ii_32", str_util::ArgDefCase("Ii-32")); EXPECT_EQ("hi_there", str_util::ArgDefCase("HiThere")); EXPECT_EQ("hi_hi", str_util::ArgDefCase("Hi!Hi")); EXPECT_EQ("hi_hi", str_util::ArgDefCase("HiHi")); EXPECT_EQ("hihi", str_util::ArgDefCase("Hihi")); EXPECT_EQ("hi_hi", str_util::ArgDefCase("Hi_Hi")); } TEST(TitlecaseString, Basic) { string s = "sparse_lookup"; str_util::TitlecaseString(&s, "_"); ASSERT_EQ(s, "Sparse_Lookup"); s = "sparse_lookup"; str_util::TitlecaseString(&s, " "); ASSERT_EQ(s, "Sparse_lookup"); s = "dense"; str_util::TitlecaseString(&s, " "); ASSERT_EQ(s, "Dense"); } TEST(StringReplace, Basic) { EXPECT_EQ("XYZ_XYZ_XYZ", str_util::StringReplace("ABC_ABC_ABC", "ABC", "XYZ", true)); } TEST(StringReplace, OnlyFirst) { EXPECT_EQ("XYZ_ABC_ABC", str_util::StringReplace("ABC_ABC_ABC", "ABC", "XYZ", false)); } TEST(StringReplace, IncreaseLength) { EXPECT_EQ("a b c", str_util::StringReplace("abc", "b", " b ", true)); } TEST(StringReplace, IncreaseLengthMultipleMatches) { EXPECT_EQ("a b b c", str_util::StringReplace("abbc", "b", " b ", true)); } TEST(StringReplace, NoChange) { EXPECT_EQ("abc", str_util::StringReplace("abc", "d", "X", true)); } TEST(StringReplace, EmptyStringReplaceFirst) { EXPECT_EQ("", str_util::StringReplace("", "a", "X", false)); } TEST(StringReplace, EmptyStringReplaceAll) { EXPECT_EQ("", str_util::StringReplace("", "a", "X", true)); } TEST(Strnlen, Basic) { EXPECT_EQ(0, str_util::Strnlen("ab", 0)); EXPECT_EQ(1, str_util::Strnlen("a", 1)); EXPECT_EQ(2, str_util::Strnlen("abcd", 2)); EXPECT_EQ(3, str_util::Strnlen("abc", 10)); EXPECT_EQ(4, str_util::Strnlen("a \t\n", 10)); } }
2,268
#ifndef TENSORFLOW_TSL_PLATFORM_BASE64_H_ #define TENSORFLOW_TSL_PLATFORM_BASE64_H_ #include <string> #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" namespace tsl { template <typename T> absl::Status Base64Encode(StringPiece source, bool with_padding, T* encoded); template <typename T> absl::Status Base64Encode(StringPiece source, T* encoded); template <typename T> absl::Status Base64Decode(StringPiece data, T* decoded); extern template Status Base64Decode<std::string>(StringPiece data, std::string* decoded); extern template Status Base64Encode<std::string>(StringPiece source, std::string* encoded); extern template Status Base64Encode<std::string>(StringPiece source, bool with_padding, std::string* encoded); extern template Status Base64Decode<tstring>(StringPiece data, tstring* decoded); extern template Status Base64Encode<tstring>(StringPiece source, tstring* encoded); extern template Status Base64Encode<tstring>(StringPiece source, bool with_padding, tstring* encoded); } #endif #include "tsl/platform/base64.h" #include <cstring> #include <memory> #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace { constexpr int8 kBase64Bytes[128] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x3E, -1, -1, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, -1, -1, -1, -1, -1, -1, -1, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, -1, -1, -1, -1, 0x3F, -1, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, -1, -1, -1, -1, -1}; constexpr char kBase64UrlSafeChars[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; constexpr char kPadChar = '='; inline uint32 Convert(char x) { const int8_t y = kBase64Bytes[x & 0x7F] | (x & 0x80); const int32_t z = static_cast<int32>(y); return static_cast<uint32>(z); } absl::Status DecodeThreeChars(const char* codes, char* result) { const uint32 packed = (Convert(codes[0]) << 18) | (Convert(codes[1]) << 12) | (Convert(codes[2]) << 6) | (Convert(codes[3])); if (TF_PREDICT_FALSE((packed & 0xFF000000) != 0)) { return errors::InvalidArgument("Invalid character found in base64."); } result[0] = static_cast<char>(packed >> 16); result[1] = static_cast<char>(packed >> 8); result[2] = static_cast<char>(packed); return absl::OkStatus(); } } template <typename T> absl::Status Base64Decode(StringPiece data, T* decoded) { if (decoded == nullptr) { return errors::Internal("'decoded' cannot be nullptr."); } if (data.empty()) { decoded->clear(); return absl::OkStatus(); } const size_t max_decoded_size = 3 * (data.size() / 4) + 3; std::unique_ptr<char[]> buffer(new char[max_decoded_size]); char* current = buffer.get(); if (current == nullptr) { return errors::ResourceExhausted( "Failed to allocate buffer for decoded string."); } const char* b64 = data.data(); const char* end = data.data() + data.size(); while (end - b64 > 4) { TF_RETURN_IF_ERROR(DecodeThreeChars(b64, current)); b64 += 4; current += 3; } if (end - b64 == 4) { if (b64[2] == kPadChar && b64[3] == kPadChar) { end -= 2; } if (b64[2] != kPadChar && b64[3] == kPadChar) { end -= 1; } } const int remain = static_cast<int>(end - b64); if (TF_PREDICT_FALSE(remain == 1)) { return errors::InvalidArgument( "Base64 string length cannot be 1 modulo 4."); } char tail[4] = {kBase64UrlSafeChars[0], kBase64UrlSafeChars[0], kBase64UrlSafeChars[0], kBase64UrlSafeChars[0]}; std::memcpy(tail, b64, remain * sizeof(*b64)); TF_RETURN_IF_ERROR(DecodeThreeChars(tail, current)); current += remain - 1; decoded->assign(buffer.get(), current - buffer.get()); return absl::OkStatus(); } template <typename T> absl::Status Base64Encode(StringPiece source, T* encoded) { return Base64Encode(source, false, encoded); } template <typename T> absl::Status Base64Encode(StringPiece source, bool with_padding, T* encoded) { const char* const base64_chars = kBase64UrlSafeChars; if (encoded == nullptr) { return errors::Internal("'encoded' cannot be nullptr."); } const size_t max_encoded_size = 4 * (source.size() / 3) + 4; std::unique_ptr<char[]> buffer(new char[max_encoded_size]); char* current = buffer.get(); if (current == nullptr) { return errors::ResourceExhausted( "Failed to allocate buffer for encoded string."); } const char* data = source.data(); const char* const end = source.data() + source.size(); while (end - data >= 3) { *current++ = base64_chars[(data[0] >> 2) & 0x3F]; *current++ = base64_chars[((data[0] & 0x03) << 4) | ((data[1] >> 4) & 0x0F)]; *current++ = base64_chars[((data[1] & 0x0F) << 2) | ((data[2] >> 6) & 0x03)]; *current++ = base64_chars[data[2] & 0x3F]; data += 3; } if (end - data == 2) { *current++ = base64_chars[(data[0] >> 2) & 0x3F]; *current++ = base64_chars[((data[0] & 0x03) << 4) | ((data[1] >> 4) & 0x0F)]; *current++ = base64_chars[(data[1] & 0x0F) << 2]; if (with_padding) { *current++ = kPadChar; } } else if (end - data == 1) { *current++ = base64_chars[(data[0] >> 2) & 0x3F]; *current++ = base64_chars[(data[0] & 0x03) << 4]; if (with_padding) { *current++ = kPadChar; *current++ = kPadChar; } } encoded->assign(buffer.get(), current - buffer.get()); return absl::OkStatus(); } template Status Base64Decode<std::string>(StringPiece data, std::string* decoded); template Status Base64Encode<std::string>(StringPiece source, std::string* encoded); template Status Base64Encode<std::string>(StringPiece source, bool with_padding, std::string* encoded); template Status Base64Decode<tstring>(StringPiece data, tstring* decoded); template Status Base64Encode<tstring>(StringPiece source, tstring* encoded); template Status Base64Encode<tstring>(StringPiece source, bool with_padding, tstring* encoded); }
#include "tensorflow/core/lib/strings/base64.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(Base64, EncodeDecode) { const string original = "a simple test message!"; tstring encoded; TF_EXPECT_OK(Base64Encode(original, &encoded)); EXPECT_EQ("YSBzaW1wbGUgdGVzdCBtZXNzYWdlIQ", encoded); tstring decoded; TF_EXPECT_OK(Base64Decode(encoded, &decoded)); EXPECT_EQ(original, decoded); } }
2,269
#ifndef TENSORFLOW_TSL_PLATFORM_STRCAT_H_ #define TENSORFLOW_TSL_PLATFORM_STRCAT_H_ #include <string> #include "tsl/platform/macros.h" #include "tsl/platform/numbers.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace strings { enum PadSpec { kNoPad = 1, kZeroPad2, kZeroPad3, kZeroPad4, kZeroPad5, kZeroPad6, kZeroPad7, kZeroPad8, kZeroPad9, kZeroPad10, kZeroPad11, kZeroPad12, kZeroPad13, kZeroPad14, kZeroPad15, kZeroPad16 }; struct Hex { uint64 value; enum PadSpec spec; template <class Int> explicit Hex(Int v, PadSpec s = kNoPad) : spec(s) { static_assert( sizeof(v) == 1 || sizeof(v) == 2 || sizeof(v) == 4 || sizeof(v) == 8, "Unknown integer type"); value = sizeof(v) == 1 ? static_cast<uint8>(v) : sizeof(v) == 2 ? static_cast<uint16>(v) : sizeof(v) == 4 ? static_cast<uint32>(v) : static_cast<uint64>(v); } }; class AlphaNum { public: AlphaNum(int i32) : piece_(digits_, FastInt32ToBufferLeft(i32, digits_)) {} AlphaNum(unsigned int u32) : piece_(digits_, FastUInt32ToBufferLeft(u32, digits_)) {} AlphaNum(long x) : piece_(digits_, FastInt64ToBufferLeft(x, digits_)) {} AlphaNum(unsigned long x) : piece_(digits_, FastUInt64ToBufferLeft(x, digits_)) {} AlphaNum(long long int i64) : piece_(digits_, FastInt64ToBufferLeft(i64, digits_)) {} AlphaNum(unsigned long long int u64) : piece_(digits_, FastUInt64ToBufferLeft(u64, digits_)) {} AlphaNum(float f) : piece_(digits_, FloatToBuffer(f, digits_)) {} AlphaNum(double f) : piece_(digits_, DoubleToBuffer(f, digits_)) {} AlphaNum(bfloat16 bf) : piece_(digits_, FloatToBuffer(static_cast<float>(bf), digits_)) {} AlphaNum(Hex hex); AlphaNum(const char *c_str) : piece_(c_str) {} AlphaNum(const StringPiece &pc) : piece_(pc) {} AlphaNum(const std::string &str) : piece_(str) {} AlphaNum(const tstring &str) : piece_(str) {} template <typename A> AlphaNum(const std::basic_string<char, std::char_traits<char>, A> &str) : piece_(str) {} StringPiece::size_type size() const { return piece_.size(); } const char *data() const { return piece_.data(); } StringPiece Piece() const { return piece_; } private: StringPiece piece_; char digits_[kFastToBufferSize]; AlphaNum(char c); AlphaNum(const AlphaNum &) = delete; void operator=(const AlphaNum &) = delete; }; std::string StrCat(const AlphaNum &a) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) TF_MUST_USE_RESULT; namespace internal { std::string CatPieces(std::initializer_list<StringPiece> pieces); void AppendPieces(std::string *dest, std::initializer_list<StringPiece> pieces); } template <typename... AV> std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) TF_MUST_USE_RESULT; template <typename... AV> std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) { return internal::CatPieces({a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(), static_cast<const AlphaNum &>(args).Piece()...}); } void StrAppend(std::string *dest, const AlphaNum &a); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d); template <typename... AV> inline void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) { internal::AppendPieces(dest, {a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(), static_cast<const AlphaNum &>(args).Piece()...}); } } } #endif #include "tsl/platform/strcat.h" #include <stdarg.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <algorithm> #include "absl/meta/type_traits.h" #include "tsl/platform/logging.h" namespace tsl { namespace strings { AlphaNum::AlphaNum(Hex hex) { char *const end = &digits_[kFastToBufferSize]; char *writer = end; uint64 value = hex.value; uint64 width = hex.spec; uint64 mask = (static_cast<uint64>(1) << (width - 1) * 4) | value; static const char hexdigits[] = "0123456789abcdef"; do { *--writer = hexdigits[value & 0xF]; value >>= 4; mask >>= 4; } while (mask != 0); piece_ = StringPiece(writer, end - writer); } static char *Append1(char *out, const AlphaNum &x) { if (x.data() == nullptr) return out; memcpy(out, x.data(), x.size()); return out + x.size(); } static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) { if (x1.data() != nullptr) { memcpy(out, x1.data(), x1.size()); out += x1.size(); } if (x2.data() == nullptr) return out; memcpy(out, x2.data(), x2.size()); return out + x2.size(); } static char *Append4(char *out, const AlphaNum &x1, const AlphaNum &x2, const AlphaNum &x3, const AlphaNum &x4) { if (x1.data() != nullptr) { memcpy(out, x1.data(), x1.size()); out += x1.size(); } if (x2.data() != nullptr) { memcpy(out, x2.data(), x2.size()); out += x2.size(); } if (x3.data() != nullptr) { memcpy(out, x3.data(), x3.size()); out += x3.size(); } if (x4.data() == nullptr) return out; memcpy(out, x4.data(), x4.size()); return out + x4.size(); } string StrCat(const AlphaNum &a) { return string(a.data(), a.size()); } string StrCat(const AlphaNum &a, const AlphaNum &b) { string result(a.size() + b.size(), '\0'); char *const begin = &*result.begin(); char *out = Append2(begin, a, b); DCHECK_EQ(out, begin + result.size()); return result; } string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) { string result(a.size() + b.size() + c.size(), '\0'); char *const begin = &*result.begin(); char *out = Append2(begin, a, b); out = Append1(out, c); DCHECK_EQ(out, begin + result.size()); return result; } string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) { string result(a.size() + b.size() + c.size() + d.size(), '\0'); char *const begin = &*result.begin(); char *out = Append4(begin, a, b, c, d); DCHECK_EQ(out, begin + result.size()); return result; } namespace { template <typename string_type, typename = void> struct ResizeUninitializedTraits { using HasMember = std::false_type; static void Resize(string_type *s, size_t new_size) { s->resize(new_size); } }; template <typename string_type> struct ResizeUninitializedTraits< string_type, absl::void_t<decltype(std::declval<string_type &>() .__resize_default_init(237))> > { using HasMember = std::true_type; static void Resize(string_type *s, size_t new_size) { s->__resize_default_init(new_size); } }; static inline void STLStringResizeUninitialized(string *s, size_t new_size) { ResizeUninitializedTraits<string>::Resize(s, new_size); } template <typename string_type> void STLStringReserveAmortized(string_type *s, size_t new_size) { const size_t cap = s->capacity(); if (new_size > cap) { s->reserve((std::max)(new_size, 2 * cap)); } } template <typename string_type> void STLStringResizeUninitializedAmortized(string_type *s, size_t new_size) { STLStringReserveAmortized(s, new_size); STLStringResizeUninitialized(s, new_size); } } namespace internal { string CatPieces(std::initializer_list<StringPiece> pieces) { size_t total_size = 0; for (const StringPiece piece : pieces) total_size += piece.size(); string result(total_size, '\0'); char *const begin = &*result.begin(); char *out = begin; for (const StringPiece piece : pieces) { const size_t this_size = piece.size(); memcpy(out, piece.data(), this_size); out += this_size; } DCHECK_EQ(out, begin + result.size()); return result; } #define DCHECK_NO_OVERLAP(dest, src) \ DCHECK_GE(uintptr_t((src).data() - (dest).data()), uintptr_t((dest).size())) void AppendPieces(string *result, std::initializer_list<StringPiece> pieces) { size_t old_size = result->size(); size_t total_size = old_size; for (const StringPiece piece : pieces) { DCHECK_NO_OVERLAP(*result, piece); total_size += piece.size(); } STLStringResizeUninitializedAmortized(result, total_size); char *const begin = &*result->begin(); char *out = begin + old_size; for (const StringPiece piece : pieces) { const size_t this_size = piece.size(); memcpy(out, piece.data(), this_size); out += this_size; } DCHECK_EQ(out, begin + result->size()); } } void StrAppend(string *result, const AlphaNum &a) { DCHECK_NO_OVERLAP(*result, a); result->append(a.data(), a.size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized(result, old_size + a.size() + b.size()); char *const begin = &*result->begin(); char *out = Append2(begin + old_size, a, b); DCHECK_EQ(out, begin + result->size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); DCHECK_NO_OVERLAP(*result, c); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized( result, old_size + a.size() + b.size() + c.size()); char *const begin = &*result->begin(); char *out = Append2(begin + old_size, a, b); out = Append1(out, c); DCHECK_EQ(out, begin + result->size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); DCHECK_NO_OVERLAP(*result, c); DCHECK_NO_OVERLAP(*result, d); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized( result, old_size + a.size() + b.size() + c.size() + d.size()); char *const begin = &*result->begin(); char *out = Append4(begin + old_size, a, b, c, d); DCHECK_EQ(out, begin + result->size()); } } }
#include "tsl/platform/strcat.h" #include <string> #include "absl/strings/string_view.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #ifdef _MSC_VER typedef ptrdiff_t ssize_t; #endif namespace tsl { namespace strings { TEST(StrCat, Ints) { const int16_t s = -1; const uint16 us = 2; const int i = -3; const unsigned int ui = 4; const int32_t l = -5; const uint32 ul = 6; const int64_t ll = -7; const uint64 ull = 8; const ptrdiff_t ptrdiff = -9; const size_t size = 10; const ssize_t ssize = -11; const intptr_t intptr = -12; const uintptr_t uintptr = 13; string answer; answer = StrCat(s, us); EXPECT_EQ(answer, "-12"); answer = StrCat(i, ui); EXPECT_EQ(answer, "-34"); answer = StrCat(l, ul); EXPECT_EQ(answer, "-56"); answer = StrCat(ll, ull); EXPECT_EQ(answer, "-78"); answer = StrCat(ptrdiff, size); EXPECT_EQ(answer, "-910"); answer = StrCat(ssize, intptr); EXPECT_EQ(answer, "-11-12"); answer = StrCat(uintptr, 0); EXPECT_EQ(answer, "130"); } TEST(StrCat, Floats) { const int s = 0; const float f = 1.5f; const double d = 1.5; const bfloat16 bf(1.5f); string answer; answer = StrCat(s, f); EXPECT_EQ(answer, "01.5"); answer = StrCat(s, d); EXPECT_EQ(answer, "01.5"); answer = StrCat(s, bf); EXPECT_EQ(answer, "01.5"); } TEST(StrCat, Nulls) { string result; absl::string_view v; string strs[] = {"Hello", "Cruel", "World"}; result = StrCat(v); EXPECT_EQ(result, ""); result = StrCat(strs[0], v); EXPECT_EQ(result, "Hello"); result = StrCat(v, strs[0]); EXPECT_EQ(result, "Hello"); result = StrCat(v, strs[0], strs[1]); EXPECT_EQ(result, "HelloCruel"); result = StrCat(strs[0], v, strs[1]); EXPECT_EQ(result, "HelloCruel"); result = StrCat(strs[0], strs[1], v); EXPECT_EQ(result, "HelloCruel"); result = StrCat(v, strs[0], strs[1], strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], v, strs[1], strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], strs[1], v, strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], strs[1], strs[2], v); EXPECT_EQ(result, "HelloCruelWorld"); } TEST(StrCat, Basics) { string result; string strs[] = {"Hello", "Cruel", "World"}; StringPiece pieces[] = {"Hello", "Cruel", "World"}; const char *c_strs[] = {"Hello", "Cruel", "World"}; int32 i32s[] = {'H', 'C', 'W'}; uint64 ui64s[] = {12345678910LL, 10987654321LL}; result = StrCat(false, true, 2, 3); EXPECT_EQ(result, "0123"); result = StrCat(-1); EXPECT_EQ(result, "-1"); result = StrCat(0.5); EXPECT_EQ(result, "0.5"); result = StrCat(strs[1], pieces[2]); EXPECT_EQ(result, "CruelWorld"); result = StrCat(strs[0], ", ", pieces[2]); EXPECT_EQ(result, "Hello, World"); result = StrCat(strs[0], ", ", strs[1], " ", strs[2], "!"); EXPECT_EQ(result, "Hello, Cruel World!"); result = StrCat(pieces[0], ", ", pieces[1], " ", pieces[2]); EXPECT_EQ(result, "Hello, Cruel World"); result = StrCat(c_strs[0], ", ", c_strs[1], " ", c_strs[2]); EXPECT_EQ(result, "Hello, Cruel World"); result = StrCat("ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!"); EXPECT_EQ(result, "ASCII 72, 67 87!"); result = StrCat(ui64s[0], ", ", ui64s[1], "!"); EXPECT_EQ(result, "12345678910, 10987654321!"); string one = "1"; result = StrCat("And a ", one.size(), " and a ", &result[2] - &result[0], " and a ", one, " 2 3 4", "!"); EXPECT_EQ(result, "And a 1 and a 2 and a 1 2 3 4!"); result = StrCat("To output a char by ASCII/numeric value, use +: ", '!' + 0); EXPECT_EQ(result, "To output a char by ASCII/numeric value, use +: 33"); float f = 100000.5; result = StrCat("A hundred K and a half is ", f); EXPECT_EQ(result, "A hundred K and a half is 100000.5"); double d = f; d *= d; result = StrCat("A hundred K and a half squared is ", d); EXPECT_EQ(result, "A hundred K and a half squared is 10000100000.25"); result = StrCat(1, 2, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999); EXPECT_EQ(result, "12333444455555666666777777788888888999999999"); } TEST(StrCat, MaxArgs) { string result; result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a"); EXPECT_EQ(result, "123456789a"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b"); EXPECT_EQ(result, "123456789ab"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c"); EXPECT_EQ(result, "123456789abc"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d"); EXPECT_EQ(result, "123456789abcd"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e"); EXPECT_EQ(result, "123456789abcde"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f"); EXPECT_EQ(result, "123456789abcdef"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g"); EXPECT_EQ(result, "123456789abcdefg"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h"); EXPECT_EQ(result, "123456789abcdefgh"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i"); EXPECT_EQ(result, "123456789abcdefghi"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j"); EXPECT_EQ(result, "123456789abcdefghij"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"); EXPECT_EQ(result, "123456789abcdefghijk"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l"); EXPECT_EQ(result, "123456789abcdefghijkl"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"); EXPECT_EQ(result, "123456789abcdefghijklm"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n"); EXPECT_EQ(result, "123456789abcdefghijklmn"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o"); EXPECT_EQ(result, "123456789abcdefghijklmno"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"); EXPECT_EQ(result, "123456789abcdefghijklmnop"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"); EXPECT_EQ(result, "123456789abcdefghijklmnopq"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"); EXPECT_EQ(result, "12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"); } TEST(StrAppend, Basics) { string result = "existing text"; string strs[] = {"Hello", "Cruel", "World"}; StringPiece pieces[] = {"Hello", "Cruel", "World"}; const char *c_strs[] = {"Hello", "Cruel", "World"}; int32 i32s[] = {'H', 'C', 'W'}; uint64 ui64s[] = {12345678910LL, 10987654321LL}; string::size_type old_size = result.size(); StrAppend(&result, strs[0]); EXPECT_EQ(result.substr(old_size), "Hello"); old_size = result.size(); StrAppend(&result, strs[1], pieces[2]); EXPECT_EQ(result.substr(old_size), "CruelWorld"); old_size = result.size(); StrAppend(&result, strs[0], ", ", pieces[2]); EXPECT_EQ(result.substr(old_size), "Hello, World"); old_size = result.size(); StrAppend(&result, strs[0], ", ", strs[1], " ", strs[2], "!"); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World!"); old_size = result.size(); StrAppend(&result, pieces[0], ", ", pieces[1], " ", pieces[2]); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World"); old_size = result.size(); StrAppend(&result, c_strs[0], ", ", c_strs[1], " ", c_strs[2]); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World"); old_size = result.size(); StrAppend(&result, "ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!"); EXPECT_EQ(result.substr(old_size), "ASCII 72, 67 87!"); old_size = result.size(); StrAppend(&result, ui64s[0], ", ", ui64s[1], "!"); EXPECT_EQ(result.substr(old_size), "12345678910, 10987654321!"); string one = "1"; old_size = result.size(); StrAppend(&result, "And a ", one.size(), " and a ", &result[2] - &result[0], " and a ", one, " 2 3 4", "!"); EXPECT_EQ(result.substr(old_size), "And a 1 and a 2 and a 1 2 3 4!"); old_size = result.size(); StrAppend(&result, "To output a char by ASCII/numeric value, use +: ", '!' + 0); EXPECT_EQ(result.substr(old_size), "To output a char by ASCII/numeric value, use +: 33"); float f = 100000.5; old_size = result.size(); StrAppend(&result, "A hundred K and a half is ", f); EXPECT_EQ(result.substr(old_size), "A hundred K and a half is 100000.5"); double d = f; d *= d; old_size = result.size(); StrAppend(&result, "A hundred K and a half squared is ", d); EXPECT_EQ(result.substr(old_size), "A hundred K and a half squared is 10000100000.25"); old_size = result.size(); StrAppend(&result, 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 9); EXPECT_EQ(result.substr(old_size), "1223334444555556666667777777888888889"); old_size = result.size(); StrAppend(&result, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "No limit thanks to C++11's variadic templates"); EXPECT_EQ(result.substr(old_size), "12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" "No limit thanks to C++11's variadic templates"); } TEST(StrAppend, Death) { string s = "self"; EXPECT_DEBUG_DEATH(StrAppend(&s, s.c_str() + 1), "Check failed:"); EXPECT_DEBUG_DEATH(StrAppend(&s, s), "Check failed:"); } static void CheckHex64(uint64 v) { string actual = StrCat(Hex(v, kZeroPad16)); string expected = Printf("%016llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v, kZeroPad8)); expected = Printf("%08llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void CheckHex32(uint32 v) { string actual = StrCat(Hex(v, kZeroPad8)); string expected = Printf("%08x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void CheckHexSigned32(int32_t v) { string actual = StrCat(Hex(v, kZeroPad8)); string expected = Printf("%08x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void TestFastPrints() { for (int i = 0; i < 10000; i++) { CheckHex64(i); CheckHex32(i); CheckHexSigned32(i); CheckHexSigned32(-i); } CheckHex64(0x123456789abcdef0ull); CheckHex32(0x12345678); int8_t minus_one_8bit = -1; EXPECT_EQ("ff", StrCat(Hex(minus_one_8bit))); int16_t minus_one_16bit = -1; EXPECT_EQ("ffff", StrCat(Hex(minus_one_16bit))); } TEST(Numbers, TestFunctionsMovedOverFromNumbersMain) { TestFastPrints(); } } }
2,270
#ifndef TENSORFLOW_TSL_PLATFORM_HASH_H_ #define TENSORFLOW_TSL_PLATFORM_HASH_H_ #include <stddef.h> #include <stdint.h> #include <functional> #include <string> #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { extern uint32 Hash32(const char* data, size_t n, uint32 seed); extern uint64 Hash64(const char* data, size_t n, uint64 seed); inline uint64 Hash64(const char* data, size_t n) { return Hash64(data, n, 0xDECAFCAFFE); } inline uint64 Hash64(const char* data) { return Hash64(data, ::strlen(data)); } inline uint64 Hash64(const std::string& str) { return Hash64(str.data(), str.size()); } inline uint64 Hash64(const tstring& str) { return Hash64(str.data(), str.size()); } inline uint64 Hash64Combine(uint64 a, uint64 b) { return a ^ (b + 0x9e3779b97f4a7800ULL + (a << 10) + (a >> 4)); } inline uint64 Hash64CombineUnordered(uint64 a, uint64 b) { return a + b; } template <typename T, typename = void> struct hash { size_t operator()(const T& t) const { return std::hash<T>()(t); } }; template <typename T> struct hash<T, typename std::enable_if<std::is_enum<T>::value>::type> { size_t operator()(T value) const { return std::hash<uint64>()(static_cast<uint64>(value)); } }; template <typename T> struct hash<T*> { size_t operator()(const T* t) const { size_t k = static_cast<size_t>(reinterpret_cast<uintptr_t>(t)); return k + (k >> 6); } }; template <> struct hash<string> { size_t operator()(const string& s) const { return static_cast<size_t>(Hash64(s)); } }; template <> struct hash<tstring> { size_t operator()(const tstring& s) const { return static_cast<size_t>(Hash64(s.data(), s.size())); } }; template <> struct hash<StringPiece> { size_t operator()(StringPiece sp) const { return static_cast<size_t>(Hash64(sp.data(), sp.size())); } }; using StringPieceHasher = ::tsl::hash<StringPiece>; template <typename T, typename U> struct hash<std::pair<T, U>> { size_t operator()(const std::pair<T, U>& p) const { return Hash64Combine(hash<T>()(p.first), hash<U>()(p.second)); } }; } namespace std { template <> struct hash<tsl::tstring> { size_t operator()(const tsl::tstring& s) const { return static_cast<size_t>(tsl::Hash64(s.data(), s.size())); } }; } #endif #include "tsl/platform/hash.h" #include <string.h> #include "tsl/platform/macros.h" #include "tsl/platform/raw_coding.h" #include "tsl/platform/types.h" namespace tsl { static inline uint32 ByteAs32(char c) { return static_cast<uint32>(c) & 0xff; } static inline uint64 ByteAs64(char c) { return static_cast<uint64>(c) & 0xff; } uint32 Hash32(const char* data, size_t n, uint32 seed) { const uint32 m = 0x5bd1e995; const int r = 24; uint32 h = seed ^ n; while (n >= 4) { uint32 k = core::DecodeFixed32(data); k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; n -= 4; } switch (n) { case 3: h ^= ByteAs32(data[2]) << 16; TF_FALLTHROUGH_INTENDED; case 2: h ^= ByteAs32(data[1]) << 8; TF_FALLTHROUGH_INTENDED; case 1: h ^= ByteAs32(data[0]); h *= m; } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } uint64 Hash64(const char* data, size_t n, uint64 seed) { const uint64 m = 0xc6a4a7935bd1e995; const int r = 47; uint64 h = seed ^ (n * m); while (n >= 8) { uint64 k = core::DecodeFixed64(data); data += 8; n -= 8; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } switch (n) { case 7: h ^= ByteAs64(data[6]) << 48; TF_FALLTHROUGH_INTENDED; case 6: h ^= ByteAs64(data[5]) << 40; TF_FALLTHROUGH_INTENDED; case 5: h ^= ByteAs64(data[4]) << 32; TF_FALLTHROUGH_INTENDED; case 4: h ^= ByteAs64(data[3]) << 24; TF_FALLTHROUGH_INTENDED; case 3: h ^= ByteAs64(data[2]) << 16; TF_FALLTHROUGH_INTENDED; case 2: h ^= ByteAs64(data[1]) << 8; TF_FALLTHROUGH_INTENDED; case 1: h ^= ByteAs64(data[0]); h *= m; } h ^= h >> r; h *= m; h ^= h >> r; return h; } }
#include <map> #include <unordered_map> #include <vector> #include "tsl/platform/hash.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { TEST(Hash, SignedUnsignedIssue) { const unsigned char d1[1] = {0x62}; const unsigned char d2[2] = {0xc3, 0x97}; const unsigned char d3[3] = {0xe2, 0x99, 0xa5}; const unsigned char d4[4] = {0xe1, 0x80, 0xb9, 0x32}; const unsigned char d5[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; struct Case { uint32 hash32; uint64 hash64; const unsigned char* data; size_t size; uint32 seed; }; for (Case c : std::vector<Case>{ {0x471a8188u, 0x4c61ea3eeda4cb87ull, nullptr, 0, 0xbc9f1d34}, {0xd615eba5u, 0x091309f7ef916c8aull, d1, sizeof(d1), 0xbc9f1d34}, {0x0c3cccdau, 0xa815bcdf1d1af01cull, d2, sizeof(d2), 0xbc9f1d34}, {0x3ba37e0eu, 0x02167564e4d06430ull, d3, sizeof(d3), 0xbc9f1d34}, {0x16174eb3u, 0x8f7ed82ffc21071full, d4, sizeof(d4), 0xbc9f1d34}, {0x98b1926cu, 0xce196580c97aff1eull, d5, sizeof(d5), 0x12345678}, }) { EXPECT_EQ(c.hash32, Hash32(reinterpret_cast<const char*>(c.data), c.size, c.seed)); EXPECT_EQ(c.hash64, Hash64(reinterpret_cast<const char*>(c.data), c.size, c.seed)); for (int align = 1; align <= 7; align++) { std::string input(align, 'x'); input.append(reinterpret_cast<const char*>(c.data), c.size); EXPECT_EQ(c.hash32, Hash32(&input[align], c.size, c.seed)); EXPECT_EQ(c.hash64, Hash64(&input[align], c.size, c.seed)); } } } TEST(Hash, HashPtrIsNotIdentityFunction) { int* ptr = reinterpret_cast<int*>(0xcafe0000); EXPECT_NE(hash<int*>()(ptr), size_t{0xcafe0000}); } static void BM_Hash32(::testing::benchmark::State& state) { int len = state.range(0); std::string input(len, 'x'); uint32 h = 0; for (auto s : state) { h = Hash32(input.data(), len, 1); } state.SetBytesProcessed(state.iterations() * len); VLOG(1) << h; } BENCHMARK(BM_Hash32)->Range(1, 1024); TEST(StringPieceHasher, Equality) { StringPieceHasher hasher; StringPiece s1("foo"); StringPiece s2("bar"); StringPiece s3("baz"); StringPiece s4("zot"); EXPECT_TRUE(hasher(s1) != hasher(s2)); EXPECT_TRUE(hasher(s1) != hasher(s3)); EXPECT_TRUE(hasher(s1) != hasher(s4)); EXPECT_TRUE(hasher(s2) != hasher(s3)); EXPECT_TRUE(hasher(s2) != hasher(s4)); EXPECT_TRUE(hasher(s3) != hasher(s4)); EXPECT_TRUE(hasher(s1) == hasher(s1)); EXPECT_TRUE(hasher(s2) == hasher(s2)); EXPECT_TRUE(hasher(s3) == hasher(s3)); EXPECT_TRUE(hasher(s4) == hasher(s4)); } TEST(StringPieceHasher, HashMap) { string s1("foo"); string s2("bar"); string s3("baz"); StringPiece p1(s1); StringPiece p2(s2); StringPiece p3(s3); std::unordered_map<StringPiece, int, StringPieceHasher> map; map.insert(std::make_pair(p1, 0)); map.insert(std::make_pair(p2, 1)); map.insert(std::make_pair(p3, 2)); EXPECT_EQ(map.size(), 3); bool found[3] = {false, false, false}; for (auto const& val : map) { int x = val.second; EXPECT_TRUE(x >= 0 && x < 3); EXPECT_TRUE(!found[x]); found[x] = true; } EXPECT_EQ(found[0], true); EXPECT_EQ(found[1], true); EXPECT_EQ(found[2], true); auto new_iter = map.find("zot"); EXPECT_TRUE(new_iter == map.end()); new_iter = map.find("bar"); EXPECT_TRUE(new_iter != map.end()); map.erase(new_iter); EXPECT_EQ(map.size(), 2); found[0] = false; found[1] = false; found[2] = false; for (const auto& iter : map) { int x = iter.second; EXPECT_TRUE(x >= 0 && x < 3); EXPECT_TRUE(!found[x]); found[x] = true; } EXPECT_EQ(found[0], true); EXPECT_EQ(found[1], false); EXPECT_EQ(found[2], true); } }
2,271
#ifndef TENSORFLOW_TSL_PLATFORM_SETROUND_H_ #define TENSORFLOW_TSL_PLATFORM_SETROUND_H_ #if defined(__ANDROID_API__) && (__ANDROID_API__ < 21) #define TF_BROKEN_CFENV #endif #if defined(TF_BROKEN_CFENV) #include <fenv.h> #else #include <cfenv> #endif #include "tsl/platform/macros.h" namespace tsl { namespace port { class ScopedSetRound { public: ScopedSetRound(int mode); ~ScopedSetRound(); private: int original_mode_; ScopedSetRound(const ScopedSetRound&) = delete; void operator=(const ScopedSetRound&) = delete; }; } } #endif #include "tsl/platform/setround.h" #include "tsl/platform/logging.h" namespace tsl { namespace port { #if defined(TF_BROKEN_CFENV) ScopedSetRound::ScopedSetRound(const int mode) : original_mode_(mode) { DCHECK_EQ(mode, FE_TONEAREST); } ScopedSetRound::~ScopedSetRound() {} #else ScopedSetRound::ScopedSetRound(const int mode) { original_mode_ = std::fegetround(); if (original_mode_ < 0) { original_mode_ = FE_TONEAREST; } std::fesetround(mode); } ScopedSetRound::~ScopedSetRound() { std::fesetround(original_mode_); } #endif } }
#include "tsl/platform/setround.h" #include <cmath> #include "tsl/platform/test.h" #if !defined(__clang__) || !defined(__OPTIMIZE__) namespace tsl { namespace { void CheckDownward() { EXPECT_EQ(12, std::nearbyint(12.0)); EXPECT_EQ(12, std::nearbyint(12.1)); EXPECT_EQ(-13, std::nearbyint(-12.1)); EXPECT_EQ(12, std::nearbyint(12.5)); EXPECT_EQ(12, std::nearbyint(12.9)); EXPECT_EQ(-13, std::nearbyint(-12.9)); EXPECT_EQ(13, std::nearbyint(13.0)); } void CheckToNearest() { EXPECT_EQ(12, std::nearbyint(12.0)); EXPECT_EQ(12, std::nearbyint(12.1)); EXPECT_EQ(-12, std::nearbyint(-12.1)); EXPECT_EQ(12, std::nearbyint(12.5)); EXPECT_EQ(13, std::nearbyint(12.9)); EXPECT_EQ(-13, std::nearbyint(-12.9)); EXPECT_EQ(13, std::nearbyint(13.0)); } void CheckTowardZero() { EXPECT_EQ(12, std::nearbyint(12.0)); EXPECT_EQ(12, std::nearbyint(12.1)); EXPECT_EQ(-12, std::nearbyint(-12.1)); EXPECT_EQ(12, std::nearbyint(12.5)); EXPECT_EQ(12, std::nearbyint(12.9)); EXPECT_EQ(-12, std::nearbyint(-12.9)); EXPECT_EQ(13, std::nearbyint(13.0)); } void CheckUpward() { EXPECT_EQ(12, std::nearbyint(12.0)); EXPECT_EQ(13, std::nearbyint(12.1)); EXPECT_EQ(-12, std::nearbyint(-12.1)); EXPECT_EQ(13, std::nearbyint(12.5)); EXPECT_EQ(13, std::nearbyint(12.9)); EXPECT_EQ(-12, std::nearbyint(-12.9)); EXPECT_EQ(13, std::nearbyint(13.0)); } TEST(SetScopedSetRound, Downward) { port::ScopedSetRound round(FE_DOWNWARD); CheckDownward(); } TEST(SetScopedSetRound, ToNearest) { port::ScopedSetRound round(FE_TONEAREST); CheckToNearest(); } TEST(SetScopedSetRound, TowardZero) { port::ScopedSetRound round(FE_TOWARDZERO); CheckTowardZero(); } TEST(SetScopedSetRound, Upward) { port::ScopedSetRound round(FE_UPWARD); CheckUpward(); } TEST(SetScopedSetRound, Scoped) { std::fesetround(FE_TONEAREST); CheckToNearest(); { port::ScopedSetRound round(FE_UPWARD); CheckUpward(); } CheckToNearest(); } } } #endif
2,272
#ifndef TENSORFLOW_TSL_PLATFORM_PATH_H_ #define TENSORFLOW_TSL_PLATFORM_PATH_H_ #include <string> #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace io { namespace internal { std::string JoinPathImpl(std::initializer_list<tsl::StringPiece> paths); } #ifndef SWIG template <typename... T> std::string JoinPath(const T&... args) { return internal::JoinPathImpl({args...}); } #endif bool IsAbsolutePath(tsl::StringPiece path); tsl::StringPiece Dirname(tsl::StringPiece path); tsl::StringPiece Basename(tsl::StringPiece path); tsl::StringPiece Extension(tsl::StringPiece path); tsl::StringPiece BasenamePrefix(tsl::StringPiece path); std::string CommonPathPrefix(absl::Span<std::string const> paths); std::string CleanPath(tsl::StringPiece path); void ParseURI(tsl::StringPiece uri, tsl::StringPiece* scheme, tsl::StringPiece* host, tsl::StringPiece* path); std::string CreateURI(tsl::StringPiece scheme, tsl::StringPiece host, tsl::StringPiece path); std::string GetTempFilename(const std::string& extension); bool GetTestWorkspaceDir(std::string* dir); bool GetTestUndeclaredOutputsDir(std::string* dir); bool ResolveTestPrefixes(tsl::StringPiece path, std::string& resolved_path); [[maybe_unused]] std::string& AppendDotExeIfWindows(std::string& path); } } #endif #include "tsl/platform/path.h" #include <errno.h> #include <fcntl.h> #include <stdlib.h> #include <sys/stat.h> #include <sys/types.h> #if defined(PLATFORM_WINDOWS) #include <windows.h> #else #include <unistd.h> #endif #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/scanner.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace io { namespace internal { namespace { const char kPathSep[] = "/"; } string JoinPathImpl(std::initializer_list<StringPiece> paths) { string result; for (StringPiece path : paths) { if (path.empty()) continue; if (result.empty()) { result = string(path); continue; } if (IsAbsolutePath(path)) path = path.substr(1); if (result[result.size() - 1] == kPathSep[0]) { strings::StrAppend(&result, path); } else { strings::StrAppend(&result, kPathSep, path); } } return result; } std::pair<StringPiece, StringPiece> SplitPath(StringPiece uri) { StringPiece scheme, host, path; ParseURI(uri, &scheme, &host, &path); auto pos = path.rfind('/'); #ifdef PLATFORM_WINDOWS if (pos == StringPiece::npos) pos = path.rfind('\\'); #endif if (pos == StringPiece::npos) return std::make_pair(StringPiece(uri.data(), host.end() - uri.begin()), path); if (pos == 0) return std::make_pair( StringPiece(uri.data(), path.begin() + 1 - uri.begin()), StringPiece(path.data() + 1, path.size() - 1)); return std::make_pair( StringPiece(uri.data(), path.begin() + pos - uri.begin()), StringPiece(path.data() + pos + 1, path.size() - (pos + 1))); } std::pair<StringPiece, StringPiece> SplitBasename(StringPiece path) { path = Basename(path); auto pos = path.rfind('.'); if (pos == StringPiece::npos) return std::make_pair(path, StringPiece(path.data() + path.size(), 0)); return std::make_pair( StringPiece(path.data(), pos), StringPiece(path.data() + pos + 1, path.size() - (pos + 1))); } } bool IsAbsolutePath(StringPiece path) { return !path.empty() && path[0] == '/'; } StringPiece Dirname(StringPiece path) { return internal::SplitPath(path).first; } StringPiece Basename(StringPiece path) { return internal::SplitPath(path).second; } StringPiece Extension(StringPiece path) { return internal::SplitBasename(path).second; } StringPiece BasenamePrefix(StringPiece path) { return internal::SplitBasename(path).first; } string CleanPath(StringPiece unclean_path) { string path(unclean_path); const char* src = path.c_str(); string::iterator dst = path.begin(); const bool is_absolute_path = *src == '/'; if (is_absolute_path) { *dst++ = *src++; while (*src == '/') ++src; } string::const_iterator backtrack_limit = dst; while (*src) { bool parsed = false; if (src[0] == '.') { if (src[1] == '/' || !src[1]) { if (*++src) { ++src; } parsed = true; } else if (src[1] == '.' && (src[2] == '/' || !src[2])) { src += 2; if (dst != backtrack_limit) { for (--dst; dst != backtrack_limit && dst[-1] != '/'; --dst) { } } else if (!is_absolute_path) { src -= 2; *dst++ = *src++; *dst++ = *src++; if (*src) { *dst++ = *src; } backtrack_limit = dst; } if (*src) { ++src; } parsed = true; } } if (!parsed) { while (*src && *src != '/') { *dst++ = *src++; } if (*src) { *dst++ = *src++; } } while (*src == '/') { ++src; } } string::difference_type path_length = dst - path.begin(); if (path_length != 0) { if (path_length > 1 && path[path_length - 1] == '/') { --path_length; } path.resize(path_length); } else { path.assign(1, '.'); } return path; } void ParseURI(StringPiece uri, StringPiece* scheme, StringPiece* host, StringPiece* path) { if (!strings::Scanner(uri) .One(strings::Scanner::LETTER) .Many(strings::Scanner::LETTER_DIGIT_DOT) .StopCapture() .OneLiteral(": .GetResult(&uri, scheme)) { *scheme = StringPiece(uri.data(), 0); *host = StringPiece(uri.data(), 0); *path = uri; return; } if (!strings::Scanner(uri).ScanUntil('/').GetResult(&uri, host)) { *host = uri; *path = StringPiece(); return; } *path = uri; } string CreateURI(StringPiece scheme, StringPiece host, StringPiece path) { if (scheme.empty()) { return string(path); } return strings::StrCat(scheme, ": } int64_t UniqueId() { static mutex mu(LINKER_INITIALIZED); static int64_t id = 0; mutex_lock l(mu); return ++id; } string CommonPathPrefix(absl::Span<const string> paths) { if (paths.empty()) return ""; size_t min_filename_size = absl::c_min_element(paths, [](const string& a, const string& b) { return a.size() < b.size(); })->size(); if (min_filename_size == 0) return ""; size_t common_prefix_size = [&] { for (size_t prefix_size = 0; prefix_size < min_filename_size; prefix_size++) { char c = paths[0][prefix_size]; for (int f = 1; f < paths.size(); f++) { if (paths[f][prefix_size] != c) { return prefix_size; } } } return min_filename_size; }(); size_t rpos = absl::string_view(paths[0]) .substr(0, common_prefix_size) .rfind(internal::kPathSep); return rpos == std::string::npos ? "" : std::string(absl::string_view(paths[0]).substr(0, rpos + 1)); } string GetTempFilename(const string& extension) { #if defined(__ANDROID__) LOG(FATAL) << "GetTempFilename is not implemented in this platform."; #elif defined(PLATFORM_WINDOWS) char temp_dir[_MAX_PATH]; DWORD retval; retval = GetTempPath(_MAX_PATH, temp_dir); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get the directory for temporary files."; } char temp_file_name[_MAX_PATH]; retval = GetTempFileName(temp_dir, "", UniqueId(), temp_file_name); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get a temporary file in: " << temp_dir; } string full_tmp_file_name(temp_file_name); full_tmp_file_name.append(extension); return full_tmp_file_name; #else for (const char* dir : std::vector<const char*>( {getenv("TEST_TMPDIR"), getenv("TMPDIR"), getenv("TMP"), "/tmp"})) { if (!dir || !dir[0]) { continue; } struct stat statbuf; if (!stat(dir, &statbuf) && S_ISDIR(statbuf.st_mode)) { string tmp_filepath; int fd; if (extension.length()) { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX.", extension)); fd = mkstemps(&tmp_filepath[0], extension.length() + 1); } else { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX")); fd = mkstemp(&tmp_filepath[0]); } if (fd < 0) { LOG(FATAL) << "Failed to create temp file."; } else { if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } return tmp_filepath; } } } LOG(FATAL) << "No temp directory found."; std::abort(); #endif } namespace { bool StartsWithSegment(tsl::StringPiece path, tsl::StringPiece segment) { return tsl::str_util::StartsWith(path, segment) && (path.size() == segment.size() || path.at(segment.size()) == internal::kPathSep[0]); } } bool GetTestWorkspaceDir(string* dir) { const char* srcdir = getenv("TEST_SRCDIR"); if (srcdir == nullptr) { return false; } const char* workspace = getenv("TEST_WORKSPACE"); if (workspace == nullptr) { return false; } if (dir != nullptr) { *dir = tsl::io::JoinPath(srcdir, workspace); } return true; } bool GetTestUndeclaredOutputsDir(string* dir) { const char* outputs_dir = getenv("TEST_UNDECLARED_OUTPUTS_DIR"); if (outputs_dir == nullptr) { return false; } if (dir != nullptr) { *dir = outputs_dir; } return true; } bool ResolveTestPrefixes(tsl::StringPiece path, string& resolved_path) { constexpr tsl::StringPiece kTestWorkspaceSegment = "TEST_WORKSPACE"; constexpr tsl::StringPiece kOutputDirSegment = "TEST_UNDECLARED_OUTPUTS_DIR"; if (StartsWithSegment(path, kTestWorkspaceSegment)) { if (!GetTestWorkspaceDir(&resolved_path)) { return false; } resolved_path += path.substr(kTestWorkspaceSegment.size()); return true; } else if (StartsWithSegment(path, kOutputDirSegment)) { if (!GetTestUndeclaredOutputsDir(&resolved_path)) { return false; } resolved_path += path.substr(kOutputDirSegment.size()); return true; } else { resolved_path = path; return true; } } [[maybe_unused]] std::string& AppendDotExeIfWindows(std::string& path) { #ifdef PLATFORM_WINDOWS path.append(".exe"); #endif return path; } } }
#include "tsl/platform/path.h" #include <string> #include "tsl/platform/env.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/test.h" namespace tsl { namespace io { TEST(PathTest, JoinPath) { EXPECT_EQ("/foo/bar", JoinPath("/foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "/bar")); EXPECT_EQ("/foo/bar", JoinPath("/foo", "/bar")); EXPECT_EQ("/bar", JoinPath("", "/bar")); EXPECT_EQ("bar", JoinPath("", "bar")); EXPECT_EQ("/foo", JoinPath("/foo", "")); EXPECT_EQ("/foo/bar/baz/blah/blink/biz", JoinPath("/foo/bar/baz/", "/blah/blink/biz")); EXPECT_EQ("/foo/bar/baz/blah", JoinPath("/foo", "bar", "baz", "blah")); } TEST(PathTest, IsAbsolutePath) { EXPECT_FALSE(IsAbsolutePath("")); EXPECT_FALSE(IsAbsolutePath("../foo")); EXPECT_FALSE(IsAbsolutePath("foo")); EXPECT_FALSE(IsAbsolutePath("./foo")); EXPECT_FALSE(IsAbsolutePath("foo/bar/baz/")); EXPECT_TRUE(IsAbsolutePath("/foo")); EXPECT_TRUE(IsAbsolutePath("/foo/bar/../baz")); } TEST(PathTest, Dirname) { EXPECT_EQ("hdfs: Dirname("hdfs: EXPECT_EQ("/hello", Dirname("/hello/")); EXPECT_EQ("/", Dirname("/hello")); EXPECT_EQ("hello", Dirname("hello/world")); EXPECT_EQ("hello", Dirname("hello/")); EXPECT_EQ("", Dirname("world")); EXPECT_EQ("/", Dirname("/")); EXPECT_EQ("", Dirname("")); } TEST(PathTest, Basename) { EXPECT_EQ("", Basename("/hello/")); EXPECT_EQ("hello", Basename("/hello")); EXPECT_EQ("world", Basename("hello/world")); EXPECT_EQ("", Basename("hello/")); EXPECT_EQ("world", Basename("world")); EXPECT_EQ("", Basename("/")); EXPECT_EQ("", Basename("")); } TEST(PathTest, Extension) { EXPECT_EQ("gif", Extension("foo.gif")); EXPECT_EQ("", Extension("foo.")); EXPECT_EQ("", Extension("")); EXPECT_EQ("", Extension("/")); EXPECT_EQ("", Extension("foo")); EXPECT_EQ("", Extension("foo/")); EXPECT_EQ("gif", Extension("/a/path/to/foo.gif")); EXPECT_EQ("html", Extension("/a/path.bar/to/foo.html")); EXPECT_EQ("", Extension("/a/path.bar/to/foo")); EXPECT_EQ("baz", Extension("/a/path.bar/to/foo.bar.baz")); } TEST(PathTest, CleanPath) { EXPECT_EQ(".", CleanPath("")); EXPECT_EQ("x", CleanPath("x")); EXPECT_EQ("/a/b/c/d", CleanPath("/a/b/c/d")); EXPECT_EQ("/a/b/c/dtrue); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_TRUE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, "/repo/src/my/workspace"); EXPECT_TRUE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); } TEST(PathTest, GetTestUndeclaredOutputsDir) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string dir; dir = kOriginalValue; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); EXPECT_TRUE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, "/test/outputs"); EXPECT_TRUE(GetTestUndeclaredOutputsDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); EXPECT_FALSE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestUndeclaredOutputsDir(nullptr)); } TEST(PathTest, ResolveTestPrefixesKeepsThePathUnchanged) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string resolved_path; resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("", resolved_path)); EXPECT_EQ(resolved_path, ""); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/", resolved_path)); EXPECT_EQ(resolved_path, "/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "alpha/beta"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "/alpha/beta"); } TEST(PathTest, ResolveTestPrefixesCanResolveTestWorkspace) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACEE", resolved_path)); EXPECT_EQ(resolved_path, "TEST_WORKSPACEE"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_WORKSPACE"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestWorkspace) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); resolved_path = kOriginalValue; EXPECT_FALSE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } TEST(PathTest, ResolveTestPrefixesCanResolveTestUndeclaredOutputsDir) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIRR", resolved_path)); EXPECT_EQ(resolved_path, "TEST_UNDECLARED_OUTPUTS_DIRR"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("/TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_UNDECLARED_OUTPUTS_DIR"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestUndeclaredOutputsDir) { constexpr tsl::StringPiece kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); resolved_path = kOriginalValue; EXPECT_FALSE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } } }
2,273
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_STATUS_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_STATUS_H_ #define MAYBE_ADD_SOURCE_LOCATION(status) \ {} #define ADD_SOURCE_LOCATION(status) status #endif #include "tsl/platform/status.h" #include <stdio.h> #include <deque> #include <functional> #include <memory> #include <ostream> #include <sstream> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tsl/platform/mutex.h" #include "tsl/platform/stack_frame.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringprintf.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace { class StatusLogSink : public TFLogSink { public: static StatusLogSink* GetInstance() { static StatusLogSink* sink = new StatusLogSink(); return sink; } void enable() { absl::call_once(flag_, [this] { num_messages_ = 5; if (const char* num_msgs_str = getenv("TF_WORKER_NUM_FORWARDED_LOG_MESSAGES")) { if (!absl::SimpleAtoi(num_msgs_str, &num_messages_)) { LOG(WARNING) << "Failed to parse env variable " "TF_WORKER_NUM_WARNING_ERROR_LOG_IN_STATUS=" << num_msgs_str << " as int. Using the default value " << num_messages_ << "."; } } if (num_messages_ > 0) { TFAddLogSink(this); } }); } void GetMessages(std::vector<std::string>* logs) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); for (auto& msg : messages_) { logs->push_back(msg); } } void Send(const TFLogEntry& entry) override TF_LOCKS_EXCLUDED(mu_) { if (entry.log_severity() < absl::LogSeverity::kWarning) return; mutex_lock lock(mu_); messages_.emplace_back(entry.ToString()); if (messages_.size() > static_cast<size_t>(num_messages_)) { messages_.pop_front(); } } private: mutex mu_; absl::once_flag flag_; int num_messages_ = 0; std::deque<std::string> messages_ TF_GUARDED_BY(mu_); }; } namespace errors { static constexpr const char kStackTraceProtoUrl[] = "type.googleapis.com/tensorflow.StackTracePayload"; void SetStackTrace(absl::Status& status, std::vector<StackFrame> stack_trace) { std::vector<std::string> items; items.reserve(stack_trace.size()); for (StackFrame& frame : stack_trace) { items.push_back( absl::StrCat(absl::StrReplaceAll(frame.file_name, {{"\n", ""}}), "\n", frame.line_number, "\n", absl::StrReplaceAll(frame.function_name, {{"\n", ""}}))); } status.SetPayload(kStackTraceProtoUrl, absl::Cord(absl::StrJoin(items, "\n"))); } std::vector<StackFrame> GetStackTrace(const absl::Status& status) { std::vector<StackFrame> stack_trace; absl::optional<absl::Cord> maybe_serialized_payload = status.GetPayload(kStackTraceProtoUrl); if (maybe_serialized_payload.has_value()) { std::vector<std::string> split = absl::StrSplit(maybe_serialized_payload.value().Flatten(), '\n'); assert(split.size() % 3 == 0); for (int i = 0; i < split.size() / 3; ++i) { const int idx = 3 * i; int line_number = -1; CHECK(absl::SimpleAtoi(split[idx + 1], &line_number)); stack_trace.emplace_back(std::move(split[idx]), line_number, std::move(split[idx + 2])); } } return stack_trace; } } #ifdef _WIN32 const char* NullTerminatedMessage(const absl::Status& status) { return absl::StatusMessageAsCStr(status); } #endif std::string* TfCheckOpHelperOutOfLine(const absl::Status& v, const char* msg) { std::stringstream ss; ss << "Non-OK-status: " << msg << "\nStatus: " << v; return new std::string(ss.str()); } StatusGroup::StatusGroup() {} StatusGroup::StatusGroup(std::initializer_list<absl::Status> statuses) { for (const absl::Status& s : statuses) { Update(s); } } static constexpr const char kDerivedStatusProtoUrl[] = "type.googleapis.com/tensorflow.DerivedStatus"; absl::Status StatusGroup::MakeDerived(const absl::Status& s) { if (IsDerived(s)) { return s; } else { absl::Status derived(s); derived.SetPayload(kDerivedStatusProtoUrl, absl::Cord("")); return derived; } } bool StatusGroup::IsDerived(const absl::Status& s) { return s.GetPayload(kDerivedStatusProtoUrl).has_value(); } void StatusGroup::ConfigureLogHistory() { StatusLogSink::GetInstance()->enable(); } void StatusGroup::Update(const absl::Status& s) { if (s.ok()) { ++num_ok_; } else { ok_ = false; if (IsDerived(s)) { derived_.insert(s); } else { non_derived_.insert(s); } } } static constexpr int kMaxAggregatedStatusMessageSize = 8 * 1024; static constexpr int kMaxAttachedLogMessageSize = 512; std::unordered_map<std::string, absl::Cord> StatusGroup::GetPayloads() const { std::unordered_map<std::string, absl::Cord> payloads; auto capture_payload = [&payloads](absl::string_view key, const absl::Cord& value) { payloads[std::string(key)] = value; }; for (const auto& status : derived_) { status.ForEachPayload(capture_payload); } for (const auto& status : non_derived_) { status.ForEachPayload(capture_payload); } payloads.erase(kDerivedStatusProtoUrl); return payloads; } absl::Status MakeStatus( absl::StatusCode code, absl::string_view message, const std::unordered_map<std::string, absl::Cord>& payloads) { absl::Status status(code, message); for (const auto& payload : payloads) { status.SetPayload(payload.first, payload.second); } return status; } std::string MakeString(const absl::Status& status) { return absl::StrCat(absl::StatusCodeToString(status.code()), ": ", status.message()); } absl::Status StatusGroup::as_summary_status() const { if (ok_) { return absl::OkStatus(); } auto get_recent_logs = [this]() -> std::string { if (!recent_logs_.empty()) { std::vector<std::string> fmt; fmt.push_back("\nRecent warning and error logs:"); for (auto& log : recent_logs_) { fmt.push_back(" " + log.substr(0, kMaxAttachedLogMessageSize)); } return absl::StrJoin(fmt, "\n"); } else { return ""; } }; if (non_derived_.size() == 1) { return MakeStatus( non_derived_.begin()->code(), strings::StrCat(non_derived_.begin()->message(), get_recent_logs()), GetPayloads()); } if (!non_derived_.empty()) { std::vector<std::string> fmt; fmt.push_back( strings::Printf("%zu root error(s) found.", non_derived_.size())); int index = 0; auto code = absl::StatusCode::kCancelled; for (const auto& s : non_derived_) { if (code == absl::StatusCode::kCancelled && s.code() != absl::StatusCode::kCancelled) { code = s.code(); } fmt.emplace_back(strings::StrCat(" (", index, ") ", MakeString(s))); ++index; } fmt.push_back(strings::Printf("%zu successful operations.", num_ok_)); fmt.push_back( strings::Printf("%zu derived errors ignored.", derived_.size())); std::string error_msg = absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize); return MakeStatus(code, strings::StrCat(error_msg, get_recent_logs()), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } absl::Status StatusGroup::as_concatenated_status() const { if (ok_) { return absl::OkStatus(); } if (non_derived_.size() == 1) { return MakeStatus(non_derived_.begin()->code(), non_derived_.begin()->message(), GetPayloads()); } if (!non_derived_.empty()) { std::vector<string> fmt; fmt.emplace_back("\n====================="); for (const auto& s : non_derived_) { fmt.emplace_back(MakeString(s)); } fmt.emplace_back("=====================\n"); return MakeStatus( non_derived_.begin()->code(), absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } void StatusGroup::AttachLogMessages() { recent_logs_.clear(); StatusLogSink::GetInstance()->GetMessages(&recent_logs_); } }
#include "tsl/platform/status.h" #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "tsl/platform/errors.h" #include "tsl/platform/stack_frame.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace tsl { namespace { using ::testing::IsEmpty; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; TEST(ToStringTest, PayloadsArePrinted) { absl::Status status = errors::Aborted("Aborted Error Message"); status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); EXPECT_EQ(status.ToString(), "ABORTED: Aborted Error Message [payload_key='payload_value " "\\x01\\x02\\x03']"); } TEST(ToStringTest, MatchesAbslStatus) { absl::Status status = errors::Aborted("Aborted Error Message"); status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); absl::Status absl_status = absl::Status(absl::StatusCode::kAborted, status.message()); absl_status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); EXPECT_EQ(status.ToString(), absl_status.ToString()); } TEST(StackTrace, SerializeAndDeserializeCorrectly) { absl::Status status = errors::Aborted("Aborted Error Message"); std::vector<StackFrame> stack_trace; stack_trace.push_back(StackFrame("filename_1", 33, "func_name_1")); stack_trace.push_back(StackFrame("filename_2", 66, "func_name_2")); errors::SetStackTrace(status, stack_trace); std::vector<StackFrame> deserialized = errors::GetStackTrace(status); EXPECT_EQ(stack_trace.size(), deserialized.size()); for (size_t i = 0; i < stack_trace.size(); ++i) { EXPECT_EQ(stack_trace[i], deserialized[i]); } } TEST(StatusGroupTest, DeterministicOrderWithoutPayloads) { absl::Status status_a = errors::Aborted("Status A"); absl::Status status_b = errors::Aborted("Status B"); absl::Status status_c = errors::Aborted("Status C"); absl::Status combined = StatusGroup({status_a, status_b, status_c}).as_summary_status(); EXPECT_EQ(combined, StatusGroup({status_a, status_b, status_c}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_a, status_c, status_b}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_b, status_a, status_c}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_b, status_c, status_a}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_c, status_a, status_b}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_c, status_b, status_a}).as_summary_status()); } TEST(StatusGroupTest, DeterministicOrderWithPayloads) { absl::Status status_a = errors::Aborted("Status A"); status_a.SetPayload("payload_key", absl::Cord("payload_value_a")); absl::Status status_b = errors::Aborted("Status B"); status_b.SetPayload("payload_key", absl::Cord("payload_value_b")); absl::Status status_c = errors::Aborted("Status C"); status_c.SetPayload("payload_key", absl::Cord("payload_value_c")); absl::Status combined = StatusGroup({status_a, status_b, status_c}).as_summary_status(); ASSERT_TRUE(combined.GetPayload("payload_key").has_value()); std::string payload(combined.GetPayload("payload_key").value()); EXPECT_EQ(payload, StatusGroup({status_a, status_b, status_c}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_a, status_c, status_b}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_b, status_a, status_c}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_b, status_c, status_a}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_c, status_a, status_b}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_c, status_b, status_a}) .as_summary_status() .GetPayload("payload_key")); } TEST(StatusGroupTest, PayloadsMergedProperly) { absl::Status status_a = errors::Aborted("Status A"); status_a.SetPayload("payload_key_a", absl::Cord(std::string("payload_value_a"))); absl::Status status_b = errors::Aborted("Status B"); status_b.SetPayload("payload_key_b", absl::Cord(std::string("payload_value_b"))); absl::Status status_c = errors::Aborted("Status C"); status_c.SetPayload("payload_key_c", absl::Cord(std::string("payload_value_c"))); absl::Status derived_status_c = StatusGroup::MakeDerived(errors::Aborted("Status C")); derived_status_c.SetPayload( "payload_key_c", absl::Cord(std::string("derived_payload_value_c"))); StatusGroup status_group({status_a, status_b, status_c, derived_status_c}); EXPECT_THAT(status_group.GetPayloads(), ::testing::SizeIs(3)); absl::Status combined = status_group.as_summary_status(); EXPECT_EQ(combined.GetPayload("payload_key_a"), "payload_value_a"); EXPECT_EQ(combined.GetPayload("payload_key_b"), "payload_value_b"); EXPECT_EQ(combined.GetPayload("payload_key_c"), "payload_value_c"); } TEST(Status, ErrorStatusForEachPayloadIteratesOverAll) { absl::Status s(absl::StatusCode::kInternal, "Error message"); s.SetPayload("key1", absl::Cord("value1")); s.SetPayload("key2", absl::Cord("value2")); s.SetPayload("key3", absl::Cord("value3")); std::unordered_map<std::string, absl::Cord> payloads; s.ForEachPayload([&payloads](StringPiece key, const absl::Cord& value) { payloads[std::string(key)] = value; }); EXPECT_EQ(payloads.size(), 3); EXPECT_EQ(payloads["key1"], "value1"); EXPECT_EQ(payloads["key2"], "value2"); EXPECT_EQ(payloads["key3"], "value3"); } TEST(Status, OkStatusForEachPayloadNoIteration) { absl::Status s = absl::OkStatus(); s.SetPayload("key1", absl::Cord("value1")); s.SetPayload("key2", absl::Cord("value2")); s.SetPayload("key3", absl::Cord("value3")); std::unordered_map<std::string, absl::Cord> payloads; s.ForEachPayload([&payloads](StringPiece key, const absl::Cord& value) { payloads[std::string(key)] = value; }); EXPECT_EQ(payloads.size(), 0); } TEST(Status, SaveOKStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(absl::OkStatus()); EXPECT_EQ(status_proto.code(), error::OK); EXPECT_THAT(status_proto.message(), IsEmpty()); } TEST(Status, SaveErrorStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(errors::NotFound("Not found")); EXPECT_EQ(status_proto.code(), error::NOT_FOUND); EXPECT_EQ(status_proto.message(), "Not found"); } TEST(Status, SaveEmptyStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(absl::Status()); EXPECT_EQ(status_proto.code(), error::OK); EXPECT_THAT(status_proto.message(), IsEmpty()); } TEST(Status, MakeOKStatusFromProto) { tensorflow::StatusProto status_proto; status_proto.set_code(error::OK); EXPECT_THAT(StatusFromProto(status_proto), IsOk()); } TEST(Status, MakeErrorStatusFromProto) { tensorflow::StatusProto status_proto; status_proto.set_code(error::INVALID_ARGUMENT); status_proto.set_message("Invalid argument"); EXPECT_THAT(StatusFromProto(status_proto), StatusIs(error::INVALID_ARGUMENT, "Invalid argument")); } TEST(Status, MakeStatusFromEmptyProto) { EXPECT_THAT(StatusFromProto(tensorflow::StatusProto()), IsOk()); } } }
2,274
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_THROTTLE_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_THROTTLE_H_ #include "tsl/platform/env.h" namespace tsl { struct GcsThrottleConfig { bool enabled = false; int64_t token_rate = 100000; int64_t bucket_size = 10000000; int64_t tokens_per_request = 100; int64_t initial_tokens = 0; }; class GcsThrottle { public: explicit GcsThrottle(EnvTime* env_time = nullptr); bool AdmitRequest(); void RecordResponse(size_t num_bytes); void SetConfig(GcsThrottleConfig config); inline int64_t available_tokens() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); UpdateState(); return available_tokens_; } bool is_enabled() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return config_.enabled; } private: void UpdateState() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); inline uint64 request_bytes_to_tokens(size_t num_bytes) { return num_bytes >> 10; } mutex mu_; uint64 last_updated_secs_ TF_GUARDED_BY(mu_) = 0; int64_t available_tokens_ TF_GUARDED_BY(mu_) = 0; EnvTime* const env_time_; GcsThrottleConfig config_ TF_GUARDED_BY(mu_); }; } #endif #include "tsl/platform/cloud/gcs_throttle.h" #include <algorithm> namespace tsl { namespace { EnvTime* get_default_env_time() { static EnvTime* default_env_time = new EnvTime; return default_env_time; } } GcsThrottle::GcsThrottle(EnvTime* env_time) : last_updated_secs_(env_time ? env_time->GetOverridableNowSeconds() : EnvTime::NowSeconds()), available_tokens_(0), env_time_(env_time ? env_time : get_default_env_time()) {} bool GcsThrottle::AdmitRequest() { mutex_lock l(mu_); UpdateState(); if (available_tokens_ < config_.tokens_per_request) { return false || !config_.enabled; } available_tokens_ -= config_.tokens_per_request; return true; } void GcsThrottle::RecordResponse(size_t num_bytes) { mutex_lock l(mu_); UpdateState(); available_tokens_ -= request_bytes_to_tokens(num_bytes); } void GcsThrottle::SetConfig(GcsThrottleConfig config) { mutex_lock l(mu_); config_ = config; available_tokens_ = config.initial_tokens; last_updated_secs_ = env_time_->GetOverridableNowSeconds(); } void GcsThrottle::UpdateState() { int64_t now = env_time_->GetOverridableNowSeconds(); uint64 delta_secs = std::max(int64_t{0}, now - static_cast<int64_t>(last_updated_secs_)); available_tokens_ += delta_secs * config_.token_rate; available_tokens_ = std::min(available_tokens_, config_.bucket_size); last_updated_secs_ = now; } }
#include "tsl/platform/cloud/gcs_throttle.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { class TestTime : public EnvTime { public: uint64 GetOverridableNowNanos() const override { return now_micros_ * kMicrosToNanos; } void SetTime(uint64 now_micros) { now_micros_ = now_micros; } void AdvanceSeconds(int64_t secs) { now_micros_ += secs * kSecondsToMicros; } private: uint64 now_micros_ = 1234567890000000ULL; }; class GcsThrottleTest : public ::testing::Test { protected: GcsThrottleTest() : throttle_(&time_) { config_.enabled = true; throttle_.SetConfig(config_); } GcsThrottleConfig config_; TestTime time_; GcsThrottle throttle_; }; TEST_F(GcsThrottleTest, ReplenishTokens) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(2); EXPECT_EQ(300000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, RejectRequest) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()); EXPECT_EQ(99900, throttle_.available_tokens()); for (int i = 1; i < 1000; i++) { EXPECT_TRUE(throttle_.AdmitRequest()); } EXPECT_FALSE(throttle_.AdmitRequest()); } TEST_F(GcsThrottleTest, MarkResponses) { time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()); throttle_.RecordResponse(128000000); EXPECT_EQ(-25100, throttle_.available_tokens()); EXPECT_FALSE(throttle_.AdmitRequest()); time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()) << "Available tokens: " << throttle_.available_tokens(); } TEST_F(GcsThrottleTest, Skippingtime_) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(90); EXPECT_EQ(9000000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, BucketLimit) { time_.AdvanceSeconds(120); EXPECT_EQ(10000000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, ReverseTime) { time_.AdvanceSeconds(1); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(-3600); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_EQ(200000, throttle_.available_tokens()); } TEST(GcsThrottleDisabledTest, Disabled) { TestTime time; GcsThrottle throttle(&time); ASSERT_FALSE(throttle.is_enabled()); EXPECT_EQ(0, throttle.available_tokens()); time.AdvanceSeconds(1); EXPECT_EQ(100000, throttle.available_tokens()); EXPECT_TRUE(throttle.AdmitRequest()); EXPECT_EQ(99900, throttle.available_tokens()); time.AdvanceSeconds(1); EXPECT_EQ(199900, throttle.available_tokens()); throttle.RecordResponse(128000000); EXPECT_LT(0, throttle.available_tokens()); EXPECT_TRUE(throttle.AdmitRequest()); } } }
2,275
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_CURL_HTTP_REQUEST_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_CURL_HTTP_REQUEST_H_ #include <string> #include <unordered_map> #include <vector> #include <curl/curl.h> #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { class LibCurl; class CurlHttpRequest : public HttpRequest { public: class Factory : public HttpRequest::Factory { public: virtual ~Factory() {} virtual HttpRequest* Create() { return new CurlHttpRequest(); } }; CurlHttpRequest(); explicit CurlHttpRequest(LibCurl* libcurl) : CurlHttpRequest(libcurl, Env::Default()) {} CurlHttpRequest(LibCurl* libcurl, Env* env); ~CurlHttpRequest() override; void SetUri(const string& uri) override; void SetRange(uint64 start, uint64 end) override; void AddHeader(const string& name, const string& value) override; void AddResolveOverride(const string& hostname, int64_t port, const string& ip_addr) override; void AddAuthBearerHeader(const string& auth_token) override; void SetRequestStats(RequestStats* stats) override; void SetDeleteRequest() override; Status SetPutFromFile(const string& body_filepath, size_t offset) override; void SetPutEmptyBody() override; void SetPostFromBuffer(const char* buffer, size_t size) override; void SetPostEmptyBody() override; void SetResultBuffer(std::vector<char>* out_buffer) override; void SetResultBufferDirect(char* buffer, size_t size) override; bool IsDirectResponse() const; size_t GetResultBufferDirectBytesTransferred() override; string GetResponseHeader(const string& name) const override; uint64 GetResponseCode() const override; Status Send() override; string EscapeString(const string& str) override; void SetTimeouts(uint32 connection, uint32 inactivity, uint32 total) override; private: static size_t WriteCallback(const void* ptr, size_t size, size_t nmemb, void* userdata); static size_t WriteCallbackDirect(const void* ptr, size_t size, size_t nmemb, void* userdata); static size_t ReadCallback(void* ptr, size_t size, size_t nmemb, FILE* userdata); static size_t HeaderCallback(const void* ptr, size_t size, size_t nmemb, void* this_object); static int ProgressCallback(void* this_object, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow); void CheckMethodNotSet() const; void CheckNotSent() const; StringPiece GetResponse() const; Status CURLcodeToStatus(CURLcode code, const char* error_buffer); LibCurl* libcurl_; Env* env_; FILE* put_body_ = nullptr; StringPiece post_body_buffer_; size_t post_body_read_ = 0; std::vector<char>* response_buffer_ = nullptr; struct DirectResponseState { char* buffer_; size_t buffer_size_; size_t bytes_transferred_; size_t bytes_received_; }; DirectResponseState direct_response_ = {}; CURL* curl_ = nullptr; curl_slist* curl_headers_ = nullptr; curl_slist* resolve_list_ = nullptr; RequestStats* stats_ = nullptr; std::vector<char> default_response_buffer_; std::unordered_map<string, string> response_headers_; uint64 response_code_ = 0; uint64 last_progress_timestamp_ = 0; curl_off_t last_progress_bytes_ = 0; uint32 inactivity_timeout_secs_ = 60; uint32 connect_timeout_secs_ = 120; uint32 request_timeout_secs_ = 3600; bool is_uri_set_ = false; bool is_method_set_ = false; bool is_sent_ = false; string uri_; RequestMethod method_ = RequestMethod::kGet; const size_t response_to_error_limit_ = 500; CurlHttpRequest(const CurlHttpRequest&) = delete; void operator=(const CurlHttpRequest&) = delete; }; class LibCurl { public: virtual ~LibCurl() {} virtual CURL* curl_easy_init() = 0; virtual CURLcode curl_easy_setopt(CURL* curl, CURLoption option, uint64 param) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_setopt(CURL* curl, CURLoption option, const char* param) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_setopt(CURL* curl, CURLoption option, void* param) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_setopt( CURL* curl, CURLoption option, size_t (*param)(void*, size_t, size_t, FILE*)) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(const void*, size_t, size_t, void*)) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_setopt( CURL* curl, CURLoption option, int (*param)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow)) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_perform(CURL* curl) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, uint64* value) TF_MUST_USE_RESULT = 0; virtual CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, double* value) TF_MUST_USE_RESULT = 0; virtual void curl_easy_cleanup(CURL* curl) = 0; virtual curl_slist* curl_slist_append(curl_slist* list, const char* str) = 0; virtual void curl_slist_free_all(curl_slist* list) = 0; virtual char* curl_easy_escape(CURL* curl, const char* str, int length) = 0; virtual void curl_free(void* p) = 0; }; } #endif #include "tsl/platform/cloud/curl_http_request.h" #include <algorithm> #include "xla/tsl/util/env_var.h" #include "tsl/lib/gtl/map_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/scanner.h" #include "tsl/platform/str_util.h" #include "tsl/platform/types.h" #define CHECK_CURL_OK(expr) CHECK_EQ(expr, CURLE_OK) namespace tsl { namespace { constexpr uint64 kVerboseOutput = 0; class LibCurlProxy : public LibCurl { public: static LibCurlProxy* Load() { static LibCurlProxy* libcurl = []() -> LibCurlProxy* { curl_global_init(CURL_GLOBAL_ALL); return new LibCurlProxy; }(); return libcurl; } CURL* curl_easy_init() override { return ::curl_easy_init(); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, uint64 param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, const char* param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, void* param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(void*, size_t, size_t, FILE*)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(const void*, size_t, size_t, void*)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, int (*param)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_perform(CURL* curl) override { return ::curl_easy_perform(curl); } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, uint64* value) override { return ::curl_easy_getinfo(curl, info, value); } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, double* value) override { return ::curl_easy_getinfo(curl, info, value); } void curl_easy_cleanup(CURL* curl) override { return ::curl_easy_cleanup(curl); } char* curl_easy_escape(CURL* curl, const char* str, int length) override { return ::curl_easy_escape(curl, str, length); } curl_slist* curl_slist_append(curl_slist* list, const char* str) override { return ::curl_slist_append(list, str); } void curl_slist_free_all(curl_slist* list) override { return ::curl_slist_free_all(list); } void curl_free(void* p) override { ::curl_free(p); } }; } CurlHttpRequest::CurlHttpRequest() : CurlHttpRequest(LibCurlProxy::Load()) {} CurlHttpRequest::CurlHttpRequest(LibCurl* libcurl, Env* env) : libcurl_(libcurl), env_(env) { default_response_buffer_.reserve(CURL_MAX_WRITE_SIZE); curl_ = libcurl_->curl_easy_init(); CHECK(curl_ != nullptr) << "Couldn't initialize a curl session."; std::string value = ""; TF_CHECK_OK(ReadStringFromEnvVar("CURL_CA_BUNDLE", "", &value)); if (!value.empty()) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_CAINFO, value.c_str())); } CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_VERBOSE, kVerboseOutput)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_USERAGENT, "TSL")); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_NOSIGNAL, 1L)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_1)); CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_NOPROGRESS, uint64{0})); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_XFERINFODATA, this)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_XFERINFOFUNCTION, &CurlHttpRequest::ProgressCallback)); SetResultBuffer(&default_response_buffer_); } CurlHttpRequest::~CurlHttpRequest() { if (curl_headers_) { libcurl_->curl_slist_free_all(curl_headers_); } if (resolve_list_) { libcurl_->curl_slist_free_all(resolve_list_); } if (put_body_) { if (fclose(put_body_) != 0) { LOG(ERROR) << "fclose() failed: " << strerror(errno); } } if (curl_) { libcurl_->curl_easy_cleanup(curl_); } } string CurlHttpRequest::EscapeString(const string& str) { char* out_char_str = libcurl_->curl_easy_escape(curl_, str.c_str(), 0); string out_str(out_char_str); libcurl_->curl_free(out_char_str); return out_str; } void CurlHttpRequest::SetUri(const string& uri) { CheckNotSent(); is_uri_set_ = true; uri_ = uri; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_URL, uri.c_str())); } void CurlHttpRequest::SetRange(uint64 start, uint64 end) { CheckNotSent(); CHECK_CURL_OK(libcurl_->curl_easy_setopt( curl_, CURLOPT_RANGE, strings::StrCat(start, "-", end).c_str())); } void CurlHttpRequest::AddHeader(const string& name, const string& value) { CheckNotSent(); curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat(name, ": ", value).c_str()); } void CurlHttpRequest::AddResolveOverride(const string& hostname, int64_t port, const string& ip_addr) { CheckNotSent(); resolve_list_ = libcurl_->curl_slist_append( resolve_list_, strings::StrCat(hostname, ":", port, ":", ip_addr).c_str()); } void CurlHttpRequest::AddAuthBearerHeader(const string& auth_token) { CheckNotSent(); if (!auth_token.empty()) { AddHeader("Authorization", strings::StrCat("Bearer ", auth_token)); } } void CurlHttpRequest::SetRequestStats(RequestStats* stats) { CheckNotSent(); CHECK(stats_ == nullptr) << "SetRequestStats already called"; stats_ = stats; } void CurlHttpRequest::SetDeleteRequest() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kDelete; CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_CUSTOMREQUEST, "DELETE")); } Status CurlHttpRequest::SetPutFromFile(const string& body_filepath, size_t offset) { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPut; if (put_body_) { if (fclose(put_body_) != 0) { LOG(ERROR) << "fclose() failed: " << strerror(errno); } } put_body_ = fopen(body_filepath.c_str(), "r"); if (!put_body_) { return errors::InvalidArgument("Couldn't open the specified file: " + body_filepath); } fseek(put_body_, 0, SEEK_END); const auto size = ftell(put_body_) - offset; fseek(put_body_, offset, SEEK_SET); curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat("Content-Length: ", size).c_str()); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_PUT, 1)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(put_body_))); return OkStatus(); } void CurlHttpRequest::SetPutEmptyBody() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPut; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_PUT, 1)); AddHeader("Content-Length", "0"); AddHeader("Transfer-Encoding", "identity"); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); } void CurlHttpRequest::SetPostFromBuffer(const char* buffer, size_t size) { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPost; curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat("Content-Length: ", size).c_str()); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_POST, 1)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); post_body_buffer_ = StringPiece(buffer, size); } void CurlHttpRequest::SetPostEmptyBody() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPost; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_POST, 1)); AddHeader("Content-Length", "0"); AddHeader("Transfer-Encoding", "identity"); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); } void CurlHttpRequest::SetResultBuffer(std::vector<char>* out_buffer) { CheckNotSent(); CHECK(out_buffer != nullptr); out_buffer->clear(); response_buffer_ = out_buffer; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEFUNCTION, &CurlHttpRequest::WriteCallback)); } void CurlHttpRequest::SetResultBufferDirect(char* buffer, size_t size) { CHECK(buffer != nullptr); CheckNotSent(); direct_response_ = DirectResponseState{buffer, size, 0, 0}; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt( curl_, CURLOPT_WRITEFUNCTION, &CurlHttpRequest::WriteCallbackDirect)); } bool CurlHttpRequest::IsDirectResponse() const { return direct_response_.buffer_ != nullptr; } size_t CurlHttpRequest::WriteCallbackDirect(const void* ptr, size_t size, size_t nmemb, void* userdata) { CHECK(ptr != nullptr); auto that = reinterpret_cast<CurlHttpRequest*>(userdata); DirectResponseState* state = &that->direct_response_; CHECK(state->buffer_ != nullptr); CHECK(state->bytes_transferred_ <= state->buffer_size_); size_t curl_bytes_received = size * nmemb; size_t user_buffer_bytes_available = state->buffer_size_ - state->bytes_transferred_; size_t bytes_to_copy = std::min<size_t>(curl_bytes_received, user_buffer_bytes_available); memcpy(&state->buffer_[state->bytes_transferred_], ptr, bytes_to_copy); state->bytes_transferred_ += bytes_to_copy; state->bytes_received_ += curl_bytes_received; return bytes_to_copy; } size_t CurlHttpRequest::GetResultBufferDirectBytesTransferred() { CHECK(direct_response_.buffer_ != nullptr); return direct_response_.bytes_transferred_; } void CurlHttpRequest::SetTimeouts(uint32 connection, uint32 inactivity, uint32 total) { CheckNotSent(); connect_timeout_secs_ = connection; inactivity_timeout_secs_ = inactivity; request_timeout_secs_ = total; } size_t CurlHttpRequest::WriteCallback(const void* ptr, size_t size, size_t nmemb, void* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); CHECK(that->response_buffer_); const size_t bytes_to_copy = size * nmemb; that->response_buffer_->insert( that->response_buffer_->end(), reinterpret_cast<const char*>(ptr), reinterpret_cast<const char*>(ptr) + bytes_to_copy); return bytes_to_copy; } size_t CurlHttpRequest::ReadCallback(void* ptr, size_t size, size_t nmemb, FILE* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); CHECK(that->post_body_read_ <= that->post_body_buffer_.size()); const size_t bytes_to_copy = std::min( size * nmemb, that->post_body_buffer_.size() - that->post_body_read_); memcpy(ptr, that->post_body_buffer_.data() + that->post_body_read_, bytes_to_copy); that->post_body_read_ += bytes_to_copy; return bytes_to_copy; } size_t CurlHttpRequest::HeaderCallback(const void* ptr, size_t size, size_t nmemb, void* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); StringPiece header(reinterpret_cast<const char*>(ptr), size * nmemb); StringPiece name, value; if (strings::Scanner(header) .ScanEscapedUntil(':') .StopCapture() .OneLiteral(": ") .GetResult(&value, &name)) { string str_value(value); absl::StripTrailingAsciiWhitespace(&str_value); that->response_headers_[string(name)] = str_value; } return size * nmemb; } Status CurlHttpRequest::Send() { CheckNotSent(); CHECK(is_uri_set_) << "URI has not been set."; is_sent_ = true; if (curl_headers_) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_HTTPHEADER, curl_headers_)); } if (resolve_list_) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_RESOLVE, resolve_list_)); } CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HEADERDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HEADERFUNCTION, &CurlHttpRequest::HeaderCallback)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_TIMEOUT, request_timeout_secs_)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_CONNECTTIMEOUT, connect_timeout_secs_)); char error_buffer[CURL_ERROR_SIZE] = {0}; CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_ERRORBUFFER, error_buffer)); if (stats_ != nullptr) { stats_->RecordRequest(this, uri_, method_); } const CURLcode curl_result = libcurl_->curl_easy_perform(curl_); TF_RETURN_IF_ERROR(CURLcodeToStatus(curl_result, error_buffer)); double written_size = 0; CHECK_CURL_OK(libcurl_->curl_easy_getinfo(curl_, CURLINFO_SIZE_DOWNLOAD, &written_size)); CHECK_CURL_OK(libcurl_->curl_easy_getinfo(curl_, CURLINFO_RESPONSE_CODE, &response_code_)); auto get_error_message = [this]() -> string { string error_message = strings::StrCat( "Error executing an HTTP request: HTTP response code ", response_code_); StringPiece body = GetResponse(); if (!body.empty()) { return strings::StrCat( error_message, " with body '", body.substr(0, std::min(body.size(), response_to_error_limit_)), "'"); } return error_message; }; Status result; switch (response_code_) { case 200: case 201: case 204: case 206: result = OkStatus(); break; case 416: response_buffer_->clear(); if (IsDirectResponse()) { direct_response_.bytes_transferred_ = 0; } result = OkStatus(); break; case 400: case 406: case 411: case 414: result = errors::InvalidArgument(get_error_message()); break; case 401: case 403: case 407: result = errors::PermissionDenied(get_error_message()); break; case 404: case 410: result = errors::NotFound(get_error_message()); break; case 302: case 303: case 304: case 307: case 412: case 413: result = errors::FailedPrecondition(get_error_message()); break; case 308: case 409: case 429: case 500: case 502: case 503: default: result = errors::Unavailable(get_error_message()); break; } if (!result.ok()) { response_buffer_->clear(); } if (stats_ != nullptr) { stats_->RecordResponse(this, uri_, method_, result); } return result; } void CurlHttpRequest::CheckMethodNotSet() const { CHECK(!is_method_set_) << "HTTP method has been already set."; } void CurlHttpRequest::CheckNotSent() const { CHECK(!is_sent_) << "The request has already been sent."; } StringPiece CurlHttpRequest::GetResponse() const { StringPiece response; if (IsDirectResponse()) { response = StringPiece(direct_response_.buffer_, direct_response_.bytes_transferred_); } else { response = StringPiece(response_buffer_->data(), response_buffer_->size()); } return response; } string CurlHttpRequest::GetResponseHeader(const string& name) const { const auto& header = response_headers_.find(name); return header != response_headers_.end() ? header->second : ""; } uint64 CurlHttpRequest::GetResponseCode() const { return response_code_; } int CurlHttpRequest::ProgressCallback(void* this_object, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow) { auto that = reinterpret_cast<CurlHttpRequest*>(this_object); const auto now = that->env_->NowSeconds(); const auto current_progress = dlnow + ulnow; if (that->last_progress_timestamp_ == 0 || current_progress > that->last_progress_bytes_) { that->last_progress_timestamp_ = now; that->last_progress_bytes_ = current_progress; return 0; } if (now - that->last_progress_timestamp_ > that->inactivity_timeout_secs_) { double lookup_time = -1; const auto lookup_time_status = that->libcurl_->curl_easy_getinfo( that->curl_, CURLINFO_NAMELOOKUP_TIME, &lookup_time); double connect_time = -1
#include "tsl/platform/cloud/curl_http_request.h" #include <fstream> #include <string> #include "absl/status/status.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/mem.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tsl { namespace { const string kTestContent = "random original scratch content"; class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now_; } uint64 now_ = 10000; }; class FakeLibCurl : public LibCurl { public: FakeLibCurl(const string& response_content, uint64 response_code) : response_content_(response_content), response_code_(response_code) {} FakeLibCurl(const string& response_content, uint64 response_code, std::vector<std::tuple<uint64, curl_off_t>> progress_ticks, FakeEnv* env) : response_content_(response_content), response_code_(response_code), progress_ticks_(std::move(progress_ticks)), env_(env) {} FakeLibCurl(const string& response_content, uint64 response_code, const std::vector<string>& response_headers) : response_content_(response_content), response_code_(response_code), response_headers_(response_headers) {} CURL* curl_easy_init() override { is_initialized_ = true; return reinterpret_cast<CURL*>(this); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, uint64 param) override { switch (option) { case CURLOPT_POST: is_post_ = param; break; case CURLOPT_PUT: is_put_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, const char* param) override { return curl_easy_setopt(curl, option, reinterpret_cast<void*>(const_cast<char*>(param))); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, void* param) override { switch (option) { case CURLOPT_URL: url_ = reinterpret_cast<char*>(param); break; case CURLOPT_RANGE: range_ = reinterpret_cast<char*>(param); break; case CURLOPT_CUSTOMREQUEST: custom_request_ = reinterpret_cast<char*>(param); break; case CURLOPT_HTTPHEADER: headers_ = reinterpret_cast<std::vector<string>*>(param); break; case CURLOPT_ERRORBUFFER: error_buffer_ = reinterpret_cast<char*>(param); break; case CURLOPT_CAINFO: ca_info_ = reinterpret_cast<char*>(param); break; case CURLOPT_WRITEDATA: write_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_HEADERDATA: header_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_READDATA: read_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_XFERINFODATA: progress_data_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(void*, size_t, size_t, FILE*)) override { read_callback_ = param; return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(const void*, size_t, size_t, void*)) override { switch (option) { case CURLOPT_WRITEFUNCTION: write_callback_ = param; break; case CURLOPT_HEADERFUNCTION: header_callback_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, int (*param)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow)) override { progress_callback_ = param; return CURLE_OK; } CURLcode curl_easy_perform(CURL* curl) override { if (is_post_ || is_put_) { char buffer[3]; int bytes_read; posted_content_ = ""; do { bytes_read = read_callback_(buffer, 1, sizeof(buffer), read_data_); posted_content_ = strings::StrCat(posted_content_, StringPiece(buffer, bytes_read)); } while (bytes_read > 0); } if (write_data_ || write_callback_) { size_t bytes_handled = write_callback_( response_content_.c_str(), 1, response_content_.size(), write_data_); if (bytes_handled != response_content_.size()) { curl_easy_perform_result_ = CURLE_WRITE_ERROR; } } for (const auto& header : response_headers_) { header_callback_(header.c_str(), 1, header.size(), header_data_); } if (error_buffer_) { strncpy(error_buffer_, curl_easy_perform_error_message_.c_str(), curl_easy_perform_error_message_.size() + 1); } for (const auto& tick : progress_ticks_) { env_->now_ = std::get<0>(tick); if (progress_callback_(progress_data_, 0, std::get<1>(tick), 0, 0)) { return CURLE_ABORTED_BY_CALLBACK; } } return curl_easy_perform_result_; } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, uint64* value) override { switch (info) { case CURLINFO_RESPONSE_CODE: *value = response_code_; break; default: break; } return CURLE_OK; } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, double* value) override { switch (info) { case CURLINFO_SIZE_DOWNLOAD: *value = response_content_.size(); break; default: break; } return CURLE_OK; } void curl_easy_cleanup(CURL* curl) override { is_cleaned_up_ = true; } curl_slist* curl_slist_append(curl_slist* list, const char* str) override { std::vector<string>* v = list ? reinterpret_cast<std::vector<string>*>(list) : new std::vector<string>(); v->push_back(str); return reinterpret_cast<curl_slist*>(v); } char* curl_easy_escape(CURL* curl, const char* str, int length) override { const string victim = "/"; const string encoded = "%2F"; string temp_str = str; std::string::size_type n = 0; while ((n = temp_str.find(victim, n)) != std::string::npos) { temp_str.replace(n, victim.size(), encoded); n += encoded.size(); } char* out_char_str = reinterpret_cast<char*>( port::Malloc(sizeof(char) * temp_str.size() + 1)); std::copy(temp_str.begin(), temp_str.end(), out_char_str); out_char_str[temp_str.size()] = '\0'; return out_char_str; } void curl_slist_free_all(curl_slist* list) override { delete reinterpret_cast<std::vector<string>*>(list); } void curl_free(void* p) override { port::Free(p); } string response_content_; uint64 response_code_; std::vector<string> response_headers_; string url_; string range_; string custom_request_; string ca_info_; char* error_buffer_ = nullptr; bool is_initialized_ = false; bool is_cleaned_up_ = false; std::vector<string>* headers_ = nullptr; bool is_post_ = false; bool is_put_ = false; void* write_data_ = nullptr; size_t (*write_callback_)(const void* ptr, size_t size, size_t nmemb, void* userdata) = nullptr; void* header_data_ = nullptr; size_t (*header_callback_)(const void* ptr, size_t size, size_t nmemb, void* userdata) = nullptr; FILE* read_data_ = nullptr; size_t (*read_callback_)(void* ptr, size_t size, size_t nmemb, FILE* userdata) = &fread; int (*progress_callback_)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow) = nullptr; void* progress_data_ = nullptr; string posted_content_; CURLcode curl_easy_perform_result_ = CURLE_OK; string curl_easy_perform_error_message_; std::vector<std::tuple<uint64, curl_off_t>> progress_ticks_; FakeEnv* env_ = nullptr; }; TEST(CurlHttpRequestTest, GetRequest) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_Direct) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch(100, 0); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBufferDirect(scratch.data(), scratch.capacity()); TF_EXPECT_OK(http_request.Send()); string expected_response = "get response"; size_t response_bytes_transferred = http_request.GetResultBufferDirectBytesTransferred(); EXPECT_EQ(expected_response.size(), response_bytes_transferred); EXPECT_EQ( "get response", string(scratch.begin(), scratch.begin() + response_bytes_transferred)); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_CustomCaInfoFlag) { static char set_var[] = "CURL_CA_BUNDLE=test"; putenv(set_var); FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("test", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_Direct_ResponseTooLarge) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch(5, 0); http_request.SetUri("http: http_request.SetResultBufferDirect(scratch.data(), scratch.size()); const Status& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 23 meaning " "'Failed writing received data to disk/application', error details: " "Received 12 response bytes for a 5-byte buffer", status.message()); EXPECT_EQ(5, http_request.GetResultBufferDirectBytesTransferred()); EXPECT_EQ("get r", string(scratch.begin(), scratch.begin() + 5)); } TEST(CurlHttpRequestTest, GetRequest_Direct_RangeOutOfBound) { FakeLibCurl libcurl("get response", 416); CurlHttpRequest http_request(&libcurl); const string initialScratch = "abcde"; std::vector<char> scratch; scratch.insert(scratch.end(), initialScratch.begin(), initialScratch.end()); http_request.SetUri("http: http_request.SetRange(0, 4); http_request.SetResultBufferDirect(scratch.data(), scratch.size()); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ(416, http_request.GetResponseCode()); EXPECT_EQ(0, http_request.GetResultBufferDirectBytesTransferred()); EXPECT_EQ("get r", string(scratch.begin(), scratch.end())); } TEST(CurlHttpRequestTest, GetRequest_Empty) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.resize(0); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(scratch.empty()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_RangeOutOfBound) { FakeLibCurl libcurl("get response", 416); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(scratch.empty()); EXPECT_EQ(416, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_503) { FakeLibCurl libcurl("get response", 503); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: http_request.SetResultBuffer(&scratch); const auto& status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: HTTP response code 503 with body " "'get response'", status.message()); } TEST(CurlHttpRequestTest, GetRequest_HttpCode0) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_OPERATION_TIMEDOUT; libcurl.curl_easy_perform_error_message_ = "Operation timed out"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 28 meaning " "'Timeout was reached', error details: Operation timed out", status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_CouldntResolveHost) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_COULDNT_RESOLVE_HOST; libcurl.curl_easy_perform_error_message_ = "Could not resolve host 'metadata'"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 6 meaning " "'Couldn't resolve host name', error details: Could not resolve host " "'metadata'", status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_SslBadCertfile) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_SSL_CACERT_BADFILE; libcurl.curl_easy_perform_error_message_ = "error setting certificate verify locations:"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 77 meaning " "'Problem with the SSL CA cert (path? access rights?)', error details: " "error setting certificate verify locations:", status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, ResponseHeaders) { FakeLibCurl libcurl( "get response", 200, {"Location: abcd", "Content-Type: text", "unparsable header"}); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("abcd", http_request.GetResponseHeader("Location")); EXPECT_EQ("text", http_request.GetResponseHeader("Content-Type")); EXPECT_EQ("", http_request.GetResponseHeader("Not-Seen-Header")); } TEST(CurlHttpRequestTest, PutRequest_WithBody_FromFile) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); auto content_filename = io::JoinPath(testing::TmpDir(), "content"); std::ofstream content(content_filename, std::ofstream::binary); content << "post body content"; content.close(); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); TF_EXPECT_OK(http_request.SetPutFromFile(content_filename, 0)); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(2, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 17", (*libcurl.headers_)[1]); EXPECT_TRUE(libcurl.is_put_); EXPECT_EQ("post body content", libcurl.posted_content_); std::remove(content_filename.c_str()); } TEST(CurlHttpRequestTest, PutRequest_WithBody_FromFile_NonZeroOffset) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); auto content_filename = io::JoinPath(testing::TmpDir(), "content"); std::ofstream content(content_filename, std::ofstream::binary); content << "post body content"; content.close(); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); TF_EXPECT_OK(http_request.SetPutFromFile(content_filename, 7)); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("dy content", libcurl.posted_content_); std::remove(content_filename.c_str()); } TEST(CurlHttpRequestTest, PutRequest_WithoutBody) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPutEmptyBody(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(3, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 0", (*libcurl.headers_)[1]); EXPECT_EQ("Transfer-Encoding: identity", (*libcurl.headers_)[2]); EXPECT_TRUE(libcurl.is_put_); EXPECT_EQ("", libcurl.posted_content_); } TEST(CurlHttpRequestTest, PostRequest_WithBody_FromMemory) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); string content = "post body content"; http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPostFromBuffer(content.c_str(), content.size()); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(2, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 17", (*libcurl.headers_)[1]); EXPECT_TRUE(libcurl.is_post_); EXPECT_EQ("post body content", libcurl.posted_content_); } TEST(CurlHttpRequestTest, PostRequest_WithoutBody) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPostEmptyBody(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(3, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 0", (*libcurl.headers_)[1]); EXPECT_EQ("Transfer-Encoding: identity", (*libcurl.headers_)[2]); EXPECT_TRUE(libcurl.is_post_); EXPECT_EQ("", libcurl.posted_content_); } TEST(CurlHttpRequestTest, DeleteRequest) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetDeleteRequest(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("DELETE", libcurl.custom_request_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_NoUri) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); ASSERT_DEATH((void)http_request.Send(), "URI has not been set"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_TwoSends) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); ASSERT_DEATH((void)http_request.Send(), "The request has already been sent"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_ReusingAfterSend) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); ASSERT_DEATH(http_request.SetUri("http: "The request has already been sent"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_SettingMethodTwice) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetDeleteRequest(); ASSERT_DEATH(http_request.SetPostEmptyBody(), "HTTP method has been already set"); } TEST(CurlHttpRequestTest, EscapeString) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); const string test_string = "a/b/c"; EXPECT_EQ("a%2Fb%2Fc", http_request.EscapeString(test_string)); } TEST(CurlHttpRequestTest, ErrorReturnsNoResponse) { FakeLibCurl libcurl("get response", 500); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); EXPECT_EQ(error::UNAVAILABLE, http_request.Send().code()); EXPECT_EQ("", string(scratch.begin(), scratch.end())); } TEST(CurlHttpRequestTest, ProgressIsOk) { FakeEnv env; FakeLibCurl libcurl( "test", 200, { std::make_tuple(100, 0) , std::make_tuple(110, 0) , std::make_tuple(200, 100) }, &env); CurlHttpRequest http_request(&libcurl, &env); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); } TEST(CurlHttpRequestTest, ProgressIsStuck) { FakeEnv env; FakeLibCurl libcurl( "test", 200, { std::make_tuple(100, 10) , std::make_tuple(130, 10) , std::make_tuple(170, 10) }, &env); CurlHttpRequest http_request(&libcurl, &env); http_request.SetUri("http: auto status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 42 meaning 'Operation " "was aborted by an application callback', error details: (none)", status.message()); } class TestStats : public HttpRequest::RequestStats { public: ~TestStats() override = default; void RecordRequest(const HttpRequest* request, const string& uri, HttpRequest::RequestMethod method) override { has_recorded_request_ = true; record_request_request_ = request; record_request_uri_ = uri; record_request_method_ = method; } void RecordResponse(const HttpRequest* request, const string& uri, HttpRequest::RequestMethod method, const Status& result) override { has_recorded_response_ = true; record_response_request_ = request; record_response_uri_ = uri; record_response_method_ = method; record_response_result_ = result; } const HttpRequest* record_request_request_ = nullptr; string record_request_uri_ = "http: HttpRequest::RequestMethod record_request_method_ = HttpRequest::RequestMethod::kGet; const HttpRequest* record_response_request_ = nullptr; string record_response_uri_ = "http: HttpRequest::RequestMethod record_response_method_ = HttpRequest::RequestMethod::kGet; Status record_response_result_; bool has_recorded_request_ = false; bool has_recorded_response_ = false; }; class StatsTestFakeLibCurl : public FakeLibCurl { public: StatsTestFakeLibCurl(TestStats* stats, const string& response_content, uint64 response_code) : FakeLibCurl(response_content, response_code), stats_(stats) {} CURLcode curl_easy_perform(CURL* curl) override { CHECK(!performed_request_); performed_request_ = true; stats_had_recorded_request_ = stats_->has_recorded_request_; stats_had_recorded_response_ = stats_->has_recorded_response_; return FakeLibCurl::curl_easy_perform(curl); }; TestStats* stats_; bool performed_request_ = false; bool stats_had_recorded_request_; bool stats_had_recorded_response_; }; TEST(CurlHttpRequestTest, StatsGetSuccessful) { TestStats stats; StatsTestFakeLibCurl libcurl(&stats, "get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_response_method_); TF_EXPECT_OK(stats.record_response_result_); EXPECT_TRUE(libcurl.performed_request_); EXPECT_TRUE(libcurl.stats_had_recorded_request_); EXPECT_FALSE(libcurl.stats_had_recorded_response_); } TEST(CurlHttpRequestTest, StatsGetNotFound) { TestStats stats; StatsTestFakeLibCurl libcurl(&stats, "get other response", 404); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); Status s = http_request.Send(); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_response_method_); EXPECT_TRUE(absl::IsNotFound(stats.record_response_result_)); EXPECT_EQ(s, stats.record_response_result_); EXPECT_TRUE(libcurl.performed_request_); EXPECT_TRUE(libcurl.stats_had_recorded_request_); EXPECT_FALSE(libcurl.stats_had_recorded_response_); } TEST(CurlHttpRequestTest, StatsPost) { TestStats stats; FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetRequestStats(&stats); string content = "post body content"; http_request.SetUri("http: http_request.SetPostFromBuffer(content.c_str(), content.size()); TF_EXPECT_OK(http_request.Send()); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpR
2,276
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_TIME_UTIL_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_TIME_UTIL_H_ #include "tsl/platform/status.h" namespace tsl { Status ParseRfc3339Time(const string& time, int64_t* mtime_nsec); } #endif #include "tsl/platform/cloud/time_util.h" #include <time.h> #include <cmath> #include <cstdio> #include <ctime> #ifdef _WIN32 #define timegm _mkgmtime #endif #include "tsl/platform/errors.h" namespace tsl { namespace { constexpr int64_t kNanosecondsPerSecond = 1000 * 1000 * 1000; } Status ParseRfc3339Time(const string& time, int64_t* mtime_nsec) { tm parsed{0}; float seconds; if (sscanf(time.c_str(), "%4d-%2d-%2dT%2d:%2d:%fZ", &(parsed.tm_year), &(parsed.tm_mon), &(parsed.tm_mday), &(parsed.tm_hour), &(parsed.tm_min), &seconds) != 6) { return errors::Internal( strings::StrCat("Unrecognized RFC 3339 time format: ", time)); } const int int_seconds = std::floor(seconds); parsed.tm_year -= 1900; parsed.tm_mon -= 1; parsed.tm_sec = int_seconds; *mtime_nsec = timegm(&parsed) * kNanosecondsPerSecond + static_cast<int64_t>(std::floor((seconds - int_seconds) * kNanosecondsPerSecond)); return OkStatus(); } }
#include "tsl/platform/cloud/time_util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace tsl { TEST(TimeUtil, ParseRfc3339Time) { int64_t mtime_nsec; TF_EXPECT_OK(ParseRfc3339Time("2016-04-29T23:15:24.896Z", &mtime_nsec)); EXPECT_NEAR(1461971724896, mtime_nsec / 1000 / 1000, 1); } TEST(TimeUtil, ParseRfc3339Time_ParseError) { int64_t mtime_nsec; EXPECT_EQ("Unrecognized RFC 3339 time format: 2016-04-29", ParseRfc3339Time("2016-04-29", &mtime_nsec).message()); } }
2,277
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_GOOGLE_AUTH_PROVIDER_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_GOOGLE_AUTH_PROVIDER_H_ #include <memory> #include "tsl/platform/cloud/auth_provider.h" #include "tsl/platform/cloud/compute_engine_metadata_client.h" #include "tsl/platform/cloud/oauth_client.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tsl { class GoogleAuthProvider : public AuthProvider { public: GoogleAuthProvider(std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client); explicit GoogleAuthProvider(std::unique_ptr<OAuthClient> oauth_client, std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client, Env* env); virtual ~GoogleAuthProvider() {} Status GetToken(string* token) override; private: Status GetTokenFromFiles() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status GetTokenFromGce() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status GetTokenForTesting() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); std::unique_ptr<OAuthClient> oauth_client_; std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client_; Env* env_; mutex mu_; string current_token_ TF_GUARDED_BY(mu_); uint64 expiration_timestamp_sec_ TF_GUARDED_BY(mu_) = 0; GoogleAuthProvider(const GoogleAuthProvider&) = delete; void operator=(const GoogleAuthProvider&) = delete; }; } #endif #include "tsl/platform/cloud/google_auth_provider.h" #ifndef _WIN32 #include <pwd.h> #include <unistd.h> #else #include <sys/types.h> #endif #include <fstream> #include <utility> #include "absl/strings/match.h" #include "json/json.h" #include "tsl/platform/base64.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" namespace tsl { namespace { constexpr char kGoogleApplicationCredentials[] = "GOOGLE_APPLICATION_CREDENTIALS"; constexpr char kGoogleAuthTokenForTesting[] = "GOOGLE_AUTH_TOKEN_FOR_TESTING"; constexpr char kCloudSdkConfig[] = "CLOUDSDK_CONFIG"; constexpr char kNoGceCheck[] = "NO_GCE_CHECK"; constexpr char kGCloudConfigFolder[] = ".config/gcloud/"; constexpr char kWellKnownCredentialsFile[] = "application_default_credentials.json"; constexpr int kExpirationTimeMarginSec = 60; constexpr char kOAuthV3Url[] = "https: constexpr char kOAuthV4Url[] = "https: constexpr char kGceTokenPath[] = "instance/service-accounts/default/token"; constexpr char kOAuthScope[] = "https: bool IsFile(const string& filename) { std::ifstream fstream(filename.c_str()); return fstream.good(); } Status GetEnvironmentVariableFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } const char* result = std::getenv(kGoogleApplicationCredentials); if (!result || !IsFile(result)) { return errors::NotFound(strings::StrCat("$", kGoogleApplicationCredentials, " is not set or corrupt.")); } *filename = result; return OkStatus(); } Status GetWellKnownFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } string config_dir; const char* config_dir_override = std::getenv(kCloudSdkConfig); if (config_dir_override) { config_dir = config_dir_override; } else { const char* home_dir = std::getenv("HOME"); if (!home_dir) { return errors::FailedPrecondition("Could not read $HOME."); } config_dir = io::JoinPath(home_dir, kGCloudConfigFolder); } auto result = io::JoinPath(config_dir, kWellKnownCredentialsFile); if (!IsFile(result)) { return errors::NotFound( "Could not find the credentials file in the standard gcloud location."); } *filename = result; return OkStatus(); } } GoogleAuthProvider::GoogleAuthProvider( std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client) : GoogleAuthProvider(std::unique_ptr<OAuthClient>(new OAuthClient()), std::move(compute_engine_metadata_client), Env::Default()) {} GoogleAuthProvider::GoogleAuthProvider( std::unique_ptr<OAuthClient> oauth_client, std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client, Env* env) : oauth_client_(std::move(oauth_client)), compute_engine_metadata_client_( std::move(compute_engine_metadata_client)), env_(env) {} Status GoogleAuthProvider::GetToken(string* t) { mutex_lock lock(mu_); const uint64 now_sec = env_->NowSeconds(); if (now_sec + kExpirationTimeMarginSec < expiration_timestamp_sec_) { *t = current_token_; return OkStatus(); } if (GetTokenForTesting().ok()) { *t = current_token_; return OkStatus(); } auto token_from_files_status = GetTokenFromFiles(); if (token_from_files_status.ok()) { *t = current_token_; return OkStatus(); } char* no_gce_check_var = std::getenv(kNoGceCheck); bool skip_gce_check = no_gce_check_var != nullptr && absl::EqualsIgnoreCase(no_gce_check_var, "true"); Status token_from_gce_status; if (skip_gce_check) { token_from_gce_status = Status(absl::StatusCode::kCancelled, strings::StrCat("GCE check skipped due to presence of $", kNoGceCheck, " environment variable.")); } else { token_from_gce_status = GetTokenFromGce(); } if (token_from_gce_status.ok()) { *t = current_token_; return OkStatus(); } if (skip_gce_check) { LOG(INFO) << "Attempting an empty bearer token since no token was retrieved " << "from files, and GCE metadata check was skipped."; } else { LOG(WARNING) << "All attempts to get a Google authentication bearer token failed, " << "returning an empty token. Retrieving token from files failed with " "\"" << token_from_files_status.ToString() << "\"." << " Retrieving token from GCE failed with \"" << token_from_gce_status.ToString() << "\"."; } *t = ""; if (skip_gce_check) { expiration_timestamp_sec_ = 0; } else { expiration_timestamp_sec_ = UINT64_MAX; } current_token_ = ""; return OkStatus(); } Status GoogleAuthProvider::GetTokenFromFiles() { string credentials_filename; if (!GetEnvironmentVariableFileName(&credentials_filename).ok() && !GetWellKnownFileName(&credentials_filename).ok()) { return errors::NotFound("Could not locate the credentials file."); } Json::Value json; Json::Reader reader; std::ifstream credentials_fstream(credentials_filename); if (!reader.parse(credentials_fstream, json)) { return errors::FailedPrecondition( "Couldn't parse the JSON credentials file."); } if (json.isMember("refresh_token")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromRefreshTokenJson( json, kOAuthV3Url, &current_token_, &expiration_timestamp_sec_)); } else if (json.isMember("private_key")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromServiceAccountJson( json, kOAuthV4Url, kOAuthScope, &current_token_, &expiration_timestamp_sec_)); } else { return errors::FailedPrecondition( "Unexpected content of the JSON credentials file."); } return OkStatus(); } Status GoogleAuthProvider::GetTokenFromGce() { std::vector<char> response_buffer; const uint64 request_timestamp_sec = env_->NowSeconds(); TF_RETURN_IF_ERROR(compute_engine_metadata_client_->GetMetadata( kGceTokenPath, &response_buffer)); StringPiece response = StringPiece(&response_buffer[0], response_buffer.size()); TF_RETURN_IF_ERROR(oauth_client_->ParseOAuthResponse( response, request_timestamp_sec, &current_token_, &expiration_timestamp_sec_)); return OkStatus(); } Status GoogleAuthProvider::GetTokenForTesting() { const char* token = std::getenv(kGoogleAuthTokenForTesting); if (!token) { return errors::NotFound("The env variable for testing was not set."); } expiration_timestamp_sec_ = UINT64_MAX; current_token_ = token; return OkStatus(); } }
#include "tsl/platform/cloud/google_auth_provider.h" #include <stdlib.h> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tsl { namespace { string TestData() { return io::JoinPath(testing::TslSrcRoot(), "platform", "cloud", "testdata"); } class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now; } uint64 now = 10000; }; class FakeOAuthClient : public OAuthClient { public: Status GetTokenFromServiceAccountJson( Json::Value json, StringPiece oauth_server_uri, StringPiece scope, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return OkStatus(); } Status GetTokenFromRefreshTokenJson( Json::Value json, StringPiece oauth_server_uri, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return OkStatus(); } string return_token; uint64 return_expiration_timestamp; Json::Value provided_credentials_json; }; } class GoogleAuthProviderTest : public ::testing::Test { protected: void SetUp() override { ClearEnvVars(); } void TearDown() override { ClearEnvVars(); } void ClearEnvVars() { unsetenv("CLOUDSDK_CONFIG"); unsetenv("GOOGLE_APPLICATION_CREDENTIALS"); unsetenv("GOOGLE_AUTH_TOKEN_FOR_TESTING"); unsetenv("NO_GCE_CHECK"); } }; TEST_F(GoogleAuthProviderTest, EnvironmentVariable_Caching) { setenv("GOOGLE_APPLICATION_CREDENTIALS", io::JoinPath(TestData(), "service_account_credentials.json").c_str(), 1); setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake_key_id", oauth_client->provided_credentials_json.get("private_key_id", "") .asString()); oauth_client->return_token = "new-fake-token"; env.now += 3000; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-token", token); } TEST_F(GoogleAuthProviderTest, GCloudRefreshToken) { setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake-refresh-token", oauth_client->provided_credentials_json.get("refresh_token", "") .asString()); } TEST_F(GoogleAuthProviderTest, RunningOnGCE) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })"), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"new-fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })")}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 3700; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-gce-token", token); } TEST_F(GoogleAuthProviderTest, OverrideForTesting) { setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "tokenForTesting", 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> empty_requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&empty_requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("tokenForTesting", token); } TEST_F(GoogleAuthProviderTest, NothingAvailable) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::NotFound("404"), 404)}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); } TEST_F(GoogleAuthProviderTest, NoGceCheckEnvironmentVariable) { setenv("NO_GCE_CHECK", "True", 1); auto oauth_client = new FakeOAuthClient; FakeEnv env; GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), nullptr, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("NO_GCE_CHECK", "true", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "newToken", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("newToken", token); } }
2,278
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_FILE_SYSTEM_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_FILE_SYSTEM_H_ #include <string> #include <unordered_set> #include <utility> #include <vector> #include "tsl/platform/cloud/auth_provider.h" #include "tsl/platform/cloud/compute_engine_metadata_client.h" #include "tsl/platform/cloud/compute_engine_zone_provider.h" #include "tsl/platform/cloud/expiring_lru_cache.h" #include "tsl/platform/cloud/file_block_cache.h" #include "tsl/platform/cloud/gcs_dns_cache.h" #include "tsl/platform/cloud/gcs_throttle.h" #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/file_system.h" #include "tsl/platform/retrying_file_system.h" #include "tsl/platform/status.h" namespace tsl { class GcsFileSystem; constexpr char kBlockSize[] = "GCS_READ_CACHE_BLOCK_SIZE_MB"; #if defined(LIBTPU_ON_GCE) constexpr size_t kDefaultBlockSize = 512 * 1024 * 1024; #else constexpr size_t kDefaultBlockSize = 64 * 1024 * 1024; #endif constexpr char kMaxCacheSize[] = "GCS_READ_CACHE_MAX_SIZE_MB"; #if defined(LIBTPU_ON_GCE) constexpr size_t kDefaultMaxCacheSize = 163840LL * 1024LL * 1024LL; #else constexpr size_t kDefaultMaxCacheSize = 0; #endif constexpr char kMaxStaleness[] = "GCS_READ_CACHE_MAX_STALENESS"; constexpr uint64 kDefaultMaxStaleness = 0; template <typename T> bool GetEnvVar(const char* varname, bool (*convert)(StringPiece, T*), T* value) { const char* env_value = std::getenv(varname); if (env_value == nullptr) { return false; } return convert(env_value, value); } class GcsStatsInterface { public: virtual void Configure(GcsFileSystem* fs, GcsThrottle* throttle, const FileBlockCache* block_cache) = 0; virtual void RecordBlockLoadRequest(const string& file, size_t offset) = 0; virtual void RecordBlockRetrieved(const string& file, size_t offset, size_t bytes_transferred) = 0; virtual void RecordStatObjectRequest() = 0; virtual HttpRequest::RequestStats* HttpStats() = 0; virtual ~GcsStatsInterface() = default; }; struct UploadSessionHandle { std::string session_uri; bool resumable; }; class GcsFileSystem : public FileSystem { public: struct TimeoutConfig; explicit GcsFileSystem(bool make_default_cache = true); GcsFileSystem(std::unique_ptr<AuthProvider> auth_provider, std::unique_ptr<HttpRequest::Factory> http_request_factory, std::unique_ptr<ZoneProvider> zone_provider, size_t block_size, size_t max_bytes, uint64 max_staleness, uint64 stat_cache_max_age, size_t stat_cache_max_entries, uint64 matching_paths_cache_max_age, size_t matching_paths_cache_max_entries, RetryConfig retry_config, TimeoutConfig timeouts, const std::unordered_set<string>& allowed_locations, std::pair<const string, const string>* additional_header, bool compose_append); TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT; Status NewRandomAccessFile( const string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) override; Status NewWritableFile(const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override; Status NewAppendableFile(const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override; Status NewReadOnlyMemoryRegionFromFile( const string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) override; Status FileExists(const string& fname, TransactionToken* token) override; Status Stat(const string& fname, TransactionToken* token, FileStatistics* stat) override; Status GetChildren(const string& dir, TransactionToken* token, std::vector<string>* result) override; Status GetMatchingPaths(const string& pattern, TransactionToken* token, std::vector<string>* results) override; Status DeleteFile(const string& fname, TransactionToken* token) override; Status CreateDir(const string& dirname, TransactionToken* token) override; Status DeleteDir(const string& dirname, TransactionToken* token) override; Status GetFileSize(const string& fname, TransactionToken* token, uint64* file_size) override; Status RenameFile(const string& src, const string& target, TransactionToken* token) override; Status IsDirectory(const string& fname, TransactionToken* token) override; Status DeleteRecursively(const string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) override; void FlushCaches(TransactionToken* token) override; void SetStats(GcsStatsInterface* stats); void SetCacheStats(FileBlockCacheStatsInterface* cache_stats); size_t block_size() { tf_shared_lock l(block_cache_lock_); return file_block_cache_->block_size(); } size_t max_bytes() { tf_shared_lock l(block_cache_lock_); return file_block_cache_->max_bytes(); } uint64 max_staleness() { tf_shared_lock l(block_cache_lock_); return file_block_cache_->max_staleness(); } TimeoutConfig timeouts() const { return timeouts_; } std::unordered_set<string> allowed_locations() const { return allowed_locations_; } bool compose_append() const { return compose_append_; } string additional_header_name() const { return additional_header_ ? additional_header_->first : ""; } string additional_header_value() const { return additional_header_ ? additional_header_->second : ""; } uint64 stat_cache_max_age() const { return stat_cache_->max_age(); } size_t stat_cache_max_entries() const { return stat_cache_->max_entries(); } uint64 matching_paths_cache_max_age() const { return matching_paths_cache_->max_age(); } size_t matching_paths_cache_max_entries() const { return matching_paths_cache_->max_entries(); } struct TimeoutConfig { uint32 connect = 120; uint32 idle = 60; uint32 metadata = 3600; uint32 read = 3600; uint32 write = 3600; TimeoutConfig() {} TimeoutConfig(uint32 connect, uint32 idle, uint32 metadata, uint32 read, uint32 write) : connect(connect), idle(idle), metadata(metadata), read(read), write(write) {} }; Status CreateHttpRequest(std::unique_ptr<HttpRequest>* request); void SetAuthProvider(std::unique_ptr<AuthProvider> auth_provider); void ResetFileBlockCache(size_t block_size_bytes, size_t max_bytes, uint64 max_staleness_secs); protected: virtual std::unique_ptr<FileBlockCache> MakeFileBlockCache( size_t block_size, size_t max_bytes, uint64 max_staleness); virtual Status LoadBufferFromGCS(const string& fname, size_t offset, size_t n, char* buffer, size_t* bytes_transferred); virtual Status CreateNewUploadSession(uint64 start_offset, const std::string& object_to_upload, const std::string& bucket, uint64 file_size, const std::string& gcs_path, UploadSessionHandle* session_handle); virtual Status UploadToSession(const std::string& session_uri, uint64 start_offset, uint64 already_uploaded, const std::string& tmp_content_filename, uint64 file_size, const std::string& file_path); virtual Status RequestUploadSessionStatus(const string& session_uri, uint64 file_size, const std::string& gcs_path, bool* completed, uint64* uploaded); Status ParseGcsPathForScheme(StringPiece fname, string scheme, bool empty_object_ok, string* bucket, string* object); virtual Status ParseGcsPath(StringPiece fname, bool empty_object_ok, string* bucket, string* object); std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client_; TimeoutConfig timeouts_; RetryConfig retry_config_; private: struct GcsFileStat { FileStatistics base; int64_t generation_number = 0; }; Status BucketExists(const string& bucket, bool* result); Status GetBucketLocation(const string& bucket, string* location); Status CheckBucketLocationConstraint(const string& bucket); Status GetBucketMetadata(const string& bucket, std::vector<char>* result_buffer); Status ObjectExists(const string& fname, const string& bucket, const string& object, bool* result); Status FolderExists(const string& dirname, bool* result); Status GetChildrenBounded(const string& dir, uint64 max_results, std::vector<string>* result, bool recursively, bool include_self_directory_marker); Status StatForObject(const string& fname, const string& bucket, const string& object, GcsFileStat* stat); Status UncachedStatForObject(const string& fname, const string& bucket, const string& object, GcsFileStat* stat); Status RenameObject(const string& src, const string& target); void ClearFileCaches(const string& fname); mutex mu_; std::unique_ptr<AuthProvider> auth_provider_ TF_GUARDED_BY(mu_); std::shared_ptr<HttpRequest::Factory> http_request_factory_; std::unique_ptr<ZoneProvider> zone_provider_; uint64 block_size_; mutex block_cache_lock_; std::unique_ptr<FileBlockCache> file_block_cache_ TF_GUARDED_BY(block_cache_lock_); bool cache_enabled_; std::unique_ptr<GcsDnsCache> dns_cache_; GcsThrottle throttle_; using StatCache = ExpiringLRUCache<GcsFileStat>; std::unique_ptr<StatCache> stat_cache_; using MatchingPathsCache = ExpiringLRUCache<std::vector<string>>; std::unique_ptr<MatchingPathsCache> matching_paths_cache_; using BucketLocationCache = ExpiringLRUCache<string>; std::unique_ptr<BucketLocationCache> bucket_location_cache_; std::unordered_set<string> allowed_locations_; bool compose_append_; GcsStatsInterface* stats_ = nullptr; std::unique_ptr<std::pair<const string, const string>> additional_header_; GcsFileSystem(const GcsFileSystem&) = delete; void operator=(const GcsFileSystem&) = delete; }; class RetryingGcsFileSystem : public RetryingFileSystem<GcsFileSystem> { public: RetryingGcsFileSystem(); }; } #endif #include "tsl/platform/cloud/gcs_file_system.h" #include <stdio.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <fstream> #include <functional> #include <string> #include <utility> #include <vector> #include "tsl/platform/file_statistics.h" #include "tsl/platform/strcat.h" #ifdef _WIN32 #include <io.h> #endif #include "absl/base/macros.h" #include "json/json.h" #include "tsl/platform/cloud/curl_http_request.h" #include "tsl/platform/cloud/file_block_cache.h" #include "tsl/platform/cloud/google_auth_provider.h" #include "tsl/platform/cloud/ram_file_block_cache.h" #include "tsl/platform/cloud/time_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numbers.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/str_util.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/thread_annotations.h" #include "tsl/profiler/lib/traceme.h" #ifdef _WIN32 #ifdef DeleteFile #undef DeleteFile #endif #endif namespace tsl { namespace { constexpr char kGcsUriBase[] = "https: constexpr char kGcsUploadUriBase[] = "https: constexpr char kStorageHost[] = "storage.googleapis.com"; constexpr char kBucketMetadataLocationKey[] = "location"; constexpr size_t kReadAppendableFileBufferSize = 1024 * 1024; constexpr int kGetChildrenDefaultPageSize = 1000; constexpr uint64 HTTP_CODE_RESUME_INCOMPLETE = 308; constexpr uint64 HTTP_CODE_PRECONDITION_FAILED = 412; ABSL_DEPRECATED("Use GCS_READ_CACHE_BLOCK_SIZE_MB instead.") constexpr char kReadaheadBufferSize[] = "GCS_READAHEAD_BUFFER_SIZE_BYTES"; constexpr char kStatCacheMaxAge[] = "GCS_STAT_CACHE_MAX_AGE"; constexpr uint64 kStatCacheDefaultMaxAge = 5; constexpr char kStatCacheMaxEntries[] = "GCS_STAT_CACHE_MAX_ENTRIES"; constexpr size_t kStatCacheDefaultMaxEntries = 1024; constexpr char kMatchingPathsCacheMaxAge[] = "GCS_MATCHING_PATHS_CACHE_MAX_AGE"; constexpr uint64 kMatchingPathsCacheDefaultMaxAge = 0; constexpr char kMatchingPathsCacheMaxEntries[] = "GCS_MATCHING_PATHS_CACHE_MAX_ENTRIES"; constexpr size_t kMatchingPathsCacheDefaultMaxEntries = 1024; constexpr size_t kBucketLocationCacheMaxEntries = 10; constexpr size_t kCacheNeverExpire = std::numeric_limits<uint64>::max(); const FileStatistics DIRECTORY_STAT(0, 0, true); constexpr char kResolveCacheSecs[] = "GCS_RESOLVE_REFRESH_SECS"; constexpr char kRequestConnectionTimeout[] = "GCS_REQUEST_CONNECTION_TIMEOUT_SECS"; constexpr char kRequestIdleTimeout[] = "GCS_REQUEST_IDLE_TIMEOUT_SECS"; constexpr char kMetadataRequestTimeout[] = "GCS_METADATA_REQUEST_TIMEOUT_SECS"; constexpr char kReadRequestTimeout[] = "GCS_READ_REQUEST_TIMEOUT_SECS"; constexpr char kWriteRequestTimeout[] = "GCS_WRITE_REQUEST_TIMEOUT_SECS"; constexpr char kAdditionalRequestHeader[] = "GCS_ADDITIONAL_REQUEST_HEADER"; constexpr char kThrottleRate[] = "GCS_THROTTLE_TOKEN_RATE"; constexpr char kThrottleBucket[] = "GCS_THROTTLE_BUCKET_SIZE"; constexpr char kTokensPerRequest[] = "GCS_TOKENS_PER_REQUEST"; constexpr char kInitialTokens[] = "GCS_INITIAL_TOKENS"; constexpr char kRetryConfigInitialDelayTimeUs[] = "GCS_RETRY_CONFIG_INIT_DELAY_TIME_US"; constexpr char kRetryConfigMaxDelayTimeUs[] = "GCS_RETRY_CONFIG_MAX_DELAY_TIME_US"; constexpr char kRetryConfigMaxRetries[] = "GCS_RETRY_CONFIG_MAX_RETRIES"; constexpr char kAllowedBucketLocations[] = "GCS_ALLOWED_BUCKET_LOCATIONS"; constexpr char kDetectZoneSentinelValue[] = "auto"; constexpr char kAppendMode[] = "GCS_APPEND_MODE"; constexpr char kComposeAppend[] = "compose"; Status GetTmpFilename(string* filename) { *filename = io::GetTempFilename(""); return OkStatus(); } string MaybeAppendSlash(const string& name) { if (name.empty()) { return "/"; } if (name.back() != '/') { return strings::StrCat(name, "/"); } return name; } string JoinGcsPath(const string& path, const string& subpath) { return strings::StrCat(MaybeAppendSlash(path), subpath); } std::set<string> AddAllSubpaths(const std::vector<string>& paths) { std::set<string> result; result.insert(paths.begin(), paths.end()); for (const string& path : paths) { StringPiece subpath = io::Dirname(path); while (!(subpath.empty() || subpath == "/")) { result.emplace(string(subpath)); subpath = io::Dirname(subpath); } } return result; } Status ParseJson(StringPiece json, Json::Value* result) { Json::Reader reader; if (!reader.parse(json.data(), json.data() + json.size(), *result)) { return errors::Internal("Couldn't parse JSON response from GCS."); } return OkStatus(); } Status ParseJson(const std::vector<char>& json, Json::Value* result) { return ParseJson(StringPiece{json.data(), json.size()}, result); } Status GetValue(const Json::Value& parent, const char* name, Json::Value* result) { *result = parent.get(name, Json::Value::null); if (result->isNull()) { return errors::Internal("The field '", name, "' was expected in the JSON response."); } return OkStatus(); } Status GetStringValue(const Json::Value& parent, const char* name, string* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (!result_value.isString()) { return errors::Internal( "The field '", name, "' in the JSON response was expected to be a string."); } *result = result_value.asString(); return OkStatus(); } Status GetInt64Value(const Json::Value& parent, const char* name, int64_t* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (result_value.isNumeric()) { *result = result_value.asInt64(); return OkStatus(); } if (result_value.isString() && strings::safe_strto64(result_value.asCString(), result)) { return OkStatus(); } return errors::Internal( "The field '", name, "' in the JSON response was expected to be a number."); } Status GetBoolValue(const Json::Value& parent, const char* name, bool* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (!result_value.isBool()) { return errors::Internal( "The field '", name, "' in the JSON response was expected to be a boolean."); } *result = result_value.asBool(); return OkStatus(); } RetryConfig GetGcsRetryConfig() { RetryConfig retryConfig( 1000 * 1000, 32 * 1000 * 1000, 10); uint64 init_delay_time_us; if (GetEnvVar(kRetryConfigInitialDelayTimeUs, strings::safe_strtou64, &init_delay_time_us)) { retryConfig.init_delay_time_us = init_delay_time_us; } uint64 max_delay_time_us; if (GetEnvVar(kRetryConfigMaxDelayTimeUs, strings::safe_strtou64, &max_delay_time_us)) { retryConfig.max_delay_time_us = max_delay_time_us; } uint32 max_retries; if (GetEnvVar(kRetryConfigMaxRetries, strings::safe_strtou32, &max_retries)) { retryConfig.max_retries = max_retries; } VLOG(1) << "GCS RetryConfig: " << "init_delay_time_us = " << retryConfig.init_delay_time_us << " ; " << "max_delay_time_us = " << retryConfig.max_delay_time_us << " ; " << "max_retries = " << retryConfig.max_retries; return retryConfig; } class GcsRandomAccessFile : public RandomAccessFile { public: using ReadFn = std::function<Status(const string& filename, uint64 offset, size_t n, StringPiece* result, char* scratch)>; GcsRandomAccessFile(const string& filename, ReadFn read_fn) : filename_(filename), read_fn_(std::move(read_fn)) {} Status Name(StringPiece* result) const override { *result = filename_; return OkStatus(); } Status Read(uint64 offset, size_t n, StringPiece* result, char* scratch) const override { return read_fn_(filename_, offset, n, result, scratch); } private: const string filename_; const ReadFn read_fn_; }; class BufferedGcsRandomAccessFile : public RandomAccessFile { public: using ReadFn = std::function<Status(const string& filename, uint64 offset, size_t n, StringPiece* result, char* scratch)>; BufferedGcsRandomAccessFile(const string& filename, uint64 buffer_size, ReadFn read_fn) : filename_(filename),
#include "tsl/platform/cloud/gcs_file_system.h" #include <fstream> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #ifdef PLATFORM_WINDOWS #undef DeleteFile #endif namespace tsl { namespace { static GcsFileSystem::TimeoutConfig kTestTimeoutConfig(5, 1, 10, 20, 30); static RetryConfig kTestRetryConfig(0 ); static std::unordered_set<string>* kAllowedLocationsDefault = new std::unordered_set<string>(); static std::unordered_set<string>* kAllowedLocationsAuto = new std::unordered_set<string>({"auto"}); class FakeAuthProvider : public AuthProvider { public: Status GetToken(string* token) override { *token = "fake_token"; return OkStatus(); } }; class FakeZoneProvider : public ZoneProvider { public: Status GetZone(string* zone) override { *zone = "us-east1-b"; return OkStatus(); } }; TEST(GcsFileSystemTest, NewRandomAccessFile_NoBlockCache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-5\n" "Timeouts: 5 1 20\n", "012345"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 6-11\n" "Timeouts: 5 1 20\n", "6789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; StringPiece result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("012345", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("6789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered) { std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 10-19\n" "Timeouts: 5 1 20\n", ""), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; StringPiece result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("012345", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("6789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_Errors) { std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "Server Not", errors::Unavailable("important HTTP error 308"), nullptr, {}, 308), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 6-15\n" "Timeouts: 5 1 20\n", "123"), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; StringPiece result; EXPECT_TRUE( errors::IsUnavailable(file->Read(0, sizeof(scratch), &result, scratch))); EXPECT_EQ("", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("123", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_ReadAtEOF) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 10-19\n" "Timeouts: 5 1 20\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; StringPiece result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_CachedOutOfRange) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[5]; StringPiece result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("01234", result); TF_EXPECT_OK(file->Read(4, sizeof(scratch), &result, scratch)); EXPECT_EQ("45678", result); EXPECT_TRUE( errors::IsOutOfRange(file->Read(5, sizeof(scratch), &result, scratch))); EXPECT_EQ("5678", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_CachedNotSequential) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 1-10\n" "Timeouts: 5 1 20\n", "12345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[5]; StringPiece result; TF_EXPECT_OK(file->Read(1, sizeof(scratch), &result, scratch)); EXPECT_EQ("12345", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("01234", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_Growing) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 9-18\n" "Timeouts: 5 1 20\n", "9")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; StringPiece result; EXPECT_TRUE( errors::IsOutOfRange(file->Read(0, sizeof(scratch), &result, scratch))); EXPECT_EQ("012345678", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_ReadBackwards) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 5-14\n" "Timeouts: 5 1 20\n", "56789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: StringPiece filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; StringPiece result; EXPECT_TRUE( errors::IsOutOfRange(file->Read(5, sizeof(scratch), &result, scratch))); EXPECT_EQ("56789", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintInSameLocation) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintCaching) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; string bucket = "gs: string another_bucket = "gs: TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(another_bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(another_bucket, nullptr, &file)); fs.FlushCaches(nullptr); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintInDifferentLocation) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"BARFOO" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; EXPECT_EQ( errors::FailedPrecondition( "Bucket 'bucket' is in 'barfoo' location, allowed locations " "are: (us-east1)."), fs.NewRandomAccessFile("gs: } TEST(GcsFileSystemTest, NewRandomAccessFile_NoBlockCache_DifferentN) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-2\n" "Timeouts: 5 1 20\n", "012"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 3-12\n" "Timeouts: 5 1 20\n", "3456789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char small_scratch[3]; StringPiece result; TF_EXPECT_OK(file->Read(0, sizeof(small_scratch), &result, small_scratch)); EXPECT_EQ("012", result); char large_scratch[10]; EXPECT_TRUE(errors::IsOutOfRange(file->Read( sizeof(small_scratch), sizeof(large_scratch), &result, large_scratch))); EXPECT_EQ("3456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 9-17\n" "Timeouts: 5 1 20\n", "9abcde"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 18-26\n" "Timeouts: 5 1 20\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 9 , 18 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; StringPiece result; { std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK(fs.NewRandomAccessFile("gs: nullptr, &file)); scratch[5] = 'x'; TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); EXPECT_EQ(scratch[5], 'x'); TF_EXPECT_OK(file->Read(4, 4, &result, scratch)); EXPECT_EQ("4567", result); TF_EXPECT_OK(file->Read(6, 5, &result, scratch)); EXPECT_EQ("6789a", result); EXPECT_TRUE(errors::IsOutOfRange(file->Read(6, 10, &result, scratch))); EXPECT_EQ("6789abcde", result); EXPECT_TRUE(errors::IsOutOfRange(file->Read(20, 10, &result, scratch))); EXPECT_TRUE(result.empty()); TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); } EXPECT_EQ("0123", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_Flush) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 9 , 18 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; StringPiece result; std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: scratch[5] = 'x'; TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); EXPECT_EQ(scratch[5], 'x'); fs.FlushCaches(nullptr); TF_EXPECT_OK(file->Read(4, 4, &result, scratch)); EXPECT_EQ("4567", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_MaxStaleness) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "object?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"16\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Range: 8-15\n" "Timeouts: 5 1 20\n", "89abcdef")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 8 , 16 , 3600 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; StringPiece result; for (int i = 0; i < 10; i++) { std::unique_ptr<RandomAccessFile> file1; std::unique_ptr<RandomAccessFile> file2; TF_EXPECT_OK(fs.NewRandomAccessFile("gs: TF_EXPECT_OK(fs.NewRandomAccessFile("gs: TF_EXPECT_OK(file1->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK(file2->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK(file2->Read(8, 8, &result, scratch)); EXPECT_EQ("89abcdef", result); TF_EXPECT_OK(file1->Read(8, 8, &result, scratch)); EXPECT_EQ("89abcdef", result); } } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_FileSignatureChanges) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"5\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpR
2,279
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_DNS_CACHE_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_GCS_DNS_CACHE_H_ #include <random> #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/env.h" namespace tsl { const int64_t kDefaultRefreshRateSecs = 60; class GcsDnsCache { public: GcsDnsCache() : GcsDnsCache(kDefaultRefreshRateSecs) {} GcsDnsCache(int64_t refresh_rate_secs) : GcsDnsCache(Env::Default(), refresh_rate_secs) {} GcsDnsCache(Env* env, int64_t refresh_rate_secs); ~GcsDnsCache() { mutex_lock l(mu_); cancelled_ = true; cond_var_.notify_one(); } void AnnotateRequest(HttpRequest* request); private: static std::vector<string> ResolveName(const string& name); static std::vector<std::vector<string>> ResolveNames( const std::vector<string>& names); void WorkerThread(); friend class GcsDnsCacheTest; mutex mu_; Env* env_; condition_variable cond_var_; std::default_random_engine random_ TF_GUARDED_BY(mu_); bool started_ TF_GUARDED_BY(mu_) = false; bool cancelled_ TF_GUARDED_BY(mu_) = false; std::unique_ptr<Thread> worker_ TF_GUARDED_BY(mu_); const int64_t refresh_rate_secs_; std::vector<std::vector<string>> addresses_ TF_GUARDED_BY(mu_); }; } #endif #include "tsl/platform/cloud/gcs_dns_cache.h" #include <cstring> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tsl/platform/errors.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status.h" #ifndef _WIN32 #include <arpa/inet.h> #include <netdb.h> #include <netinet/in.h> #include <sys/socket.h> #else #include <Windows.h> #include <winsock2.h> #include <ws2tcpip.h> #endif #include <sys/types.h> namespace tsl { namespace { const std::vector<string>& kCachedDomainNames = *new std::vector<string>{"www.googleapis.com", "storage.googleapis.com"}; inline void print_getaddrinfo_error(const string& name, Status return_status) { LOG(ERROR) << "Error resolving " << name << ": " << return_status; } template <typename T> const T& SelectRandomItemUniform(std::default_random_engine* random, const std::vector<T>& items) { CHECK_GT(items.size(), 0); std::uniform_int_distribution<size_t> distribution(0u, items.size() - 1u); size_t choice_index = distribution(*random); return items[choice_index]; } } GcsDnsCache::GcsDnsCache(Env* env, int64_t refresh_rate_secs) : env_(env), refresh_rate_secs_(refresh_rate_secs) {} void GcsDnsCache::AnnotateRequest(HttpRequest* request) { mutex_lock l(mu_); if (!started_) { VLOG(1) << "Starting GCS DNS cache."; DCHECK(!worker_) << "Worker thread already exists!"; addresses_ = ResolveNames(kCachedDomainNames); worker_.reset(env_->StartThread({}, "gcs_dns_worker", [this]() { return WorkerThread(); })); started_ = true; } CHECK_EQ(kCachedDomainNames.size(), addresses_.size()); for (size_t i = 0; i < kCachedDomainNames.size(); ++i) { const string& name = kCachedDomainNames[i]; const std::vector<string>& addresses = addresses_[i]; if (!addresses.empty()) { const string& chosen_address = SelectRandomItemUniform(&random_, addresses); request->AddResolveOverride(name, 443, chosen_address); VLOG(1) << "Annotated DNS mapping: " << name << " --> " << chosen_address; } else { LOG(WARNING) << "No IP addresses available for " << name; } } } std::vector<string> GcsDnsCache::ResolveName(const string& name) { VLOG(1) << "Resolving DNS name: " << name; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; addrinfo* result = nullptr; RetryConfig retryConfig( 5000, 50 * 1000 * 5000, 5); const Status getaddrinfo_status = RetryingUtils::CallWithRetries( [&name, &hints, &result]() { int return_code = getaddrinfo(name.c_str(), nullptr, &hints, &result); absl::Status return_status; switch (return_code) { case 0: return_status = OkStatus(); break; #ifndef _WIN32 case EAI_ADDRFAMILY: case EAI_SERVICE: case EAI_SOCKTYPE: case EAI_NONAME: return_status = absl::FailedPreconditionError( absl::StrCat("System in invalid state for getaddrinfo call: ", gai_strerror(return_code))); break; case EAI_AGAIN: case EAI_NODATA: return_status = absl::UnavailableError(absl::StrCat( "Resolving ", name, " is temporarily unavailable")); break; case EAI_BADFLAGS: case EAI_FAMILY: return_status = absl::InvalidArgumentError(absl::StrCat( "Bad arguments for getaddrinfo: ", gai_strerror(return_code))); break; case EAI_FAIL: return_status = absl::NotFoundError( absl::StrCat("Permanent failure resolving ", name, ": ", gai_strerror(return_code))); break; case EAI_MEMORY: return_status = absl::ResourceExhaustedError("Out of memory"); break; case EAI_SYSTEM: default: return_status = absl::UnknownError(strerror(return_code)); #else case WSATYPE_NOT_FOUND: case WSAESOCKTNOSUPPORT: case WSAHOST_NOT_FOUND: return_status = absl::FailedPreconditionError( absl::StrCat("System in invalid state for getaddrinfo call: ", gai_strerror(return_code))); break; case WSATRY_AGAIN: return_status = absl::UnavailableError(absl::StrCat( "Resolving ", name, " is temporarily unavailable")); break; case WSAEINVAL: case WSAEAFNOSUPPORT: return_status = absl::InvalidArgumentError(absl::StrCat( "Bad arguments for getaddrinfo: ", gai_strerror(return_code))); break; case WSANO_RECOVERY: return_status = absl::NotFoundError( absl::StrCat("Permanent failure resolving ", name, ": ", gai_strerror(return_code))); break; case WSA_NOT_ENOUGH_MEMORY: return_status = absl::ResourceExhaustedError("Out of memory"); break; default: return_status = absl::UnknownError(strerror(return_code)); #endif } return Status(return_status); }, retryConfig); std::vector<string> output; if (getaddrinfo_status.ok()) { for (const addrinfo* i = result; i != nullptr; i = i->ai_next) { if (i->ai_family != AF_INET || i->ai_addr->sa_family != AF_INET) { LOG(WARNING) << "Non-IPv4 address returned. ai_family: " << i->ai_family << ". sa_family: " << i->ai_addr->sa_family << "."; continue; } char buf[INET_ADDRSTRLEN]; void* address_ptr = &(reinterpret_cast<sockaddr_in*>(i->ai_addr)->sin_addr); const char* formatted = nullptr; if ((formatted = inet_ntop(i->ai_addr->sa_family, address_ptr, buf, INET_ADDRSTRLEN)) == nullptr) { LOG(ERROR) << "Error converting response to IP address for " << name << ": " << strerror(errno); } else { output.emplace_back(buf); VLOG(1) << "... address: " << buf; } } } else { print_getaddrinfo_error(name, getaddrinfo_status); } if (result != nullptr) { freeaddrinfo(result); } return output; } std::vector<std::vector<string>> GcsDnsCache::ResolveNames( const std::vector<string>& names) { std::vector<std::vector<string>> all_addresses; all_addresses.reserve(names.size()); for (const string& name : names) { all_addresses.push_back(ResolveName(name)); } return all_addresses; } void GcsDnsCache::WorkerThread() { while (true) { { mutex_lock l(mu_); if (cancelled_) return; cond_var_.wait_for(l, std::chrono::seconds(refresh_rate_secs_)); if (cancelled_) return; } auto new_addresses = ResolveNames(kCachedDomainNames); { mutex_lock l(mu_); addresses_.swap(new_addresses); } } } }
#include "tsl/platform/cloud/gcs_dns_cache.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { class TestHttpRequest : public HttpRequest { public: void SetUri(const string& uri) override {} void SetRange(uint64 start, uint64 end) override {} void AddHeader(const string& name, const string& value) override {} void AddResolveOverride(const string& hostname, int64_t port, const string& ip_addr) override { EXPECT_EQ(port, 443) << "Unexpected port set for hostname: " << hostname; auto itr = resolve_overrides_.find(hostname); EXPECT_EQ(itr, resolve_overrides_.end()) << "Hostname " << hostname << "already in map: " << itr->second; resolve_overrides_.insert( std::map<string, string>::value_type(hostname, ip_addr)); } void AddAuthBearerHeader(const string& auth_token) override {} void SetRequestStats(HttpRequest::RequestStats* stats) override {} void SetDeleteRequest() override {} Status SetPutFromFile(const string& body_filepath, size_t offset) override { return OkStatus(); } void SetPutEmptyBody() override {} void SetPostFromBuffer(const char* buffer, size_t size) override {} void SetPostEmptyBody() override {} void SetResultBuffer(std::vector<char>* out_buffer) override {} void SetResultBufferDirect(char* buffer, size_t size) override {} size_t GetResultBufferDirectBytesTransferred() override { return 0; } string GetResponseHeader(const string& name) const override { return ""; } uint64 GetResponseCode() const override { return 0; } Status Send() override { return OkStatus(); } string EscapeString(const string& str) override { return ""; } void SetTimeouts(uint32 connection, uint32 inactivity, uint32 total) override {} std::map<string, string> resolve_overrides_; }; class GcsDnsCacheTest : public ::testing::Test { protected: void ResolveNameTest() { auto response = GcsDnsCache::ResolveName("www.googleapis.com"); EXPECT_LT(1, response.size()) << absl::StrJoin(response, ", "); } void AnnotateRequestTest() { GcsDnsCache d; { mutex_lock l(d.mu_); d.started_ = true; d.addresses_ = {{"192.168.1.1"}, {"172.134.1.1"}}; } TestHttpRequest req; d.AnnotateRequest(&req); EXPECT_EQ("192.168.1.1", req.resolve_overrides_["www.googleapis.com"]); EXPECT_EQ("172.134.1.1", req.resolve_overrides_["storage.googleapis.com"]); } void SuccessfulCleanupTest() { GcsDnsCache d; TestHttpRequest req; d.AnnotateRequest(&req); } }; TEST_F(GcsDnsCacheTest, AnnotateRequest) { AnnotateRequestTest(); } TEST_F(GcsDnsCacheTest, SuccessfulCleanup) { SuccessfulCleanupTest(); } }
2,280
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_METADATA_CLIENT_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_METADATA_CLIENT_H_ #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status.h" namespace tsl { class ComputeEngineMetadataClient { public: explicit ComputeEngineMetadataClient( std::shared_ptr<HttpRequest::Factory> http_request_factory, const RetryConfig& config = RetryConfig( 10000, 1000000 )); virtual ~ComputeEngineMetadataClient() {} virtual Status GetMetadata(const string& path, std::vector<char>* response_buffer); private: std::shared_ptr<HttpRequest::Factory> http_request_factory_; const RetryConfig retry_config_; ComputeEngineMetadataClient(const ComputeEngineMetadataClient&) = delete; void operator=(const ComputeEngineMetadataClient&) = delete; }; } #endif #include "tsl/platform/cloud/compute_engine_metadata_client.h" #include <cstdlib> #include <utility> #include "absl/strings/str_cat.h" #include "tsl/platform/cloud/curl_http_request.h" namespace tsl { namespace { constexpr char kGceMetadataHost[] = "GCE_METADATA_HOST"; constexpr char kGceMetadataBaseUrl[] = "http: } ComputeEngineMetadataClient::ComputeEngineMetadataClient( std::shared_ptr<HttpRequest::Factory> http_request_factory, const RetryConfig& config) : http_request_factory_(std::move(http_request_factory)), retry_config_(config) {} Status ComputeEngineMetadataClient::GetMetadata( const string& path, std::vector<char>* response_buffer) { const auto get_metadata_from_gce = [path, response_buffer, this]() { string metadata_url; const char* metadata_url_override = std::getenv(kGceMetadataHost); if (metadata_url_override) { metadata_url = absl::StrCat("http: "/computeMetadata/v1/"); } else { metadata_url = kGceMetadataBaseUrl; } std::unique_ptr<HttpRequest> request(http_request_factory_->Create()); request->SetUri(metadata_url + path); request->AddHeader("Metadata-Flavor", "Google"); request->SetResultBuffer(response_buffer); TF_RETURN_IF_ERROR(request->Send()); return OkStatus(); }; return RetryingUtils::CallWithRetries(get_metadata_from_gce, retry_config_); } }
#include "tsl/platform/cloud/compute_engine_metadata_client.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { class ComputeEngineMetadataClientTest : public ::testing::Test { protected: void SetUp() override { ClearEnvVars(); } void TearDown() override { ClearEnvVars(); } void ClearEnvVars() { unsetenv("GCE_METADATA_HOST"); } }; TEST_F(ComputeEngineMetadataClientTest, GetMetadata) { const string example_response = "example response"; std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } TEST_F(ComputeEngineMetadataClientTest, GetCustomMetadataEndpoint) { const string example_response = "example response"; setenv("GCE_METADATA_HOST", "foo.bar", 1); std::vector<HttpRequest*> requests( {new FakeHttpRequest("Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } TEST_F(ComputeEngineMetadataClientTest, RetryOnFailure) { const string example_response = "example response"; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } }
2,281
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_OAUTH_CLIENT_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_OAUTH_CLIENT_H_ #include <memory> #include "json/json.h" #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" namespace tsl { class OAuthClient { public: OAuthClient(); explicit OAuthClient( std::unique_ptr<HttpRequest::Factory> http_request_factory, Env* env); virtual ~OAuthClient() {} virtual Status GetTokenFromServiceAccountJson( Json::Value json, StringPiece oauth_server_uri, StringPiece scope, string* token, uint64* expiration_timestamp_sec); virtual Status GetTokenFromRefreshTokenJson(Json::Value json, StringPiece oauth_server_uri, string* token, uint64* expiration_timestamp_sec); virtual Status ParseOAuthResponse(StringPiece response, uint64 request_timestamp_sec, string* token, uint64* expiration_timestamp_sec); private: std::unique_ptr<HttpRequest::Factory> http_request_factory_; Env* env_; OAuthClient(const OAuthClient&) = delete; void operator=(const OAuthClient&) = delete; }; } #endif #include "tsl/platform/cloud/oauth_client.h" #ifndef _WIN32 #include <pwd.h> #include <sys/types.h> #include <unistd.h> #else #include <sys/types.h> #endif #include <fstream> #include <openssl/bio.h> #include <openssl/evp.h> #include <openssl/pem.h> #include <openssl/rsa.h> #include "tsl/platform/base64.h" #include "tsl/platform/cloud/curl_http_request.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" namespace tsl { namespace { constexpr int kRequestedTokenLifetimeSec = 3600; constexpr char kCryptoAlgorithm[] = "RS256"; constexpr char kJwtType[] = "JWT"; constexpr char kGrantType[] = "urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer"; Status ReadJsonValue(const Json::Value& json, const string& name, Json::Value* value) { if (!value) { return errors::FailedPrecondition("'value' cannot be nullptr."); } *value = json.get(name, Json::Value::null); if (*value == Json::Value::null) { return errors::FailedPrecondition( strings::StrCat("Couldn't read a JSON value '", name, "'.")); } return OkStatus(); } Status ReadJsonString(const Json::Value& json, const string& name, string* value) { Json::Value json_value; TF_RETURN_IF_ERROR(ReadJsonValue(json, name, &json_value)); if (!json_value.isString()) { return errors::FailedPrecondition( strings::StrCat("JSON value '", name, "' is not string.")); } *value = json_value.asString(); return OkStatus(); } Status ReadJsonInt(const Json::Value& json, const string& name, int64_t* value) { Json::Value json_value; TF_RETURN_IF_ERROR(ReadJsonValue(json, name, &json_value)); if (!json_value.isIntegral()) { return errors::FailedPrecondition( strings::StrCat("JSON value '", name, "' is not integer.")); } *value = json_value.asInt64(); return OkStatus(); } Status CreateSignature(RSA* private_key, StringPiece to_sign, string* signature) { if (!private_key || !signature) { return errors::FailedPrecondition( "'private_key' and 'signature' cannot be nullptr."); } const auto md = EVP_sha256(); if (!md) { return errors::Internal("Could not get a sha256 encryptor."); } std::unique_ptr<EVP_MD_CTX, std::function<void(EVP_MD_CTX*)>> md_ctx( EVP_MD_CTX_create(), [](EVP_MD_CTX* ptr) { EVP_MD_CTX_destroy(ptr); }); if (!md_ctx) { return errors::Internal("Could not create MD_CTX."); } std::unique_ptr<EVP_PKEY, std::function<void(EVP_PKEY*)>> key( EVP_PKEY_new(), [](EVP_PKEY* ptr) { EVP_PKEY_free(ptr); }); EVP_PKEY_set1_RSA(key.get(), private_key); if (EVP_DigestSignInit(md_ctx.get(), nullptr, md, nullptr, key.get()) != 1) { return errors::Internal("DigestInit failed."); } if (EVP_DigestSignUpdate(md_ctx.get(), to_sign.data(), to_sign.size()) != 1) { return errors::Internal("DigestUpdate failed."); } size_t sig_len = 0; if (EVP_DigestSignFinal(md_ctx.get(), nullptr, &sig_len) != 1) { return errors::Internal("DigestFinal (get signature length) failed."); } std::unique_ptr<unsigned char[]> sig(new unsigned char[sig_len]); if (EVP_DigestSignFinal(md_ctx.get(), sig.get(), &sig_len) != 1) { return errors::Internal("DigestFinal (signature compute) failed."); } return Base64Encode(StringPiece(reinterpret_cast<char*>(sig.get()), sig_len), signature); } Status EncodeJwtClaim(StringPiece client_email, StringPiece scope, StringPiece audience, uint64 request_timestamp_sec, string* encoded) { Json::Value root; root["iss"] = Json::Value(client_email.data(), client_email.data() + client_email.size()); root["scope"] = Json::Value(scope.data(), scope.data() + scope.size()); root["aud"] = Json::Value(audience.data(), audience.data() + audience.size()); const auto expiration_timestamp_sec = request_timestamp_sec + kRequestedTokenLifetimeSec; root["iat"] = Json::Value::UInt64(request_timestamp_sec); root["exp"] = Json::Value::UInt64(expiration_timestamp_sec); string claim = root.toStyledString(); return Base64Encode(claim, encoded); } Status EncodeJwtHeader(StringPiece key_id, string* encoded) { Json::Value root; root["alg"] = kCryptoAlgorithm; root["typ"] = kJwtType; root["kid"] = Json::Value(key_id.data(), key_id.data() + key_id.size()); const string header = root.toStyledString(); return Base64Encode(header, encoded); } } OAuthClient::OAuthClient() : OAuthClient( std::unique_ptr<HttpRequest::Factory>(new CurlHttpRequest::Factory()), Env::Default()) {} OAuthClient::OAuthClient( std::unique_ptr<HttpRequest::Factory> http_request_factory, Env* env) : http_request_factory_(std::move(http_request_factory)), env_(env) {} Status OAuthClient::GetTokenFromServiceAccountJson( Json::Value json, StringPiece oauth_server_uri, StringPiece scope, string* token, uint64* expiration_timestamp_sec) { if (!token || !expiration_timestamp_sec) { return errors::FailedPrecondition( "'token' and 'expiration_timestamp_sec' cannot be nullptr."); } string private_key_serialized, private_key_id, client_id, client_email; TF_RETURN_IF_ERROR( ReadJsonString(json, "private_key", &private_key_serialized)); TF_RETURN_IF_ERROR(ReadJsonString(json, "private_key_id", &private_key_id)); TF_RETURN_IF_ERROR(ReadJsonString(json, "client_id", &client_id)); TF_RETURN_IF_ERROR(ReadJsonString(json, "client_email", &client_email)); std::unique_ptr<BIO, std::function<void(BIO*)>> bio( BIO_new(BIO_s_mem()), [](BIO* ptr) { BIO_free_all(ptr); }); if (BIO_puts(bio.get(), private_key_serialized.c_str()) != static_cast<int>(private_key_serialized.size())) { return errors::Internal("Could not load the private key."); } std::unique_ptr<RSA, std::function<void(RSA*)>> private_key( PEM_read_bio_RSAPrivateKey(bio.get(), nullptr, nullptr, nullptr), [](RSA* ptr) { RSA_free(ptr); }); if (!private_key) { return errors::Internal("Could not deserialize the private key."); } const uint64 request_timestamp_sec = env_->NowSeconds(); string encoded_claim, encoded_header; TF_RETURN_IF_ERROR(EncodeJwtHeader(private_key_id, &encoded_header)); TF_RETURN_IF_ERROR(EncodeJwtClaim(client_email, scope, oauth_server_uri, request_timestamp_sec, &encoded_claim)); const string to_sign = encoded_header + "." + encoded_claim; string signature; TF_RETURN_IF_ERROR(CreateSignature(private_key.get(), to_sign, &signature)); const string jwt = to_sign + "." + signature; const string request_body = strings::StrCat("grant_type=", kGrantType, "&assertion=", jwt); std::unique_ptr<HttpRequest> request(http_request_factory_->Create()); std::vector<char> response_buffer; request->SetUri(string(oauth_server_uri)); request->SetPostFromBuffer(request_body.c_str(), request_body.size()); request->SetResultBuffer(&response_buffer); TF_RETURN_IF_ERROR(request->Send()); StringPiece response = StringPiece(response_buffer.data(), response_buffer.size()); TF_RETURN_IF_ERROR(ParseOAuthResponse(response, request_timestamp_sec, token, expiration_timestamp_sec)); return OkStatus(); } Status OAuthClient::GetTokenFromRefreshTokenJson( Json::Value json, StringPiece oauth_server_uri, string* token, uint64* expiration_timestamp_sec) { if (!token || !expiration_timestamp_sec) { return errors::FailedPrecondition( "'token' and 'expiration_timestamp_sec' cannot be nullptr."); } string client_id, client_secret, refresh_token; TF_RETURN_IF_ERROR(ReadJsonString(json, "client_id", &client_id)); TF_RETURN_IF_ERROR(ReadJsonString(json, "client_secret", &client_secret)); TF_RETURN_IF_ERROR(ReadJsonString(json, "refresh_token", &refresh_token)); const auto request_body = strings::StrCat( "client_id=", client_id, "&client_secret=", client_secret, "&refresh_token=", refresh_token, "&grant_type=refresh_token"); const uint64 request_timestamp_sec = env_->NowSeconds(); std::unique_ptr<HttpRequest> request(http_request_factory_->Create()); std::vector<char> response_buffer; request->SetUri(string(oauth_server_uri)); request->SetPostFromBuffer(request_body.c_str(), request_body.size()); request->SetResultBuffer(&response_buffer); TF_RETURN_IF_ERROR(request->Send()); StringPiece response = StringPiece(response_buffer.data(), response_buffer.size()); TF_RETURN_IF_ERROR(ParseOAuthResponse(response, request_timestamp_sec, token, expiration_timestamp_sec)); return OkStatus(); } Status OAuthClient::ParseOAuthResponse(StringPiece response, uint64 request_timestamp_sec, string* token, uint64* expiration_timestamp_sec) { if (!token || !expiration_timestamp_sec) { return errors::FailedPrecondition( "'token' and 'expiration_timestamp_sec' cannot be nullptr."); } Json::Value root; Json::Reader reader; if (!reader.parse(response.data(), response.data() + response.size(), root)) { return errors::Internal("Couldn't parse JSON response from OAuth server."); } string token_type; TF_RETURN_IF_ERROR(ReadJsonString(root, "token_type", &token_type)); if (token_type != "Bearer") { return errors::FailedPrecondition("Unexpected Oauth token type: " + token_type); } int64_t expires_in = 0; TF_RETURN_IF_ERROR(ReadJsonInt(root, "expires_in", &expires_in)); *expiration_timestamp_sec = request_timestamp_sec + expires_in; TF_RETURN_IF_ERROR(ReadJsonString(root, "access_token", token)); return OkStatus(); } }
#include "tsl/platform/cloud/oauth_client.h" #include <fstream> #include <openssl/bio.h> #include <openssl/evp.h> #include <openssl/pem.h> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/base64.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/scanner.h" #include "tsl/platform/test.h" namespace tsl { namespace { string TestData() { return io::JoinPath(testing::TslSrcRoot(), "platform", "cloud", "testdata"); } constexpr char kTokenJson[] = R"( { "access_token":"WITH_FAKE_ACCESS_TOKEN_TEST_SHOULD_BE_HAPPY", "expires_in":3920, "token_type":"Bearer" })"; class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now; } uint64 now = 10000; }; } TEST(OAuthClientTest, ParseOAuthResponse) { const uint64 request_timestamp = 100; string token; uint64 expiration_timestamp; TF_EXPECT_OK(OAuthClient().ParseOAuthResponse(kTokenJson, request_timestamp, &token, &expiration_timestamp)); EXPECT_EQ("WITH_FAKE_ACCESS_TOKEN_TEST_SHOULD_BE_HAPPY", token); EXPECT_EQ(4020, expiration_timestamp); } TEST(OAuthClientTest, GetTokenFromRefreshTokenJson) { const string credentials_json = R"( { "client_id": "test_client_id", "client_secret": "@@@test_client_secret@@@", "refresh_token": "test_refresh_token", "type": "authorized_user" })"; Json::Value json; Json::Reader reader; ASSERT_TRUE(reader.parse(credentials_json, json)); std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Post body: client_id=test_client_id&" "client_secret=@@@test_client_secret@@@&" "refresh_token=test_refresh_token&grant_type=refresh_token\n", kTokenJson)}); FakeEnv env; OAuthClient client(std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), &env); string token; uint64 expiration_timestamp; TF_EXPECT_OK(client.GetTokenFromRefreshTokenJson( json, "https: &expiration_timestamp)); EXPECT_EQ("WITH_FAKE_ACCESS_TOKEN_TEST_SHOULD_BE_HAPPY", token); EXPECT_EQ(13920, expiration_timestamp); } TEST(OAuthClientTest, GetTokenFromServiceAccountJson) { std::ifstream credentials( io::JoinPath(TestData(), "service_account_credentials.json")); ASSERT_TRUE(credentials.is_open()); Json::Value json; Json::Reader reader; ASSERT_TRUE(reader.parse(credentials, json)); string post_body; std::vector<HttpRequest*> requests( {new FakeHttpRequest("Uri: https: kTokenJson, &post_body)}); FakeEnv env; OAuthClient client(std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), &env); string token; uint64 expiration_timestamp; TF_EXPECT_OK(client.GetTokenFromServiceAccountJson( json, "https: "https: EXPECT_EQ("WITH_FAKE_ACCESS_TOKEN_TEST_SHOULD_BE_HAPPY", token); EXPECT_EQ(13920, expiration_timestamp); StringPiece grant_type, assertion; ASSERT_TRUE(strings::Scanner(post_body) .OneLiteral("grant_type=") .RestartCapture() .ScanEscapedUntil('&') .StopCapture() .OneLiteral("&assertion=") .GetResult(&assertion, &grant_type)); EXPECT_EQ("urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer", grant_type); int last_dot = assertion.rfind('.'); string header_dot_claim(assertion.substr(0, last_dot)); string signature_encoded(assertion.substr(last_dot + 1)); std::ifstream public_key_stream( io::JoinPath(TestData(), "service_account_public_key.txt")); string public_key_serialized( (std::istreambuf_iterator<char>(public_key_stream)), (std::istreambuf_iterator<char>())); auto bio = BIO_new(BIO_s_mem()); RSA* public_key = nullptr; EXPECT_EQ(public_key_serialized.size(), BIO_puts(bio, public_key_serialized.c_str())); public_key = PEM_read_bio_RSA_PUBKEY(bio, nullptr, nullptr, nullptr); EXPECT_TRUE(public_key) << "Could not load the public key from testdata."; string signature; TF_EXPECT_OK(Base64Decode(signature_encoded, &signature)); const auto md = EVP_sha256(); auto md_ctx = EVP_MD_CTX_create(); auto key = EVP_PKEY_new(); EVP_PKEY_set1_RSA(key, public_key); ASSERT_EQ(1, EVP_DigestVerifyInit(md_ctx, nullptr, md, nullptr, key)); ASSERT_EQ(1, EVP_DigestVerifyUpdate(md_ctx, header_dot_claim.c_str(), header_dot_claim.size())); ASSERT_EQ(1, EVP_DigestVerifyFinal( md_ctx, const_cast<unsigned char*>( reinterpret_cast<const unsigned char*>(signature.data())), signature.size())); EVP_PKEY_free(key); EVP_MD_CTX_destroy(md_ctx); RSA_free(public_key); BIO_free_all(bio); int dot = header_dot_claim.find_last_of('.'); string header_encoded = header_dot_claim.substr(0, dot); string claim_encoded = header_dot_claim.substr(dot + 1); string header, claim; TF_EXPECT_OK(Base64Decode(header_encoded, &header)); TF_EXPECT_OK(Base64Decode(claim_encoded, &claim)); Json::Value header_json, claim_json; EXPECT_TRUE(reader.parse(header, header_json)); EXPECT_EQ("RS256", header_json.get("alg", Json::Value::null).asString()); EXPECT_EQ("JWT", header_json.get("typ", Json::Value::null).asString()); EXPECT_EQ("fake_key_id", header_json.get("kid", Json::Value::null).asString()); EXPECT_TRUE(reader.parse(claim, claim_json)); EXPECT_EQ("fake-test-project.iam.gserviceaccount.com", claim_json.get("iss", Json::Value::null).asString()); EXPECT_EQ("https: claim_json.get("scope", Json::Value::null).asString()); EXPECT_EQ("https: claim_json.get("aud", Json::Value::null).asString()); EXPECT_EQ(10000, claim_json.get("iat", Json::Value::null).asInt64()); EXPECT_EQ(13600, claim_json.get("exp", Json::Value::null).asInt64()); } }
2,282
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_ZONE_PROVIDER_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_ZONE_PROVIDER_H_ #include "tsl/platform/cloud/compute_engine_metadata_client.h" #include "tsl/platform/cloud/zone_provider.h" namespace tsl { class ComputeEngineZoneProvider : public ZoneProvider { public: explicit ComputeEngineZoneProvider( std::shared_ptr<ComputeEngineMetadataClient> google_metadata_client); virtual ~ComputeEngineZoneProvider(); Status GetZone(string* zone) override; private: std::shared_ptr<ComputeEngineMetadataClient> google_metadata_client_; string cached_zone; ComputeEngineZoneProvider(const ComputeEngineZoneProvider&) = delete; void operator=(const ComputeEngineZoneProvider&) = delete; }; } #endif #include "tsl/platform/cloud/compute_engine_zone_provider.h" #include <utility> #include "tsl/platform/str_util.h" namespace tsl { namespace { constexpr char kGceMetadataZonePath[] = "instance/zone"; } ComputeEngineZoneProvider::ComputeEngineZoneProvider( std::shared_ptr<ComputeEngineMetadataClient> google_metadata_client) : google_metadata_client_(std::move(google_metadata_client)) {} Status ComputeEngineZoneProvider::GetZone(string* zone) { if (!cached_zone.empty()) { *zone = cached_zone; return OkStatus(); } std::vector<char> response_buffer; TF_RETURN_IF_ERROR(google_metadata_client_->GetMetadata(kGceMetadataZonePath, &response_buffer)); StringPiece location(&response_buffer[0], response_buffer.size()); std::vector<string> elems = str_util::Split(location, "/"); if (elems.size() == 4) { cached_zone = elems.back(); *zone = cached_zone; } else { LOG(ERROR) << "Failed to parse the zone name from location: " << string(location); } return OkStatus(); } ComputeEngineZoneProvider::~ComputeEngineZoneProvider() {} }
#include "tsl/platform/cloud/compute_engine_zone_provider.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/test.h" namespace tsl { class ComputeEngineZoneProviderTest : public ::testing::Test { protected: void SetUp() override {} void TearDown() override {} }; TEST_F(ComputeEngineZoneProviderTest, GetZone) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "Header Metadata-Flavor: Google\n", "projects/123456789/zones/us-west1-b")}); auto httpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadata_client = std::make_shared<ComputeEngineMetadataClient>( httpRequestFactory, RetryConfig(0 )); ComputeEngineZoneProvider provider(metadata_client); string zone; TF_EXPECT_OK(provider.GetZone(&zone)); EXPECT_EQ("us-west1-b", zone); TF_EXPECT_OK(provider.GetZone(&zone)); } TEST_F(ComputeEngineZoneProviderTest, InvalidZoneString) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "Header Metadata-Flavor: Google\n", "invalidresponse")}); auto httpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadata_client = std::make_shared<ComputeEngineMetadataClient>( httpRequestFactory, RetryConfig(0 )); ComputeEngineZoneProvider provider(metadata_client); string zone; TF_EXPECT_OK(provider.GetZone(&zone)); EXPECT_EQ("", zone); } }
2,283
#ifndef TENSORFLOW_TSL_PLATFORM_PROFILE_UTILS_CPU_UTILS_H_ #define TENSORFLOW_TSL_PLATFORM_PROFILE_UTILS_CPU_UTILS_H_ #include <chrono> #include <memory> #include "tsl/platform/macros.h" #include "tsl/platform/profile_utils/i_cpu_utils_helper.h" #include "tsl/platform/types.h" #if defined(ARMV6) || defined(__ARM_ARCH_7A__) #include <sys/time.h> #endif #if defined(_WIN32) #include <intrin.h> #endif namespace tsl { namespace profile_utils { class CpuUtils { public: static constexpr int64_t INVALID_FREQUENCY = -1; static constexpr uint64 DUMMY_CYCLE_CLOCK = 1; static inline uint64 GetCurrentClockCycle() { #if defined(__ANDROID__) return GetCpuUtilsHelperSingletonInstance().GetCurrentClockCycle(); #elif defined(_WIN32) return __rdtsc(); #elif defined(__x86_64__) || defined(__amd64__) uint64_t high, low; __asm__ volatile("rdtsc" : "=a"(low), "=d"(high)); return (high << 32) | low; #elif defined(__aarch64__) uint64_t virtual_timer_value; asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value)); return virtual_timer_value; #elif defined(ARMV6) || defined(__ARM_ARCH_7A__) uint32_t pmccntr; uint32_t pmuseren; uint32_t pmcntenset; asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); if (pmuseren & 1) { asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); if (pmcntenset & 0x80000000ul) { asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); return static_cast<uint64>(pmccntr) * 64; } } return DUMMY_CYCLE_CLOCK; #elif defined(__powerpc64__) || defined(__ppc64__) uint64 __t; __asm__ __volatile__("mfspr %0,268" : "=r"(__t)); return __t; #elif defined(__powerpc__) || defined(__ppc__) uint64 upper, lower, tmp; __asm__ volatile( "0: \n" "\tmftbu %0 \n" "\tmftb %1 \n" "\tmftbu %2 \n" "\tcmpw %2,%0 \n" "\tbne 0b \n" : "=r"(upper), "=r"(lower), "=r"(tmp)); return ((static_cast<uint64>(upper) << 32) | lower); #elif defined(__s390x__) uint64 t; __asm__ __volatile__("stckf %0" : "=Q"(t)); return t; #else return DUMMY_CYCLE_CLOCK; #endif } #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) static uint64 GetCycleCounterFrequency(); #else static int64_t GetCycleCounterFrequency(); #endif static double GetMicroSecPerClock(); static void ResetClockCycle(); static void EnableClockCycleProfiling(); static void DisableClockCycleProfiling(); static std::chrono::duration<double> ConvertClockCycleToTime( const int64_t clock_cycle); private: class DefaultCpuUtilsHelper : public ICpuUtilsHelper { public: DefaultCpuUtilsHelper() = default; void ResetClockCycle() final {} uint64 GetCurrentClockCycle() final { return DUMMY_CYCLE_CLOCK; } void EnableClockCycleProfiling() final {} void DisableClockCycleProfiling() final {} int64_t CalculateCpuFrequency() final { return INVALID_FREQUENCY; } private: DefaultCpuUtilsHelper(const DefaultCpuUtilsHelper&) = delete; void operator=(const DefaultCpuUtilsHelper&) = delete; }; static int64_t GetCycleCounterFrequencyImpl(); static ICpuUtilsHelper& GetCpuUtilsHelperSingletonInstance(); CpuUtils(const CpuUtils&) = delete; void operator=(const CpuUtils&) = delete; }; } } #endif #include "tsl/platform/profile_utils/cpu_utils.h" #include <fstream> #include <limits> #include <mutex> #if defined(_WIN32) #include <windows.h> #endif #if defined(__APPLE__) #include <sys/sysctl.h> #endif #include "absl/base/call_once.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/android_armv7a_cpu_utils_helper.h" namespace tsl { namespace profile_utils { constexpr int64_t CpuUtils::INVALID_FREQUENCY; static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) uint64 CpuUtils::GetCycleCounterFrequency() { static const uint64 cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #else int64_t CpuUtils::GetCycleCounterFrequency() { static const int64_t cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #endif double CpuUtils::GetMicroSecPerClock() { static const double micro_sec_per_clock = (1000.0 * 1000.0) / static_cast<double>(GetCycleCounterFrequency()); return micro_sec_per_clock; } void CpuUtils::ResetClockCycle() { GetCpuUtilsHelperSingletonInstance().ResetClockCycle(); } void CpuUtils::EnableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().EnableClockCycleProfiling(); } void CpuUtils::DisableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().DisableClockCycleProfiling(); } std::chrono::duration<double> CpuUtils::ConvertClockCycleToTime( const int64_t clock_cycle) { return std::chrono::duration<double>(static_cast<double>(clock_cycle) / GetCycleCounterFrequency()); } int64_t CpuUtils::GetCycleCounterFrequencyImpl() { #if defined(__ANDROID__) return GetCpuUtilsHelperSingletonInstance().CalculateCpuFrequency(); #elif defined(__linux__) std::ifstream cpuinfo("/proc/cpuinfo"); if (!cpuinfo) { LOG(WARNING) << "Failed to open /proc/cpuinfo"; return INVALID_FREQUENCY; } string line; while (std::getline(cpuinfo, line)) { double cpu_freq = 0.0; int retval = 0; double freq_factor = 2.0; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) retval = sscanf(line.c_str(), "clock : %lfMHz", &cpu_freq); freq_factor = 1.0; #elif defined(__s390x__) retval = sscanf(line.c_str(), "bogomips per cpu: %lf", &cpu_freq); #elif defined(__aarch64__) retval = sscanf(line.c_str(), "BogoMIPS : %lf", &cpu_freq); #else retval = sscanf(line.c_str(), "bogomips : %lf", &cpu_freq); #endif if (retval > 0) { const double freq_ghz = cpu_freq / 1000.0 / freq_factor; if (retval != 1 || freq_ghz < 0.01) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_ghz << " GHz"; return INVALID_FREQUENCY; } const int64_t freq_n = static_cast<int64_t>(freq_ghz * 1000.0 * 1000.0 * 1000.0); VLOG(1) << "CPU Frequency: " << freq_n << " Hz"; return freq_n; } } LOG(WARNING) << "Failed to find bogomips or clock in /proc/cpuinfo; cannot determine " "CPU frequency"; return INVALID_FREQUENCY; #elif defined(__APPLE__) int64_t freq_hz = 0; size_t freq_hz_size = sizeof(freq_hz); int retval = sysctlbyname("hw.cpufrequency_max", &freq_hz, &freq_hz_size, NULL, 0); if (retval != 0 || freq_hz < 1e6) { int64_t tbfrequency = 0; size_t tbfrequency_size = sizeof(tbfrequency); retval = sysctlbyname("hw.tbfrequency", &tbfrequency, &tbfrequency_size, NULL, 0); if (retval == 0) { clockinfo clock_info; size_t clock_info_size = sizeof(clock_info); retval = sysctlbyname("kern.clockrate", &clock_info, &clock_info_size, NULL, 0); if (retval == 0) { freq_hz = clock_info.hz * tbfrequency; } } if (retval != 0 || freq_hz < 1e6) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_hz << " Hz"; return INVALID_FREQUENCY; } } return freq_hz; #elif defined(_WIN32) LARGE_INTEGER freq; QueryPerformanceFrequency(&freq); return freq.QuadPart; #else return INVALID_FREQUENCY; #endif } ICpuUtilsHelper& CpuUtils::GetCpuUtilsHelperSingletonInstance() { static absl::once_flag flag; absl::call_once(flag, []() { if (cpu_utils_helper_instance_ != nullptr) { LOG(FATAL) << "cpu_utils_helper_instance_ is already instantiated."; } #if defined(__ANDROID__) && (__ANDROID_API__ >= 21) && \ (defined(__ARM_ARCH_7A__) || defined(__aarch64__)) cpu_utils_helper_instance_ = new AndroidArmV7ACpuUtilsHelper(); #else cpu_utils_helper_instance_ = new DefaultCpuUtilsHelper(); #endif }); return *cpu_utils_helper_instance_; } } }
#include "tsl/platform/profile_utils/cpu_utils.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/clock_cycle_profiler.h" #include "tsl/platform/test.h" namespace tsl { namespace profile_utils { static constexpr bool DBG = false; class CpuUtilsTest : public ::testing::Test { protected: void SetUp() override { CpuUtils::EnableClockCycleProfiling(); } }; TEST_F(CpuUtilsTest, SetUpTestCase) {} TEST_F(CpuUtilsTest, TearDownTestCase) {} TEST_F(CpuUtilsTest, CheckGetCurrentClockCycle) { static constexpr int LOOP_COUNT = 10; const uint64 start_clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GT(start_clock_count, 0); uint64 prev_clock_count = start_clock_count; for (int i = 0; i < LOOP_COUNT; ++i) { const uint64 clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GE(clock_count, prev_clock_count); prev_clock_count = clock_count; } const uint64 end_clock_count = CpuUtils::GetCurrentClockCycle(); if (DBG) { LOG(INFO) << "start clock = " << start_clock_count; LOG(INFO) << "end clock = " << end_clock_count; LOG(INFO) << "average clock = " << ((end_clock_count - start_clock_count) / LOOP_COUNT); } } TEST_F(CpuUtilsTest, CheckCycleCounterFrequency) { #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) const uint64 cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, unsigned(CpuUtils::INVALID_FREQUENCY)); #else const int64_t cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, CpuUtils::INVALID_FREQUENCY); #endif if (DBG) { LOG(INFO) << "Cpu frequency = " << cpu_frequency; } } TEST_F(CpuUtilsTest, CheckMicroSecPerClock) { const double micro_sec_per_clock = CpuUtils::GetMicroSecPerClock(); CHECK_GT(micro_sec_per_clock, 0.0); if (DBG) { LOG(INFO) << "Micro sec per clock = " << micro_sec_per_clock; } } TEST_F(CpuUtilsTest, SimpleUsageOfClockCycleProfiler) { static constexpr int LOOP_COUNT = 10; ClockCycleProfiler prof; for (int i = 0; i < LOOP_COUNT; ++i) { prof.Start(); prof.Stop(); } EXPECT_EQ(LOOP_COUNT, static_cast<int>(prof.GetCount() + 0.5)); if (DBG) { prof.DumpStatistics("CpuUtilsTest"); } } } }
2,284
#ifndef TENSORFLOW_TSL_PLATFORM_NET_H_ #define TENSORFLOW_TSL_PLATFORM_NET_H_ namespace tsl { namespace internal { int PickUnusedPortOrDie(); } } #endif #include "tsl/platform/net.h" #include <netinet/in.h> #include <sys/socket.h> #include <sys/types.h> #include <unistd.h> #include <cerrno> #include <cstdlib> #include <cstring> #include <random> #include <unordered_set> #include "tsl/platform/logging.h" #include "tsl/platform/strcat.h" #define MAX_EPHEMERAL_PORT 60999 #define MIN_EPHEMERAL_PORT 32768 namespace tsl { namespace internal { namespace { bool IsPortAvailable(int* port, bool is_tcp) { const int protocol = is_tcp ? IPPROTO_TCP : 0; const int fd = socket(AF_INET, is_tcp ? SOCK_STREAM : SOCK_DGRAM, protocol); struct sockaddr_in addr; socklen_t addr_len = sizeof(addr); int actual_port; CHECK_GE(*port, 0); CHECK_LE(*port, MAX_EPHEMERAL_PORT); if (fd < 0) { LOG(ERROR) << "socket() failed: " << strerror(errno); return false; } int one = 1; if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0) { LOG(ERROR) << "setsockopt() failed: " << strerror(errno); if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); }; return false; } addr.sin_family = AF_INET; addr.sin_addr.s_addr = INADDR_ANY; addr.sin_port = htons(static_cast<uint16_t>(*port)); if (bind(fd, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)) < 0) { LOG(WARNING) << "bind(port=" << *port << ") failed: " << strerror(errno); if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); }; return false; } if (getsockname(fd, reinterpret_cast<struct sockaddr*>(&addr), &addr_len) < 0) { LOG(WARNING) << "getsockname() failed: " << strerror(errno); if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); }; return false; } CHECK_LE(addr_len, sizeof(addr)); actual_port = ntohs(addr.sin_port); CHECK_GT(actual_port, 0); if (*port == 0) { *port = actual_port; } else { CHECK_EQ(*port, actual_port); } if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); }; return true; } const int kNumRandomPortsToPick = 100; const int kMaximumTrials = 1000; } int PickUnusedPortOrDie() { static std::unordered_set<int> chosen_ports; bool is_tcp = true; int trial = 0; std::default_random_engine rgen(std::random_device{}()); std::uniform_int_distribution<int> rdist(MIN_EPHEMERAL_PORT, MAX_EPHEMERAL_PORT - 1); while (true) { int port; trial++; CHECK_LE(trial, kMaximumTrials) << "Failed to pick an unused port for testing."; if (trial == 1) { port = getpid() % (MAX_EPHEMERAL_PORT - MIN_EPHEMERAL_PORT) + MIN_EPHEMERAL_PORT; } else if (trial <= kNumRandomPortsToPick) { port = rdist(rgen); } else { port = 0; } if (chosen_ports.find(port) != chosen_ports.end()) { continue; } if (!IsPortAvailable(&port, is_tcp)) { continue; } CHECK_GT(port, 0); if (!IsPortAvailable(&port, !is_tcp)) { is_tcp = !is_tcp; continue; } chosen_ports.insert(port); return port; } return 0; } } }
#include "tsl/platform/net.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace tsl { namespace internal { TEST(Net, PickUnusedPortOrDie) { int port0 = PickUnusedPortOrDie(); int port1 = PickUnusedPortOrDie(); CHECK_GE(port0, 0); CHECK_LT(port0, 65536); CHECK_GE(port1, 0); CHECK_LT(port1, 65536); CHECK_NE(port0, port1); } } }
2,285
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_SUBPROCESS_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_SUBPROCESS_H_ #include <errno.h> #include <unistd.h> #include <string> #include <vector> #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tsl { class SubProcess { public: explicit SubProcess(int nfds = 3); virtual ~SubProcess(); virtual void SetChannelAction(Channel chan, ChannelAction action); virtual void SetProgram(const string& file, const std::vector<string>& argv); virtual bool Start(); virtual bool Kill(int signal); virtual bool Wait(); virtual int Communicate(const string* stdin_input, string* stdout_output, string* stderr_output); private: static constexpr int kNFds = 3; static bool chan_valid(int chan) { return ((chan >= 0) && (chan < kNFds)); } static bool retry(int e) { return ((e == EINTR) || (e == EAGAIN) || (e == EWOULDBLOCK)); } void FreeArgs() TF_EXCLUSIVE_LOCKS_REQUIRED(data_mu_); void ClosePipes() TF_EXCLUSIVE_LOCKS_REQUIRED(data_mu_); bool WaitInternal(int* status); mutable mutex proc_mu_; bool running_ TF_GUARDED_BY(proc_mu_); pid_t pid_ TF_GUARDED_BY(proc_mu_); mutable mutex data_mu_ TF_ACQUIRED_AFTER(proc_mu_); char* exec_path_ TF_GUARDED_BY(data_mu_); char** exec_argv_ TF_GUARDED_BY(data_mu_); ChannelAction action_[kNFds] TF_GUARDED_BY(data_mu_); int parent_pipe_[kNFds] TF_GUARDED_BY(data_mu_); int child_pipe_[kNFds] TF_GUARDED_BY(data_mu_); SubProcess(const SubProcess&) = delete; void operator=(const SubProcess&) = delete; }; } #endif #include "tsl/platform/subprocess.h" #include <fcntl.h> #include <poll.h> #include <signal.h> #include <spawn.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/wait.h> #include <memory> #include <vector> #include "tsl/platform/logging.h" #if !defined(__ANDROID_API__) || __ANDROID_API__ >= 28 #define USE_POSIX_SPAWN 1 #else #define USE_POSIX_SPAWN 0 #endif extern "C" { extern char** environ; } namespace tsl { SubProcess::SubProcess(int nfds) : running_(false), pid_(-1), exec_path_(nullptr), exec_argv_(nullptr) { for (int i = 0; i < kNFds; i++) { action_[i] = ACTION_CLOSE; parent_pipe_[i] = -1; child_pipe_[i] = -1; } } SubProcess::~SubProcess() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); pid_ = -1; running_ = false; FreeArgs(); ClosePipes(); } void SubProcess::FreeArgs() { free(exec_path_); exec_path_ = nullptr; if (exec_argv_) { for (char** p = exec_argv_; *p != nullptr; p++) { free(*p); } delete[] exec_argv_; exec_argv_ = nullptr; } } void SubProcess::ClosePipes() { for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; } if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } } void SubProcess::SetProgram(const string& file, const std::vector<string>& argv) { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(FATAL) << "SetProgram called after the process was started."; return; } FreeArgs(); exec_path_ = strdup(file.c_str()); if (exec_path_ == nullptr) { LOG(FATAL) << "SetProgram failed to allocate file string."; return; } int argc = argv.size(); exec_argv_ = new char*[argc + 1]; for (int i = 0; i < argc; i++) { exec_argv_[i] = strdup(argv[i].c_str()); if (exec_argv_[i] == nullptr) { LOG(FATAL) << "SetProgram failed to allocate command argument."; return; } } exec_argv_[argc] = nullptr; } void SubProcess::SetChannelAction(Channel chan, ChannelAction action) { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(FATAL) << "SetChannelAction called after the process was started."; } else if (!chan_valid(chan)) { LOG(FATAL) << "SetChannelAction called with invalid channel: " << chan; } else if ((action != ACTION_CLOSE) && (action != ACTION_PIPE) && (action != ACTION_DUPPARENT)) { LOG(FATAL) << "SetChannelAction called with invalid action: " << action; } else { action_[chan] = action; } } #if USE_POSIX_SPAWN bool SubProcess::Start() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(ERROR) << "Start called after the process was started."; return false; } if ((exec_path_ == nullptr) || (exec_argv_ == nullptr)) { LOG(ERROR) << "Start called without setting a program."; return false; } for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { int pipe_fds[2]; if (pipe(pipe_fds) < 0) { LOG(ERROR) << "Start cannot create pipe: " << strerror(errno); ClosePipes(); return false; } if (i == 0) { parent_pipe_[i] = pipe_fds[1]; child_pipe_[i] = pipe_fds[0]; } else { parent_pipe_[i] = pipe_fds[0]; child_pipe_[i] = pipe_fds[1]; } if (fcntl(parent_pipe_[i], F_SETFL, O_NONBLOCK) < 0) { LOG(ERROR) << "Start cannot make pipe non-blocking: " << strerror(errno); ClosePipes(); return false; } if (fcntl(parent_pipe_[i], F_SETFD, FD_CLOEXEC) < 0) { LOG(ERROR) << "Start cannot make pipe close-on-exec: " << strerror(errno); ClosePipes(); return false; } } } posix_spawn_file_actions_t file_actions; int ret; ret = posix_spawn_file_actions_init(&file_actions); if (ret != 0) { LOG(ERROR) << "Start cannot initialize POSIX file actions: " << strerror(ret); ClosePipes(); return false; } int devnull_fd = -1; for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { ret = posix_spawn_file_actions_addclose(&file_actions, parent_pipe_[i]); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } } switch (action_[i]) { case ACTION_DUPPARENT: break; case ACTION_PIPE: ret = posix_spawn_file_actions_adddup2(&file_actions, child_pipe_[i], i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_adddup2() failed: " << strerror(ret); } ret = posix_spawn_file_actions_addclose(&file_actions, child_pipe_[i]); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } break; case ACTION_CLOSE: default: if (i <= CHAN_STDERR) { if (devnull_fd < 0) { ret = posix_spawn_file_actions_addopen(&file_actions, i, "/dev/null", O_RDWR, 0); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addopen() failed: " << strerror(ret); } devnull_fd = i; } else { ret = posix_spawn_file_actions_adddup2(&file_actions, devnull_fd, i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_adddup2() failed: " << strerror(ret); } } } else { ret = posix_spawn_file_actions_addclose(&file_actions, i); if (ret != 0) { LOG(ERROR) << "posix_spawn_file_actions_addclose() failed: " << strerror(ret); } } break; } } ret = posix_spawnp(&pid_, exec_path_, &file_actions, nullptr, exec_argv_, environ); if (ret != 0) { LOG(INFO) << "Start cannot spawn child process: " << strerror(ret); ClosePipes(); return false; } ret = posix_spawn_file_actions_destroy(&file_actions); if (ret != 0) { LOG(WARNING) << "Start cannot destroy POSIX file actions: " << strerror(ret); } running_ = true; for (int i = 0; i < kNFds; i++) { if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } return true; } #else bool SubProcess::Start() { mutex_lock procLock(proc_mu_); mutex_lock dataLock(data_mu_); if (running_) { LOG(ERROR) << "Start called after the process was started."; return false; } if ((exec_path_ == nullptr) || (exec_argv_ == nullptr)) { LOG(ERROR) << "Start called without setting a program."; return false; } for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { int pipe_fds[2]; if (pipe(pipe_fds) < 0) { LOG(ERROR) << "Start cannot create pipe: " << strerror(errno); ClosePipes(); return false; } if (i == 0) { parent_pipe_[i] = pipe_fds[1]; child_pipe_[i] = pipe_fds[0]; } else { parent_pipe_[i] = pipe_fds[0]; child_pipe_[i] = pipe_fds[1]; } if (fcntl(parent_pipe_[i], F_SETFL, O_NONBLOCK) < 0) { LOG(ERROR) << "Start cannot make pipe non-blocking: " << strerror(errno); ClosePipes(); return false; } if (fcntl(parent_pipe_[i], F_SETFD, FD_CLOEXEC) < 0) { LOG(ERROR) << "Start cannot make pipe close-on-exec: " << strerror(errno); ClosePipes(); return false; } } } pid_ = fork(); if (pid_ < 0) { LOG(ERROR) << "Start cannot fork() child process: " << strerror(errno); ClosePipes(); return false; } if (pid_ > 0) { running_ = true; for (int i = 0; i < kNFds; i++) { if (child_pipe_[i] >= 0) { if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; } } return true; } int devnull_fd = -1; for (int i = 0; i < kNFds; i++) { if (parent_pipe_[i] >= 0) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; } switch (action_[i]) { case ACTION_DUPPARENT: break; case ACTION_PIPE: while (dup2(child_pipe_[i], i) < 0) { if (!retry(errno)) { _exit(1); } } if (close(child_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } child_pipe_[i] = -1; break; case ACTION_CLOSE: default: if (i <= CHAN_STDERR) { if (devnull_fd < 0) { while ((devnull_fd = open("/dev/null", O_RDWR, 0)) < 0) { if (!retry(errno)) { _exit(1); } } } while (dup2(devnull_fd, i) < 0) { if (!retry(errno)) { _exit(1); } } } else { if (close(i) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } } break; } } if (devnull_fd >= 0) { if (close(devnull_fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } } execvp(exec_path_, exec_argv_); _exit(1); } #endif bool SubProcess::Wait() { int status; return WaitInternal(&status); } bool SubProcess::WaitInternal(int* status) { proc_mu_.lock(); bool running = running_; pid_t pid = pid_; proc_mu_.unlock(); bool ret = false; if (running && (pid > 1)) { pid_t cpid; int cstat; bool done = false; while (!done) { cpid = waitpid(pid, &cstat, 0); if ((cpid < 0) && !retry(errno)) { done = true; } else if ((cpid == pid) && (WIFEXITED(cstat) || WIFSIGNALED(cstat))) { *status = cstat; ret = true; done = true; } } } proc_mu_.lock(); if ((running_ == running) && (pid_ == pid)) { running_ = false; pid_ = -1; } proc_mu_.unlock(); return ret; } bool SubProcess::Kill(int signal) { proc_mu_.lock(); bool running = running_; pid_t pid = pid_; proc_mu_.unlock(); bool ret = false; if (running && (pid > 1)) { ret = (kill(pid, signal) == 0); } return ret; } int SubProcess::Communicate(const string* stdin_input, string* stdout_output, string* stderr_output) { struct pollfd fds[kNFds]; size_t nbytes[kNFds]; string* iobufs[kNFds]; int fd_count = 0; proc_mu_.lock(); bool running = running_; proc_mu_.unlock(); if (!running) { LOG(ERROR) << "Communicate called without a running process."; return 1; } struct sigaction act; if (sigaction(SIGPIPE, nullptr, &act) < 0) { LOG(ERROR) << "Communicate cannot get SIGPIPE handler: " << strerror(errno); return 1; } if (act.sa_handler == SIG_DFL) { memset(&act, 0, sizeof(act)); act.sa_handler = SIG_IGN; sigemptyset(&act.sa_mask); if (sigaction(SIGPIPE, &act, nullptr) < 0) { LOG(ERROR) << "Communicate cannot ignore SIGPIPE: " << strerror(errno); return 1; } } data_mu_.lock(); for (int i = 0; i < kNFds; i++) { if (action_[i] == ACTION_PIPE) { switch (i) { case CHAN_STDIN: if (stdin_input == nullptr) { if (close(parent_pipe_[i]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[i] = -1; continue; } iobufs[fd_count] = const_cast<string*>(stdin_input); break; case CHAN_STDOUT: iobufs[fd_count] = stdout_output; break; case CHAN_STDERR: iobufs[fd_count] = stderr_output; break; default: iobufs[fd_count] = nullptr; break; } nbytes[fd_count] = 0; fds[fd_count].fd = parent_pipe_[i]; fds[fd_count].events = (i > 0) ? POLLIN : POLLOUT; fds[fd_count].revents = 0; fd_count++; } } int fd_remain = fd_count; char buf[4096]; while (fd_remain > 0) { int n = poll(fds, fd_count, -1); if ((n < 0) && !retry(errno)) { LOG(ERROR) << "Communicate cannot poll(): " << strerror(errno); fd_remain = 0; } else if (n == 0) { LOG(ERROR) << "Communicate cannot poll(): timeout not possible"; fd_remain = 0; } else if (n > 0) { for (int i = 0; i < fd_count; i++) { if ((fds[i].revents & (POLLIN | POLLHUP)) != 0) { ssize_t n = read(fds[i].fd, buf, sizeof(buf)); if (n > 0) { if (iobufs[i] != nullptr) { iobufs[i]->append(buf, n); nbytes[i] += n; } } else if ((n == 0) || !retry(errno)) { fds[i].fd = -1; fd_remain--; } } else if ((fds[i].revents & POLLOUT) != 0) { ssize_t n = iobufs[i]->size() - nbytes[i]; if (n > 0) { n = write(fds[i].fd, iobufs[i]->c_str() + nbytes[i], n); } if (n >= 0) { nbytes[i] += n; if (nbytes[i] >= iobufs[i]->size()) { fds[i].fd = -1; fd_remain--; if (close(parent_pipe_[CHAN_STDIN]) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } parent_pipe_[CHAN_STDIN] = -1; } } else if (!retry(errno)) { fds[i].fd = -1; fd_remain--; } } else if ((fds[i].revents & (POLLERR | POLLNVAL)) != 0) { fds[i].fd = -1; fd_remain--; } } } } data_mu_.unlock(); int status; return WaitInternal(&status) ? status : -1; } std::unique_ptr<SubProcess> CreateSubProcess(const std::vector<string>& argv) { std::unique_ptr<SubProcess> proc(new SubProcess()); proc->SetProgram(argv[0], argv); proc->SetChannelAction(CHAN_STDERR, ACTION_DUPPARENT); proc->SetChannelAction(CHAN_STDOUT, ACTION_DUPPARENT); return proc; } }
#include "tsl/platform/subprocess.h" #include <stdlib.h> #include <algorithm> #include <string> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/path.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #ifdef PLATFORM_WINDOWS #define WIFEXITED(code) ((code) != 3) #define WEXITSTATUS(code) (code) #define SIGKILL 9 #else #include <sys/wait.h> #endif namespace tsl { namespace { string EchoProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_echo"); return tsl::io::AppendDotExeIfWindows(path); } string EchoArgv1Program() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_echo_argv_1"); return tsl::io::AppendDotExeIfWindows(path); } string NoopProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_noop"); return tsl::io::AppendDotExeIfWindows(path); } string StdErrProgram() { std::string path = io::JoinPath(testing::TslSrcRoot(), "platform", "testdata", "test_stderr"); return tsl::io::AppendDotExeIfWindows(path); } class SubProcessTest : public ::testing::Test {}; TEST_F(SubProcessTest, NoOutputNoComm) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); EXPECT_TRUE(proc.Start()); EXPECT_TRUE(proc.Wait()); } TEST_F(SubProcessTest, NoOutput) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); EXPECT_EQ("", out); EXPECT_EQ("", err); } TEST_F(SubProcessTest, Stdout) { tsl::SubProcess proc; const char test_string[] = "hello_world"; proc.SetProgram(EchoArgv1Program().c_str(), {EchoArgv1Program(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); EXPECT_EQ(test_string, out); EXPECT_EQ("", err); } TEST_F(SubProcessTest, StdoutIgnored) { tsl::SubProcess proc; const char test_string[] = "hello_world"; proc.SetProgram(EchoArgv1Program().c_str(), {EchoArgv1Program(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); int status = proc.Communicate(nullptr, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, Stderr) { tsl::SubProcess proc; const char test_string[] = "muh_failure!"; proc.SetProgram(StdErrProgram().c_str(), {StdErrProgram(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string out, err; int status = proc.Communicate(nullptr, &out, &err); EXPECT_TRUE(WIFEXITED(status)); EXPECT_NE(0, WEXITSTATUS(status)); EXPECT_EQ("", out); EXPECT_EQ(test_string, err); } TEST_F(SubProcessTest, StderrIgnored) { tsl::SubProcess proc; const char test_string[] = "muh_failure!"; proc.SetProgram(StdErrProgram().c_str(), {StdErrProgram(), test_string}); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); proc.SetChannelAction(CHAN_STDERR, ACTION_PIPE); EXPECT_TRUE(proc.Start()); int status = proc.Communicate(nullptr, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_NE(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, Stdin) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in = "foobar\nbarfoo\nhaha\n"; int status = proc.Communicate(&in, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, StdinStdout) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in = "foobar\nbarfoo\nhaha\n"; string out; int status = proc.Communicate(&in, &out, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); out.erase(std::remove(out.begin(), out.end(), '\r'), out.end()); EXPECT_EQ(in, out); } TEST_F(SubProcessTest, StdinChildExit) { tsl::SubProcess proc; proc.SetProgram(NoopProgram().c_str(), {NoopProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in; in.reserve(1000000); for (int i = 0; i < 100000; i++) { in += "hello xyz\n"; } int status = proc.Communicate(&in, nullptr, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST_F(SubProcessTest, StdinStdoutOverlap) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); string in; in.reserve(1000000); for (int i = 0; i < 100000; i++) { in += "hello xyz\n"; } string out; int status = proc.Communicate(&in, &out, nullptr); EXPECT_TRUE(WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); out.erase(std::remove(out.begin(), out.end(), '\r'), out.end()); EXPECT_EQ(in, out); } TEST_F(SubProcessTest, KillProc) { tsl::SubProcess proc; proc.SetProgram(EchoProgram().c_str(), {EchoProgram()}); proc.SetChannelAction(CHAN_STDIN, ACTION_PIPE); proc.SetChannelAction(CHAN_STDOUT, ACTION_PIPE); EXPECT_TRUE(proc.Start()); EXPECT_TRUE(proc.Kill(SIGKILL)); EXPECT_TRUE(proc.Wait()); EXPECT_FALSE(proc.Kill(SIGKILL)); } } }
2,286