id
int64 1
564
| tensorflow
stringclasses 52
values | pytorch
stringclasses 81
values | mxnet
stringclasses 66
values | paddle
stringclasses 73
values |
---|---|---|---|---|
201 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1) | import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.1) | null | null |
202 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
x = tf.Variable(tf.range(-8.0, 8.0, 0.1), dtype=tf.float32)
y = tf.nn.relu(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'relu(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.relu(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of relu', figsize=(5, 2.5))
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of sigmoid',
figsize=(5, 2.5))
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of tanh', figsize=(5, 2.5)) | %matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5)) | null | null |
203 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = tf.Variable(tf.random.normal(shape=(num_inputs, num_hiddens), mean=0, stddev=0.01))
b1 = tf.Variable(tf.zeros(num_hiddens))
W2 = tf.Variable(tf.random.normal(shape=(num_hiddens, num_outputs), mean=0, stddev=0.01))
b2 = tf.Variable(tf.zeros(num_outputs))
params = [W1, b1, W2, b2]
def relu(X):
return tf.math.maximum(X, 0)
def net(X):
X = tf.reshape(X, (-1, num_inputs))
H = relu(tf.matmul(X, W1) + b1)
return tf.matmul(H, W2) + b2
def loss(y_hat, y):
return tf.losses.sparse_categorical_crossentropy(y, y_hat, from_logits=True)
num_epochs, lr = 10, 0.1
updater = d2l.Updater([W1, W2, b1, b2], lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) | import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1)
return (H@W2 + b2)
loss = nn.CrossEntropyLoss(reduction='none')
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) | null | null |
204 | import tensorflow as tf
from d2l import tensorflow as d2l
net = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(10)])
batch_size, lr, num_epochs = 256, 0.1, 10
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null | null |
205 | import math
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w, features, poly_features, labels = [tf.constant(x, dtype=tf.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
l = loss(net(X), y)
metric.add(tf.reduce_sum(l), d2l.size(l))
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = tf.losses.MeanSquaredError()
input_shape = train_features.shape[-1]
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, use_bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)
trainer = tf.keras.optimizers.SGD(learning_rate=.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) | import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
true_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
out = net(X)
y = y.reshape(out.shape)
l = loss(out, y)
metric.add(l.sum(), l.numel())
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = nn.MSELoss(reduction='none')
input_shape = train_features.shape[-1]
net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size)
test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False)
trainer = torch.optim.SGD(net.parameters(), lr=0.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) | null | null |
206 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = tf.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = tf.Variable(tf.random.normal(mean=1, shape=(num_inputs, 1)))
b = tf.Variable(tf.zeros(shape=(1, )))
return [w, b]
def l2_penalty(w):
return tf.reduce_sum(tf.pow(w, 2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + lambd * l2_penalty(w)
grads = tape.gradient(l, [w, b])
d2l.sgd([w, b], grads, lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(wd)))
net.build(input_shape=(1, num_inputs))
w, b = net.trainable_variables
loss = tf.keras.losses.MeanSquaredError()
num_epochs, lr = 100, 0.003
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + net.losses
grads = tape.gradient(l, net.trainable_variables)
trainer.apply_gradients(zip(grads, net.trainable_variables))
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) | %matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_inputs, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,
(d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) | null | null |
207 | import tensorflow as tf
from d2l import tensorflow as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return tf.zeros_like(X)
if dropout == 0:
return X
mask = tf.random.uniform(shape=tf.shape(X), minval=0, maxval=1) < 1 - dropout
return tf.cast(mask, dtype=tf.float32) * X / (1.0 - dropout)
X = tf.reshape(tf.range(16, dtype=tf.float32), (2, 8))
num_outputs, num_hiddens1, num_hiddens2 = 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
class Net(tf.keras.Model):
def __init__(self, num_outputs, num_hiddens1, num_hiddens2):
super().__init__()
self.input_layer = tf.keras.layers.Flatten()
self.hidden1 = tf.keras.layers.Dense(num_hiddens1, activation='relu')
self.hidden2 = tf.keras.layers.Dense(num_hiddens2, activation='relu')
self.output_layer = tf.keras.layers.Dense(num_outputs)
def call(self, inputs, training=None):
x = self.input_layer(inputs)
x = self.hidden1(x)
if training:
x = dropout_layer(x, dropout1)
x = self.hidden2(x)
if training:
x = dropout_layer(x, dropout2)
x = self.output_layer(x)
return x
net = Net(num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dropout(dropout1),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dropout(dropout2),
tf.keras.layers.Dense(10),
])
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return torch.zeros_like(X)
if dropout == 0:
return X
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
class Net(nn.Module):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2, num_outputs)
self.relu = nn.ReLU()
def forward(self, X):
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
if self.training == True:
H1 = dropout_layer(H1, dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Dropout(dropout1),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(dropout2),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null | null |
208 | trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
x = tf.Variable(tf.range(-8.0, 8.0, 0.1))
with tf.GradientTape() as t:
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), [y.numpy(), t.gradient(y, x).numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = tf.random.normal((4, 4))
for i in range(100):
M = tf.matmul(M, tf.random.normal((4, 4))) | trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))
d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = torch.normal(0, 1, size=(4,4))
for i in range(100):
M = torch.mm(M,torch.normal(0, 1, size=(4, 4))) | null | null |
209 | %matplotlib inline
import numpy as np
import pandas as pd
import tensorflow as tf
from d2l import tensorflow as d2l
n_train = train_data.shape[0]
train_features = tf.constant(all_features[:n_train].values, dtype=tf.float32)
test_features = tf.constant(all_features[n_train:].values, dtype=tf.float32)
train_labels = tf.constant(train_data.SalePrice.values.reshape(-1, 1), dtype=tf.float32)
loss = tf.keras.losses.MeanSquaredError()
def get_net():
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(weight_decay)))
return net
def log_rmse(y_true, y_pred):
clipped_preds = tf.clip_by_value(y_pred, 1, float('inf'))
return tf.sqrt(tf.reduce_mean(loss(tf.math.log(y_true), tf.math.log(clipped_preds))))
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = tf.keras.optimizers.Adam(learning_rate)
net.compile(loss=loss, optimizer=optimizer)
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
l = loss(y, y_hat)
params = net.trainable_variables
grads = tape.gradient(l, params)
optimizer.apply_gradients(zip(grads, params))
train_ls.append(log_rmse(train_labels, net(train_features)))
if test_labels is not None:
test_ls.append(log_rmse(test_labels, net(test_features)))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = tf.concat([X_train, X_part], 0)
y_train = tf.concat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False) | %matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features,1))
return net
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False) | null | null |
210 | import tensorflow as tf
net = tf.keras.models.Sequential([
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dense(10))
X = tf.random.uniform((2, 20))
net(X)
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
self.out = tf.keras.layers.Dense(units=10)
def call(self, X):
return self.out(self.hidden((X)))
class MySequential(tf.keras.Model):
def __init__(self, *args):
super().__init__()
self.modules = []
for block in args:
self.modules.append(block)
def call(self, X):
for module in self.modules:
X = module(X)
return X
net = MySequential(
tf.keras.layers.Dense(units=256, activation=tf.nn.relu),
tf.keras.layers.Dense(10))
net(X)
class FixedHiddenMLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.rand_weight = tf.constant(tf.random.uniform((20, 20)))
self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu)
def call(self, inputs):
X = self.flatten(inputs)
X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1)
X = self.dense(X)
while tf.reduce_sum(tf.math.abs(X)) > 1:
X /= 2
return tf.reduce_sum(X)
class NestMLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.net = tf.keras.Sequential()
self.net.add(tf.keras.layers.Dense(64, activation=tf.nn.relu))
self.net.add(tf.keras.layers.Dense(32, activation=tf.nn.relu))
self.dense = tf.keras.layers.Dense(16, activation=tf.nn.relu)
def call(self, inputs):
return self.dense(self.net(inputs))
chimera = tf.keras.Sequential()
chimera.add(NestMLP())
chimera.add(tf.keras.layers.Dense(20))
chimera.add(FixedHiddenMLP())
chimera(X) | import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.out = nn.Linear(256, 10)
def forward(self, X):
return self.out(F.relu(self.hidden(X)))
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
self._modules[str(idx)] = module
def forward(self, X):
for block in self._modules.values():
X = block(X)
return X
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
X = F.relu(torch.mm(X, self.rand_weight) + 1)
X = self.linear(X)
while X.abs().sum() > 1:
X /= 2
return X.sum()
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X) | null | null |
211 | import tensorflow as tf
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu),
tf.keras.layers.Dense(1),
])
X = tf.random.uniform((2, 4))
net(X)
net.get_weights()[1]
def block1(name):
return tf.keras.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu)], name=name)
def block2():
net = tf.keras.Sequential()
for i in range(4):
net.add(block1(name=f'block-{i}'))
return net
rgnet = tf.keras.Sequential()
rgnet.add(block2())
rgnet.add(tf.keras.layers.Dense(1))
rgnet(X)
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.01), bias_initializer=tf.zeros_initializer()),
tf.keras.layers.Dense(1)])
net(X)
net.weights[0], net.weights[1]
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.Constant(1), bias_initializer=tf.zeros_initializer()),
tf.keras.layers.Dense(1),
])
net(X)
net.weights[0], net.weights[1]
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.GlorotUniform()),
tf.keras.layers.Dense(1, kernel_initializer=tf.keras.initializers.Constant(1)),
])
net(X)
class MyInit(tf.keras.initializers.Initializer):
def __call__(self, shape, dtype=None):
data=tf.random.uniform(shape, -10, 10, dtype=dtype)
factor=(tf.abs(data) >= 5)
factor=tf.cast(factor, tf.float32)
return data * factor
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=MyInit()),
tf.keras.layers.Dense(1))
net(X)
net.layers[1].weights[0][:].assign(net.layers[1].weights[0] + 1)
net.layers[1].weights[0][0, 0].assign(42)
net.layers[1].weights[0]
layer = CenteredLayer()
layer(tf.constant([1, 2, 3, 4, 5]))
net = tf.keras.Sequential([tf.keras.layers.Dense(128), CenteredLayer()]) | import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
net.state_dict()['2.bias'].data
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_xavier)
net[2].apply(init_42)
def my_init(m):
if type(m) == nn.Linear:
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer()) | null | null |
212 | import tensorflow as tf
class CenteredLayer(tf.keras.Model):
def __init__(self):
super().__init__()
def call(self, inputs):
return inputs - tf.reduce_mean(inputs)
Y = net(tf.random.uniform((4, 8)))
tf.reduce_mean(Y)
class MyDense(tf.keras.Model):
def __init__(self, units):
super().__init__()
self.units = units
def build(self, X_shape):
self.weight = self.add_weight(name='weight',
shape=[X_shape[-1], self.units],
initializer=tf.random_normal_initializer())
self.bias = self.add_weight(
name='bias', shape=[self.units],
initializer=tf.zeros_initializer())
def call(self, X):
linear = tf.matmul(X, self.weight) + self.bias
return tf.nn.relu(linear)
dense = MyDense(3)
dense(tf.random.uniform((2, 5)))
dense.get_weights()
dense(tf.random.uniform((2, 5)))
net = tf.keras.models.Sequential([MyDense(8), MyDense(1)])
net(tf.random.uniform((2, 64))) | import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
Y = net(torch.rand(4, 8))
Y.mean()
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear = MyLinear(5, 3)
linear.weight
linear(torch.rand(2, 5))
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64)) | null | null |
213 | import numpy as np
import tensorflow as tf
x = tf.range(4)
np.save('x-file.npy', x)
x2 = np.load('x-file.npy', allow_pickle=True)
y = tf.zeros(4)
np.save('xy-files.npy', [x, y])
x2, y2 = np.load('xy-files.npy', allow_pickle=True)
mydict = {'x': x, 'y': y}
np.save('mydict.npy', mydict)
mydict2 = np.load('mydict.npy', allow_pickle=True)
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
self.out = tf.keras.layers.Dense(units=10)
def call(self, inputs):
x = self.flatten(inputs)
x = self.hidden(x)
return self.out(x)
net = MLP()
X = tf.random.uniform((2, 20))
Y = net(X)
net.save_weights('mlp.params')
clone = MLP()
clone.load_weights('mlp.params') | import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
torch.save(x, 'x-file')
x2 = torch.load('x-file')
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
torch.save(net.state_dict(), 'mlp.params')
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval() | null | null |
214 | import tensorflow as tf
tf.device('/CPU:0'), tf.device('/GPU:0'), tf.device('/GPU:1')
len(tf.config.experimental.list_physical_devices('GPU'))
def try_gpu(i=0):
if len(tf.config.experimental.list_physical_devices('GPU')) >= i + 1:
return tf.device(f'/GPU:{i}')
return tf.device('/CPU:0')
def try_all_gpus():
num_gpus = len(tf.config.experimental.list_physical_devices('GPU'))
devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)]
return devices if devices else [tf.device('/CPU:0')]
try_gpu(), try_gpu(10), try_all_gpus()
x = tf.constant([1, 2, 3])
x.device
with try_gpu():
X = tf.ones((2, 3))
with try_gpu(1):
Y = tf.random.uniform((2, 3))
with try_gpu(1):
Z = X
with try_gpu(1):
Z2 = Z
Z2 is Z
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
net = tf.keras.models.Sequential([
tf.keras.layers.Dense(1)])
net.layers[0].weights[0].device, net.layers[0].weights[1].device | import torch
from torch import nn
torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')
torch.cuda.device_count()
def try_gpu(i=0):
if torch.cuda.device_count() >= i + 1:
return devices = [torch.device(f'cuda:{i}')
return torch.device('cpu')
def try_all_gpus(): devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
return devices if devices else [torch.device('cpu')]
try_gpu(), try_gpu(10), try_all_gpus()
x = torch.tensor([1, 2, 3])
x.device
X = torch.ones(2, 3, device=try_gpu())
Y = torch.rand(2, 3, device=try_gpu(1))
Z = X.cuda(1)
Z.cuda(1) is Z
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())
net[0].weight.data.device | null | null |
215 | import tensorflow as tf
from d2l import tensorflow as d2l
def corr2d(X, K):
h, w = K.shape
Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j].assign(tf.reduce_sum(
X[i: i + h, j: j + w] * K))
return Y
X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = tf.constant([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(tf.keras.layers.Layer):
def __init__(self):
super().__init__()
def build(self, kernel_size):
initializer = tf.random_normal_initializer()
self.weight = self.add_weight(name='w', shape=kernel_size, initializer=initializer)
self.bias = self.add_weight(name='b', shape=(1, ), initializer=initializer)
def call(self, inputs):
return corr2d(inputs, self.weight) + self.bias
X = tf.Variable(tf.ones((6, 8)))
X[:, 2:6].assign(tf.zeros(X[:, 2:6].shape))
K = tf.constant([[1.0, -1.0]])
corr2d(tf.transpose(X), K)
conv2d = tf.keras.layers.Conv2D(1, (1, 2), use_bias=False)
X = tf.reshape(X, (1, 6, 8, 1))
Y = tf.reshape(Y, (1, 6, 7, 1))
lr = 3e-2
Y_hat = conv2d(X)
for i in range(10):
with tf.GradientTape(watch_accessed_variables=False) as g:
g.watch(conv2d.weights[0])
Y_hat = conv2d(X)
l = (abs(Y_hat - Y)) ** 2
update = tf.multiply(lr, g.gradient(l, conv2d.weights[0]))
weights = conv2d.get_weights()
weights[0] = conv2d.weights[0] - update
conv2d.set_weights(weights)
tf.reshape(conv2d.get_weights()[0], (1, 2)) | import torch
from torch import nn
from d2l import torch as d2l
def corr2d(X, K):
h, w = K.shape
Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Module):
def __init__(self, kernel_size):
super().__init__()
self.weight = nn.Parameter(torch.rand(kernel_size))
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, x):
return corr2d(x, self.weight) + self.bias
X = torch.ones((6, 8))
X[:, 2:6] = 0
K = torch.tensor([[1.0, -1.0]])
corr2d(X.t(), K)
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2
for i in range(10):
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
conv2d.zero_grad()
l.sum().backward()
conv2d.weight.data[:] -= lr * conv2d.weight.grad
conv2d.weight.data.reshape((1, 2)) | null | null |
216 | import tensorflow as tf
def comp_conv2d(conv2d, X):
X = tf.reshape(X, (1, ) + X.shape + (1, ))
Y = conv2d(X)
return tf.reshape(Y, Y.shape[1:3])
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same')
X = tf.random.uniform(shape=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=(5, 3), padding='same')
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2)
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=(3,5), padding='valid', strides=(3, 4))
comp_conv2d(conv2d, X).shape | import torch
from torch import nn
def comp_conv2d(conv2d, X):
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape | null | null |
217 | import tensorflow as tf
from d2l import tensorflow as d2l
def corr2d_multi_in(X, K):
return tf.reduce_sum([d2l.corr2d(x, k) for x, k in zip(X, K)], axis=0)
X = tf.constant([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = tf.constant([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return tf.stack([corr2d_multi_in(X, k) for k in K], 0)
K = tf.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = tf.reshape(X, (c_i, h * w))
K = tf.reshape(K, (c_o, c_i))
Y = tf.matmul(K, X)
return tf.reshape(Y, (c_o, h, w))
X = tf.random.normal((3, 3, 3), 0, 1)
K = tf.random.normal((2, 3, 1, 1), 0, 1)
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(tf.reduce_sum(tf.abs(Y1 - Y2))) < 1e-6 | import torch
from d2l import torch as d2l
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
K = torch.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6 | null | null |
218 | import tensorflow as tf
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = tf.Variable(tf.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w +1)))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j].assign(tf.reduce_max(X[i: i + p_h, j: j + p_w]))
elif mode =='avg':
Y[i, j].assign(tf.reduce_mean(X[i: i + p_h, j: j + p_w]))
return Y
X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = tf.reshape(tf.range(16, dtype=tf.float32), (1, 4, 4, 1))
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3])
pool2d(X)
paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid',
strides=2)
pool2d(X_padded)
paddings = tf.constant([[0, 0], [0, 0], [1, 1], [0, 0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[2, 3], padding='valid',
strides=(2, 3))
pool2d(X_padded)
X = tf.concat([X, X + 1], 3)
paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid',
strides=2)
pool2d(X_padded) | import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2d(3)
pool2d(X)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
X = torch.cat((X, X + 1), 1)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X) | null | null |
219 | import tensorflow as tf
from d2l import tensorflow as d2l
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, activation='sigmoid', padding='same'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5, activation='sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120, activation='sigmoid'),
tf.keras.layers.Dense(84, activation='sigmoid'),
tf.keras.layers.Dense(10)])
X = tf.random.uniform((1, 28, 28, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__, 'output shape: ', X.shape)
class TrainCallback(tf.keras.callbacks.Callback):
def __init__(self, net, train_iter, test_iter, num_epochs, device_name):
self.timer = d2l.Timer()
self.animator = d2l.Animator( xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
self.net = net
self.train_iter = train_iter
self.test_iter = test_iter
self.num_epochs = num_epochs
self.device_name = device_name
def on_epoch_begin(self, epoch, logs=None):
self.timer.start()
def on_epoch_end(self, epoch, logs):
self.timer.stop()
test_acc = self.net.evaluate(self.test_iter, verbose=0, return_dict=True)['accuracy']
metrics = (logs['loss'], logs['accuracy'], test_acc)
self.animator.add(epoch + 1, metrics)
if epoch == self.num_epochs - 1:
batch_size = next(iter(self.train_iter))[0].shape[0]
num_examples = batch_size * tf.data.experimental.cardinality(self.train_iter).numpy()
def train_ch6(net_fn, train_iter, test_iter, num_epochs, lr, device):
device_name = device._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
optimizer = tf.keras.optimizers.SGD(learning_rate=lr)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
net = net_fn()
net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
callback = TrainCallback(net, train_iter, test_iter, num_epochs, device_name)
net.fit(train_iter, epochs=num_epochs, verbose=0, callbacks=[callback])
return net | import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc)) | null | null |
220 | import tensorflow as tf
from d2l import tensorflow as d2l
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=96, kernel_size=11, strides=4, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Conv2D(filters=256, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10)])
X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__, 'output shape: ', X.shape) | import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
nn.Linear(6400, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape) | null | null |
221 | import tensorflow as tf
from d2l import tensorflow as d2l
def vgg_block(num_convs, num_channels):
blk = tf.keras.models.Sequential()
for _ in range(num_convs):
blk.add(tf.keras.layers.Conv2D(num_channels,kernel_size=3, padding='same',activation='relu'))
blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
return blk
def vgg(conv_arch):
net = tf.keras.models.Sequential()
for (num_convs, num_channels) in conv_arch:
net.add(vgg_block(num_convs, num_channels))
net.add(tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10)]))
return net
net = vgg(conv_arch)
X = tf.random.uniform((1, 224, 224, 1))
for blk in net.layers:
X = blk(X)
print(blk.__class__.__name__,'output shape: ', X.shape)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = lambda: vgg(small_conv_arch) | import torch
from torch import nn
from d2l import torch as d2l
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape: ',X.shape)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch) | null | null |
222 | import tensorflow as tf
from d2l import tensorflow as d2l
def nin_block(num_channels, kernel_size, strides, padding):
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(num_channels, kernel_size, strides=strides, padding=padding, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu')])
def net():
return tf.keras.models.Sequential([
nin_block(96, kernel_size=11, strides=4, padding='valid'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Dropout(0.5),
nin_block(10, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Reshape((1, 1, 10)),
tf.keras.layers.Flatten(),
])
X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | import torch
from torch import nn
from d2l import torch as d2l
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | null |
223 | import tensorflow as tf
from d2l import tensorflow as d2l
class Inception(tf.keras.Model):
def __init__(self, c1, c2, c3, c4):
super().__init__()
self.p1_1 = tf.keras.layers.Conv2D(c1, 1, activation='relu')
self.p2_1 = tf.keras.layers.Conv2D(c2[0], 1, activation='relu')
self.p2_2 = tf.keras.layers.Conv2D(c2[1], 3, padding='same', activation='relu')
self.p3_1 = tf.keras.layers.Conv2D(c3[0], 1, activation='relu')
self.p3_2 = tf.keras.layers.Conv2D(c3[1], 5, padding='same', activation='relu')
self.p4_1 = tf.keras.layers.MaxPool2D(3, 1, padding='same')
self.p4_2 = tf.keras.layers.Conv2D(c4, 1, activation='relu')
def call(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
return tf.keras.layers.Concatenate()([p1, p2, p3, p4])
def b1():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, 7, strides=2, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b2():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, 1, activation='relu'),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b3():
return tf.keras.models.Sequential([
Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b4():
return tf.keras.Sequential([
Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b5():
return tf.keras.Sequential([
Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Flatten()
])
def net():
return tf.keras.Sequential([b1(), b2(), b3(), b4(), b5(),
tf.keras.layers.Dense(10)])
X = tf.random.uniform(shape=(1, 96, 96, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
return torch.cat((p1, p2, p3, p4), dim=1)
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | null |
224 | import tensorflow as tf
from d2l import tensorflow as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps):
inv = tf.cast(tf.math.rsqrt(moving_var + eps), X.dtype)
inv *= gamma
Y = X * inv + (beta - moving_mean * inv)
return Y
class BatchNorm(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(BatchNorm, self).__init__(**kwargs)
def build(self, input_shape):
weight_shape = [input_shape[-1], ]
self.gamma = self.add_weight(name='gamma', shape=weight_shape, initializer=tf.initializers.ones, trainable=True)
self.beta = self.add_weight(name='beta', shape=weight_shape, initializer=tf.initializers.zeros, trainable=True)
self.moving_mean = self.add_weight(name='moving_mean', shape=weight_shape, initializer=tf.initializers.zeros, trainable=False)
self.moving_variance = self.add_weight(name='moving_variance', shape=weight_shape, initializer=tf.initializers.ones, trainable=False)
super(BatchNorm, self).build(input_shape)
def assign_moving_average(self, variable, value):
momentum = 0.9
delta = variable * momentum + value * (1 - momentum)
return variable.assign(delta)
@tf.function
def call(self, inputs, training):
if training:
axes = list(range(len(inputs.shape) - 1))
batch_mean = tf.reduce_mean(inputs, axes, keepdims=True)
batch_variance = tf.reduce_mean(tf.math.squared_difference(inputs, tf.stop_gradient(batch_mean)), axes, keepdims=True)
batch_mean = tf.squeeze(batch_mean, axes)
batch_variance = tf.squeeze(batch_variance, axes)
mean_update = self.assign_moving_average(self.moving_mean, batch_mean)
variance_update = self.assign_moving_average(self.moving_variance, batch_variance)
self.add_update(mean_update)
self.add_update(variance_update)
mean, variance = batch_mean, batch_variance
else:
mean, variance = self.moving_mean, self.moving_variance
output = batch_norm(inputs, moving_mean=mean, moving_var=variance, beta=self.beta, gamma=self.gamma, eps=1e-5)
return output
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(84),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(10)]
)
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
tf.reshape(net.layers[1].gamma, (-1,)), tf.reshape(net.layers[1].beta, (-1,))
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(84),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(10),
]) | import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
if not torch.is_grad_enabled():
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / torch.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean.data, moving_var.data
class BatchNorm(nn.Module):
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10)) | null | null |
225 | import tensorflow as tf
from d2l import tensorflow as d2l
class Residual(tf.keras.Model):
def __init__(self, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = tf.keras.layers.Conv2D(
num_channels, padding='same', kernel_size=3, strides=strides)
self.conv2 = tf.keras.layers.Conv2D(
num_channels, kernel_size=3, padding='same')
self.conv3 = None
if use_1x1conv:
self.conv3 = tf.keras.layers.Conv2D(
num_channels, kernel_size=1, strides=strides)
self.bn1 = tf.keras.layers.BatchNormalization()
self.bn2 = tf.keras.layers.BatchNormalization()
def call(self, X):
Y = tf.keras.activations.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3 is not None:
X = self.conv3(X)
Y += X
return tf.keras.activations.relu(Y)
blk = Residual(3)
X = tf.random.uniform((4, 6, 6, 3))
Y = blk(X)
Y.shape
blk = Residual(6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
class ResnetBlock(tf.keras.layers.Layer):
def __init__(self, num_channels, num_residuals, first_block=False, **kwargs):
super(ResnetBlock, self).__init__(**kwargs)
self.residual_layers = []
for i in range(num_residuals):
if i == 0 and not first_block:
self.residual_layers.append(Residual(num_channels, use_1x1conv=True, strides=2))
else:
self.residual_layers.append(Residual(num_channels))
def call(self, X):
for layer in self.residual_layers.layers:
X = layer(X)
return X
b2 = ResnetBlock(64, 2, first_block=True)
b3 = ResnetBlock(128, 2)
b4 = ResnetBlock(256, 2)
b5 = ResnetBlock(512, 2)
def net():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'),
ResnetBlock(64, 2, first_block=True),
ResnetBlock(128, 2),
ResnetBlock(256, 2),
ResnetBlock(512, 2),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Dense(units=10)])
X = tf.random.uniform(shape=(1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | null |
226 | import tensorflow as tf
from d2l import tensorflow as d2l
class ConvBlock(tf.keras.layers.Layer):
def __init__(self, num_channels):
super(ConvBlock, self).__init__()
self.bn = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.ReLU()
self.conv = tf.keras.layers.Conv2D(filters=num_channels, kernel_size=(3, 3), padding='same')
self.listLayers = [self.bn, self.relu, self.conv]
def call(self, x):
y = x
for layer in self.listLayers.layers:
y = layer(y)
y = tf.keras.layers.concatenate([x,y], axis=-1)
return y
class DenseBlock(tf.keras.layers.Layer):
def __init__(self, num_convs, num_channels):
super(DenseBlock, self).__init__()
self.listLayers = []
for _ in range(num_convs):
self.listLayers.append(ConvBlock(num_channels))
def call(self, x):
for layer in self.listLayers.layers:
x = layer(x)
return x
blk = DenseBlock(2, 10)
X = tf.random.uniform((4, 8, 8, 3))
Y = blk(X)
Y.shape
class TransitionBlock(tf.keras.layers.Layer):
def __init__(self, num_channels, **kwargs):
super(TransitionBlock, self).__init__(**kwargs)
self.batch_norm = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.ReLU()
self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1)
self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2)
def call(self, x):
x = self.batch_norm(x)
x = self.relu(x)
x = self.conv(x)
return self.avg_pool(x)
blk = TransitionBlock(10)
blk(Y).shape
def block_1():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU(),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def block_2():
net = block_1()
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
for i, num_convs in enumerate(num_convs_in_dense_blocks):
net.add(DenseBlock(num_convs, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
num_channels //= 2
net.add(TransitionBlock(num_channels))
return net
def net():
net = block_2()
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.ReLU())
net.add(tf.keras.layers.GlobalAvgPool2D())
net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(10))
return net | import torch
from torch import nn
from d2l import torch as d2l
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = torch.cat((X, Y), dim=1)
return X
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2))
blk = transition_block(23, 10)
blk(Y).shape
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10)) | null | null |
227 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
T = 1000
time = tf.range(1, T + 1, dtype=tf.float32)
x = tf.sin(0.01 * time) + tf.random.normal([T], 0, 0.2)
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = tf.Variable(tf.zeros((T - tau, tau)))
for i in range(tau):
features[:, i].assign(x[i: T - tau + i])
labels = tf.reshape(x[tau:], (-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def get_net():
net = tf.keras.Sequential([tf.keras.layers.Dense(10, activation='relu'),
tf.keras.layers.Dense(1)])
return net
loss = tf.keras.losses.MeanSquaredError()
def train(net, train_iter, loss, epochs, lr):
trainer = tf.keras.optimizers.Adam()
for epoch in range(epochs):
for X, y in train_iter:
with tf.GradientTape() as g:
out = net(X)
l = loss(y, out)
params = net.trainable_variables
grads = g.gradient(l, params)
trainer.apply_gradients(zip(grads, params))
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.numpy(), onestep_preds.numpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = tf.Variable(tf.zeros(T))
multistep_preds[:n_train + tau].assign(x[:n_train + tau])
for i in range(n_train + tau, T):
multistep_preds[i].assign(tf.reshape(net(tf.reshape(multistep_preds[i - tau: i], (1, -1))), ()))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.numpy(), onestep_preds.numpy(),
multistep_preds[n_train + tau:].numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = tf.Variable(tf.zeros((T - tau - max_steps + 1, tau + max_steps)))
for i in range(tau):
features[:, i].assign(x[i: i + T - tau - max_steps + 1].numpy())
for i in range(tau, tau + max_steps):
features[:, i].assign(tf.reshape(net((features[:, i - tau: i])), -1))
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3)) | %matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
T = 1000
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def get_net():
net = nn.Sequential(nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1))
net.apply(init_weights)
return net
loss = nn.MSELoss(reduction='none')
def train(net, train_iter, loss, epochs, lr):
trainer = torch.optim.Adam(net.parameters(), lr)
for epoch in range(epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.sum().backward()
trainer.step()
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy(),
multistep_preds[n_train + tau:].detach().numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3)) | null | null |
228 | import collections
import re
from d2l import tensorflow as d2l
def tokenize(lines, token='word'):
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('Error: Unknown word element type:' + token)
tokens = tokenize(lines)
for i in range(11):
print(tokens[i])
def load_corpus_time_machine(max_tokens=-1):
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab) | import collections
import re
from d2l import torch as d2l
def tokenize(lines, token='word'):
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('Error: Unknown word element type:' + token)
tokens = tokenize(lines)
for i in range(11):
print(tokens[i])
def load_corpus_time_machine(max_tokens=-1):
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab) | null | null |
229 | import random
import tensorflow as tf
from d2l import tensorflow as d2l
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield tf.constant(X), tf.constant(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = tf.constant(corpus[offset: offset + num_tokens])
Ys = tf.constant(corpus[offset + 1: offset + 1 + num_tokens])
Xs = tf.reshape(Xs, (batch_size, -1))
Ys = tf.reshape(Ys, (batch_size, -1))
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_batches * num_steps, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y | import random
import torch
from d2l import torch as d2l
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield torch.tensor(X), torch.tensor(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = torch.tensor(corpus[offset: offset + num_tokens])
Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y | null | null |
230 | import tensorflow as tf
from d2l import tensorflow as d2l
X, W_xh = tf.random.normal((3, 1), 0, 1), tf.random.normal((1, 4), 0, 1)
H, W_hh = tf.random.normal((3, 4), 0, 1), tf.random.normal((4, 4), 0, 1)
tf.matmul(X, W_xh) + tf.matmul(H, W_hh)
tf.matmul(tf.concat((X, H), 1), tf.concat((W_xh, W_hh), 0)) | import torch
from d2l import torch as d2l
X, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4))
H, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4))
torch.matmul(X, W_xh) + torch.matmul(H, W_hh)
torch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0)) | null | null |
231 | %matplotlib inline
import math
import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
train_random_iter, vocab_random_iter = d2l.load_data_time_machine(batch_size, num_steps, use_random_iter=True)
tf.one_hot(tf.constant([0, 2]), len(vocab))
X = tf.reshape(tf.range(10), (2, 5))
tf.one_hot(tf.transpose(X), 28).shape
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32)
W_xh = tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32)
W_hh = tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32)
b_h = tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32)
W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32)
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xh, W_hh, b_h, W_hq, b_q]
return params
def init_rnn_state(batch_size, num_hiddens):
return (tf.zeros((batch_size, num_hiddens)), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
X = tf.reshape(X,[-1,W_xh.shape[0]])
H = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(H, W_hh) + b_h)
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, init_state, forward_fn, get_params):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.init_state, self.forward_fn = init_state, forward_fn
self.trainable_variables = get_params(vocab_size, num_hiddens)
def __call__(self, X, state):
X = tf.one_hot(tf.transpose(X), self.vocab_size)
X = tf.cast(X, tf.float32)
return self.forward_fn(X, state, self.trainable_variables)
def begin_state(self, batch_size, *args, **kwargs):
return self.init_state(batch_size, self.num_hiddens)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
num_hiddens = 512
with strategy.scope():
net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params)
state = net.begin_state(X.shape[0])
Y, new_state = net(X, state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab):
state = net.begin_state(batch_size=1, dtype=tf.float32)
outputs = [vocab[prefix[0]]]
get_input = lambda: tf.reshape(tf.constant([outputs[-1]]),
(1, 1)).numpy()
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.numpy().argmax(axis=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab)
def grad_clipping(grads, theta):
theta = tf.constant(theta, dtype=tf.float32)
new_grad = []
for grad in grads:
if isinstance(grad, tf.IndexedSlices):
new_grad.append(tf.convert_to_tensor(grad))
else:
new_grad.append(grad)
norm = tf.math.sqrt(sum((tf.reduce_sum(grad ** 2)).numpy()
for grad in new_grad))
norm = tf.cast(norm, tf.float32)
if tf.greater(norm, theta):
for i, grad in enumerate(new_grad):
new_grad[i] = grad * theta / norm
else:
new_grad = new_grad
return new_grad
def train_epoch_ch8(net, train_iter, loss, updater, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], dtype=tf.float32)
with tf.GradientTape(persistent=True) as g:
y_hat, state = net(X, state)
y = tf.reshape(tf.transpose(Y), (-1))
l = loss(y, y_hat)
params = net.trainable_variables
grads = g.gradient(l, params)
grads = grad_clipping(grads, 1)
updater.apply_gradients(zip(grads, params))
metric.add(l * d2l.size(y), d2l.size(y))
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, strategy, use_random_iter=False):
with strategy.scope():
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
updater = tf.keras.optimizers.SGD(lr)
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
device = d2l.try_gpu()._device_name
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, strategy)
with strategy.scope():
net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params)
train_ch8(net, train_iter, vocab_random_iter, lr, num_epochs, strategy, use_random_iter=True) | %matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
F.one_hot(torch.tensor([0, 2]), len(vocab))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = torch.zeros(num_hiddens, device=device)
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
def grad_clipping(net, theta):
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
state.detach_()
else:
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True) | null | null |
232 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_cell = tf.keras.layers.SimpleRNNCell(num_hiddens, kernel_initializer='glorot_uniform')
rnn_layer = tf.keras.layers.RNN(rnn_cell, time_major=True, return_sequences=True, return_state=True)
state = rnn_cell.get_initial_state(batch_size=batch_size, dtype=tf.float32)
state.shape
X = tf.random.uniform((num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, len(state_new), state_new[0].shape
class RNNModel(tf.keras.layers.Layer):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs, state):
X = tf.one_hot(tf.transpose(inputs), self.vocab_size)
Y, *state = self.rnn(X, state)
output = self.dense(tf.reshape(Y, (-1, Y.shape[-1])))
return output, state
def begin_state(self, *args, **kwargs):
return self.rnn.cell.get_initial_state(*args, **kwargs)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
net = RNNModel(rnn_layer, vocab_size=len(vocab))
d2l.predict_ch8('time traveller', 10, net, vocab)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, strategy) | import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens))
state.shape
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
class RNNModel(nn.Module):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)
else:
return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),
torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device) | null | null |
233 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32)
def three():
return (tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32), tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32)
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
return params
def init_gru_state(batch_size, num_hiddens):
return (tf.zeros((batch_size, num_hiddens)), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
X = tf.reshape(X,[-1,W_xh.shape[0]])
Z = tf.sigmoid(tf.matmul(X, W_xz) + tf.matmul(H, W_hz) + b_z)
R = tf.sigmoid(tf.matmul(X, W_xr) + tf.matmul(H, W_hr) + b_r)
H_tilda = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(R * H, W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,)
vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
num_epochs, lr = 500, 1
with strategy.scope():
model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_gru_state, gru, get_params)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
gru_cell = tf.keras.layers.GRUCell(num_hiddens, kernel_initializer='glorot_uniform')
gru_layer = tf.keras.layers.RNN(gru_cell, time_major=True, return_sequences=True, return_state=True)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModel(gru_layer, vocab_size=len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) | import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_gru_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = H @ W_hq + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params, init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) | null | null |
234 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.Variable(tf.random.normal(shape=shape, stddev=0.01, mean=0, dtype=tf.float32))
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
return params
def init_lstm_state(batch_size, num_hiddens):
return (tf.zeros(shape=(batch_size, num_hiddens)), tf.zeros(shape=(batch_size, num_hiddens)))
def lstm(inputs, state, params):
W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q = params
(H, C) = state
outputs = []
for X in inputs:
X=tf.reshape(X,[-1,W_xi.shape[0]])
I = tf.sigmoid(tf.matmul(X, W_xi) + tf.matmul(H, W_hi) + b_i)
F = tf.sigmoid(tf.matmul(X, W_xf) + tf.matmul(H, W_hf) + b_f)
O = tf.sigmoid(tf.matmul(X, W_xo) + tf.matmul(H, W_ho) + b_o)
C_tilda = tf.tanh(tf.matmul(X, W_xc) + tf.matmul(H, W_hc) + b_c)
C = F * C + I * C_tilda
H = O * tf.tanh(C)
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,C)
vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name
num_epochs, lr = 500, 1
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_lstm_state, lstm, get_lstm_params)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
lstm_cell = tf.keras.layers.LSTMCell(num_hiddens, kernel_initializer='glorot_uniform')
lstm_layer = tf.keras.layers.RNN(lstm_cell, time_major=True, return_sequences=True, return_state=True)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModel(lstm_layer, vocab_size=len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) | import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) | null | null |
235 | import os
import tensorflow as tf
from d2l import tensorflow as d2l
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = tf.constant([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = tf.reduce_sum(
tf.cast(array != vocab['<pad>'], tf.int32), 1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', tf.cast(X, tf.int32))
print('Valid length of X:', X_valid_len)
print('Y:', tf.cast(Y, tf.int32))
print('Valid length of Y:', Y_valid_len)
break | import os
import torch
from d2l import torch as d2l
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.type(torch.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y.type(torch.int32))
print('Valid length of Y:', Y_valid_len)
break | null | null |
236 | x = tf.range(12)
tf.size(x)
X = tf.reshape(x, (3, 4))
tf.zeros((2, 3, 4))
tf.ones((2, 3, 4))
tf.random.normal(shape=[3, 4])
tf.constant([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = tf.constant([1.0, 2, 4, 8])
y = tf.constant([2.0, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
tf.exp(x)
X = tf.reshape(tf.range(12, dtype=tf.float32), (3, 4))
Y = tf.constant([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tf.concat([X, Y], axis=0), tf.concat([X, Y], axis=1)
tf.reduce_sum(X)
a = tf.reshape(tf.range(3), (3, 1))
b = tf.reshape(tf.range(2), (1, 2))
X_var = tf.Variable(X)
X_var[1, 2].assign(9)
X_var = tf.Variable(X)
X_var[0:2, :].assign(tf.ones(X_var[0:2,:].shape, dtype = tf.float32) * 12)
Z = tf.Variable(tf.zeros_like(Y))
Z.assign(X + Y)
@tf.function
def computation(X, Y):
Z = tf.zeros_like(Y)
A = X + Y
B = A + Y
C = B + Y
return C + Y
computation(X, Y)
A = X.numpy()
B = tf.constant(A)
a = tf.constant([3.5]).numpy()
print(a, a.item(), float(a), int(a)) | null | x = np.arange(12)
x.size
X = x.reshape(3, 4)
np.zeros((2, 3, 4))
np.ones((2, 3, 4))
np.random.normal(0, 1, size=(3, 4))
np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = np.array([1, 2, 4, 8])
y = np.array([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
np.exp(x)
X = np.arange(12).reshape(3, 4)
Y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1)
X.sum()
a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
X[1, 2] = 9
X[0:2, :] = 12
Z = np.zeros_like(Y)
Z[:] = X + Y
before = id(X)
X += Y
id(X) == before
A = X.asnumpy()
B = np.array(A)
a = np.array([3.5])
print(a, a.item(), float(a), int(a)) | null |
237 | import tensorflow as tf
X, y = tf.constant(inputs.values), tf.constant(outputs.values) | null | from mxnet import np
X, y = np.array(inputs.values), np.array(outputs.values) | null |
238 | import tensorflow as tf
x = tf.constant(3.0)
y = tf.constant(2.0)
print(x + y, x * y, x / y, x**y)
x = tf.range(4)
A = tf.reshape(tf.range(20), (5, 4))
tf.transpose(A)
B = tf.constant([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == tf.transpose(B)
X = tf.reshape(tf.range(24), (2, 3, 4))
A = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))
B = A
print(A, A + B)
a = 2
X = tf.reshape(tf.range(24), (2, 3, 4))
print(a + X, (a * X).shape)
x = tf.range(4, dtype=tf.float32)
print(x, tf.reduce_sum(x))
a = tf.reduce_sum(A)
A_sum_axis0 = tf.reduce_sum(A, axis=0)
A_sum_axis1 = tf.reduce_sum(A, axis=1
tf.reduce_sum(A, axis=[0, 1])
tf.reduce_mean(A)
tf.reduce_sum(A) / tf.size(A).numpy()
tf.reduce_mean(A, axis=0)
tf.reduce_sum(A, axis=0) / A.shape[0]
sum_A = tf.reduce_sum(A, axis=1, keepdims=True)
tf.cumsum(A, axis=0)
y = tf.ones(4, dtype=tf.float32)
print(tf.tensordot(x, y, axes=1))
tf.reduce_sum(x * y)
A.shape, x.shape, tf.linalg.matvec(A, x)
B = tf.ones((4, 3), tf.float32)
tf.matmul(A, B)
u = tf.constant([3.0, -4.0])
tf.norm(u)
tf.reduce_sum(tf.abs(u))
tf.norm(tf.ones((4, 9))) | null | from mxnet import np, npx
npx.set_np()
x = np.array(3.0)
y = np.array(2.0)
print(x + y, x * y, x / y, x**y)
x = np.arange(4)
A = np.arange(20).reshape(5, 4)
A.T
B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == B.T
X = np.arange(24).reshape(2, 3, 4)
A = np.arange(20).reshape(5, 4)
B = A.copy()
print(A, A + B)
a = 2
X = np.arange(24).reshape(2, 3, 4)
print(a + X, (a * X).shape)
x = np.arange(4)
print(x, x.sum())
a = A.sum()
A_sum_axis0 = A.sum(axis=0)
A_sum_axis1 = A.sum(axis=1)
A.sum(axis=[0, 1])
A.mean()
A.sum() / A.size
A.mean(axis=0)
A.sum(axis=0) / A.shape[0]
sum_A = A.sum(axis=1, keepdims=True)
A.cumsum(axis=0)
y = np.ones(4)
print(np.dot(x, y))
np.sum(x * y)
A.shape, x.shape, np.dot(A, x)
B = np.ones(shape=(4, 3))
np.dot(A, B)
u = np.array([3, -4])
np.linalg.norm(u)
np.abs(u).sum()
np.linalg.norm(np.ones((4, 9))) | null |
239 | %matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import tensorflow as d2l
def f(x):
return 3 * x ** 2 - 4 * x | null | %matplotlib inline
from matplotlib_inline import backend_inline
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def f(x):
return 3 * x ** 2 - 4 * x | null |
240 | import tensorflow as tf
x = tf.range(4, dtype=tf.float32)
x = tf.Variable(x)
with tf.GradientTape() as t:
y = 2 * tf.tensordot(x, x, axes=1)
x_grad = t.gradient(y, x)
x_grad
x_grad == 4 * x
with tf.GradientTape() as t:
y = tf.reduce_sum(x)
t.gradient(y, x)
with tf.GradientTape() as t:
y = x * x
t.gradient(y, x)
with tf.GradientTape(persistent=True) as t:
y = x * x
u = tf.stop_gradient(y)
z = u * x
x_grad = t.gradient(z, x)
x_grad == u
t.gradient(y, x) == 2 * x
def f(a):
b = a * 2
while tf.norm(b) < 1000:
b = b * 2
if tf.reduce_sum(b) > 0:
c = b
else:
c = 100 * b
return c
a = tf.Variable(tf.random.normal(shape=()))
with tf.GradientTape() as t:
d = f(a)
d_grad = t.gradient(d, a)
d_grad
d_grad == d / a | null | from mxnet import autograd, np, npx
npx.set_np()
x = np.arange(4.0)
x.attach_grad()
x.grad
with autograd.record():
y = 2 * np.dot(x, x)
y.backward()
x.grad
x.grad == 4 * x
with autograd.record():
y = x.sum()
y.backward()
x.grad
with autograd.record():
y = x * x
y.backward()
x.grad
with autograd.record():
y = x * x
u = y.detach()
z = u * x
z.backward()
x.grad == u
y.backward()
x.grad == 2 * x
def f(a):
b = a * 2
while np.linalg.norm(b) < 1000:
b = b * 2
if b.sum() > 0:
c = b
else:
c = 100 * b
return c
a = np.random.normal()
a.attach_grad()
with autograd.record():
d = f(a)
d.backward()
a.grad == d / a | null |
241 | %matplotlib inline
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from d2l import tensorflow as d2l
fair_probs = tf.ones(6) / 6
tfp.distributions.Multinomial(1, fair_probs).sample()
tfp.distributions.Multinomial(10, fair_probs).sample()
counts = tfp.distributions.Multinomial(1000, fair_probs).sample() | null | %matplotlib inline
import random
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
fair_probs = [1.0 / 6] * 6
np.random.multinomial(1, fair_probs)
np.random.multinomial(10, fair_probs)
counts = np.random.multinomial(1000, fair_probs).astype(np.float32) | null |
242 | counts = tfp.distributions.Multinomial(10, fair_probs).sample(500)
cum_counts = tf.cumsum(counts, axis=0)
estimates = cum_counts / tf.reduce_sum(cum_counts, axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import tensorflow as tf
a = dir(tf.random)
help(tf.ones)
tf.ones(4) | null | counts = np.random.multinomial(10, fair_probs, size=500)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].asnumpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
from mxnet import np
a = dir(np.random)
help(np.ones)
np.ones(4) | null |
243 | %matplotlib inline
import math
import time
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
n = 10000
a = tf.ones(n)
b = tf.ones(n)
c = tf.Variable(tf.zeros(n))
timer = Timer()
for i in range(n):
c[i].assign(a[i] + b[i])
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]) | null | %matplotlib inline
import math
import time
from mxnet import np
from d2l import mxnet as d2l
n = 10000
a = np.ones(n)
b = np.ones(n)
c = np.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]) | null |
244 | %matplotlib inline
import random
import tensorflow as tf
from d2l import tensorflow as d2l
def synthetic_data(w, b, num_examples):
X = tf.zeros((num_examples, w.shape[0]))
X += tf.random.normal(shape=X.shape)
y = tf.matmul(X, tf.reshape(w, (-1, 1))) + b
y += tf.random.normal(shape=y.shape, stddev=0.01)
y = tf.reshape(y, (-1, 1))
return X, y
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].numpy(), labels.numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
j = tf.constant(indices[i: min(i + batch_size, num_examples)])
yield tf.gather(features, j), tf.gather(labels, j)
w = tf.Variable(tf.random.normal(shape=(2, 1), mean=0, stddev=0.01), trainable=True)
b = tf.Variable(tf.zeros(1), trainable=True)
def linreg(X, w, b):
return tf.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 / 2
def sgd(params, grads, lr, batch_size):
for param, grad in zip(params, grads):
param.assign_sub(lr*grad/batch_size)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with tf.GradientTape() as g:
l = loss(net(X, w, b), y)
dw, db = g.gradient(l, [w, b])
sgd([w, b], [dw, db], lr, batch_size)
train_l = loss(net(features, w, b), labels) | null | %matplotlib inline
import random
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
def synthetic_data(w, b, num_examples):
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = np.array(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
w = np.random.normal(0, 0.01, (2, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
def linreg(X, w, b):
return np.dot(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
def sgd(params, lr, batch_size):
for param in params:
param[:] = param - lr * param.grad / batch_size
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with autograd.record():
l = loss(net(X, w, b), y)
l.backward()
sgd([w, b], lr, batch_size)
train_l = loss(net(features, w, b), labels) | null |
245 | import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = tf.data.Dataset.from_tensor_slices(data_arrays)
if is_train:
dataset = dataset.shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size)
return dataset
batch_size = 10
data_iter = load_array((features, labels), batch_size)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1))
initializer = tf.initializers.RandomNormal(stddev=0.01)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_initializer=initializer))
loss = tf.keras.losses.MeanSquaredError()
trainer = tf.keras.optimizers.SGD(learning_rate=0.03)
w = net.get_weights()[0]
b = net.get_weights()[1] | null | from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(1))
from mxnet import init
net.initialize(init.Normal(sigma=0.01))
loss = gluon.loss.L2Loss()
from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})
w = net[0].weight.data()
b = net[0].bias.data() | null |
246 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
d2l.use_svg_display()
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
len(mnist_train[0]), len(mnist_test[0])
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.numpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X = tf.constant(mnist_train[0][:18])
y = tf.constant(mnist_train[1][:18])
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
train_iter = tf.data.Dataset.from_tensor_slices(mnist_train).batch(batch_size).shuffle(len(mnist_train[0]))
def load_data_fashion_mnist(batch_size, resize=None):
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
process = lambda X, y: (tf.expand_dims(X, axis=3) / 255, tf.cast(y, dtype='int32'))
resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)
return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),
tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) | null | %matplotlib inline
import sys
from mxnet import gluon
from d2l import mxnet as d2l
d2l.use_svg_display()
mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)
len(mnist_train), len(mnist_test)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = mnist_train[:18]
show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 0 if sys.platform.startswith('win') else 4
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer), batch_size, shuffle=True, num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None):
dataset = gluon.data.vision
trans = [dataset.transforms.ToTensor()]
if resize:
trans.insert(0, dataset.transforms.Resize(resize))
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers())) | null |
247 | import tensorflow as tf
from IPython import display
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01))
b = tf.Variable(tf.zeros(num_outputs))
X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
tf.reduce_sum(X, 0, keepdims=True), tf.reduce_sum(X, 1, keepdims=True)
def softmax(X):
X_exp = tf.exp(X)
partition = tf.reduce_sum(X_exp, 1, keepdims=True)
return X_exp / partition
X = tf.random.normal((2, 5), 0, 1)
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, 1)
def net(X):
return softmax(tf.matmul(tf.reshape(X, (-1, W.shape[0])), W) + b)
y_hat = tf.constant([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = tf.constant([0, 2])
tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1]))
def cross_entropy(y_hat, y):
return -tf.math.log(tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1])))
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = tf.argmax(y_hat, axis=1)
cmp = tf.cast(y_hat, y.dtype) == y
return float(tf.reduce_sum(tf.cast(cmp, y.dtype)))
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2)
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3)
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
if isinstance(loss, tf.keras.losses.Loss):
l = loss(y, y_hat)
else:
l = loss(y_hat, y)
if isinstance(updater, tf.keras.optimizers.Optimizer):
params = net.trainable_variables
grads = tape.gradient(l, params)
updater.apply_gradients(zip(grads, params))
else:
updater(X.shape[0], tape.gradient(l, updater.params))
l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)
metric.add(l_sum, accuracy(y_hat, y), tf.size(y))
return metric[0] / metric[2], metric[1] / metric[2]
class Updater():
def __init__(self, params, lr):
self.params = params
self.lr = lr
def __call__(self, batch_size, grads):
d2l.sgd(self.params, grads, self.lr, batch_size)
updater = Updater([W, b], lr=0.1)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(tf.argmax(net(X), axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(tf.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter) | null | from IPython import display
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
W.attach_grad()
b.attach_grad()
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition
X = np.random.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b)
y = np.array([0, 2])
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - np.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2)
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3)
if isinstance(updater, gluon.Trainer):
updater = updater.step
for X, y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)
return metric[0] / metric[2], metric[1] / metric[2]
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter) | null |
248 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1) | null | from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1}) | null |
249 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
x = tf.Variable(tf.range(-8.0, 8.0, 0.1), dtype=tf.float32)
y = tf.nn.relu(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'relu(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.relu(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of relu', figsize=(5, 2.5))
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of sigmoid',
figsize=(5, 2.5))
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of tanh', figsize=(5, 2.5)) | null | %matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.relu(x)
d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
with autograd.record():
y = npx.sigmoid(x)
d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
with autograd.record():
y = np.tanh(x)
d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5)) | null |
250 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = tf.Variable(tf.random.normal(shape=(num_inputs, num_hiddens), mean=0, stddev=0.01))
b1 = tf.Variable(tf.zeros(num_hiddens))
W2 = tf.Variable(tf.random.normal(shape=(num_hiddens, num_outputs), mean=0, stddev=0.01))
b2 = tf.Variable(tf.zeros(num_outputs))
params = [W1, b1, W2, b2]
def relu(X):
return tf.math.maximum(X, 0)
def net(X):
X = tf.reshape(X, (-1, num_inputs))
H = relu(tf.matmul(X, W1) + b1)
return tf.matmul(H, W2) + b2
def loss(y_hat, y):
return tf.losses.sparse_categorical_crossentropy(y, y_hat, from_logits=True)
num_epochs, lr = 10, 0.1
updater = d2l.Updater([W1, W2, b1, b2], lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) | null | from mxnet import gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]
for param in params:
param.attach_grad()
def relu(X):
return np.maximum(X, 0)
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2
loss = gluon.loss.SoftmaxCrossEntropyLoss()
num_epochs, lr = 10, 0.1
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size)) | null |
251 | import tensorflow as tf
from d2l import tensorflow as d2l
net = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(10)])
batch_size, lr, num_epochs = 256, 0.1, 10
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null | from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'), nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
batch_size, lr, num_epochs = 256, 0.1, 10
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null |
252 | import math
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w, features, poly_features, labels = [tf.constant(x, dtype=tf.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
l = loss(net(X), y)
metric.add(tf.reduce_sum(l), d2l.size(l))
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = tf.losses.MeanSquaredError()
input_shape = train_features.shape[-1]
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, use_bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)
trainer = tf.keras.optimizers.SGD(learning_rate=.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) | null | import math
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
l = loss(net(X), y)
metric.add(l.sum(), d2l.size(l))
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = gluon.loss.L2Loss()
net = nn.Sequential()
net.add(nn.Dense(1, use_bias=False))
net.initialize()
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01})
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) | null |
253 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = tf.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = tf.Variable(tf.random.normal(mean=1, shape=(num_inputs, 1)))
b = tf.Variable(tf.zeros(shape=(1, )))
return [w, b]
def l2_penalty(w):
return tf.reduce_sum(tf.pow(w, 2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + lambd * l2_penalty(w)
grads = tape.gradient(l, [w, b])
d2l.sgd([w, b], grads, lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(wd)))
net.build(input_shape=(1, num_inputs))
w, b = net.trainable_variables
loss = tf.keras.losses.MeanSquaredError()
num_epochs, lr = 100, 0.003
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + net.losses
grads = tape.gradient(l, net.trainable_variables)
trainer.apply_gradients(zip(grads, net.trainable_variables))
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) | null | %matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = np.random.normal(scale=1, size=(num_inputs, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
return [w, b]
def l2_penalty(w):
return (w**2).sum() / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y) + lambd * l2_penalty(w)
l.backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=1))
loss = gluon.loss.L2Loss()
num_epochs, lr = 100, 0.003
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd})
net.collect_params('.*bias').setattr('wd_mult', 0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) | null |
254 | import tensorflow as tf
from d2l import tensorflow as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return tf.zeros_like(X)
if dropout == 0:
return X
mask = tf.random.uniform(shape=tf.shape(X), minval=0, maxval=1) < 1 - dropout
return tf.cast(mask, dtype=tf.float32) * X / (1.0 - dropout)
X = tf.reshape(tf.range(16, dtype=tf.float32), (2, 8))
num_outputs, num_hiddens1, num_hiddens2 = 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
class Net(tf.keras.Model):
def __init__(self, num_outputs, num_hiddens1, num_hiddens2):
super().__init__()
self.input_layer = tf.keras.layers.Flatten()
self.hidden1 = tf.keras.layers.Dense(num_hiddens1, activation='relu')
self.hidden2 = tf.keras.layers.Dense(num_hiddens2, activation='relu')
self.output_layer = tf.keras.layers.Dense(num_outputs)
def call(self, inputs, training=None):
x = self.input_layer(inputs)
x = self.hidden1(x)
if training:
x = dropout_layer(x, dropout1)
x = self.hidden2(x)
if training:
x = dropout_layer(x, dropout2)
x = self.output_layer(x)
return x
net = Net(num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dropout(dropout1),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dropout(dropout2),
tf.keras.layers.Dense(10),
])
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null | from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return np.zeros_like(X)
if dropout == 0:
return X
mask = np.random.uniform(0, 1, X.shape) > dropout
return mask.astype(np.float32) * X / (1.0 - dropout)
X = np.arange(16).reshape(2, 8)
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))
b1 = np.zeros(num_hiddens1)
W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))
b2 = np.zeros(num_hiddens2)
W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))
b3 = np.zeros(num_outputs)
params = [W1, b1, W2, b2, W3, b3]
for param in params:
param.attach_grad()
dropout1, dropout2 = 0.2, 0.5
def net(X):
X = X.reshape(-1, num_inputs)
H1 = npx.relu(np.dot(X, W1) + b1)
if autograd.is_training():
H1 = dropout_layer(H1, dropout1)
H2 = npx.relu(np.dot(H1, W2) + b2)
if autograd.is_training():
H2 = dropout_layer(H2, dropout2)
return np.dot(H2, W3) + b3
num_epochs, lr, batch_size = 10, 0.5, 256
loss = gluon.loss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))
net = nn.Sequential()
net.add(nn.Dense(256, activation="relu"),
nn.Dropout(dropout1),
nn.Dense(256, activation="relu"),
nn.Dropout(dropout2),
nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null |
255 | trainer = tf.keras.optimizers.SGD(learning_rate=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
x = tf.Variable(tf.range(-8.0, 8.0, 0.1))
with tf.GradientTape() as t:
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), [y.numpy(), t.gradient(y, x).numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = tf.random.normal((4, 4))
for i in range(100):
M = tf.matmul(M, tf.random.normal((4, 4))) | null | trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.sigmoid(x)
y.backward()
d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = np.random.normal(size=(4, 4))
for i in range(100):
M = np.dot(M, np.random.normal(size=(4, 4))) | null |
256 | %matplotlib inline
import numpy as np
import pandas as pd
import tensorflow as tf
from d2l import tensorflow as d2l
n_train = train_data.shape[0]
train_features = tf.constant(all_features[:n_train].values, dtype=tf.float32)
test_features = tf.constant(all_features[n_train:].values, dtype=tf.float32)
train_labels = tf.constant(train_data.SalePrice.values.reshape(-1, 1), dtype=tf.float32)
loss = tf.keras.losses.MeanSquaredError()
def get_net():
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(weight_decay)))
return net
def log_rmse(y_true, y_pred):
clipped_preds = tf.clip_by_value(y_pred, 1, float('inf'))
return tf.sqrt(tf.reduce_mean(loss(tf.math.log(y_true), tf.math.log(clipped_preds))))
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = tf.keras.optimizers.Adam(learning_rate)
net.compile(loss=loss, optimizer=optimizer)
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
l = loss(y, y_hat)
params = net.trainable_variables
grads = tape.gradient(l, params)
optimizer.apply_gradients(zip(grads, params))
train_ls.append(log_rmse(train_labels, net(train_features)))
if test_labels is not None:
test_ls.append(log_rmse(test_labels, net(test_features)))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = tf.concat([X_train, X_part], 0)
y_train = tf.concat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False) | null | %matplotlib inline
import pandas as pd
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
n_train = train_data.shape[0]
train_features = np.array(all_features[:n_train].values, dtype=np.float32)
test_features = np.array(all_features[n_train:].values, dtype=np.float32)
train_labels = np.array(train_data.SalePrice.values.reshape(-1, 1), dtype=np.float32)
loss = gluon.loss.L2Loss()
def get_net():
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize()
return net
def log_rmse(net, features, labels):
clipped_preds = np.clip(net(features), 1, float('inf'))
return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean())
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay})
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = np.concatenate([X_train, X_part], 0)
y_train = np.concatenate([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).asnumpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False) | null |
257 | import tensorflow as tf
net = tf.keras.models.Sequential([
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dense(10))
X = tf.random.uniform((2, 20))
net(X)
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
self.out = tf.keras.layers.Dense(units=10)
def call(self, X):
return self.out(self.hidden((X)))
net = MLP()
net(X)
class MySequential(tf.keras.Model):
def __init__(self, *args):
super().__init__()
self.modules = []
for block in args:
self.modules.append(block)
def call(self, X):
for module in self.modules:
X = module(X)
return X
net = MySequential(
tf.keras.layers.Dense(units=256, activation=tf.nn.relu),
tf.keras.layers.Dense(10))
net(X)
class FixedHiddenMLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.rand_weight = tf.constant(tf.random.uniform((20, 20)))
self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu)
def call(self, inputs):
X = self.flatten(inputs)
X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1)
X = self.dense(X)
while tf.reduce_sum(tf.math.abs(X)) > 1:
X /= 2
return tf.reduce_sum(X)
net = FixedHiddenMLP()
net(X)
class NestMLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.net = tf.keras.Sequential()
self.net.add(tf.keras.layers.Dense(64, activation=tf.nn.relu))
self.net.add(tf.keras.layers.Dense(32, activation=tf.nn.relu))
self.dense = tf.keras.layers.Dense(16, activation=tf.nn.relu)
def call(self, inputs):
return self.dense(self.net(inputs))
chimera = tf.keras.Sequential()
chimera.add(NestMLP())
chimera.add(tf.keras.layers.Dense(20))
chimera.add(FixedHiddenMLP())
chimera(X) | null | from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
X = np.random.uniform(size=(2, 20))
net(X)
class MLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.out = nn.Dense(10)
def forward(self, X):
return self.out(self.hidden(X))
net = MLP()
net.initialize()
net(X)
class MySequential(nn.Block):
def add(self, block):
self._children[block.name] = block
def forward(self, X):
for block in self._children.values():
X = block(X)
return X
net = MySequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
net(X)
class FixedHiddenMLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.rand_weight = self.params.get_constant('rand_weight', np.random.uniform(size=(20, 20)))
self.dense = nn.Dense(20, activation='relu')
def forward(self, X):
X = self.dense(X)
X = npx.relu(np.dot(X, self.rand_weight.data()) + 1)
X = self.dense(X)
while np.abs(X).sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net.initialize()
net(X)
class NestMLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation='relu'), nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')
def forward(self, X):
return self.dense(self.net(X))
chimera = nn.Sequential()
chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP())
chimera.initialize()
chimera(X) | null |
258 | import tensorflow as tf
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu),
tf.keras.layers.Dense(1),
])
X = tf.random.uniform((2, 4))
net(X)
net.get_weights()[1]
def block1(name):
return tf.keras.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu)], name=name)
def block2():
net = tf.keras.Sequential()
for i in range(4):
net.add(block1(name=f'block-{i}'))
return net
rgnet = tf.keras.Sequential()
rgnet.add(block2())
rgnet.add(tf.keras.layers.Dense(1))
rgnet(X)
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.01), bias_initializer=tf.zeros_initializer()),
tf.keras.layers.Dense(1)])
net(X)
net.weights[0], net.weights[1]
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.Constant(1), bias_initializer=tf.zeros_initializer()),
tf.keras.layers.Dense(1),
])
net(X)
net.weights[0], net.weights[1]
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.GlorotUniform()),
tf.keras.layers.Dense(1, kernel_initializer=tf.keras.initializers.Constant(1)),
])
net(X)
class MyInit(tf.keras.initializers.Initializer):
def __call__(self, shape, dtype=None):
data=tf.random.uniform(shape, -10, 10, dtype=dtype)
factor=(tf.abs(data) >= 5)
factor=tf.cast(factor, tf.float32)
return data * factor
net = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=MyInit()),
tf.keras.layers.Dense(1))
net(X)
net.layers[1].weights[0][:].assign(net.layers[1].weights[0] + 1)
net.layers[1].weights[0][0, 0].assign(42)
net.layers[1].weights[0]
layer = CenteredLayer()
layer(tf.constant([1, 2, 3, 4, 5]))
net = tf.keras.Sequential([tf.keras.layers.Dense(128), CenteredLayer()]) | null | from mxnet import init, np, npx
from mxnet.gluon import nn
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(8, activation='relu'))
net.add(nn.Dense(1))
net.initialize()
X = np.random.uniform(size=(2, 4))
net(X)
net.collect_params()['dense1_bias'].data()
def block1():
net = nn.Sequential()
net.add(nn.Dense(32, activation='relu'))
net.add(nn.Dense(16, activation='relu'))
return net
def block2():
net = nn.Sequential()
for _ in range(4):
net.add(block1())
return net
rgnet = nn.Sequential()
rgnet.add(block2())
rgnet.add(nn.Dense(10))
rgnet.initialize()
rgnet(X)
net.initialize(init=init.Normal(sigma=0.01), force_reinit=True)
net[0].weight.data()[0]
net.initialize(init=init.Constant(1), force_reinit=True)
net[0].weight.data()[0]
net[0].weight.initialize(init=init.Xavier(), force_reinit=True)
net[1].initialize(init=init.Constant(42), force_reinit=True)
class MyInit(init.Initializer):
def _init_weight(self, name, data):
data[:] = np.random.uniform(-10, 10, data.shape)
data *= np.abs(data) >= 5
net.initialize(MyInit(), force_reinit=True)
net[0].weight.data()[:2]
net[0].weight.data()[:] += 1
net[0].weight.data()[0, 0] = 42
net[0].weight.data()[0]
layer = CenteredLayer()
layer(np.array([1, 2, 3, 4, 5]))
net = nn.Sequential()
net.add(nn.Dense(128), CenteredLayer())
net.initialize() | null |
259 | import tensorflow as tf
class CenteredLayer(tf.keras.Model):
def __init__(self):
super().__init__()
def call(self, inputs):
return inputs - tf.reduce_mean(inputs)
Y = net(tf.random.uniform((4, 8)))
tf.reduce_mean(Y)
class MyDense(tf.keras.Model):
def __init__(self, units):
super().__init__()
self.units = units
def build(self, X_shape):
self.weight = self.add_weight(name='weight',
shape=[X_shape[-1], self.units],
initializer=tf.random_normal_initializer())
self.bias = self.add_weight(
name='bias', shape=[self.units],
initializer=tf.zeros_initializer())
def call(self, X):
linear = tf.matmul(X, self.weight) + self.bias
return tf.nn.relu(linear)
dense = MyDense(3)
dense(tf.random.uniform((2, 5)))
dense.get_weights()
dense(tf.random.uniform((2, 5)))
net = tf.keras.models.Sequential([MyDense(8), MyDense(1)])
net(tf.random.uniform((2, 64))) | null | from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
class CenteredLayer(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, X):
return X - X.mean()
Y = net(np.random.uniform(size=(4, 8)))
Y.mean()
class MyDense(nn.Block):
def __init__(self, units, in_units, **kwargs):
super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=(in_units, units))
self.bias = self.params.get('bias', shape=(units,))
def forward(self, x):
linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data(
ctx=x.ctx)
return npx.relu(linear)
dense = MyDense(units=3, in_units=5)
dense.params
dense.initialize()
dense(np.random.uniform(size=(2, 5)))
net = nn.Sequential()
net.add(MyDense(8, in_units=64), MyDense(1, in_units=8))
net.initialize()
net(np.random.uniform(size=(2, 64))) | null |
260 | import numpy as np
import tensorflow as tf
x = tf.range(4)
np.save('x-file.npy', x)
x2 = np.load('x-file.npy', allow_pickle=True)
y = tf.zeros(4)
np.save('xy-files.npy', [x, y])
x2, y2 = np.load('xy-files.npy', allow_pickle=True)
mydict = {'x': x, 'y': y}
np.save('mydict.npy', mydict)
mydict2 = np.load('mydict.npy', allow_pickle=True)
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
self.out = tf.keras.layers.Dense(units=10)
def call(self, inputs):
x = self.flatten(inputs)
x = self.hidden(x)
return self.out(x)
net = MLP()
X = tf.random.uniform((2, 20))
Y = net(X)
net.save_weights('mlp.params')
clone = MLP()
clone.load_weights('mlp.params') | null | from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
x = np.arange(4)
npx.save('x-file', x)
x2 = npx.load('x-file')
y = np.zeros(4)
npx.save('x-files', [x, y])
x2, y2 = npx.load('x-files')
mydict = {'x': x, 'y': y}
npx.save('mydict', mydict)
mydict2 = npx.load('mydict')
class MLP(nn.Block):
def __init__(self, **kwargs):
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.output = nn.Dense(10)
def forward(self, x):
return self.output(self.hidden(x))
net = MLP()
net.initialize()
X = np.random.uniform(size=(2, 20))
Y = net(X)
net.save_parameters('mlp.params')
clone = MLP()
clone.load_parameters('mlp.params') | null |
261 | import tensorflow as tf
tf.device('/CPU:0'), tf.device('/GPU:0'), tf.device('/GPU:1')
len(tf.config.experimental.list_physical_devices('GPU'))
def try_gpu(i=0):
if len(tf.config.experimental.list_physical_devices('GPU')) >= i + 1:
return tf.device(f'/GPU:{i}')
return tf.device('/CPU:0')
def try_all_gpus():
num_gpus = len(tf.config.experimental.list_physical_devices('GPU'))
devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)]
return devices if devices else [tf.device('/CPU:0')]
try_gpu(), try_gpu(10), try_all_gpus()
x = tf.constant([1, 2, 3])
x.device
with try_gpu():
X = tf.ones((2, 3))
with try_gpu(1):
Y = tf.random.uniform((2, 3))
with try_gpu(1):
Z = X
with try_gpu(1):
Z2 = Z
Z2 is Z
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
net = tf.keras.models.Sequential([
tf.keras.layers.Dense(1)])
net.layers[0].weights[0].device, net.layers[0].weights[1].device | null | from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
npx.cpu(), npx.gpu(), npx.gpu(1)
npx.num_gpus()
def try_gpu(i=0):
return npx.gpu(i) if npx.num_gpus() >= i + 1 else npx.cpu()
def try_all_gpus():
devices = [npx.gpu(i) for i in range(npx.num_gpus())]
return devices if devices else [npx.cpu()]
try_gpu(), try_gpu(10), try_all_gpus()
x = np.array([1, 2, 3])
x.ctx
X = np.ones((2, 3), ctx=try_gpu())
Y = np.random.uniform(size=(2, 3), ctx=try_gpu(1))
Z = X.copyto(try_gpu(1))
Z.as_in_ctx(try_gpu(1)) is Z
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx=try_gpu())
net[0].weight.data().ctx | null |
262 | import tensorflow as tf
from d2l import tensorflow as d2l
def corr2d(X, K):
h, w = K.shape
Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j].assign(tf.reduce_sum(
X[i: i + h, j: j + w] * K))
return Y
X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = tf.constant([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(tf.keras.layers.Layer):
def __init__(self):
super().__init__()
def build(self, kernel_size):
initializer = tf.random_normal_initializer()
self.weight = self.add_weight(name='w', shape=kernel_size, initializer=initializer)
self.bias = self.add_weight(name='b', shape=(1, ), initializer=initializer)
def call(self, inputs):
return corr2d(inputs, self.weight) + self.bias
X = tf.Variable(tf.ones((6, 8)))
X[:, 2:6].assign(tf.zeros(X[:, 2:6].shape))
K = tf.constant([[1.0, -1.0]])
corr2d(tf.transpose(X), K)
conv2d = tf.keras.layers.Conv2D(1, (1, 2), use_bias=False)
X = tf.reshape(X, (1, 6, 8, 1))
Y = tf.reshape(Y, (1, 6, 7, 1))
lr = 3e-2
Y_hat = conv2d(X)
for i in range(10):
with tf.GradientTape(watch_accessed_variables=False) as g:
g.watch(conv2d.weights[0])
Y_hat = conv2d(X)
l = (abs(Y_hat - Y)) ** 2
update = tf.multiply(lr, g.gradient(l, conv2d.weights[0]))
weights = conv2d.get_weights()
weights[0] = conv2d.weights[0] - update
conv2d.set_weights(weights)
tf.reshape(conv2d.get_weights()[0], (1, 2)) | null | from mxnet import autograd, np, npx from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def corr2d(X, K):
h, w = K.shape
Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = np.array([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Block):
def __init__(self, kernel_size, **kwargs):
super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=kernel_size)
self.bias = self.params.get('bias', shape=(1,))
def forward(self, x):
return corr2d(x, self.weight.data()) + self.bias.data()
X = np.ones((6, 8))
X[:, 2:6] = 0
K = np.array([[1.0, -1.0]])
corr2d(d2l.transpose(X), K)
conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)
conv2d.initialize()
X = X.reshape(1, 1, 6, 8)
Y = Y.reshape(1, 1, 6, 7)
lr = 3e-2
for i in range(10):
with autograd.record():
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
l.backward()
conv2d.weight.data()[:] -= lr * conv2d.weight.grad()
conv2d.weight.data().reshape((1, 2)) | null |
263 | import tensorflow as tf
def comp_conv2d(conv2d, X):
X = tf.reshape(X, (1, ) + X.shape + (1, ))
Y = conv2d(X)
return tf.reshape(Y, Y.shape[1:3])
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same')
X = tf.random.uniform(shape=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=(5, 3), padding='same')
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2)
comp_conv2d(conv2d, X).shape
conv2d = tf.keras.layers.Conv2D(1, kernel_size=(3,5), padding='valid', strides=(3, 4))
comp_conv2d(conv2d, X).shape | null | from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
def comp_conv2d(conv2d, X):
conv2d.initialize()
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2D(1, kernel_size=3, padding=1)
X = np.random.uniform(size=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))
comp_conv2d(conv2d, X).shape | null |
264 | import tensorflow as tf
from d2l import tensorflow as d2l
def corr2d_multi_in(X, K):
return tf.reduce_sum([d2l.corr2d(x, k) for x, k in zip(X, K)], axis=0)
X = tf.constant([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = tf.constant([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return tf.stack([corr2d_multi_in(X, k) for k in K], 0)
K = tf.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = tf.reshape(X, (c_i, h * w))
K = tf.reshape(K, (c_o, c_i))
Y = tf.matmul(K, X)
return tf.reshape(Y, (c_o, h, w))
X = tf.random.normal((3, 3, 3), 0, 1)
K = tf.random.normal((2, 3, 1, 1), 0, 1)
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(tf.reduce_sum(tf.abs(Y1 - Y2))) < 1e-6 | null | from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = np.array([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return np.stack([corr2d_multi_in(X, k) for k in K], 0)
K = np.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = np.dot(K, X)
return Y.reshape((c_o, h, w))
X = np.random.normal(0, 1, (3, 3, 3))
K = np.random.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(np.abs(Y1 - Y2).sum()) < 1e-6 | null |
265 | import tensorflow as tf
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = tf.Variable(tf.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w +1)))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j].assign(tf.reduce_max(X[i: i + p_h, j: j + p_w]))
elif mode =='avg':
Y[i, j].assign(tf.reduce_mean(X[i: i + p_h, j: j + p_w]))
return Y
X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = tf.reshape(tf.range(16, dtype=tf.float32), (1, 4, 4, 1))
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3])
pool2d(X)
paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid',
strides=2)
pool2d(X_padded)
paddings = tf.constant([[0, 0], [0, 0], [1, 1], [0, 0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[2, 3], padding='valid',
strides=(2, 3))
pool2d(X_padded)
X = tf.concat([X, X + 1], 3)
paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]])
X_padded = tf.pad(X, paddings, "CONSTANT")
pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid',
strides=2)
pool2d(X_padded) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2D(3)
pool2d(X)
pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)
pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3))
pool2d(X)
X = np.concatenate((X, X + 1), 1)
pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X) | null |
266 | import tensorflow as tf
from d2l import tensorflow as d2l
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, activation='sigmoid', padding='same'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5, activation='sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120, activation='sigmoid'),
tf.keras.layers.Dense(84, activation='sigmoid'),
tf.keras.layers.Dense(10)])
X = tf.random.uniform((1, 28, 28, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__, 'output shape: ', X.shape)
class TrainCallback(tf.keras.callbacks.Callback):
def __init__(self, net, train_iter, test_iter, num_epochs, device_name):
self.timer = d2l.Timer()
self.animator = d2l.Animator( xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
self.net = net
self.train_iter = train_iter
self.test_iter = test_iter
self.num_epochs = num_epochs
self.device_name = device_name
def on_epoch_begin(self, epoch, logs=None):
self.timer.start()
def on_epoch_end(self, epoch, logs):
self.timer.stop()
test_acc = self.net.evaluate(self.test_iter, verbose=0, return_dict=True)['accuracy']
metrics = (logs['loss'], logs['accuracy'], test_acc)
self.animator.add(epoch + 1, metrics)
if epoch == self.num_epochs - 1:
batch_size = next(iter(self.train_iter))[0].shape[0]
num_examples = batch_size * tf.data.experimental.cardinality(self.train_iter).numpy()
def train_ch6(net_fn, train_iter, test_iter, num_epochs, lr, device):
device_name = device._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
optimizer = tf.keras.optimizers.SGD(learning_rate=lr)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
net = net_fn()
net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
callback = TrainCallback(net, train_iter, test_iter, num_epochs, device_name)
net.fit(train_iter, epochs=num_epochs, verbose=0, callbacks=[callback])
return net | null | from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='sigmoid'),
nn.Dense(84, activation='sigmoid'),
nn.Dense(10))
X = np.random.uniform(size=(1, 1, 28, 28))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
for i, (X, y) in enumerate(train_iter):
timer.start()
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc)) | null |
267 | import tensorflow as tf
from d2l import tensorflow as d2l
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=96, kernel_size=11, strides=4, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Conv2D(filters=256, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10)])
X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__, 'output shape: ', X.shape) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(
nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(10))
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape) | null |
268 | import tensorflow as tf
from d2l import tensorflow as d2l
def vgg_block(num_convs, num_channels):
blk = tf.keras.models.Sequential()
for _ in range(num_convs):
blk.add(tf.keras.layers.Conv2D(num_channels,kernel_size=3, padding='same',activation='relu'))
blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
return blk
def vgg(conv_arch):
net = tf.keras.models.Sequential()
for (num_convs, num_channels) in conv_arch:
net.add(vgg_block(num_convs, num_channels))
net.add(tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10)]))
return net
net = vgg(conv_arch)
X = tf.random.uniform((1, 224, 224, 1))
for blk in net.layers:
X = blk(X)
print(blk.__class__.__name__,'output shape: ', X.shape)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = lambda: vgg(small_conv_arch) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):
blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, activation='relu'))
blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk
def vgg(conv_arch):
net = nn.Sequential()
for (num_convs, num_channels) in conv_arch:
net.add(vgg_block(num_convs, num_channels))
net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(10))
return net
net = vgg(conv_arch)
net.initialize()
X = np.random.uniform(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.name, 'output shape: ', X.shape)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch) | null |
269 | import tensorflow as tf
from d2l import tensorflow as d2l
def nin_block(num_channels, kernel_size, strides, padding):
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(num_channels, kernel_size, strides=strides, padding=padding, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu')])
def net():
return tf.keras.models.Sequential([
nin_block(96, kernel_size=11, strides=4, padding='valid'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Dropout(0.5),
nin_block(10, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Reshape((1, 1, 10)),
tf.keras.layers.Flatten(),
])
X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def nin_block(num_channels, kernel_size, strides, padding):
blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))
return blk
net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dropout(0.5),
nin_block(10, kernel_size=3, strides=1, padding=1),
nn.GlobalAvgPool2D(),
nn.Flatten())
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape) | null |
270 | import tensorflow as tf
from d2l import tensorflow as d2l
class Inception(tf.keras.Model):
def __init__(self, c1, c2, c3, c4):
super().__init__()
self.p1_1 = tf.keras.layers.Conv2D(c1, 1, activation='relu')
self.p2_1 = tf.keras.layers.Conv2D(c2[0], 1, activation='relu')
self.p2_2 = tf.keras.layers.Conv2D(c2[1], 3, padding='same', activation='relu')
self.p3_1 = tf.keras.layers.Conv2D(c3[0], 1, activation='relu')
self.p3_2 = tf.keras.layers.Conv2D(c3[1], 5, padding='same', activation='relu')
self.p4_1 = tf.keras.layers.MaxPool2D(3, 1, padding='same')
self.p4_2 = tf.keras.layers.Conv2D(c4, 1, activation='relu')
def call(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
return tf.keras.layers.Concatenate()([p1, p2, p3, p4])
def b1():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, 7, strides=2, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b2():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, 1, activation='relu'),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b3():
return tf.keras.models.Sequential([
Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b4():
return tf.keras.Sequential([
Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def b5():
return tf.keras.Sequential([
Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Flatten()
])
def net():
return tf.keras.Sequential([b1(), b2(), b3(), b4(), b5(),
tf.keras.layers.Dense(10)])
X = tf.random.uniform(shape=(1, 96, 96, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
class Inception(nn.Block):
def __init__(self, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1, activation='relu')
self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2, activation='relu')
self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
def forward(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
return np.concatenate((p1, p2, p3, p4), axis=1)
b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())
net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))
X = np.random.uniform(size=(1, 1, 96, 96))
net.initialize()
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null |
271 | import tensorflow as tf
from d2l import tensorflow as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps):
inv = tf.cast(tf.math.rsqrt(moving_var + eps), X.dtype)
inv *= gamma
Y = X * inv + (beta - moving_mean * inv)
return Y
class BatchNorm(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(BatchNorm, self).__init__(**kwargs)
def build(self, input_shape):
weight_shape = [input_shape[-1], ]
self.gamma = self.add_weight(name='gamma', shape=weight_shape, initializer=tf.initializers.ones, trainable=True)
self.beta = self.add_weight(name='beta', shape=weight_shape, initializer=tf.initializers.zeros, trainable=True)
self.moving_mean = self.add_weight(name='moving_mean', shape=weight_shape, initializer=tf.initializers.zeros, trainable=False)
self.moving_variance = self.add_weight(name='moving_variance', shape=weight_shape, initializer=tf.initializers.ones, trainable=False)
super(BatchNorm, self).build(input_shape)
def assign_moving_average(self, variable, value):
momentum = 0.9
delta = variable * momentum + value * (1 - momentum)
return variable.assign(delta)
@tf.function
def call(self, inputs, training):
if training:
axes = list(range(len(inputs.shape) - 1))
batch_mean = tf.reduce_mean(inputs, axes, keepdims=True)
batch_variance = tf.reduce_mean(tf.math.squared_difference(inputs, tf.stop_gradient(batch_mean)), axes, keepdims=True)
batch_mean = tf.squeeze(batch_mean, axes)
batch_variance = tf.squeeze(batch_variance, axes)
mean_update = self.assign_moving_average(self.moving_mean, batch_mean)
variance_update = self.assign_moving_average(self.moving_variance, batch_variance)
self.add_update(mean_update)
self.add_update(variance_update)
mean, variance = batch_mean, batch_variance
else:
mean, variance = self.moving_mean, self.moving_variance
output = batch_norm(inputs, moving_mean=mean, moving_var=variance, beta=self.beta, gamma=self.gamma, eps=1e-5)
return output
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(84),
BatchNorm(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(10)]
)
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
tf.reshape(net.layers[1].gamma, (-1,)), tf.reshape(net.layers[1].beta, (-1,))
def net():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(filters=16, kernel_size=5),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.AvgPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(84),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('sigmoid'),
tf.keras.layers.Dense(10),
]) | null | from mxnet import autograd, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
if not autograd.is_training():
X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = X.mean(axis=0)
var = ((X - mean) ** 2).mean(axis=0)
else:
mean = X.mean(axis=(0, 2, 3), keepdims=True)
var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)
X_hat = (X - mean) / np.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean, moving_var
class BatchNorm(nn.Block):
def __init__(self, num_features, num_dims, **kwargs):
super().__init__(**kwargs)
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = self.params.get('gamma', shape=shape, init=init.One())
self.beta = self.params.get('beta', shape=shape, init=init.Zero())
self.moving_mean = np.zeros(shape)
self.moving_var = np.ones(shape)
def forward(self, X):
if self.moving_mean.ctx != X.ctx:
self.moving_mean = self.moving_mean.copyto(X.ctx)
self.moving_var = self.moving_var.copyto(X.ctx)
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma.data(), self.beta.data(), self.moving_mean,
self.moving_var, eps=1e-12, momentum=0.9)
return Y
net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
BatchNorm(6, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),
BatchNorm(16, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120),
BatchNorm(120, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(84),
BatchNorm(84, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
net[1].gamma.data().reshape(-1,), net[1].beta.data().reshape(-1,)
net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(84),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(10)) | null |
272 | import tensorflow as tf
from d2l import tensorflow as d2l
class Residual(tf.keras.Model):
def __init__(self, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = tf.keras.layers.Conv2D(
num_channels, padding='same', kernel_size=3, strides=strides)
self.conv2 = tf.keras.layers.Conv2D(
num_channels, kernel_size=3, padding='same')
self.conv3 = None
if use_1x1conv:
self.conv3 = tf.keras.layers.Conv2D(
num_channels, kernel_size=1, strides=strides)
self.bn1 = tf.keras.layers.BatchNormalization()
self.bn2 = tf.keras.layers.BatchNormalization()
def call(self, X):
Y = tf.keras.activations.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3 is not None:
X = self.conv3(X)
Y += X
return tf.keras.activations.relu(Y)
blk = Residual(3)
X = tf.random.uniform((4, 6, 6, 3))
Y = blk(X)
Y.shape
blk = Residual(6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
class ResnetBlock(tf.keras.layers.Layer):
def __init__(self, num_channels, num_residuals, first_block=False, **kwargs):
super(ResnetBlock, self).__init__(**kwargs)
self.residual_layers = []
for i in range(num_residuals):
if i == 0 and not first_block:
self.residual_layers.append(Residual(num_channels, use_1x1conv=True, strides=2))
else:
self.residual_layers.append(Residual(num_channels))
def call(self, X):
for layer in self.residual_layers.layers:
X = layer(X)
return X
b2 = ResnetBlock(64, 2, first_block=True)
b3 = ResnetBlock(128, 2)
b4 = ResnetBlock(256, 2)
b5 = ResnetBlock(512, 2)
def net():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'),
ResnetBlock(64, 2, first_block=True),
ResnetBlock(128, 2),
ResnetBlock(256, 2),
ResnetBlock(512, 2),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Dense(units=10)])
X = tf.random.uniform(shape=(1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
class Residual(nn.Block):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
super().__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
def forward(self, X):
Y = npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return npx.relu(Y + X)
blk = Residual(3)
blk.initialize()
X = np.random.uniform(size=(4, 3, 6, 6))
blk(X).shape
blk = Residual(6, use_1x1conv=True, strides=2)
blk.initialize()
blk(X).shape
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
else:
blk.add(Residual(num_channels))
return blk
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(10))
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape) | null |
273 | import tensorflow as tf
from d2l import tensorflow as d2l
class ConvBlock(tf.keras.layers.Layer):
def __init__(self, num_channels):
super(ConvBlock, self).__init__()
self.bn = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.ReLU()
self.conv = tf.keras.layers.Conv2D(filters=num_channels, kernel_size=(3, 3), padding='same')
self.listLayers = [self.bn, self.relu, self.conv]
def call(self, x):
y = x
for layer in self.listLayers.layers:
y = layer(y)
y = tf.keras.layers.concatenate([x,y], axis=-1)
return y
class DenseBlock(tf.keras.layers.Layer):
def __init__(self, num_convs, num_channels):
super(DenseBlock, self).__init__()
self.listLayers = []
for _ in range(num_convs):
self.listLayers.append(ConvBlock(num_channels))
def call(self, x):
for layer in self.listLayers.layers:
x = layer(x)
return x
blk = DenseBlock(2, 10)
X = tf.random.uniform((4, 8, 8, 3))
Y = blk(X)
Y.shape
class TransitionBlock(tf.keras.layers.Layer):
def __init__(self, num_channels, **kwargs):
super(TransitionBlock, self).__init__(**kwargs)
self.batch_norm = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.ReLU()
self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1)
self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2)
def call(self, x):
x = self.batch_norm(x)
x = self.relu(x)
x = self.conv(x)
return self.avg_pool(x)
blk = TransitionBlock(10)
blk(Y).shape
def block_1():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU(),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
def block_2():
net = block_1()
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
for i, num_convs in enumerate(num_convs_in_dense_blocks):
net.add(DenseBlock(num_convs, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
num_channels //= 2
net.add(TransitionBlock(num_channels))
return net
def net():
net = block_2()
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.ReLU())
net.add(tf.keras.layers.GlobalAvgPool2D())
net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(10))
return net | null | from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def conv_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(),
nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=3, padding=1))
return blk
class DenseBlock(nn.Block):
def __init__(self, num_convs, num_channels, **kwargs):
super().__init__(**kwargs)
self.net = nn.Sequential()
for _ in range(num_convs):
self.net.add(conv_block(num_channels))
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = np.concatenate((X, Y), axis=1)
return X
blk = DenseBlock(2, 10)
blk.initialize()
X = np.random.uniform(size=(4, 3, 8, 8))
Y = blk(X)
Y.shape
def transition_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(), nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=1),
nn.AvgPool2D(pool_size=2, strides=2))
return blk
blk = transition_block(10)
blk.initialize()
blk(Y).shape
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
for i, num_convs in enumerate(num_convs_in_dense_blocks):
net.add(DenseBlock(num_convs, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
num_channels //= 2
net.add(transition_block(num_channels))
net.add(nn.BatchNorm(),
nn.Activation('relu'),
nn.GlobalAvgPool2D(),
nn.Dense(10)) | null |
274 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
T = 1000
time = tf.range(1, T + 1, dtype=tf.float32)
x = tf.sin(0.01 * time) + tf.random.normal([T], 0, 0.2)
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = tf.Variable(tf.zeros((T - tau, tau)))
for i in range(tau):
features[:, i].assign(x[i: T - tau + i])
labels = tf.reshape(x[tau:], (-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def get_net():
net = tf.keras.Sequential([tf.keras.layers.Dense(10, activation='relu'),
tf.keras.layers.Dense(1)])
return net
loss = tf.keras.losses.MeanSquaredError()
def train(net, train_iter, loss, epochs, lr):
trainer = tf.keras.optimizers.Adam()
for epoch in range(epochs):
for X, y in train_iter:
with tf.GradientTape() as g:
out = net(X)
l = loss(y, out)
params = net.trainable_variables
grads = g.gradient(l, params)
trainer.apply_gradients(zip(grads, params))
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.numpy(), onestep_preds.numpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = tf.Variable(tf.zeros(T))
multistep_preds[:n_train + tau].assign(x[:n_train + tau])
for i in range(n_train + tau, T):
multistep_preds[i].assign(tf.reshape(net(tf.reshape(multistep_preds[i - tau: i], (1, -1))), ()))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.numpy(), onestep_preds.numpy(),
multistep_preds[n_train + tau:].numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = tf.Variable(tf.zeros((T - tau - max_steps + 1, tau + max_steps)))
for i in range(tau):
features[:, i].assign(x[i: i + T - tau - max_steps + 1].numpy())
for i in range(tau, tau + max_steps):
features[:, i].assign(tf.reshape(net((features[:, i - tau: i])), -1))
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3)) | null | %matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
T = 1000
time = np.arange(1, T + 1, dtype=np.float32)
x = np.sin(0.01 * time) + np.random.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = np.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def get_net():
net = nn.Sequential()
net.add(nn.Dense(10, activation='relu'),
nn.Dense(1))
net.initialize(init.Xavier())
return net
loss = gluon.loss.L2Loss()
def train(net, train_iter, loss, epochs, lr):
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
for epoch in range(epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.asnumpy(), onestep_preds.asnumpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = np.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.asnumpy(), onestep_preds.asnumpy(),
multistep_preds[n_train + tau:].asnumpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = np.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].asnumpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3)) | null |
275 | import collections
import re
from d2l import tensorflow as d2l
def tokenize(lines, token='word'):
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('Error: Unknown word element type:' + token)
tokens = tokenize(lines)
for i in range(11):
print(tokens[i])
def load_corpus_time_machine(max_tokens=-1):
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab) | null | import collections
import re
from d2l import mxnet as d2l
def tokenize(lines, token='word'):
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('Error: Unknown word element type:' + token)
tokens = tokenize(lines)
for i in range(11):
print(tokens[i])
def load_corpus_time_machine(max_tokens=-1):
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab) | null |
276 | import random
import tensorflow as tf
from d2l import tensorflow as d2l
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield tf.constant(X), tf.constant(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = tf.constant(corpus[offset: offset + num_tokens])
Ys = tf.constant(corpus[offset + 1: offset + 1 + num_tokens])
Xs = tf.reshape(Xs, (batch_size, -1))
Ys = tf.reshape(Ys, (batch_size, -1))
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_batches * num_steps, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y | null | import random
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield np.array(X), np.array(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = np.array(corpus[offset: offset + num_tokens])
Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y | null |
277 | import tensorflow as tf
from d2l import tensorflow as d2l
X, W_xh = tf.random.normal((3, 1), 0, 1), tf.random.normal((1, 4), 0, 1)
H, W_hh = tf.random.normal((3, 4), 0, 1), tf.random.normal((4, 4), 0, 1)
tf.matmul(X, W_xh) + tf.matmul(H, W_hh)
tf.matmul(tf.concat((X, H), 1), tf.concat((W_xh, W_hh), 0)) | null | from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
X, W_xh = np.random.normal(0, 1, (3, 1)), np.random.normal(0, 1, (1, 4))
H, W_hh = np.random.normal(0, 1, (3, 4)), np.random.normal(0, 1, (4, 4))
np.dot(X, W_xh) + np.dot(H, W_hh)
np.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), 0)) | null |
278 | %matplotlib inline
import math
import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
train_random_iter, vocab_random_iter = d2l.load_data_time_machine(batch_size, num_steps, use_random_iter=True)
tf.one_hot(tf.constant([0, 2]), len(vocab))
X = tf.reshape(tf.range(10), (2, 5))
tf.one_hot(tf.transpose(X), 28).shape
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32)
W_xh = tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32)
W_hh = tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32)
b_h = tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32)
W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32)
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xh, W_hh, b_h, W_hq, b_q]
return params
def init_rnn_state(batch_size, num_hiddens):
return (tf.zeros((batch_size, num_hiddens)), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
X = tf.reshape(X,[-1,W_xh.shape[0]])
H = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(H, W_hh) + b_h)
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, init_state, forward_fn, get_params):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.init_state, self.forward_fn = init_state, forward_fn
self.trainable_variables = get_params(vocab_size, num_hiddens)
def __call__(self, X, state):
X = tf.one_hot(tf.transpose(X), self.vocab_size)
X = tf.cast(X, tf.float32)
return self.forward_fn(X, state, self.trainable_variables)
def begin_state(self, batch_size, *args, **kwargs):
return self.init_state(batch_size, self.num_hiddens)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
num_hiddens = 512
with strategy.scope():
net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params)
state = net.begin_state(X.shape[0])
Y, new_state = net(X, state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab):
state = net.begin_state(batch_size=1, dtype=tf.float32)
outputs = [vocab[prefix[0]]]
get_input = lambda: tf.reshape(tf.constant([outputs[-1]]),
(1, 1)).numpy()
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.numpy().argmax(axis=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab)
def grad_clipping(grads, theta):
theta = tf.constant(theta, dtype=tf.float32)
new_grad = []
for grad in grads:
if isinstance(grad, tf.IndexedSlices):
new_grad.append(tf.convert_to_tensor(grad))
else:
new_grad.append(grad)
norm = tf.math.sqrt(sum((tf.reduce_sum(grad ** 2)).numpy()
for grad in new_grad))
norm = tf.cast(norm, tf.float32)
if tf.greater(norm, theta):
for i, grad in enumerate(new_grad):
new_grad[i] = grad * theta / norm
else:
new_grad = new_grad
return new_grad
def train_epoch_ch8(net, train_iter, loss, updater, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], dtype=tf.float32)
with tf.GradientTape(persistent=True) as g:
y_hat, state = net(X, state)
y = tf.reshape(tf.transpose(Y), (-1))
l = loss(y, y_hat)
params = net.trainable_variables
grads = g.gradient(l, params)
grads = grad_clipping(grads, 1)
updater.apply_gradients(zip(grads, params))
metric.add(l * d2l.size(y), d2l.size(y))
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, strategy, use_random_iter=False):
with strategy.scope():
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
updater = tf.keras.optimizers.SGD(lr)
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
device = d2l.try_gpu()._device_name
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, strategy)
with strategy.scope():
net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params)
train_ch8(net, train_iter, vocab_random_iter, lr, num_epochs, strategy, use_random_iter=True) | null | %matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
npx.one_hot(np.array([0, 2]), len(vocab))
X = np.arange(10).reshape((2, 5))
npx.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = np.zeros(num_hiddens, ctx=device)
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_rnn_state(batch_size, num_hiddens, device):
return (np.zeros((batch_size, num_hiddens), ctx=device), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = npx.one_hot(X.T, self.vocab_size)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, ctx):
return self.init_state(batch_size, self.num_hiddens, ctx)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.as_in_context(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1, ctx=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: np.array([outputs[-1]], ctx=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.argmax(axis=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
def grad_clipping(net, theta):
if isinstance(net, gluon.Block):
params = [p.data() for p in net.collect_params().values()]
else:
params = net.params
norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], ctx=device)
else:
for s in state:
s.detach()
y = Y.T.reshape(-1)
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():
y_hat, state = net(X, state)
l = loss(y_hat, y).mean()
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * d2l.size(y), d2l.size(y))
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = gluon.loss.SoftmaxCrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, gluon.Block):
net.initialize(ctx=device, force_reinit=True, init=init.Normal(0.01))
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
updater = lambda batch_size: trainer.step(batch_size)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True) | null |
279 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_cell = tf.keras.layers.SimpleRNNCell(num_hiddens, kernel_initializer='glorot_uniform')
rnn_layer = tf.keras.layers.RNN(rnn_cell, time_major=True, return_sequences=True, return_state=True)
state = rnn_cell.get_initial_state(batch_size=batch_size, dtype=tf.float32)
state.shape
X = tf.random.uniform((num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, len(state_new), state_new[0].shape
class RNNModel(tf.keras.layers.Layer):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs, state):
X = tf.one_hot(tf.transpose(inputs), self.vocab_size)
Y, *state = self.rnn(X, state)
output = self.dense(tf.reshape(Y, (-1, Y.shape[-1])))
return output, state
def begin_state(self, *args, **kwargs):
return self.rnn.cell.get_initial_state(*args, **kwargs)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
net = RNNModel(rnn_layer, vocab_size=len(vocab))
d2l.predict_ch8('time traveller', 10, net, vocab)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, strategy) | null | from mxnet import np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = rnn.RNN(num_hiddens)
rnn_layer.initialize()
state = rnn_layer.begin_state(batch_size=batch_size)
len(state), state[0].shape
X = np.random.uniform(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, len(state_new), state_new[0].shape
class RNNModel(nn.Block):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = nn.Dense(vocab_size)
def forward(self, inputs, state):
X = npx.one_hot(inputs.T, self.vocab_size)
Y, state = self.rnn(X, state)
output = self.dense(Y.reshape(-1, Y.shape[-1]))
return output, state
def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)
device = d2l.try_gpu()
net = RNNModel(rnn_layer, len(vocab))
net.initialize(force_reinit=True, ctx=device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device) | null |
280 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32)
def three():
return (tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32), tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32)
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
return params
def init_gru_state(batch_size, num_hiddens):
return (tf.zeros((batch_size, num_hiddens)), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
X = tf.reshape(X,[-1,W_xh.shape[0]])
Z = tf.sigmoid(tf.matmul(X, W_xz) + tf.matmul(H, W_hz) + b_z)
R = tf.sigmoid(tf.matmul(X, W_xr) + tf.matmul(H, W_hr) + b_r)
H_tilda = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(R * H, W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,)
vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
num_epochs, lr = 500, 1
with strategy.scope():
model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_gru_state, gru, get_params)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
gru_cell = tf.keras.layers.GRUCell(num_hiddens, kernel_initializer='glorot_uniform')
gru_layer = tf.keras.layers.RNN(gru_cell, time_major=True, return_sequences=True, return_state=True)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModel(gru_layer, vocab_size=len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) | null | from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_gru_state(batch_size, num_hiddens, device):
return (np.zeros(shape=(batch_size, num_hiddens), ctx=device), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = npx.sigmoid(np.dot(X, W_xz) + np.dot(H, W_hz) + b_z)
R = npx.sigmoid(np.dot(X, W_xr) + np.dot(H, W_hr) + b_r)
H_tilda = np.tanh(np.dot(X, W_xh) + np.dot(R * H, W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H,)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params, init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
gru_layer = rnn.GRU(num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) | null |
281 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return tf.Variable(tf.random.normal(shape=shape, stddev=0.01, mean=0, dtype=tf.float32))
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
return params
def init_lstm_state(batch_size, num_hiddens):
return (tf.zeros(shape=(batch_size, num_hiddens)), tf.zeros(shape=(batch_size, num_hiddens)))
def lstm(inputs, state, params):
W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q = params
(H, C) = state
outputs = []
for X in inputs:
X=tf.reshape(X,[-1,W_xi.shape[0]])
I = tf.sigmoid(tf.matmul(X, W_xi) + tf.matmul(H, W_hi) + b_i)
F = tf.sigmoid(tf.matmul(X, W_xf) + tf.matmul(H, W_hf) + b_f)
O = tf.sigmoid(tf.matmul(X, W_xo) + tf.matmul(H, W_ho) + b_o)
C_tilda = tf.tanh(tf.matmul(X, W_xc) + tf.matmul(H, W_hc) + b_c)
C = F * C + I * C_tilda
H = O * tf.tanh(C)
Y = tf.matmul(H, W_hq) + b_q
outputs.append(Y)
return tf.concat(outputs, axis=0), (H,C)
vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name
num_epochs, lr = 500, 1
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_lstm_state, lstm, get_lstm_params)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
lstm_cell = tf.keras.layers.LSTMCell(num_hiddens, kernel_initializer='glorot_uniform')
lstm_layer = tf.keras.layers.RNN(lstm_cell, time_major=True, return_sequences=True, return_state=True)
device_name = d2l.try_gpu()._device_name
strategy = tf.distribute.OneDeviceStrategy(device_name)
with strategy.scope():
model = d2l.RNNModel(lstm_layer, vocab_size=len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) | null | from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (np.zeros((batch_size, num_hiddens), ctx=device), np.zeros((batch_size, num_hiddens), ctx=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = npx.sigmoid(np.dot(X, W_xi) + np.dot(H, W_hi) + b_i)
F = npx.sigmoid(np.dot(X, W_xf) + np.dot(H, W_hf) + b_f)
O = npx.sigmoid(np.dot(X, W_xo) + np.dot(H, W_ho) + b_o)
C_tilda = np.tanh(np.dot(X, W_xc) + np.dot(H, W_hc) + b_c)
C = F * C + I * C_tilda
H = O * np.tanh(C)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H, C)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
lstm_layer = rnn.LSTM(num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) | null |
282 | import os
import tensorflow as tf
from d2l import tensorflow as d2l
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = tf.constant([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = tf.reduce_sum(
tf.cast(array != vocab['<pad>'], tf.int32), 1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', tf.cast(X, tf.int32))
print('Valid length of X:', X_valid_len)
print('Y:', tf.cast(Y, tf.int32))
print('Valid length of Y:', Y_valid_len)
break | null | import os
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = np.array([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).astype(np.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.astype(np.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y.astype(np.int32))
print('Valid length of Y:', Y_valid_len)
break | null |
283 | x = tf.range(12)
tf.size(x)
X = tf.reshape(x, (3, 4))
tf.zeros((2, 3, 4))
tf.ones((2, 3, 4))
tf.random.normal(shape=[3, 4])
tf.constant([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = tf.constant([1.0, 2, 4, 8])
y = tf.constant([2.0, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
tf.exp(x)
X = tf.reshape(tf.range(12, dtype=tf.float32), (3, 4))
Y = tf.constant([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tf.concat([X, Y], axis=0), tf.concat([X, Y], axis=1)
tf.reduce_sum(X)
a = tf.reshape(tf.range(3), (3, 1))
b = tf.reshape(tf.range(2), (1, 2))
X_var = tf.Variable(X)
X_var[1, 2].assign(9)
X_var = tf.Variable(X)
X_var[0:2, :].assign(tf.ones(X_var[0:2,:].shape, dtype = tf.float32) * 12)
Z = tf.Variable(tf.zeros_like(Y))
Z.assign(X + Y)
@tf.function
def computation(X, Y):
Z = tf.zeros_like(Y)
A = X + Y
B = A + Y
C = B + Y
return C + Y
computation(X, Y)
A = X.numpy()
B = tf.constant(A)
a = tf.constant([3.5]).numpy()
print(a, a.item(), float(a), int(a)) | null | null | x = paddle.arange(12)
x.numel()
X = paddle.reshape(x, (3, 4))
paddle.zeros((2, 3, 4))
paddle.ones((2, 3, 4))
paddle.randn((3, 4),'float32')
paddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = paddle.to_tensor([1.0, 2, 4, 8])
y = paddle.to_tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y
paddle.exp(x)
X = paddle.arange(12, dtype='float32').reshape((3, 4))
Y = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
paddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)
X.sum()
a = paddle.reshape(paddle.arange(3), (3, 1))
b = paddle.reshape(paddle.arange(2), (1, 2))
X[1, 2] = 9
X[0:2, :] = 12
Z = paddle.zeros_like(Y)
Z = X + Y
before = id(X)
X += Y
id(X) == before
A = X.numpy()
B = paddle.to_tensor(A)
type(A), type(B)
a = paddle.to_tensor([3.5])
a, a.item(), float(a), int(a) |
284 | import tensorflow as tf
X, y = tf.constant(inputs.values), tf.constant(outputs.values) | null | null | import warnings
warnings.filterwarnings(action='ignore')
import paddle
X, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values) |
285 | import tensorflow as tf
x = tf.constant(3.0)
y = tf.constant(2.0)
print(x + y, x * y, x / y, x**y)
x = tf.range(4)
A = tf.reshape(tf.range(20), (5, 4))
tf.transpose(A)
B = tf.constant([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == tf.transpose(B)
X = tf.reshape(tf.range(24), (2, 3, 4))
A = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))
B = A
print(A, A + B)
a = 2
X = tf.reshape(tf.range(24), (2, 3, 4))
print(a + X, (a * X).shape)
x = tf.range(4, dtype=tf.float32)
print(x, tf.reduce_sum(x))
a = tf.reduce_sum(A)
A_sum_axis0 = tf.reduce_sum(A, axis=0)
A_sum_axis1 = tf.reduce_sum(A, axis=1
tf.reduce_sum(A, axis=[0, 1])
tf.reduce_mean(A)
tf.reduce_sum(A) / tf.size(A).numpy()
tf.reduce_mean(A, axis=0)
tf.reduce_sum(A, axis=0) / A.shape[0]
sum_A = tf.reduce_sum(A, axis=1, keepdims=True)
tf.cumsum(A, axis=0)
y = tf.ones(4, dtype=tf.float32)
print(tf.tensordot(x, y, axes=1))
tf.reduce_sum(x * y)
A.shape, x.shape, tf.linalg.matvec(A, x)
B = tf.ones((4, 3), tf.float32)
tf.matmul(A, B)
u = tf.constant([3.0, -4.0])
tf.norm(u)
tf.reduce_sum(tf.abs(u))
tf.norm(tf.ones((4, 9))) | null | null | import warnings
warnings.filterwarnings(action='ignore')
import paddle
x = paddle.to_tensor([3.0])
y = paddle.to_tensor([2.0])
x + y, x * y, x / y, x**y
x = paddle.arange(4)
A = paddle.reshape(paddle.arange(20), (5, 4))
paddle.transpose(A, perm=[1, 0])
B = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == paddle.transpose(B, perm=[1, 0])
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
A = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))
B = A.clone()
A, A + B
a = 2
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
a + X, (a * X).shape
x = paddle.arange(4, dtype=paddle.float32)
print(x, x.sum())
A.shape, A.sum()
A_sum_axis0 = A.sum(axis=0)
A_sum_axis1 = A.sum(axis=1)
A.sum(axis=[0, 1])
A.mean(), A.sum() / A.numel()
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
sum_A = paddle.sum(A, axis=1, keepdim=True)
A.cumsum(axis=0)
y = paddle.ones(shape=[4], dtype='float32')
x, y, paddle.dot(x, y)
paddle.sum(x * y)
A.shape, x.shape, paddle.mv(A, x)
B = paddle.ones(shape=[4, 3], dtype='float32')
paddle.mm(A, B)
u = paddle.to_tensor([3.0, -4.0])
paddle.norm(u)
paddle.abs(u).sum()
paddle.norm(paddle.ones(shape=[4, 9], dtype='float32')) |
286 | %matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import tensorflow as d2l
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1 | null | null | %matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import paddle as d2l
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1 |
287 | import tensorflow as tf
x = tf.range(4, dtype=tf.float32)
x = tf.Variable(x)
with tf.GradientTape() as t:
y = 2 * tf.tensordot(x, x, axes=1)
x_grad = t.gradient(y, x)
x_grad
x_grad == 4 * x
with tf.GradientTape() as t:
y = tf.reduce_sum(x)
t.gradient(y, x)
with tf.GradientTape() as t:
y = x * x
t.gradient(y, x)
with tf.GradientTape(persistent=True) as t:
y = x * x
u = tf.stop_gradient(y)
z = u * x
x_grad = t.gradient(z, x)
x_grad == u
t.gradient(y, x) == 2 * x
def f(a):
b = a * 2
while tf.norm(b) < 1000:
b = b * 2
if tf.reduce_sum(b) > 0:
c = b
else:
c = 100 * b
return c
a = tf.Variable(tf.random.normal(shape=()))
with tf.GradientTape() as t:
d = f(a)
d_grad = t.gradient(d, a)
d_grad
d_grad == d / a | null | null | import warnings
warnings.filterwarnings(action='ignore')
import paddle
x = paddle.arange(4, dtype='float32')
x = paddle.to_tensor(x, stop_gradient=False)
y = 2 * paddle.dot(x, x)
y.backward()
x.grad
x.grad == 4 * x
x.clear_gradient()
y = paddle.sum(x)
y.backward()
x.grad
x.clear_gradient()
y = x * x
paddle.sum(y).backward()
x.grad
x.clear_gradient()
y = x * x
u = y.detach()
z = u * x
paddle.sum(z).backward()
x.grad == u
x.clear_gradient()
paddle.sum(y).backward()
x.grad == 2 * x
def f(a):
b = a * 2
while paddle.norm(b) < 1000:
b = b * 2
if paddle.sum(b) > 0:
c = b
else:
c = 100 * b
return c
a = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False)
d = f(a)
d.backward()
a.grad == d / a |
288 | %matplotlib inline
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from d2l import tensorflow as d2l
fair_probs = tf.ones(6) / 6
tfp.distributions.Multinomial(1, fair_probs).sample()
tfp.distributions.Multinomial(10, fair_probs).sample()
counts = tfp.distributions.Multinomial(1000, fair_probs).sample() | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import random
import numpy as np
import paddle
fair_probs = [1.0 / 6] * 6
paddle.distribution.Multinomial(1, paddle.to_tensor(fair_probs)).sample()
counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()
counts / 1000
counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()
counts / 1000 |
289 | counts = tfp.distributions.Multinomial(10, fair_probs).sample(500)
cum_counts = tf.cumsum(counts, axis=0)
estimates = cum_counts / tf.reduce_sum(cum_counts, axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import tensorflow as tf
a = dir(tf.random)
help(tf.ones)
tf.ones(4) | null | null | counts = paddle.distribution.Multinomial(10, paddle.to_tensor(fair_probs)).sample((500,1))
cum_counts = counts.cumsum(axis=0)
cum_counts = cum_counts.squeeze(axis=1)
estimates = cum_counts / cum_counts.sum(axis=1, keepdim=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i],
label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend()
import warnings
warnings.filterwarnings(action='ignore')
import paddle
help(paddle.ones)
paddle.ones([4], dtype='float32') |
290 | %matplotlib inline
import math
import time
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
n = 10000
a = tf.ones(n)
b = tf.ones(n)
c = tf.Variable(tf.zeros(n))
timer = Timer()
for i in range(n):
c[i].assign(a[i] + b[i])
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]) | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import time
import numpy as np
import paddle
n = 10000
a = paddle.ones([n])
b = paddle.ones([n])
c = paddle.zeros([n])
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',
ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]) |
291 | %matplotlib inline
import random
import tensorflow as tf
from d2l import tensorflow as d2l
def synthetic_data(w, b, num_examples):
X = tf.zeros((num_examples, w.shape[0]))
X += tf.random.normal(shape=X.shape)
y = tf.matmul(X, tf.reshape(w, (-1, 1))) + b
y += tf.random.normal(shape=y.shape, stddev=0.01)
y = tf.reshape(y, (-1, 1))
return X, y
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].numpy(), labels.numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
j = tf.constant(indices[i: min(i + batch_size, num_examples)])
yield tf.gather(features, j), tf.gather(labels, j)
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '
', y)
break
w = tf.Variable(tf.random.normal(shape=(2, 1), mean=0, stddev=0.01), trainable=True)
b = tf.Variable(tf.zeros(1), trainable=True)
def linreg(X, w, b):
return tf.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 / 2
def sgd(params, grads, lr, batch_size):
for param, grad in zip(params, grads):
param.assign_sub(lr*grad/batch_size)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with tf.GradientTape() as g:
l = loss(net(X, w, b), y)
dw, db = g.gradient(l, [w, b])
sgd([w, b], [dw, db], lr, batch_size)
train_l = loss(net(features, w, b), labels) | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import random
import paddle
def synthetic_data(w, b, num_examples):
X = paddle.normal(0, 1, (num_examples, len(w)))
y = paddle.matmul(X, w) + b
y += paddle.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = paddle.to_tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
break
w = paddle.normal(0, 0.01, shape=(2,1))
b = paddle.zeros(shape=[1])
w.stop_gradient = False
b.stop_gradient = False
def linreg(X, w, b):
return paddle.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
with paddle.no_grad():
for i, param in enumerate(params):
param -= lr * params[i].grad / batch_size
params[i].set_value(param)
params[i].clear_gradient()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with paddle.no_grad():
train_l = loss(net(features, w, b), labels) |
292 | import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = tf.data.Dataset.from_tensor_slices(data_arrays)
if is_train:
dataset = dataset.shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size)
return dataset
batch_size = 10
data_iter = load_array((features, labels), batch_size)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1))
initializer = tf.initializers.RandomNormal(stddev=0.01)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_initializer=initializer))
loss = tf.keras.losses.MeanSquaredError()
trainer = tf.keras.optimizers.SGD(learning_rate=0.03)
w = net.get_weights()[0]
b = net.get_weights()[1] | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import numpy as np
import paddle
true_w = paddle.to_tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = paddle.io.TensorDataset(data_arrays)
return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from paddle import nn
net = nn.Sequential(nn.Linear(2, 1))
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01))
bias_attr = paddle.ParamAttr(initializer=None)
net = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr))
loss = nn.MSELoss()
trainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters())
w = net[0].weight
b = net[0].bias |
293 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
d2l.use_svg_display()
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
len(mnist_train[0]), len(mnist_test[0])
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.numpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X = tf.constant(mnist_train[0][:18])
y = tf.constant(mnist_train[1][:18])
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
train_iter = tf.data.Dataset.from_tensor_slices(mnist_train).batch(batch_size).shuffle(len(mnist_train[0]))
def load_data_fashion_mnist(batch_size, resize=None):
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
process = lambda X, y: (tf.expand_dims(X, axis=3) / 255, tf.cast(y, dtype='int32'))
resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)
return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),
tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import sys
import paddle
from paddle.vision import transforms
d2l.use_svg_display()
trans = transforms.ToTensor()
mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans)
mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans)
len(mnist_train), len(mnist_test)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if paddle.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 4
train_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers())
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans)
mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans)
return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()),
paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers())) |
294 | import tensorflow as tf
from IPython import display
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01))
b = tf.Variable(tf.zeros(num_outputs))
X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
tf.reduce_sum(X, 0, keepdims=True), tf.reduce_sum(X, 1, keepdims=True)
def softmax(X):
X_exp = tf.exp(X)
partition = tf.reduce_sum(X_exp, 1, keepdims=True)
return X_exp / partition
X = tf.random.normal((2, 5), 0, 1)
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, 1)
def net(X):
return softmax(tf.matmul(tf.reshape(X, (-1, W.shape[0])), W) + b)
y_hat = tf.constant([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = tf.constant([0, 2])
tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1]))
def cross_entropy(y_hat, y):
return -tf.math.log(tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1])))
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = tf.argmax(y_hat, axis=1)
cmp = tf.cast(y_hat, y.dtype) == y
return float(tf.reduce_sum(tf.cast(cmp, y.dtype)))
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2)
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3)
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
if isinstance(loss, tf.keras.losses.Loss):
l = loss(y, y_hat)
else:
l = loss(y_hat, y)
if isinstance(updater, tf.keras.optimizers.Optimizer):
params = net.trainable_variables
grads = tape.gradient(l, params)
updater.apply_gradients(zip(grads, params))
else:
updater(X.shape[0], tape.gradient(l, updater.params))
l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)
metric.add(l_sum, accuracy(y_hat, y), tf.size(y))
return metric[0] / metric[2], metric[1] / metric[2]
class Updater():
def __init__(self, params, lr):
self.params = params
self.lr = lr
def __call__(self, batch_size, grads):
d2l.sgd(self.params, grads, self.lr, batch_size)
updater = Updater([W, b], lr=0.1)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(tf.argmax(net(X), axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(tf.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter) | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from IPython import display
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs))
b = paddle.zeros(shape=(num_outputs,))
W.stop_gradient=False
b.stop_gradient=False
X = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
def softmax(X):
X_exp = paddle.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
X = paddle.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b)
y = paddle.to_tensor([0, 2])
y_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
if len(y_hat.shape) < len(y.shape):
cmp = y_hat.astype(y.dtype) == y.squeeze()
else:
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, paddle.nn.Layer):
net.eval()
metric = Accumulator(2)
with paddle.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, paddle.nn.Layer):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, paddle.optimizer.Optimizer):
updater.clear_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter) |
295 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1) | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.initializer.Normal(m.weight, std=0.01)
net.apply(init_weights);
loss = nn.CrossEntropyLoss(reduction='none')
trainer = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters()) |
296 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
x = tf.Variable(tf.range(-8.0, 8.0, 0.1), dtype=tf.float32)
y = tf.nn.relu(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'relu(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.relu(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of relu', figsize=(5, 2.5))
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.sigmoid(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of sigmoid',
figsize=(5, 2.5))
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), y.numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))
with tf.GradientTape() as t:
y = tf.nn.tanh(x)
d2l.plot(x.numpy(), t.gradient(y, x).numpy(), 'x', 'grad of tanh', figsize=(5, 2.5)) | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
x = paddle.arange(-8.0, 8.0, 0.1, dtype='float32')
x.stop_gradient = False
y = paddle.nn.functional.relu(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'relu(x)', figsize=(5, 2.5))
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of relu', figsize=(5, 2.5))
y = paddle.nn.functional.sigmoid(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
x.clear_gradient()
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of sigmoid', figsize=(5, 2.5))
y = paddle.tanh(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))
x.clear_gradient()
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of tanh', figsize=(5, 2.5)) |
297 | import tensorflow as tf
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = tf.Variable(tf.random.normal(shape=(num_inputs, num_hiddens), mean=0, stddev=0.01))
b1 = tf.Variable(tf.zeros(num_hiddens))
W2 = tf.Variable(tf.random.normal(shape=(num_hiddens, num_outputs), mean=0, stddev=0.01))
b2 = tf.Variable(tf.zeros(num_outputs))
params = [W1, b1, W2, b2]
def relu(X):
return tf.math.maximum(X, 0)
def net(X):
X = tf.reshape(X, (-1, num_inputs))
H = relu(tf.matmul(X, W1) + b1)
return tf.matmul(H, W2) + b2
def loss(y_hat, y):
return tf.losses.sparse_categorical_crossentropy(y, y_hat, from_logits=True)
num_epochs, lr = 10, 0.1
updater = d2l.Updater([W1, W2, b1, b2], lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = paddle.randn([num_inputs, num_hiddens]) * 0.01
W1.stop_gradient = False
b1 = paddle.zeros([num_hiddens])
b1.stop_gradient = False
W2 = paddle.randn([num_hiddens, num_outputs]) * 0.01
W2.stop_gradient = False
b2 = paddle.zeros([num_outputs])
b2.stop_gradient = False
params = [W1, b1, W2, b2]
def relu(X):
a = paddle.zeros_like(X)
return paddle.maximum(X, a)
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1)
return (H@W2 + b2)
loss = nn.CrossEntropyLoss(reduction='none')
num_epochs, lr = 10, 0.1
updater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) |
298 | import tensorflow as tf
from d2l import tensorflow as d2l
net = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(10)])
batch_size, lr, num_epochs = 256, 0.1, 10
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10))
for layer in net:
if type(layer) == nn.Linear:
weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=0.01))
layer.weight_attr = weight_attr
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) |
299 | import math
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w, features, poly_features, labels = [tf.constant(x, dtype=tf.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
l = loss(net(X), y)
metric.add(tf.reduce_sum(l), d2l.size(l))
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = tf.losses.MeanSquaredError()
input_shape = train_features.shape[-1]
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, use_bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)
trainer = tf.keras.optimizers.SGD(learning_rate=.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
train(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:])
train(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500) | null | null | import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import numpy as np
import paddle
from paddle import nn
true_w, features, poly_features, labels = [paddle.to_tensor(x, dtype=
paddle.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
out = net(X)
y = y.reshape(out.shape)
l = loss(out, y)
metric.add(l.sum(), l.numel())
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels,
num_epochs=400):
loss = nn.MSELoss()
input_shape = train_features.shape[-1]
net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size)
test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False)
trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
labels[:n_train], labels[n_train:])
train(poly_features[:n_train, :], poly_features[n_train:, :],
labels[:n_train], labels[n_train:], num_epochs=1500) |
300 | %matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = tf.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = tf.Variable(tf.random.normal(mean=1, shape=(num_inputs, 1)))
b = tf.Variable(tf.zeros(shape=(1, )))
return [w, b]
def l2_penalty(w):
return tf.reduce_sum(tf.pow(w, 2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + lambd * l2_penalty(w)
grads = tape.gradient(l, [w, b])
d2l.sgd([w, b], grads, lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(wd)))
net.build(input_shape=(1, num_inputs))
w, b = net.trainable_variables
loss = tf.keras.losses.MeanSquaredError()
num_epochs, lr = 100, 0.003
trainer = tf.keras.optimizers.SGD(learning_rate=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with tf.GradientTape() as tape:
l = loss(net(X), y) + net.losses
grads = tape.gradient(l, net.trainable_variables)
trainer.apply_gradients(zip(grads, net.trainable_variables))
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) | null | null | %matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = paddle.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = paddle.normal(0, 1, shape=(num_inputs, 1))
w.stop_gradient = False
b = paddle.zeros(shape=[1])
b.stop_gradient = False
return [w, b]
def l2_penalty(w):
return paddle.sum(w.pow(2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter():
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))
bias_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))
net = nn.Sequential(nn.Linear(num_inputs, 1, weight_attr=weight_attr, bias_attr=bias_attr))
loss = nn.MSELoss()
num_epochs, lr = 100, 0.003
trainer = paddle.optimizer.SGD(parameters=net[0].parameters(), learning_rate=lr, weight_decay=wd*1.0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y)
l.backward()
trainer.step()
trainer.clear_grad()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) |