url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.02B
1.78B
| node_id
stringlengths 18
19
| number
int64 3.03k
6k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 2
36.2k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5996 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5996/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5996/comments | https://api.github.com/repos/huggingface/datasets/issues/5996/events | https://github.com/huggingface/datasets/pull/5996 | 1,779,294,374 | PR_kwDODunzps5UKP0i | 5,996 | Deprecate `use_auth_token` in favor of `token` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5996). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003816 / 0.011008 (-0.007193) | 0.098226 / 0.038508 (0.059718) | 0.036830 / 0.023109 (0.013721) | 0.314551 / 0.275898 (0.038653) | 0.372251 / 0.323480 (0.048771) | 0.004762 / 0.007986 (-0.003224) | 0.003041 / 0.004328 (-0.001287) | 0.077651 / 0.004250 (0.073401) | 0.052445 / 0.037052 (0.015393) | 0.324632 / 0.258489 (0.066143) | 0.365724 / 0.293841 (0.071883) | 0.028069 / 0.128546 (-0.100477) | 0.008444 / 0.075646 (-0.067203) | 0.312767 / 0.419271 (-0.106505) | 0.047773 / 0.043533 (0.004240) | 0.305317 / 0.255139 (0.050178) | 0.332007 / 0.283200 (0.048807) | 0.018985 / 0.141683 (-0.122698) | 1.538022 / 1.452155 (0.085868) | 1.575898 / 1.492716 (0.083182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204780 / 0.018006 (0.186774) | 0.428125 / 0.000490 (0.427635) | 0.003454 / 0.000200 (0.003254) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025064 / 0.037411 (-0.012348) | 0.099419 / 0.014526 (0.084893) | 0.111068 / 0.176557 (-0.065489) | 0.169775 / 0.737135 (-0.567361) | 0.112067 / 0.296338 (-0.184271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429642 / 0.215209 (0.214433) | 4.275556 / 2.077655 (2.197901) | 1.914658 / 1.504120 (0.410539) | 1.706556 / 1.541195 (0.165361) | 1.754228 / 1.468490 (0.285738) | 0.563669 / 4.584777 (-4.021108) | 3.391501 / 3.745712 (-0.354211) | 1.791517 / 5.269862 (-3.478345) | 1.030704 / 4.565676 (-3.534973) | 0.070882 / 0.424275 (-0.353393) | 0.011351 / 0.007607 (0.003744) | 0.529438 / 0.226044 (0.303394) | 5.294316 / 2.268929 (3.025387) | 2.344653 / 55.444624 (-53.099972) | 1.997468 / 6.876477 (-4.879009) | 2.108932 / 2.142072 (-0.033140) | 0.676794 / 4.805227 (-4.128433) | 0.135058 / 6.500664 (-6.365607) | 0.065857 / 0.075469 (-0.009612) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231864 / 1.841788 (-0.609924) | 13.986694 / 8.074308 (5.912386) | 13.306600 / 10.191392 (3.115208) | 0.145520 / 0.680424 (-0.534904) | 0.016717 / 0.534201 (-0.517484) | 0.366303 / 0.579283 (-0.212980) | 0.391637 / 0.434364 (-0.042727) | 0.425445 / 0.540337 (-0.114892) | 0.507719 / 1.386936 (-0.879217) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006236 / 0.011353 (-0.005116) | 0.003766 / 0.011008 (-0.007242) | 0.076794 / 0.038508 (0.038286) | 0.037210 / 0.023109 (0.014101) | 0.378387 / 0.275898 (0.102489) | 0.425456 / 0.323480 (0.101977) | 0.004694 / 0.007986 (-0.003291) | 0.002921 / 0.004328 (-0.001407) | 0.076985 / 0.004250 (0.072735) | 0.052188 / 0.037052 (0.015136) | 0.394385 / 0.258489 (0.135896) | 0.432527 / 0.293841 (0.138686) | 0.029091 / 0.128546 (-0.099455) | 0.008364 / 0.075646 (-0.067282) | 0.082583 / 0.419271 (-0.336689) | 0.042928 / 0.043533 (-0.000605) | 0.375321 / 0.255139 (0.120182) | 0.391719 / 0.283200 (0.108519) | 0.019388 / 0.141683 (-0.122295) | 1.550644 / 1.452155 (0.098489) | 1.604882 / 1.492716 (0.112166) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236859 / 0.018006 (0.218853) | 0.418528 / 0.000490 (0.418039) | 0.000388 / 0.000200 (0.000188) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025548 / 0.037411 (-0.011863) | 0.100644 / 0.014526 (0.086118) | 0.109102 / 0.176557 (-0.067455) | 0.161694 / 0.737135 (-0.575441) | 0.112088 / 0.296338 (-0.184250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.484128 / 0.215209 (0.268919) | 4.849952 / 2.077655 (2.772297) | 2.512769 / 1.504120 (1.008649) | 2.303295 / 1.541195 (0.762100) | 2.356699 / 1.468490 (0.888209) | 0.564181 / 4.584777 (-4.020596) | 3.421393 / 3.745712 (-0.324319) | 2.570875 / 5.269862 (-2.698987) | 1.474307 / 4.565676 (-3.091370) | 0.068035 / 0.424275 (-0.356240) | 0.011300 / 0.007607 (0.003693) | 0.587867 / 0.226044 (0.361823) | 5.862447 / 2.268929 (3.593519) | 3.004017 / 55.444624 (-52.440607) | 2.664989 / 6.876477 (-4.211488) | 2.740020 / 2.142072 (0.597948) | 0.680840 / 4.805227 (-4.124387) | 0.137001 / 6.500664 (-6.363663) | 0.068098 / 0.075469 (-0.007371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.297362 / 1.841788 (-0.544426) | 14.207891 / 8.074308 (6.133583) | 14.087562 / 10.191392 (3.896170) | 0.149514 / 0.680424 (-0.530910) | 0.016566 / 0.534201 (-0.517635) | 0.367602 / 0.579283 (-0.211681) | 0.400692 / 0.434364 (-0.033671) | 0.432907 / 0.540337 (-0.107431) | 0.525924 / 1.386936 (-0.861012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ec069feaaf6c28d4e4df76d344693b591a74c3f \"CML watermark\")\n"
] | 2023-06-28T16:26:38 | 2023-06-28T16:32:26 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5996",
"html_url": "https://github.com/huggingface/datasets/pull/5996",
"diff_url": "https://github.com/huggingface/datasets/pull/5996.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5996.patch",
"merged_at": null
} | ... to be consistent with `transformers` and `huggingface_hub`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5996/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5996/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5995 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5995/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5995/comments | https://api.github.com/repos/huggingface/datasets/issues/5995/events | https://github.com/huggingface/datasets/pull/5995 | 1,777,088,925 | PR_kwDODunzps5UCvYJ | 5,995 | Support returning dataframe in map transform | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009725 / 0.011353 (-0.001628) | 0.006014 / 0.011008 (-0.004994) | 0.136039 / 0.038508 (0.097531) | 0.049685 / 0.023109 (0.026576) | 0.492967 / 0.275898 (0.217068) | 0.553775 / 0.323480 (0.230295) | 0.007421 / 0.007986 (-0.000564) | 0.004686 / 0.004328 (0.000357) | 0.106639 / 0.004250 (0.102389) | 0.073483 / 0.037052 (0.036431) | 0.507194 / 0.258489 (0.248705) | 0.535760 / 0.293841 (0.241919) | 0.049666 / 0.128546 (-0.078880) | 0.014139 / 0.075646 (-0.061507) | 0.435459 / 0.419271 (0.016188) | 0.076026 / 0.043533 (0.032493) | 0.454542 / 0.255139 (0.199403) | 0.512724 / 0.283200 (0.229524) | 0.034969 / 0.141683 (-0.106713) | 1.881048 / 1.452155 (0.428893) | 1.959915 / 1.492716 (0.467199) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265322 / 0.018006 (0.247316) | 0.573963 / 0.000490 (0.573474) | 0.017493 / 0.000200 (0.017293) | 0.000637 / 0.000054 (0.000582) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028712 / 0.037411 (-0.008699) | 0.149554 / 0.014526 (0.135029) | 0.130013 / 0.176557 (-0.046544) | 0.203408 / 0.737135 (-0.533727) | 0.144778 / 0.296338 (-0.151561) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664198 / 0.215209 (0.448989) | 6.418054 / 2.077655 (4.340399) | 2.602338 / 1.504120 (1.098219) | 2.212992 / 1.541195 (0.671797) | 2.214309 / 1.468490 (0.745819) | 0.914772 / 4.584777 (-3.670005) | 5.824831 / 3.745712 (2.079119) | 2.865381 / 5.269862 (-2.404481) | 1.906020 / 4.565676 (-2.659657) | 0.106947 / 0.424275 (-0.317328) | 0.013467 / 0.007607 (0.005860) | 0.834556 / 0.226044 (0.608512) | 8.237078 / 2.268929 (5.968150) | 3.380919 / 55.444624 (-52.063705) | 2.656713 / 6.876477 (-4.219764) | 2.834941 / 2.142072 (0.692869) | 1.151241 / 4.805227 (-3.653986) | 0.220860 / 6.500664 (-6.279804) | 0.080781 / 0.075469 (0.005312) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655128 / 1.841788 (-0.186660) | 18.696108 / 8.074308 (10.621800) | 22.882108 / 10.191392 (12.690716) | 0.236041 / 0.680424 (-0.444383) | 0.031073 / 0.534201 (-0.503128) | 0.525263 / 0.579283 (-0.054021) | 0.632933 / 0.434364 (0.198569) | 0.707228 / 0.540337 (0.166890) | 0.753508 / 1.386936 (-0.633428) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009875 / 0.011353 (-0.001478) | 0.005135 / 0.011008 (-0.005873) | 0.101307 / 0.038508 (0.062799) | 0.044895 / 0.023109 (0.021786) | 0.497824 / 0.275898 (0.221926) | 0.573098 / 0.323480 (0.249618) | 0.006669 / 0.007986 (-0.001317) | 0.004289 / 0.004328 (-0.000039) | 0.105824 / 0.004250 (0.101573) | 0.061002 / 0.037052 (0.023950) | 0.510127 / 0.258489 (0.251638) | 0.581387 / 0.293841 (0.287546) | 0.052843 / 0.128546 (-0.075703) | 0.015506 / 0.075646 (-0.060140) | 0.116057 / 0.419271 (-0.303215) | 0.063444 / 0.043533 (0.019912) | 0.479366 / 0.255139 (0.224227) | 0.518419 / 0.283200 (0.235220) | 0.034876 / 0.141683 (-0.106806) | 2.018446 / 1.452155 (0.566292) | 1.960755 / 1.492716 (0.468039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269077 / 0.018006 (0.251070) | 0.606059 / 0.000490 (0.605569) | 0.000488 / 0.000200 (0.000288) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032465 / 0.037411 (-0.004946) | 0.136517 / 0.014526 (0.121991) | 0.147740 / 0.176557 (-0.028816) | 0.193802 / 0.737135 (-0.543334) | 0.151876 / 0.296338 (-0.144462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.709866 / 0.215209 (0.494657) | 6.848193 / 2.077655 (4.770538) | 3.310853 / 1.504120 (1.806733) | 2.940813 / 1.541195 (1.399619) | 2.934934 / 1.468490 (1.466444) | 0.927104 / 4.584777 (-3.657673) | 5.921607 / 3.745712 (2.175895) | 4.926558 / 5.269862 (-0.343303) | 2.853269 / 4.565676 (-1.712407) | 0.120278 / 0.424275 (-0.303998) | 0.015468 / 0.007607 (0.007861) | 0.820509 / 0.226044 (0.594464) | 8.263136 / 2.268929 (5.994208) | 3.780214 / 55.444624 (-51.664410) | 3.108482 / 6.876477 (-3.767995) | 3.101544 / 2.142072 (0.959471) | 1.165539 / 4.805227 (-3.639688) | 0.229215 / 6.500664 (-6.271449) | 0.079862 / 0.075469 (0.004393) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.775071 / 1.841788 (-0.066717) | 19.327621 / 8.074308 (11.253313) | 23.057537 / 10.191392 (12.866145) | 0.250649 / 0.680424 (-0.429775) | 0.029767 / 0.534201 (-0.504434) | 0.554774 / 0.579283 (-0.024509) | 0.651919 / 0.434364 (0.217555) | 0.651641 / 0.540337 (0.111304) | 0.762386 / 1.386936 (-0.624550) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fdc3ce7060366f480621e8640903c9ab476164e7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005997 / 0.011353 (-0.005356) | 0.003892 / 0.011008 (-0.007116) | 0.098020 / 0.038508 (0.059512) | 0.042584 / 0.023109 (0.019475) | 0.317909 / 0.275898 (0.042011) | 0.395042 / 0.323480 (0.071563) | 0.005358 / 0.007986 (-0.002628) | 0.003266 / 0.004328 (-0.001062) | 0.076698 / 0.004250 (0.072447) | 0.062331 / 0.037052 (0.025279) | 0.334900 / 0.258489 (0.076411) | 0.379355 / 0.293841 (0.085514) | 0.030815 / 0.128546 (-0.097731) | 0.008596 / 0.075646 (-0.067050) | 0.327739 / 0.419271 (-0.091533) | 0.054061 / 0.043533 (0.010528) | 0.311044 / 0.255139 (0.055905) | 0.336705 / 0.283200 (0.053506) | 0.022785 / 0.141683 (-0.118898) | 1.516793 / 1.452155 (0.064639) | 1.590435 / 1.492716 (0.097719) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289157 / 0.018006 (0.271151) | 0.531074 / 0.000490 (0.530585) | 0.004672 / 0.000200 (0.004472) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026173 / 0.037411 (-0.011238) | 0.105723 / 0.014526 (0.091197) | 0.118010 / 0.176557 (-0.058547) | 0.178062 / 0.737135 (-0.559073) | 0.120059 / 0.296338 (-0.176279) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.410870 / 0.215209 (0.195661) | 4.042183 / 2.077655 (1.964528) | 1.830059 / 1.504120 (0.325939) | 1.638996 / 1.541195 (0.097802) | 1.701368 / 1.468490 (0.232878) | 0.529915 / 4.584777 (-4.054861) | 3.693308 / 3.745712 (-0.052404) | 1.827875 / 5.269862 (-3.441986) | 1.063237 / 4.565676 (-3.502440) | 0.065368 / 0.424275 (-0.358907) | 0.010986 / 0.007607 (0.003379) | 0.509399 / 0.226044 (0.283354) | 5.092739 / 2.268929 (2.823810) | 2.293490 / 55.444624 (-53.151135) | 1.958742 / 6.876477 (-4.917735) | 2.024985 / 2.142072 (-0.117088) | 0.646978 / 4.805227 (-4.158249) | 0.138616 / 6.500664 (-6.362048) | 0.062101 / 0.075469 (-0.013368) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.202016 / 1.841788 (-0.639772) | 14.493204 / 8.074308 (6.418896) | 12.992160 / 10.191392 (2.800768) | 0.188922 / 0.680424 (-0.491502) | 0.017594 / 0.534201 (-0.516606) | 0.399917 / 0.579283 (-0.179367) | 0.429760 / 0.434364 (-0.004604) | 0.497906 / 0.540337 (-0.042431) | 0.608745 / 1.386936 (-0.778191) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006164 / 0.011353 (-0.005189) | 0.003980 / 0.011008 (-0.007028) | 0.074676 / 0.038508 (0.036168) | 0.041337 / 0.023109 (0.018228) | 0.400981 / 0.275898 (0.125083) | 0.448791 / 0.323480 (0.125312) | 0.004063 / 0.007986 (-0.003923) | 0.004443 / 0.004328 (0.000114) | 0.075011 / 0.004250 (0.070760) | 0.056494 / 0.037052 (0.019441) | 0.402054 / 0.258489 (0.143565) | 0.446122 / 0.293841 (0.152281) | 0.031752 / 0.128546 (-0.096794) | 0.008835 / 0.075646 (-0.066811) | 0.081226 / 0.419271 (-0.338046) | 0.051501 / 0.043533 (0.007969) | 0.383674 / 0.255139 (0.128535) | 0.405524 / 0.283200 (0.122325) | 0.025929 / 0.141683 (-0.115754) | 1.492985 / 1.452155 (0.040830) | 1.541601 / 1.492716 (0.048885) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305149 / 0.018006 (0.287142) | 0.497259 / 0.000490 (0.496770) | 0.000420 / 0.000200 (0.000220) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027933 / 0.037411 (-0.009479) | 0.111900 / 0.014526 (0.097374) | 0.124879 / 0.176557 (-0.051678) | 0.178952 / 0.737135 (-0.558184) | 0.127698 / 0.296338 (-0.168640) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448525 / 0.215209 (0.233316) | 4.486791 / 2.077655 (2.409137) | 2.256687 / 1.504120 (0.752567) | 2.061078 / 1.541195 (0.519884) | 2.078924 / 1.468490 (0.610434) | 0.534412 / 4.584777 (-4.050365) | 3.721098 / 3.745712 (-0.024614) | 1.818735 / 5.269862 (-3.451127) | 1.104198 / 4.565676 (-3.461479) | 0.066277 / 0.424275 (-0.357998) | 0.011441 / 0.007607 (0.003834) | 0.550140 / 0.226044 (0.324095) | 5.498079 / 2.268929 (3.229150) | 2.717398 / 55.444624 (-52.727227) | 2.410194 / 6.876477 (-4.466283) | 2.405304 / 2.142072 (0.263231) | 0.665432 / 4.805227 (-4.139796) | 0.141488 / 6.500664 (-6.359177) | 0.064051 / 0.075469 (-0.011419) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272334 / 1.841788 (-0.569454) | 14.901608 / 8.074308 (6.827300) | 14.287857 / 10.191392 (4.096465) | 0.165337 / 0.680424 (-0.515086) | 0.017402 / 0.534201 (-0.516799) | 0.398120 / 0.579283 (-0.181163) | 0.416539 / 0.434364 (-0.017825) | 0.463890 / 0.540337 (-0.076447) | 0.567909 / 1.386936 (-0.819027) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#504ec0f2e00ee38e0993ed1e4f1e10f1eefaea0d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009434 / 0.011353 (-0.001919) | 0.005567 / 0.011008 (-0.005441) | 0.122652 / 0.038508 (0.084144) | 0.050177 / 0.023109 (0.027067) | 0.384292 / 0.275898 (0.108394) | 0.446608 / 0.323480 (0.123128) | 0.006502 / 0.007986 (-0.001484) | 0.004523 / 0.004328 (0.000194) | 0.100581 / 0.004250 (0.096331) | 0.073615 / 0.037052 (0.036563) | 0.420179 / 0.258489 (0.161690) | 0.474631 / 0.293841 (0.180790) | 0.047942 / 0.128546 (-0.080604) | 0.013864 / 0.075646 (-0.061783) | 0.419384 / 0.419271 (0.000112) | 0.088317 / 0.043533 (0.044784) | 0.379620 / 0.255139 (0.124481) | 0.412639 / 0.283200 (0.129440) | 0.048947 / 0.141683 (-0.092736) | 1.823498 / 1.452155 (0.371343) | 1.966629 / 1.492716 (0.473913) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300669 / 0.018006 (0.282663) | 0.593499 / 0.000490 (0.593009) | 0.007247 / 0.000200 (0.007047) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030556 / 0.037411 (-0.006856) | 0.119252 / 0.014526 (0.104726) | 0.131403 / 0.176557 (-0.045153) | 0.201845 / 0.737135 (-0.535291) | 0.139350 / 0.296338 (-0.156989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.652400 / 0.215209 (0.437191) | 6.536540 / 2.077655 (4.458886) | 2.644565 / 1.504120 (1.140445) | 2.245181 / 1.541195 (0.703986) | 2.316030 / 1.468490 (0.847540) | 0.922535 / 4.584777 (-3.662242) | 5.469065 / 3.745712 (1.723353) | 2.800489 / 5.269862 (-2.469373) | 1.749042 / 4.565676 (-2.816635) | 0.108444 / 0.424275 (-0.315831) | 0.015651 / 0.007607 (0.008044) | 0.846085 / 0.226044 (0.620041) | 8.018460 / 2.268929 (5.749531) | 3.338710 / 55.444624 (-52.105914) | 2.675998 / 6.876477 (-4.200479) | 2.918550 / 2.142072 (0.776478) | 1.135145 / 4.805227 (-3.670082) | 0.215165 / 6.500664 (-6.285499) | 0.082066 / 0.075469 (0.006597) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561661 / 1.841788 (-0.280127) | 18.519035 / 8.074308 (10.444727) | 19.046300 / 10.191392 (8.854908) | 0.236890 / 0.680424 (-0.443534) | 0.027681 / 0.534201 (-0.506520) | 0.511998 / 0.579283 (-0.067285) | 0.591627 / 0.434364 (0.157264) | 0.562021 / 0.540337 (0.021683) | 0.679354 / 1.386936 (-0.707582) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009643 / 0.011353 (-0.001710) | 0.005768 / 0.011008 (-0.005241) | 0.104430 / 0.038508 (0.065922) | 0.050044 / 0.023109 (0.026935) | 0.464117 / 0.275898 (0.188219) | 0.518439 / 0.323480 (0.194959) | 0.006935 / 0.007986 (-0.001051) | 0.004316 / 0.004328 (-0.000013) | 0.094330 / 0.004250 (0.090080) | 0.071451 / 0.037052 (0.034399) | 0.492248 / 0.258489 (0.233759) | 0.555740 / 0.293841 (0.261899) | 0.047836 / 0.128546 (-0.080711) | 0.014788 / 0.075646 (-0.060859) | 0.107590 / 0.419271 (-0.311682) | 0.064396 / 0.043533 (0.020863) | 0.451529 / 0.255139 (0.196390) | 0.475025 / 0.283200 (0.191826) | 0.040006 / 0.141683 (-0.101677) | 1.797107 / 1.452155 (0.344953) | 1.879261 / 1.492716 (0.386545) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298458 / 0.018006 (0.280451) | 0.613022 / 0.000490 (0.612532) | 0.003582 / 0.000200 (0.003382) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030179 / 0.037411 (-0.007232) | 0.123286 / 0.014526 (0.108760) | 0.132070 / 0.176557 (-0.044486) | 0.190883 / 0.737135 (-0.546252) | 0.138526 / 0.296338 (-0.157812) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.666908 / 0.215209 (0.451699) | 6.489035 / 2.077655 (4.411381) | 2.897027 / 1.504120 (1.392907) | 2.565150 / 1.541195 (1.023956) | 2.504827 / 1.468490 (1.036336) | 0.916112 / 4.584777 (-3.668665) | 5.651751 / 3.745712 (1.906039) | 2.743382 / 5.269862 (-2.526479) | 1.773338 / 4.565676 (-2.792338) | 0.128764 / 0.424275 (-0.295511) | 0.013140 / 0.007607 (0.005533) | 0.803281 / 0.226044 (0.577236) | 8.258874 / 2.268929 (5.989945) | 3.633260 / 55.444624 (-51.811364) | 2.878827 / 6.876477 (-3.997649) | 2.977178 / 2.142072 (0.835106) | 1.130467 / 4.805227 (-3.674760) | 0.226381 / 6.500664 (-6.274283) | 0.081550 / 0.075469 (0.006081) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.842927 / 1.841788 (0.001139) | 18.411520 / 8.074308 (10.337212) | 21.118228 / 10.191392 (10.926836) | 0.231526 / 0.680424 (-0.448898) | 0.029300 / 0.534201 (-0.504901) | 0.527450 / 0.579283 (-0.051834) | 0.618873 / 0.434364 (0.184509) | 0.593314 / 0.540337 (0.052976) | 0.734430 / 1.386936 (-0.652506) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0d2b8854c265b4dc202e480427890f472b34ea15 \"CML watermark\")\n"
] | 2023-06-27T14:15:08 | 2023-06-28T13:56:02 | 2023-06-28T13:46:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5995",
"html_url": "https://github.com/huggingface/datasets/pull/5995",
"diff_url": "https://github.com/huggingface/datasets/pull/5995.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5995.patch",
"merged_at": "2023-06-28T13:46:33"
} | Allow returning Pandas DataFrames in `map` transforms.
(Plus, raise an error in the non-batched mode if a returned PyArrow table/Pandas DataFrame has more than one row)
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5995/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5995/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5994 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5994/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5994/comments | https://api.github.com/repos/huggingface/datasets/issues/5994/events | https://github.com/huggingface/datasets/pull/5994 | 1,776,829,004 | PR_kwDODunzps5UB1cA | 5,994 | Fix select_columns columns order | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005969 / 0.011353 (-0.005384) | 0.003687 / 0.011008 (-0.007321) | 0.100843 / 0.038508 (0.062335) | 0.036912 / 0.023109 (0.013803) | 0.312389 / 0.275898 (0.036491) | 0.370335 / 0.323480 (0.046855) | 0.003434 / 0.007986 (-0.004552) | 0.003710 / 0.004328 (-0.000619) | 0.076899 / 0.004250 (0.072648) | 0.053647 / 0.037052 (0.016594) | 0.324825 / 0.258489 (0.066336) | 0.367711 / 0.293841 (0.073870) | 0.028079 / 0.128546 (-0.100467) | 0.008326 / 0.075646 (-0.067320) | 0.312342 / 0.419271 (-0.106930) | 0.047423 / 0.043533 (0.003890) | 0.321063 / 0.255139 (0.065924) | 0.336508 / 0.283200 (0.053308) | 0.019973 / 0.141683 (-0.121710) | 1.529334 / 1.452155 (0.077179) | 1.573746 / 1.492716 (0.081030) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210849 / 0.018006 (0.192843) | 0.418798 / 0.000490 (0.418309) | 0.007347 / 0.000200 (0.007147) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022718 / 0.037411 (-0.014694) | 0.098400 / 0.014526 (0.083874) | 0.106590 / 0.176557 (-0.069967) | 0.168460 / 0.737135 (-0.568675) | 0.108401 / 0.296338 (-0.187938) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443066 / 0.215209 (0.227857) | 4.416658 / 2.077655 (2.339003) | 2.088844 / 1.504120 (0.584724) | 1.879564 / 1.541195 (0.338369) | 1.933815 / 1.468490 (0.465325) | 0.565085 / 4.584777 (-4.019692) | 3.412440 / 3.745712 (-0.333273) | 1.754686 / 5.269862 (-3.515175) | 1.024576 / 4.565676 (-3.541100) | 0.067909 / 0.424275 (-0.356366) | 0.011054 / 0.007607 (0.003447) | 0.534748 / 0.226044 (0.308703) | 5.351457 / 2.268929 (3.082529) | 2.517368 / 55.444624 (-52.927256) | 2.182762 / 6.876477 (-4.693715) | 2.238205 / 2.142072 (0.096133) | 0.672962 / 4.805227 (-4.132265) | 0.136098 / 6.500664 (-6.364566) | 0.066534 / 0.075469 (-0.008935) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281241 / 1.841788 (-0.560547) | 13.872881 / 8.074308 (5.798573) | 13.161023 / 10.191392 (2.969631) | 0.130011 / 0.680424 (-0.550412) | 0.016759 / 0.534201 (-0.517442) | 0.359802 / 0.579283 (-0.219481) | 0.392577 / 0.434364 (-0.041787) | 0.427742 / 0.540337 (-0.112595) | 0.522241 / 1.386936 (-0.864695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005985 / 0.011353 (-0.005368) | 0.003705 / 0.011008 (-0.007304) | 0.077699 / 0.038508 (0.039191) | 0.035686 / 0.023109 (0.012577) | 0.420356 / 0.275898 (0.144458) | 0.476753 / 0.323480 (0.153273) | 0.003510 / 0.007986 (-0.004475) | 0.002807 / 0.004328 (-0.001521) | 0.077151 / 0.004250 (0.072901) | 0.046420 / 0.037052 (0.009368) | 0.391781 / 0.258489 (0.133292) | 0.461128 / 0.293841 (0.167287) | 0.027847 / 0.128546 (-0.100699) | 0.008322 / 0.075646 (-0.067324) | 0.082768 / 0.419271 (-0.336503) | 0.042629 / 0.043533 (-0.000904) | 0.405745 / 0.255139 (0.150606) | 0.430797 / 0.283200 (0.147598) | 0.019832 / 0.141683 (-0.121851) | 1.556208 / 1.452155 (0.104054) | 1.612166 / 1.492716 (0.119450) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230633 / 0.018006 (0.212626) | 0.401667 / 0.000490 (0.401178) | 0.000776 / 0.000200 (0.000576) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024959 / 0.037411 (-0.012452) | 0.100560 / 0.014526 (0.086034) | 0.109175 / 0.176557 (-0.067382) | 0.159919 / 0.737135 (-0.577217) | 0.112810 / 0.296338 (-0.183528) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.460601 / 0.215209 (0.245392) | 4.620039 / 2.077655 (2.542385) | 2.257900 / 1.504120 (0.753780) | 2.039192 / 1.541195 (0.497997) | 2.064451 / 1.468490 (0.595961) | 0.557887 / 4.584777 (-4.026890) | 3.356100 / 3.745712 (-0.389612) | 1.703578 / 5.269862 (-3.566284) | 1.024984 / 4.565676 (-3.540693) | 0.067602 / 0.424275 (-0.356673) | 0.011450 / 0.007607 (0.003842) | 0.563230 / 0.226044 (0.337186) | 5.632150 / 2.268929 (3.363221) | 2.698701 / 55.444624 (-52.745924) | 2.363218 / 6.876477 (-4.513259) | 2.363997 / 2.142072 (0.221925) | 0.671260 / 4.805227 (-4.133967) | 0.136166 / 6.500664 (-6.364499) | 0.067094 / 0.075469 (-0.008375) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303030 / 1.841788 (-0.538757) | 14.137277 / 8.074308 (6.062969) | 13.937631 / 10.191392 (3.746239) | 0.162626 / 0.680424 (-0.517798) | 0.016687 / 0.534201 (-0.517514) | 0.363657 / 0.579283 (-0.215626) | 0.392021 / 0.434364 (-0.042343) | 0.427275 / 0.540337 (-0.113062) | 0.512192 / 1.386936 (-0.874744) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#42603528d9bd8c3ab287ed0eadc7fa3d1ef4cfd8 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005974 / 0.011353 (-0.005378) | 0.003947 / 0.011008 (-0.007061) | 0.098604 / 0.038508 (0.060096) | 0.036947 / 0.023109 (0.013838) | 0.311844 / 0.275898 (0.035946) | 0.375243 / 0.323480 (0.051763) | 0.003453 / 0.007986 (-0.004533) | 0.003834 / 0.004328 (-0.000495) | 0.077943 / 0.004250 (0.073692) | 0.052956 / 0.037052 (0.015904) | 0.320812 / 0.258489 (0.062323) | 0.373963 / 0.293841 (0.080122) | 0.028382 / 0.128546 (-0.100164) | 0.008525 / 0.075646 (-0.067121) | 0.311306 / 0.419271 (-0.107965) | 0.047029 / 0.043533 (0.003496) | 0.309933 / 0.255139 (0.054794) | 0.335114 / 0.283200 (0.051915) | 0.019629 / 0.141683 (-0.122054) | 1.569771 / 1.452155 (0.117617) | 1.585899 / 1.492716 (0.093182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216565 / 0.018006 (0.198559) | 0.426717 / 0.000490 (0.426228) | 0.003609 / 0.000200 (0.003409) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023079 / 0.037411 (-0.014332) | 0.096954 / 0.014526 (0.082428) | 0.105398 / 0.176557 (-0.071158) | 0.165433 / 0.737135 (-0.571703) | 0.109703 / 0.296338 (-0.186636) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456227 / 0.215209 (0.241018) | 4.529857 / 2.077655 (2.452202) | 2.214054 / 1.504120 (0.709934) | 2.029716 / 1.541195 (0.488521) | 2.081175 / 1.468490 (0.612685) | 0.563642 / 4.584777 (-4.021135) | 3.355393 / 3.745712 (-0.390320) | 1.765938 / 5.269862 (-3.503924) | 1.039062 / 4.565676 (-3.526615) | 0.067952 / 0.424275 (-0.356323) | 0.011044 / 0.007607 (0.003437) | 0.556935 / 0.226044 (0.330890) | 5.588167 / 2.268929 (3.319239) | 2.667217 / 55.444624 (-52.777407) | 2.337383 / 6.876477 (-4.539094) | 2.429590 / 2.142072 (0.287517) | 0.676972 / 4.805227 (-4.128256) | 0.135782 / 6.500664 (-6.364882) | 0.066323 / 0.075469 (-0.009146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237358 / 1.841788 (-0.604429) | 13.910492 / 8.074308 (5.836184) | 13.227275 / 10.191392 (3.035883) | 0.146857 / 0.680424 (-0.533567) | 0.016991 / 0.534201 (-0.517210) | 0.363637 / 0.579283 (-0.215646) | 0.392462 / 0.434364 (-0.041902) | 0.450009 / 0.540337 (-0.090329) | 0.536077 / 1.386936 (-0.850859) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006067 / 0.011353 (-0.005286) | 0.003851 / 0.011008 (-0.007158) | 0.078462 / 0.038508 (0.039954) | 0.036221 / 0.023109 (0.013112) | 0.389195 / 0.275898 (0.113297) | 0.428710 / 0.323480 (0.105230) | 0.004645 / 0.007986 (-0.003341) | 0.002973 / 0.004328 (-0.001355) | 0.078299 / 0.004250 (0.074048) | 0.047076 / 0.037052 (0.010024) | 0.375673 / 0.258489 (0.117184) | 0.432352 / 0.293841 (0.138511) | 0.028212 / 0.128546 (-0.100334) | 0.008475 / 0.075646 (-0.067172) | 0.083902 / 0.419271 (-0.335369) | 0.046699 / 0.043533 (0.003166) | 0.364502 / 0.255139 (0.109363) | 0.389792 / 0.283200 (0.106592) | 0.025266 / 0.141683 (-0.116417) | 1.517458 / 1.452155 (0.065303) | 1.543634 / 1.492716 (0.050918) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236479 / 0.018006 (0.218472) | 0.411528 / 0.000490 (0.411038) | 0.005213 / 0.000200 (0.005013) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025764 / 0.037411 (-0.011647) | 0.103174 / 0.014526 (0.088648) | 0.110609 / 0.176557 (-0.065948) | 0.164630 / 0.737135 (-0.572506) | 0.114863 / 0.296338 (-0.181475) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457155 / 0.215209 (0.241946) | 4.550675 / 2.077655 (2.473021) | 2.350473 / 1.504120 (0.846353) | 2.204919 / 1.541195 (0.663724) | 2.076724 / 1.468490 (0.608234) | 0.563107 / 4.584777 (-4.021670) | 3.390669 / 3.745712 (-0.355043) | 1.741111 / 5.269862 (-3.528751) | 1.033268 / 4.565676 (-3.532408) | 0.068400 / 0.424275 (-0.355875) | 0.011607 / 0.007607 (0.004000) | 0.561944 / 0.226044 (0.335900) | 5.620224 / 2.268929 (3.351296) | 2.705241 / 55.444624 (-52.739384) | 2.344520 / 6.876477 (-4.531957) | 2.386119 / 2.142072 (0.244046) | 0.681583 / 4.805227 (-4.123644) | 0.137272 / 6.500664 (-6.363392) | 0.069217 / 0.075469 (-0.006252) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322690 / 1.841788 (-0.519098) | 14.464953 / 8.074308 (6.390645) | 14.269350 / 10.191392 (4.077958) | 0.158879 / 0.680424 (-0.521545) | 0.016722 / 0.534201 (-0.517479) | 0.360299 / 0.579283 (-0.218984) | 0.391609 / 0.434364 (-0.042755) | 0.420507 / 0.540337 (-0.119831) | 0.512822 / 1.386936 (-0.874114) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ca68191900d97b29abb3c2c4ba0502fe30d137d1 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007106 / 0.011353 (-0.004247) | 0.005224 / 0.011008 (-0.005784) | 0.127563 / 0.038508 (0.089055) | 0.055067 / 0.023109 (0.031958) | 0.418660 / 0.275898 (0.142761) | 0.487891 / 0.323480 (0.164411) | 0.005712 / 0.007986 (-0.002274) | 0.004585 / 0.004328 (0.000256) | 0.090994 / 0.004250 (0.086743) | 0.071837 / 0.037052 (0.034784) | 0.446957 / 0.258489 (0.188468) | 0.475966 / 0.293841 (0.182125) | 0.038062 / 0.128546 (-0.090484) | 0.010056 / 0.075646 (-0.065590) | 0.406796 / 0.419271 (-0.012475) | 0.066542 / 0.043533 (0.023009) | 0.413676 / 0.255139 (0.158537) | 0.448624 / 0.283200 (0.165424) | 0.030332 / 0.141683 (-0.111351) | 1.895307 / 1.452155 (0.443152) | 1.904411 / 1.492716 (0.411694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221246 / 0.018006 (0.203240) | 0.461288 / 0.000490 (0.460799) | 0.005957 / 0.000200 (0.005757) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029255 / 0.037411 (-0.008156) | 0.131299 / 0.014526 (0.116773) | 0.135814 / 0.176557 (-0.040742) | 0.201342 / 0.737135 (-0.535793) | 0.141748 / 0.296338 (-0.154591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463936 / 0.215209 (0.248727) | 4.709621 / 2.077655 (2.631966) | 2.093844 / 1.504120 (0.589724) | 1.897963 / 1.541195 (0.356768) | 1.927865 / 1.468490 (0.459375) | 0.610879 / 4.584777 (-3.973898) | 4.481370 / 3.745712 (0.735658) | 2.112235 / 5.269862 (-3.157627) | 1.203349 / 4.565676 (-3.362327) | 0.074828 / 0.424275 (-0.349447) | 0.013121 / 0.007607 (0.005514) | 0.580894 / 0.226044 (0.354849) | 5.801872 / 2.268929 (3.532943) | 2.579950 / 55.444624 (-52.864674) | 2.251569 / 6.876477 (-4.624908) | 2.421305 / 2.142072 (0.279232) | 0.760938 / 4.805227 (-4.044289) | 0.169554 / 6.500664 (-6.331110) | 0.077499 / 0.075469 (0.002030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.410419 / 1.841788 (-0.431368) | 17.442331 / 8.074308 (9.368023) | 15.782183 / 10.191392 (5.590791) | 0.180649 / 0.680424 (-0.499775) | 0.021790 / 0.534201 (-0.512411) | 0.511040 / 0.579283 (-0.068243) | 0.510472 / 0.434364 (0.076108) | 0.607141 / 0.540337 (0.066804) | 0.724794 / 1.386936 (-0.662142) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007280 / 0.011353 (-0.004073) | 0.004712 / 0.011008 (-0.006296) | 0.089225 / 0.038508 (0.050717) | 0.053157 / 0.023109 (0.030048) | 0.431949 / 0.275898 (0.156051) | 0.478128 / 0.323480 (0.154648) | 0.006181 / 0.007986 (-0.001804) | 0.003387 / 0.004328 (-0.000941) | 0.083741 / 0.004250 (0.079490) | 0.071610 / 0.037052 (0.034557) | 0.414698 / 0.258489 (0.156209) | 0.484422 / 0.293841 (0.190581) | 0.034988 / 0.128546 (-0.093558) | 0.009831 / 0.075646 (-0.065816) | 0.089644 / 0.419271 (-0.329628) | 0.057053 / 0.043533 (0.013520) | 0.413144 / 0.255139 (0.158005) | 0.445464 / 0.283200 (0.162264) | 0.026109 / 0.141683 (-0.115574) | 1.842899 / 1.452155 (0.390745) | 1.923774 / 1.492716 (0.431057) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245051 / 0.018006 (0.227045) | 0.460444 / 0.000490 (0.459954) | 0.000444 / 0.000200 (0.000244) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034835 / 0.037411 (-0.002577) | 0.130078 / 0.014526 (0.115553) | 0.147012 / 0.176557 (-0.029544) | 0.203097 / 0.737135 (-0.534038) | 0.149636 / 0.296338 (-0.146702) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521664 / 0.215209 (0.306455) | 5.283865 / 2.077655 (3.206210) | 2.456701 / 1.504120 (0.952581) | 2.266059 / 1.541195 (0.724864) | 2.295387 / 1.468490 (0.826897) | 0.613200 / 4.584777 (-3.971577) | 4.526107 / 3.745712 (0.780394) | 2.047327 / 5.269862 (-3.222535) | 1.261063 / 4.565676 (-3.304614) | 0.070402 / 0.424275 (-0.353873) | 0.014128 / 0.007607 (0.006521) | 0.620929 / 0.226044 (0.394884) | 6.109127 / 2.268929 (3.840198) | 3.081406 / 55.444624 (-52.363218) | 2.658224 / 6.876477 (-4.218253) | 2.671974 / 2.142072 (0.529902) | 0.744081 / 4.805227 (-4.061146) | 0.161498 / 6.500664 (-6.339166) | 0.075148 / 0.075469 (-0.000321) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.585640 / 1.841788 (-0.256148) | 17.884321 / 8.074308 (9.810013) | 15.938937 / 10.191392 (5.747545) | 0.220818 / 0.680424 (-0.459605) | 0.021452 / 0.534201 (-0.512749) | 0.499747 / 0.579283 (-0.079536) | 0.512318 / 0.434364 (0.077954) | 0.562853 / 0.540337 (0.022515) | 0.678512 / 1.386936 (-0.708424) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aa50937d82256827aee3dbd749c7a23555e05e38 \"CML watermark\")\n"
] | 2023-06-27T12:32:46 | 2023-06-27T15:40:47 | 2023-06-27T15:32:43 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5994",
"html_url": "https://github.com/huggingface/datasets/pull/5994",
"diff_url": "https://github.com/huggingface/datasets/pull/5994.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5994.patch",
"merged_at": "2023-06-27T15:32:43"
} | Fix the order of the columns in dataset.features when the order changes with `dataset.select_columns()`.
I also fixed the same issue for `dataset.flatten()`
Close https://github.com/huggingface/datasets/issues/5993 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5994/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5994/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5993 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5993/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5993/comments | https://api.github.com/repos/huggingface/datasets/issues/5993/events | https://github.com/huggingface/datasets/issues/5993 | 1,776,643,555 | I_kwDODunzps5p5W3j | 5,993 | ValueError: Table schema does not match schema used to create file | {
"login": "exs-avianello",
"id": 128361578,
"node_id": "U_kgDOB6akag",
"avatar_url": "https://avatars.githubusercontent.com/u/128361578?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/exs-avianello",
"html_url": "https://github.com/exs-avianello",
"followers_url": "https://api.github.com/users/exs-avianello/followers",
"following_url": "https://api.github.com/users/exs-avianello/following{/other_user}",
"gists_url": "https://api.github.com/users/exs-avianello/gists{/gist_id}",
"starred_url": "https://api.github.com/users/exs-avianello/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/exs-avianello/subscriptions",
"organizations_url": "https://api.github.com/users/exs-avianello/orgs",
"repos_url": "https://api.github.com/users/exs-avianello/repos",
"events_url": "https://api.github.com/users/exs-avianello/events{/privacy}",
"received_events_url": "https://api.github.com/users/exs-avianello/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"We'll do a new release of `datasets` soon to make the fix available :)\r\n\r\nIn the meantime you can use `datasets` from source (main)",
"Thank you very much @lhoestq ! 🚀 "
] | 2023-06-27T10:54:07 | 2023-06-27T15:36:42 | 2023-06-27T15:32:44 | NONE | null | null | null | ### Describe the bug
Saving a dataset as parquet fails with a `ValueError: Table schema does not match schema used to create file` if the dataset was obtained out of a `.select_columns()` call with columns selected out of order.
### Steps to reproduce the bug
```python
import datasets
dataset = datasets.Dataset.from_dict(
{
"x1": [1, 2, 3],
"x2": [10, 11, 12],
}
)
ds = dataset.select_columns(["x2", "x1"])
ds.to_parquet("demo.parquet")
```
```shell
>>>
ValueError: Table schema does not match schema used to create file:
table:
x2: int64
x1: int64
-- schema metadata --
huggingface: '{"info": {"features": {"x2": {"dtype": "int64", "_type": "V' + 53 vs.
file:
x1: int64
x2: int64
-- schema metadata --
huggingface: '{"info": {"features": {"x1": {"dtype": "int64", "_type": "V' + 53
```
---
I think this is because after the `.select_columns()` call with out of order columns, the output dataset features' schema ends up being out of sync with the schema of the arrow table backing it.
```python
ds.features.arrow_schema
>>>
x1: int64
x2: int64
-- schema metadata --
huggingface: '{"info": {"features": {"x1": {"dtype": "int64", "_type": "V' + 53
ds.data.schema
>>>
x2: int64
x1: int64
-- schema metadata --
huggingface: '{"info": {"features": {"x2": {"dtype": "int64", "_type": "V' + 53
```
So when we call `.to_parquet()`, the call behind the scenes to `datasets.io.parquet.ParquetDatasetWriter(...).write()` which initialises the backend `pyarrow.parquet.ParquetWriter` with `schema = self.dataset.features.arrow_schema` triggers `pyarrow` on write when [it checks](https://github.com/apache/arrow/blob/11b140a734a516e436adaddaeb35d23f30dcce44/python/pyarrow/parquet/core.py#L1086-L1090) that the `ParquetWriter` schema matches the schema of the table being written 🙌
https://github.com/huggingface/datasets/blob/6ed837325cb539a5deb99129e5ad181d0269e050/src/datasets/io/parquet.py#L139-L141
### Expected behavior
The dataset gets successfully saved as parquet.
*In the same way as it does if saving it as csv:
```python
import datasets
dataset = datasets.Dataset.from_dict(
{
"x1": [1, 2, 3],
"x2": [10, 11, 12],
}
)
ds = dataset.select_columns(["x2", "x1"])
ds.to_csv("demo.csv")
```
### Environment info
`python==3.11`
`datasets==2.13.1`
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5993/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5993/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5992/comments | https://api.github.com/repos/huggingface/datasets/issues/5992/events | https://github.com/huggingface/datasets/pull/5992 | 1,776,460,964 | PR_kwDODunzps5UAk3C | 5,992 | speedup | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5992). All of your documentation changes will be reflected on that endpoint."
] | 2023-06-27T09:17:58 | 2023-06-27T09:23:07 | 2023-06-27T09:18:04 | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5992",
"html_url": "https://github.com/huggingface/datasets/pull/5992",
"diff_url": "https://github.com/huggingface/datasets/pull/5992.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5992.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5992/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5992/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5991 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5991/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5991/comments | https://api.github.com/repos/huggingface/datasets/issues/5991/events | https://github.com/huggingface/datasets/issues/5991 | 1,774,456,518 | I_kwDODunzps5pxA7G | 5,991 | `map` with any joblib backend | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-06-26T10:33:42 | 2023-06-26T10:33:42 | null | MEMBER | null | null | null | We recently enabled the (experimental) parallel backend switch for data download and extraction but not for `map` yet.
Right now we're using our `iflatmap_unordered` implementation for multiprocessing that uses a shared Queue to gather progress updates from the subprocesses and show a progress bar in the main process.
If a Queue implementation that would work on any joblib backend by leveraging the filesystem that is shared among workers, we can have `iflatmap_unordered` for joblib and therefore a `map` with any joblib backend with a progress bar !
Note that the Queue doesn't need to be that optimized though since we can choose a small frequency for progress updates (like 1 update per second). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5991/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5991/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5989 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5989/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5989/comments | https://api.github.com/repos/huggingface/datasets/issues/5989/events | https://github.com/huggingface/datasets/issues/5989 | 1,774,134,091 | I_kwDODunzps5pvyNL | 5,989 | Set a rule on the config and split names | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"in this case we need to decide what to do with the existing datasets with white space characters (there shouldn't be a lot of them I think)",
"I imagine that we should stop supporting them, and help the user fix them?"
] | 2023-06-26T07:34:14 | 2023-06-26T13:12:58 | null | CONTRIBUTOR | null | null | null | > should we actually allow characters like spaces? maybe it's better to add validation for whitespace symbols and directly in datasets and raise
https://github.com/huggingface/datasets-server/issues/853
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5989/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5989/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5988 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5988/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5988/comments | https://api.github.com/repos/huggingface/datasets/issues/5988/events | https://github.com/huggingface/datasets/issues/5988 | 1,773,257,828 | I_kwDODunzps5pscRk | 5,988 | ConnectionError: Couldn't reach dataset_infos.json | {
"login": "yulingao",
"id": 20674868,
"node_id": "MDQ6VXNlcjIwNjc0ODY4",
"avatar_url": "https://avatars.githubusercontent.com/u/20674868?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yulingao",
"html_url": "https://github.com/yulingao",
"followers_url": "https://api.github.com/users/yulingao/followers",
"following_url": "https://api.github.com/users/yulingao/following{/other_user}",
"gists_url": "https://api.github.com/users/yulingao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yulingao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yulingao/subscriptions",
"organizations_url": "https://api.github.com/users/yulingao/orgs",
"repos_url": "https://api.github.com/users/yulingao/repos",
"events_url": "https://api.github.com/users/yulingao/events{/privacy}",
"received_events_url": "https://api.github.com/users/yulingao/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Unfortunately, I can't reproduce the error. What does the following code return for you?\r\n```python\r\nimport requests\r\nfrom huggingface_hub import hf_hub_url\r\nr = requests.get(hf_hub_url(\"codeparrot/codeparrot-clean-train\", \"dataset_infos.json\", repo_type=\"dataset\"))\r\n```\r\n\r\nAlso, can you provide more info about your network (region, proxies, etc.)?"
] | 2023-06-25T12:39:31 | 2023-06-27T12:38:34 | null | NONE | null | null | null | ### Describe the bug
I'm trying to load codeparrot/codeparrot-clean-train, but get the following error:
ConnectionError: Couldn't reach https://huggingface.co/datasets/codeparrot/codeparrot-clean-train/resolve/main/dataset_infos.json (ConnectionError(ProtocolError('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))))
### Steps to reproduce the bug
train_data = load_dataset('codeparrot/codeparrot-clean-train', split='train')
### Expected behavior
download the dataset
### Environment info
centos7 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5988/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5988/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5987 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5987/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5987/comments | https://api.github.com/repos/huggingface/datasets/issues/5987/events | https://github.com/huggingface/datasets/issues/5987 | 1,773,047,909 | I_kwDODunzps5prpBl | 5,987 | Why max_shard_size is not supported in load_dataset and passed to download_and_prepare | {
"login": "npuichigo",
"id": 11533479,
"node_id": "MDQ6VXNlcjExNTMzNDc5",
"avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/npuichigo",
"html_url": "https://github.com/npuichigo",
"followers_url": "https://api.github.com/users/npuichigo/followers",
"following_url": "https://api.github.com/users/npuichigo/following{/other_user}",
"gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions",
"organizations_url": "https://api.github.com/users/npuichigo/orgs",
"repos_url": "https://api.github.com/users/npuichigo/repos",
"events_url": "https://api.github.com/users/npuichigo/events{/privacy}",
"received_events_url": "https://api.github.com/users/npuichigo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Can you explain your use case for `max_shard_size`? \r\n\r\nOn some systems, there is a limit to the size of a memory-mapped file, so we could consider exposing this parameter in `load_dataset`.",
"In my use case, users may choose a proper size to balance the cost and benefit of using large shard size. (On azure blob or hdfs which may automatically download the shard from background)"
] | 2023-06-25T04:19:13 | 2023-06-27T01:59:37 | null | NONE | null | null | null | ### Describe the bug
https://github.com/huggingface/datasets/blob/a8a797cc92e860c8d0df71e0aa826f4d2690713e/src/datasets/load.py#L1809
What I can to is break the `load_dataset` and use `load_datset_builder` + `download_and_prepare` instead.
### Steps to reproduce the bug
https://github.com/huggingface/datasets/blob/a8a797cc92e860c8d0df71e0aa826f4d2690713e/src/datasets/load.py#L1809
### Expected behavior
Users can define the max shard size.
### Environment info
datasets==2.13.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5987/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5987/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5986 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5986/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5986/comments | https://api.github.com/repos/huggingface/datasets/issues/5986/events | https://github.com/huggingface/datasets/pull/5986 | 1,772,233,111 | PR_kwDODunzps5TygOZ | 5,986 | Make IterableDataset.from_spark more efficient | {
"login": "mathewjacob1002",
"id": 134338709,
"node_id": "U_kgDOCAHYlQ",
"avatar_url": "https://avatars.githubusercontent.com/u/134338709?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathewjacob1002",
"html_url": "https://github.com/mathewjacob1002",
"followers_url": "https://api.github.com/users/mathewjacob1002/followers",
"following_url": "https://api.github.com/users/mathewjacob1002/following{/other_user}",
"gists_url": "https://api.github.com/users/mathewjacob1002/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathewjacob1002/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathewjacob1002/subscriptions",
"organizations_url": "https://api.github.com/users/mathewjacob1002/orgs",
"repos_url": "https://api.github.com/users/mathewjacob1002/repos",
"events_url": "https://api.github.com/users/mathewjacob1002/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathewjacob1002/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-23T22:18:20 | 2023-06-26T17:01:40 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5986",
"html_url": "https://github.com/huggingface/datasets/pull/5986",
"diff_url": "https://github.com/huggingface/datasets/pull/5986.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5986.patch",
"merged_at": null
} | Moved the code from using collect() to using toLocalIterator, which allows for prefetching partitions that will be selected next, thus allowing for better performance when iterating. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5986/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5986/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5985 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5985/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5985/comments | https://api.github.com/repos/huggingface/datasets/issues/5985/events | https://github.com/huggingface/datasets/issues/5985 | 1,771,588,158 | I_kwDODunzps5pmEo- | 5,985 | Cannot reuse tokenizer object for dataset map | {
"login": "vikigenius",
"id": 12724810,
"node_id": "MDQ6VXNlcjEyNzI0ODEw",
"avatar_url": "https://avatars.githubusercontent.com/u/12724810?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vikigenius",
"html_url": "https://github.com/vikigenius",
"followers_url": "https://api.github.com/users/vikigenius/followers",
"following_url": "https://api.github.com/users/vikigenius/following{/other_user}",
"gists_url": "https://api.github.com/users/vikigenius/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vikigenius/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vikigenius/subscriptions",
"organizations_url": "https://api.github.com/users/vikigenius/orgs",
"repos_url": "https://api.github.com/users/vikigenius/repos",
"events_url": "https://api.github.com/users/vikigenius/events{/privacy}",
"received_events_url": "https://api.github.com/users/vikigenius/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892865,
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate",
"name": "duplicate",
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists"
}
] | open | false | null | [] | null | [
"This is a known issue: https://github.com/huggingface/datasets/issues/3847.\r\n\r\nFixing this requires significant work - rewriting the `tokenizers` lib to make them immutable.\r\n\r\nThe current solution is to pass `cache_file_name` to `map` to use that file for caching or calling a tokenizer before `map` (with the same set of parameters as the ones in the map transform)"
] | 2023-06-23T14:45:31 | 2023-06-26T12:34:50 | null | NONE | null | null | null | ### Describe the bug
Related to https://github.com/huggingface/transformers/issues/24441. Not sure if this is a tokenizer issue or caching issue, so filing in both.
Passing the tokenizer to the dataset map function causes the tokenizer to be fingerprinted weirdly. After calling the tokenizer with arguments like padding and truncation the tokenizer object changes interanally, even though the hash remains the same.
But dumps is able to detect that internal change which causes the tokenizer object's fingerprint to change.
### Steps to reproduce the bug
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
t.save_pretrained("tok1")
th1 = hash(dumps(t))
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
t.save_pretrained("tok2")
th2 = hash(dumps(t))
assert th1 == th2 # Assertion Error
```
But if you use just the hash of the object without dumps, the hashes don't change
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
th1 = hash(t) # Just hash no dumps
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
th2 = hash(t) # Just hash no dumps
assert th1 == th2 # This is OK
```
This causes situations such as the following
1. Create a text file like this `yes "This is an example text" | head -n 10000 > lines.txt`
```python
from transformers import AutoTokenizer
import datasets
class TokenizeMapper(object):
"""Mapper for tokenizer.
This is needed because the caching mechanism of HuggingFace does not work on
lambdas. Each time a new lambda will be created by a new process which will
lead to a different hash.
This way we can have a universal mapper object in init and reuse it with the same
hash for each process.
"""
def __init__(self, tokenizer):
"""Initialize the tokenizer."""
self.tokenizer = tokenizer
def __call__(self, examples, **kwargs):
"""Run the mapper."""
texts = examples["text"]
tt = self.tokenizer(texts, max_length=256, padding="max_length", truncation=True)
batch_outputs = {
"input_ids": tt.input_ids,
"attention_mask": tt.attention_mask,
}
return batch_outputs
t = AutoTokenizer.from_pretrained('bert-base-uncased')
mapper = TokenizeMapper(t)
ds = datasets.load_dataset("text", data_files="lines.txt")
mds1 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
mds2 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
```
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Expected behavior
We should be able to initialize a tokenizer. And reusing it should let us reuse the same map computation for the same dataset.
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-6.1.31_1-x86_64-with-glibc2.36
- Python version: 3.9.16
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5985/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5985/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5984 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5984/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5984/comments | https://api.github.com/repos/huggingface/datasets/issues/5984/events | https://github.com/huggingface/datasets/issues/5984 | 1,771,571,458 | I_kwDODunzps5pmAkC | 5,984 | AutoSharding IterableDataset's when num_workers > 1 | {
"login": "mathephysicist",
"id": 25594384,
"node_id": "MDQ6VXNlcjI1NTk0Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/25594384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathephysicist",
"html_url": "https://github.com/mathephysicist",
"followers_url": "https://api.github.com/users/mathephysicist/followers",
"following_url": "https://api.github.com/users/mathephysicist/following{/other_user}",
"gists_url": "https://api.github.com/users/mathephysicist/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathephysicist/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathephysicist/subscriptions",
"organizations_url": "https://api.github.com/users/mathephysicist/orgs",
"repos_url": "https://api.github.com/users/mathephysicist/repos",
"events_url": "https://api.github.com/users/mathephysicist/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathephysicist/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"For this to be possible, we would have to switch from the \"Streaming\" Arrow format to the \"Random Access\" (IPC/Feather) format, which allows reading arbitrary record batches (explained [here](https://arrow.apache.org/docs/python/ipc.html)). We could then use these batches to construct shards.\r\n\r\n@lhoestq @albertvillanova Do you think this use case is worth the switch? Also, we currently shard files, not inner row groups/chunks. Should we also support sharding row groups (e.g. if the number of input files is 1)?\r\n\r\nPS: I don't expect significant speed-up for local, uncompressed Arrow files.",
"Alternatively we could support multiprocessing map for iterable datasets and let the user do the CPU intensive task there ?\r\n\r\nThis way it would work on arrow data but also on any iterable dataset"
] | 2023-06-23T14:34:20 | 2023-06-27T12:42:17 | null | NONE | null | null | null | ### Feature request
Minimal Example
```
import torch
from datasets import IterableDataset
d = IterableDataset.from_file(<file_name>)
dl = torch.utils.data.dataloader.DataLoader(d,num_workers=3)
for sample in dl:
print(sample)
```
Warning:
Too many dataloader workers: 2 (max is dataset.n_shards=1). Stopping 1 dataloader workers.
To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=1. To enable more parallelism, please split the dataset in more files than 1.
Expected Behavior:
Dataset is sharded each cpu uses subset (contiguously - so you can do checkpoint loading/saving)
### Motivation
I have a lot of unused cpu's and would like to be able to shard iterable datasets with pytorch's dataloader when num_workers > 1. This is for a very large single file. I am aware that we can use the `split_dataset_by_node` to ensure that each node (for distributed) gets different shards, but we should extend it so that this also continues for multiple workers.
### Your contribution
If someone points me to what needs to change, I can create a PR. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5984/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5984/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5983 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5983/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5983/comments | https://api.github.com/repos/huggingface/datasets/issues/5983/events | https://github.com/huggingface/datasets/pull/5983 | 1,770,578,804 | PR_kwDODunzps5TtDdy | 5,983 | replaced PathLike as a variable for save_to_disk for dataset_path wit… | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-23T00:57:05 | 2023-06-23T00:57:05 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5983",
"html_url": "https://github.com/huggingface/datasets/pull/5983",
"diff_url": "https://github.com/huggingface/datasets/pull/5983.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5983.patch",
"merged_at": null
} | …h str like that of load_from_disk | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5983/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5983/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5982 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5982/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5982/comments | https://api.github.com/repos/huggingface/datasets/issues/5982/events | https://github.com/huggingface/datasets/issues/5982 | 1,770,333,296 | I_kwDODunzps5phSRw | 5,982 | 404 on Datasets Documentation Page | {
"login": "kmulka-bloomberg",
"id": 118509387,
"node_id": "U_kgDOBxBPSw",
"avatar_url": "https://avatars.githubusercontent.com/u/118509387?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kmulka-bloomberg",
"html_url": "https://github.com/kmulka-bloomberg",
"followers_url": "https://api.github.com/users/kmulka-bloomberg/followers",
"following_url": "https://api.github.com/users/kmulka-bloomberg/following{/other_user}",
"gists_url": "https://api.github.com/users/kmulka-bloomberg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kmulka-bloomberg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kmulka-bloomberg/subscriptions",
"organizations_url": "https://api.github.com/users/kmulka-bloomberg/orgs",
"repos_url": "https://api.github.com/users/kmulka-bloomberg/repos",
"events_url": "https://api.github.com/users/kmulka-bloomberg/events{/privacy}",
"received_events_url": "https://api.github.com/users/kmulka-bloomberg/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This wasn’t working for me a bit earlier, but it looks to be back up now",
"We had a minor issue updating the docs after the latest release. It should work now :)."
] | 2023-06-22T20:14:57 | 2023-06-26T15:45:03 | 2023-06-26T15:45:03 | NONE | null | null | null | ### Describe the bug
Getting a 404 from the Hugging Face Datasets docs page:
https://huggingface.co/docs/datasets/index
### Steps to reproduce the bug
1. Go to URL https://huggingface.co/docs/datasets/index
2. Notice 404 not found
### Expected behavior
URL should either show docs or redirect to new location
### Environment info
hugginface.co | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5982/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5982/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5981 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5981/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5981/comments | https://api.github.com/repos/huggingface/datasets/issues/5981/events | https://github.com/huggingface/datasets/issues/5981 | 1,770,310,087 | I_kwDODunzps5phMnH | 5,981 | Only two cores are getting used in sagemaker with pytorch 3.10 kernel | {
"login": "mmr-crexi",
"id": 107141022,
"node_id": "U_kgDOBmLXng",
"avatar_url": "https://avatars.githubusercontent.com/u/107141022?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mmr-crexi",
"html_url": "https://github.com/mmr-crexi",
"followers_url": "https://api.github.com/users/mmr-crexi/followers",
"following_url": "https://api.github.com/users/mmr-crexi/following{/other_user}",
"gists_url": "https://api.github.com/users/mmr-crexi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mmr-crexi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mmr-crexi/subscriptions",
"organizations_url": "https://api.github.com/users/mmr-crexi/orgs",
"repos_url": "https://api.github.com/users/mmr-crexi/repos",
"events_url": "https://api.github.com/users/mmr-crexi/events{/privacy}",
"received_events_url": "https://api.github.com/users/mmr-crexi/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"I think it's more likely that this issue is related to PyTorch than Datasets, as PyTorch (on import) registers functions to execute when forking a process. Maybe this is the culprit: https://github.com/pytorch/pytorch/issues/99625",
"From reading that ticket, it may be down in mkl? Is it worth hotfixing in the meantime, with the express intention of turning it off? I know that's a horribly crufty solution, but it's also deeply frustrating to be limited to 2 cores for operations as simple as filtration."
] | 2023-06-22T19:57:31 | 2023-06-26T19:53:47 | null | NONE | null | null | null | ### Describe the bug
When using the newer pytorch 3.10 kernel, only 2 cores are being used by huggingface filter and map functions. The Pytorch 3.9 kernel would use as many cores as specified in the num_proc field.
We have solved this in our own code by placing the following snippet in the code that is called inside subprocesses:
```os.sched_setaffinity(0, {i for i in range(1000)})```
The problem, as near as we can tell, us that once upon a time, cpu affinity was set using a bitmask ("0xfffff" and the like), and affinity recently changed to a list of processors rather than to using the mask. As such, only processors 1 and 17 are shown to be working in htop.
![Selection_072](https://github.com/huggingface/datasets/assets/107141022/04c5a824-5321-4531-afca-7bc84dff36b4)
When running functions via `map`, the above resetting of affinity works to spread across the cores. When using `filter`, however, only two cores are active.
### Steps to reproduce the bug
Repro steps:
1. Create an aws sagemaker instance
2. use the pytorch 3_10 kernel
3. Load a dataset
4. run a filter operation
5. watch as only 2 cores are used when num_proc > 2
6. run a map operation
7. watch as only 2 cores are used when num_proc > 2
8. run a map operation with processor affinity reset inside the function called via map
9. Watch as all cores run
### Expected behavior
All specified cores are used via the num_proc argument.
### Environment info
AWS sagemaker with the following init script run in the terminal after instance creation:
conda init bash
bash
conda activate pytorch_p310
pip install Wand PyPDF pytesseract datasets seqeval pdfplumber transformers pymupdf sentencepiece timm donut-python accelerate optimum xgboost
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
sudo yum -y install htop
sudo yum -y update
sudo yum -y install wget libstdc++ autoconf automake libtool autoconf-archive pkg-config gcc gcc-c++ make libjpeg-devel libpng-devel libtiff-devel zlib-devel | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5981/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5981/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5980 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5980/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5980/comments | https://api.github.com/repos/huggingface/datasets/issues/5980/events | https://github.com/huggingface/datasets/issues/5980 | 1,770,255,973 | I_kwDODunzps5pg_Zl | 5,980 | Viewing dataset card returns “502 Bad Gateway” | {
"login": "tbenthompson",
"id": 4241811,
"node_id": "MDQ6VXNlcjQyNDE4MTE=",
"avatar_url": "https://avatars.githubusercontent.com/u/4241811?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tbenthompson",
"html_url": "https://github.com/tbenthompson",
"followers_url": "https://api.github.com/users/tbenthompson/followers",
"following_url": "https://api.github.com/users/tbenthompson/following{/other_user}",
"gists_url": "https://api.github.com/users/tbenthompson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tbenthompson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tbenthompson/subscriptions",
"organizations_url": "https://api.github.com/users/tbenthompson/orgs",
"repos_url": "https://api.github.com/users/tbenthompson/repos",
"events_url": "https://api.github.com/users/tbenthompson/events{/privacy}",
"received_events_url": "https://api.github.com/users/tbenthompson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Can you try again? Maybe there was a minor outage.",
"Yes, it seems to be working now. In case it's helpful, the outage lasted several days. It was failing as late as yesterday morning. ",
"we fixed something on the server side, glad it's fixed now"
] | 2023-06-22T19:14:48 | 2023-06-27T08:38:19 | 2023-06-26T14:42:45 | NONE | null | null | null | The url is: https://huggingface.co/datasets/Confirm-Labs/pile_ngrams_trigrams
I am able to successfully view the “Files and versions” tab: [Confirm-Labs/pile_ngrams_trigrams at main](https://huggingface.co/datasets/Confirm-Labs/pile_ngrams_trigrams/tree/main)
Any help would be appreciated! Thanks! I hope this is the right place to report an issue like this.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5980/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5980/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5979 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5979/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5979/comments | https://api.github.com/repos/huggingface/datasets/issues/5979/events | https://github.com/huggingface/datasets/pull/5979 | 1,770,198,250 | PR_kwDODunzps5TrxS_ | 5,979 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5979). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008087 / 0.011353 (-0.003266) | 0.004691 / 0.011008 (-0.006317) | 0.121545 / 0.038508 (0.083037) | 0.057436 / 0.023109 (0.034326) | 0.368864 / 0.275898 (0.092966) | 0.457199 / 0.323480 (0.133719) | 0.006745 / 0.007986 (-0.001241) | 0.003689 / 0.004328 (-0.000640) | 0.090480 / 0.004250 (0.086229) | 0.071368 / 0.037052 (0.034316) | 0.372788 / 0.258489 (0.114299) | 0.429894 / 0.293841 (0.136053) | 0.037544 / 0.128546 (-0.091002) | 0.010142 / 0.075646 (-0.065505) | 0.420467 / 0.419271 (0.001196) | 0.064359 / 0.043533 (0.020826) | 0.370345 / 0.255139 (0.115206) | 0.405220 / 0.283200 (0.122020) | 0.028410 / 0.141683 (-0.113273) | 1.824845 / 1.452155 (0.372690) | 1.888109 / 1.492716 (0.395392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234585 / 0.018006 (0.216578) | 0.499965 / 0.000490 (0.499476) | 0.000461 / 0.000200 (0.000261) | 0.000064 / 0.000054 (0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032294 / 0.037411 (-0.005117) | 0.131769 / 0.014526 (0.117243) | 0.146472 / 0.176557 (-0.030085) | 0.210035 / 0.737135 (-0.527100) | 0.145600 / 0.296338 (-0.150739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507455 / 0.215209 (0.292246) | 5.080090 / 2.077655 (3.002435) | 2.506104 / 1.504120 (1.001984) | 2.297655 / 1.541195 (0.756460) | 2.324920 / 1.468490 (0.856430) | 0.645003 / 4.584777 (-3.939774) | 4.677856 / 3.745712 (0.932144) | 2.254179 / 5.269862 (-3.015683) | 1.280663 / 4.565676 (-3.285013) | 0.078809 / 0.424275 (-0.345466) | 0.014059 / 0.007607 (0.006452) | 0.628053 / 0.226044 (0.402009) | 6.327289 / 2.268929 (4.058360) | 2.957918 / 55.444624 (-52.486706) | 2.571568 / 6.876477 (-4.304909) | 2.708766 / 2.142072 (0.566694) | 0.772868 / 4.805227 (-4.032360) | 0.164835 / 6.500664 (-6.335829) | 0.075334 / 0.075469 (-0.000135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471930 / 1.841788 (-0.369858) | 17.917340 / 8.074308 (9.843032) | 15.719327 / 10.191392 (5.527935) | 0.191999 / 0.680424 (-0.488424) | 0.022464 / 0.534201 (-0.511737) | 0.511038 / 0.579283 (-0.068245) | 0.512050 / 0.434364 (0.077686) | 0.608711 / 0.540337 (0.068373) | 0.749660 / 1.386936 (-0.637276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008028 / 0.011353 (-0.003325) | 0.004908 / 0.011008 (-0.006100) | 0.092294 / 0.038508 (0.053786) | 0.053051 / 0.023109 (0.029942) | 0.453862 / 0.275898 (0.177964) | 0.512548 / 0.323480 (0.189068) | 0.004817 / 0.007986 (-0.003168) | 0.005330 / 0.004328 (0.001002) | 0.095600 / 0.004250 (0.091350) | 0.068763 / 0.037052 (0.031710) | 0.453654 / 0.258489 (0.195165) | 0.504995 / 0.293841 (0.211154) | 0.038123 / 0.128546 (-0.090423) | 0.010650 / 0.075646 (-0.064996) | 0.102854 / 0.419271 (-0.316417) | 0.062973 / 0.043533 (0.019440) | 0.430420 / 0.255139 (0.175281) | 0.465448 / 0.283200 (0.182248) | 0.029736 / 0.141683 (-0.111947) | 1.844225 / 1.452155 (0.392070) | 1.934685 / 1.492716 (0.441968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227797 / 0.018006 (0.209791) | 0.467868 / 0.000490 (0.467378) | 0.004531 / 0.000200 (0.004331) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035632 / 0.037411 (-0.001780) | 0.145943 / 0.014526 (0.131417) | 0.151944 / 0.176557 (-0.024613) | 0.220519 / 0.737135 (-0.516616) | 0.159732 / 0.296338 (-0.136606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520641 / 0.215209 (0.305432) | 5.184740 / 2.077655 (3.107086) | 2.538751 / 1.504120 (1.034631) | 2.316571 / 1.541195 (0.775377) | 2.387898 / 1.468490 (0.919408) | 0.614515 / 4.584777 (-3.970262) | 4.573142 / 3.745712 (0.827430) | 4.657052 / 5.269862 (-0.612809) | 2.159664 / 4.565676 (-2.406013) | 0.079713 / 0.424275 (-0.344562) | 0.014462 / 0.007607 (0.006855) | 0.656611 / 0.226044 (0.430566) | 6.481630 / 2.268929 (4.212702) | 3.135047 / 55.444624 (-52.309577) | 2.757502 / 6.876477 (-4.118975) | 2.851488 / 2.142072 (0.709415) | 0.790795 / 4.805227 (-4.014432) | 0.172358 / 6.500664 (-6.328306) | 0.080255 / 0.075469 (0.004786) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.571391 / 1.841788 (-0.270396) | 19.025224 / 8.074308 (10.950916) | 17.079230 / 10.191392 (6.887838) | 0.172823 / 0.680424 (-0.507601) | 0.021845 / 0.534201 (-0.512356) | 0.522286 / 0.579283 (-0.056998) | 0.510406 / 0.434364 (0.076042) | 0.604830 / 0.540337 (0.064493) | 0.735466 / 1.386936 (-0.651471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4084609bdc40d173d1daa74ad2fe98f3ead72f8e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010025 / 0.011353 (-0.001328) | 0.005699 / 0.011008 (-0.005310) | 0.134194 / 0.038508 (0.095686) | 0.056154 / 0.023109 (0.033045) | 0.470091 / 0.275898 (0.194193) | 0.539225 / 0.323480 (0.215745) | 0.006659 / 0.007986 (-0.001326) | 0.004468 / 0.004328 (0.000140) | 0.110040 / 0.004250 (0.105790) | 0.074172 / 0.037052 (0.037119) | 0.497450 / 0.258489 (0.238961) | 0.535048 / 0.293841 (0.241207) | 0.051195 / 0.128546 (-0.077352) | 0.014926 / 0.075646 (-0.060721) | 0.461334 / 0.419271 (0.042062) | 0.073773 / 0.043533 (0.030240) | 0.450741 / 0.255139 (0.195602) | 0.474853 / 0.283200 (0.191653) | 0.036372 / 0.141683 (-0.105311) | 1.982873 / 1.452155 (0.530719) | 1.989912 / 1.492716 (0.497196) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287817 / 0.018006 (0.269811) | 0.613415 / 0.000490 (0.612926) | 0.007082 / 0.000200 (0.006882) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031119 / 0.037411 (-0.006292) | 0.129886 / 0.014526 (0.115361) | 0.143492 / 0.176557 (-0.033065) | 0.208536 / 0.737135 (-0.528600) | 0.147081 / 0.296338 (-0.149257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668312 / 0.215209 (0.453103) | 6.568609 / 2.077655 (4.490955) | 2.708788 / 1.504120 (1.204668) | 2.366737 / 1.541195 (0.825542) | 2.392598 / 1.468490 (0.924108) | 0.967582 / 4.584777 (-3.617195) | 5.582743 / 3.745712 (1.837031) | 3.021607 / 5.269862 (-2.248255) | 1.866402 / 4.565676 (-2.699275) | 0.115998 / 0.424275 (-0.308277) | 0.015571 / 0.007607 (0.007964) | 0.820069 / 0.226044 (0.594025) | 8.229725 / 2.268929 (5.960797) | 3.437068 / 55.444624 (-52.007557) | 2.902312 / 6.876477 (-3.974164) | 3.025874 / 2.142072 (0.883802) | 1.230359 / 4.805227 (-3.574868) | 0.237341 / 6.500664 (-6.263323) | 0.089923 / 0.075469 (0.014453) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670970 / 1.841788 (-0.170818) | 19.667167 / 8.074308 (11.592859) | 21.624423 / 10.191392 (11.433031) | 0.231683 / 0.680424 (-0.448741) | 0.029145 / 0.534201 (-0.505056) | 0.543441 / 0.579283 (-0.035842) | 0.617510 / 0.434364 (0.183146) | 0.612662 / 0.540337 (0.072324) | 0.790589 / 1.386936 (-0.596347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010324 / 0.011353 (-0.001029) | 0.005339 / 0.011008 (-0.005669) | 0.104762 / 0.038508 (0.066254) | 0.052631 / 0.023109 (0.029522) | 0.485864 / 0.275898 (0.209966) | 0.595768 / 0.323480 (0.272288) | 0.007417 / 0.007986 (-0.000569) | 0.005229 / 0.004328 (0.000900) | 0.100775 / 0.004250 (0.096524) | 0.067144 / 0.037052 (0.030092) | 0.522269 / 0.258489 (0.263780) | 0.592597 / 0.293841 (0.298756) | 0.051101 / 0.128546 (-0.077446) | 0.015277 / 0.075646 (-0.060369) | 0.115530 / 0.419271 (-0.303741) | 0.071922 / 0.043533 (0.028390) | 0.490208 / 0.255139 (0.235069) | 0.578936 / 0.283200 (0.295736) | 0.040382 / 0.141683 (-0.101301) | 1.986059 / 1.452155 (0.533904) | 2.040600 / 1.492716 (0.547883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300399 / 0.018006 (0.282393) | 0.624702 / 0.000490 (0.624212) | 0.004908 / 0.000200 (0.004708) | 0.000155 / 0.000054 (0.000100) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038031 / 0.037411 (0.000619) | 0.140353 / 0.014526 (0.125828) | 0.152600 / 0.176557 (-0.023956) | 0.219165 / 0.737135 (-0.517970) | 0.154232 / 0.296338 (-0.142106) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698855 / 0.215209 (0.483646) | 7.125543 / 2.077655 (5.047889) | 3.251222 / 1.504120 (1.747102) | 2.953404 / 1.541195 (1.412209) | 3.051108 / 1.468490 (1.582618) | 0.962068 / 4.584777 (-3.622709) | 5.789579 / 3.745712 (2.043867) | 5.193271 / 5.269862 (-0.076591) | 2.757886 / 4.565676 (-1.807790) | 0.111865 / 0.424275 (-0.312410) | 0.014684 / 0.007607 (0.007077) | 0.875967 / 0.226044 (0.649923) | 8.818359 / 2.268929 (6.549430) | 4.165216 / 55.444624 (-51.279408) | 3.372059 / 6.876477 (-3.504418) | 3.486886 / 2.142072 (1.344813) | 1.232276 / 4.805227 (-3.572951) | 0.238967 / 6.500664 (-6.261697) | 0.091584 / 0.075469 (0.016115) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.850755 / 1.841788 (0.008968) | 20.058756 / 8.074308 (11.984448) | 23.761271 / 10.191392 (13.569879) | 0.231826 / 0.680424 (-0.448598) | 0.030119 / 0.534201 (-0.504082) | 0.532614 / 0.579283 (-0.046669) | 0.628968 / 0.434364 (0.194604) | 0.628403 / 0.540337 (0.088066) | 0.745648 / 1.386936 (-0.641288) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8a797cc92e860c8d0df71e0aa826f4d2690713e \"CML watermark\")\n"
] | 2023-06-22T18:32:14 | 2023-06-22T18:42:22 | 2023-06-22T18:32:22 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5979",
"html_url": "https://github.com/huggingface/datasets/pull/5979",
"diff_url": "https://github.com/huggingface/datasets/pull/5979.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5979.patch",
"merged_at": "2023-06-22T18:32:22"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5979/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5979/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5978 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5978/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5978/comments | https://api.github.com/repos/huggingface/datasets/issues/5978/events | https://github.com/huggingface/datasets/pull/5978 | 1,770,187,053 | PR_kwDODunzps5Tru2_ | 5,978 | Release: 2.13.1 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006173 / 0.011353 (-0.005180) | 0.003773 / 0.011008 (-0.007235) | 0.099499 / 0.038508 (0.060991) | 0.037918 / 0.023109 (0.014809) | 0.321329 / 0.275898 (0.045431) | 0.379739 / 0.323480 (0.056259) | 0.004664 / 0.007986 (-0.003322) | 0.002943 / 0.004328 (-0.001385) | 0.077759 / 0.004250 (0.073509) | 0.055271 / 0.037052 (0.018219) | 0.329428 / 0.258489 (0.070939) | 0.378731 / 0.293841 (0.084890) | 0.027737 / 0.128546 (-0.100810) | 0.008566 / 0.075646 (-0.067081) | 0.313220 / 0.419271 (-0.106052) | 0.047101 / 0.043533 (0.003568) | 0.316211 / 0.255139 (0.061072) | 0.341826 / 0.283200 (0.058626) | 0.020838 / 0.141683 (-0.120845) | 1.550064 / 1.452155 (0.097909) | 1.706518 / 1.492716 (0.213801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203093 / 0.018006 (0.185087) | 0.425345 / 0.000490 (0.424856) | 0.004800 / 0.000200 (0.004600) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024590 / 0.037411 (-0.012821) | 0.098115 / 0.014526 (0.083589) | 0.108274 / 0.176557 (-0.068282) | 0.170804 / 0.737135 (-0.566332) | 0.110560 / 0.296338 (-0.185778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425251 / 0.215209 (0.210042) | 4.239075 / 2.077655 (2.161421) | 1.955601 / 1.504120 (0.451481) | 1.774796 / 1.541195 (0.233602) | 1.826641 / 1.468490 (0.358150) | 0.558777 / 4.584777 (-4.026000) | 3.361697 / 3.745712 (-0.384015) | 1.764468 / 5.269862 (-3.505394) | 1.032280 / 4.565676 (-3.533396) | 0.067872 / 0.424275 (-0.356403) | 0.010998 / 0.007607 (0.003391) | 0.525682 / 0.226044 (0.299637) | 5.254356 / 2.268929 (2.985427) | 2.384332 / 55.444624 (-53.060292) | 2.045578 / 6.876477 (-4.830898) | 2.170914 / 2.142072 (0.028841) | 0.674782 / 4.805227 (-4.130445) | 0.135351 / 6.500664 (-6.365314) | 0.066591 / 0.075469 (-0.008878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209181 / 1.841788 (-0.632606) | 14.044518 / 8.074308 (5.970210) | 13.184705 / 10.191392 (2.993313) | 0.130836 / 0.680424 (-0.549588) | 0.016582 / 0.534201 (-0.517619) | 0.360005 / 0.579283 (-0.219279) | 0.379519 / 0.434364 (-0.054845) | 0.422174 / 0.540337 (-0.118164) | 0.515546 / 1.386936 (-0.871390) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006293 / 0.011353 (-0.005060) | 0.003784 / 0.011008 (-0.007224) | 0.079248 / 0.038508 (0.040739) | 0.038452 / 0.023109 (0.015343) | 0.444727 / 0.275898 (0.168829) | 0.500535 / 0.323480 (0.177055) | 0.003455 / 0.007986 (-0.004531) | 0.002873 / 0.004328 (-0.001455) | 0.077439 / 0.004250 (0.073189) | 0.047855 / 0.037052 (0.010803) | 0.448049 / 0.258489 (0.189560) | 0.509517 / 0.293841 (0.215676) | 0.028359 / 0.128546 (-0.100188) | 0.008503 / 0.075646 (-0.067143) | 0.084961 / 0.419271 (-0.334310) | 0.042880 / 0.043533 (-0.000653) | 0.436628 / 0.255139 (0.181489) | 0.456574 / 0.283200 (0.173375) | 0.019539 / 0.141683 (-0.122144) | 1.561273 / 1.452155 (0.109118) | 1.572018 / 1.492716 (0.079301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230250 / 0.018006 (0.212244) | 0.415189 / 0.000490 (0.414700) | 0.003213 / 0.000200 (0.003013) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025541 / 0.037411 (-0.011871) | 0.102326 / 0.014526 (0.087800) | 0.110258 / 0.176557 (-0.066298) | 0.162488 / 0.737135 (-0.574647) | 0.112782 / 0.296338 (-0.183556) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457936 / 0.215209 (0.242727) | 4.581503 / 2.077655 (2.503848) | 2.237659 / 1.504120 (0.733540) | 2.029960 / 1.541195 (0.488765) | 2.082911 / 1.468490 (0.614421) | 0.556485 / 4.584777 (-4.028292) | 3.384418 / 3.745712 (-0.361295) | 1.748809 / 5.269862 (-3.521053) | 1.034759 / 4.565676 (-3.530917) | 0.067500 / 0.424275 (-0.356776) | 0.011425 / 0.007607 (0.003818) | 0.561340 / 0.226044 (0.335295) | 5.623629 / 2.268929 (3.354701) | 2.733587 / 55.444624 (-52.711038) | 2.401578 / 6.876477 (-4.474899) | 2.524569 / 2.142072 (0.382496) | 0.673170 / 4.805227 (-4.132057) | 0.136681 / 6.500664 (-6.363983) | 0.068060 / 0.075469 (-0.007409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318651 / 1.841788 (-0.523137) | 14.362123 / 8.074308 (6.287815) | 14.385964 / 10.191392 (4.194572) | 0.149914 / 0.680424 (-0.530510) | 0.016877 / 0.534201 (-0.517324) | 0.358406 / 0.579283 (-0.220877) | 0.394349 / 0.434364 (-0.040015) | 0.422471 / 0.540337 (-0.117866) | 0.513807 / 1.386936 (-0.873129) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b9ce11d1b94e6178df663ff5fcad029849d10fb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005080) | 0.003903 / 0.011008 (-0.007105) | 0.100180 / 0.038508 (0.061672) | 0.037799 / 0.023109 (0.014690) | 0.385627 / 0.275898 (0.109729) | 0.446518 / 0.323480 (0.123038) | 0.004811 / 0.007986 (-0.003175) | 0.003032 / 0.004328 (-0.001296) | 0.077063 / 0.004250 (0.072812) | 0.055564 / 0.037052 (0.018512) | 0.397346 / 0.258489 (0.138857) | 0.443242 / 0.293841 (0.149401) | 0.027904 / 0.128546 (-0.100642) | 0.008386 / 0.075646 (-0.067260) | 0.315013 / 0.419271 (-0.104259) | 0.047943 / 0.043533 (0.004410) | 0.378443 / 0.255139 (0.123304) | 0.411472 / 0.283200 (0.128272) | 0.020465 / 0.141683 (-0.121218) | 1.526594 / 1.452155 (0.074439) | 1.547018 / 1.492716 (0.054301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219377 / 0.018006 (0.201370) | 0.430254 / 0.000490 (0.429764) | 0.003218 / 0.000200 (0.003018) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023667 / 0.037411 (-0.013744) | 0.099143 / 0.014526 (0.084617) | 0.106044 / 0.176557 (-0.070513) | 0.166186 / 0.737135 (-0.570949) | 0.108736 / 0.296338 (-0.187603) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437971 / 0.215209 (0.222762) | 4.363675 / 2.077655 (2.286021) | 2.011993 / 1.504120 (0.507873) | 1.845189 / 1.541195 (0.303994) | 1.831848 / 1.468490 (0.363358) | 0.562402 / 4.584777 (-4.022375) | 3.365259 / 3.745712 (-0.380453) | 1.781491 / 5.269862 (-3.488371) | 1.023454 / 4.565676 (-3.542223) | 0.067857 / 0.424275 (-0.356418) | 0.011076 / 0.007607 (0.003469) | 0.532267 / 0.226044 (0.306223) | 5.340344 / 2.268929 (3.071415) | 2.388649 / 55.444624 (-53.055976) | 2.055373 / 6.876477 (-4.821104) | 2.205047 / 2.142072 (0.062975) | 0.672909 / 4.805227 (-4.132318) | 0.135244 / 6.500664 (-6.365420) | 0.066184 / 0.075469 (-0.009285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206838 / 1.841788 (-0.634950) | 13.967075 / 8.074308 (5.892767) | 13.143971 / 10.191392 (2.952579) | 0.143991 / 0.680424 (-0.536433) | 0.016673 / 0.534201 (-0.517527) | 0.376180 / 0.579283 (-0.203103) | 0.386550 / 0.434364 (-0.047814) | 0.440590 / 0.540337 (-0.099747) | 0.529974 / 1.386936 (-0.856962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006299 / 0.011353 (-0.005054) | 0.003784 / 0.011008 (-0.007224) | 0.077875 / 0.038508 (0.039367) | 0.038689 / 0.023109 (0.015580) | 0.421684 / 0.275898 (0.145786) | 0.472649 / 0.323480 (0.149169) | 0.003570 / 0.007986 (-0.004415) | 0.004448 / 0.004328 (0.000120) | 0.077867 / 0.004250 (0.073616) | 0.049514 / 0.037052 (0.012462) | 0.375983 / 0.258489 (0.117494) | 0.470632 / 0.293841 (0.176791) | 0.028238 / 0.128546 (-0.100308) | 0.008462 / 0.075646 (-0.067185) | 0.082452 / 0.419271 (-0.336819) | 0.043617 / 0.043533 (0.000084) | 0.400874 / 0.255139 (0.145735) | 0.426191 / 0.283200 (0.142992) | 0.020602 / 0.141683 (-0.121081) | 1.567658 / 1.452155 (0.115504) | 1.572610 / 1.492716 (0.079893) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246144 / 0.018006 (0.228138) | 0.419402 / 0.000490 (0.418913) | 0.001691 / 0.000200 (0.001491) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026105 / 0.037411 (-0.011306) | 0.104734 / 0.014526 (0.090208) | 0.110257 / 0.176557 (-0.066300) | 0.161429 / 0.737135 (-0.575706) | 0.114367 / 0.296338 (-0.181972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453352 / 0.215209 (0.238143) | 4.537924 / 2.077655 (2.460269) | 2.196193 / 1.504120 (0.692073) | 2.002087 / 1.541195 (0.460892) | 2.041722 / 1.468490 (0.573231) | 0.561643 / 4.584777 (-4.023134) | 3.449108 / 3.745712 (-0.296605) | 2.862800 / 5.269862 (-2.407062) | 1.387895 / 4.565676 (-3.177782) | 0.068076 / 0.424275 (-0.356199) | 0.011568 / 0.007607 (0.003961) | 0.559279 / 0.226044 (0.333235) | 5.598738 / 2.268929 (3.329809) | 2.676649 / 55.444624 (-52.767975) | 2.334588 / 6.876477 (-4.541889) | 2.376215 / 2.142072 (0.234142) | 0.673109 / 4.805227 (-4.132118) | 0.137587 / 6.500664 (-6.363077) | 0.069131 / 0.075469 (-0.006338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307332 / 1.841788 (-0.534456) | 14.536036 / 8.074308 (6.461728) | 14.173734 / 10.191392 (3.982342) | 0.145143 / 0.680424 (-0.535281) | 0.016662 / 0.534201 (-0.517539) | 0.366901 / 0.579283 (-0.212383) | 0.394498 / 0.434364 (-0.039866) | 0.430546 / 0.540337 (-0.109792) | 0.518950 / 1.386936 (-0.867986) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008122 / 0.011353 (-0.003231) | 0.005585 / 0.011008 (-0.005424) | 0.121219 / 0.038508 (0.082711) | 0.047616 / 0.023109 (0.024507) | 0.440576 / 0.275898 (0.164678) | 0.491053 / 0.323480 (0.167573) | 0.004774 / 0.007986 (-0.003211) | 0.006758 / 0.004328 (0.002430) | 0.103852 / 0.004250 (0.099602) | 0.071560 / 0.037052 (0.034508) | 0.463107 / 0.258489 (0.204618) | 0.516904 / 0.293841 (0.223063) | 0.048052 / 0.128546 (-0.080494) | 0.013679 / 0.075646 (-0.061968) | 0.428383 / 0.419271 (0.009112) | 0.069468 / 0.043533 (0.025936) | 0.432593 / 0.255139 (0.177454) | 0.471810 / 0.283200 (0.188611) | 0.037541 / 0.141683 (-0.104142) | 1.823490 / 1.452155 (0.371335) | 1.922558 / 1.492716 (0.429842) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252315 / 0.018006 (0.234309) | 0.541757 / 0.000490 (0.541267) | 0.000373 / 0.000200 (0.000173) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030361 / 0.037411 (-0.007050) | 0.125928 / 0.014526 (0.111402) | 0.145102 / 0.176557 (-0.031455) | 0.209798 / 0.737135 (-0.527337) | 0.147349 / 0.296338 (-0.148990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627554 / 0.215209 (0.412345) | 5.917422 / 2.077655 (3.839767) | 2.491083 / 1.504120 (0.986963) | 2.147078 / 1.541195 (0.605883) | 2.167511 / 1.468490 (0.699021) | 0.903061 / 4.584777 (-3.681716) | 5.518537 / 3.745712 (1.772825) | 2.654348 / 5.269862 (-2.615514) | 1.645121 / 4.565676 (-2.920556) | 0.103782 / 0.424275 (-0.320493) | 0.013048 / 0.007607 (0.005441) | 0.756732 / 0.226044 (0.530687) | 7.622873 / 2.268929 (5.353945) | 3.122689 / 55.444624 (-52.321936) | 2.537735 / 6.876477 (-4.338742) | 2.640090 / 2.142072 (0.498018) | 1.128635 / 4.805227 (-3.676593) | 0.228089 / 6.500664 (-6.272575) | 0.086207 / 0.075469 (0.010738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561591 / 1.841788 (-0.280197) | 18.110299 / 8.074308 (10.035991) | 20.718017 / 10.191392 (10.526625) | 0.225741 / 0.680424 (-0.454682) | 0.031738 / 0.534201 (-0.502463) | 0.530789 / 0.579283 (-0.048495) | 0.607364 / 0.434364 (0.173000) | 0.581593 / 0.540337 (0.041256) | 0.726033 / 1.386936 (-0.660903) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009323 / 0.011353 (-0.002030) | 0.005360 / 0.011008 (-0.005649) | 0.103608 / 0.038508 (0.065100) | 0.050158 / 0.023109 (0.027049) | 0.499906 / 0.275898 (0.224008) | 0.561005 / 0.323480 (0.237525) | 0.005093 / 0.007986 (-0.002892) | 0.008285 / 0.004328 (0.003956) | 0.103446 / 0.004250 (0.099196) | 0.061478 / 0.037052 (0.024426) | 0.494016 / 0.258489 (0.235527) | 0.537550 / 0.293841 (0.243709) | 0.048829 / 0.128546 (-0.079717) | 0.017032 / 0.075646 (-0.058614) | 0.107748 / 0.419271 (-0.311524) | 0.065607 / 0.043533 (0.022074) | 0.488709 / 0.255139 (0.233570) | 0.512023 / 0.283200 (0.228823) | 0.032067 / 0.141683 (-0.109616) | 1.907585 / 1.452155 (0.455431) | 1.960994 / 1.492716 (0.468278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.018006 (0.260371) | 0.551474 / 0.000490 (0.550985) | 0.006886 / 0.000200 (0.006686) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030674 / 0.037411 (-0.006737) | 0.135179 / 0.014526 (0.120654) | 0.133703 / 0.176557 (-0.042853) | 0.198923 / 0.737135 (-0.538212) | 0.155108 / 0.296338 (-0.141231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.690566 / 0.215209 (0.475357) | 6.789594 / 2.077655 (4.711940) | 2.940668 / 1.504120 (1.436549) | 2.562431 / 1.541195 (1.021236) | 2.554232 / 1.468490 (1.085742) | 0.888470 / 4.584777 (-3.696307) | 5.672318 / 3.745712 (1.926606) | 2.741626 / 5.269862 (-2.528236) | 1.818336 / 4.565676 (-2.747340) | 0.110434 / 0.424275 (-0.313841) | 0.014114 / 0.007607 (0.006507) | 0.830632 / 0.226044 (0.604588) | 8.270787 / 2.268929 (6.001859) | 3.723486 / 55.444624 (-51.721139) | 2.993671 / 6.876477 (-3.882806) | 2.918273 / 2.142072 (0.776201) | 1.105337 / 4.805227 (-3.699891) | 0.222976 / 6.500664 (-6.277688) | 0.085290 / 0.075469 (0.009820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816027 / 1.841788 (-0.025760) | 18.496850 / 8.074308 (10.422541) | 20.457032 / 10.191392 (10.265640) | 0.243533 / 0.680424 (-0.436891) | 0.027044 / 0.534201 (-0.507157) | 0.500752 / 0.579283 (-0.078531) | 0.620963 / 0.434364 (0.186599) | 0.607995 / 0.540337 (0.067658) | 0.722915 / 1.386936 (-0.664021) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n"
] | 2023-06-22T18:23:11 | 2023-06-22T18:40:24 | 2023-06-22T18:30:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5978",
"html_url": "https://github.com/huggingface/datasets/pull/5978",
"diff_url": "https://github.com/huggingface/datasets/pull/5978.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5978.patch",
"merged_at": "2023-06-22T18:30:16"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5978/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5978/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5976 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5976/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5976/comments | https://api.github.com/repos/huggingface/datasets/issues/5976/events | https://github.com/huggingface/datasets/pull/5976 | 1,768,503,913 | PR_kwDODunzps5TmAFp | 5,976 | Avoid stuck map operation when subprocesses crashes | {
"login": "pappacena",
"id": 1213561,
"node_id": "MDQ6VXNlcjEyMTM1NjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1213561?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pappacena",
"html_url": "https://github.com/pappacena",
"followers_url": "https://api.github.com/users/pappacena/followers",
"following_url": "https://api.github.com/users/pappacena/following{/other_user}",
"gists_url": "https://api.github.com/users/pappacena/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pappacena/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pappacena/subscriptions",
"organizations_url": "https://api.github.com/users/pappacena/orgs",
"repos_url": "https://api.github.com/users/pappacena/repos",
"events_url": "https://api.github.com/users/pappacena/events{/privacy}",
"received_events_url": "https://api.github.com/users/pappacena/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! Do you think this can be fixed at the Pool level ? Ideally it should be the Pool responsibility to handle this, not the `map` code. We could even subclass Pool if needed (at least the one from `multiprocess`)",
"@lhoestq it makes sense to me. Just pushed a refactoring creating a `class ProcessPool(multiprocess.pool.Pool)` to keep track of the PID changes.",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5976). All of your documentation changes will be reflected on that endpoint.",
"I managed to raise an error without subclassing Pool with two additions to `iflatmap_unordered`:\r\n\r\n1. at the beggining\r\n```python\r\noriginal_pool = list(pool._pool)\r\n```\r\n\r\n2. in the loop\r\n```python\r\nif any(async_result._pool != original_pool for async_result in async_results) and queue.empty():\r\n raise RuntimeError(\r\n \"One of the subprocesses has abruptly died during map operation.\"\r\n \"To debug the error, disable multiprocessing.\"\r\n )\r\n```\r\n\r\nIt's still a fix that only works for `iflatmap_unordered` (so not for map, imap etc) but is maybe simpler that subclassing. It also works for both multiprocessing.Pool and multiprocess.Pool"
] | 2023-06-21T21:18:31 | 2023-06-26T12:27:27 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5976",
"html_url": "https://github.com/huggingface/datasets/pull/5976",
"diff_url": "https://github.com/huggingface/datasets/pull/5976.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5976.patch",
"merged_at": null
} | I've been using Dataset.map() with `num_proc=os.cpu_count()` to leverage multicore processing for my datasets, but from time to time I get stuck processes waiting forever. Apparently, when one of the subprocesses is abruptly killed (OOM killer, segfault, SIGKILL, etc), the main process keeps waiting for the async task sent to that child process to finish.
It seems to be easy to reproduce the issue with the following script:
```
import os
from datasets import Dataset, Features, Value
def do_stuck(item):
os.kill(os.getpid(), 9)
data = {
"col1": list(range(5)),
"col2": list(range(5)),
}
ds = Dataset.from_dict(
data,
features=Features({
"col1": Value("int64"),
"col2": Value("int64"),
}),
)
print(ds.map(do_stuck, num_proc=4))
```
This is an old behavior in Python, which apparently was fixed a few years ago in `concurrent.futures.ProcessPoolExecutor` ([ref](https://bugs.python.org/issue9205)), but not in `multiprocessing.pool.Pool` / `multiprocess.pool.Pool`, which is used by `Dataset.map` ([ref](https://bugs.python.org/issue22393)).
This PR is an idea to try to detect when a child process gets killed, and raises a `RuntimeError` warning the dataset.map() caller.
EDIT: Related proposal for future improvement: https://github.com/huggingface/datasets/discussions/5977 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5976/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5976/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5975 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5975/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5975/comments | https://api.github.com/repos/huggingface/datasets/issues/5975/events | https://github.com/huggingface/datasets/issues/5975 | 1,768,271,343 | I_kwDODunzps5pZa3v | 5,975 | Streaming Dataset behind Proxy - FileNotFoundError | {
"login": "Veluchs",
"id": 135350576,
"node_id": "U_kgDOCBFJMA",
"avatar_url": "https://avatars.githubusercontent.com/u/135350576?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Veluchs",
"html_url": "https://github.com/Veluchs",
"followers_url": "https://api.github.com/users/Veluchs/followers",
"following_url": "https://api.github.com/users/Veluchs/following{/other_user}",
"gists_url": "https://api.github.com/users/Veluchs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Veluchs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Veluchs/subscriptions",
"organizations_url": "https://api.github.com/users/Veluchs/orgs",
"repos_url": "https://api.github.com/users/Veluchs/repos",
"events_url": "https://api.github.com/users/Veluchs/events{/privacy}",
"received_events_url": "https://api.github.com/users/Veluchs/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Duplicate of #",
"Hi ! can you try to set the upper case environment variables `HTTP_PROXY` and `HTTPS_PROXY` ?\r\n\r\nWe use `aiohttp` for streaming and it uses case sensitive environment variables",
"Hi, thanks for the quick reply.\r\n\r\nI set the uppercase env variables with\r\n\r\n`\r\nos.environ['HTTP_PROXY'] = \"http://example.com:xxxx\" \r\nos.environ['HTTPS_PROXY'] = \"http://example.com:xxxx\" \r\n`\r\n\r\nHowever, I still get the same error.\r\n\r\nOne thing that could be helpfull: When downloading a dataset without streaming i get the following message:\r\n_HF google storage unreachable. Downloading and preparing it from source_.\r\nThe download does however work as expected.\r\n",
"Are you able to use `aiohttp` to get the file at `https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json` using your proxy ?",
"It only works when passing trust_env=True when creating the ClientSession, as well as setting ssl=False.\r\n\r\nWorking Example:\r\n\r\n```\r\nimport os\r\n\r\nos.environ['HTTP_PROXY'] = \"xyz\"\r\nos.environ['HTTPS_PROXY'] = \"xyz\"\r\n\r\nimport asyncio\r\nimport aiohttp\r\n\r\nasync def download_pep(url):\r\n async with aiohttp.ClientSession(trust_env=True) as session:\r\n print(\"1\")\r\n async with session.get(url, ssl=False) as resp:\r\n print(\"2\")\r\n content = await resp.text()\r\n print(content)\r\n return content\r\n\r\nasyncio.run(download_pep(\"https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json\"))\r\n```\r\n\r\n\r\n\r\nSSL Verification has been a problem with other packages as well. Usually I circumvent the problem by setting\r\n```\r\nimport ssl\r\nssl._create_default_https_context = ssl._create_unverified_context\r\n```\r\n(probably not the best idea for security), although here aiohttp does not seem to use this default context.",
"We do pass `trust_env` as well. Could you share the full stack trace you get when streaming using `datasets` ? That could help locate where we might have forgotten to pass `trust_env`",
"Is there a way to disable ssl verification when streaming a dataset. I suspect this might be the isssue with my proxy.\r\n\r\n\r\nHere you go:\r\n\r\n```\r\nFileNotFoundError Traceback (most recent call last)\r\nCell In[8], line 3\r\n 1 from datasets import load_dataset\r\n----> 3 ds = load_dataset(\"facebook/voxpopuli\", name=\"de\", streaming=True)\r\n 5 sample = next(iter(ds))\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/load.py:1790](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/load.py:1790), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1788 # Return iterable dataset in case of streaming\r\n 1789 if streaming:\r\n-> 1790 return builder_instance.as_streaming_dataset(split=split)\r\n 1792 # Some datasets are already processed on the HF google storage\r\n 1793 # Don't try downloading from Google storage for the packaged datasets as text, json, csv or pandas\r\n 1794 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/builder.py:1281](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/builder.py:1281), in DatasetBuilder.as_streaming_dataset(self, split, base_path)\r\n 1274 dl_manager = StreamingDownloadManager(\r\n 1275 base_path=base_path or self.base_path,\r\n 1276 download_config=DownloadConfig(use_auth_token=self.use_auth_token, storage_options=self.storage_options),\r\n 1277 dataset_name=self.name,\r\n 1278 data_dir=self.config.data_dir,\r\n 1279 )\r\n 1280 self._check_manual_download(dl_manager)\r\n-> 1281 splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)}\r\n 1282 # By default, return all splits\r\n 1283 if split is None:\r\n\r\nFile [~/.cache/huggingface/modules/datasets_modules/datasets/facebook--voxpopuli/b5ff837284f0778eefe0f642734e142d8c3f574eba8c9c8a4b13602297f73604/voxpopuli.py:120](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.cache/huggingface/modules/datasets_modules/datasets/facebook--voxpopuli/b5ff837284f0778eefe0f642734e142d8c3f574eba8c9c8a4b13602297f73604/voxpopuli.py:120), in Voxpopuli._split_generators(self, dl_manager)\r\n 118 def _split_generators(self, dl_manager):\r\n 119 n_shards_path = dl_manager.download_and_extract(_N_SHARDS_FILE)\r\n--> 120 with open(n_shards_path) as f:\r\n 121 n_shards = json.load(f)\r\n 123 if self.config.name == \"en_accented\":\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/streaming.py:71](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/streaming.py:71), in extend_module_for_streaming..wrap_auth..wrapper(*args, **kwargs)\r\n 69 @wraps(function)\r\n 70 def wrapper(*args, **kwargs):\r\n---> 71 return function(*args, use_auth_token=use_auth_token, **kwargs)\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:517](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:517), in xopen(file, mode, use_auth_token, *args, **kwargs)\r\n 515 except FileNotFoundError:\r\n 516 if file.startswith(config.HF_ENDPOINT):\r\n--> 517 raise FileNotFoundError(\r\n 518 file + \"\\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`.\"\r\n 519 ) from None\r\n 520 else:\r\n 521 raise\r\n\r\nFileNotFoundError: https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json\r\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```",
"> Is there a way to disable ssl verification when streaming a dataset.\r\n\r\nI don't think so.\r\n\r\nWe use `fsspec` HTTPFileSystem implementation that is based on `aiohttp`. If you register a subclass of HTTPFileSystem that has SSL disabled by default it could work, but I wouldn't recommended it because it can raise security issues."
] | 2023-06-21T19:10:02 | 2023-06-26T14:21:32 | null | NONE | null | null | null | ### Describe the bug
When trying to stream a dataset i get the following error after a few minutes of waiting.
```
FileNotFoundError: https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json
If the repo is private or gated, make sure to log in with `huggingface-cli login`.
```
I have already set the proxy environment variables. Downloading a Dataset without streaming works as expected.
Still i suspect that this is connected to being behind a proxy.
Is there a way to set the proxy for streaming datasets? Possibly a keyword argument that gets passed to ffspec?
### Steps to reproduce the bug
This is the code i use.
```
import os
os.environ['http_proxy'] = "http://example.com:xxxx"
os.environ['https_proxy'] = "http://example.com:xxxx"
from datasets import load_dataset
ds = load_dataset("facebook/voxpopuli", name="de", streaming=True)
```
### Expected behavior
I would expect the streaming functionality to use the set proxy settings.
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-5.15.0-73-generic-x86_64-with-glibc2.35
- Python version: 3.10.11
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5975/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5975/timeline | null | null | false |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 41