statement
stringlengths 18
9.01k
| domain
stringclasses 5
values |
---|---|
Let $ n(\ge2) $ be a positive integer. Find the minimum $ m $, so that there exists $x_{ij}(1\le i ,j\le n)$ satisfying:
(1)For every $1\le i ,j\le n, x_{ij}=max\{x_{i1},x_{i2},...,x_{ij}\} $ or $ x_{ij}=max\{x_{1j},x_{2j},...,x_{ij}\}.$
(2)For every $1\le i \le n$, there are at most $m$ indices $k$ with $x_{ik}=max\{x_{i1},x_{i2},...,x_{ik}\}.$
(3)For every $1\le j \le n$, there are at most $m$ indices $k$ with $x_{kj}=max\{x_{1j},x_{2j},...,x_{kj}\}.$ | Algebra |
In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$. | Geometry |
A tournament is a directed graph for which every (unordered) pair of vertices has a single directed edge from one vertex to the other. Let us define a proper directed-edge-coloring to be an assignment of a color to every (directed) edge, so that for every pair of directed edges $\overrightarrow{uv}$ and $\overrightarrow{vw}$, those two edges are in different colors. Note that it is permissible for $\overrightarrow{uv}$ and $\overrightarrow{uw}$ to be the same color. The directed-edge-chromatic-number of a tournament is defined to be the minimum total number of colors that can be used in order to create a proper directed-edge-coloring. For each $n$, determine the minimum directed-edge-chromatic-number over all tournaments on $n$ vertices. | Combinatorics |
Does there exist positive reals $a_0, a_1,\ldots ,a_{19}$, such that the polynomial $P(x)=x^{20}+a_{19}x^{19}+\ldots +a_1x+a_0$ does not have any real roots, yet all polynomials formed from swapping any two coefficients $a_i,a_j$ has at least one real root? | Algebra |
Let $p$ be a prime. We arrange the numbers in ${\{1,2,\ldots ,p^2} \}$ as a $p \times p$ matrix $A = ( a_{ij} )$. Next we can select any row or column and add $1$ to every number in it, or subtract $1$ from every number in it. We call the arrangement [i]good[/i] if we can change every number of the matrix to $0$ in a finite number of such moves. How many good arrangements are there? | Algebra |
A physicist encounters $2015$ atoms called usamons. Each usamon either has one electron or zero electrons, and the physicist can't tell the difference. The physicist's only tool is a diode. The physicist may connect the diode from any usamon $A$ to any other usamon $B$. (This connection is directed.) When she does so, if usamon $A$ has an electron and usamon $B$ does not, then the electron jumps from $A$ to $B$. In any other case, nothing happens. In addition, the physicist cannot tell whether an electron jumps during any given step. The physicist's goal is to isolate two usamons that she is sure are currently in the same state. Is there any series of diode usage that makes this possible? | Combinatorics |
There are $2022$ equally spaced points on a circular track $\gamma$ of circumference $2022$. The points are labeled $A_1, A_2, \ldots, A_{2022}$ in some order, each label used once. Initially, Bunbun the Bunny begins at $A_1$. She hops along $\gamma$ from $A_1$ to $A_2$, then from $A_2$ to $A_3$, until she reaches $A_{2022}$, after which she hops back to $A_1$. When hopping from $P$ to $Q$, she always hops along the shorter of the two arcs $\widehat{PQ}$ of $\gamma$; if $\overline{PQ}$ is a diameter of $\gamma$, she moves along either semicircle.
Determine the maximal possible sum of the lengths of the $2022$ arcs which Bunbun traveled, over all possible labellings of the $2022$ points.
[i]Kevin Cong[/i] | Geometry |
A table tennis club hosts a series of doubles matches following several rules:
(i) each player belongs to two pairs at most;
(ii) every two distinct pairs play one game against each other at most;
(iii) players in the same pair do not play against each other when they pair with others respectively.
Every player plays a certain number of games in this series. All these distinct numbers make up a set called the “[i]set of games[/i]”. Consider a set $A=\{a_1,a_2,\ldots ,a_k\}$ of positive integers such that every element in $A$ is divisible by $6$. Determine the minimum number of players needed to participate in this series so that a schedule for which the corresponding [i]set of games [/i] is equal to set $A$ exists. | Combinatorics |
For a pair $ A \equal{} (x_1, y_1)$ and $ B \equal{} (x_2, y_2)$ of points on the coordinate plane, let $ d(A,B) \equal{} |x_1 \minus{} x_2| \plus{} |y_1 \minus{} y_2|$. We call a pair $ (A,B)$ of (unordered) points [i]harmonic[/i] if $ 1 < d(A,B) \leq 2$. Determine the maximum number of harmonic pairs among 100 points in the plane. | Geometry |
Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array? | Geometry |
Given $30$ students such that each student has at most $5$ friends and for every $5$ students there is a pair of students that are not friends, determine the maximum $k$ such that for all such possible configurations, there exists $k$ students who are all not friends. | Combinatorics |
Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and
\[\gcd(P(0), P(1), P(2), \ldots ) = 1.\]
Show there are infinitely many $n$ such that
\[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\] | Algebra |
Let $P$ be a regular $n$-gon $A_1A_2\ldots A_n$. Find all positive integers $n$ such that for each permutation $\sigma (1),\sigma (2),\ldots ,\sigma (n)$ there exists $1\le i,j,k\le n$ such that the triangles $A_{i}A_{j}A_{k}$ and $A_{\sigma (i)}A_{\sigma (j)}A_{\sigma (k)}$ are both acute, both right or both obtuse. | Geometry |
Find the smallest positive real constant $a$, such that for any three points $A,B,C$ on the unit circle, there exists an equilateral triangle $PQR$ with side length $a$ such that all of $A,B,C$ lie on the interior or boundary of $\triangle PQR$. | Geometry |
Given positive integers $n$ and $k$, $n > k^2 >4.$ In a $n \times n$ grid, a $k$[i]-group[/i] is a set of $k$ unit squares lying in different rows and different columns.
Determine the maximal possible $N$, such that one can choose $N$ unit squares in the grid and color them, with the following condition holds: in any $k$[i]-group[/i] from the colored $N$ unit squares, there are two squares with the same color, and there are also two squares with different colors. | Combinatorics |
Points $A$, $V_1$, $V_2$, $B$, $U_2$, $U_1$ lie fixed on a circle $\Gamma$, in that order, and such that $BU_2 > AU_1 > BV_2 > AV_1$.
Let $X$ be a variable point on the arc $V_1 V_2$ of $\Gamma$ not containing $A$ or $B$. Line $XA$ meets line $U_1 V_1$ at $C$, while line $XB$ meets line $U_2 V_2$ at $D$. Let $O$ and $\rho$ denote the circumcenter and circumradius of $\triangle XCD$, respectively.
Prove there exists a fixed point $K$ and a real number $c$, independent of $X$, for which $OK^2 - \rho^2 = c$ always holds regardless of the choice of $X$. | Geometry |
Find a real number $t$ such that for any set of 120 points $P_1, \ldots P_{120}$ on the boundary of a unit square, there exists a point $Q$ on this boundary with $|P_1Q| + |P_2Q| + \cdots + |P_{120}Q| = t$. | Geometry |
Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB \equal{} \angle CQB \equal{} 45^\circ$, $ \angle ABP \equal{} \angle QBC \equal{} 75^\circ$, $ \angle RAC \equal{} 105^\circ$, and $ RQ^2 \equal{} 6CM^2$, compute $ AC^2/AR^2$.
[i]Zuming Feng.[/i] | Geometry |
At a university dinner, there are 2017 mathematicians who each order two distinct entrées, with no two mathematicians ordering the same pair of entrées. The cost of each entrée is equal to the number of mathematicians who ordered it, and the university pays for each mathematician's less expensive entrée (ties broken arbitrarily). Over all possible sets of orders, what is the maximum total amount the university could have paid? | Combinatorics |
Let $f:X\rightarrow X$, where $X=\{1,2,\ldots ,100\}$, be a function satisfying:
1) $f(x)\neq x$ for all $x=1,2,\ldots,100$;
2) for any subset $A$ of $X$ such that $|A|=40$, we have $A\cap f(A)\neq\emptyset$.
Find the minimum $k$ such that for any such function $f$, there exist a subset $B$ of $X$, where $|B|=k$, such that $B\cup f(B)=X$. | Combinatorics |
Consider pairs $(f,g)$ of functions from the set of nonnegative integers to itself such that
[list]
[*]$f(0) \geq f(1) \geq f(2) \geq \dots \geq f(300) \geq 0$
[*]$f(0)+f(1)+f(2)+\dots+f(300) \leq 300$
[*]for any 20 nonnegative integers $n_1, n_2, \dots, n_{20}$, not necessarily distinct, we have $$g(n_1+n_2+\dots+n_{20}) \leq f(n_1)+f(n_2)+\dots+f(n_{20}).$$
[/list]
Determine the maximum possible value of $g(0)+g(1)+\dots+g(6000)$ over all such pairs of functions.
[i]Sean Li[/i] | Algebra |
Find all nonnegative integer solutions $(x,y,z,w)$ of the equation\[2^x\cdot3^y-5^z\cdot7^w=1.\] | Number Theory |
Find the largest real number $\lambda$ with the following property: for any positive real numbers $p,q,r,s$ there exists a complex number $z=a+bi$($a,b\in \mathbb{R})$ such that $$ |b|\ge \lambda |a| \quad \text{and} \quad (pz^3+2qz^2+2rz+s) \cdot (qz^3+2pz^2+2sz+r) =0.$$ | Algebra |
Find all functions $f\colon \mathbb{Z}^2 \to [0, 1]$ such that for any integers $x$ and $y$,
\[f(x, y) = \frac{f(x - 1, y) + f(x, y - 1)}{2}.\] | Combinatorics |
In a right angled-triangle $ABC$, $\angle{ACB} = 90^o$. Its incircle $O$ meets $BC$, $AC$, $AB$ at $D$,$E$,$F$ respectively. $AD$ cuts $O$ at $P$. If $\angle{BPC} = 90^o$, prove $AE + AP = PD$. | Geometry |
Let $S$ be a set, $|S|=35$. A set $F$ of mappings from $S$ to itself is called to be satisfying property $P(k)$, if for any $x,y\in S$, there exist $f_1, \cdots, f_k \in F$ (not necessarily different), such that $f_k(f_{k-1}(\cdots (f_1(x))))=f_k(f_{k-1}(\cdots (f_1(y))))$.
Find the least positive integer $m$, such that if $F$ satisfies property $P(2019)$, then it also satisfies property $P(m)$. | Combinatorics |
Let $a_i,b_i,i=1,\cdots,n$ are nonnegitive numbers,and $n\ge 4$,such that $a_1+a_2+\cdots+a_n=b_1+b_2+\cdots+b_n>0$.
Find the maximum of $\frac{\sum_{i=1}^n a_i(a_i+b_i)}{\sum_{i=1}^n b_i(a_i+b_i)}$ | Algebra |
Find all positive integers $a,n\ge1$ such that for all primes $p$ dividing $a^n-1$, there exists a positive integer $m<n$ such that $p\mid a^m-1$. | Number Theory |
Consider a rectangle $R$ partitioned into $2016$ smaller rectangles such that the sides of each smaller rectangle is parallel to one of the sides of the original rectangle. Call the corners of each rectangle a vertex. For any segment joining two vertices, call it basic if no other vertex lie on it. (The segments must be part of the partitioning.) Find the maximum/minimum possible number of basic segments over all possible partitions of $R$. | Geometry |
Find in explicit form all ordered pairs of positive integers $(m, n)$ such that $mn-1$ divides $m^2 + n^2$. | Number Theory |
Determine all positive integers $n$, $n\ge2$, such that the following statement is true:
If $(a_1,a_2,...,a_n)$ is a sequence of positive integers with $a_1+a_2+\cdots+a_n=2n-1$, then there is block of (at least two) consecutive terms in the sequence with their (arithmetic) mean being an integer. | Combinatorics |
Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo $n$ (hence $\mathbb{Z}/n\mathbb{Z}$ has $n$ elements). Find all positive integers $n$ for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions
\[g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x\]
are all bijections on $\mathbb{Z}/n\mathbb{Z}$.
[i]Ashwin Sah and Yang Liu[/i] | Algebra |
Let $C=\{ z \in \mathbb{C} : |z|=1 \}$ be the unit circle on the complex plane. Let $z_1, z_2, \ldots, z_{240} \in C$ (not necessarily different) be $240$ complex numbers, satisfying the following two conditions:
(1) For any open arc $\Gamma$ of length $\pi$ on $C$, there are at most $200$ of $j ~(1 \le j \le 240)$ such that $z_j \in \Gamma$.
(2) For any open arc $\gamma$ of length $\pi/3$ on $C$, there are at most $120$ of $j ~(1 \le j \le 240)$ such that $z_j \in \gamma$.
Find the maximum of $|z_1+z_2+\ldots+z_{240}|$. | Algebra |
Find $f: \mathbb{Z}_+ \rightarrow \mathbb{Z}_+$, such that for any $x,y \in \mathbb{Z}_+$, $$f(f(x)+y)\mid x+f(y).$$ | Algebra |
Let $n$ be a positive integer. Find, with proof, the least positive integer $d_{n}$ which cannot be expressed in the form \[\sum_{i=1}^{n}(-1)^{a_{i}}2^{b_{i}},\]
where $a_{i}$ and $b_{i}$ are nonnegative integers for each $i.$ | Number Theory |
Determine if there exists a (three-variable) polynomial $P(x,y,z)$ with integer coefficients satisfying the following property: a positive integer $n$ is [i]not[/i] a perfect square if and only if there is a triple $(x,y,z)$ of positive integers such that $P(x,y,z) = n$. | Algebra |
Determine whether or not there exist positive integers $ a$ and $ b$ such that $ a$ does not divide $ b^n \minus{} n$ for all positive integers $ n$. | Number Theory |
A [i]snake of length $k$[/i] is an animal which occupies an ordered $k$-tuple $(s_1, \dots, s_k)$ of cells in a $n \times n$ grid of square unit cells. These cells must be pairwise distinct, and $s_i$ and $s_{i+1}$ must share a side for $i = 1, \dots, k-1$. If the snake is currently occupying $(s_1, \dots, s_k)$ and $s$ is an unoccupied cell sharing a side with $s_1$, the snake can [i]move[/i] to occupy $(s, s_1, \dots, s_{k-1})$ instead. The snake has [i]turned around[/i] if it occupied $(s_1, s_2, \dots, s_k)$ at the beginning, but after a finite number of moves occupies $(s_k, s_{k-1}, \dots, s_1)$ instead.
Determine whether there exists an integer $n > 1$ such that: one can place some snake of length $0.9n^2$ in an $n \times n$ grid which can turn around.
[i]Nikolai Beluhov[/i] | Combinatorics |
Let $ABC$ be an acute scalene triangle and let $P$ be a point in its interior. Let $A_1$, $B_1$, $C_1$ be projections of $P$ onto triangle sides $BC$, $CA$, $AB$, respectively. Find the locus of points $P$ such that $AA_1$, $BB_1$, $CC_1$ are concurrent and $\angle PAB + \angle PBC + \angle PCA = 90^{\circ}$. | Geometry |
Find all positive integers $a$ such that there exists a set $X$ of $6$ integers satisfying the following conditions: for every $k=1,2,\ldots ,36$ there exist $x,y\in X$ such that $ax+y-k$ is divisible by $37$. | Number Theory |
Let $a_1,a_2,\cdots,a_{41}\in\mathbb{R},$ such that $a_{41}=a_1, \sum_{i=1}^{40}a_i=0,$ and for any $i=1,2,\cdots,40, |a_i-a_{i+1}|\leq 1.$ Determine the greatest possible value of
$(1)a_{10}+a_{20}+a_{30}+a_{40};$
$(2)a_{10}\cdot a_{20}+a_{30}\cdot a_{40}.$ | Algebra |
Let $n=p_1^{a_1}p_2^{a_2}\cdots p_t^{a_t}$ be the prime factorisation of $n$. Define $\omega(n)=t$ and $\Omega(n)=a_1+a_2+\ldots+a_t$. Prove or disprove:
For any fixed positive integer $k$ and positive reals $\alpha,\beta$, there exists a positive integer $n>1$ such that
i) $\frac{\omega(n+k)}{\omega(n)}>\alpha$
ii) $\frac{\Omega(n+k)}{\Omega(n)}<\beta$. | Number Theory |
Call a sequence of positive integers $\{a_n\}$ good if for any distinct positive integers $m,n$, one has
$$\gcd(m,n) \mid a_m^2 + a_n^2 \text{ and } \gcd(a_m,a_n) \mid m^2 + n^2.$$
Call a positive integer $a$ to be $k$-good if there exists a good sequence such that $a_k = a$. Does there exists a $k$ such that there are exactly $2019$ $k$-good positive integers? | Number Theory |
For any $h = 2^{r}$ ($r$ is a non-negative integer), find all $k \in \mathbb{N}$ which satisfy the following condition: There exists an odd natural number $m > 1$ and $n \in \mathbb{N}$, such that $k \mid m^{h} - 1, m \mid n^{\frac{m^{h}-1}{k}} + 1$. | Number Theory |
Two incongruent triangles $ABC$ and $XYZ$ are called a pair of [i]pals[/i] if they satisfy the following conditions:
(a) the two triangles have the same area;
(b) let $M$ and $W$ be the respective midpoints of sides $BC$ and $YZ$. The two sets of lengths $\{AB, AM, AC\}$ and $\{XY, XW, XZ\}$ are identical $3$-element sets of pairwise relatively prime integers.
Determine if there are infinitely many pairs of triangles that are pals of each other. | Geometry |
Find the greatest constant $\lambda$ such that for any doubly stochastic matrix of order 100, we can pick $150$ entries such that if the other $9850$ entries were replaced by $0$, the sum of entries in each row and each column is at least $\lambda$.
Note: A doubly stochastic matrix of order $n$ is a $n\times n$ matrix, all entries are nonnegative reals, and the sum of entries in each row and column is equal to 1. | Algebra |
Find out the maximum value of the numbers of edges of a solid regular octahedron that we can see from a point out of the regular octahedron.(We define we can see an edge $AB$ of the regular octahedron from point $P$ outside if and only if the intersection of non degenerate triangle $PAB$ and the solid regular octahedron is exactly edge $AB$. | Geometry |
Choose positive integers $b_1, b_2, \dotsc$ satisfying
\[1=\frac{b_1}{1^2} > \frac{b_2}{2^2} > \frac{b_3}{3^2} > \frac{b_4}{4^2} > \dotsb\]
and let $r$ denote the largest real number satisfying $\tfrac{b_n}{n^2} \geq r$ for all positive integers $n$. What are the possible values of $r$ across all possible choices of the sequence $(b_n)$?
[i]Carl Schildkraut and Milan Haiman[/i] | Algebra |
Let triangle$ABC(AB<AC)$ with incenter $I$ circumscribed in $\odot O$. Let $M,N$ be midpoint of arc $\widehat{BAC}$ and $\widehat{BC}$, respectively. $D$ lies on $\odot O$ so that $AD//BC$, and $E$ is tangency point of $A$-excircle of $\bigtriangleup ABC$. Point $F$ is in $\bigtriangleup ABC$ so that $FI//BC$ and $\angle BAF=\angle EAC$. Extend $NF$ to meet $\odot O$ at $G$, and extend $AG$ to meet line $IF$ at L. Let line $AF$ and $DI$ meet at $K$. Proof that $ML\bot NK$. | Geometry |
Let $\{ z_n \}_{n \ge 1}$ be a sequence of complex numbers, whose odd terms are real, even terms are purely imaginary, and for every positive integer $k$, $|z_k z_{k+1}|=2^k$. Denote $f_n=|z_1+z_2+\cdots+z_n|,$ for $n=1,2,\cdots$
(1) Find the minimum of $f_{2020}$.
(2) Find the minimum of $f_{2020} \cdot f_{2021}$. | Algebra |
Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ that satisfy the inequality
\[ f(y) - \left(\frac{z-y}{z-x} f(x) + \frac{y-x}{z-x}f(z)\right) \leq f\left(\frac{x+z}{2}\right) - \frac{f(x)+f(z)}{2} \]
for all real numbers $x < y < z$. | Algebra |
Find all integers $n \ge 2$ for which there exists an integer $m$ and a polynomial $P(x)$ with integer coefficients satisfying the following three conditions: [list] [*]$m > 1$ and $\gcd(m,n) = 1$; [*]the numbers $P(0)$, $P^2(0)$, $\ldots$, $P^{m-1}(0)$ are not divisible by $n$; and [*]$P^m(0)$ is divisible by $n$. [/list] Here $P^k$ means $P$ applied $k$ times, so $P^1(0) = P(0)$, $P^2(0) = P(P(0))$, etc.
[i]Carl Schildkraut[/i] | Number Theory |
Find all positive integer pairs $(a,n)$ such that $\frac{(a+1)^n-a^n}{n}$ is an integer. | Algebra |
Let $X$ be a set of $100$ elements. Find the smallest possible $n$ satisfying the following condition: Given a sequence of $n$ subsets of $X$, $A_1,A_2,\ldots,A_n$, there exists $1 \leq i < j < k \leq n$ such that
$$A_i \subseteq A_j \subseteq A_k \text{ or } A_i \supseteq A_j \supseteq A_k.$$ | Combinatorics |
An integer $n>1$ is given . Find the smallest positive number $m$ satisfying the following conditions: for any set $\{a,b\}$ $\subset \{1,2,\cdots,2n-1\}$ ,there are non-negative integers $ x, y$ ( not all zero) such that $2n|ax+by$ and $x+y\leq m.$ | Number Theory |
Let $a_1,a_2,\cdots,a_n$ be a permutation of $1,2,\cdots,n$. Among all possible permutations, find the minimum of $$\sum_{i=1}^n \min \{ a_i,2i-1 \}.$$ | Algebra |
Find all positive integers $a,b,c$ and prime $p$ satisfying that
\[ 2^a p^b=(p+2)^c+1.\] | Number Theory |
Find all pairs of positive integers $ (m,n)$ such that $ mn \minus{} 1$ divides $ (n^2 \minus{} n \plus{} 1)^2$.
[i]Aaron Pixton.[/i] | Number Theory |
Given distinct positive integer $ a_1,a_2,…,a_{2020} $. For $ n \ge 2021 $, $a_n$ is the smallest number different from $a_1,a_2,…,a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Proof that every number large enough appears in the sequence. | Number Theory |
Find the numbers of ordered array $(x_1,...,x_{100})$ that satisfies the following conditions:
($i$)$x_1,...,x_{100}\in\{1,2,..,2017\}$;
($ii$)$2017|x_1+...+x_{100}$;
($iii$)$2017|x_1^2+...+x_{100}^2$. | Number Theory |
Let $n \ge 4$ be an integer. Find all functions $W : \{1, \dots, n\}^2 \to \mathbb R$ such that for every partition $[n] = A \cup B \cup C$ into disjoint sets, \[ \sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a,b) W(b,c) = |A| |B| |C|. \] | Algebra |
Determine all $ f:R\rightarrow R $ such that
$$ f(xf(y)+y^3)=yf(x)+f(y)^3 $$ | Algebra |
Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$. | Geometry |
There are $10$ birds on the ground. For any $5$ of them, there are at least $4$ birds on a circle. Determine the least possible number of birds on the circle with the most birds. | Combinatorics |
Let $D_n$ be the set of divisors of $n$. Find all natural $n$ such that it is possible to split $D_n$ into two disjoint sets $A$ and $G$, both containing at least three elements each, such that the elements in $A$ form an arithmetic progression while the elements in $G$ form a geometric progression. | Number Theory |
$x$, $y$ and $z$ are positive reals such that $x+y+z=xyz$. Find the minimum value of:
\[ x^7(yz-1)+y^7(zx-1)+z^7(xy-1) \] | Algebra |
Determine whether or not there exist two different sets $A,B$, each consisting of at most $2011^2$ positive integers, such that every $x$ with $0 < x < 1$ satisfies the following inequality:
\[\left| \sum_{a \in A} x^a - \sum_{b \in B} x^b \right| < (1-x)^{2011}.\] | Algebra |
Determine whether $\sqrt{1001^2+1}+\sqrt{1002^2+1}+ \cdots + \sqrt{2000^2+1}$ be a rational number or not? | Algebra |
For each positive integer $ n$, let $ c(n)$ be the largest real number such that
\[ c(n) \le \left| \frac {f(a) \minus{} f(b)}{a \minus{} b}\right|\]
for all triples $ (f, a, b)$ such that
--$ f$ is a polynomial of degree $ n$ taking integers to integers, and
--$ a, b$ are integers with $ f(a) \neq f(b)$.
Find $ c(n)$.
[i]Shaunak Kishore.[/i] | Algebra |
An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.
[quote]For example, 4 can be partitioned in five distinct ways:
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1[/quote]
The number of partitions of n is given by the partition function $p\left ( n \right )$. So $p\left ( 4 \right ) = 5$ .
Determine all the positive integers so that $p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right )$. | Number Theory |
Given is an $n\times n$ board, with an integer written in each grid. For each move, I can choose any grid, and add $1$ to all $2n-1$ numbers in its row and column. Find the largest $N(n)$, such that for any initial choice of integers, I can make a finite number of moves so that there are at least $N(n)$ even numbers on the board. | Combinatorics |
$101$ people, sitting at a round table in any order, had $1,2,... , 101$ cards, respectively.
A transfer is someone give one card to one of the two people adjacent to him.
Find the smallest positive integer $k$ such that there always can through no more than $ k $ times transfer, each person hold cards of the same number, regardless of the sitting order. | Combinatorics |
In a sports league, each team uses a set of at most $t$ signature colors. A set $S$ of teams is[i] color-identifiable[/i] if one can assign each team in $S$ one of their signature colors, such that no team in $S$ is assigned any signature color of a different team in $S$.
For all positive integers $n$ and $t$, determine the maximum integer $g(n, t)$ such that: In any sports league with exactly $n$ distinct colors present over all teams, one can always find a color-identifiable set of size at least $g(n, t)$. | Combinatorics |
Let $G$ be a simple graph with 100 vertices such that for each vertice $u$, there exists a vertice $v \in N \left ( u \right )$ and $ N \left ( u \right ) \cap N \left ( v \right ) = \o $. Try to find the maximal possible number of edges in $G$. The $ N \left ( . \right )$ refers to the neighborhood. | Combinatorics |
A social club has $2k+1$ members, each of whom is fluent in the same $k$ languages. Any pair of members always talk to each other in only one language. Suppose that there were no three members such that they use only one language among them. Let $A$ be the number of three-member subsets such that the three distinct pairs among them use different languages. Find the maximum possible value of $A$. | Combinatorics |
Find all positive integer $ m$ if there exists prime number $ p$ such that $ n^m\minus{}m$ can not be divided by $ p$ for any integer $ n$. | Number Theory |
Determine the greatest real number $ C $, such that for every positive integer $ n\ge 2 $, there exists $ x_1, x_2,..., x_n \in [-1,1]$, so that
$$\prod_{1\le i<j\le n}(x_i-x_j) \ge C^{\frac{n(n-1)}{2}}$$. | Algebra |
Find all functions $f: \mathbb{Z}^+\rightarrow \mathbb{Z}^+$ such that for all positive integers $m,n$ with $m\ge n$, $$f(m\varphi(n^3)) = f(m)\cdot \varphi(n^3).$$
Here $\varphi(n)$ denotes the number of positive integers coprime to $n$ and not exceeding $n$. | Algebra |
Find all the pairs of prime numbers $ (p,q)$ such that $ pq|5^p\plus{}5^q.$ | Number Theory |
Suppose $a_i, b_i, c_i, i=1,2,\cdots ,n$, are $3n$ real numbers in the interval $\left [ 0,1 \right ].$ Define $$S=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k<1 \right \}, \; \; T=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k>2 \right \}.$$ Now we know that $\left | S \right |\ge 2018,\, \left | T \right |\ge 2018.$ Try to find the minimal possible value of $n$. | Algebra |
For a given positive integer $n$ and prime number $p$, find the minimum value of positive integer $m$ that satisfies the following property: for any polynomial $$f(x)=(x+a_1)(x+a_2)\ldots(x+a_n)$$ ($a_1,a_2,\ldots,a_n$ are positive integers), and for any non-negative integer $k$, there exists a non-negative integer $k'$ such that $$v_p(f(k))<v_p(f(k'))\leq v_p(f(k))+m.$$ Note: for non-zero integer $N$,$v_p(N)$ is the largest non-zero integer $t$ that satisfies $p^t\mid N$. | Algebra |
Let $\triangle ABC$ be an equilateral triangle of side length 1. Let $D,E,F$ be points on $BC,AC,AB$ respectively, such that $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}$. Let $X,Y,Z$ be on lines $BC,CA,AB$ respectively, such that $XY\perp DE, YZ\perp EF, ZX\perp FD$. Find all possible values of $\frac{1}{[DEF]} + \frac{1}{[XYZ]}$. | Geometry |
Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$
Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard.
Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move. | Number Theory |
Given integer $n\geq 2$. Find the minimum value of $\lambda {}$, satisfy that for any real numbers $a_1$, $a_2$, $\cdots$, ${a_n}$ and ${b}$,
$$\lambda\sum\limits_{i=1}^n\sqrt{|a_i-b|}+\sqrt{n\left|\sum\limits_{i=1}^na_i\right|}\geqslant\sum\limits_{i=1}^n\sqrt{|a_i|}.$$ | Algebra |
Let $k$ be a positive real. $A$ and $B$ play the following game: at the start, there are $80$ zeroes arrange around a circle. Each turn, $A$ increases some of these $80$ numbers, such that the total sum added is $1$. Next, $B$ selects ten consecutive numbers with the largest sum, and reduces them all to $0$. $A$ then wins the game if he/she can ensure that at least one of the number is $\geq k$ at some finite point of time.
Determine all $k$ such that $A$ can always win the game. | Combinatorics |
$ S$ is a non-empty subset of the set $ \{ 1, 2, \cdots, 108 \}$, satisfying:
(1) For any two numbers $ a,b \in S$ ( may not distinct), there exists $ c \in S$, such that $ \gcd(a,c)\equal{}\gcd(b,c)\equal{}1$.
(2) For any two numbers $ a,b \in S$ ( may not distinct), there exists $ c' \in S$, $ c' \neq a$, $ c' \neq b$, such that $ \gcd(a, c') > 1$, $ \gcd(b,c') >1$.
Find the largest possible value of $ |S|$. | Number Theory |
Let $m>1$ be an integer. Find the smallest positive integer $n$, such that for any integers $a_1,a_2,\ldots ,a_n; b_1,b_2,\ldots ,b_n$ there exists integers $x_1,x_2,\ldots ,x_n$ satisfying the following two conditions:
i) There exists $i\in \{1,2,\ldots ,n\}$ such that $x_i$ and $m$ are coprime
ii) $\sum^n_{i=1} a_ix_i \equiv \sum^n_{i=1} b_ix_i \equiv 0 \pmod m$ | Number Theory |
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for every pair of real numbers $x$ and $y$,
\[f(x+y^2)=f(x)+|yf(y)|.\] | Algebra |
Fix positive integers $k,n$. A candy vending machine has many different colours of candy, where there are $2n$ candies of each colour. A couple of kids each buys from the vending machine $2$ candies of different colours. Given that for any $k+1$ kids there are two kids who have at least one colour of candy in common, find the maximum number of kids. | Combinatorics |
Find the smallest positive integer $ K$ such that every $ K$-element subset of $ \{1,2,...,50 \}$ contains two distinct elements $ a,b$ such that $ a\plus{}b$ divides $ ab$. | Number Theory |
Find the largest positive integer $m$ which makes it possible to color several cells of a $70\times 70$ table red such that [list] [*] There are no two red cells satisfying: the two rows in which they are have the same number of red cells, while the two columns in which they are also have the same number of red cells; [*] There are two rows with exactly $m$ red cells each. [/list] | Combinatorics |
Find all triples $(x,y,z)$ of positive integers such that $x \leq y \leq z$ and
\[x^3(y^3+z^3)=2012(xyz+2).\] | Algebra |
Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$. | Geometry |
Find all positive real numbers $\lambda$ such that for all integers $n\geq 2$ and all positive real numbers $a_1,a_2,\cdots,a_n$ with $a_1+a_2+\cdots+a_n=n$, the following inequality holds:
$\sum_{i=1}^n\frac{1}{a_i}-\lambda\prod_{i=1}^{n}\frac{1}{a_i}\leq n-\lambda$. | Algebra |
Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that \[ f(m+n)f(m-n) = f(m^2) \] for $m,n \in \mathbb{N}$. | Algebra |
Let $ n$ be a positive integer. Given an integer coefficient polynomial $ f(x)$, define its [i]signature modulo $ n$[/i] to be the (ordered) sequence $ f(1), \ldots , f(n)$ modulo $ n$. Of the $ n^n$ such $ n$-term sequences of integers modulo $ n$, how many are the signature of some polynomial $ f(x)$ if
a) $ n$ is a positive integer not divisible by the square of a prime.
b) $ n$ is a positive integer not divisible by the cube of a prime. | Algebra |
Find all functions $f:\mathbb {Z}\to\mathbb Z$, satisfy that for any integer ${a}$, ${b}$, ${c}$,
$$2f(a^2+b^2+c^2)-2f(ab+bc+ca)=f(a-b)^2+f(b-c)^2+f(c-a)^2$$ | Algebra |
Let $S$ be a set of positive integers, such that $n \in S$ if and only if $$\sum_{d|n,d<n,d \in S} d \le n$$
Find all positive integers $n=2^k \cdot p$ where $k$ is a non-negative integer and $p$ is an odd prime, such that $$\sum_{d|n,d<n,d \in S} d = n$$ | Number Theory |
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying the following conditions:
(1) $f(1)=1$;
(2) $\forall n\in \mathbb{N}$, $3f(n) f(2n+1) =f(2n) ( 1+3f(n) )$;
(3) $\forall n\in \mathbb{N}$, $f(2n) < 6 f(n)$.
Find all solutions of equation $f(k) +f(l)=293$, where $k<l$.
($\mathbb{N}$ denotes the set of all natural numbers). | Algebra |
Find all natural numbers $n (n \geq 2)$ such that there exists reals $a_1, a_2, \dots, a_n$ which satisfy \[ \{ |a_i - a_j| \mid 1\leq i<j \leq n\} = \left\{1,2,\dots,\frac{n(n-1)}{2}\right\}. \]
Let $A=\{1,2,3,4,5,6\}, B=\{7,8,9,\dots,n\}$. $A_i(i=1,2,\dots,20)$ contains eight numbers, three of which are chosen from $A$ and the other five numbers from $B$. $|A_i \cap A_j|\leq 2, 1\leq i<j\leq 20$. Find the minimum possible value of $n$. | Algebra |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 25