Datasets:
audio
audioduration (s) 0.52
12.7
| text
stringlengths 3
91
| speaker ID
stringclasses 23
values | audio filename
stringlengths 27
32
|
|---|---|---|---|
xo ɔ gbla to nu mi
|
armandine
|
armandine_fongbe_corp005_001.wav
|
|
avɔ elɔ gɔ
|
armandine
|
armandine_fongbe_corp005_002.wav
|
|
e kwiji
|
armandine
|
armandine_fongbe_corp005_003.wav
|
|
un do gbe nu we
|
armandine
|
armandine_fongbe_corp005_004.wav
|
|
e ɖu lεsin nusunnu mεvo
|
armandine
|
armandine_fongbe_corp005_005.wav
|
|
vi ce hɔn bo nɔ gbɔn gbegbe
|
armandine
|
armandine_fongbe_corp005_006.wav
|
|
hwlεn mi gan
|
armandine
|
armandine_fongbe_corp005_007.wav
|
|
e ma nyɔ xo ɖo gε
|
armandine
|
armandine_fongbe_corp005_008.wav
|
|
e gbo hwε gblulu
|
armandine
|
armandine_fongbe_corp005_009.wav
|
|
e gbijɔ gbadeti ɔ
|
armandine
|
armandine_fongbe_corp005_010.wav
|
|
nyε wε nyi aklunɔ mawu mitɔn
|
armandine
|
armandine_fongbe_corp005_011.wav
|
|
e ɖo anɔ gbagba ɖakɔn mε
|
armandine
|
armandine_fongbe_corp005_012.wav
|
|
ɖyiɔvi anɔ gbagba wε fan sin nu tɔli gan ɖalaga sin fan ba un ɖe a alɔ e fan sin ɔ ba un ɖe
|
armandine
|
armandine_fongbe_corp005_013.wav
|
|
e nɔ daziin bε nɔ wu fyo a
|
armandine
|
armandine_fongbe_corp005_014.wav
|
|
mi na gbo xɔ ɔ ɖo we
|
armandine
|
armandine_fongbe_corp005_015.wav
|
|
gan tεnwe mε
|
armandine
|
armandine_fongbe_corp005_016.wav
|
|
azɔn gbε sin
|
armandine
|
armandine_fongbe_corp005_017.wav
|
|
afɔkpa ɔ fyɔn mi
|
armandine
|
armandine_fongbe_corp005_018.wav
|
|
e kanbyɔ ε ɖɔ fitε e nɔ yi azɔmε ɖe aji
|
armandine
|
armandine_fongbe_corp005_019.wav
|
|
e ɖe dazɔmε
|
armandine
|
armandine_fongbe_corp005_020.wav
|
|
e gu we
|
armandine
|
armandine_fongbe_corp005_021.wav
|
|
wa se gbe nu mi
|
armandine
|
armandine_fongbe_corp005_022.wav
|
|
bo nukun mitɔn lε nɔ mɔ nu
|
armandine
|
armandine_fongbe_corp005_023.wav
|
|
gadagada kpowun ɔ ayi jεn nyavi ɔ jε sin kεkε ji
|
armandine
|
armandine_fongbe_corp005_024.wav
|
|
e kanbyɔ ɖɔ tɔ tɔn ɖo mɔto ace
|
armandine
|
armandine_fongbe_corp005_025.wav
|
|
e kanbyɔ ye ɖɔ mεjitɔ yetɔn lε nɔ do fongbe aji
|
armandine
|
armandine_fongbe_corp005_026.wav
|
|
sinnu gbla sin mi
|
armandine
|
armandine_fongbe_corp005_027.wav
|
|
e su gbadanu
|
armandine
|
armandine_fongbe_corp005_028.wav
|
|
ye ɖo na wa gbadanu
|
armandine
|
armandine_fongbe_corp005_029.wav
|
|
zinflu do gɔɔn din
|
armandine
|
armandine_fongbe_corp005_030.wav
|
|
e gbε ɖɔ vi tɔn ma yi azɔmε o
|
armandine
|
armandine_fongbe_corp005_031.wav
|
|
gan ɔ ɖɔ nu gbaan
|
armandine
|
armandine_fongbe_corp005_032.wav
|
|
gan ko xo xoxo
|
armandine
|
armandine_fongbe_corp005_033.wav
|
|
lee gbɔn un blo mɔ ɖie
|
armandine
|
armandine_fongbe_corp005_034.wav
|
|
ani gbe a tɔn
|
armandine
|
armandine_fongbe_corp005_035.wav
|
|
cakatu wε tɔn bɔ mi mɔ glo tɔn hla sɔ ε ɖu le ɔ mi mɔ a
|
armandine
|
armandine_fongbe_corp005_036.wav
|
|
go sin fi
|
armandine
|
armandine_fongbe_corp005_037.wav
|
|
nu gugu nε a wa nε
|
armandine
|
armandine_fongbe_corp005_038.wav
|
|
woo gbε
|
armandine
|
armandine_fongbe_corp005_039.wav
|
|
jɔhɔn gugu ɖe nyi egbe zan mε
|
armandine
|
armandine_fongbe_corp005_040.wav
|
|
e fun funfun do ji ce
|
armandine
|
armandine_fongbe_corp005_041.wav
|
|
e ɖo tavo ɔ glɔ
|
armandine
|
armandine_fongbe_corp005_042.wav
|
|
e ɖo wema towe gwlε
|
armandine
|
armandine_fongbe_corp005_043.wav
|
|
e ɖafɔ tɔn lε glɔ
|
armandine
|
armandine_fongbe_corp005_044.wav
|
|
e gan gan ɔ
|
armandine
|
armandine_fongbe_corp005_045.wav
|
|
e gan do ɔ
|
armandine
|
armandine_fongbe_corp005_046.wav
|
|
vi elɔ ɖo govi katoe
|
armandine
|
armandine_fongbe_corp005_047.wav
|
|
e ɖo hun ɔ te gliwun
|
armandine
|
armandine_fongbe_corp005_048.wav
|
|
e glo nu
|
armandine
|
armandine_fongbe_corp005_049.wav
|
|
e gbingbɔn yovozεn
|
armandine
|
armandine_fongbe_corp005_050.wav
|
|
e gbungbɔn klεn nu mi
|
armandine
|
armandine_fongbe_corp005_051.wav
|
|
enε ɔ ko kpe a mε
|
armandine
|
armandine_fongbe_corp005_052.wav
|
|
e gbla nu mε nu mi
|
armandine
|
armandine_fongbe_corp005_053.wav
|
|
lan xwe do geli nɔ xo amyɔsun a
|
armandine
|
armandine_fongbe_corp005_054.wav
|
|
gɔ na tɔn lo
|
armandine
|
armandine_fongbe_corp005_055.wav
|
|
gbεgɔnu wε nu hwε
|
armandine
|
armandine_fongbe_corp005_056.wav
|
|
ye sa vo nu tɔ ce gbɔ ji ce
|
armandine
|
armandine_fongbe_corp005_057.wav
|
|
un ɖo mawu gbe xo wε
|
armandine
|
armandine_fongbe_corp005_058.wav
|
|
jaan ɖo tavo ɔ ji
|
armandine
|
armandine_fongbe_corp005_059.wav
|
|
e fyan mε
|
armandine
|
armandine_fongbe_corp005_060.wav
|
|
e gbo mi do ɖo xwe gbe
|
armandine
|
armandine_fongbe_corp005_061.wav
|
|
ji gbo mi
|
armandine
|
armandine_fongbe_corp005_062.wav
|
|
e fyan mi
|
armandine
|
armandine_fongbe_corp005_063.wav
|
|
e na wa fyan we
|
armandine
|
armandine_fongbe_corp005_064.wav
|
|
e ku fyan mi
|
armandine
|
armandine_fongbe_corp005_065.wav
|
|
ma nu xo towe gba gba o
|
armandine
|
armandine_fongbe_corp005_066.wav
|
|
do kokwe kan sɔ nyi gblεlε
|
armandine
|
armandine_fongbe_corp005_067.wav
|
|
e jε gun
|
armandine
|
armandine_fongbe_corp006_001.wav
|
|
mi ɖo gbesugbesɔ
|
armandine
|
armandine_fongbe_corp006_002.wav
|
|
hlunhlun gbε ɖo fi din
|
armandine
|
armandine_fongbe_corp006_003.wav
|
|
ye jε tagba glolo
|
armandine
|
armandine_fongbe_corp006_004.wav
|
|
nyε wε a xo
|
armandine
|
armandine_fongbe_corp006_005.wav
|
|
un ɖo xo ɖɔ nu we wε
|
armandine
|
armandine_fongbe_corp006_006.wav
|
|
azɔwiwa kpo xoɖiɖɔ kpo ɔ ye ɖo ganmεganmε
|
armandine
|
armandine_fongbe_corp006_007.wav
|
|
gbe tε nε ɖɔ wε mi ɖe nε
|
armandine
|
armandine_fongbe_corp006_008.wav
|
|
hεn dεdε e nɔ ba gidigidi a
|
armandine
|
armandine_fongbe_corp006_009.wav
|
|
e gblɔ sin nu mi
|
armandine
|
armandine_fongbe_corp006_010.wav
|
|
atin ce wini hu towe
|
armandine
|
armandine_fongbe_corp006_011.wav
|
|
e da tu gbla
|
armandine
|
armandine_fongbe_corp006_012.wav
|
|
e da tu gbaan
|
armandine
|
armandine_fongbe_corp006_013.wav
|
|
e da tu gbɔ
|
armandine
|
armandine_fongbe_corp006_014.wav
|
|
e gan
|
armandine
|
armandine_fongbe_corp006_015.wav
|
|
e nu ahan mu bo nɔ dan gɔgɔ
|
armandine
|
armandine_fongbe_corp006_016.wav
|
|
hwi wε ɖɔ xo
|
armandine
|
armandine_fongbe_corp006_017.wav
|
|
un wa gɔn towe
|
armandine
|
armandine_fongbe_corp006_018.wav
|
|
e jayi gbli
|
armandine
|
armandine_fongbe_corp006_019.wav
|
|
e jayi gbiwun
|
armandine
|
armandine_fongbe_corp006_020.wav
|
|
nawe elɔ jε gbε ɖo mεmε bi bo sɔ ɖo nuɖe a
|
armandine
|
armandine_fongbe_corp006_021.wav
|
|
gbadεndεn ɖo funfun wε
|
armandine
|
armandine_fongbe_corp006_022.wav
|
|
hwi wu wε vi ɔ jayi
|
armandine
|
armandine_fongbe_corp006_023.wav
|
|
ahun fun
|
armandine
|
armandine_fongbe_corp006_024.wav
|
|
gan jayi ma bε gbe
|
armandine
|
armandine_fongbe_corp006_025.wav
|
|
e nɔ glɔn ji
|
armandine
|
armandine_fongbe_corp006_026.wav
|
|
badagla jayi ɔ gba jεn nɔ gba
|
armandine
|
armandine_fongbe_corp006_027.wav
|
|
nu ɔ ɖie tɔ gε do ji tɔn e
|
armandine
|
armandine_fongbe_corp006_028.wav
|
|
e hεn alin ɔ gɔn
|
armandine
|
armandine_fongbe_corp006_029.wav
|
|
atin gɔndɔngɔndɔn ji e nɔ gbɔn bo nɔ yi ɖiɖi ɔ ji
|
armandine
|
armandine_fongbe_corp006_030.wav
|
|
xɔ gban ɔ amlɔ nɔ gban a
|
armandine
|
armandine_fongbe_corp006_031.wav
|
|
do nε ɔ gbandaan
|
armandine
|
armandine_fongbe_corp006_032.wav
|
|
e hεn gan ɔ gɔndɔn
|
armandine
|
armandine_fongbe_corp006_033.wav
|
Fongbe Speech Dataset (Complete & Tone-Preserved)
Dataset Summary
This dataset is a unified, high-quality collection of Fongbe speech data, specifically curated to preserve the linguistic integrity of this tonal language. It acts as a complete, unsegmented, and tone-accurate assembly of the Fongbe Continuous Speech Recognition corpora, merging:
- The foundational ALFFA Project data (Train/Test splits, 2016).
- The expanded Zenodo release (Validation split, 2022).
Why Use This Version?
Several derivative Fongbe datasets currently on the Hub have been heavily pre-processed. Those versions often chunk audio into unnatural segments, remove punctuation, or strip critical tone diacritics.
This repository ensures linguistic accuracy by preserving:
- Tones: Retains all diacritics (e.g.,
ɖ,ɛ,ɔ,è,é,ì,̌,̂,ĕ,ŏ) essential for Fongbe semantics. - Audio Integrity: Provides full-length original utterances rather than aggressively chopped segments, allowing for better context modeling.
- Harmonized Schema: Standardizes metadata across diverse source origins for immediate use in
transformers.
Dataset Statistics
| Split | Utterances | Total Duration (approx) | Source |
|---|---|---|---|
| Train | 8,234 | ~5.73 hrs | ALFFA GitHub |
| Validation | 3,179 | ~5.11 hrs | Zenodo (6604637) |
| Test | 2,168 | ~1.45 hrs | ALFFA GitHub |
| Total | 13,581 | ~12.30 hrs |
Technical Metadata
- Sampling Rate: 16,000 Hz
- Audio Format: WAV (PCM 16-bit)
- Language: Fongbe (Fon)
- Tonal Representation: Decomposed (NFD) diacritics preserved.
Dataset Structure
All splits share a harmonized schema for seamless use with the Hugging Face datasets and transformers libraries.
Features
audio: A dictionary containing the audio array, sampling rate (16kHz), and local path.text: The ground-truth transcription with full tonal markers and punctuation.speaker ID: The unique identifier for the speaker (e.g.,"denise","mario","5").audio filename: The original filename for provenance tracking.
Quick Start
You can load this dataset directly using the Hugging Face datasets library:
from datasets import load_dataset
# Load the full DatasetDict
dataset = load_dataset("Professor/fongbe-speech-zenodo")
# Access individual splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
# View a sample entry
print(train_data[0])
Sources & Credits
This dataset is the result of extensive fieldwork and research by Fréjus A. A. Laleye and the ALFFA (African Languages in the Field) project team.
Citation Information
If you use this dataset, please cite the following works:
For the Training/Test Data (ALFFA):
@inproceedings{laleye2016FongbeASR,
title={First Automatic Fongbe Continuous Speech Recognition System: Development of Acoustic Models and Language Models},
author={A. A Laleye, Fréjus and Besacier, Laurent and Ezin, Eugène C. and Motamed, Cina},
year={2016},
organization={Federated Conference on Computer Science and Information Systems}
}
For the Validation Data (Zenodo):
@dataset{laleye_frejus_2022_6604637,
author = {Laleye, Fréjus A. A.},
title = {Fongbe Speech Dataset},
month = jun,
year = 2022,
publisher = {Zenodo},
doi = {10.5281/zenodo.6604637},
url = {https://doi.org/10.5281/zenodo.6604637}
}
Contributions
Ported to Hugging Face by Victor Olufemi (Professor). This version ensures that low-resource language modeling for Fongbe remains linguistically accurate by preventing the loss of tonal information during preprocessing.
- Downloads last month
- 17