word
stringlengths 1
21
| id_example
int64 0
299
| text_id
int64 0
149
| position_id
int64 1
65
| annotator_id
stringclasses 99
values | reading_time
int64 0
11.8k
| gaze_duration
float64 0
5.37k
| fixations
int64 0
34
| first_fixation_duration
float64 0
2.81k
| x_coordinate_first_fixation
float64 0
1.79k
| y_coordinate_first_fixation
float64 0
818
| amplitude_first_saccade
float64 0
34.9
| is_answer_correct
int64 0
1
| pronoun
stringclasses 16
values | label
int64 0
1
| correct_antecedent
stringclasses 142
values | incorrect_antecedent
stringclasses 146
values | is_pronoun
int64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Еще | 0 | 0 | 1 | ad01 | 177 | 177 | 1 | 177 | 221.7 | 128 | 1.2 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad03 | 217 | 217 | 1 | 217 | 226.4 | 129.2 | 7.33 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad04 | 162 | 162 | 1 | 162 | 190.9 | 171 | 6.59 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad05 | 479 | 479 | 2 | 192 | 182.3 | 124.6 | 1.11 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad06 | 129 | 129 | 1 | 129 | 208.5 | 161.6 | 5.98 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad07 | 199 | 199 | 1 | 199 | 229 | 172.4 | 5.73 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad08 | 150 | 150 | 1 | 150 | 193.3 | 98.3 | 6.93 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad09 | 162 | 162 | 1 | 162 | 227 | 158.1 | 6.46 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad10 | 157 | 157 | 1 | 157 | 197.1 | 136.2 | 6.91 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad11 | 139 | 139 | 1 | 139 | 187.5 | 165.4 | 6.65 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad12 | 136 | 136 | 1 | 136 | 164.7 | 84.5 | 7.7 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad13 | 194 | 194 | 1 | 194 | 245.7 | 105.5 | 7.45 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad14 | 161 | 161 | 1 | 161 | 216.1 | 126.4 | 7.14 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad16 | 247 | 247 | 2 | 116 | 160.2 | 157.3 | 5.93 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad17 | 235 | 235 | 1 | 235 | 238.8 | 103.6 | 7.67 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad19 | 554 | 554 | 2 | 232 | 156.6 | 130.7 | 6.75 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad20 | 412 | 412 | 2 | 150 | 167.6 | 160.9 | 6.99 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad21 | 146 | 146 | 1 | 146 | 188.1 | 144.9 | 5.71 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad22 | 134 | 134 | 1 | 134 | 167.9 | 157.9 | 6.99 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad23 | 130 | 130 | 1 | 130 | 197 | 145.2 | 1.37 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad25 | 104 | 104 | 1 | 104 | 247.8 | 123 | 1.23 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad26 | 163 | 163 | 1 | 163 | 209.8 | 180.2 | 5.83 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad27 | 302 | 214 | 2 | 214 | 252.7 | 162.9 | 7.06 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad28 | 215 | 215 | 2 | 95 | 151.8 | 140.1 | 4.15 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad29 | 307 | 307 | 2 | 170 | 207.8 | 153.4 | 4.27 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad30 | 230 | 230 | 1 | 230 | 221.5 | 173.9 | 6.71 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad31 | 140 | 140 | 1 | 140 | 200.3 | 135.9 | 0.31 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad32 | 1,015 | 193 | 5 | 193 | 200.9 | 140.5 | 7.66 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad33 | 148 | 148 | 1 | 148 | 266.6 | 97.7 | 7.02 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad34 | 200 | 200 | 1 | 200 | 216.9 | 157.4 | 6.37 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad35 | 469 | 186 | 3 | 186 | 203.7 | 124.4 | 6.4 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad36 | 489 | 238 | 2 | 238 | 205.3 | 152.4 | 6.52 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad37 | 398 | 158 | 2 | 158 | 250.6 | 146.7 | 7.12 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad39 | 183 | 183 | 1 | 183 | 218.9 | 150.5 | 7.05 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad40 | 142 | 142 | 1 | 142 | 217.2 | 172.1 | 11.69 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad41 | 173 | 173 | 1 | 173 | 259.4 | 126.7 | 0.63 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad42 | 490 | 211 | 2 | 211 | 217.9 | 92.2 | 8.16 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad43 | 192 | 192 | 1 | 192 | 206.3 | 135.1 | 6.76 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad44 | 177 | 177 | 1 | 177 | 171 | 143.4 | 6.68 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad45 | 160 | 160 | 1 | 160 | 171.4 | 100.5 | 6.67 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad46 | 127 | 127 | 1 | 127 | 240.1 | 133.6 | 0.85 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad47 | 192 | 192 | 1 | 192 | 241 | 131.7 | 7.55 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad49 | 264 | 150 | 2 | 150 | 211.6 | 124.5 | 0.86 | 1 | их | 0 | камни | особенности | 0 |
Еще | 0 | 0 | 1 | ad50 | 134 | 134 | 1 | 134 | 194.5 | 130.5 | 6.88 | 1 | их | 0 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad100 | 163 | 163 | 1 | 163 | 320.9 | 127.8 | 7.35 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad51 | 162 | 162 | 1 | 162 | 285.6 | 135.9 | 7.9 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad52 | 304 | 304 | 2 | 132 | 229.1 | 123.4 | 7.37 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad53 | 761 | 512 | 3 | 170 | 286 | 60.5 | 8.74 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad55 | 411 | 164 | 2 | 164 | 270.2 | 114.4 | 7.58 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad57 | 171 | 171 | 1 | 171 | 280.5 | 83.1 | 7.51 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad58 | 197 | 197 | 1 | 197 | 258.1 | 142.3 | 6.84 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad61 | 265 | 265 | 2 | 120 | 204.3 | 118.3 | 8.19 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad62 | 162 | 162 | 1 | 162 | 248 | 118.8 | 7.11 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad63 | 306 | 306 | 2 | 137 | 233.4 | 120.5 | 7.43 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad64 | 258 | 258 | 2 | 62 | 202.3 | 111.1 | 7.6 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad65 | 132 | 132 | 1 | 132 | 209.6 | 137.6 | 6.96 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad66 | 444 | 444 | 2 | 176 | 289.3 | 127.3 | 0.52 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad68 | 155 | 155 | 1 | 155 | 287.3 | 103.8 | 7.28 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad70 | 189 | 189 | 1 | 189 | 269.6 | 116.7 | 2.7 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad72 | 135 | 135 | 1 | 135 | 296.4 | 116.3 | 6.5 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad73 | 170 | 170 | 1 | 170 | 209.2 | 125.9 | 7.37 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad75 | 147 | 147 | 1 | 147 | 251.2 | 139.8 | 6.86 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad77 | 641 | 219 | 3 | 219 | 293.3 | 111.2 | 8.13 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad78 | 138 | 138 | 1 | 138 | 234.6 | 143.4 | 7.9 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad79 | 164 | 164 | 1 | 164 | 279.8 | 94.5 | 7.99 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad80 | 112 | 112 | 1 | 112 | 266.5 | 135.7 | 8 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad81 | 379 | 186 | 2 | 186 | 300.6 | 142.3 | 7.58 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad82 | 271 | 118 | 2 | 118 | 202.1 | 134.7 | 6.79 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad83 | 248 | 248 | 2 | 110 | 206.3 | 118.4 | 7.74 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad84 | 217 | 217 | 2 | 136 | 251.7 | 143.9 | 6.9 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad85 | 133 | 133 | 1 | 133 | 252.2 | 115 | 7.55 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad86 | 241 | 241 | 2 | 118 | 201.8 | 111.9 | 6.62 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad87 | 455 | 251 | 3 | 131 | 210.9 | 134.2 | 6.8 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad88 | 303 | 303 | 2 | 158 | 203.8 | 85.7 | 6.76 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad89 | 115 | 115 | 1 | 115 | 253.8 | 136.5 | 8.21 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad90 | 189 | 189 | 2 | 117 | 267.3 | 143.1 | 6.34 | 0 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad91 | 182 | 182 | 1 | 182 | 316.6 | 132 | 8.18 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad92 | 205 | 205 | 1 | 205 | 245.9 | 136.3 | 1.75 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad93 | 224 | 224 | 2 | 58 | 324.6 | 117.3 | 7.06 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad94 | 141 | 141 | 1 | 141 | 262.9 | 108.9 | 4.01 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad95 | 274 | 274 | 2 | 141 | 321.1 | 140.3 | 8.44 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad96 | 293 | 293 | 1 | 293 | 324.2 | 133.8 | 2.39 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad97 | 151 | 151 | 1 | 151 | 298.6 | 138.2 | 8.09 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad98 | 119 | 119 | 1 | 119 | 297.3 | 146.8 | 0.71 | 1 | их | 1 | камни | особенности | 0 |
Еще | 150 | 0 | 1 | ad99 | 694 | 318 | 3 | 318 | 305.7 | 142.6 | 8.4 | 1 | их | 1 | камни | особенности | 0 |
один | 0 | 0 | 2 | ad01 | 621 | 56 | 3 | 56 | 281.6 | 169.4 | 6.53 | 1 | их | 0 | камни | особенности | 0 |
один | 0 | 0 | 2 | ad03 | 255 | 163 | 2 | 163 | 360.6 | 129.5 | 2.39 | 1 | их | 0 | камни | особенности | 0 |
один | 0 | 0 | 2 | ad04 | 379 | 379 | 1 | 379 | 286.2 | 157.7 | 2.13 | 1 | их | 0 | камни | особенности | 0 |
End of preview. Expand
in Dataset Viewer.
EyeWino
EyeWino is a new dataset based on the data from human eye-tracking for anaphora resolution.
Dataset Description
The Russian Winograd Schema Challenge dataset from TAPE (Taktasheva et al., 2022) was utilized for the anaphora resolution task to gather information on participants' eye movements.
The final dataset consists of 296 sentence-question pairs, which contain 9319 words and 148 unique sentences. The average number of participants per word is 48. The total number of observations for each variable is 448047.
Data Fields
word
, a word in a sentence;example_id
, id of the example in the dataset;text_id
, id of the unique text in the dataset;position_id
, position of the word in the sentence;annotator_id
, experiment participant id;is_answer_correct
, the correctness of the experiment participant's answer;reading_time
, the sum of all fixation durations on the current word, ms;gaze_duration
, the sum of all fixation durations on the current word in the first-pass reading, ms;fixations
, the number of all fixations on the current word;first_fixation_duration
, the duration of the first fixation on the word, ms;x_coordinate_first_fixation
, the coordinate of the first fixation on the word along the x axis, where the screen is the coordinate plane;y_coordinate_first_fixation
, the coordinate of the first fixation on the word along the y axis, where the screen is the coordinate plane;amplitude_first_saccade
, the amplitude of the first saccade, deg;correct_antecedent
, the correct antecedent forexample_id
;incorrect_antecedent
, the incorrect antecedent forexample_id
;pronoun
, an anaphoric pronoun forexample_id
;is_pronoun
, an indicator of whether the word is the anaphoric pronoun;label
, an indicator of whether the question is about the correct antecedent.
Cite our ACL workshop paper https://aclanthology.org/2024.cmcl-1.10/:
@inproceedings{kozlova-etal-2024-transformer,
title = "Transformer Attention vs Human Attention in Anaphora Resolution",
author = "Kozlova, Anastasia and
Akhmetgareeva, Albina and
Khanova, Aigul and
Kudriavtsev, Semen and
Fenogenova, Alena",
editor = "Kuribayashi, Tatsuki and
Rambelli, Giulia and
Takmaz, Ece and
Wicke, Philipp and
Oseki, Yohei",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.cmcl-1.10",
pages = "109--122",
abstract = "Motivated by human cognitive processes, attention mechanism within transformer architecture has been developed to assist neural networks in allocating focus to specific aspects within input data. Despite claims regarding the interpretability achieved by attention mechanisms, the extent of correlation and similarity between machine and human attention remains a subject requiring further investigation.In this paper, we conduct a quantitative analysis of human attention compared to neural attention mechanisms in the context of the anaphora resolution task. We collect an eye-tracking dataset based on the Winograd schema challenge task for the Russian language. Leveraging this dataset, we conduct an extensive analysis of the correlations between human and machine attention maps across various transformer architectures, network layers of pre-trained and fine-tuned models. Our aim is to investigate whether insights from human attention mechanisms can be used to enhance the performance of neural networks in tasks such as anaphora resolution. The results reveal distinctions in anaphora resolution processing, offering promising prospects for improving the performance of neural networks and understanding the cognitive nuances of human perception.",
}
- Downloads last month
- 33