|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@inproceedings{chenchen2017statistical, |
|
author = {Ding Chenchen and |
|
Chea Vichet and |
|
Pa Win Pa and |
|
Utiyama Masao and |
|
Sumita Eiichiro}, |
|
title = {Statistical Romanization for Abugida Scripts: Data and Experiment on Khmer and Burmese}, |
|
booktitle = {Proceedings of the 23rd Annual Conference of the Association for Natural Language Processing, |
|
{NLP2017}, Tsukuba, Japan, 13-17 March 2017}, |
|
year = {2017}, |
|
url = {https://www.anlp.jp/proceedings/annual_meeting/2017/pdf_dir/P5-7.pdf}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "burmese_romanize" |
|
_DESCRIPTION = """\ |
|
This dataset consists of 2,335 Burmese names from real university students and faculty, |
|
public figures, and minorities from Myanmar. Each entry includes the original name in |
|
Burmese script, its corresponding Romanization, and the aligned Burmese and Latin |
|
graphemes. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/name-db.html" |
|
_LANGUAGES = ["mya"] |
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
_URLS = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/myanmaroma.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.TRANSLITERATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LOCAL = False |
|
|
|
|
|
class BurmeseRomanizeDataset(datasets.GeneratorBasedBuilder): |
|
"""Romanization of names in Burmese script""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"original": datasets.Value("string"), |
|
"romanized": datasets.Value("string"), |
|
"aligned_graphemes": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
data_dir = Path(dl_manager.download_and_extract(_URLS)) / "myanmaroma" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir / "myanmaroma.txt", |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
df = pd.read_csv(filepath, sep=" \|\|\| ", engine='python', header=None, names=["ori", "roman", "seg"]) |
|
if self.config.schema == "source": |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"original": row["ori"], |
|
"romanized": row["roman"], |
|
"aligned_graphemes": row["seg"].strip().split(), |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"id": str(i), |
|
"text_1": row["ori"], |
|
"text_2": row["roman"], |
|
"text_1_name": "original", |
|
"text_2_name": "romanized", |
|
} |