hoasa / README.md
holylovenia's picture
Upload README.md with huggingface_hub
67154e1 verified
metadata
language:
  - ind
pretty_name: Hoasa
task_categories:
  - aspect-based-sentiment-analysis
tags:
  - aspect-based-sentiment-analysis

HoASA: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, AiryRooms. The dataset covers ten different aspects of hotel quality. Similar to the CASA dataset, each review is labeled with a single sentiment label for each aspect. There are four possible sentiment classes for each sentiment label: positive, negative, neutral, and positive-negative. The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet).

Languages

ind

Supported Tasks

Aspect Based Sentiment Analysis

Dataset Usage

Using datasets library

from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/hoasa", trust_remote_code=True)

Using seacrowd library

# Load the dataset using the default config
dset = sc.load_dataset("hoasa", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("hoasa"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")

More details on how to load the seacrowd library can be found here.

Dataset Homepage

https://github.com/IndoNLP/indonlu

Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

Dataset License

CC-BY-SA 4.0

Citation

If you are using the Hoasa dataloader in your work, please cite the following:


@inproceedings{azhar2019multi,
  title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting},
  author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono}
  booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)},
  pages={35--40},
  year={2019}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}