|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@misc{ |
|
research, |
|
title={Jakartaresearch/google-play-review 路 datasets at hugging face}, |
|
url={https://huggingface.co/datasets/jakartaresearch/google-play-review}, |
|
author={Research, Jakarta AI} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "id_google_play_review" |
|
_DESCRIPTION = """\ |
|
Indonesian Google Play Review, dataset scrapped from e-commerce app on Google Play for sentiment analysis. |
|
Total number of data: 10041 (train: 7028, validation: 3012). Provided by Jakarta AI Research. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jakartaresearch/hf-datasets/tree/main/google-play-review/google-play-review" |
|
_LICENSE = "CC-BY 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/train.csv", |
|
"valid": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/validation.csv", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IDGooglePlayReview(datasets.GeneratorBasedBuilder): |
|
""" |
|
Indonesian Google Play Review is a dataset containing reviews from Google Play Indonesia, used for sentiment |
|
analysis. |
|
The language content is mainly Indonesian, however beware of context-switching (some sentences are partly or |
|
entirely in English). |
|
The available labels: |
|
label: ['pos', 'neg'] for source and seacrowd_text scheme |
|
stars: [1, 2, 3, 4, 5] for source |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_google_play_review_source", |
|
version=SOURCE_VERSION, |
|
description="id_google_play_review source schema", |
|
schema="source", |
|
subset_id="id_google_play_review", |
|
), |
|
SEACrowdConfig( |
|
name="id_google_play_review_posneg_source", |
|
version=SOURCE_VERSION, |
|
description="id_google_play_review source schema", |
|
schema="source", |
|
subset_id="id_google_play_review_posneg", |
|
), |
|
SEACrowdConfig( |
|
name="id_google_play_review_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="id_google_play_review Nusantara schema, 1-5 stars rating only (for pos/neg labels, please use the subset_id \"id_google_play_review_posneg\")", |
|
schema="seacrowd_text", |
|
subset_id="id_google_play_review", |
|
), |
|
SEACrowdConfig( |
|
name="id_google_play_review_posneg_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="id_google_play_review Nusantara schema, pos/neg label only", |
|
schema="seacrowd_text", |
|
subset_id="id_google_play_review_posneg", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_google_play_review_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features({ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"stars": datasets.Value("int8") |
|
}) |
|
elif self.config.schema == "seacrowd_text": |
|
if self.config.subset_id == "id_google_play_review_posneg": |
|
features = schemas.text_features(["pos", "neg"]) |
|
elif self.config.subset_id == "id_google_play_review": |
|
features = schemas.text_features(["1", "2", "3", "4", "5"]) |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
train_data_path = Path(dl_manager.download(urls["train"])) |
|
valid_data_path = Path(dl_manager.download(urls["valid"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_data_path, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": valid_data_path, "split": "valid"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_csv(filepath, sep=",").reset_index() |
|
for row in df.itertuples(index=False): |
|
if self.config.schema == "source": |
|
example = {"text": row.text, "label": row.label, "stars": row.stars} |
|
yield row.index, example |
|
elif self.config.schema == "seacrowd_text": |
|
if self.config.subset_id == "id_google_play_review_posneg": |
|
example = {"id": row.index, "text": row.text, "label": row.label} |
|
elif self.config.subset_id == "id_google_play_review": |
|
example = {"id": row.index, "text": row.text, "label": str(row.stars)} |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
yield row.index, example |
|
|