|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@article{karo2022sentiment, |
|
title={Sentiment Analysis in Karonese Tweet using Machine Learning}, |
|
author={Karo, Ichwanul Muslim Karo and Fudzee, Mohd Farhan Md and Kasim, Shahreen and Ramli, Azizul Azhar}, |
|
journal={Indonesian Journal of Electrical Engineering and Informatics (IJEEI)}, |
|
volume={10}, |
|
number={1}, |
|
pages={219--231}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["btx"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "karonese_sentiment" |
|
|
|
_DESCRIPTION = """\ |
|
Karonese sentiment was crawled from Twitter between 1 January 2021 and 31 October 2021. |
|
The first crawling process used several keywords related to the Karonese, such as |
|
"deleng sinabung, Sinabung mountain", "mejuah-juah, greeting welcome", "Gundaling", |
|
and so on. However, due to the insufficient number of tweets obtained using such |
|
keywords, a second crawling process was done based on several hashtags, such as |
|
#kalakkaro, # #antonyginting, and #lyodra. |
|
""" |
|
|
|
_HOMEPAGE = "http://section.iaesonline.com/index.php/IJEEI/article/view/3565" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/aliakbars/karonese/main/karonese_sentiment.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class KaroneseSentimentDataset(datasets.GeneratorBasedBuilder): |
|
"""Karonese sentiment was crawled from Twitter between 1 January 2021 and 31 October 2021. |
|
The dataset consists of 397 negative, 342 neutral, and 260 positive tweets. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="karonese_sentiment_source", |
|
version=SOURCE_VERSION, |
|
description="Karonese Sentiment source schema", |
|
schema="source", |
|
subset_id="karonese_sentiment", |
|
), |
|
SEACrowdConfig( |
|
name="karonese_sentiment_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="Karonese Sentiment Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="karonese_sentiment", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "sentiment_nathasa_review_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"no": datasets.Value("string"), |
|
"tweet": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["negative", "neutral", "positive"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_csv(filepath).drop("no", axis=1) |
|
df.columns = ["text", "label"] |
|
|
|
if self.config.schema == "source": |
|
for idx, row in df.iterrows(): |
|
example = { |
|
"no": str(idx+1), |
|
"tweet": row.text, |
|
"label": row.label, |
|
} |
|
yield idx, example |
|
elif self.config.schema == "seacrowd_text": |
|
for idx, row in df.iterrows(): |
|
example = { |
|
"id": str(idx+1), |
|
"text": row.text, |
|
"label": row.label, |
|
} |
|
yield idx, example |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|