sarawak_malay / sarawak_malay.py
holylovenia's picture
Upload sarawak_malay.py with huggingface_hub
a350d47 verified
raw
history blame
7.53 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
try:
import audiosegment
except:
print("Install the `audiosegment` package to use.")
try:
import textgrid
except:
print("Install the `textgrid` package to use.")
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{
10337314,
author={Rahim, Mohd Zulhafiz and Juan, Sarah Samson and Mohamad, Fitri Suraya},
booktitle={2023 International Conference on Asian Language Processing (IALP)},
title={Improving Speaker Diarization for Low-Resourced Sarawak Malay Language Conversational Speech Corpus},
year={2023},
pages={228-233},
keywords={Training;Oral communication;Data models;Usability;Speech processing;Testing;Speaker diarization;x-vectors;clustering;low-resource;auto-labeling;pseudo-labeling;unsupervised},
doi={10.1109/IALP61005.2023.10337314}}
"""
_DATASETNAME = "sarawak_malay"
_DESCRIPTION = """\
This is a Sarawak Malay conversation data for the purpose of speech technology research. \
At the moment, this is an experimental data and currently used for investigating \
speaker diarization. The data was collected by Faculty of Computer Science and \
Information Technology, Universiti Malaysia Sarawak. The data consists of 38 conversations \
that have been transcribed using Transcriber (see TextGrid folder), where each file \
contains two speakers. Each conversation was recorded by different individuals using microphones \
from mobile devices or laptops thus, different file formats were collected from the data collectors. \
All data was then standardized to mono, 16000Khz, wav format.
"""
_HOMEPAGE = "https://github.com/sarahjuan/sarawakmalay"
_LANGUAGES = ["zlm"]
_LICENSE = Licenses.CC0_1_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/sarahjuan/sarawakmalay/archive/refs/heads/main.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SarawakMalayDataset(datasets.GeneratorBasedBuilder):
"""This is experimental Sarawak Malay conversation data collected by \
Universiti Malaysia Sarawak for speech technology research, \
specifically speaker diarization. The data includes 38 conversations, \
each with two speakers, recorded on various devices and then standardized to mono, \
16000Khz, wav format."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "sptext"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"metadata": {
"malay_text": datasets.Value("string"),
},
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "sarawakmalay-main"),
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
id_counter = 0
filenames = filter(lambda x: x.endswith(".wav"), os.listdir(f"{filepath}/wav"))
filenames = map(lambda x: x.replace(".wav", ""), filenames)
os.makedirs(f"{filepath}/segmented", exist_ok=True)
for i, filename in enumerate(filenames):
info = textgrid.TextGrid.fromFile(f"{filepath}/TextGrid/{filename}.TextGrid")
if len(info) == 3:
sarawak_conversation, malay_conversation, speakers = info
else:
sarawak_conversation, malay_conversation, speakers, _ = info
audio_file = audiosegment.from_file(f"{filepath}/wav/{filename}.wav").resample(sample_rate_Hz=16000)
for sarawak_tg, malay_tg, speaker in zip(sarawak_conversation, malay_conversation, speakers):
start, end, text = sarawak_tg.minTime, sarawak_tg.maxTime, sarawak_tg.mark
malay_text = malay_tg.mark
speaker_id = speaker.mark
start_sec, end_sec = int(start * 1000), int(end * 1000)
segment = audio_file[start_sec:end_sec]
segement_filename = f"{filepath}/segmented/{filename}-{round(start, 0)}-{round(end, 0)}.wav"
segment.export(segement_filename, format="wav")
if self.config.schema == "source":
yield id_counter, {
"id": id_counter,
"speaker_id": speaker_id,
"path": f"{filepath}/wav/{filename}.wav",
"audio": segement_filename,
"text": text,
"metadata": {
"malay_text": malay_text,
},
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
yield id_counter, {"id": id_counter, "speaker_id": speaker_id, "path": f"{filepath}/wav/{filename}.wav", "audio": segement_filename, "text": text, "metadata": {"speaker_age": None, "speaker_gender": None}}
id_counter += 1