su_id_tts / su_id_tts.py
holylovenia's picture
Upload su_id_tts.py with huggingface_hub
16670b9 verified
raw
history blame
7.64 kB
import csv
import os
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "su_id_tts"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={66--70},
doi={10.21437/SLTU.2018-14}
}
"""
_DESCRIPTION = """\
This data set contains high-quality transcribed audio data for Sundanese. The data set consists of wave files, and a TSV file. The file line_index.tsv contains a filename and the transcription of audio in the file. Each filename is prepended with a speaker identification number.
The data set has been manually quality checked, but there might still be errors.
This dataset was collected by Google in collaboration with Universitas Pendidikan Indonesia.
"""
_HOMEPAGE = "http://openslr.org/44/"
_LICENSE = "CC BY-SA 4.0"
_URLs = {
_DATASETNAME: {
"female": "https://www.openslr.org/resources/44/su_id_female.zip",
"male": "https://www.openslr.org/resources/44/su_id_male.zip",
}
}
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SuIdTTS(datasets.GeneratorBasedBuilder):
"""su_id_tts contains high-quality Multi-speaker TTS data for Sundanese (SU-ID)."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="su_id_tts_source",
version=datasets.Version(_SOURCE_VERSION),
description="SU_ID_TTS source schema",
schema="source",
subset_id="su_id_tts",
),
SEACrowdConfig(
name="su_id_tts_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="SU_ID_TTS Nusantara schema",
schema="seacrowd_sptext",
subset_id="su_id_tts",
),
]
DEFAULT_CONFIG_NAME = "su_id_tts_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"gender": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"]))
female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"male_filepath": male_path,
"female_filepath": female_path,
},
),
]
def _generate_examples(self, male_filepath: Path, female_filepath: Path):
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
tsv_m = os.path.join(male_filepath, "su_id_male", "line_index.tsv")
tsv_f = os.path.join(female_filepath, "su_id_female", "line_index.tsv")
with open(tsv_m, "r") as file:
tsv_m_data = csv.reader(file, delimiter="\t")
for line in tsv_m_data:
spk_trans_info = line[0].split("_")
if self.config.schema == "source":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"gender": spk_trans_info[0][2],
}
yield line[0], ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"metadata": {
"speaker_age": None,
"speaker_gender": spk_trans_info[0][2],
},
}
yield line[0], ex
with open(tsv_f, "r") as file:
tsv_f_data = csv.reader(file, delimiter="\t")
for line in tsv_f_data:
spk_trans_info = line[0].split("_")
if self.config.schema == "source":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"gender": spk_trans_info[0][2],
}
yield line[0], ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"metadata": {
"speaker_age": None,
"speaker_gender": spk_trans_info[0][2],
},
}
yield line[0], ex
else:
raise ValueError(f"Invalid config: {self.config.name}")