|
import csv |
|
import os |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
_DATASETNAME = "su_id_tts" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["sun"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{sodimana18_sltu, |
|
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, |
|
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, |
|
year=2018, |
|
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, |
|
pages={66--70}, |
|
doi={10.21437/SLTU.2018-14} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This data set contains high-quality transcribed audio data for Sundanese. The data set consists of wave files, and a TSV file. The file line_index.tsv contains a filename and the transcription of audio in the file. Each filename is prepended with a speaker identification number. |
|
The data set has been manually quality checked, but there might still be errors. |
|
This dataset was collected by Google in collaboration with Universitas Pendidikan Indonesia. |
|
""" |
|
|
|
_HOMEPAGE = "http://openslr.org/44/" |
|
|
|
_LICENSE = "CC BY-SA 4.0" |
|
|
|
_URLs = { |
|
_DATASETNAME: { |
|
"female": "https://www.openslr.org/resources/44/su_id_female.zip", |
|
"male": "https://www.openslr.org/resources/44/su_id_male.zip", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SuIdTTS(datasets.GeneratorBasedBuilder): |
|
"""su_id_tts contains high-quality Multi-speaker TTS data for Sundanese (SU-ID).""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="su_id_tts_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="SU_ID_TTS source schema", |
|
schema="source", |
|
subset_id="su_id_tts", |
|
), |
|
SEACrowdConfig( |
|
name="su_id_tts_seacrowd_sptext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="SU_ID_TTS Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="su_id_tts", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "su_id_tts_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"])) |
|
female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"male_filepath": male_path, |
|
"female_filepath": female_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, male_filepath: Path, female_filepath: Path): |
|
|
|
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext": |
|
tsv_m = os.path.join(male_filepath, "su_id_male", "line_index.tsv") |
|
tsv_f = os.path.join(female_filepath, "su_id_female", "line_index.tsv") |
|
|
|
with open(tsv_m, "r") as file: |
|
tsv_m_data = csv.reader(file, delimiter="\t") |
|
for line in tsv_m_data: |
|
spk_trans_info = line[0].split("_") |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": line[0], |
|
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], |
|
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), |
|
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), |
|
"text": line[2], |
|
"gender": spk_trans_info[0][2], |
|
} |
|
yield line[0], ex |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
ex = { |
|
"id": line[0], |
|
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], |
|
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), |
|
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), |
|
"text": line[2], |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": spk_trans_info[0][2], |
|
}, |
|
} |
|
yield line[0], ex |
|
|
|
with open(tsv_f, "r") as file: |
|
tsv_f_data = csv.reader(file, delimiter="\t") |
|
for line in tsv_f_data: |
|
spk_trans_info = line[0].split("_") |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": line[0], |
|
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], |
|
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), |
|
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), |
|
"text": line[2], |
|
"gender": spk_trans_info[0][2], |
|
} |
|
yield line[0], ex |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
ex = { |
|
"id": line[0], |
|
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], |
|
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), |
|
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), |
|
"text": line[2], |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": spk_trans_info[0][2], |
|
}, |
|
} |
|
yield line[0], ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|