|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The dataset consists of individual news articles, each corresponding to a unique URL at the |
|
Thai government website (https://www.thaigov.go.th/). The dataset structure is as follows: a topic header is |
|
followed by the content of the news article, which is then succeeded by a blank line and the source URL |
|
""" |
|
import glob |
|
import os |
|
import re |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import jsonlines |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{, |
|
author = {PyThaiNLP}, |
|
title = {thaigov-v2-corpus}, |
|
journal = {}, |
|
volume = {}, |
|
year = {2023}, |
|
url = {https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master}, |
|
doi = {}, |
|
biburl = {}, |
|
bibsource = {} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "thaigov" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is a corpus from ThaiGov. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master/data" |
|
|
|
_LANGUAGES = ["tha"] |
|
|
|
_LICENSE = Licenses.PDDL.value |
|
|
|
_LOCAL = False |
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/PyThaiNLP/thaigov-v2-corpus/archive/refs/heads/master.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "2.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset is a corpus from ThaiGov, can be used for summarization tasks.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="thaigov_source", |
|
version=SOURCE_VERSION, |
|
description="thaigov source schema", |
|
schema="source", |
|
subset_id="thaigov", |
|
), |
|
SEACrowdConfig( |
|
name="thaigov_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="thaigov SEACrowd schema", |
|
schema="seacrowd_t2t", |
|
subset_id="thaigov", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "thaigov_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"src": datasets.Value("string"), |
|
"tgt": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
list_all_txt_files = list(glob.glob(os.path.join(data_dir, "thaigov-v2-corpus-master", "data", "*", "*", "*", "*.txt"))) |
|
all_data = [] |
|
counter = 0 |
|
for i in list_all_txt_files: |
|
d = self._read_file(i) |
|
all_data.append({"id": counter, "src": d["context"], "tgt": d["title"], "url": d["url"]}) |
|
counter += 1 |
|
|
|
self._write_jsonl(data_dir + "/train.jsonl", all_data) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
i = 0 |
|
with jsonlines.open(filepath) as f: |
|
for each_data in f.iter(): |
|
ex = { |
|
"id": each_data["id"], |
|
"src": each_data["src"], |
|
"tgt": each_data["tgt"], |
|
"url": each_data["url"], |
|
} |
|
yield i, ex |
|
i += 1 |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
i = 0 |
|
with jsonlines.open(filepath) as f: |
|
for each_data in f.iter(): |
|
ex = {"id": each_data["id"], "text_1": each_data["src"], "text_2": each_data["tgt"], "text_1_name": "input_document", "text_2_name": "output_summary"} |
|
yield i, ex |
|
i += 1 |
|
|
|
def _read_file(self, path): |
|
text = {"title": "", "context": "", "url": ""} |
|
page_view_line = 0 |
|
with open(path, "r", encoding="utf-8-sig") as f: |
|
for n, line in enumerate(f): |
|
line = line.strip() |
|
if n == 0: |
|
text["title"] = line.strip() |
|
else: |
|
if line: |
|
if re.match(r"^[\d,]+$", line): |
|
page_view_line = n |
|
continue |
|
if line == "พิมพ์" or page_view_line and page_view_line < n: |
|
continue |
|
if re.match(r"^ที่มา : http", line): |
|
text["url"] = line.strip().split(" ")[-1] |
|
else: |
|
text["context"] += line.strip().replace("\xa0", "") + "\n" |
|
return text |
|
|
|
def _write_jsonl(self, filepath, values): |
|
with jsonlines.open(filepath, "w") as writer: |
|
for line in values: |
|
writer.write(line) |
|
|