Datasets:
File size: 6,663 Bytes
3938549 c85c785 3938549 c85c785 c056a87 484dd7a c85c785 2974955 c056a87 2974955 c85c785 f7ecca8 c85c785 f7ecca8 c85c785 c056a87 c85c785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: cc-by-nc-4.0
task_categories:
- automatic-speech-recognition
language:
- bn
tags:
- Evaluation Benchmark
- Robustness
- ASR
- Bengali
- Spontaneous Speech
size_categories:
- 1K<n<10K
---
# Dataset Card for BanSpeech
## Table of Contents
- [Dataset Card for SUBAK.KO](#dataset-card-for-BanSpeech)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Developed By** Dept. of CSE, SUST, Bangladesh
- **Paper:** [BanSpeech: A Multi-domain Bangla Speech Recognition Benchmark Toward Robust Performance in Challenging Conditions](https://ieeexplore.ieee.org/document/10453554)
- **Point of Contact:** [Ahnaf Mozib Samin](mailto:asamin9796@gmail.com)
### Dataset Summary
BanSpeech is a publicly available human-annotated Bangladeshi standard Bangla multi-domain automatic speech recognition (ASR) benchmark.
This benchmark contains approximately 6.52 hours of human-annotated broadcast speech, totaling 8085 utterances, across 13 distinct domains and
is primarily designed for ASR performance evaluation in challenging conditions e.g. spontaneous, domain-shifting, multi-talker, code-switching.
In addition, BanSpeech covers dialectal domains from 7 regions of Bangladesh, however, this part is weakly labeled and can be used for dialect recognition task.
The [corresponding paper](https://ieeexplore.ieee.org/document/10453554) reports
detailed information about the development of BanSpeech, along with an analysis of the performance of state-of-the-art
fully supervised, self-supervised, and weakly supervised models on BanSpeech.
BanSpeech is developed by the researchers from the **Department of Computer Science and Engineering (CSE)** at **Shahjalal University of Science and Technology (SUST),
Bangladesh**.
### Example Usage
To load the full BanSpeech, use the following code:
```python
from datasets import load_dataset
dataset = load_dataset("SUST-CSE-Speech/banspeech")
```
To load a specific domain of the BanSpeech, define the domain in the split parameter and set the streaming mode as True in the following way:
```python
from datasets import load_dataset
dataset = load_dataset("SUST-CSE-Speech/banspeech", split="sports", streaming=True)
```
More documentation on streaming can be found [from this link.](https://huggingface.co/docs/datasets/stream#split-dataset)
Alternatively, you can manually download the BanSpeech from [this HuggingFace directory.](https://huggingface.co/datasets/SUST-CSE-Speech/banspeech/blob/main/zipped_data/banspeech.zip)
The compressed folder contains speeches from the 13 general domains as well as the 7 dialectal domains.
The csv files corresponding to the domains can be found in the same zipped file.
### Supported Tasks and Leaderboards
This benchmark is designed for the automatic speech recognition performance evaluation. The associated paper provides the comprehensive evaluation of the state-of-the-art
models on BanSpeech.
### Languages
Bangladeshi standard Bangla
## Dataset Structure
### Data Instances
A typical data point comprises the path to the audio file and its transcription.
```
{
'audio': {'path': '/home/username/Study/wav2vec2/bangla_broadcast_speech_corpus/banspeech/television_news/news_shomoy_11_d_222.wav',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'transcript': 'এবং রাস্তা হয়েছে',
'path': '/television_news/news_shomoy_11_d_222.wav'
}
```
### Data Fields
- audio: A dictionary containing the path to the original audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- transcription: The orthographic transcription
- file_path: The relative path to the audio file
## Additional Information
### Licensing Information
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
### Citation Information
Please cite the following paper if you use the corpus.
```
@ARTICLE{10453554,
author={Samin, Ahnaf Mozib and Kobir, M. Humayon and Rafee, Md. Mushtaq Shahriyar and Ahmed, M. Firoz and Hasan, Mehedi and Ghosh, Partha and Kibria, Shafkat and Rahman, M. Shahidur},
journal={IEEE Access},
title={BanSpeech: A Multi-Domain Bangla Speech Recognition Benchmark Toward Robust Performance in Challenging Conditions},
year={2024},
volume={12},
number={},
pages={34527-34538},
keywords={Speech recognition;Data models;Benchmark testing;Speech processing;Robustness;Solid modeling;Task analysis;Automatic speech recognition;Transfer learning;Neural networks;Convolutional neural networks;Supervised learning;Automatic speech recognition;Bangla;domain shifting;read speech;spontaneous speech;transfer learning},
doi={10.1109/ACCESS.2024.3371478}}
```
### Contributions
Thanks to [Ahnaf Mozib Samin](https://huggingface.co/ahnafsamin) for adding this dataset. |