|
""" |
|
This module computes evaluation metrics for MSMARCO dataset on the ranking task. Intenral hard coded eval files version. DO NOT PUBLISH! |
|
Command line: |
|
python msmarco_eval_ranking.py <path_to_candidate_file> |
|
|
|
Creation Date : 06/12/2018 |
|
Last Modified : 4/09/2019 |
|
Authors : Daniel Campos <dacamp@microsoft.com>, Rutger van Haasteren <ruvanh@microsoft.com> |
|
""" |
|
import sys |
|
import statistics |
|
|
|
from collections import Counter |
|
|
|
|
|
def load_reference_from_stream(f): |
|
"""Load Reference reference relevant passages |
|
Args:f (stream): stream to load. |
|
Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints). |
|
""" |
|
qids_to_relevant_passageids = {} |
|
for l in f: |
|
try: |
|
l = l.strip().split('\t') |
|
qid = int(l[0]) |
|
if qid in qids_to_relevant_passageids: |
|
pass |
|
else: |
|
qids_to_relevant_passageids[qid] = [] |
|
qids_to_relevant_passageids[qid].append(int(l[1])) |
|
except: |
|
raise IOError('\"%s\" is not valid format' % l) |
|
return qids_to_relevant_passageids |
|
|
|
|
|
def load_reference(path_to_reference): |
|
"""Load Reference reference relevant passages |
|
Args:path_to_reference (str): path to a file to load. |
|
Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints). |
|
""" |
|
with open(path_to_reference, 'r') as f: |
|
qids_to_relevant_passageids = load_reference_from_stream(f) |
|
return qids_to_relevant_passageids |
|
|
|
|
|
def load_candidate_from_stream(f): |
|
"""Load candidate data from a stream. |
|
Args:f (stream): stream to load. |
|
Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance |
|
""" |
|
qid_to_ranked_candidate_passages = {} |
|
for l in f: |
|
try: |
|
l = l.strip().split('\t') |
|
qid = int(l[0]) |
|
pid = int(l[1]) |
|
rank = int(l[2]) |
|
if qid in qid_to_ranked_candidate_passages: |
|
pass |
|
else: |
|
|
|
tmp = [0] * 1000 |
|
qid_to_ranked_candidate_passages[qid] = tmp |
|
qid_to_ranked_candidate_passages[qid][rank - 1] = pid |
|
except: |
|
raise IOError('\"%s\" is not valid format' % l) |
|
return qid_to_ranked_candidate_passages |
|
|
|
|
|
def load_candidate(path_to_candidate): |
|
"""Load candidate data from a file. |
|
Args:path_to_candidate (str): path to file to load. |
|
Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance |
|
""" |
|
|
|
with open(path_to_candidate, 'r') as f: |
|
qid_to_ranked_candidate_passages = load_candidate_from_stream(f) |
|
return qid_to_ranked_candidate_passages |
|
|
|
|
|
def quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages): |
|
"""Perform quality checks on the dictionaries |
|
|
|
Args: |
|
p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping |
|
Dict as read in with load_reference or load_reference_from_stream |
|
p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates |
|
Returns: |
|
bool,str: Boolean whether allowed, message to be shown in case of a problem |
|
""" |
|
message = '' |
|
allowed = True |
|
|
|
|
|
candidate_set = set(qids_to_ranked_candidate_passages.keys()) |
|
ref_set = set(qids_to_relevant_passageids.keys()) |
|
|
|
|
|
for qid in qids_to_ranked_candidate_passages: |
|
|
|
duplicate_pids = set( |
|
[item for item, count in Counter(qids_to_ranked_candidate_passages[qid]).items() if count > 1]) |
|
|
|
if len(duplicate_pids - set([0])) > 0: |
|
message = "Cannot rank a passage multiple times for a single query. QID={qid}, PID={pid}".format( |
|
qid=qid, pid=list(duplicate_pids)[0]) |
|
allowed = False |
|
|
|
return allowed, message |
|
|
|
|
|
def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages): |
|
"""Compute MRR metric |
|
Args: |
|
p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping |
|
Dict as read in with load_reference or load_reference_from_stream |
|
p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates |
|
Returns: |
|
dict: dictionary of metrics {'MRR': <MRR Score>} |
|
""" |
|
topk=[5,10,20,50,100,200,500,1000] |
|
accuracy = { k : [] for k in topk } |
|
MaxMRRRank=max(topk) |
|
|
|
ranking = [] |
|
for qid in qids_to_ranked_candidate_passages: |
|
if qid in qids_to_relevant_passageids: |
|
ranking.append(10**9) |
|
target_pid = qids_to_relevant_passageids[qid] |
|
candidate_pid = qids_to_ranked_candidate_passages[qid] |
|
for i in range(0, MaxMRRRank): |
|
if candidate_pid[i] in target_pid: |
|
ranking.pop() |
|
ranking.append(i + 1) |
|
break |
|
for k in topk: |
|
accuracy[k].append(0 if ranking[-1] > k else 1) |
|
if len(ranking) == 0: |
|
raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?") |
|
|
|
|
|
return accuracy |
|
|
|
|
|
def compute_metrics_from_files(path_to_reference, path_to_candidate, perform_checks=True): |
|
"""Compute MRR metric |
|
Args: |
|
p_path_to_reference_file (str): path to reference file. |
|
Reference file should contain lines in the following format: |
|
QUERYID\tPASSAGEID |
|
Where PASSAGEID is a relevant passage for a query. Note QUERYID can repeat on different lines with different PASSAGEIDs |
|
p_path_to_candidate_file (str): path to candidate file. |
|
Candidate file sould contain lines in the following format: |
|
QUERYID\tPASSAGEID1\tRank |
|
If a user wishes to use the TREC format please run the script with a -t flag at the end. If this flag is used the expected format is |
|
QUERYID\tITER\tDOCNO\tRANK\tSIM\tRUNID |
|
Where the values are separated by tabs and ranked in order of relevance |
|
Returns: |
|
dict: dictionary of metrics {'MRR': <MRR Score>} |
|
""" |
|
|
|
qids_to_relevant_passageids = load_reference(path_to_reference) |
|
qids_to_ranked_candidate_passages = load_candidate(path_to_candidate) |
|
if perform_checks: |
|
allowed, message = quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages) |
|
if message != '': print(message) |
|
|
|
return compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages) |
|
|
|
|
|
def main(): |
|
"""Command line: |
|
python msmarco_eval_ranking.py <path to reference> <path_to_candidate_file> |
|
""" |
|
import scipy.stats as stats |
|
topk=[5,10,20,50,100,200,500,1000] |
|
path_to_candidate_a = "InfoCSE_ICT.tsv.marco" |
|
path_to_reference = "marco/qrels.dev.tsv" |
|
all_scores_a = compute_metrics_from_files(path_to_reference, path_to_candidate_a) |
|
for method in ["SimCSE","ConSERT","MirrorBERT","ICT","CPC","DeCLUTR","CONPONO"]: |
|
path_to_candidate_b = "{}.tsv.marco".format(method) |
|
print(path_to_candidate_b) |
|
all_scores_b = compute_metrics_from_files(path_to_reference, path_to_candidate_b) |
|
for k in topk: |
|
stat_val, p_val = stats.ttest_ind(all_scores_a[k], all_scores_b[k]) |
|
print(str(k) + ': ' + str(p_val / 2)) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|