metadata
license: unknown
task_categories:
- graph-ml
configs:
- config_name: transductive
data_files:
- split: train
path: processed/transductive/train_df.csv
- split: valid
path: processed/transductive/val_df.csv
- split: test
path: processed/transductive/test_df.csv
- config_name: inductive
data_files:
- split: train
path: processed/inductive/train_df.csv
- split: valid
path: processed/inductive/val_df.csv
- split: test
path: processed/inductive/test_df.csv
- config_name: raw
data_files: raw/*.txt
Source Paper: https://arxiv.org/abs/1802.06916
Usage
from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset
dataset = CornellTemporalHyperGraphDataset(root = "./", name="email-Enron-25", split="train")
Citation
@article{Benson-2018-simplicial,
author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
title = {Simplicial closure and higher-order link prediction},
year = {2018},
doi = {10.1073/pnas.1800683115},
publisher = {National Academy of Sciences},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences}
}