|
ModelNet_Splats release (Fall 2024) |
|
|
|
Each zip file contains ply files where each Gaussian is encoded as a vertex with custom vertex attributes. This ply format is commonly used for Gaussian splats and can be viewed using [online viewer](https://playcanvas.com/supersplat/editor/). |
|
To open the .ply files, you can use the following python code: |
|
```python |
|
from plyfile import PlyData |
|
import numpy as np |
|
gs_vertex = PlyData.read('ply_path')['vertex'] |
|
### load centroids[x,y,z] - Gaussian centroid |
|
x = gs_vertex['x'].astype(np.float32) |
|
y = gs_vertex['y'].astype(np.float32) |
|
z = gs_vertex['z'].astype(np.float32) |
|
centroids = np.stack((x, y, z), axis=-1) # [n, 3] |
|
|
|
### load o - opacity |
|
opacity = gs_vertex['opacity'].astype(np.float32).reshape(-1, 1) |
|
|
|
|
|
### load scales[sx, sy, sz] - Scale |
|
scale_names = [ |
|
p.name |
|
for p in gs_vertex.properties |
|
if p.name.startswith("scale_") |
|
] |
|
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1])) |
|
scales = np.zeros((centroids.shape[0], len(scale_names))) |
|
for idx, attr_name in enumerate(scale_names): |
|
scales[:, idx] = gs_vertex[attr_name].astype(np.float32) |
|
|
|
### load rotation rots[q_0, q_1, q_2, q_3] - Rotation |
|
rot_names = [ |
|
p.name for p in gs_vertex.properties if p.name.startswith("rot") |
|
] |
|
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1])) |
|
rots = np.zeros((centroids.shape[0], len(rot_names))) |
|
for idx, attr_name in enumerate(rot_names): |
|
rots[:, idx] = gs_vertex[attr_name].astype(np.float32) |
|
|
|
rots = rots / (np.linalg.norm(rots, axis=1, keepdims=True) + 1e-9) |
|
|
|
### load base sh_base[dc_0, dc_1, dc_2] - Spherical harmonic |
|
sh_base = np.zeros((centroids.shape[0], 3, 1)) |
|
sh_base[:, 0, 0] = gs_vertex['f_dc_0'].astype(np.float32) |
|
sh_base[:, 1, 0] = gs_vertex['f_dc_1'].astype(np.float32) |
|
sh_base[:, 2, 0] = gs_vertex['f_dc_2'].astype(np.float32) |
|
sh_base = sh_base.reshape(-1, 3) |
|
``` |
|
Note that more details regarding <u>PSNR</u>, <u>SSIM</u>, <u>LPIPS</u>, <u>FILE_SIZE</u> and <u>Number of Gaussians</u> can be find in [summary](ShapeSplatsV1_Qualitative_Results.json). To showcase the difference of point cloud in spatial distribution, we report Jensen–Shannon Divergence (JSD) and Maximum Mean Discrepancy (MMD) between gaussian splats and ShapeNetCoreV1 point clouds. |
|
|
|
More details for the pretraining method of ShapeSplats can be find in [Gaussian-MAE](https://unique1i.github.io/ShapeSplat/) |
|
|
|
Last updated: 2024-09-05 |
|
|
|
|