query_id
stringlengths
1
4
query
stringlengths
26
249
positive_passages
list
negative_passages
list
682
Lack of FGF21 in mice leads to reduced lifespan.
[ { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" } ]
[ { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "1840993", "text": "Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that represents a promising target for the treatment of several metabolic diseases. Administration of recombinant wild type FGF21 to diabetic animals leads to a dramatic improvement in glycaemia and ameliorates other systemic measures of metabolic health. Here we report the pharmacologic outcomes observed in non-human primates upon administration of a recently described FGF21 analogue, LY2405319 (LY). Diabetic rhesus monkeys were treated subcutaneously with LY once daily for a period of seven weeks. The doses of LY used were 3, 9 and 50 mg/kg each delivered in an escalating fashion with washout measurements taken at 2, 4, 6 and 8 weeks following the final LY dose. LY therapy led to a dramatic and rapid lowering of several important metabolic parameters including glucose, body weight, insulin, cholesterol and triglyceride levels at all doses tested. In addition, we observed favorable changes in circulating profiles of adipokines, with increased adiponectin and reduced leptin indicative of direct FGF21 action on adipose tissue. Importantly, and for the first time we show that FGF21 based therapy has metabolic efficacy in an animal with late stage diabetes. While the glycemic efficacy of LY in this animal was partially attenuated its lipid lowering effect was fully preserved suggesting that FGF21 may be a viable treatment option even in patients with advanced disease progression. These findings support continued exploration of the FGF21 pathway for the treatment of metabolic disease.", "title": "LY2405319, an Engineered FGF21 Variant, Improves the Metabolic Status of Diabetic Monkeys" }, { "docid": "2832403", "text": "BACKGROUND Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. \n METHODOLOGY/PRINCIPAL FINDINGS We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue and adipocytes. Among several metabolic and endocrine tissues, the response of adipose tissue to FGF21 is predominant, and can be blunted by the ablation of KLB or FGFR1. \n CONCLUSIONS Our results indicate that unlike FGF19, FGF21 is unable to bind FGFR4-KLB complex with affinity comparable to FGFR1-KLB, and therefore, at physiological concentration less likely to directly and significantly target the liver where FGFR4-KLB predominantly resides. However, both FGF21 and FGF19 have the potential to activate responses of primarily the adipose tissue where FGFR1-KLB resides.", "title": "Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB" }, { "docid": "2462673", "text": "Activation of self-reactive T cells and their trafficking to target tissues leads to autoimmune organ destruction. Mice lacking the co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) develop fatal autoimmunity characterized by lymphocytic infiltration into nonlymphoid tissues. Here, we demonstrate that the CD28 co-stimulatory pathway regulates the trafficking of self-reactive Ctla4(-/-) T cells to tissues. Concurrent ablation of the CD28-activated Tec family kinase ITK does not block spontaneous T cell activation but instead causes self-reactive Ctla4(-/-) T cells to accumulate in secondary lymphoid organs. Despite excessive spontaneous T cell activation and proliferation in lymphoid organs, Itk(-/-); Ctla4(-/-) mice are otherwise healthy, mount antiviral immune responses and exhibit a long lifespan. We propose that ITK specifically licenses autoreactive T cells to enter tissues to mount destructive immune responses. Notably, ITK inhibitors mimic the null mutant phenotype and also prevent pancreatic islet infiltration by diabetogenic T cells in mouse models of type 1 diabetes, highlighting their potential utility for the treatment of human autoimmune disorders.", "title": "CD28 and ITK signals regulate autoreactive T cell trafficking" }, { "docid": "9513785", "text": "We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85alpha (P = 0.018), p110beta (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.", "title": "Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice" }, { "docid": "22038539", "text": "In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7-14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7-3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift.", "title": "Caloric restriction delays age-related methylation drift" }, { "docid": "7150238", "text": "Fibroblast growth factor 21 (FGF21) is a recently discovered metabolic regulator. Exogenous FGF21 produces beneficial metabolic effects in animal models; however, the translation of these observations to humans has not been tested. Here, we studied the effects of LY2405319 (LY), a variant of FGF21, in a randomized, placebo-controlled, double-blind proof-of-concept trial in patients with obesity and type 2 diabetes. Patients received placebo or 3, 10, or 20 mg of LY daily for 28 days. LY treatment produced significant improvements in dyslipidemia, including decreases in low-density lipoprotein cholesterol and triglycerides and increases in high-density lipoprotein cholesterol and a shift to a potentially less atherogenic apolipoprotein concentration profile. Favorable effects on body weight, fasting insulin, and adiponectin were also detected. However, only a trend toward glucose lowering was observed. These results indicate that FGF21 is bioactive in humans and suggest that FGF21-based therapies may be effective for the treatment of selected metabolic disorders.", "title": "The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes." }, { "docid": "4414481", "text": "Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.", "title": "Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration" }, { "docid": "2466614", "text": "Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of \"survival\" responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.", "title": "Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms" }, { "docid": "13350374", "text": "Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1(-/-) mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1(-/- )animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.", "title": "Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock." }, { "docid": "6313547", "text": "Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.", "title": "Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity." }, { "docid": "17333231", "text": "The prion protein (PrP(C)) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrP(Sc). Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrP(C) is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrP(C) levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrP(Sc) formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease.", "title": "The sheddase ADAM10 is a potent modulator of prion disease" }, { "docid": "16355392", "text": "Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.", "title": "Modification of kidney barrier function by the urokinase receptor" }, { "docid": "34753204", "text": "Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24(-/-)) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24(-/-) mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures-akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24(-/-) mice. Zmpste24(-/-) mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24(-/-) mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology.", "title": "Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect." }, { "docid": "10889845", "text": "Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.", "title": "Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance." }, { "docid": "1910120", "text": "The role of specific phospholipids (PLs) in lipid transport has been difficult to assess due to an inability to selectively manipulate membrane composition in vivo. Here we show that the phospholipid remodeling enzyme lysophosphatidylcholine acyltransferase 3 (Lpcat3) is a critical determinant of triglyceride (TG) secretion due to its unique ability to catalyze the incorporation of arachidonate into membranes. Mice lacking Lpcat3 in the intestine fail to thrive during weaning and exhibit enterocyte lipid accumulation and reduced plasma TGs. Mice lacking Lpcat3 in the liver show reduced plasma TGs, hepatosteatosis, and secrete lipid-poor very low-density lipoprotein (VLDL) lacking arachidonoyl PLs. Mechanistic studies indicate that Lpcat3 activity impacts membrane lipid mobility in living cells, suggesting a biophysical basis for the requirement of arachidonoyl PLs in lipidating lipoprotein particles. These data identify Lpcat3 as a key factor in lipoprotein production and illustrate how manipulation of membrane composition can be used as a regulatory mechanism to control metabolic pathways.", "title": "Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion" }, { "docid": "4434951", "text": "BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging \"clock\", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. \n RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. \n CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.", "title": "Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions" }, { "docid": "26008063", "text": "Islet1 (Isl1) is a transcription factor transiently expressed in a subset of heart and limb progenitors. During studies of limb development, conditional Isl1 deletion produced unexpected kidney abnormalities. Here, we studied the renal expression of Isl1 and whether it has a role in kidney development. In situ hybridization revealed Isl1 expression in the mesenchymal cells surrounding the base of the ureteric bud in mice. Conditional deletion of Isl1 caused kidney agenesis or hypoplasia and hydroureter, a phenotype resembling human congenital anomalies of the kidney and urinary tract (CAKUT). The absence of Isl1 led to ectopic branching of the ureteric bud out from the nephric duct or to the formation of accessory buds, both of which could lead to obstruction of the ureter-bladder junction and consequent hydroureter. The abnormal elongation and poor branching of the ureteric buds were the likely causes of the kidney agenesis or hypoplasia. Furthermore, the lack of Isl1 reduced the expression of Bmp4, a gene implicated in the CAKUT-like phenotype, in the metanephric region before ureteric budding. In conclusion, Isl1 is essential for proper development of the kidney and ureter by repressing the aberrant formation of the ureteric bud. These observations call for further studies to investigate whether Isl1 may be a causative gene for human CAKUT.", "title": "Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT." } ]
683
Lack of FGF21 in mice slows the rate of atherosclerotic plaque formation.
[ { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" } ]
[ { "docid": "4890578", "text": "Time for primary reveiw 27 days Atherosclerosis continues to be one of the main subjects in pathology research. The intriguing complexity of its pathogenesis as well as the importance of its clinical sequelae provide a rationale for this [1]. A large number of diseases with totally different clinical presentations are basically atherosclerosis related, and among these, myocardial infarction, stroke, abdominal aneurysms and lower limb ischemia determine to a large extent the morbidity and mortality in Western style populations. But, despite this broad spectrum of clinical disease, most of the acute manifestations of atherosclerosis share a common pathogenetic feature: rupture of an atherosclerotic plaque [2–4]. Plaque disruptions may vary greatly in extent from tiny fissures or erosions of the plaque surface to deep intimal tears which extend into the soft lipid core of lesions; in all these instances, at least some degree of thrombus formation occurs [5, 6]. The abdominal aorta is the arterial site most prominently involved in the process of plaque formation, and also of plaque complications. In this large diameter vessel the process of plaque disruption and thrombosis is not ended by luminal occlusion, and may lead to extensive surface ulcerations comprising large areas of the aortic wall, as can be observed in many autopsy cases at older age. Apart from the undisputable role of atherosclerosis in abdominal aneurysm formation [7], mural thrombosis leads to a surprisingly low rate of clinically significant complications in these patients, although cholesterol emboli can be regularly found in their kidneys and skin at autopsy. Still, it is presently unclear what impact the various biologically active mediators released from eroded aortic surfaces may have on the human body. In contrast, in small diameter vessels such as coronary arteries, occlusive thrombosis is a frequent and often fatal complication of plaque … * Corresponding author. Tel.: +31-20-5665-633; fax: +31-20-914-738; e-mail a.c.vanderwal@amc.uva.nl", "title": "Atherosclerotic plaque rupture--pathologic basis of plaque stability and instability." }, { "docid": "970012", "text": "Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks.", "title": "Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis" }, { "docid": "13923069", "text": "Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.", "title": "Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice" }, { "docid": "7373453", "text": "Although the entire coronary tree is exposed to the atherogenic effect of the systemic risk factors, atherosclerotic lesions form at specific arterial regions, where low and oscillatory endothelial shear stress (ESS) occur. Low ESS modulates endothelial gene expression through complex mechanoreception and mechanotransduction processes, inducing an atherogenic endothelial phenotype and formation of an early atherosclerotic plaque. Each early plaque exhibits an individual natural history of progression, regression, or stabilization, which is dependent not only on the formation and progression of atherosclerosis but also on the vascular remodeling response. Although the pathophysiologic mechanisms involved in the remodeling of the atherosclerotic wall are incompletely understood, the dynamic interplay between local hemodynamic milieu, low ESS in particular, and the biology of the wall is likely to be important. In this review, we explore the molecular, cellular, and vascular processes supporting the role of low ESS in the natural history of coronary atherosclerosis and vascular remodeling and indicate likely mechanisms concerning the different natural history trajectories of individual coronary lesions. Atherosclerotic plaques associated with excessive expansive remodeling evolve to high-risk plaques, because low ESS conditions persist, thereby promoting continued local lipid accumulation, inflammation, oxidative stress, matrix breakdown, and eventually further plaque progression and excessive expansive remodeling. An enhanced understanding of the pathobiologic processes responsible for atherosclerosis and vascular remodeling might allow for early identification of a high-risk coronary plaque and thereby provide a rationale for innovative diagnostic and/or therapeutic strategies for the management of coronary patients and prevention of acute coronary syndromes.", "title": "Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior." }, { "docid": "22889972", "text": "Inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) have been implicated in atherogenesis. However, the precise role of TNF-alpha in atherogenesis is still unclear. To examine the effect of TNF-alpha on atherogenesis, we generated compound-deficient mice in apolipoprotein E (apoE) and TNF-alpha (apoE-/-/TNF-alpha-/-) and compared them with apoE-/- mice. Although serum total cholesterol levels were markedly elevated in both apoE-/-/TNF-alpha-/- and apoE-/- mice compared to wild-type mice, no differences were observed between apoE-/-/TNF-alpha-/- and apoE-/- mice. The atherosclerotic plaque area in the aortic luminal surface of apoE-/-/TNF-alpha-/- mice (n=8, 3.1+/-0.4%) was significantly smaller than that of apoE-/- mice (n=7, 4.7+/-0.4%, p<0.001) despite the lack of difference in serum cholesterol levels. The atherosclerotic lesion size in the aortic sinus of apoE-/-/TNF-alpha-/- mice (n=10, 5.1+/-0.3 x 10(5)microm(2)) was also significantly smaller than that of apoE-/- mice (n=11, 7.0+/-0.3 x 10(5)microm(2), p<0.0001). RT-PCR analysis indicated that the expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in apoE-/- than apoE-/-/TNF-alpha-/- mice. Macrophages from apoE(-/-) mice showed higher uptake level of oxidized LDL and increased expression level of scavenger receptor class A (SRA) compared to those from apoE-/-/TNF-alpha-/- mice. These results indicate that TNF-alpha plays an atherogenic role by upregulating the expressions of ICAM-1, VCAM-1 and MCP-1 in the vascular wall, and by inducing SRA expression and oxidized LDL uptake in macrophages.", "title": "Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice." }, { "docid": "16826810", "text": "Vascular calcification is an advanced feature of atherosclerosis for which no effective therapy is available. To investigate the modulation or reversal of calcification, we identified calcifying progenitor cells and investigated their calcifying/decalcifying potentials. Cells from the aortas of mice were sorted into four groups using Sca-1 and PDGFRα markers. Sca-1(+) (Sca-1(+)/PDGFRα(+) and Sca-1(+)/PDGFRα(-)) progenitor cells exhibited greater osteoblastic differentiation potentials than Sca-1(-) (Sca-1(-)/PDGFRα(+) and Sca-1(-)/PDGFRα(-)) progenitor cells. Among Sca-1(+) progenitor populations, Sca-1(+)/PDGFRα(-) cells possessed bidirectional differentiation potentials towards both osteoblastic and osteoclastic lineages, whereas Sca-1(+)/PDGFRα(+) cells differentiated into an osteoblastic lineage unidirectionally. When treated with a peroxisome proliferator activated receptor γ (PPARγ) agonist, Sca-1(+)/PDGFRα(-) cells preferentially differentiated into osteoclast-like cells. Sca-1(+) progenitor cells in the artery originated from the bone marrow (BM) and could be clonally expanded. Vessel-resident BM-derived Sca-1(+) calcifying progenitor cells displayed nonhematopoietic, mesenchymal characteristics. To evaluate the modulation of in vivo calcification, we established models of ectopic and atherosclerotic calcification. Computed tomography indicated that Sca-1(+) progenitor cells increased the volume and calcium scores of ectopic calcification. However, Sca-1(+)/PDGFRα(-) cells treated with a PPARγ agonist decreased bone formation 2-fold compared with untreated cells. Systemic infusion of Sca-1(+)/PDGFRα(-) cells into Apoe(-/-) mice increased the severity of calcified atherosclerotic plaques. However, Sca-1(+)/PDGFRα(-) cells in which PPARγ was activated displayed markedly decreased plaque severity. Immunofluorescent staining indicated that Sca-1(+)/PDGFRα(-) cells mainly expressed osteocalcin; however, activation of PPARγ triggered receptor activator for nuclear factor-κB (RANK) expression, indicating their bidirectional fate in vivo. These findings suggest that a subtype of BM-derived and vessel-resident progenitor cells offer a therapeutic target for the prevention of vascular calcification and that PPARγ activation may be an option to reverse calcification.", "title": "Vascular Calcifying Progenitor Cells Possess Bidirectional Differentiation Potentials" }, { "docid": "33684572", "text": "Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.", "title": "Transmission of atherosclerosis susceptibility with gut microbial transplantation." }, { "docid": "22080671", "text": "Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.", "title": "KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis" }, { "docid": "17421851", "text": "BACKGROUND Interleukin (IL)-18 is a potent proinflammatory cytokine with potential atherogenic properties. Its expression and role in atherosclerosis, however, are unknown. \n METHODS AND RESULTS In the present study, we examined stable and unstable human carotid atherosclerotic plaques retrieved by endarterectomy for the presence of IL-18 using reverse transcription-polymerase chain reaction (PCR), Western blot, and immunohistochemical techniques. IL-18 was highly expressed in the atherosclerotic plaques compared with control normal arteries and was localized mainly in plaque macrophages. IL-18 receptor was also upregulated in plaque macrophages and endothelial cells, suggesting potential biological effects. To examine the role of IL-18 in atherosclerosis, we determined the relation between IL-18 mRNA expression and signs of plaque instability using real-time quantitative PCR. Interestingly, significantly higher levels of IL-18 mRNA were found in symptomatic (unstable) plaques than asymptomatic (stable) plaques (P<0.01). \n CONCLUSIONS These results suggest, for the first time, a major role for IL-18 in atherosclerotic plaque destabilization leading to acute ischemic syndromes.", "title": "Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability." }, { "docid": "5260382", "text": "Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer’s disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested the growth of preexisting plaques and reduced the appearance of new plaques by 78%. In healthy human volunteers, citalopram’s effects on Aβ production and Aβ concentrations in cerebrospinal fluid (CSF) were measured prospectively using stable isotope labeling kinetics, with CSF sampling during acute dosing of citalopram. Aβ production in CSF was slowed by 37% in the citalopram group compared to placebo. This change was associated with a 38% decrease in total CSF Aβ concentrations in the drug-treated group. The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. This study demonstrates key target engagement for future AD prevention trials.", "title": "An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice" }, { "docid": "33569870", "text": "The physiological role of autophagic flux within the vascular endothelial layer remains poorly understood. Here, we show that in primary endothelial cells, oxidized and native LDL stimulates autophagosome formation. Moreover, by both confocal and electron microscopy, excess native or modified LDL appears to be engulfed within autophagic structures. Transient knockdown of the essential autophagy gene ATG7 resulted in higher levels of intracellular (125) I-LDL and oxidized LDL (OxLDL) accumulation, suggesting that in endothelial cells, autophagy may represent an important mechanism to regulate excess, exogenous lipids. The physiological importance of these observations was assessed using mice containing a conditional deletion of ATG7 within the endothelium. Following acute intravenous infusion of fluorescently labeled OxLDL, mice lacking endothelial expression of ATG7 demonstrated prolonged retention of OxLDL within the retinal pigment epithelium (RPE) and choroidal endothelium of the eye. In a chronic model of lipid excess, we analyzed atherosclerotic burden in ApoE(-/-) mice with or without endothelial autophagic flux. The absence of endothelial autophagy markedly increased atherosclerotic burden. Thus, in both an acute and chronic in vivo model, endothelial autophagy appears critically important in limiting lipid accumulation within the vessel wall. As such, strategies that stimulate autophagy, or prevent the age-dependent decline in autophagic flux, might be particularly beneficial in treating atherosclerotic vascular disease.", "title": "Intact endothelial autophagy is required to maintain vascular lipid homeostasis." }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." }, { "docid": "2587396", "text": "Background: Atherosclerosis is characterized by infiltration of inflammatory cells from circulating blood. Blood cell activation could play an important role in plaque formation. Methods: We analyzed the relationship between blood cellular markers and quantitative measures of carotid wall components in 1,546 participants from the ARIC (Atherosclerosis Risk in Communities) Carotid MRI Study. Carotid imaging was performed using a gadolinium contrast-enhanced MRI and cellular phenotyping by flow cytometry. Results: Monocyte Toll-like receptor (TLR)-2 is associated with larger plaques, while CD14, myeloperoxidase, and TLR-4 associate with smaller. Platelet CD40L is associated with smaller plaques and thinner caps, while P-selectin is associated with smaller core size. Conclusions: Blood cell activation is significantly associated with atherosclerotic changes of the carotid wall.", "title": "Association of Blood Monocyte and Platelet Markers with Carotid Artery Characteristics: The Atherosclerosis Risk in Communities Carotid MRI Study" }, { "docid": "19332616", "text": "Coronary atherosclerosis is by far the most frequent cause of ischemic heart disease, and plaque disruption with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.1 2 3 4 5 Therefore, for event-free survival, the vital question is not why atherosclerosis develops but rather why, after years of indolent growth, it suddenly becomes complicated by life-threatening thrombosis. The composition and vulnerability of plaque rather than its volume or the consequent severity of stenosis produced have emerged as being the most important determinants for the development of the thrombus-mediated acute coronary syndromes; lipid-rich and soft plaques are more dangerous than collagen-rich and hard plaques because they are more unstable and rupture-prone and highly thrombogenic after disruption.6 This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.7 8 Atherosclerosis is the result of a complex interaction between blood elements, disturbed flow, and vessel wall abnormality, involving several pathological processes: inflammation, with increased endothelial permeability, endothelial activation, and monocyte recruitment9 10 11 12 13 14 ; growth, with smooth muscle cell (SMC) proliferation, migration, and matrix synthesis15 16 ; degeneration, with lipid accumulation17 18 ; necrosis, possibly related to the cytotoxic effect of oxidized lipid19 ; calcification/ossification, which may represent an active rather than a dystrophic process20 21 ; and thrombosis, with platelet recruitment and fibrin formation.1 22 23 Thrombotic factors may play a role early during atherogenesis, but a flow-limiting thrombus does not develop until mature plaques are present, which is why thrombosis often is classified as a complication rather than a genuine component of atherosclerosis. ### Mature Plaques: Atherosis and Sclerosis As the name atherosclerosis implies, mature …", "title": "Coronary plaque disruption." }, { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "1122198", "text": "Macrophage-derived foam cells express apolipoprotein E (apoE) abundantly in atherosclerotic lesions. To examine the physiologic role of apoE secretion by the macrophage in atherogenesis, bone marrow transplantation was used to reconstitute C57BL/6 mice with macrophages that were either null or wild type for the apoE gene. After 13 weeks on an atherogenic diet, C57BL/6 mice reconstituted with apoE null marrow developed 10-fold more atherosclerosis than controls in the absence of significant differences in serum cholesterol levels or lipoprotein profiles. ApoE expression was absent in the macrophage-derived foam cells of C57BL/6 mice reconstituted with apoE null marrow. Thus, lack of apoE expression by the macrophage promotes foam cell formation. These data support a protective role for apoE expression by the macrophage in early atherogenesis.", "title": "Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages." }, { "docid": "2832403", "text": "BACKGROUND Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. \n METHODOLOGY/PRINCIPAL FINDINGS We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue and adipocytes. Among several metabolic and endocrine tissues, the response of adipose tissue to FGF21 is predominant, and can be blunted by the ablation of KLB or FGFR1. \n CONCLUSIONS Our results indicate that unlike FGF19, FGF21 is unable to bind FGFR4-KLB complex with affinity comparable to FGFR1-KLB, and therefore, at physiological concentration less likely to directly and significantly target the liver where FGFR4-KLB predominantly resides. However, both FGF21 and FGF19 have the potential to activate responses of primarily the adipose tissue where FGFR1-KLB resides.", "title": "Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB" }, { "docid": "38630735", "text": "BACKGROUND Atherosclerotic plaques that lead to acute coronary syndromes often occur at sites of angiographically mild coronary-artery stenosis. Lesion-related risk factors for such events are poorly understood. \n METHODS In a prospective study, 697 patients with acute coronary syndromes underwent three-vessel coronary angiography and gray-scale and radiofrequency intravascular ultrasonographic imaging after percutaneous coronary intervention. Subsequent major adverse cardiovascular events (death from cardiac causes, cardiac arrest, myocardial infarction, or rehospitalization due to unstable or progressive angina) were adjudicated to be related to either originally treated (culprit) lesions or untreated (nonculprit) lesions. The median follow-up period was 3.4 years. \n RESULTS The 3-year cumulative rate of major adverse cardiovascular events was 20.4%. Events were adjudicated to be related to culprit lesions in 12.9% of patients and to nonculprit lesions in 11.6%. Most nonculprit lesions responsible for follow-up events were angiographically mild at baseline (mean [±SD] diameter stenosis, 32.3±20.6%). However, on multivariate analysis, nonculprit lesions associated with recurrent events were more likely than those not associated with recurrent events to be characterized by a plaque burden of 70% or greater (hazard ratio, 5.03; 95% confidence interval [CI], 2.51 to 10.11; P<0.001) or a minimal luminal area of 4.0 mm(2) or less (hazard ratio, 3.21; 95% CI, 1.61 to 6.42; P=0.001) or to be classified on the basis of radiofrequency intravascular ultrasonography as thin-cap fibroatheromas (hazard ratio, 3.35; 95% CI, 1.77 to 6.36; P<0.001). \n CONCLUSIONS In patients who presented with an acute coronary syndrome and underwent percutaneous coronary intervention, major adverse cardiovascular events occurring during follow-up were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions. Although nonculprit lesions that were responsible for unanticipated events were frequently angiographically mild, most were thin-cap fibroatheromas or were characterized by a large plaque burden, a small luminal area, or some combination of these characteristics, as determined by gray-scale and radiofrequency intravascular ultrasonography. (Funded by Abbott Vascular and Volcano; ClinicalTrials.gov number, NCT00180466.).", "title": "A prospective natural-history study of coronary atherosclerosis." } ]
685
Lamins are associated with nuclear membrane structure maintenance.
[ { "docid": "4452659", "text": "Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.", "title": "Autophagy mediates degradation of nuclear lamina" } ]
[ { "docid": "25036988", "text": "Nuclear lamin B1 (LMNB1) constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of LMNB1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion. In addition, we observed telomere attrition and an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrated that the volume and surface of chromosome territories were significantly larger in LMNB1-depleted cells, suggesting that LMNB1 is required to maintain chromatin condensation in interphase nuclei. These changes led to a prolonged S phase due to activation of Chk1. Finally, silencing of LMNB1 resulted in extensive changes in alternative splicing of multiple genes and in a higher number of enlarged nuclear speckles. Taken together, our results suggest a mechanistic role of the nuclear lamina in the organization of chromosome territories, maintenance of genome integrity and proper gene splicing.", "title": "Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories." }, { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "37362689", "text": "The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.", "title": "Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes." }, { "docid": "834336", "text": "Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …", "title": "Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype." }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "37608303", "text": "Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.", "title": "OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand." }, { "docid": "935034", "text": "Publisher Summary The classification of cell death can be based on morphological or biochemical criteria or on the circumstances of its occurrence. Currently, irreversible structural alteration provides the only unequivocal evidence of death; biochemical indicators of cell death that are universally applicable have to be precisely defined and studies of cell function or of reproductive capacity do not necessarily differentiate between death and dormant states from which recovery may be possible. It has also proved feasible to categorize most if not all dying cells into one or the other of two discrete and distinctive patterns of morphological change, which have, generally, been found to occur under disparate but individually characteristic circumstances. One of these patterns is the swelling proceeding to rupture of plasma and organelle membranes and dissolution of organized structure—termed “coagulative necrosis. ” It results from injury by agents, such as toxins and ischemia, affects cells in groups rather than singly, and evokes exudative inflammation when it develops in vivo. The other morphological pattern is characterized by condensation of the cell with maintenance of organelle integrity and the formation of surface protuberances that separate as membrane-bounded globules; in tissues, these are phagocytosed and digested by resident cells, there being no associated inflammation.", "title": "Cell death: the significance of apoptosis." }, { "docid": "30835854", "text": "We have recently isolated SMAP (Smg GDS-associated protein; Smg GDS: small G protein GDP dissociation stimulator) as a novel Smg GDS-associated protein, which has Armadillo repeats and is phosphorylated by Src tyrosine kinase. SMAP is a human counterpart of mouse KAP3 (kinesin superfamily-associated protein) that is associated with mouse KIF3A/B (a kinesin superfamily protein), which functions as a microtubule-based ATPase motor for organelle transport. We isolated here a SMAP-interacting protein from a human brain cDNA library, identified it to be a human homolog of Xenopus XCAP-E (Xenopus chromosome-associated polypeptide), a subunit of condensins that regulate the assembly and structural maintenance of mitotic chromosomes, and named it HCAP (Human chromosome-associated polypeptide). Tissue and subcellular distribution analyses indicated that HCAP was ubiquitously expressed and highly concentrated in the nuclear fraction, where SMAP and KIF3B were also present. SMAP was extracted as a ternary complex with HCAP and KIF3B from the nuclear fraction in the presence of Mg-ATP. The results suggest that SMAP/KAP3 serves as a linker between HCAP and KIF3A/B in the nucleus, and that SMAP/KAP3 plays a role in the interaction of chromosomes with an ATPase motor protein.", "title": "Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide." }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "8247597", "text": "Mutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here, we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell-cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the absence of respiration, but instead correlates with a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal mitochondrial function. We found that downregulation of nonmitochondrial ISC protein biogenesis was sufficient to cause increased genomic instability in cells with intact mitochondrial function. These results suggest mitochondrial dysfunction stimulates nuclear genome instability by inhibiting the production of ISC-containing protein(s), which are required for maintenance of nuclear genome integrity. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.", "title": "Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfur Cluster Defect" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "6969753", "text": "Metastatic tumor cells that actively migrate and invade surrounding tissues rely on invadopodia to degrade extracellular matrix (ECM) barriers. Invadopodia are membrane protrusions that localize enzymes required for ECM degradation. Little is known about the formation, function, and regulation of invadopodia. Here, we show that invadopodia have two distinct aspects: (a) structural for organizing the cellular actin cytoskeleton to form membrane protrusions and (b) functional for using proteolytic enzyme(s) for ECM degradation. Small interfering RNA (siRNA) inhibition established that organization of invadopodia structure requires cortactin, whereas protease inhibitor studies identified membrane type 1 matrix metalloproteinase (MT1-MMP) as the key invadopodial enzyme responsible for gelatin matrix degradation in the breast carcinoma cell line MDA-MB-231. The inhibition of invadopodial structure assembly by cortactin depletion resulted in a block of matrix degradation due to failure of invadopodia formation. Either protease inhibition or MT1-MMP siRNA depletion moderately decreased the formation of invadopodial structures that were identified as actin-cortactin accumulations at the ventral cell membrane adherent to matrix. The invadopodia that were able to form upon MT1-MMP inhibition or depletion retained actin-cortactin accumulations but were unable to degrade matrix. Examination of cells at different time points as well as live-cell imaging revealed four distinct invadopodial stages: membrane cortactin aggregation at membranes adherent to matrix, MT1-MMP accumulation at the region of cortactin accumulation, matrix degradation at the invadopodia region, and subsequent cortactin dissociation from the area of continued MT1-MMP accumulation associated with foci of degraded matrix. Based on these results, we propose a stepwise model of invadopodia formation and function.", "title": "Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function." }, { "docid": "9539753", "text": "RNA interference (RNAi) is heritable in Caenorhabditis elegans; the progeny of C. elegans exposed to dsRNA inherit the ability to silence genes that were targeted by RNAi in the previous generation. Here we investigate the mechanism of RNAi inheritance in C. elegans. We show that exposure of animals to dsRNA results in the heritable expression of siRNAs and the heritable deposition of histone 3 lysine 9 methylation (H3K9me) marks in progeny. siRNAs are detectable before the appearance of H3K9me marks, suggesting that chromatin marks are not directly inherited but, rather, reestablished in inheriting progeny. Interestingly, H3K9me marks appear more prominently in inheriting progeny than in animals directly exposed to dsRNA, suggesting that germ-line transmission of silencing signals may enhance the efficiency of siRNA-directed H3K9me. Finally, we show that the nuclear RNAi (Nrde) pathway maintains heritable RNAi silencing in C. elegans. The Argonaute (Ago) NRDE-3 associates with heritable siRNAs and, acting in conjunction with the nuclear RNAi factors NRDE-1, NRDE-2, and NRDE-4, promotes siRNA expression in inheriting progeny. These results demonstrate that siRNA expression is heritable in C. elegans and define an RNAi pathway that promotes the maintenance of RNAi silencing and siRNA expression in the progeny of animals exposed to dsRNA.", "title": "Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans." }, { "docid": "43752562", "text": "Subcellular membranes of Saccharomyces cerevisiae, including mitochondria, microsomes, plasma membranes, secretory vesicles, vacuoles, nuclear membranes, peroxisomes, and lipid particles, were isolated by improved procedures and analyzed for their lipid composition and their capacity to synthesize phospholipids and to catalyze sterol delta 24-methylation. The microsomal fraction is heterogeneous in terms of density and classical microsomal marker proteins and also with respect to the distribution of phospholipid-synthesizing enzymes. The specific activity of phosphatidylserine synthase was highest in a microsomal subfraction which was distinct from heavier microsomes harboring phosphatidylinositol synthase and the phospholipid N-methyltransferases. The exclusive location of phosphatidylserine decarboxylase in mitochondria was confirmed. CDO-diacylglycerol synthase activity was found both in mitochondria and in microsomal membranes. Highest specific activities of glycerol-3-phosphate acyltransferase and sterol delta 24-methyltransferase were observed in the lipid particle fraction. Nuclear and plasma membranes, vacuoles, and peroxisomes contain only marginal activities of the lipid-synthesizing enzymes analyzed. The plasma membrane and secretory vesicles are enriched in ergosterol and in phosphatidylserine. Lipid particles are characterized by their high content of ergosteryl esters. The rigidity of the plasma membrane and of secretory vesicles, determined by measuring fluorescence anisotropy by using trimethylammonium diphenylhexatriene as a probe, can be attributed to the high content of ergosterol.", "title": "Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae." } ]
686
Lamins are found within the inner layer of the mitochondrial membrane of all cells.
[ { "docid": "4452659", "text": "Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.", "title": "Autophagy mediates degradation of nuclear lamina" } ]
[ { "docid": "797114", "text": "A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.", "title": "A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆" }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "37608303", "text": "Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.", "title": "OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand." }, { "docid": "7643848", "text": "We have characterized the membrane topology of a 60-kDa inner membrane protein from Escherichia coli that is homologous to the recently identified Oxa1p protein in Saccharomyces cerevisiae mitochondria implicated in the assembly of mitochondrial inner membrane proteins. Hydrophobicity and alkaline phosphatase fusion analyses suggest a membrane topology with six transmembrane segments, including an N-terminal signal-anchor sequence not present in mitochondrial Oxa1p. In contrast to partial N-terminal fusion protein constructs, the full-length protein folds into a protease-resistant conformation, suggesting that important folding determinants are present in the C-terminal part of the molecule.", "title": "Membrane topology of the 60-kDa Oxa1p homologue from Escherichia coli." }, { "docid": "37362689", "text": "The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.", "title": "Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes." }, { "docid": "26283293", "text": "Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1-Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1-Mdm35 with and without PA. The Ups1-Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes.", "title": "Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria" }, { "docid": "10518721", "text": "Our eyes send different 'images' of the outside world to the brain — an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer — the inner plexiform layer — circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'.", "title": "Parallel processing in the mammalian retina" }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "7481159", "text": "Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system.", "title": "Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex" }, { "docid": "26374799", "text": "Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFbeta superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.", "title": "TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells." }, { "docid": "40094786", "text": "Cytotoxic T lymphocytes (CTL) rapidly destroy their targets. Here we show that although target cell death occurs within 5 min of CTL-target cell contact, an immunological synapse similar to that seen in CD4 cells rapidly forms in CTL, with a ring of adhesion proteins surrounding an inner signaling molecule domain. Lytic granule secretion occurs in a separate domain within the adhesion ring, maintaining signaling protein organization during exocytosis. Live and fixed cell studies show target cell plasma membrane markers are transferred to the CTL as the cells separate. Electron microscopy reveals continuities forming membrane bridges between the CTL and target cell membranes, suggesting a possible mechanism for this transfer.", "title": "The immunological synapse of CTL contains a secretory domain and membrane bridges." }, { "docid": "29691654", "text": "Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity.", "title": "Uncoupling Mitochondrial Respiration for Diabesity." }, { "docid": "36651210", "text": "Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.", "title": "Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst." }, { "docid": "10698739", "text": "Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.", "title": "Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1." }, { "docid": "3896759", "text": "Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.", "title": "Vascular heterogeneity and specialization in development and disease" }, { "docid": "43054703", "text": "Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3-4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5-60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton-Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton-Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus.", "title": "A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus." }, { "docid": "4423327", "text": "Nanog is a divergent homeodomain protein found in mammalian pluripotent cells and developing germ cells. Deletion of Nanog causes early embryonic lethality, whereas constitutive expression enables autonomous self-renewal of embryonic stem cells. Nanog is accordingly considered a core element of the pluripotent transcriptional network. However, here we report that Nanog fluctuates in mouse embryonic stem cells. Transient downregulation of Nanog appears to predispose cells towards differentiation but does not mark commitment. By genetic deletion we show that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog. Expanded Nanog null cells colonize embryonic germ layers and exhibit multilineage differentiation both in fetal and adult chimaeras. Although they are also recruited to the germ line, primordial germ cells lacking Nanog fail to mature on reaching the genital ridge. This defect is rescued by repair of the mutant allele. Thus Nanog is dispensible for expression of somatic pluripotency but is specifically required for formation of germ cells. Nanog therefore acts primarily in construction of inner cell mass and germ cell states rather than in the housekeeping machinery of pluripotency. We surmise that Nanog stabilizes embryonic stem cells in culture by resisting or reversing alternative gene expression states.", "title": "Nanog safeguards pluripotency and mediates germline development" }, { "docid": "8247597", "text": "Mutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here, we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell-cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the absence of respiration, but instead correlates with a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal mitochondrial function. We found that downregulation of nonmitochondrial ISC protein biogenesis was sufficient to cause increased genomic instability in cells with intact mitochondrial function. These results suggest mitochondrial dysfunction stimulates nuclear genome instability by inhibiting the production of ISC-containing protein(s), which are required for maintenance of nuclear genome integrity. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.", "title": "Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfur Cluster Defect" }, { "docid": "14835068", "text": "Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.", "title": "Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics" } ]
687
Lamins are found within the inner layer of the nuclear membrane of all cells.
[ { "docid": "4452659", "text": "Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.", "title": "Autophagy mediates degradation of nuclear lamina" } ]
[ { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "10518721", "text": "Our eyes send different 'images' of the outside world to the brain — an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer — the inner plexiform layer — circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'.", "title": "Parallel processing in the mammalian retina" }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "7481159", "text": "Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system.", "title": "Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex" }, { "docid": "37362689", "text": "The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.", "title": "Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes." }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "26374799", "text": "Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFbeta superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.", "title": "TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells." }, { "docid": "40094786", "text": "Cytotoxic T lymphocytes (CTL) rapidly destroy their targets. Here we show that although target cell death occurs within 5 min of CTL-target cell contact, an immunological synapse similar to that seen in CD4 cells rapidly forms in CTL, with a ring of adhesion proteins surrounding an inner signaling molecule domain. Lytic granule secretion occurs in a separate domain within the adhesion ring, maintaining signaling protein organization during exocytosis. Live and fixed cell studies show target cell plasma membrane markers are transferred to the CTL as the cells separate. Electron microscopy reveals continuities forming membrane bridges between the CTL and target cell membranes, suggesting a possible mechanism for this transfer.", "title": "The immunological synapse of CTL contains a secretory domain and membrane bridges." }, { "docid": "25036988", "text": "Nuclear lamin B1 (LMNB1) constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of LMNB1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion. In addition, we observed telomere attrition and an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrated that the volume and surface of chromosome territories were significantly larger in LMNB1-depleted cells, suggesting that LMNB1 is required to maintain chromatin condensation in interphase nuclei. These changes led to a prolonged S phase due to activation of Chk1. Finally, silencing of LMNB1 resulted in extensive changes in alternative splicing of multiple genes and in a higher number of enlarged nuclear speckles. Taken together, our results suggest a mechanistic role of the nuclear lamina in the organization of chromosome territories, maintenance of genome integrity and proper gene splicing.", "title": "Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories." }, { "docid": "36651210", "text": "Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.", "title": "Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst." }, { "docid": "43054703", "text": "Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3-4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5-60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton-Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton-Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus.", "title": "A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus." }, { "docid": "797114", "text": "A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.", "title": "A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆" }, { "docid": "29641682", "text": "Pluripotent cells arise within the inner cell mass (ICM) of mammals and have the potential to generate all cell types of the adult organism through a process of commitment and ordered differentiation. Despite many decades of investigation, the mechanisms that guide and stabilise cell fate choice as well as those that can be engineered to promote its reversal, remain only partially resolved. Reprogramming of somatic cells towards a pluripotent-like state can be achieved by several different experimental routes including nuclear transfer, the supply of a defined cocktail of transcription factors, or by fusing somatic cells with a pluripotent stem cell partner. These approaches have been used to demonstrate the remarkable intrinsic epigenetic plasticity of many terminally differentiated cell types, as well as to define the factors that are required for pluripotent conversion. In this review we summarise some recent advances using cell fusion-based studies to better understand the basis of pluripotency and the epigenetic mechanisms that promote cell type inter-conversion.", "title": "Reprogramming somatic cells towards pluripotency by cellular fusion." }, { "docid": "3896759", "text": "Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.", "title": "Vascular heterogeneity and specialization in development and disease" }, { "docid": "4423327", "text": "Nanog is a divergent homeodomain protein found in mammalian pluripotent cells and developing germ cells. Deletion of Nanog causes early embryonic lethality, whereas constitutive expression enables autonomous self-renewal of embryonic stem cells. Nanog is accordingly considered a core element of the pluripotent transcriptional network. However, here we report that Nanog fluctuates in mouse embryonic stem cells. Transient downregulation of Nanog appears to predispose cells towards differentiation but does not mark commitment. By genetic deletion we show that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog. Expanded Nanog null cells colonize embryonic germ layers and exhibit multilineage differentiation both in fetal and adult chimaeras. Although they are also recruited to the germ line, primordial germ cells lacking Nanog fail to mature on reaching the genital ridge. This defect is rescued by repair of the mutant allele. Thus Nanog is dispensible for expression of somatic pluripotency but is specifically required for formation of germ cells. Nanog therefore acts primarily in construction of inner cell mass and germ cell states rather than in the housekeeping machinery of pluripotency. We surmise that Nanog stabilizes embryonic stem cells in culture by resisting or reversing alternative gene expression states.", "title": "Nanog safeguards pluripotency and mediates germline development" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "1769799", "text": "Transformation and conjugation permit the passage of DNA through the bacterial membranes and represent dominant modes for the transfer of genetic information between bacterial cells or between bacterial and eukaryotic cells. As such, they are responsible for the spread of fitness-enhancing traits, including antibiotic resistance. Both processes usually involve the recognition of double-stranded DNA, followed by the transfer of single strands. Elaborate molecular machines are responsible for negotiating the passage of macromolecular DNA through the layers of the cell surface. All or nearly all the machine components involved in transformation and conjugation have been identified, and here we present models for their roles in DNA transport.", "title": "The ins and outs of DNA transfer in bacteria." } ]
688
Lamins have no effect on nuclear membrane structure maintenance.
[ { "docid": "4452659", "text": "Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.", "title": "Autophagy mediates degradation of nuclear lamina" } ]
[ { "docid": "25036988", "text": "Nuclear lamin B1 (LMNB1) constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of LMNB1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion. In addition, we observed telomere attrition and an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrated that the volume and surface of chromosome territories were significantly larger in LMNB1-depleted cells, suggesting that LMNB1 is required to maintain chromatin condensation in interphase nuclei. These changes led to a prolonged S phase due to activation of Chk1. Finally, silencing of LMNB1 resulted in extensive changes in alternative splicing of multiple genes and in a higher number of enlarged nuclear speckles. Taken together, our results suggest a mechanistic role of the nuclear lamina in the organization of chromosome territories, maintenance of genome integrity and proper gene splicing.", "title": "Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "37362689", "text": "The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.", "title": "Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes." }, { "docid": "834336", "text": "Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …", "title": "Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype." }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "37608303", "text": "Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.", "title": "OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand." }, { "docid": "935034", "text": "Publisher Summary The classification of cell death can be based on morphological or biochemical criteria or on the circumstances of its occurrence. Currently, irreversible structural alteration provides the only unequivocal evidence of death; biochemical indicators of cell death that are universally applicable have to be precisely defined and studies of cell function or of reproductive capacity do not necessarily differentiate between death and dormant states from which recovery may be possible. It has also proved feasible to categorize most if not all dying cells into one or the other of two discrete and distinctive patterns of morphological change, which have, generally, been found to occur under disparate but individually characteristic circumstances. One of these patterns is the swelling proceeding to rupture of plasma and organelle membranes and dissolution of organized structure—termed “coagulative necrosis. ” It results from injury by agents, such as toxins and ischemia, affects cells in groups rather than singly, and evokes exudative inflammation when it develops in vivo. The other morphological pattern is characterized by condensation of the cell with maintenance of organelle integrity and the formation of surface protuberances that separate as membrane-bounded globules; in tissues, these are phagocytosed and digested by resident cells, there being no associated inflammation.", "title": "Cell death: the significance of apoptosis." }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "8247597", "text": "Mutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here, we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell-cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the absence of respiration, but instead correlates with a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal mitochondrial function. We found that downregulation of nonmitochondrial ISC protein biogenesis was sufficient to cause increased genomic instability in cells with intact mitochondrial function. These results suggest mitochondrial dysfunction stimulates nuclear genome instability by inhibiting the production of ISC-containing protein(s), which are required for maintenance of nuclear genome integrity. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.", "title": "Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfur Cluster Defect" }, { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "30835854", "text": "We have recently isolated SMAP (Smg GDS-associated protein; Smg GDS: small G protein GDP dissociation stimulator) as a novel Smg GDS-associated protein, which has Armadillo repeats and is phosphorylated by Src tyrosine kinase. SMAP is a human counterpart of mouse KAP3 (kinesin superfamily-associated protein) that is associated with mouse KIF3A/B (a kinesin superfamily protein), which functions as a microtubule-based ATPase motor for organelle transport. We isolated here a SMAP-interacting protein from a human brain cDNA library, identified it to be a human homolog of Xenopus XCAP-E (Xenopus chromosome-associated polypeptide), a subunit of condensins that regulate the assembly and structural maintenance of mitotic chromosomes, and named it HCAP (Human chromosome-associated polypeptide). Tissue and subcellular distribution analyses indicated that HCAP was ubiquitously expressed and highly concentrated in the nuclear fraction, where SMAP and KIF3B were also present. SMAP was extracted as a ternary complex with HCAP and KIF3B from the nuclear fraction in the presence of Mg-ATP. The results suggest that SMAP/KAP3 serves as a linker between HCAP and KIF3A/B in the nucleus, and that SMAP/KAP3 plays a role in the interaction of chromosomes with an ATPase motor protein.", "title": "Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide." }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "24770913", "text": "Inwardly rectifying K+ channels (IRKs) are highly K(+)-selective, integral membrane proteins that help maintain resting the membrane potential and cell volume. Integral membrane proteins as a class are frequently N-glycosylated with the attached carbohydrate being extracellular and perhaps modulating function. However, dynamic effects of glycosylation have yet to be demonstrated at the molecular level. ROMK1, a member of the IRK family is particularly suited to the study of glycosylation because it has a single N-glycosylation consensus sequence (Ho, K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V., and Herbert, S. C. (1993) Nature 362, 31-38). We show that ROMK1 is expressed in a functional state in the plasmalemma of an insect cell line (Spodoptera frugiperda, Sf9) and has two structures, glycosylated and unglycosylated. To test functionality, glycosylation was abolished by an N117Q mutation or by treatment with tunicamycin. Whole cell currents were greatly reduced in both of the unglycosylated forms compared to wild-type. Single channel currents revealed a dramatic decrease in opening probability, po, as the causative factor. Thus we have shown biochemically that the N-glycosylation sequon is extracellular, a result consistent with present topological models of IRKs, and we conclude that sequon occupancy by carbohydrate stabilizes the open state of ROMK1.", "title": "Potassium channel structure and function as reported by a single glycosylation sequon." }, { "docid": "43054703", "text": "Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3-4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5-60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton-Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton-Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus.", "title": "A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus." }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "25483562", "text": "Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.", "title": "Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides." } ]
689
Less than 10% of patients exposed to radiation have activated markers of mesenchymal stem cells.
[ { "docid": "22080671", "text": "Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.", "title": "KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis" } ]
[ { "docid": "25238950", "text": "Fibroblast growth factors (FGFs) have mitogenic activity toward a wide variety of cells of mesenchymal, neuronal, and epithelial origin and regulate events in normal embryonic development, angiogenesis, wound repair, and neoplasia. FGF-2 is expressed in many normal adult tissues and can regulate migration and replication of intestinal epithelial cells in culture. However, little is known about the effects of FGF-2 on intestinal epithelial stem cells during either normal epithelial renewal or regeneration of a functional epithelium after injury. In this study, we investigated the expression of FGF-2 in the mouse small intestine after irradiation and determined the effect of exogenous FGF-2 on crypt stem cell survival after radiation injury. Expression of FGF-2 mRNA and protein began to increase at 12 h after gamma-irradiation, and peak levels were observed from 48 to 120 h after irradiation. At all times after irradiation, the higher molecular mass isoform ( approximately 24 kDa) of FGF-2 was the predominant form expressed in the small intestine. Immunohistochemical analysis of FGF-2 expression after radiation injury demonstrated that FGF-2 was predominantly found in the mesenchyme surrounding regenerating crypts. Exogenous recombinant human FGF-2 (rhFGF-2) markedly enhanced crypt stem cell survival when given before irradiation. We conclude that expression of FGF-2 is induced by radiation injury and that rhFGF-2 can enhance crypt stem cell survival after subsequent injury.", "title": "FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury." }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." }, { "docid": "18953920", "text": "The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.", "title": "The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells" }, { "docid": "35811036", "text": "Embryonic-like stem cell (ELSC), expressing part of surface markers of human embryonic stem cells, may be a better candidate for cell therapy of degenerative muscular disease than mesenchymal stem cell (MSC). We isolated ELSC and MSC from bone marrow, respectively, and compared their differences in the characteristics and the capacity of myogenic differentiation. Results showed that ELSC could be isolated successfully from 3 adult bone marrow samples by using serum-free medium with 10ng/ml basic fibroblast growth factor (bFGF). At the same cell density, MSC could also be isolated from the same samples by using DMEM/F12 medium containing 10% new cattle serum. However, ELSC appeared as small, morphologically slenderer, upregulated expression of SSEA-4 and ultramicroscopically more immature than MSC derived from the same samples. Immunofluorescent staining and RT-PCR analysis showed ELSC weakly expressed Oct-4, Nanog-3 and Sox-2. Moreover, ELSC and MSC could be induced into long, multinucleated fibers expressing myogenin and myosin heavy chain (MHC) in myogenic differentiation medium, but by day 10, proportion of multinucleated fibers positive for MHC was respectively 25.0%+/-6.9% and 13.8%+/-7.6% in ELSC and MSC culture. These data suggest that bone marrow derived ELSC represent an ideal candidate for cell therapy of degenerative muscular disease.", "title": "Embryonic-like stem cell derived from adult bone marrow: immature morphology, cell surface markers, ultramicrostructure and differentiation into multinucleated fibers in vitro." }, { "docid": "4381486", "text": "Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older (‘immortal’) DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells. Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate chromosomes asymmetrically or because they divide slowly. However, the purity of stem cells among BrdU-label-retaining cells has not been documented in any tissue, and the ‘immortal strand hypothesis’ has not been tested in a system with definitive stem cell markers. Here we tested these hypotheses in haematopoietic stem cells (HSCs), which can be highly purified using well characterized markers. We administered BrdU to newborn mice, mice treated with cyclophosphamide and granulocyte colony-stimulating factor, and normal adult mice for 4 to 10 days, followed by 70 days without BrdU. In each case, less than 6% of HSCs retained BrdU and less than 0.5% of all BrdU-retaining haematopoietic cells were HSCs, revealing that BrdU has poor specificity and poor sensitivity as an HSC marker. Sequential administration of 5-chloro-2-deoxyuridine and 5-iodo-2-deoxyuridine indicated that all HSCs segregate their chromosomes randomly. Division of individual HSCs in culture revealed no asymmetric segregation of the label. Thus, HSCs cannot be identified on the basis of BrdU-label retention and do not retain older DNA strands during division, indicating that these are not general properties of stem cells.", "title": "Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU" }, { "docid": "3848469", "text": "BACKGROUND Cancer Stem Cells (CSCs) hypothesis asserts that only a small subset of cells within a tumour is capable of both tumour initiation and sustainment. The Epithelial-Mesenchymal Transition (EMT) is an embryonic developmental program that is often activated during cancer invasion and metastasis. The aim of this study is to shed light on the relationship between EMT and CSCs by using LC31 lung cancer primary cell line. MATERIALS AND METHODS A549 and LC31 cell lines were treated with 2 ng/ml TGFβ-1 for 30 days, and 80 days, respectively. To evaluate EMT, morphological changes were assessed by light microscopy, immunofluorescence and cytometry for following markers: cytokeratins, e-cadherin, CD326 (epithelial markers) and CD90, and vimentin (mesenchymal markers). Moreover, RT-PCR for Slug, Twist and β-catenin genes were performed. On TGFβ-1 treated and untreated LC31 cell lines, we performed stemness tests such as pneumospheres growth and stem markers expression such as Oct4, Nanog, Sox2, c-kit and CD133. Western Blot for CD133 and tumorigenicity assays using NOD/SCID mice were performed. \n RESULTS TGFβ-1 treated LC31 cell line lost its epithelial morphology assuming a fibroblast-like appearance. The same results were obtained for the A549 cell line (as control). Immunofluorescence and cytometry showed up-regulation of vimentin and CD90 and down-regulation of cytocheratin, e-cadherin and CD326 in TGFβ-1 treated LC31 and A549 cell lines. Slug, Twist and β-catenin m-RNA transcripts were up-regulated in TGFβ-1 treated LC31 cell line confirming EMT. This cell line showed also over-expression of Oct4, Nanog, Sox2 and CD133, all genes of stemness. In addition, in TGFβ-1 treated LC31 cell line, an increased pneumosphere-forming capacity and tumours-forming ability in NOD/SCID mice were detectable. \n CONCLUSIONS The induction of EMT by TGFβ-1 exposure, in primary lung cancer cell line results in the acquisition of mesenchymal profile and in the expression of stem cell markers.", "title": "Epithelial to Mesenchymal Transition by TGFβ-1 Induction Increases Stemness Characteristics in Primary Non Small Cell Lung Cancer Cell Line" }, { "docid": "24101431", "text": "Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell-mediated autoimmune destruction of insulin-producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β-cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 10(5) syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor-derived insulin-producing cells. In contrast, 7 and 65 days post-transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control.", "title": "The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment." }, { "docid": "3944632", "text": "CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. \n OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. \n DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. \n INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). \n MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. \n RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. \n CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. \n TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412.", "title": "Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial." }, { "docid": "15337254", "text": "Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature-and with each occupying the same area-display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.", "title": "Geometric cues for directing the differentiation of mesenchymal stem cells." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "6280907", "text": "Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor–dependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell–like phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-β2 (TGF-β2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.", "title": "Conversion of vascular endothelial cells into multipotent stem-like cells" }, { "docid": "23639838", "text": "Brain metastases occur in up to 40% of patients with cancer. Their management has been revolutionized in the last decade by three developments: improved imaging and detection of metastases, better treatment of systemic disease with the result that metastases occur more often; and improved surgical techniques including image-guided surgery to treat metastatic lesions. Class 1 data suggest that surgery is a better treatment for metastases than whole brain radiation. Other data suggest that metastases even in eloquent cortex can be removed safely. The complication rate is low and the recurrence rate is less than 10%. In general, indications for surgery include a mass with an unknown primary; a symptomatic mass including one in eloquent areas; a mass with considerable edema requiring high dose steroids; a mass greater than 3 cm; or patient preference when radiosurgery may also be an option. The question of radiosurgery or whole brain radiation as adjunct to surgical removal requires further evaluation.", "title": "Surgical Resection for Patients with Solid Brain Metastases: Current Status" }, { "docid": "3531388", "text": "Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell-cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC-osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell-cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.", "title": "CD200R/CD200 Inhibits Osteoclastogenesis: New Mechanism of Osteoclast Control by Mesenchymal Stem Cells in Human" }, { "docid": "10582939", "text": "CONTEXT Antibody-based induction therapy plus calcineurin inhibitors (CNIs) reduce acute rejection rates in kidney recipients; however, opportunistic infections and toxic CNI effects remain challenging. Reportedly, mesenchymal stem cells (MSCs) have successfully treated graft-vs-host disease. \n OBJECTIVE To assess autologous MSCs as replacement of antibody induction for patients with end-stage renal disease who undergo ABO-compatible, cross-match-negative kidney transplants from a living-related donor. \n DESIGN, SETTING, AND PATIENTS One hundred fifty-nine patients were enrolled in this single-site, prospective, open-label, randomized study from February 2008-May 2009, when recruitment was completed. \n INTERVENTION Patients were inoculated with marrow-derived autologous MSC (1-2 x 10(6)/kg) at kidney reperfusion and two weeks later. Fifty-three patients received standard-dose and 52 patients received low-dose CNIs (80% of standard); 51 patients in the control group received anti-IL-2 receptor antibody plus standard-dose CNIs. \n MAIN OUTCOME MEASURES The primary measure was 1-year incidence of acute rejection and renal function (estimated glomerular filtration rate [eGFR]); the secondary measure was patient and graft survival and incidence of adverse events. \n RESULTS Patient and graft survival at 13 to 30 months was similar in all groups. After 6 months, 4 of 53 patients (7.5%) in the autologous MSC plus standard-dose CNI group (95% CI, 0.4%-14.7%; P = .04) and 4 of 52 patients (7.7%) in the low-dose group (95% CI, 0.5%-14.9%; P = .046) compared with 11 of 51 controls (21.6%; 95% CI, 10.5%-32.6%) had biopsy-confirmed acute rejection. None of the patients in either autologous MSC group had glucorticoid-resistant rejection, whereas 4 patients (7.8%) in the control group did (95% CI, 0.6%-15.1%; overall P = .02). Renal function recovered faster among both MSC groups showing increased eGFR levels during the first month after surgery than the control group. Patients receiving standard-dose CNI had a mean difference of 6.2 mL/min per 1.73 m(2) (95% CI, 0.4-11.9; P=.04) and those in the low-dose CNI of 10.0 mL/min per 1.73 m(2) (95% CI, 3.8-16.2; P=.002). Also, during the 1-year follow-up, combined analysis of MSC-treated groups revealed significantly decreased risk of opportunistic infections than the control group (hazard ratio, 0.42; 95% CI, 0.20-0.85, P=.02) CONCLUSION Among patients undergoing renal transplant, the use of autologous MSCs compared with anti-IL-2 receptor antibody induction therapy resulted in lower incidence of acute rejection, decreased risk of opportunistic infection, and better estimated renal function at 1 year. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00658073.", "title": "Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial." }, { "docid": "3758260", "text": "Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.", "title": "Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate." }, { "docid": "16532419", "text": "BACKGROUND Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. \n METHODS Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 μg/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. \n RESULTS We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. \n CONCLUSIONS Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles.", "title": "Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes" }, { "docid": "25028913", "text": "BACKGROUND In patients with unstable coronary artery disease, there is a relation between the short-term risk of death and blood levels of troponin T (a marker of myocardial damage) and C-reactive protein and fibrinogen (markers of inflammation). Using information obtained during an extension of the follow-up period in the Fragmin during Instability in Coronary Artery Disease trial, we evaluated the usefulness of troponin T, C-reactive protein, and fibrinogen levels and other indicators of risk as predictors of the long-term risk of death from cardiac causes. \n METHODS Levels of C-reactive protein and fibrinogen at enrollment and the maximal level of troponin T during the first 24 hours after enrollment were analyzed in 917 patients included in a clinical trial of low-molecular-weight heparin in unstable coronary artery disease. The patients were followed for a mean of 37.0 months (range, 1.6 to 50.6). \n RESULTS During follow-up, 1.2 percent of the 173 patients with maximal blood troponin T levels of less than 0.06 microg per liter died of cardiac causes, as compared with 8.7 percent of the 367 patients with levels of 0.06 to 0.59 microg per liter and 15.4 percent of the 377 patients with levels of at least 0.60 microg per liter (P=0.007 and P=0.001, respectively). The rates of death from cardiac causes were 5.7 percent among the 314 patients with blood C-reactive protein levels of less than 2 mg per liter, 7.8 percent among the 294 with levels of 2 to 10 mg per liter, and 16.5 percent among the 309 with levels of more than 10 mg per liter (P=0.29 and P=0.001, respectively). The rates of death from cardiac causes were 5.4 percent among the 314 patients with blood fibrinogen levels of less than 3.4 g per liter, 12.0 percent among the 300 with levels of 3.4 to 3.9 g per liter, and 12.9 percent among the 303 with levels of at least 4.0 g per liter (P=0.004 and P=0.69, respectively). In a multivariate analysis, levels of troponin T and C-reactive protein were independent predictors of the risk of death from cardiac causes. \n CONCLUSIONS In unstable coronary artery disease, elevated levels of troponin T and C-reactive protein are strongly related to the long-term risk of death from cardiac causes. These markers are independent risk factors, and their effects are additive with respect to each other and other clinical indicators of risk.", "title": "Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease." }, { "docid": "12991445", "text": "OBJECTIVE To determine the effects of smoking, plasma lipids, lipoproteins, apolipoproteins, and fibrinogen on the patency of saphenous vein femoropopliteal bypass grafts at one year. \n DESIGN Prospective study of patients with saphenous vein femoropopliteal bypass grafts entered into a multicentre trial. \n SETTING Surgical wards, outpatient clinics, and home visits coordinated by two tertiary referral centres in London and Birmingham. \n PATIENTS 157 Patients (mean age 66.6 (SD 8.2) years), 113 with patent grafts and 44 with occluded grafts one year after bypass. \n MAIN OUTCOME MEASURE Cumulative percentage patency at one year. \n RESULTS Markers for smoking (blood carboxyhaemoglobin concentration (p less than 0.05) and plasma thiocyanate concentration (p less than 0.01) and plasma concentrations of fibrinogen (p less than 0.001) and apolipoproteins AI (p less than 0.04) and (a) (p less than 0.05) were significantly higher in patients with occluded grafts. Serum cholesterol concentrations were significantly higher in patients with grafts that remained patent one year after bypass (p less than 0.005). Analysis of the smoking markers indicated that a quarter of patients (40) were untruthful in their claims to have stopped smoking. Based on smoking markers, patency of grafts in smokers was significantly lower at one year by life table analysis than in non-smokers (63% v 84%, p less than 0.02). Patency was significantly higher by life table analysis in patients with a plasma fibrinogen concentration below the median than in those with a concentration above (90% v 57%, p less than 0.0002). Surprisingly, increased plasma low density lipoprotein cholesterol concentration was significantly associated with improved patency at one year (85%) at values above the median compared with patency (only 68%) at values in the lower half of the range (p less than 0.02). \n CONCLUSIONS Plasma fibrinogen concentration was the most important variable predicting graft occlusion, followed by smoking markers. A more forceful approach is needed to stop patients smoking; therapeutic measures to improve patency of vein grafts should focus on decreasing plasma fibrinogen concentration rather than serum cholesterol concentration.", "title": "Influence of smoking and plasma factors on patency of femoropopliteal vein grafts." }, { "docid": "10078024", "text": "Studies of the identity and physiological function of mesenchymal stromal cells (MSCs) have been hampered by a lack of markers that permit both prospective identification and fate mapping in vivo. We found that Leptin Receptor (LepR) is a marker that highly enriches bone marrow MSCs. Approximately 0.3% of bone marrow cells were LepR(+) , 10% of which were CFU-Fs, accounting for 94% of bone marrow CFU-Fs. LepR(+) cells formed bone, cartilage, and adipocytes in culture and upon transplantation in vivo. LepR(+) cells were Scf-GFP(+), Cxcl12-DsRed(high), and Nestin-GFP(low), markers which also highly enriched CFU-Fs, but negative for Nestin-CreER and NG2-CreER, markers which were unlikely to be found in CFU-Fs. Fate-mapping showed that LepR(+) cells arose postnatally and gave rise to most bone and adipocytes formed in adult bone marrow, including bone regenerated after irradiation or fracture. LepR(+) cells were quiescent, but they proliferated after injury. Therefore, LepR(+) cells are the major source of bone and adipocytes in adult bone marrow.", "title": "Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow." }, { "docid": "27279525", "text": "The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.", "title": "Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary." } ]
694
Lice attenuated SIV vaccines induce a stronger antigen-specific T cell response in lymph node cells.
[ { "docid": "1071991", "text": "Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.", "title": "Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines" } ]
[ { "docid": "8182950", "text": "In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 μg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.", "title": "Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose." }, { "docid": "37444589", "text": "Although 13 years have passed since identification of human immunodeficiency virus-1 (HIV-1) as the cause of AIDS, we do not yet know how HIV kills its primary target, the T cell that carries the CD4 antigen. We and others have shown an increase in the percentage of apoptotic cells among circulating CD4+ (and CD8+) T cells of HIV-seropositive individuals and an increase in frequency of apoptosis with disease progression. However, it is not known if this apoptosis occurs in infected or uninfected T cells. We show here, using in situ labelling of lymph nodes from HIV-infected children and SIV-infected macaques, that apoptosis occurs predominantly in bystander cells and not in the productively infected cells themselves. These data have implications for pathogenesis and therapy, namely, arguing that rational drug therapy may involve combination agents targeting viral replication in infected cells and apoptosis of uninfected cells.", "title": "Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes" }, { "docid": "20646904", "text": "Targeting of proteins to APCs is an attractive strategy for eliciting adaptive immune responses. However, the relationship between the choice of the targeted receptor and the quality and quantity of responses remains poorly understood. We describe a strategy for expression of Ags including hydrophobic proteins as soluble fusion proteins that are optimized for proteasome-dependent MHC class I-restricted cross-presentation and form stable complexes with a wide variety of targeting Abs. Upon s.c. immunization, these complexes were initially taken up by CD169+ lymph node subcapsular sinus macrophages. In the OVA model system, receptor-targeted antigenic complexes primed specific T and B cell responses in vitro and in vivo at least 100-fold more efficiently than Ag alone. Comparison of 10 targeting receptors allowed us to establish a ranking with respect to priming of CD8+ T cell responses and demonstrated striking differences with respect to the relative efficacy of CD8+ and CD4+ T cell subset and B cell priming. The described fusion proteins should help in developing optimized strategies for targeted delivery of protein Ags in the context of tolerization or vaccination.", "title": "Fusion proteins for versatile antigen targeting to cell surface receptors reveal differential capacity to prime immune responses." }, { "docid": "27567994", "text": "The generation of tumor-directed cytotoxic T lymphocytes is considered crucial for the induction of antitumor immunity. To activate these CD8(+) T cells, antigen-presenting cells (APCs) must initially acquire tumor cell-associated antigens. The major source of tumor antigens is dead tumor cells, but little is known about how APCs in draining lymph nodes acquire and crosspresent these antigens. Here we show that CD169(+) macrophages phagocytose dead tumor cells transported via lymphatic flow and subsequently crosspresent tumor antigens to CD8(+) T cells. Subcutaneous immunization with irradiated tumor cells protects mice from syngenic tumor. However, tumor antigen-specific CD8(+) T cell activation and subsequent antitumor immunity are severely impaired in mice depleted with CD169(+) macrophages. Neither migratory dendritic cells (DCs) nor lymph node-resident conventional DCs are essential for the crosspresentation of tumor antigens. Thus, we have identified CD169(+) macrophages as lymph node-resident APCs dominating early activation of tumor antigen-specific CD8(+) T cells.", "title": "CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens." }, { "docid": "17327939", "text": "Antigen targeting and adjuvancy schemes that respectively facilitate delivery of antigen to dendritic cells and elicit their activation have been explored in vaccine development. Here we investigate whether nanoparticles can be used as a vaccine platform by targeting lymph node–residing dendritic cells via interstitial flow and activating these cells by in situ complement activation. After intradermal injection, interstitial flow transported ultra-small nanoparticles (25 nm) highly efficiently into lymphatic capillaries and their draining lymph nodes, targeting half of the lymph node–residing dendritic cells, whereas 100-nm nanoparticles were only 10% as efficient. The surface chemistry of these nanoparticles activated the complement cascade, generating a danger signal in situ and potently activating dendritic cells. Using nanoparticles conjugated to the model antigen ovalbumin, we demonstrate generation of humoral and cellular immunity in mice in a size- and complement-dependent manner.", "title": "Exploiting lymphatic transport and complement activation in nanoparticle vaccines" }, { "docid": "10190778", "text": "As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.", "title": "Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero." }, { "docid": "20311968", "text": "Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.", "title": "Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma" }, { "docid": "1933281", "text": "Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.", "title": "CD169+ MACROPHAGES PRESENT LIPID ANTIGENS TO MEDIATE EARLY ACTIVATION OF INVARIANT NKT CELLS IN LYMPH NODES" }, { "docid": "40365566", "text": "Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung.", "title": "Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen." }, { "docid": "11020556", "text": "Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation.", "title": "Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming." }, { "docid": "24998637", "text": "To investigate the direct role of interleukin (IL) 6 in the development of rheumatoid arthritis, IL-6-deficient (IL-6 -/-) mice were backcrossed for eight generations into C57BL/6 mice, a strain of mice with a genetic background of susceptibility for antigen-induced arthritis (AIA). Both histological and immunological comparisons were made between IL-6-deficient (IL-6 -/-) mice and wild-type (IL-6 +/+) littermates after the induction of AIA. Although all IL-6 +/+ mice developed severe arthritis, only mild arthritis was observed in IL-6 -/- mice. Safranin O staining demonstrated that articular cartilage was well preserved in IL-6 -/- mice, whereas it was destroyed completely in IL-6 +/+ mice. In addition, comparable mRNA expression for both IL-1beta and tumor necrosis factor alpha, but not for IL-6, was detected in the inflamed joints of IL-6 -/- mice, suggesting that IL-6 may play a more crucial role in cartilage destruction than either IL-1beta or tumor necrosis factor alpha. In immunological comparisons, both antigen-specific in vitro proliferative response in lymph node cells and in vivo antibody production were elicited in IL-6 -/- mice, but they were reduced to less than half of that found in IL-6 +/+ mice. Lymph node cells of IL-6 -/- mice produced many more Th2 cytokines than did IL-6 +/+ mice with either antigen-specific or nonspecific stimulation in in vitro culture. Taken together, these results indicate that IL-6 may play a key role in the development of AIA at the inductive as well as the effector phase, and the blockade of IL-6 is possibly beneficial in the treatment of rheumatoid arthritis.", "title": "Interleukin 6 plays a key role in the development of antigen-induced arthritis." }, { "docid": "35256900", "text": "The mechanism of B cell–antigen encounter in lymphoid tissues is incompletely understood. It is also unclear how immune complexes are transported to follicular dendritic cells. Here, using real-time two-photon microscopy we noted rapid delivery of immune complexes through the lymph to macrophages in the lymph node subcapsular sinus. B cells captured immune complexes by a complement receptor–dependent mechanism from macrophage processes that penetrated the follicle and transported the complexes to follicular dendritic cells. Furthermore, cognate B cells captured antigen-containing immune complexes from macrophage processes and migrated to the T zone. Our findings identify macrophages lining the subcapsular sinus as an important site of B cell encounter with immune complexes and show that intrafollicular B cell migration facilitates the transport of immune complexes as well as encounters with cognate antigen.", "title": "Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells" }, { "docid": "18275697", "text": "The development of improved typhoid vaccines is a high global public health priority. However, their development has been hampered by a lack of information regarding the specific determinants of protective immunity to Salmonella enterica serovar Typhi (S. Typhi) infection in humans. Although antibodies to S. Typhi O, H, and Vi appear to be involved in protection against S. Typhi infection, it is unknown whether such antibodies mediate protection, act in conjunction with other adaptive responses, or serve as a surrogate for the presence of other, more dominant protective immune responses (e.g., cell-mediated immunity [CMI]). CMI responses elicited by immunization of subjects with attenuated S. Typhi oral vaccines include lymphoproliferation; production of type 1 cytokines (e.g., interferon- gamma and tumor necrosis factor- alpha ); and classical major histocompatibility complex (MHC) class Ia-restricted and novel, nonclassical MHC class Ib (human leukocyte antigen [HLA]-E)-restricted CD8(+) cytotoxic T cell responses. In sum, human immunity to S. Typhi elicited by immunization is unexpectedly broad and complex. However, the immunologic correlates of protection remain largely undefined.", "title": "Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica Serovar Typhi strains used as live oral vaccines in humans." }, { "docid": "15425958", "text": "Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.", "title": "Human Cytomegalovirus-Encoded Interleukin-10 Homolog Inhibits Maturation of Dendritic Cells and Alters Their Functionality" }, { "docid": "28247027", "text": "T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics.", "title": "Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions." }, { "docid": "24879055", "text": "CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells \"remember\" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.", "title": "Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection." }, { "docid": "37969403", "text": "New recombinant strains of attenuated Salmonella typhi used as live oral vaccines elicit potent immune responses. This study examined the patterns of cytokine production and proliferation to specific S. typhi antigens in subjects orally immunized with attenuated S. typhi vaccines CVD 906, CVD 908, and CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum. After immunization, sensitized lymphocytes were found in subjects' blood that exhibited significantly increased proliferative responses and interferon-gamma production to purified S. typhi flagella when compared with preimmunization levels. Significant negative correlations were observed between interleukin-4 production and both interferon-gamma production and proliferation to S. typhi flagella. These results demonstrate that oral immunization with attenuated S. typhi strains alone or with those carrying a foreign gene elicits strong systemic cell-mediated immunity to purified S. typhi antigens, including the production of cytokines compatible with T1-type responses.", "title": "Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi." }, { "docid": "18488986", "text": "The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.", "title": "The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens" }, { "docid": "21719289", "text": "Although most vaccines are administered i.m., little is known about the dendritic cells (DCs) that are present within skeletal muscles. In this article, we show that expression of CD64, the high-affinity IgG receptor FcγRI, distinguishes conventional DCs from monocyte-derived DCs (Mo-DCs). By using such a discriminatory marker, we defined the distinct DC subsets that reside in skeletal muscles and identified their migratory counterparts in draining lymph nodes (LNs). We further used this capability to analyze the functional specialization that exists among muscle DCs. After i.m. administration of Ag adsorbed to alum, we showed that alum-injected muscles contained large numbers of conventional DCs that belong to the CD8α(+)- and CD11b(+)-type DCs. Both conventional DC types were capable of capturing Ag and of migrating to draining LNs, where they efficiently activated naive T cells. In alum-injected muscles, Mo-DCs were as numerous as conventional DCs, but only a small fraction migrated to draining LNs. Therefore, alum by itself poorly induces Mo-DCs to migrate to draining LNs. We showed that addition of small amounts of LPS to alum enhanced Mo-DC migration. Considering that migratory Mo-DCs had, on a per cell basis, a higher capacity to induce IFN-γ-producing T cells than conventional DCs, the addition of LPS to alum enhanced the overall immunogenicity of Ags presented by muscle-derived DCs. Therefore, a full understanding of the role of adjuvants during i.m. vaccination needs to take into account the heterogeneous migratory and functional behavior of muscle DCs and Mo-DCs revealed in this study.", "title": "CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization." } ]
696
Lipopolysaccharides have an inflammation independent effect on kidney barrier function.
[ { "docid": "16355392", "text": "Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.", "title": "Modification of kidney barrier function by the urokinase receptor" } ]
[ { "docid": "27545868", "text": "Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), are associated with inflammation. The mechanism that regulates inflammation in these renal injuries remains unclear. Here, we demonstrated that p300/CBP-associated factor (PCAF), a histone acetyltransferase, was overexpressed in the kidneys of db/db mice and lipopolysaccharide (LPS)-injected mice. Moreover, elevated histone acetylation, such as H3K18ac, and up-regulation of some inflammatory genes, such as ICAM-1, VCAM-1, and MCP-1, were found upon these renal injuries. Furthermore, increased H3K18ac was recruited to the promoters of ICAM-1, VCAM-1, and MCP-1 in the kidneys of LPS-injected mice. In vitro studies demonstrated that PCAF knockdown in human renal proximal tubule epithelial cells (HK-2) led to downregulation of inflammatory molecules, including VCAM-1, ICAM-1, p50 subunit of NF-κB (p50), and MCP-1 mRNA and protein levels, together with significantly decreased H3K18ac level. Consistent with these, overexpression of PCAF enhanced the expression of inflammatory molecules. Furthermore, PCAF deficiency reduced palmitate-induced recruitment of H3K18ac on the promoters of ICAM-1 and MCP-1, as well as inhibited palmitate-induced upregulation of these inflammatory molecules. In summary, the present work demonstrates that PCAF plays an essential role in the regulation of inflammatory molecules through H3K18ac, which provides a potential therapeutic target for inflammation-related renal diseases.", "title": "Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury." }, { "docid": "2405259", "text": "Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IκBζ, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IκBζ at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.", "title": "Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6" }, { "docid": "4423401", "text": "Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.", "title": "Succinate is an inflammatory signal that induces IL-1β through HIF-1α" }, { "docid": "5106691", "text": "Chronic inflammation constitutes an important link between obesity and its pathophysiological sequelae. In contrast to the belief that inflammatory signals exert a fundamentally negative impact on metabolism, we show that proinflammatory signaling in the adipocyte is in fact required for proper adipose tissue remodeling and expansion. Three mouse models with an adipose tissue-specific reduction in proinflammatory potential were generated that display a reduced capacity for adipogenesis in vivo, while the differentiation potential is unaltered in vitro. Upon high-fat-diet exposure, the expansion of visceral adipose tissue is prominently affected. This is associated with decreased intestinal barrier function, increased hepatic steatosis, and metabolic dysfunction. An impaired local proinflammatory response in the adipocyte leads to increased ectopic lipid accumulation, glucose intolerance, and systemic inflammation. Adipose tissue inflammation is therefore an adaptive response that enables safe storage of excess nutrients and contributes to a visceral depot barrier that effectively filters gut-derived endotoxin.", "title": "Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling." }, { "docid": "118568", "text": "INTRODUCTION Endothelial activation leading to vascular barrier breakdown plays an essential role in the pathophysiology of multiple-organ dysfunction syndrome (MODS) in sepsis. Increasing evidence suggests that the function of the vessel-protective factor Angiopoietin-1 (Ang-1), a ligand of the endothelial-specific Tie2 receptor, is inhibited by its antagonist Angiopoietin-2 (Ang-2) during sepsis. In order to reverse the effects of the sepsis-induced suppression of Ang-1 and elevation of Ang-2 we aimed to investigate whether an intravenous injection of recombinant human (rh) Ang-1 protects against MODS in murine sepsis. \n METHODS Polymicrobiological abdominal sepsis was induced by cecal ligation and puncture (CLP). Mice were treated with either 1 μg of intravenous rhAng-1 or control buffer immediately after CLP induction and every 8h thereafter. Sham-operated animals served as time-matched controls. \n RESULTS Compared to buffer-treated controls, rhAng-1 treated septic mice showed significant improvements in several hematologic and biochemical indicators of MODS. Moreover, rhAng-1 stabilized endothelial barrier function, as evidenced by inhibition of protein leakage from lung capillaries into the alveolar compartment. Histological analysis revealed that rhAng-1 treatment attenuated leukocyte infiltration in lungs and kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression in rhAng-1 treated mice. Finally, the protective effects of rhAng-1 treatment were reflected by an improved survival time in a lethal CLP model. \n CONCLUSIONS In a clinically relevant murine sepsis model, intravenous rhAng-1 treatment alone is sufficient to significantly improve a variety of sepsis-associated organ dysfunctions and survival time, most likely by preserving endothelial barrier function. Further studies are needed to pave the road for clinical application of this therapy concept.", "title": "Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis." }, { "docid": "4447785", "text": "Inflammation promotes regeneration of injured tissues through poorly understood mechanisms, some of which involve interleukin (IL)-6 family members, the expression of which is elevated in many diseases including inflammatory bowel diseases and colorectal cancer. Here we show in mice and human cells that gp130, a co-receptor for IL-6 cytokines, triggers activation of YAP and Notch, transcriptional regulators that control tissue growth and regeneration, independently of the gp130 effector STAT3. Through YAP and Notch, intestinal gp130 signalling stimulates epithelial cell proliferation, causes aberrant differentiation and confers resistance to mucosal erosion. gp130 associates with the related tyrosine kinases Src and Yes, which are activated on receptor engagement to phosphorylate YAP and induce its stabilization and nuclear translocation. This signalling module is strongly activated upon mucosal injury to promote healing and maintain barrier function.", "title": "A gp130–Src–YAP module links inflammation to epithelial regeneration" }, { "docid": "6836086", "text": "Gram-negative bacteria have an outer membrane (OM) that functions as a barrier to protect the cell from toxic compounds such as antibiotics and detergents. The OM is a highly asymmetric bilayer composed of phospholipids, glycolipids, and proteins. Assembly of this essential organelle occurs outside the cytoplasm in an environment that lacks obvious energy sources such as ATP, and the mechanisms involved are poorly understood. We describe the identification of a multiprotein complex required for the assembly of proteins in the OM of Escherichia coli. We also demonstrate genetic interactions between genes encoding components of this protein assembly complex and imp, which encodes a protein involved in the assembly of lipopolysaccharides (LPS) in the OM. These genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process.", "title": "Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli" }, { "docid": "21369472", "text": "Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive kidney failure and focal segmental glomerulosclerosis. Here, we show that the canonical transient receptor potential 6 (TRPC6) ion channel is expressed in podocytes and is a component of the glomerular slit diaphragm. We identified five families with autosomal dominant focal segmental glomerulosclerosis in which disease segregated with mutations in the gene TRPC6 on chromosome 11q. Two of the TRPC6 mutants had increased current amplitudes. These data show that TRPC6 channel activity at the slit diaphragm is essential for proper regulation of podocyte structure and function.", "title": "TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function" }, { "docid": "5573975", "text": "Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1-Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney. A structure-function analysis of the BMP-Alk3-BMP receptor, type 2 (BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led us to construct a library of small peptide agonists of BMP signaling that function through the Alk3 receptor. One such peptide agonist, THR-123, suppressed inflammation, apoptosis and the epithelial-to-mesenchymal transition program and reversed established fibrosis in five mouse models of acute and chronic renal injury. THR-123 acts specifically through Alk3 signaling, as mice with a targeted deletion for Alk3 in their tubular epithelium did not respond to therapy with THR-123. Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had an additive therapeutic benefit in controlling renal fibrosis. Our studies show that BMP signaling agonists constitute a new line of therapeutic agents with potential utility in the clinic to induce regeneration, repair and reverse established fibrosis.", "title": "Activin–like kinase–3 activity is important for kidney regeneration and reversal of fibrosis" }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." }, { "docid": "41298619", "text": "BACKGROUND Hydroxyethyl starches (HES) are synthetic colloids commonly used for fluid resuscitation, yet controversy exists about their impact on kidney function. \n OBJECTIVES To examine the effects of HES on kidney function compared to other fluid resuscitation therapies in different patient populations. SEARCH STRATEGY We searched the Cochrane Renal Group's specialised register, the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library), MEDLINE, EMBASE, MetaRegister and reference lists of articles. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs in which HES was compared to an alternate fluid therapy for the prevention or treatment of effective intravascular volume depletion. Primary outcomes were renal replacement therapy (RRT), author-defined kidney failure and acute kidney injury (AKI) as defined by the RIFLE criteria. Secondary outcomes included serum creatinine and creatinine clearance. \n DATA COLLECTION AND ANALYSIS Screening, selection, data extraction and quality assessments for each retrieved article were carried out by two authors using standardised forms. Authors were contacted when published data were incomplete. Preplanned sensitivity and subgroup analyses were performed after data were analysed with a random effects model. \n MAIN RESULTS The review included 34 studies (2607 patients). Overall, the RR of author-defined kidney failure was 1.50 (95% CI 1.20 to 1.87; n = 1199) and 1.38 for requiring RRT (95% CI 0.89 to 2.16; n = 1236) in HES treated individuals compared with other fluid therapies. Subgroup analyses suggested increased risk in septic patients compared to non-septic (surgical/trauma) patients. Non-septic patient studies were smaller and had lower event rates, so subgroup differences may have been due to lack of statistical power in these studies. Only limited data was obtained for analysis of kidney outcomes by the RIFLE criteria. Overall, methodological quality of studies was good but subjective outcomes were potentially biased because most studies were unblinded. AUTHORS' CONCLUSIONS Potential for increased risk of AKI should be considered when weighing the risks and benefits of HES for volume resuscitation, particularly in septic patients. Large studies with adequate follow-up are required to evaluate the renal safety of HES products in non-septic patient populations. RIFLE criteria should be applied to evaluate kidney function in future studies of HES and, where data is available, to re-analyse those studies already published. There is inadequate clinical data to address the claim that safety differences exist between different HES products.", "title": "Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function." }, { "docid": "37336085", "text": "PURPOSE We assessed the nephroprotective effects of montelukast sodium and N-acetylcysteine on secondary renal damage due to unilateral ureteral obstruction in a rat model. MATERIALS AND METHODS In this study 30 Wistar albino male rats were randomized into 3 groups, including placebo, N-acetylcysteine and montelukast sodium. Three rats served as the control group. The left ureter of the rats was sutured with 4-zero polyglactin sutures. Medications were given 3 days before obstruction and continued for 15 days. Dimercaptosuccinic acid renal scintigraphy was performed before obstruction and on day 15. Rats were sacrificed on day 15 and histopathological examinations were done. We biochemically assessed oxidative stress markers (myeloperoxidase and malondialdehyde), sulfhydryl and total nitrite for lipid peroxidation, oxidative protein damage and antioxidant levels, respectively. \n RESULTS On pathological examination inflammation and tubular epithelial damage in the N-acetylcysteine and montelukast sodium groups were less than in the placebo group (p <0.05). No difference was seen in normal kidneys. Myeloperoxidase, malondialdehyde and total nitrite levels in the N-acetylcysteine group, and myeloperoxidase and malondialdehyde levels in the montelukast sodium group were lower than in the placebo group (p <0.05). No statistical difference was seen in sulfhydryl levels (p >0.05) or among the N-acetylcysteine, montelukast sodium and placebo groups on scintigraphy (p >0.05). No pathological, chemical and scintigraphic differences were seen among the N-acetylcysteine, montelukast sodium and sham treated groups (p >0.05). \n CONCLUSIONS N-acetylcysteine and montelukast sodium have a protective effect against obstructive damage of the kidney. However, further investigations are needed.", "title": "Do Montelukast Sodium and N-Acetylcysteine Have a Nephroprotective Effect on Unilateral Ureteral Obstruction? A Placebo Controlled Trial in a Rat Model." }, { "docid": "41774099", "text": "We propose a Medicare Demonstration Project to develop a standard acquisition charge for kidney paired donation. A new payment strategy is required because Medicare and commercial insurance companies may not directly pay living donor costs intended to lead to transplantation of a beneficiary of a different insurance provider. Until the 1970s, when organ procurement organizations were empowered to serve as financial intermediaries to pay the upfront recovery expenses for deceased donor kidneys before knowing the identity of the recipient, there existed similar limitations in the recovery and placement of deceased donor organs. Analogous to the recovery of deceased donor kidneys, kidney paired donation requires the evaluation of living donors before identifying their recipient. Tissue typing, crossmatching and transportation of living donors or their kidneys represent additional financial barriers. Finally, the administrative expenses of the organizations that identify and coordinate kidney paired donation transplantation require reimbursement akin to that necessary for organ procurement organizations. To expand access to kidney paired donation for more patients, we propose a model to reimburse paired donation expenses analogous to the proven strategy used for over 30 years to pay for deceased donor solid organ transplantation in America.", "title": "Call to Develop a Standard Acquisition Charge Model for Kidney Paired Donation" }, { "docid": "18956141", "text": "Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.", "title": "NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions" }, { "docid": "9288638", "text": "OBJECTIVE The aim of this study was to investigate whether diabetes and hypertension cause additive effects in the responses to various vasoconstrictor and vasodilator agents, in isolated perfused kidneys obtained from streptozotocin (STZ)-diabetic Wistar-Kyoto (WKY) rats and from diabetic spontaneously hypertensive rats (SHR). \n METHODS SHR and WKY rats were administered STZ 55 mg/kg by intravenous injection into a lateral tail vein at age 12 weeks. Eight weeks later the kidneys were isolated and perfused via the left renal artery with a physiological salt solution. Renal perfusion pressure was measured continuously. Concentration response curves were plotted for various vasoconstrictor and vasodilator agents. \n RESULTS Both the diabetic and the hypertensive state were associated with an increased wet kidney weight. The contractile responses of the renal arterial system to phenylephrine (PhE), serotonin (5-HT) and angiotensin II (Ang II) in terms both of the maximal rise in perfusion pressure (mmHg) and of the sensitivity (log EC50) were the same in preparations from diabetic WKY rats and in those from normoglycaemic WKY rats. The maximal contractile responses both to PhE and to Ang II were enhanced in kidneys from SHR compared with those in kidneys from their normotensive controls, whereas simultaneously occurring diabetes impaired this sensitization. After precontraction with 3 x 10(-6) mol/l PhE both endothelium-dependent (methacholine) and endothelium-independent (sodium nitroprusside) vasodilator drugs caused the same vasodilator response in the preparations taken from the four groups of animals. \n CONCLUSION In isolated perfused kidneys obtained from STZ-diabetic WKY rats and SHR, the isolated diabetic state did not influence the vasoconstriction caused by various agonists. However, the enhanced vascular reactivity in the hypertensive state was blunted by simultaneously occurring diabetes mellitus. Endothelium-dependent and -independent vasorelaxation in this model was not affected neither by the hypertensive nor by the diabetic state.", "title": "Vascular responsiveness in isolated perfused kidneys of diabetic hypertensive rats." }, { "docid": "21557614", "text": "Statins are potent inhibitors of cholesterol biosynthesis. In clinical trials, statins are beneficial in the primary and secondary prevention of coronary heart disease. However, the overall benefits observed with statins appear to be greater than what might be expected from changes in lipid levels alone, suggesting effects beyond cholesterol lowering. Indeed, recent studies indicate that some of the cholesterol-independent or \"pleiotropic\" effects of statins involve improving endothelial function, enhancing the stability of atherosclerotic plaques, decreasing oxidative stress and inflammation, and inhibiting the thrombogenic response. Furthermore, statins have beneficial extrahepatic effects on the immune system, CNS, and bone. Many of these pleiotropic effects are mediated by inhibition of isoprenoids, which serve as lipid attachments for intracellular signaling molecules. In particular, inhibition of small GTP-binding proteins, Rho, Ras, and Rac, whose proper membrane localization and function are dependent on isoprenylation, may play an important role in mediating the pleiotropic effects of statins.", "title": "Pleiotropic effects of statins." }, { "docid": "23700330", "text": "Angiopoietin-1 (Ang-1), a ligand of the endothelium-specific receptor Tie-2, inhibits permeability in the mature vasculature, but the mechanism remains unknown. Here we show that Ang-1 signals Rho family GTPases to organize the cytoskeleton into a junction-fortifying arrangement that enhances the permeability barrier function of the endothelium. Ang-1 phosphorylates Tie-2 and its downstream effector phosphatidylinositol 3-kinase. This induces activation of one endogenous GTPase, Rac1, and inhibition of another, RhoA. Loss of either part of this dual effect abrogates the cytoskeletal and anti-permeability actions of Ang-1, suggesting that coordinated GTPase regulation is necessary for the vessel-sealing effects of Ang-1. p190 RhoGAP, a GTPase regulatory protein, provides this coordinating function as it is phosphorylated by Ang-1 treatment, requires Rac1 activation, and is necessary for RhoA inhibition. Ang-1 prevents the cytoskeletal and pro-permeability effects of endotoxin but requires p190 RhoGAP to do so. Treatment with p190 RhoGAP small interfering RNA completely abolishes the ability of Ang-1 to rescue endotoxemia-induced pulmonary vascular leak and inflammation in mice. We conclude that Ang-1 prevents vascular permeability by regulating the endothelial cytoskeleton through coordinated and opposite effects on the Rho GTPases Rac1 and RhoA. By linking Rac1 activation and RhoA inhibition, p190 RhoGAP is critical to the protective effects of Ang-1 against endotoxin. These results provide mechanistic evidence that targeting the endothelium through Tie-2 may offer specific therapeutic strategies in life-threatening endotoxemic conditions such as sepsis and acute respiratory distress syndrome.", "title": "Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo." }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "24044977", "text": "Innate lymphoid cells (ILCs) are immune cells that lack a specific antigen receptor yet can produce an array of effector cytokines that in variety match that of T helper cell subsets. ILCs function in lymphoid organogenesis, tissue remodeling, antimicrobial immunity, and inflammation, particularly at barrier surfaces. Their ability to promptly respond to insults inflicted by stress-causing microbes strongly suggests that ILCs are critical in first-line immunological defenses. Here, we review current data on developmental requirements, lineage relationships, and effector functions of two families of ILCs: (a) Rorγt-expressing cells involved in lymphoid tissue formation, mucosal immunity, and inflammation and (b) type 2 ILCs that are important for helminth immunity. We also discuss the potential roles of ILCs in the pathology of immune-mediated inflammatory and infectious diseases including allergy.", "title": "Innate lymphoid cells: emerging insights in development, lineage relationships, and function." } ]
698
Lmna knock-in models are appropriate for testing therapeutic approaches against Hutchinson-Gilford progeria syndrome (HGPS).
[ { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" } ]
[ { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "834336", "text": "Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …", "title": "Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype." }, { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "31324978", "text": "Progerias are rare genetic diseases characterized by premature aging. Several progeroid disorders are caused by mutations that lead to the accumulation of a lipid-modified (farnesylated) form of prelamin A, a protein that contributes to the structural scaffolding for the cell nucleus. In progeria, the accumulation of farnesyl-prelamin A disrupts this scaffolding, leading to misshapen nuclei. Previous studies have shown that farnesyltransferase inhibitors (FTIs) reverse this cellular abnormality. We tested the efficacy of an FTI (ABT-100) in Zmpste24-deficient mice, a mouse model of progeria. The FTI-treated mice exhibited improved body weight, grip strength, bone integrity, and percent survival at 20 weeks of age. These results suggest that FTIs may have beneficial effects in humans with progeria.", "title": "A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria." }, { "docid": "7239105", "text": "Remarkable advances have been made in recent years towards therapeutics for cognitive impairment in individuals with Down syndrome (DS) by using mouse models. In this review, we briefly describe the phenotypes of mouse models that represent outcome targets for drug testing, the behavioral tests used to assess impairments in cognition and the known mechanisms of action of several drugs that are being used in preclinical studies or are likely to be tested in clinical trials. Overlaps in the distribution of targets and in the pathways that are affected by these diverse drugs in the trisomic brain suggest new avenues for DS research and drug development.", "title": "The use of mouse models to understand and improve cognitive deficits in Down syndrome" }, { "docid": "38355793", "text": "OBJECTIVE A20 is a TNF-inducible primary response gene, which has been found to have antiapoptotic function in several cancer cells. This study investigates A20 expression in human glioma tissues and four glioma cell lines, and its effect on tumorigenesis of glioma cells and a mouse tumor model. \n METHODS Human glioma tissue samples and cells were subject to reverse transcription-PCR (RT-PCR), western blotting and immunohistochemistry. Glioma cells was tested by flow cytometry. A xenograft tumor model in mice was utilized to examine the knock-down effect of specific A20 siRNAs on tumorigenesis. \n RESULTS A20 was overexpressed in clinical glioma tissue samples (63.9%) and correlated with clinical staging. All four human glioma cell lines expressed A20, among which U87 displayed the strongest expression signals. Inhibiting A20 expression by siRNAs in vitro reduced the growth rates of glioma cells and resulted in G1/S arrest and increased apoptosis. In a mouse tumor model, local administration of siRNA significantly suppressed solid tumor growth. \n CONCLUSIONS A20 was overexpressed both in human glioma tissues and cell lines, and inhibiting A20 expression greatly slowed tumor cell growth in culture and in mice. These findings indicated that A20 is involved in tumorigenesis of human glioma, and may serve as a future therapeutic target.", "title": "A20 is overexpressed in glioma cells and may serve as a potential therapeutic target." }, { "docid": "31844040", "text": "Two-component systems (TCSs) are widely employed by bacteria to sense specific external signals and conduct an appropriate response via a phosphorylation cascade within the cell. The TCS of the agr operon in the bacterium Staphylococcus aureus forms part of a regulatory process termed quorum sensing, a cell-to-cell communication mechanism used to assess population density. Since S. aureus manipulates this \"knowledge\" in order to co-ordinate production of its armoury of exotoxin virulence factors required to promote infection, it is important to understand fully how this process works. We present three models of the agr operon, each incorporating a different phosphorylation cascade for the TCS since the precise nature of the cascade is not fully understood. Using numerical and asymptotic techniques we examine the effects of inhibitor therapy, a novel approach to controlling bacterial infection through the attenuation of virulence, on each of these three cascades. We present results which, if evaluated against appropriate experimental data, provide insights into the potential effectiveness of such therapy. Moreover, the TCS models presented here are of broad relevance given that TCSs are widely conserved throughout the bacterial kingdom.", "title": "A mathematical investigation of the effects of inhibitor therapy on three putative phosphorylation cascades governing the two-component system of the agr operon." }, { "docid": "18414462", "text": "Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear co-repressor SMRT (silencing mediator of retinoid and thyroid hormone receptors) in C57BL/6 mice (SMRTmRID) produces a previously unidentified respiratory distress syndrome caused by prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti-thyroid hormone drugs (propylthiouracil or methimazole) completely rescues SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which, in turn, seems to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify TR as a second nuclear receptor involved in lung development, specifically type I pneumocyte differentiation, and suggest a possible new type of therapeutic option in the treatment of RDS that is unresponsive to glucocorticoids.", "title": "Thyroid Hormone Receptor Repression Linked to Type I Pneumocyte Associated Respiratory Distress Syndrome" }, { "docid": "16232581", "text": "We develop a reversible jump Markov chain Monte Carlo approach to estimating the posterior distribution of phylogenies based on aligned DNA/RNA sequences under several hierarchical evolutionary models. Using a proper, yet nontruncated and uninformative prior, we demonstrate the advantages of the Bayesian approach to hypothesis testing and estimation in phylogenetics by comparing different models for the infinitesimal rates of change among nucleotides, for the number of rate classes, and for the relationships among branch lengths. We compare the relative probabilities of these models and the appropriateness of a molecular clock using Bayes factors. Our most general model, first proposed by Tamura and Nei, parameterizes the infinitesimal change probabilities among nucleotides (A, G, C, T/U) into six parameters, consisting of three parameters for the nucleotide stationary distribution, two rate parameters for nucleotide transitions, and another parameter for nucleotide transversions. Nested models include the Hasegawa, Kishino, and Yano model with equal transition rates and the Kimura model with a uniform stationary distribution and equal transition rates. To illustrate our methods, we examine simulated data, 16S rRNA sequences from 15 contemporary eubacteria, halobacteria, eocytes, and eukaryotes, 9 primates, and the entire HIV genome of 11 isolates. We find that the Kimura model is too restrictive, that the Hasegawa, Kishino, and Yano model can be rejected for some data sets, that there is evidence for more than one rate class and a molecular clock among similar taxa, and that a molecular clock can be rejected for more distantly related taxa.", "title": "Bayesian selection of continuous-time Markov chain evolutionary models." }, { "docid": "2264455", "text": "There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.", "title": "Vaccines against malaria" }, { "docid": "33884866", "text": "OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. \n METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. \n RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. \n INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.", "title": "Fingolimod provides long-term protection in rodent models of cerebral ischemia." }, { "docid": "34873974", "text": "OBJECTIVE To obtain summary estimates of the accuracy of a single baseline measurement of the Elecsys Troponin T high-sensitive assay (Roche Diagnostics) for the diagnosis of acute myocardial infarction in patients presenting to the emergency department. \n DESIGN Systematic review and meta-analysis of diagnostic test accuracy studies. \n DATA SOURCES Medline, Embase, and other relevant electronic databases were searched for papers published between January 2006 and December 2013. STUDY SELECTION Studies were included if they evaluated the diagnostic accuracy of a single baseline measurement of Elecsys Troponin T high-sensitive assay for the diagnosis of acute myocardial infarction in patients presenting to the emergency department with suspected acute coronary syndrome. STUDY APPRAISAL AND DATA SYNTHESIS The first author screened all titles and abstracts identified through the searches and selected all potentially relevant papers. The screening of the full texts, the data extraction, and the methodological quality assessment, using the adapted QUADAS-2 tool, were conducted independently by two reviewers with disagreements being resolved through discussion or arbitration. If appropriate, meta-analysis was conducted using the hierarchical bivariate model. \n RESULTS Twenty three studies reported the performance of the evaluated assay at presentation. The results for 14 ng/L and 3-5 ng/L cut-off values were pooled separately. At 14 ng/L (20 papers), the summary sensitivity was 89.5% (95% confidence interval 86.3% to 92.1%) and the summary specificity was 77.1% (68.7% to 83.7%). At 3-5 ng/L (six papers), the summary sensitivity was 97.4% (94.9% to 98.7%) and the summary specificity was 42.4% (31.2% to 54.5%). This means that if 21 of 100 consecutive patients have the target condition (21%, the median prevalence across the studies), 2 (95% confidence interval 2 to 3) of 21 patients with acute myocardial infarction will be missed (false negatives) if 14 ng/L is used as a cut-off value and 18 (13 to 25) of 79 patients without acute myocardial infarction will test positive (false positives). If the 3-5 ng/L cut-off value is used, <1 (0 to 1) patient with acute myocardial infarction will be missed and 46 (36 to 54) patients without acute myocardial infarction will test positive. \n CONCLUSIONS The results indicate that a single baseline measurement of the Elecsys Troponin T high-sensitive assay could be used to rule out acute myocardial infarction if lower cut-off values such as 3 ng/L or 5 ng/L are used. However, this method should be part of a comprehensive triage strategy and may not be appropriate for patients who present less than three hours after symptom onset. Care must also be exercised because of the higher imprecision of the evaluated assay and the greater effect of lot-to-lot reagent variation at low troponin concentrations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42013003926.", "title": "Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis" }, { "docid": "24496245", "text": "Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.", "title": "Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension" }, { "docid": "7317051", "text": "Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.", "title": "Mutant KRAS is a druggable target for pancreatic cancer." }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "2837758", "text": "Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.", "title": "Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model." }, { "docid": "8690595", "text": "Although genetic association studies have been with us for many years, even for the simplest analyses there is little consensus on the most appropriate statistical procedures. Here I give an overview of statistical approaches to population association studies, including preliminary analyses (Hardy–Weinberg equilibrium testing, inference of phase and missing data, and SNP tagging), and single-SNP and multipoint tests for association. My goal is to outline the key methods with a brief discussion of problems (population structure and multiple testing), avenues for solutions and some ongoing developments.", "title": "A tutorial on statistical methods for population association studies" } ]
703
Localization of PIN1 in the roots of Arabidopsis requires VPS9a
[ { "docid": "4350400", "text": "Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication—a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.", "title": "Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions" } ]
[ { "docid": "16557565", "text": "Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.", "title": "Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation" }, { "docid": "38675228", "text": "Plants and some animals have a profound capacity to regenerate organs from adult tissues. Molecular mechanisms for regeneration have, however, been largely unexplored. Here we investigate a local regeneration response in Arabidopsis roots. Laser-induced wounding disrupts the flow of auxin-a cell-fate-instructive plant hormone-in root tips, and we demonstrate that resulting cell-fate changes require the PLETHORA, SHORTROOT, and SCARECROW transcription factors. These transcription factors regulate the expression and polar position of PIN auxin efflux-facilitating membrane proteins to reconstitute auxin transport in renewed root tips. Thus, a regeneration mechanism using embryonic root stem-cell patterning factors first responds to and subsequently stabilizes a new hormone distribution.", "title": "A molecular framework for plant regeneration." }, { "docid": "19950357", "text": "Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.", "title": "The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes." }, { "docid": "20402596", "text": "In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be expressed in emerging crown roots and later in cell division regions of the root meristem. The expression could be induced by exogenous auxin or cytokinin. Loss-of-function mutation or downregulation of the gene reduced the number and the growth rate of crown roots, whereas overexpression of the gene induced precocious crown root growth and dramatically increased the root biomass by producing crown roots at the upper stem nodes and the base of florets. The expressions of auxin- and cytokinin-responsive genes were affected in WOX11 overexpression and RNA interference transgenic plants. Further analysis showed that WOX11 directly repressed RR2, a type-A cytokinin-responsive regulator gene that was found to be expressed in crown root primordia. The results suggest that WOX11 may be an integrator of auxin and cytokinin signaling that feeds into RR2 to regulate cell proliferation during crown root development.", "title": "The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice." }, { "docid": "20868160", "text": "The Arabidopsis (Arabidopsis thaliana) trichome birefringence (tbr) mutant has severely reduced crystalline cellulose in trichomes, but the molecular nature of TBR was unknown. We determined TBR to belong to the plant-specific DUF231 domain gene family comprising 46 members of unknown function in Arabidopsis. The genes harbor another plant-specific domain, called the TBL domain, which contains a conserved GDSL motif known from some esterases/lipases. TBR and TBR-like3 (TBL3) are transcriptionally coordinated with primary and secondary CELLULOSE SYNTHASE (CESA) genes, respectively. The tbr and tbl3 mutants hold lower levels of crystalline cellulose and have altered pectin composition in trichomes and stems, respectively, tissues generally thought to contain mainly secondary wall crystalline cellulose. In contrast, primary wall cellulose levels remain unchanged in both mutants as measured in etiolated tbr and tbl3 hypocotyls, while the amount of esterified pectins is reduced and pectin methylesterase activity is increased in this tissue. Furthermore, etiolated tbr hypocotyls have reduced length with swollen epidermal cells, a phenotype characteristic for primary cesa mutants or the wild type treated with cellulose synthesis inhibitors. Taken together, we show that two TBL genes contribute to the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers.", "title": "TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis." }, { "docid": "1354567", "text": "In Arabidopsis thaliana, small interfering RNAs (siRNAs) direct cytosine methylation at endogenous DNA repeats in a pathway involving two forms of nuclear RNA polymerase IV (Pol IVa and Pol IVb), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), DICER-LIKE 3 (DCL3), ARGONAUTE4 (AGO4), the chromatin remodeler DRD1, and the de novo cytosine methyltransferase DRM2. We show that RDR2, DCL3, AGO4, and NRPD1b (the largest subunit of Pol IVb) colocalize with siRNAs within the nucleolus. By contrast, Pol IVa and DRD1 are external to the nucleolus and colocalize with endogenous repeat loci. Mutation-induced loss of pathway proteins causes downstream proteins to mislocalize, revealing their order of action. Pol IVa acts first, and its localization is RNA dependent, suggesting an RNA template. We hypothesize that maintenance of the heterochromatic state involves locus-specific Pol IVa transcription followed by siRNA production and assembly of AGO4- and NRPD1b-containing silencing complexes within nucleolar processing centers.", "title": "The Arabidopsis Chromatin-Modifying Nuclear siRNA Pathway Involves a Nucleolar RNA Processing Center" }, { "docid": "10504681", "text": "Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues.", "title": "TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development" }, { "docid": "14797520", "text": "Nuclear transcription is not restricted to genes but occurs throughout the intergenic and noncoding space of eukaryotic genomes. The functional significance of this widespread noncoding transcription is mostly unknown. We show that Arabidopsis RNA polymerase IVb/Pol V, a multisubunit nuclear enzyme required for siRNA-mediated gene silencing of transposons and other repeats, transcribes intergenic and noncoding sequences, thereby facilitating heterochromatin formation and silencing of overlapping and adjacent genes. Pol IVb/Pol V transcription requires the chromatin-remodeling protein DRD1 but is independent of siRNA biogenesis. However, Pol IVb/Pol V transcription and siRNA production are both required to silence transposons, suggesting that Pol IVb/Pol V generates RNAs or chromatin structures that serve as scaffolds for siRNA-mediated heterochromatin-forming complexes. Pol IVb/Pol V function provides a solution to a paradox of epigenetic control: the need for transcription in order to transcriptionally silence the same region.", "title": "Noncoding Transcription by RNA Polymerase Pol IVb/Pol V Mediates Transcriptional Silencing of Overlapping and Adjacent Genes" }, { "docid": "23576726", "text": "Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.", "title": "Enhanced waterlogging tolerance in barley by manipulation of expression of the N‐end rule pathway E3 ligase PROTEOLYSIS6 " }, { "docid": "1333643", "text": "Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense.", "title": "Genetic and Functional Diversification of Small RNA Pathways in Plants" }, { "docid": "4544916", "text": "To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1.", "title": "The N-end rule pathway regulates pathogen responses in plants." }, { "docid": "8536018", "text": "Nitric oxide (NO) was identified as a key player in plant defence responses approximately 20 years ago and a large body of evidence has accumulated since then supporting its role as a signalling molecule. However, there are many discrepancies in current NO detection assays and the enzymatic pathways responsible for its synthesis have yet to be determined. This has provoked strong debates concerning the function of NO in plants, even questioning its existence in planta. Here we gather data obtained using the model pathosystem Arabidopsis/Pseudomonas, which confirms the production of NO during the hypersensitive response and supports is role as a trigger of hypersensitive cell death and a mediator of defence gene expression. Finally, we discuss potential sources of NO synthesis, focusing on the role of nitrite as major substrate for NO production during incompatible interactions.", "title": "Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there's a will there's a way." }, { "docid": "5849439", "text": "Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development.", "title": "Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant." }, { "docid": "11721676", "text": "Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.", "title": "Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia." }, { "docid": "1669173", "text": "The Arabidopsis genome contains a family of v-SNAREs: VTI11, VTI12, and VTI13. Only VTI11 and VTI12 are expressed at appreciable levels. Although these two proteins are 60% identical, they complement different transport pathways when expressed in the yeast vti1 mutant. VTI11 was identified recently as the mutated gene in the shoot gravitropic mutant zig. Here, we show that the vti11 zig mutant has defects in vascular patterning and auxin transport. An Arabidopsis T-DNA insertion mutant, vti12, had a normal phenotype under nutrient-rich growth conditions. However, under nutrient-poor conditions, vti12 showed an accelerated senescence phenotype, suggesting that VTI12 may play a role in the plant autophagy pathway. VTI11 and VTI12 also were able to substitute for each other in their respective SNARE complexes, and a double-mutant cross between zig and vti12 was embryo lethal. These results suggest that some VTI1 protein was necessary for plant viability and that the two proteins were partially functionally redundant.", "title": "The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways." }, { "docid": "16905344", "text": "Injured axons of the adult CNS undergo lengthy retraction from the initial site of axotomy after spinal cord injury. Macrophage infiltration correlates spatiotemporally with this deleterious phenomenon, but the direct involvement of these inflammatory cells has not been demonstrated. In the present study, we examined the role of macrophages in axonal retraction within the dorsal columns after spinal cord injury in vivo and found that retraction occurred between days 2 and 28 after lesion and that the ends of injured axons were associated with ED-1+ cells. Clodronate liposome-mediated depletion of infiltrating macrophages resulted in a significant reduction in axonal retraction; however, we saw no evidence of regeneration. We used time-lapse imaging of adult dorsal root ganglion neurons in an in vitro model of the glial scar to examine macrophage-axon interactions and observed that adhesive contacts and considerable physical interplay between macrophages and dystrophic axons led to extensive axonal retraction. The induction of retraction was dependent on both the growth state of the axon and the activation state of the macrophage. Only dystrophic adult axons were susceptible to macrophage \"attack. \" Unlike intrinsically active cell line macrophages, both primary macrophages and microglia required activation to induce axonal retraction. Contact with astrocytes had no deleterious effect on adult dystrophic axons, suggesting that the induction of extensive retraction was specific to phagocytic cells. Our data are the first to indicate a direct role of activated macrophages in axonal retraction by physical cell-cell interactions with injured axons.", "title": "Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive Retraction of Dystrophic Axons through Direct Physical Interactions" }, { "docid": "2988714", "text": "Local translation mediates axonal responses to Semaphorin3A (Sema3A) and other guidance cues. However, only a subset of the axonal proteome is locally synthesized, whereas most proteins are trafficked from the soma. The reason why only specific proteins are locally synthesized is unknown. Here we show that local protein synthesis and degradation are linked events in growth cones. We find that growth cones exhibit high levels of ubiquitination and that local signalling pathways trigger the ubiquitination and degradation of RhoA, a mediator of Sema3A-induced growth cone collapse. Inhibition of RhoA degradation is sufficient to remove the protein-synthesis requirement for Sema3A-induced growth cone collapse. In addition to RhoA, we find that locally translated proteins are the main targets of the ubiquitin-proteasome system in growth cones. Thus, local protein degradation is a major feature of growth cones and creates a requirement for local translation to replenish proteins needed to maintain growth cone responses.", "title": "Coupled local translation and degradation regulate growth cone collapse" }, { "docid": "14926162", "text": "The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.", "title": "Identification of an allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana." }, { "docid": "410286", "text": "The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.", "title": "TECHNICAL ADVANCE Floral dip: a simplified method for Agrobacterium-mediated" } ]
704
Long - range chromatin interactions regulate transcription.
[ { "docid": "14658685", "text": "The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.", "title": "Enhancer Evolution across 20 Mammalian Species" } ]
[ { "docid": "18276599", "text": "Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.", "title": "Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation" }, { "docid": "18924534", "text": "The mammalian genome harbors thousands of long noncoding RNA (lncRNA) genes. Recent studies have indicated the involvement of several of these lncRNAs in the regulation of gene expression. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control, to post-transcriptional regulation. lncRNAs are localized in various subcellular compartments, and major proportion of these are retained in the cell nucleus and could be broadly classified as nuclear-retained lncRNAs (nrRNAs). Based on the identified functions, members of the nrRNAs execute diverse roles, including providing architectural support to the hierarchical subnuclear organization and influencing the recruitment of chromatin modifier factors to specific chromatin sites. In this review, we will summarize the recently described roles of mammalian nrRNAs in controlling gene expression by influencing chromatin organization, transcription, pre-mRNA processing, nuclear organization, and their involvement in disease.", "title": "Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells" }, { "docid": "9669099", "text": "Binding within or nearby target genes involved in cell proliferation and survival enables the p53 tumor suppressor gene to regulate their transcription and cell-cycle progression. Using genome-wide chromatin-binding profiles, we describe binding of p53 also to regions located distantly from any known p53 target gene. Interestingly, many of these regions possess conserved p53-binding sites and all known hallmarks of enhancer regions. We demonstrate that these p53-bound enhancer regions (p53BERs) indeed contain enhancer activity and interact intrachromosomally with multiple neighboring genes to convey long-distance p53-dependent transcription regulation. Furthermore, p53BERs produce, in a p53-dependent manner, enhancer RNAs (eRNAs) that are required for efficient transcriptional enhancement of interacting target genes and induction of a p53-dependent cell-cycle arrest. Thus, our results ascribe transcription enhancement activity to p53 with the capacity to regulate multiple genes from a single genomic binding site. Moreover, eRNA production from p53BERs is required for efficient p53 transcription enhancement.", "title": "eRNAs are required for p53-dependent enhancer activity and gene transcription." }, { "docid": "5935987", "text": "When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.", "title": "Epigenetics in diabetic nephropathy, immunity and metabolism" }, { "docid": "4462139", "text": "Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions. How local chromatin interactions govern higher-order folding of chromatin fibres and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes. Our analyses of wild-type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form 'globules'. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fibre compaction at centromeres and promotes prominent inter-arm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions.", "title": "Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe" }, { "docid": "31851367", "text": "Estrogens are key regulators of growth, differentiation, and the physiological functions of a wide range of target tissues, including the male and female reproductive tracts, breast, and skeletal, nervous, cardiovascular, digestive and immune systems. The majority of these biological activities of estrogens are mediated through two genetically distinct receptors, ERalpha and ERbeta, which function as hormone-inducible transcription factors. Over the past decade, it has become increasingly clear that the recruitment of coregulatory proteins to ERs is required for ER-mediated transcriptional and biological activities. These \"coactivator\" complexes enable the ERs to respond appropriately: 1) to hormones or pharmacological ligands, 2) interpret extra- and intra-cellular signals, 3) catalyze the process of chromatin condensation and 4) to communicate with the general transcription apparatus at target gene promoters. In addition to activating proteins, the existence of corepressors, proteins that function as negative regulators of ER activity in either physiological or pharmacological contexts, provides an additional level of complexity in ER action. This review also describes current efforts aimed at developing pharmaceutical agents that target ER-cofactor interactions as therapeutics for estrogen-associated pathologies.", "title": "Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting." }, { "docid": "43711341", "text": "Transcriptional coactivators showing physical and functional interactions with PPARgamma include the protein acetyl transferase p300, the TRAP/Mediator complex that interacts with the general transcription machinery, and the highly regulated PGC-1alpha. We show that PGC-1alpha directly interacts with TRAP/Mediator, through the PPARgamma-interacting subunit TRAP220, and stimulates TRAP/Mediator-dependent function on DNA templates. Further, while ineffective by itself, PGC-1alpha stimulates p300-dependent histone acetylation and transcription on chromatin templates in response to PPARgamma. These functions are mediated by largely independent PPARgamma, p300, and TRAP220 interaction domains in PGC-1alpha, whereas p300 and TRAP220 show ligand-dependent interactions with a common region of PPARgamma. Apart from showing PGC-1alpha functions both in chromatin remodeling and in preinitiation complex formation or function (transcription), these results suggest a key role for PGC-1alpha, through concerted but dynamic interactions, in coordinating these steps.", "title": "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha." }, { "docid": "25821556", "text": "Transcription regulation in higher eukaryotes is controlled by regulatory elements such as enhancers that are recognized by transcription factors. In many cases regulatory elements can be located at distances up to several megabases from their target genes. Recent evidence shows that long-range control of gene expression can be mediated through direct physical interactions between genes and these regulatory elements. Such looping interactions can be detected using the chromosome conformation capture (3C) methodology. Although 3C is experimentally straightforward, to draw meaningful conclusions one must carefully design 3C experiments and implement the conscientious use of controls. The general guidelines presented here should help experimental design and minimize misinterpretation of 3C experiments.", "title": "The three 'C' s of chromosome conformation capture: controls, controls, controls" }, { "docid": "9655347", "text": "BACKGROUND Long non-coding RNAs (lncRNAs) are a sub-class within non-coding RNA repertoire that have emerged as crucial regulators of the gene expression in various pathophysiological conditions. lncRNAs display remarkable versatility and wield their functions through interactions with RNA, DNA, or proteins. Accumulating body of evidence based on multitude studies has highlighted the role of lncRNAs in many autoimmune and inflammatory diseases, including type 1 diabetes (T1D). This review highlights emerging roles of lncRNAs in immune and islet β cell function as well as some of the challenges and opportunities in understanding the pathogenesis of T1D and its complications. \n CONCLUSION We accentuate that the lncRNAs within T1D-loci regions in consort with regulatory variants and enhancer clusters orchestrate the chromatin remodeling in β cells and thereby act as cis/trans-regulatory determinants of islet cell transcriptional programs.", "title": "Long non-coding RNAs as novel players in β cell function and type 1 diabetes" }, { "docid": "8494570", "text": "BACKGROUND Recent studies suggested that human/mammalian genomes are divided into large, discrete domains that are units of chromosome organization. CTCF, a CCCTC binding factor, has a diverse role in genome regulation including transcriptional regulation, chromosome-boundary insulation, DNA replication, and chromatin packaging. It remains unclear whether a subset of CTCF binding sites plays a functional role in establishing/maintaining chromatin topological domains. \n RESULTS We systematically analysed the genomic, transcriptomic and epigenetic profiles of the CTCF binding sites in 56 human cell lines from ENCODE. We identified ~24,000 CTCF sites (referred to as constitutive sites) that were bound in more than 90% of the cell lines. Our analysis revealed: 1) constitutive CTCF loci were located in constitutive open chromatin and often co-localized with constitutive cohesin loci; 2) most constitutive CTCF loci were distant from transcription start sites and lacked CpG islands but were enriched with the full-spectrum CTCF motifs: a recently reported 33/34-mer and two other potentially novel (22/26-mer); 3) more importantly, most constitutive CTCF loci were present in CTCF-mediated chromatin interactions detected by ChIA-PET and these pair-wise interactions occurred predominantly within, but not between, topological domains identified by Hi-C. CONCLUSIONS Our results suggest that the constitutive CTCF sites may play a role in organizing/maintaining the recently identified topological domains that are common across most human cells.", "title": "Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes" }, { "docid": "7137057", "text": "BACKGROUND & AIMS HBV covalently closed circular DNA (cccDNA), the replicative intermediate responsible for persistent HBV infection of hepatocytes, is the template for transcription of all viral mRNAs. Nuclear cccDNA accumulates as a stable episome organized into minichromosomes by histone and nonhistone proteins. In this study we investigated, by a newly developed sensitive and specific assay, the relationship between viral replication and HBV chromatin assembly, transcription, and interaction with viral and cellular regulatory proteins. \n METHODS To achieve this aim we coupled a quantitative chromatin immunoprecipitation (ChIP) technique to an established method that allows the amplification of virion-encapsidated HBV genomes after transfection of linear HBV DNA into human hepatoma HuH7 cells. The cccDNA-ChIP technique was also applied to study HBV minichromosome transcriptional regulation in liver tissue from HBV-infected patients. \n RESULTS The use of anti-acetyl-H4/-H3 specific antibodies to immunoprecipitate transcriptionally active chromatin revealed that HBV replication is regulated by the acetylation status of the cccDNA-bound H3/H4 histones. Class I histone deacetylases inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV replication. Finally, histones hypoacetylation and histone deacetylase 1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in hepatitis B patients. \n CONCLUSIONS We developed a ChIP-based assay to analyze, in vitro and ex vivo, the transcriptional regulation of HBV cccDNA minichromosome. Our results provide new insights on the regulation of HBV replication and identify the enzymatic activities that modulate the acetylation of cccDNA-bound histones as new therapeutic targets for anti-HBV drugs.", "title": "Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones." }, { "docid": "13790144", "text": "Histone proteins play essential structural and functional roles in the transition between active and inactive chromatin states. Although histones have a high degree of conservation due to constraints to maintain the overall structure of the nucleosomal octameric core, variants have evolved to assume diverse roles in gene regulation and epigenetic silencing. Histone variants, post-translational modifications and interactions with chromatin remodeling complexes influence DNA replication, transcription, repair and recombination. The authors review recent findings on the structure of chromatin that confirm previous interparticle interactions observed in crystal structures.", "title": "Histone structure and nucleosome stability." }, { "docid": "14191255", "text": "The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an \"effector\" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.", "title": "Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network" }, { "docid": "5519177", "text": "Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.", "title": "Gene regulation in the immune system by long noncoding RNAs" }, { "docid": "18038955", "text": "INO80 is an evolutionarily conserved, ATP-dependent chromatin-remodeling enzyme that plays roles in transcription, DNA repair, and replication. Here, we show that yeast INO80 facilitates these diverse processes at least in part by controlling genome-wide distribution of the histone variant H2A.Z. In the absence of INO80, H2A.Z nucleosomes are mislocalized, and H2A.Z levels at promoters show reduced responsiveness to transcriptional changes, suggesting that INO80 controls H2A.Z dynamics. Additionally, we demonstrate that INO80 has a histone-exchange activity in which the enzyme can replace nucleosomal H2A.Z/H2B with free H2A/H2B dimers. Genetic interactions between ino80 and htz1 support a model in which INO80 catalyzes the removal of unacetylated H2A.Z from chromatin as a mechanism to promote genome stability.", "title": "Global Regulation of H2A.Z Localization by the INO80 Chromatin-Remodeling Enzyme Is Essential for Genome Integrity" }, { "docid": "13759726", "text": "The reconstruction of gene regulatory networks underlying cell differentiation from high-throughput gene expression and chromatin data remains a challenge. Here, we derive dynamic gene regulatory networks for human myeloid differentiation using a 5-day time series of RNA-seq and ATAC-seq data. We profile HL-60 promyelocytes differentiating into macrophages, neutrophils, monocytes, and monocyte-derived macrophages. We find a rapid response in the expression of key transcription factors and lineage markers that only regulate a subset of their targets at a given time, which is followed by chromatin accessibility changes that occur later along with further gene expression changes. We observe differences between promyelocyte- and monocyte-derived macrophages at both the transcriptional and chromatin landscape level, despite using the same differentiation stimulus, which suggest that the path taken by cells in the differentiation landscape defines their end cell state. More generally, our approach of combining neighboring time points and replicates to achieve greater sequencing depth can efficiently infer footprint-based regulatory networks from long series data.", "title": "Dynamic Gene Regulatory Networks of Human Myeloid Differentiation." }, { "docid": "15600979", "text": "EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.", "title": "EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases" }, { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "8331432", "text": "The transcription factor HNF3 and linker histones H1 and H5 possess winged-helix DNA-binding domains, yet HNF3 and other fork head-related proteins activate genes during development whereas linker histones compact DNA in chromatin and repress gene expression. We compared how the two classes of factors interact with chromatin templates and found that HNF3 binds DNA at the side of nucleosome cores, similarly to what has been reported for linker histone. A nucleosome structural binding site for HNF3 is occupied at the albumin transcriptional enhancer in active and potentially active chromatin, but not in inactive chromatin in vivo. While wild-type HNF3 protein does not compact DNA extending from the nucleosome, as does linker histone, site-directed mutants of HNF3 can compact nucleosomal DNA if they contain basic amino acids at positions previously shown to be essential for nucleosomal DNA compaction by linker histones. The results illustrate how transcription factors can possess special nucleosome-binding activities that are not predicted from studies of factor interactions with free DNA.", "title": "Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome." }, { "docid": "1635872", "text": "Ubiquitin-mediated proteolysis of the replication licensing factor Cdt1 (Cdc10-dependent transcript 1) in S phase is a key mechanism that limits DNA replication to a single round per cell cycle in metazoans. In Xenopus egg extracts, Cdt1 is destroyed on chromatin during DNA replication. Here, we report that replication-dependent proteolysis of Cdt1 requires its interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric processivity factor for DNA polymerases. Cdt1 binds to PCNA through a consensus PCNA-interaction motif that is conserved in Cdt1 of all metazoans, and removal of PCNA from egg extracts inhibits replication-dependent Cdt1 destruction. Mutation of the PCNA-interaction motif yields a stabilized Cdt1 protein that induces re-replication. DDB1, a component of the Cul4 E3 ubiquitin ligase that mediates human Cdt1 proteolysis in response to DNA damage, is also required for replication-dependent Cdt1 destruction. Cdt1 and DDB1 interact in extracts, and DDB1 chromatin loading is dependent on the binding of Cdt1 to PCNA, which indicates that PCNA docking activates the pre-formed Cdt1–Cul4DDB1 ligase complex. Thus, PCNA functions as a platform for Cdt1 destruction, ensuring efficient and temporally restricted inactivation of a key cell-cycle regulator.", "title": "PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication" } ]
705
Long chain polyunsaturated fatty acids supplementation has no significant effects on wheezing or asthma at 3 and 6 years.
[ { "docid": "22442133", "text": "OBJECTIVE To determine whether dietary n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation of pregnant women with a fetus at high risk of allergic disease reduces immunoglobulin E associated eczema or food allergy at 1 year of age. \n DESIGN Follow-up of infants at high hereditary risk of allergic disease in the Docosahexaenoic Acid to Optimise Mother Infant Outcome (DOMInO) randomised controlled trial. \n SETTING Adelaide, South Australia. \n PARTICIPANTS 706 infants at high hereditary risk of developing allergic disease whose mothers were participating in the DOMInO trial. \n INTERVENTIONS The intervention group (n=368) was randomly allocated to receive fish oil capsules (providing 900 mg of n-3 LCPUFA daily) from 21 weeks' gestation until birth; the control group (n=338) received matched vegetable oil capsules without n-3 LCPUFA. \n MAIN OUTCOME MEASURE Immunoglobulin E associated allergic disease (eczema or food allergy with sensitisation) at 1 year of age. \n RESULTS No differences were seen in the overall percentage of infants with immunoglobulin E associated allergic disease between the n-3 LCPUFA and control groups (32/368 (9%) v 43/338 (13%); unadjusted relative risk 0.68, 95% confidence interval 0.43 to 1.05, P=0.08; adjusted relative risk 0.70, 0.45 to 1.09, P=0.12), although the percentage of infants diagnosed as having atopic eczema (that is, eczema with associated sensitisation) was lower in the n-3 LCPUFA group (26/368 (7%) v 39/338 (12%); unadjusted relative risk 0.61, 0.38 to 0.98, P=0.04; adjusted relative risk 0.64, 0.40 to 1.02, P=0.06). Fewer infants were sensitised to egg in the n-3 LCPUFA group (34/368 (9%) v 52/338 (15%); unadjusted relative risk 0.61, 0.40 to 0.91, P=0.02; adjusted relative risk 0.62, 0.41 to 0.93, P=0.02), but no difference between groups in immunoglobulin E associated food allergy was seen. \n CONCLUSION n-3 LCPUFA supplementation in pregnancy did not reduce the overall incidence of immunoglobulin E associated allergies in the first year of life, although atopic eczema and egg sensitisation were lower. Longer term follow-up is needed to determine if supplementation has an effect on respiratory allergic diseases and aeroallergen sensitisation in childhood. \n TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12610000735055 (DOMInO trial: ACTRN12605000569606).", "title": "Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial" } ]
[ { "docid": "24269361", "text": "There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to common food allergens and reduce prevalence and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence with a reduction in eczema, hay fever, and asthma. Fish oil provision to infants or children may be associated with immunologic changes in the blood but it is not clear if these are of clinical significance and whether they persist. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, but this benefit may not persist as other factors come into play. It is not clear whether fish oil can be used to treat children with asthma as the two studies conducted to date give divergent results. Further studies of increased long-chain n-3 PUFA provision in during pregnancy, lactation, and infancy are needed to more clearly identify the immunologic and clinical effects in infants and children and to identify protective and therapeutic effects and their persistence.", "title": "Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review." }, { "docid": "33912748", "text": "OBJECTIVE To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage. \n METHODS The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). \n RESULTS Supplementation with n-3 PUFA (but not other fatty acids) reduced, in a dose-dependent manner, the endogenous and IL-1-induced release of proteoglycan metabolites from articular cartilage explants and specifically abolished endogenous aggrecanase and collagenase proteolytic activity. Similarly, expression of mRNA for ADAMTS-4, MMP-13, and MMP-3 (but not TIMP-1, -2, or -3) was also specifically abolished with n-3 PUFA supplementation. In addition, n-3 PUFA supplementation abolished the expression of mRNA for mediators of inflammation (cyclooxygenase 2, 5-lipoxygenase, 5-lipoxygenase-activating protein, tumor necrosis factor alpha, IL-1alpha, and IL-1beta) without affecting the expression of message for several other proteins involved in normal tissue homeostasis. \n CONCLUSION These studies show that the pathologic indicators manifested in human OA cartilage can be significantly altered by exposure of the cartilage to n-3 PUFA, but not to other classes of fatty acids.", "title": "Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids." }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "20148808", "text": "The mammalian gastrointestinal tract harbors a microbial community with metabolic activity critical for host health, including metabolites that can modulate effector functions of immune cells. Mice treated with vancomycin have an altered microbiome and metabolite profile, exhibit exacerbated T helper type 2 cell (Th2) responses, and are more susceptible to allergic lung inflammation. Here we show that dietary supplementation with short-chain fatty acids (SCFAs) ameliorates this enhanced asthma susceptibility by modulating the activity of T cells and dendritic cells (DCs). Dysbiotic mice treated with SCFAs have fewer interleukin-4 (IL4)-producing CD4+ T cells and decreased levels of circulating immunoglobulin E (IgE). In addition, DCs exposed to SCFAs activate T cells less robustly, are less motile in response to CCL19 in vitro, and exhibit a dampened ability to transport inhaled allergens to lung draining nodes. Our data thus demonstrate that gut dysbiosis can exacerbate allergic lung inflammation through both T cell- and DC-dependent mechanisms that are inhibited by SCFAs.", "title": "Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids" }, { "docid": "3866315", "text": "Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.", "title": "Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing" }, { "docid": "20672596", "text": "Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.", "title": "Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages." }, { "docid": "23388442", "text": "Research describing fatty acids as modulators of inflammation and immune responses abounds. Many of these studies have focused on one particular group of fatty acids, omega-3. The data from animal studies have shown that these fatty acids can have powerful anti-inflammatory and immunomodulatory activities in a wide array of diseases (e.g., autoimmunity, arthritis, and infection). However, the evidence from human trials is more equivocal. In this review, a historical framework for understanding how and why fatty acids may affect the immune system is provided. Second, highlights of two recent landmark reports from the Agency for Healthcare Research and Quality are presented. These reports critically evaluate the evidence from human clinical trials of omega-3 fatty acids and rheumatoid arthritis, asthma, and a few other immune-mediated diseases. Third, the data from human clinical trials investigating the impact of various bioactive fatty acids on ex vivo and in vivo immune response are reviewed. Limitations in experimental design and immune assays commonly used are discussed. The discordance between expectation and evidence in this field has been a disappointment. Recommendations for improving both animal-based and human studies are provided.", "title": "Fatty acids as modulators of the immune response." }, { "docid": "21636085", "text": "BACKGROUND Increased plasma homocysteine is associated with coronary artery disease, peripheral vascular disease and venous thrombosis. Folic acid is the most effective therapy for reducing homocysteine levels. The lowest effective supplement of folic acid is not known, particularly for the elderly who have the highest prevalence of these conditions. AIM To explore the effects of daily supplements of 0, 50, 100, 200, 400 and 600 microg folic acid on plasma homocysteine in an elderly population. \n DESIGN Randomized double-blind placebo-controlled trial. \n METHODS Participants (n=368) aged 65-75 years were randomly allocated to receive one of the treatments for 6 weeks. Plasma homocysteine was recorded after 3 weeks and 6 weeks of supplementation. \n RESULTS Only the 400 microg and 600 microg groups had significantly lower homocysteine levels compared to placebo (p=0.038 and p<0.001, respectively). Using multiple linear regression and each individual's total folic acid intake (diet plus supplement), a total daily folic acid intake of 926 microg per day would be required to ensure that 95% of the elderly population would be without cardiovascular risk from folate deficiency. DISCUSSION A daily folic acid intake of 926 microg is unlikely to be achieved by diet alone. Individual supplementation or fortification of food with folic acid will be required to reach this target.", "title": "The effect of folic acid supplementation on plasma homocysteine in an elderly population." }, { "docid": "39558597", "text": "Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.", "title": "Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione." }, { "docid": "12009265", "text": "CONTEXT Many individuals take vitamins in the hopes of preventing chronic diseases such as cancer, and vitamins E and C are among the most common individual supplements. A large-scale randomized trial suggested that vitamin E may reduce risk of prostate cancer; however, few trials have been powered to address this relationship. No previous trial in men at usual risk has examined vitamin C alone in the prevention of cancer. \n OBJECTIVE To evaluate whether long-term vitamin E or C supplementation decreases risk of prostate and total cancer events among men. \n DESIGN, SETTING, AND PARTICIPANTS The Physicians' Health Study II is a randomized, double-blind, placebo-controlled factorial trial of vitamins E and C that began in 1997 and continued until its scheduled completion on August 31, 2007. A total of 14,641 male physicians in the United States initially aged 50 years or older, including 1307 men with a history of prior cancer at randomization, were enrolled. \n INTERVENTION Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. \n MAIN OUTCOME MEASURES Prostate and total cancer. \n RESULTS During a mean follow-up of 8.0 years, there were 1008 confirmed incident cases of prostate cancer and 1943 total cancers. Compared with placebo, vitamin E had no effect on the incidence of prostate cancer (active and placebo vitamin E groups, 9.1 and 9.5 events per 1000 person-years; hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.85-1.09; P = .58) or total cancer (active and placebo vitamin E groups, 17.8 and 17.3 cases per 1000 person-years; HR, 1.04; 95% CI, 0.95-1.13; P = .41). There was also no significant effect of vitamin C on total cancer (active and placebo vitamin C groups, 17.6 and 17.5 events per 1000 person-years; HR, 1.01; 95% CI, 0.92-1.10; P = .86) or prostate cancer (active and placebo vitamin C groups, 9.4 and 9.2 cases per 1000 person-years; HR, 1.02; 95% CI, 0.90-1.15; P = .80). Neither vitamin E nor vitamin C had a significant effect on colorectal, lung, or other site-specific cancers. Adjustment for adherence and exclusion of the first 4 or 6 years of follow-up did not alter the results. Stratification by various cancer risk factors demonstrated no significant modification of the effect of vitamin E on prostate cancer risk or either agent on total cancer risk. \n CONCLUSIONS In this large, long-term trial of male physicians, neither vitamin E nor C supplementation reduced the risk of prostate or total cancer. These data provide no support for the use of these supplements for the prevention of cancer in middle-aged and older men. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00270647.", "title": "Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial." }, { "docid": "18375089", "text": "Angiogenesis is a necessary step in tumor growth and metastasis. It is well established that the metabolites of omega-6 and omega-3 fatty acids, which must be obtained through the diet and cannot be synthesized de novo in mammals, have differential effects on cellular processes. Omega-6 fatty acid (n−6 FA)-derived metabolites promote angiogenesis by increasing growth factor expression whereas omega-3 fatty acids (n−3 FA) have anti-angiogenic and antitumor properties. However, most studies thus far have failed to account for the role of the n−6 FA/n−3 FA ratio in angiogenesis and instead examined the absolute levels of n−6 and n−3 FA. This review highlights the biochemical interactions between n−6 and n−3 FA and focuses on how the n−6/n−3 FA ratio in tissues modulates tumor angiogenesis. We suggest that future work should consider the n−6/n−3 FA ratio to be a key element in experimental design and analysis. Furthermore, we recommend that clinical interventions should aim to both reduce n−6 metabolites and simultaneously increase n−3 FA intake.", "title": "The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis" }, { "docid": "8458567", "text": "PEROXISOMES are cytoplasmic organelles which are important in mammals in modulation of lipid homeostasis, including the metabolism of long-chain fatty acids and conversion of cholesterol to bile salts (reviewed in refs 1 and 2). Amphipathic carboxylates such as clofibric acid have been used in man as hypolipidaemic agents and in rodents they stimulate the proliferation of peroxisomes. These agents, termed peroxisome proliferators, and all-trans retinoic acid activate genes involved in peroxisomal-mediated β-oxidation of fatty acids1–4. Here we show that the receptor activated by peroxisome proliferators5 and the retinoid X receptor-α (ref. 6) form a heterodimer that activates acyl-CoA oxidase gene expression in response to either clofibric acid or the retinoid X receptor-α ligand, 9-cis retinoic acid, an all-trans retinoic acid metabolite7,8; simultaneous exposure to both activators results in a synergistic induction of gene expression. These data demonstrate the coupling of the peroxisome proliferator and retinoid signalling pathways and provide evidence for a physiological role for 9-cis retinoic acid in modulating lipid metabolism.", "title": "Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors" }, { "docid": "17163294", "text": "BACKGROUND Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. However, up to now it is not clear whether different cancer types are characterized by a specific metabolite profile. Therefore, this study aims to evaluate whether the plasma metabolic phenotype allows to discriminate between lung and breast cancer. \n PATIENTS AND METHODS The proton nuclear magnetic resonance spectrum of plasma is divided into 110 integration regions, representing the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used to train a classification model in discriminating between 80 female breast cancer patients and 54 female lung cancer patients, all with an adenocarcinoma. The validity of the model was examined by permutation testing and by classifying an independent validation cohort of 60 female breast cancer patients and 81 male lung cancer patients, all with an adenocarcinoma. \n RESULTS The model allows to classify 99% of the breast cancer patients and 93% of the lung cancer patients correctly with an area under the curve (AUC) of 0.96 and can be validated in the independent cohort with a sensitivity of 89%, a specificity of 82% and an AUC of 0.94. Decreased levels of sphingomyelin and phosphatidylcholine (phospholipids with choline head group) and phospholipids with short, unsaturated fatty acid chains next to increased levels of phospholipids with long, saturated fatty acid chains seem to indicate that cell membranes of lung tumors are more rigid and less sensitive to lipid peroxidation. The other discriminating metabolites are pointing to a more pronounced response of the body to the Warburg effect for lung cancer. \n CONCLUSION Metabolic phenotyping of plasma allows to discriminate between lung and breast cancer, indicating that the metabolite profile reflects more than a general cancer marker. CLINICAL TRIAL REGISTRATION NUMBER NCT02362776.", "title": "Metabolic phenotyping of human blood plasma: a powerful tool to discriminate between cancer types?" }, { "docid": "34733465", "text": "BACKGROUND Patients with cystic fibrosis have altered levels of plasma fatty acids. We previously demonstrated that arachidonic acid levels are increased and docosahexaenoic acid levels are decreased in affected tissues from cystic fibrosis-knockout mice. In this study we determined whether humans with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have a similar fatty acid defect in tissues expressing CFTR. \n METHODS Fatty acids from nasal- and rectal-biopsy specimens, nasal epithelial scrapings, and plasma were analyzed from 38 subjects with cystic fibrosis and compared with results in 13 obligate heterozygotes, 24 healthy controls, 11 subjects with inflammatory bowel disease, 9 subjects with upper respiratory tract infection, and 16 subjects with asthma. \n RESULTS The ratio of arachidonic to docosahexaenoic acid was increased in mucosal and submucosal nasal-biopsy specimens (P<0.001) and rectal-biopsy specimens (P=0.009) from subjects with cystic fibrosis and pancreatic sufficiency and subjects with cystic fibrosis and pancreatic insufficiency, as compared with values in healthy control subjects. In nasal tissue, this change reflected an increase in arachidonic acid levels and a decrease in docosahexaenoic acid levels. In cells from nasal mucosa, the ratio of arachidonic to docosahexaenoic acid was increased in subjects with cystic fibrosis (P<0.001), as compared with healthy controls, with values in obligate heterozygotes intermediate between these two groups (P<0.001). The ratio was not increased in subjects with inflammatory bowel disease. Subjects with asthma and those with upper respiratory tract infection had values intermediate between those in subjects with cystic fibrosis and those in healthy control subjects. \n CONCLUSIONS These data indicate that alterations in fatty acids similar to those in cystic fibrosis-knockout mice are present in CFTR-expressing tissue from subjects with cystic fibrosis.", "title": "Association of cystic fibrosis with abnormalities in fatty acid metabolism." }, { "docid": "13774178", "text": "BACKGROUND Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). \n METHODS Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. \n RESULTS Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice. \n CONCLUSION Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways.", "title": "Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice" }, { "docid": "25761154", "text": "Exercise-induced asthma is defined as an intermittent narrowing of the airways, demonstrated by a decrease in some measure of flow, that the patient experiences as wheezing, chest tightness, coughing, and difficulty breathing that is triggered by exercise. Exercise will trigger asthma in most individuals who have chronic asthma, as well as in some who do not otherwise have asthma. Definitive diagnosis requires demonstration of a drop in flow rate, typically > or = 13-15% for forced expiratory volume in one second (FEV1) and > or = 15-20% for peak expiratory flow rate (PEFR), after exercise, associated with symptoms. Prevalence data indicate that this disorder is very common in those who participate in recreational sports as well as in highly competitive athletes, with at least 12-15% of unselected athletes having positive exercise challenges. Treatment of exercise induced asthma involves use of nonpharmacological measures (such as the use of the refractory period after exercise and prewarming air) as well as use of medications (beta-agonists, cromolyn, and nedocromil). With treatment, those who suffer from exercise-induced asthma may be able to participate and compete at the highest levels of performance.", "title": "Exercise-induced asthma: a practical guide to definitions, diagnosis, prevalence, and treatment." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "29362104", "text": "The effect of omega-3, omega-6 and omega-9 unsaturated fatty acids (UFAs) on receptor-mediated Ca2+ entry was investigated in a T-cell line (JURKAT) by using anti-CD3 antibodies (OKT3) to induce intracellular Ca2+ [( Ca2+]i) increase and Ca2+ influx. All the UFAs, as well as Ni2+ ions and 12-O-tetradecanoylphorbol 13-acetate, decreased the OKT3-induced sustained [Ca2+]i increase to basal levels. Although non-esterified fatty acids activate protein kinase C (PKC) [McPhail, Clayton & Snyderman (1984) Science 224, 622-624; Murakami, Chan & Routtenberg (1986) J. Biol. Chem. 261, 15424-15429], studies using H-7 and analysis of the PKC-dependent phosphorylation of 19 and 80 kDa marker substrates ruled out the involvement of PKC in UFA-induced inhibition of Ca2+ entry. Flow-cytometry analysis showed that UFAs do not interfere with antibody-receptor binding. BSA (0.2%, w/v) reversed the effect of UFAs after these fatty acids have decreased the OKT3-induced [Ca2+]i increase to basal levels. The relevance of these findings and possible mechanisms for inhibition by UFAs of receptor-mediated Ca2+ influx were discussed.", "title": "Inhibition of receptor-mediated calcium influx in T cells by unsaturated non-esterified fatty acids." } ]
709
Long chain polyunsaturated fatty acids supplementation is associated with lower rates of atopic eczema at 1 year.
[ { "docid": "22442133", "text": "OBJECTIVE To determine whether dietary n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation of pregnant women with a fetus at high risk of allergic disease reduces immunoglobulin E associated eczema or food allergy at 1 year of age. \n DESIGN Follow-up of infants at high hereditary risk of allergic disease in the Docosahexaenoic Acid to Optimise Mother Infant Outcome (DOMInO) randomised controlled trial. \n SETTING Adelaide, South Australia. \n PARTICIPANTS 706 infants at high hereditary risk of developing allergic disease whose mothers were participating in the DOMInO trial. \n INTERVENTIONS The intervention group (n=368) was randomly allocated to receive fish oil capsules (providing 900 mg of n-3 LCPUFA daily) from 21 weeks' gestation until birth; the control group (n=338) received matched vegetable oil capsules without n-3 LCPUFA. \n MAIN OUTCOME MEASURE Immunoglobulin E associated allergic disease (eczema or food allergy with sensitisation) at 1 year of age. \n RESULTS No differences were seen in the overall percentage of infants with immunoglobulin E associated allergic disease between the n-3 LCPUFA and control groups (32/368 (9%) v 43/338 (13%); unadjusted relative risk 0.68, 95% confidence interval 0.43 to 1.05, P=0.08; adjusted relative risk 0.70, 0.45 to 1.09, P=0.12), although the percentage of infants diagnosed as having atopic eczema (that is, eczema with associated sensitisation) was lower in the n-3 LCPUFA group (26/368 (7%) v 39/338 (12%); unadjusted relative risk 0.61, 0.38 to 0.98, P=0.04; adjusted relative risk 0.64, 0.40 to 1.02, P=0.06). Fewer infants were sensitised to egg in the n-3 LCPUFA group (34/368 (9%) v 52/338 (15%); unadjusted relative risk 0.61, 0.40 to 0.91, P=0.02; adjusted relative risk 0.62, 0.41 to 0.93, P=0.02), but no difference between groups in immunoglobulin E associated food allergy was seen. \n CONCLUSION n-3 LCPUFA supplementation in pregnancy did not reduce the overall incidence of immunoglobulin E associated allergies in the first year of life, although atopic eczema and egg sensitisation were lower. Longer term follow-up is needed to determine if supplementation has an effect on respiratory allergic diseases and aeroallergen sensitisation in childhood. \n TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12610000735055 (DOMInO trial: ACTRN12605000569606).", "title": "Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial" } ]
[ { "docid": "24269361", "text": "There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to common food allergens and reduce prevalence and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence with a reduction in eczema, hay fever, and asthma. Fish oil provision to infants or children may be associated with immunologic changes in the blood but it is not clear if these are of clinical significance and whether they persist. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, but this benefit may not persist as other factors come into play. It is not clear whether fish oil can be used to treat children with asthma as the two studies conducted to date give divergent results. Further studies of increased long-chain n-3 PUFA provision in during pregnancy, lactation, and infancy are needed to more clearly identify the immunologic and clinical effects in infants and children and to identify protective and therapeutic effects and their persistence.", "title": "Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review." }, { "docid": "33912748", "text": "OBJECTIVE To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage. \n METHODS The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). \n RESULTS Supplementation with n-3 PUFA (but not other fatty acids) reduced, in a dose-dependent manner, the endogenous and IL-1-induced release of proteoglycan metabolites from articular cartilage explants and specifically abolished endogenous aggrecanase and collagenase proteolytic activity. Similarly, expression of mRNA for ADAMTS-4, MMP-13, and MMP-3 (but not TIMP-1, -2, or -3) was also specifically abolished with n-3 PUFA supplementation. In addition, n-3 PUFA supplementation abolished the expression of mRNA for mediators of inflammation (cyclooxygenase 2, 5-lipoxygenase, 5-lipoxygenase-activating protein, tumor necrosis factor alpha, IL-1alpha, and IL-1beta) without affecting the expression of message for several other proteins involved in normal tissue homeostasis. \n CONCLUSION These studies show that the pathologic indicators manifested in human OA cartilage can be significantly altered by exposure of the cartilage to n-3 PUFA, but not to other classes of fatty acids.", "title": "Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids." }, { "docid": "20672596", "text": "Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.", "title": "Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages." }, { "docid": "3866315", "text": "Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.", "title": "Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing" }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "20148808", "text": "The mammalian gastrointestinal tract harbors a microbial community with metabolic activity critical for host health, including metabolites that can modulate effector functions of immune cells. Mice treated with vancomycin have an altered microbiome and metabolite profile, exhibit exacerbated T helper type 2 cell (Th2) responses, and are more susceptible to allergic lung inflammation. Here we show that dietary supplementation with short-chain fatty acids (SCFAs) ameliorates this enhanced asthma susceptibility by modulating the activity of T cells and dendritic cells (DCs). Dysbiotic mice treated with SCFAs have fewer interleukin-4 (IL4)-producing CD4+ T cells and decreased levels of circulating immunoglobulin E (IgE). In addition, DCs exposed to SCFAs activate T cells less robustly, are less motile in response to CCL19 in vitro, and exhibit a dampened ability to transport inhaled allergens to lung draining nodes. Our data thus demonstrate that gut dysbiosis can exacerbate allergic lung inflammation through both T cell- and DC-dependent mechanisms that are inhibited by SCFAs.", "title": "Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids" }, { "docid": "8458567", "text": "PEROXISOMES are cytoplasmic organelles which are important in mammals in modulation of lipid homeostasis, including the metabolism of long-chain fatty acids and conversion of cholesterol to bile salts (reviewed in refs 1 and 2). Amphipathic carboxylates such as clofibric acid have been used in man as hypolipidaemic agents and in rodents they stimulate the proliferation of peroxisomes. These agents, termed peroxisome proliferators, and all-trans retinoic acid activate genes involved in peroxisomal-mediated β-oxidation of fatty acids1–4. Here we show that the receptor activated by peroxisome proliferators5 and the retinoid X receptor-α (ref. 6) form a heterodimer that activates acyl-CoA oxidase gene expression in response to either clofibric acid or the retinoid X receptor-α ligand, 9-cis retinoic acid, an all-trans retinoic acid metabolite7,8; simultaneous exposure to both activators results in a synergistic induction of gene expression. These data demonstrate the coupling of the peroxisome proliferator and retinoid signalling pathways and provide evidence for a physiological role for 9-cis retinoic acid in modulating lipid metabolism.", "title": "Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors" }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "37424881", "text": "OBJECTIVE Folate and vitamin B12 are two vital regulators in the metabolic process of homocysteine, which is a risk factor of atherothrombotic events. Low folate intake or low plasma folate concentration is associated with increased stroke risk. Previous randomized controlled trials presented discordant findings in the effect of folic acid supplementation-based homocysteine lowering on stroke risk. The aim of the present review was to perform a meta-analysis of relevant randomized controlled trials to check the how different folate fortification status might affect the effects of folic acid supplementation in lowering homocysteine and reducing stroke risk. \n DESIGN Relevant randomized controlled trials were identified through formal literature search. Homocysteine reduction was compared in subgroups stratified by folate fortification status. Relative risks with 95 % confidence intervals were used as a measure to assess the association between folic acid supplementation and stroke risk. \n SETTING The meta-analysis included fourteen randomized controlled trials, SUBJECTS A total of 39 420 patients. \n RESULTS Homocysteine reductions were 26·99 (sd 1·91) %, 18·38 (sd 3·82) % and 21·30 (sd 1·98) %, respectively, in the subgroups without folate fortification, with folate fortification and with partial folate fortification. Significant difference was observed between the subgroups with folate fortification and without folate fortification (P=0·05). The relative risk of stroke was 0·88 (95 % CI 0·77, 1·00, P=0·05) in the subgroup without folate fortification, 0·94 (95 % CI 0·58, 1·54, P=0·82) in the subgroup with folate fortification and 0·91 (95 % CI 0·82, 1·01, P=0·09) in the subgroup with partial folate fortification. \n CONCLUSIONS Folic acid supplementation might have a modest benefit on stroke prevention in regions without folate fortification.", "title": "The effect of folate fortification on folic acid-based homocysteine-lowering intervention and stroke risk: a meta-analysis." }, { "docid": "21636085", "text": "BACKGROUND Increased plasma homocysteine is associated with coronary artery disease, peripheral vascular disease and venous thrombosis. Folic acid is the most effective therapy for reducing homocysteine levels. The lowest effective supplement of folic acid is not known, particularly for the elderly who have the highest prevalence of these conditions. AIM To explore the effects of daily supplements of 0, 50, 100, 200, 400 and 600 microg folic acid on plasma homocysteine in an elderly population. \n DESIGN Randomized double-blind placebo-controlled trial. \n METHODS Participants (n=368) aged 65-75 years were randomly allocated to receive one of the treatments for 6 weeks. Plasma homocysteine was recorded after 3 weeks and 6 weeks of supplementation. \n RESULTS Only the 400 microg and 600 microg groups had significantly lower homocysteine levels compared to placebo (p=0.038 and p<0.001, respectively). Using multiple linear regression and each individual's total folic acid intake (diet plus supplement), a total daily folic acid intake of 926 microg per day would be required to ensure that 95% of the elderly population would be without cardiovascular risk from folate deficiency. DISCUSSION A daily folic acid intake of 926 microg is unlikely to be achieved by diet alone. Individual supplementation or fortification of food with folic acid will be required to reach this target.", "title": "The effect of folic acid supplementation on plasma homocysteine in an elderly population." }, { "docid": "39558597", "text": "Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.", "title": "Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione." }, { "docid": "198309074", "text": "Introduction: Among the inflammatory mediators involved in the pathogenesis of obesity, the cell adhesion molecules Pselectin, E-selectin, VCAM-1, ICAM-1 and the chemokine MCP-1 stand out. They play a crucial role in adherence of cells to endothelial surfaces, in the integrity of the vascular wall and can be modulated by body composition and dietary pattern. Objectives: To describe and discuss the relation of these cell adhesion molecules and chemokines to anthropometric, body composition, dietary and biochemical markers. Methods: Papers were located using scientific databases by topic searches with no restriction on year of publication. Results: All molecules were associated positively with anthropometric markers, but controversial results were found for ICAM-1 and VCAM-1. Not only obesity, but visceral fat is more strongly correlated with E-selectin and MCP-1 levels. Weight loss influences the reduction in the levels of these molecules, except VCAM-1. The distribution of macronutrients, excessive consumption of saturated and trans fat and a Western dietary pattern are associated with increased levels. The opposite could be observed with supplementation of w-3 fatty acid, healthy dietary pattern, high calcium diet and high dairy intake. Regarding the biochemical parameters, they have inverse relation to HDLC and positive relation to total cholesterol, triglycerides, blood glucose, fasting insulin and insulin resistance. Conclusion: Normal anthropometric indicators, body composition, biochemical parameters and eating pattern positively modulate the subclinical inflammation that results from obesity by reducing the cell adhesion molecules and chemokines.", "title": "Adhesion molecules and chemokines: relation to anthropometric, body composition, biochemical and dietary variables" }, { "docid": "24594624", "text": "Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.", "title": "New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects." }, { "docid": "10692948", "text": "CONTEXT Early childhood introduction of nutritional habits aimed at atherosclerosis prevention is compatible with normal growth, but its effect on neurological development is unknown. \n OBJECTIVE To analyze how parental counseling aimed at keeping children's diets low in saturated fat and cholesterol influences neurodevelopment during the first 5 years of life. \n DESIGN Randomized controlled trial conducted between February 1990 and November 1996. \n SETTING Outpatient clinic of a university department in Turku, Finland. \n PARTICIPANTS A total of 1062 seven-month-old infants and their parents, recruited at well-baby clinics between 1990 and 1992. At age 5 years, 496 children still living in the city of Turku were available to participate in neurodevelopmental testing. \n INTERVENTION Participants were randomly assigned to receive individualized counseling aimed at limiting the child's fat intake to 30% to 35% of daily energy, with a saturated:monounsaturated:polyunsaturated fatty acid ratio of 1:1:1 and a cholesterol intake of less than 200 mg/d (n = 540) or usual health education (control group, n = 522). \n MAIN OUTCOME MEASURES Nutrient intake, serum lipid concentrations, and neurological development at 5 years, among children in the intervention vs control groups. \n RESULTS Absolute and relative intakes of fat, saturated fatty acids, and cholesterol among children in the intervention group were markedly less than the respective values of control children. Mean (SD) percentages of daily energy at age 5 years for the intervention vs control groups were as follows: for total fat, 30.6% (4.5%) vs 33.4% (4.4%) (P<. 001); and for saturated fat, 11.7% (2.3%) vs 14.5% (2.4%) (P<.001). Mean intakes of cholesterol were 164.2 mg (60.1 mg) and 192.5 mg (71. 9 mg) (P<.001) for the intervention and control groups, respectively. Serum cholesterol concentrations were continuously 3% to 5% lower in children in the intervention group than in children in the control group. At age 5 years, mean (SD) serum cholesterol concentration of the intervention group was 4.27 (0.63) mmol/L (165 [24] mg/dL) and of the control group, 4.41 (0.74) mmol/L (170 [29] mg/dL) (P =.04). Neurological development of children in the intervention group was at least as good as that of children in the control group. Relative risks for children in the intervention group to fail tests of speech and language skills, gross motor functioning plus perception, and visual motor skills were 0.95 (90% confidence interval [CI], 0.60-1.49), 0.95 (90% CI, 0.58-1.55), and 0.65 (90% CI, 0.39-1.08), respectively (P =.85,.86, and.16, respectively, vs control children). \n CONCLUSION Our data indicate that repeated child-targeted dietary counseling of parents during the first 5 years of a child's life lessens age-associated increases in children's serum cholesterol and is compatible with normal neurological development. JAMA. 2000;284:993-1000", "title": "Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: A randomized controlled trial." }, { "docid": "17163294", "text": "BACKGROUND Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. However, up to now it is not clear whether different cancer types are characterized by a specific metabolite profile. Therefore, this study aims to evaluate whether the plasma metabolic phenotype allows to discriminate between lung and breast cancer. \n PATIENTS AND METHODS The proton nuclear magnetic resonance spectrum of plasma is divided into 110 integration regions, representing the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used to train a classification model in discriminating between 80 female breast cancer patients and 54 female lung cancer patients, all with an adenocarcinoma. The validity of the model was examined by permutation testing and by classifying an independent validation cohort of 60 female breast cancer patients and 81 male lung cancer patients, all with an adenocarcinoma. \n RESULTS The model allows to classify 99% of the breast cancer patients and 93% of the lung cancer patients correctly with an area under the curve (AUC) of 0.96 and can be validated in the independent cohort with a sensitivity of 89%, a specificity of 82% and an AUC of 0.94. Decreased levels of sphingomyelin and phosphatidylcholine (phospholipids with choline head group) and phospholipids with short, unsaturated fatty acid chains next to increased levels of phospholipids with long, saturated fatty acid chains seem to indicate that cell membranes of lung tumors are more rigid and less sensitive to lipid peroxidation. The other discriminating metabolites are pointing to a more pronounced response of the body to the Warburg effect for lung cancer. \n CONCLUSION Metabolic phenotyping of plasma allows to discriminate between lung and breast cancer, indicating that the metabolite profile reflects more than a general cancer marker. CLINICAL TRIAL REGISTRATION NUMBER NCT02362776.", "title": "Metabolic phenotyping of human blood plasma: a powerful tool to discriminate between cancer types?" }, { "docid": "15551129", "text": "Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.", "title": "The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth" }, { "docid": "11705328", "text": "BACKGROUND Lowering serum homocysteine levels with folic acid is expected to reduce mortality from ischemic heart disease. Homocysteine reduction is known to be maximal at a folic acid dosage of 1 mg/d, but the effect of lower doses (relevant to food fortification) is unclear. \n METHODS We randomized 151 patients with ischemic heart disease to 1 of 5 dosages of folic acid (0.2, 0.4, 0.6, 0.8, and 1.0 mg/d) or placebo. Fasting blood samples for serum homocysteine and serum folate analysis were taken initially, after 3 months of supplementation, and 3 months after folic acid use was discontinued. \n RESULTS Median serum homocysteine level decreased with increasing folic acid dosage, to a maximum at 0.8 mg of folic acid per day, when the homocysteine reduction (placebo adjusted) was 2.7 micromol/L (23%), similar to the known effect of folic acid dosages of 1 mg/d and above. The higher a person's initial serum homocysteine level, the greater was the response to folic acid, but there were statistically significant reductions regardless of the initial level. Serum folate level increased approximately linearly (5.5 nmol/L for every 0.1 mg of folic acid). Within-person fluctuations over time in serum homocysteine levels, measured in the placebo group, were large compared with the effect of folic acid, indicating that monitoring of the reduction in an individual is impractical. \n CONCLUSIONS A dosage of folic acid of 0.8 mg/d appears necessary to achieve the maximum reduction in serum homocysteine level across the range of homocysteine levels in the population. Current US food fortification levels will achieve only a small proportion of the achievable homocysteine reduction.", "title": "Randomized trial of folic acid supplementation and serum homocysteine levels." }, { "docid": "4319174", "text": "All homeotherms use thermogenesis to maintain their core body temperature, ensuring that cellular functions and physiological processes can continue in cold environments. In the prevailing model of thermogenesis, when the hypothalamus senses cold temperatures it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue and white adipose tissue. Acting via the β(3)-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes, whereas it stimulates the expression of thermogenic genes, such as PPAR-γ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1) and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report in mice an unexpected requirement for the interleukin-4 (IL-4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Exposure to cold temperature rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in brown adipose tissue and lipolysis in white adipose tissue. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL-4 increased thermogenic gene expression, fatty acid mobilization and energy expenditure, all in a macrophage-dependent manner. Thus, we have discovered a role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold.", "title": "Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" } ]
710
Long chain polyunsaturated fatty acids supplementation reduces wheezing and asthma.
[ { "docid": "22442133", "text": "OBJECTIVE To determine whether dietary n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation of pregnant women with a fetus at high risk of allergic disease reduces immunoglobulin E associated eczema or food allergy at 1 year of age. \n DESIGN Follow-up of infants at high hereditary risk of allergic disease in the Docosahexaenoic Acid to Optimise Mother Infant Outcome (DOMInO) randomised controlled trial. \n SETTING Adelaide, South Australia. \n PARTICIPANTS 706 infants at high hereditary risk of developing allergic disease whose mothers were participating in the DOMInO trial. \n INTERVENTIONS The intervention group (n=368) was randomly allocated to receive fish oil capsules (providing 900 mg of n-3 LCPUFA daily) from 21 weeks' gestation until birth; the control group (n=338) received matched vegetable oil capsules without n-3 LCPUFA. \n MAIN OUTCOME MEASURE Immunoglobulin E associated allergic disease (eczema or food allergy with sensitisation) at 1 year of age. \n RESULTS No differences were seen in the overall percentage of infants with immunoglobulin E associated allergic disease between the n-3 LCPUFA and control groups (32/368 (9%) v 43/338 (13%); unadjusted relative risk 0.68, 95% confidence interval 0.43 to 1.05, P=0.08; adjusted relative risk 0.70, 0.45 to 1.09, P=0.12), although the percentage of infants diagnosed as having atopic eczema (that is, eczema with associated sensitisation) was lower in the n-3 LCPUFA group (26/368 (7%) v 39/338 (12%); unadjusted relative risk 0.61, 0.38 to 0.98, P=0.04; adjusted relative risk 0.64, 0.40 to 1.02, P=0.06). Fewer infants were sensitised to egg in the n-3 LCPUFA group (34/368 (9%) v 52/338 (15%); unadjusted relative risk 0.61, 0.40 to 0.91, P=0.02; adjusted relative risk 0.62, 0.41 to 0.93, P=0.02), but no difference between groups in immunoglobulin E associated food allergy was seen. \n CONCLUSION n-3 LCPUFA supplementation in pregnancy did not reduce the overall incidence of immunoglobulin E associated allergies in the first year of life, although atopic eczema and egg sensitisation were lower. Longer term follow-up is needed to determine if supplementation has an effect on respiratory allergic diseases and aeroallergen sensitisation in childhood. \n TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12610000735055 (DOMInO trial: ACTRN12605000569606).", "title": "Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial" } ]
[ { "docid": "24269361", "text": "There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to common food allergens and reduce prevalence and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence with a reduction in eczema, hay fever, and asthma. Fish oil provision to infants or children may be associated with immunologic changes in the blood but it is not clear if these are of clinical significance and whether they persist. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, but this benefit may not persist as other factors come into play. It is not clear whether fish oil can be used to treat children with asthma as the two studies conducted to date give divergent results. Further studies of increased long-chain n-3 PUFA provision in during pregnancy, lactation, and infancy are needed to more clearly identify the immunologic and clinical effects in infants and children and to identify protective and therapeutic effects and their persistence.", "title": "Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review." }, { "docid": "33912748", "text": "OBJECTIVE To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage. \n METHODS The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). \n RESULTS Supplementation with n-3 PUFA (but not other fatty acids) reduced, in a dose-dependent manner, the endogenous and IL-1-induced release of proteoglycan metabolites from articular cartilage explants and specifically abolished endogenous aggrecanase and collagenase proteolytic activity. Similarly, expression of mRNA for ADAMTS-4, MMP-13, and MMP-3 (but not TIMP-1, -2, or -3) was also specifically abolished with n-3 PUFA supplementation. In addition, n-3 PUFA supplementation abolished the expression of mRNA for mediators of inflammation (cyclooxygenase 2, 5-lipoxygenase, 5-lipoxygenase-activating protein, tumor necrosis factor alpha, IL-1alpha, and IL-1beta) without affecting the expression of message for several other proteins involved in normal tissue homeostasis. \n CONCLUSION These studies show that the pathologic indicators manifested in human OA cartilage can be significantly altered by exposure of the cartilage to n-3 PUFA, but not to other classes of fatty acids.", "title": "Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids." }, { "docid": "20148808", "text": "The mammalian gastrointestinal tract harbors a microbial community with metabolic activity critical for host health, including metabolites that can modulate effector functions of immune cells. Mice treated with vancomycin have an altered microbiome and metabolite profile, exhibit exacerbated T helper type 2 cell (Th2) responses, and are more susceptible to allergic lung inflammation. Here we show that dietary supplementation with short-chain fatty acids (SCFAs) ameliorates this enhanced asthma susceptibility by modulating the activity of T cells and dendritic cells (DCs). Dysbiotic mice treated with SCFAs have fewer interleukin-4 (IL4)-producing CD4+ T cells and decreased levels of circulating immunoglobulin E (IgE). In addition, DCs exposed to SCFAs activate T cells less robustly, are less motile in response to CCL19 in vitro, and exhibit a dampened ability to transport inhaled allergens to lung draining nodes. Our data thus demonstrate that gut dysbiosis can exacerbate allergic lung inflammation through both T cell- and DC-dependent mechanisms that are inhibited by SCFAs.", "title": "Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids" }, { "docid": "3866315", "text": "Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.", "title": "Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing" }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "34733465", "text": "BACKGROUND Patients with cystic fibrosis have altered levels of plasma fatty acids. We previously demonstrated that arachidonic acid levels are increased and docosahexaenoic acid levels are decreased in affected tissues from cystic fibrosis-knockout mice. In this study we determined whether humans with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have a similar fatty acid defect in tissues expressing CFTR. \n METHODS Fatty acids from nasal- and rectal-biopsy specimens, nasal epithelial scrapings, and plasma were analyzed from 38 subjects with cystic fibrosis and compared with results in 13 obligate heterozygotes, 24 healthy controls, 11 subjects with inflammatory bowel disease, 9 subjects with upper respiratory tract infection, and 16 subjects with asthma. \n RESULTS The ratio of arachidonic to docosahexaenoic acid was increased in mucosal and submucosal nasal-biopsy specimens (P<0.001) and rectal-biopsy specimens (P=0.009) from subjects with cystic fibrosis and pancreatic sufficiency and subjects with cystic fibrosis and pancreatic insufficiency, as compared with values in healthy control subjects. In nasal tissue, this change reflected an increase in arachidonic acid levels and a decrease in docosahexaenoic acid levels. In cells from nasal mucosa, the ratio of arachidonic to docosahexaenoic acid was increased in subjects with cystic fibrosis (P<0.001), as compared with healthy controls, with values in obligate heterozygotes intermediate between these two groups (P<0.001). The ratio was not increased in subjects with inflammatory bowel disease. Subjects with asthma and those with upper respiratory tract infection had values intermediate between those in subjects with cystic fibrosis and those in healthy control subjects. \n CONCLUSIONS These data indicate that alterations in fatty acids similar to those in cystic fibrosis-knockout mice are present in CFTR-expressing tissue from subjects with cystic fibrosis.", "title": "Association of cystic fibrosis with abnormalities in fatty acid metabolism." }, { "docid": "23388442", "text": "Research describing fatty acids as modulators of inflammation and immune responses abounds. Many of these studies have focused on one particular group of fatty acids, omega-3. The data from animal studies have shown that these fatty acids can have powerful anti-inflammatory and immunomodulatory activities in a wide array of diseases (e.g., autoimmunity, arthritis, and infection). However, the evidence from human trials is more equivocal. In this review, a historical framework for understanding how and why fatty acids may affect the immune system is provided. Second, highlights of two recent landmark reports from the Agency for Healthcare Research and Quality are presented. These reports critically evaluate the evidence from human clinical trials of omega-3 fatty acids and rheumatoid arthritis, asthma, and a few other immune-mediated diseases. Third, the data from human clinical trials investigating the impact of various bioactive fatty acids on ex vivo and in vivo immune response are reviewed. Limitations in experimental design and immune assays commonly used are discussed. The discordance between expectation and evidence in this field has been a disappointment. Recommendations for improving both animal-based and human studies are provided.", "title": "Fatty acids as modulators of the immune response." }, { "docid": "25761154", "text": "Exercise-induced asthma is defined as an intermittent narrowing of the airways, demonstrated by a decrease in some measure of flow, that the patient experiences as wheezing, chest tightness, coughing, and difficulty breathing that is triggered by exercise. Exercise will trigger asthma in most individuals who have chronic asthma, as well as in some who do not otherwise have asthma. Definitive diagnosis requires demonstration of a drop in flow rate, typically > or = 13-15% for forced expiratory volume in one second (FEV1) and > or = 15-20% for peak expiratory flow rate (PEFR), after exercise, associated with symptoms. Prevalence data indicate that this disorder is very common in those who participate in recreational sports as well as in highly competitive athletes, with at least 12-15% of unselected athletes having positive exercise challenges. Treatment of exercise induced asthma involves use of nonpharmacological measures (such as the use of the refractory period after exercise and prewarming air) as well as use of medications (beta-agonists, cromolyn, and nedocromil). With treatment, those who suffer from exercise-induced asthma may be able to participate and compete at the highest levels of performance.", "title": "Exercise-induced asthma: a practical guide to definitions, diagnosis, prevalence, and treatment." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "8458567", "text": "PEROXISOMES are cytoplasmic organelles which are important in mammals in modulation of lipid homeostasis, including the metabolism of long-chain fatty acids and conversion of cholesterol to bile salts (reviewed in refs 1 and 2). Amphipathic carboxylates such as clofibric acid have been used in man as hypolipidaemic agents and in rodents they stimulate the proliferation of peroxisomes. These agents, termed peroxisome proliferators, and all-trans retinoic acid activate genes involved in peroxisomal-mediated β-oxidation of fatty acids1–4. Here we show that the receptor activated by peroxisome proliferators5 and the retinoid X receptor-α (ref. 6) form a heterodimer that activates acyl-CoA oxidase gene expression in response to either clofibric acid or the retinoid X receptor-α ligand, 9-cis retinoic acid, an all-trans retinoic acid metabolite7,8; simultaneous exposure to both activators results in a synergistic induction of gene expression. These data demonstrate the coupling of the peroxisome proliferator and retinoid signalling pathways and provide evidence for a physiological role for 9-cis retinoic acid in modulating lipid metabolism.", "title": "Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors" }, { "docid": "17163294", "text": "BACKGROUND Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. However, up to now it is not clear whether different cancer types are characterized by a specific metabolite profile. Therefore, this study aims to evaluate whether the plasma metabolic phenotype allows to discriminate between lung and breast cancer. \n PATIENTS AND METHODS The proton nuclear magnetic resonance spectrum of plasma is divided into 110 integration regions, representing the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used to train a classification model in discriminating between 80 female breast cancer patients and 54 female lung cancer patients, all with an adenocarcinoma. The validity of the model was examined by permutation testing and by classifying an independent validation cohort of 60 female breast cancer patients and 81 male lung cancer patients, all with an adenocarcinoma. \n RESULTS The model allows to classify 99% of the breast cancer patients and 93% of the lung cancer patients correctly with an area under the curve (AUC) of 0.96 and can be validated in the independent cohort with a sensitivity of 89%, a specificity of 82% and an AUC of 0.94. Decreased levels of sphingomyelin and phosphatidylcholine (phospholipids with choline head group) and phospholipids with short, unsaturated fatty acid chains next to increased levels of phospholipids with long, saturated fatty acid chains seem to indicate that cell membranes of lung tumors are more rigid and less sensitive to lipid peroxidation. The other discriminating metabolites are pointing to a more pronounced response of the body to the Warburg effect for lung cancer. \n CONCLUSION Metabolic phenotyping of plasma allows to discriminate between lung and breast cancer, indicating that the metabolite profile reflects more than a general cancer marker. CLINICAL TRIAL REGISTRATION NUMBER NCT02362776.", "title": "Metabolic phenotyping of human blood plasma: a powerful tool to discriminate between cancer types?" }, { "docid": "20672596", "text": "Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.", "title": "Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages." }, { "docid": "19278208", "text": "Background/Objectives:Folic acid supplementation has been suggested to reduce the risk of preeclampsia. However, results from few epidemiologic studies have been inconclusive. We investigated the hypothesis that folic acid supplementation and dietary folate intake before conception and during pregnancy reduce the risk of preeclampsia. Subjects/Methods:A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity & Child Care Hospital in Lanzhou, China. A total of 10 041 pregnant women without chronic hypertension or gestational hypertension were enrolled. Results:Compared with nonusers, folic acid supplement users had a reduced risk of preeclampsia (OR=0.61, 95% CI: 0.43–0.87). A significant dose–response of duration of use was observed among women who used folic acid supplemention during pregnancy only (P-trend=0.007). The reduced risk associated with folic acid supplement was similar for mild or severe preeclampsia and for early- or late-onset preeclampsia, although the statistical significant associations were only observed for mild (OR=0.50, 95% CI: 0.30–0.81) and late-onset (OR=0.60, 95% CI: 0.42–0.86) preeclampsia. The reduced risk associated with dietary folate intake during pregnancy was only seen for severe preeclampsia (OR=0.52, 95% CI: 0.31–0.87, for the highest quartile of dietary folate intake compared with the lowest).Conclusions:Our study results suggest that folic acid supplementation and higher dietary folate intake during pregnancy reduce the risk of preeclampsia. Future studies are needed to confirm the associations.", "title": "Folic acid supplementation and dietary folate intake, and risk of preeclampsia" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "21636085", "text": "BACKGROUND Increased plasma homocysteine is associated with coronary artery disease, peripheral vascular disease and venous thrombosis. Folic acid is the most effective therapy for reducing homocysteine levels. The lowest effective supplement of folic acid is not known, particularly for the elderly who have the highest prevalence of these conditions. AIM To explore the effects of daily supplements of 0, 50, 100, 200, 400 and 600 microg folic acid on plasma homocysteine in an elderly population. \n DESIGN Randomized double-blind placebo-controlled trial. \n METHODS Participants (n=368) aged 65-75 years were randomly allocated to receive one of the treatments for 6 weeks. Plasma homocysteine was recorded after 3 weeks and 6 weeks of supplementation. \n RESULTS Only the 400 microg and 600 microg groups had significantly lower homocysteine levels compared to placebo (p=0.038 and p<0.001, respectively). Using multiple linear regression and each individual's total folic acid intake (diet plus supplement), a total daily folic acid intake of 926 microg per day would be required to ensure that 95% of the elderly population would be without cardiovascular risk from folate deficiency. DISCUSSION A daily folic acid intake of 926 microg is unlikely to be achieved by diet alone. Individual supplementation or fortification of food with folic acid will be required to reach this target.", "title": "The effect of folic acid supplementation on plasma homocysteine in an elderly population." }, { "docid": "6372244", "text": "Antibiotics can have significant and long-lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including the primary bile acid taurocholate for germination, and carbon sources such as mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favours C. difficile germination and growth.", "title": "Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection" }, { "docid": "39558597", "text": "Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.", "title": "Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione." }, { "docid": "198309074", "text": "Introduction: Among the inflammatory mediators involved in the pathogenesis of obesity, the cell adhesion molecules Pselectin, E-selectin, VCAM-1, ICAM-1 and the chemokine MCP-1 stand out. They play a crucial role in adherence of cells to endothelial surfaces, in the integrity of the vascular wall and can be modulated by body composition and dietary pattern. Objectives: To describe and discuss the relation of these cell adhesion molecules and chemokines to anthropometric, body composition, dietary and biochemical markers. Methods: Papers were located using scientific databases by topic searches with no restriction on year of publication. Results: All molecules were associated positively with anthropometric markers, but controversial results were found for ICAM-1 and VCAM-1. Not only obesity, but visceral fat is more strongly correlated with E-selectin and MCP-1 levels. Weight loss influences the reduction in the levels of these molecules, except VCAM-1. The distribution of macronutrients, excessive consumption of saturated and trans fat and a Western dietary pattern are associated with increased levels. The opposite could be observed with supplementation of w-3 fatty acid, healthy dietary pattern, high calcium diet and high dairy intake. Regarding the biochemical parameters, they have inverse relation to HDLC and positive relation to total cholesterol, triglycerides, blood glucose, fasting insulin and insulin resistance. Conclusion: Normal anthropometric indicators, body composition, biochemical parameters and eating pattern positively modulate the subclinical inflammation that results from obesity by reducing the cell adhesion molecules and chemokines.", "title": "Adhesion molecules and chemokines: relation to anthropometric, body composition, biochemical and dietary variables" }, { "docid": "4319174", "text": "All homeotherms use thermogenesis to maintain their core body temperature, ensuring that cellular functions and physiological processes can continue in cold environments. In the prevailing model of thermogenesis, when the hypothalamus senses cold temperatures it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue and white adipose tissue. Acting via the β(3)-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes, whereas it stimulates the expression of thermogenic genes, such as PPAR-γ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1) and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report in mice an unexpected requirement for the interleukin-4 (IL-4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Exposure to cold temperature rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in brown adipose tissue and lipolysis in white adipose tissue. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL-4 increased thermogenic gene expression, fatty acid mobilization and energy expenditure, all in a macrophage-dependent manner. Thus, we have discovered a role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold.", "title": "Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis" } ]
713
Low expression of miR7a does not repress target genes or exert a biological function in ovaries.
[ { "docid": "18421962", "text": "Recent studies have reported that competitive endogenous RNAs (ceRNAs) can act as sponges for a microRNA (miRNA) through their binding sites and that changes in ceRNA abundances from individual genes can modulate the activity of miRNAs. Consideration of this hypothesis would benefit from knowing the quantitative relationship between a miRNA and its endogenous target sites. Here, we altered intracellular target site abundance through expression of an miR-122 target in hepatocytes and livers and analyzed the effects on miR-122 target genes. Target repression was released in a threshold-like manner at high target site abundance (≥1.5 × 10(5) added target sites per cell), and this threshold was insensitive to the effective levels of the miRNA. Furthermore, in response to extreme metabolic liver disease models, global target site abundance of hepatocytes did not change sufficiently to affect miRNA-mediated repression. Thus, modulation of miRNA target abundance is unlikely to cause significant effects on gene expression and metabolism through a ceRNA effect.", "title": "Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance." } ]
[ { "docid": "15635366", "text": "L3mbtl2 has been implicated in transcriptional repression and chromatin compaction but its biological function has not been defined. Here we show that disruption of L3mbtl2 results in embryonic lethality with failure of gastrulation. This correlates with compromised proliferation and abnormal differentiation of L3mbtl2(-/-) embryonic stem (ES) cells. L3mbtl2 regulates genes by recruiting a Polycomb Repressive Complex1 (PRC1)-related complex, resembling the previously described E2F6-complex, and including G9A, Hdac1, and Ring1b. The presence of L3mbtl2 at target genes is associated with H3K9 dimethylation, low histone acetylation, and H2AK119 ubiquitination, but the latter is neither dependent on L3mbtl2 nor sufficient for repression. Genome-wide studies revealed that the L3mbtl2-dependent complex predominantly regulates genes not bound by canonical PRC1 and PRC2. However, some developmental regulators are repressed by the combined activity of all three complexes. Together, we have uncovered a highly selective, essential role for an atypical PRC1-family complex in ES cells and early development.", "title": "The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development." }, { "docid": "42314147", "text": "Sp1-like proteins are characterized by three conserved C-terminal zinc finger motifs that bind GC-rich sequences found in promoters of numerous genes essential for mammalian cell homeostasis. These proteins behave as transcriptional activators or repressors. Although significant information has been reported on the molecular mechanisms by which Sp1-like activators function, relatively little is known about mechanisms for repressor proteins. Here we report the functional characterization of BTEB3, a ubiquitously expressed Sp1-like transcriptional repressor. GAL4 assays show that the N terminus of BTEB3 contains regions that can act as direct repressor domains. Immunoprecipitation assays reveal that BTEB3 interacts with the co-repressor mSin3A and the histone deacetylase protein HDAC-1. Gel shift assays demonstrate that BTEB3 specifically binds the BTE site, a well characterized GC-rich DNA element, with an affinity similar to that of Sp1. Reporter and gel shift assays in Chinese hamster ovary cells show that BTEB3 can also mediate repression by competing with Sp1 for BTE binding. Thus, the characterization of this protein expands the repertoire of BTEB-like members of the Sp1 family involved in transcriptional repression. Furthermore, our results suggest a mechanism of repression for BTEB3 involving direct repression by the N terminus via interaction with mSin3A and HDAC-1 and competition with Sp1 via the DNA-binding domain.", "title": "The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1." }, { "docid": "6828370", "text": "The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.", "title": "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" }, { "docid": "18895793", "text": "The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome \"remodeler\" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI/SNF recruited by the activator, and a slower one that does not-clarifies our understanding of the early events of gene activation, and in particular corrects earlier reports that SWI/SNF plays no role in GAL gene induction. Our finding that chromatin structure is irrelevant for repression as studied here-that is, repression sets in as efficiently whether or not promoter nucleosomes are allowed to reform-contradicts the widely held, but little tested, idea that nucleosomes are required for repression. These findings were made possible by our nucleosome occupancy assay. The assay, we believe, will prove useful in studying other outstanding issues in the field.", "title": "Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription" }, { "docid": "6820680", "text": "MicroRNAs (miRNAs) are short noncoding RNAs that exert posttranscriptional gene silencing and regulate gene expression. In addition to the hundreds of conserved cellular miRNAs that have been identified, miRNAs of viral origin have been isolated and found to modulate both the viral life cycle and the cellular transcriptome. Thus far, detection of virus-derived miRNAs has been largely limited to DNA viruses, suggesting that RNA viruses may be unable to exploit this aspect of transcriptional regulation. Lack of RNA virus-produced miRNAs has been attributed to the replicative constraints that would incur following RNase III processing of a genomic hairpin. To ascertain whether the generation of viral miRNAs is limited to DNA viruses, we investigated whether influenza virus could be designed to deliver functional miRNAs without affecting replication. Here, we describe a modified influenza A virus that expresses cellular microRNA-124 (miR-124). Insertion of the miR-124 hairpin into an intron of the nuclear export protein transcript resulted in endogenous processing and functional miR-124. We demonstrate that a viral RNA genome incorporating a hairpin does not result in segment instability or miRNA-mediated genomic targeting, thereby permitting the virus to produce a miRNA without having a negative impact on viral replication. This work demonstrates that RNA viruses can produce functional miRNAs and suggests that this level of transcriptional regulation may extend beyond DNA viruses.", "title": "Engineered RNA viral synthesis of microRNAs." }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "16550075", "text": "BCL-6, a transcriptional repressor frequently translocated in lymphomas, regulates germinal center B cell differentiation and inflammation. DNA microarray screening identified genes repressed by BCL-6, including many lymphocyte activation genes, suggesting that BCL-6 modulates B cell receptor signals. BCL-6 repression of two chemokine genes, MIP-1alpha and IP-10, may also attenuate inflammatory responses. Blimp-1, another BCL-6 target, is important for plasmacytic differentiation. Since BCL-6 expression is silenced in plasma cells, repression of blimp-1 by BCL-6 may control plasmacytic differentiation. Indeed, inhibition of BCL-6 function initiated changes indicative of plasmacytic differentiation, including decreased expression of c-Myc and increased expression of the cell cycle inhibitor p27kip1. These data suggest that malignant transformation by BCL-6 involves inhibition of differentiation and enhanced proliferation.", "title": "BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control." }, { "docid": "20028729", "text": "Nuclear receptors regulate many biologically important processes in development and homeostasis by their bimodal function as repressors and activators of gene transcription. A finely tuned modulation of the transcriptional activities of nuclear receptors is crucial for determining highly specific and diversified programmes of gene expression. Recent studies have provided insights into the molecular mechanisms that are required to switch between repression and activation functions, the combinatorial roles of the multiple cofactor complexes that are required for mediating transcriptional regulation, and the central question of how several different signalling pathways can be integrated at the nuclear level to achieve specific profiles of gene expression.", "title": "Controlling nuclear receptors: the circular logic of cofactor cycles" }, { "docid": "2000038", "text": "MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.", "title": "MicroRNAs can generate thresholds in target gene expression" }, { "docid": "6455142", "text": "Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.", "title": "KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription." }, { "docid": "4434951", "text": "BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging \"clock\", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. \n RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. \n CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.", "title": "Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions" }, { "docid": "15058155", "text": "EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt's lymphoma cell line BL41 by Epstein-Barr virus (EBV) infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7α, 25-dihydroxyxcholesterol (7α, 25-OHC), an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7α, 25-OHC bound to EBI2, and how a gradient of 7α, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DCs), monocytes/macrophages, and astrocytes. The identification of 7α, 25-OHC as a G protein-coupled receptor ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.", "title": "7α, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases" }, { "docid": "21487212", "text": "Ex-FABP, an extracellular fatty acid binding lipocalin, is physiologically expressed by differentiating chicken chondrocytes and myoblasts. Its expression is enhanced after cell treatment with inflammatory stimuli and repressed by anti-inflammatory agents, behaving as an acute phase protein. Chicken liver fragments in culture show enhanced protein expression after bacterial endotoxin treatment. To investigate the biological role of Ex-FABP, we stably transfected proliferating chondrocytes with an expression vector carrying antisense oriented Ex-FABP cDNA. We observed a dramatic loss of cell viability and a strong inhibition of cell proliferation and differentiation. When chondrocytes were transfected with the antisense oriented Ex-FABP cDNA we observed that Ex-FABP down-modulation increased apoptotic cell number. Myoblasts transfected with the same expression vector showed extensive cell death and impaired myotube formation. We suggest that Ex-FABP acts as a constitutive survival protein and that its expression and activation are fundamental to protect chondrocytes from cell death.", "title": "Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting." }, { "docid": "9159495", "text": "Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline.", "title": "A microRNA feedback loop regulates global microRNA abundance during aging." }, { "docid": "37204802", "text": "Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.", "title": "JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of p53 by Hydroxylation" }, { "docid": "14380875", "text": "Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerization functions of the receptor, binds directly to the dimerization domain of the RelA subunit of NFkappaB in vitro and that the ZBR is sufficient to associate with RelA bound at NFkappaB response elements in vivo. Moreover, we demonstrate in vivo and in vitro that GR does not disrupt DNA binding by NFkappaB. In transient transfections, we found that the GR ligand binding domain is essential for repression of NFkappaB but not for association with it and that GR can repress an NFkappaB derivative bearing a heterologous activation domain. We used chromatin immunoprecipitation assays in untransfected A549 cells to infer the mechanism by which the tethered GR represses NFkappaB-activated transcription. As expected, we found that the inflammatory signal TNFalpha stimulated preinitiation complex (PIC) assembly at the IL-8 and ICAM-1 promoters and that the largest subunit of RNA polymerase II (pol II) in those complexes became phosphorylated at serines 2 and 5 in its carboxy-terminal domain (CTD) heptapeptide repeats (YSPTSPS); these modifications are required for transcription initiation. Remarkably, GR did not inhibit PIC assembly under repressing conditions, but rather interfered with phosphorylation of serine 2 of the pol II CTD.", "title": "The Glucocorticoid Receptor Inhibits" }, { "docid": "29366489", "text": "Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer.", "title": "Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver." }, { "docid": "43156471", "text": "We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast (Schizosaccharomyces pombe). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 (class III) and Hos2 (class I) have a role in preventing histone loss; Clr6 (class I) is the principal enzyme in promoter-localized repression. Hos2 has an unexpected role in promoting high expression of growth-related genes by deacetylating H4K16Ac in their open reading frames. Clr3 (class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress- and meiosis-induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.", "title": "Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast." }, { "docid": "13777706", "text": "Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p(+)S7p(-)S2p(-)) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p(+)S7p(+)S2p(+)); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.", "title": "Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs" }, { "docid": "18358026", "text": "Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by hydrogen peroxide treatment recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of the polycomb repressive complex 4. Hydrogen peroxide treatment causes relocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. Although high-expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low-expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and relocalization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.", "title": "Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands." } ]
714
Low expression of miR7a does not repress target genes or exert a biological function in testis.
[ { "docid": "18421962", "text": "Recent studies have reported that competitive endogenous RNAs (ceRNAs) can act as sponges for a microRNA (miRNA) through their binding sites and that changes in ceRNA abundances from individual genes can modulate the activity of miRNAs. Consideration of this hypothesis would benefit from knowing the quantitative relationship between a miRNA and its endogenous target sites. Here, we altered intracellular target site abundance through expression of an miR-122 target in hepatocytes and livers and analyzed the effects on miR-122 target genes. Target repression was released in a threshold-like manner at high target site abundance (≥1.5 × 10(5) added target sites per cell), and this threshold was insensitive to the effective levels of the miRNA. Furthermore, in response to extreme metabolic liver disease models, global target site abundance of hepatocytes did not change sufficiently to affect miRNA-mediated repression. Thus, modulation of miRNA target abundance is unlikely to cause significant effects on gene expression and metabolism through a ceRNA effect.", "title": "Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance." } ]
[ { "docid": "15635366", "text": "L3mbtl2 has been implicated in transcriptional repression and chromatin compaction but its biological function has not been defined. Here we show that disruption of L3mbtl2 results in embryonic lethality with failure of gastrulation. This correlates with compromised proliferation and abnormal differentiation of L3mbtl2(-/-) embryonic stem (ES) cells. L3mbtl2 regulates genes by recruiting a Polycomb Repressive Complex1 (PRC1)-related complex, resembling the previously described E2F6-complex, and including G9A, Hdac1, and Ring1b. The presence of L3mbtl2 at target genes is associated with H3K9 dimethylation, low histone acetylation, and H2AK119 ubiquitination, but the latter is neither dependent on L3mbtl2 nor sufficient for repression. Genome-wide studies revealed that the L3mbtl2-dependent complex predominantly regulates genes not bound by canonical PRC1 and PRC2. However, some developmental regulators are repressed by the combined activity of all three complexes. Together, we have uncovered a highly selective, essential role for an atypical PRC1-family complex in ES cells and early development.", "title": "The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development." }, { "docid": "6828370", "text": "The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.", "title": "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" }, { "docid": "18895793", "text": "The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome \"remodeler\" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI/SNF recruited by the activator, and a slower one that does not-clarifies our understanding of the early events of gene activation, and in particular corrects earlier reports that SWI/SNF plays no role in GAL gene induction. Our finding that chromatin structure is irrelevant for repression as studied here-that is, repression sets in as efficiently whether or not promoter nucleosomes are allowed to reform-contradicts the widely held, but little tested, idea that nucleosomes are required for repression. These findings were made possible by our nucleosome occupancy assay. The assay, we believe, will prove useful in studying other outstanding issues in the field.", "title": "Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription" }, { "docid": "6820680", "text": "MicroRNAs (miRNAs) are short noncoding RNAs that exert posttranscriptional gene silencing and regulate gene expression. In addition to the hundreds of conserved cellular miRNAs that have been identified, miRNAs of viral origin have been isolated and found to modulate both the viral life cycle and the cellular transcriptome. Thus far, detection of virus-derived miRNAs has been largely limited to DNA viruses, suggesting that RNA viruses may be unable to exploit this aspect of transcriptional regulation. Lack of RNA virus-produced miRNAs has been attributed to the replicative constraints that would incur following RNase III processing of a genomic hairpin. To ascertain whether the generation of viral miRNAs is limited to DNA viruses, we investigated whether influenza virus could be designed to deliver functional miRNAs without affecting replication. Here, we describe a modified influenza A virus that expresses cellular microRNA-124 (miR-124). Insertion of the miR-124 hairpin into an intron of the nuclear export protein transcript resulted in endogenous processing and functional miR-124. We demonstrate that a viral RNA genome incorporating a hairpin does not result in segment instability or miRNA-mediated genomic targeting, thereby permitting the virus to produce a miRNA without having a negative impact on viral replication. This work demonstrates that RNA viruses can produce functional miRNAs and suggests that this level of transcriptional regulation may extend beyond DNA viruses.", "title": "Engineered RNA viral synthesis of microRNAs." }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "16550075", "text": "BCL-6, a transcriptional repressor frequently translocated in lymphomas, regulates germinal center B cell differentiation and inflammation. DNA microarray screening identified genes repressed by BCL-6, including many lymphocyte activation genes, suggesting that BCL-6 modulates B cell receptor signals. BCL-6 repression of two chemokine genes, MIP-1alpha and IP-10, may also attenuate inflammatory responses. Blimp-1, another BCL-6 target, is important for plasmacytic differentiation. Since BCL-6 expression is silenced in plasma cells, repression of blimp-1 by BCL-6 may control plasmacytic differentiation. Indeed, inhibition of BCL-6 function initiated changes indicative of plasmacytic differentiation, including decreased expression of c-Myc and increased expression of the cell cycle inhibitor p27kip1. These data suggest that malignant transformation by BCL-6 involves inhibition of differentiation and enhanced proliferation.", "title": "BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control." }, { "docid": "23581096", "text": "The SRY gene on the mammalian Y chromosome undoubtedly acts to determine testis, but it is still quite unclear how. It was originally supposed that SRY acts directly to activate other genes in the testis-determining pathway. This paper presents an alternative hypothesis that SRY functions indirectly, by interacting with related genes SOX3 (from which SRY evolved) and SOX9 (which appears to be intimately involved in vertebrate gonad differentiation). Specifically, I propose that in females SOX3 inhibits SOX9 function, but in males, SRY inhibits SOX3 and permits SOX9 to enact its testis-determining role. This hypothesis makes testable predictions of the phenotypes of XX and XY individuals with deficiencies or overproduction of any of the three genes, and is able to account for the difficult cases of XX(SRY-) males and transdifferentiation in the absence of SRY. The hypothesis also suggests a way that the dominant SRY sex-determining system of present-day mammals may have evolved from an ancient system relying on SOX3 dosage.", "title": "Interactions between SRY and SOX genes in mammalian sex determination." }, { "docid": "20028729", "text": "Nuclear receptors regulate many biologically important processes in development and homeostasis by their bimodal function as repressors and activators of gene transcription. A finely tuned modulation of the transcriptional activities of nuclear receptors is crucial for determining highly specific and diversified programmes of gene expression. Recent studies have provided insights into the molecular mechanisms that are required to switch between repression and activation functions, the combinatorial roles of the multiple cofactor complexes that are required for mediating transcriptional regulation, and the central question of how several different signalling pathways can be integrated at the nuclear level to achieve specific profiles of gene expression.", "title": "Controlling nuclear receptors: the circular logic of cofactor cycles" }, { "docid": "2000038", "text": "MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.", "title": "MicroRNAs can generate thresholds in target gene expression" }, { "docid": "6455142", "text": "Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.", "title": "KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription." }, { "docid": "4434951", "text": "BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging \"clock\", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. \n RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. \n CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.", "title": "Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions" }, { "docid": "15058155", "text": "EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt's lymphoma cell line BL41 by Epstein-Barr virus (EBV) infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7α, 25-dihydroxyxcholesterol (7α, 25-OHC), an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7α, 25-OHC bound to EBI2, and how a gradient of 7α, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DCs), monocytes/macrophages, and astrocytes. The identification of 7α, 25-OHC as a G protein-coupled receptor ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.", "title": "7α, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases" }, { "docid": "21487212", "text": "Ex-FABP, an extracellular fatty acid binding lipocalin, is physiologically expressed by differentiating chicken chondrocytes and myoblasts. Its expression is enhanced after cell treatment with inflammatory stimuli and repressed by anti-inflammatory agents, behaving as an acute phase protein. Chicken liver fragments in culture show enhanced protein expression after bacterial endotoxin treatment. To investigate the biological role of Ex-FABP, we stably transfected proliferating chondrocytes with an expression vector carrying antisense oriented Ex-FABP cDNA. We observed a dramatic loss of cell viability and a strong inhibition of cell proliferation and differentiation. When chondrocytes were transfected with the antisense oriented Ex-FABP cDNA we observed that Ex-FABP down-modulation increased apoptotic cell number. Myoblasts transfected with the same expression vector showed extensive cell death and impaired myotube formation. We suggest that Ex-FABP acts as a constitutive survival protein and that its expression and activation are fundamental to protect chondrocytes from cell death.", "title": "Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting." }, { "docid": "9159495", "text": "Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline.", "title": "A microRNA feedback loop regulates global microRNA abundance during aging." }, { "docid": "37204802", "text": "Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.", "title": "JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of p53 by Hydroxylation" }, { "docid": "14380875", "text": "Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerization functions of the receptor, binds directly to the dimerization domain of the RelA subunit of NFkappaB in vitro and that the ZBR is sufficient to associate with RelA bound at NFkappaB response elements in vivo. Moreover, we demonstrate in vivo and in vitro that GR does not disrupt DNA binding by NFkappaB. In transient transfections, we found that the GR ligand binding domain is essential for repression of NFkappaB but not for association with it and that GR can repress an NFkappaB derivative bearing a heterologous activation domain. We used chromatin immunoprecipitation assays in untransfected A549 cells to infer the mechanism by which the tethered GR represses NFkappaB-activated transcription. As expected, we found that the inflammatory signal TNFalpha stimulated preinitiation complex (PIC) assembly at the IL-8 and ICAM-1 promoters and that the largest subunit of RNA polymerase II (pol II) in those complexes became phosphorylated at serines 2 and 5 in its carboxy-terminal domain (CTD) heptapeptide repeats (YSPTSPS); these modifications are required for transcription initiation. Remarkably, GR did not inhibit PIC assembly under repressing conditions, but rather interfered with phosphorylation of serine 2 of the pol II CTD.", "title": "The Glucocorticoid Receptor Inhibits" }, { "docid": "43156471", "text": "We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast (Schizosaccharomyces pombe). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 (class III) and Hos2 (class I) have a role in preventing histone loss; Clr6 (class I) is the principal enzyme in promoter-localized repression. Hos2 has an unexpected role in promoting high expression of growth-related genes by deacetylating H4K16Ac in their open reading frames. Clr3 (class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress- and meiosis-induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.", "title": "Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast." }, { "docid": "13777706", "text": "Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p(+)S7p(-)S2p(-)) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p(+)S7p(+)S2p(+)); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.", "title": "Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs" }, { "docid": "18358026", "text": "Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by hydrogen peroxide treatment recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of the polycomb repressive complex 4. Hydrogen peroxide treatment causes relocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. Although high-expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low-expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and relocalization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.", "title": "Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands." } ]
717
Low nucleosome occupancy correlates with high methylation levels across species.
[ { "docid": "17587795", "text": "Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.", "title": "Dnmt1-Independent CG Methylation Contributes to Nucleosome Positioning in Diverse Eukaryotes" } ]
[ { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" }, { "docid": "23208167", "text": "Pioneer transcription factors (TFs) function as genomic first responders, binding to inaccessible regions of chromatin to promote enhancer formation. The mechanism by which pioneer TFs gain access to chromatin remains an important unanswered question. Here we show that PARP-1, a nucleosome-binding protein, cooperates with intrinsic properties of the pioneer TF Sox2 to facilitate its binding to intractable genomic loci in embryonic stem cells. These actions of PARP-1 occur independently of its poly(ADP-ribosyl) transferase activity. PARP-1-dependent Sox2-binding sites reside in euchromatic regions of the genome with relatively high nucleosome occupancy and low co-occupancy by other transcription factors. PARP-1 stabilizes Sox2 binding to nucleosomes at suboptimal sites through cooperative interactions on DNA. Our results define intrinsic and extrinsic features that determine Sox2 pioneer activity. The conditional pioneer activity observed with Sox2 at a subset of binding sites may be a key feature of other pioneer TFs operating at intractable genomic loci.", "title": "Catalytic-Independent Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci." }, { "docid": "22038539", "text": "In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7-14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7-3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift.", "title": "Caloric restriction delays age-related methylation drift" }, { "docid": "7808055", "text": "BACKGROUND It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. \n RESULTS I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. \n CONCLUSIONS I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.", "title": "DNA methylation age of human tissues and cell types" }, { "docid": "18895793", "text": "The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome \"remodeler\" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI/SNF recruited by the activator, and a slower one that does not-clarifies our understanding of the early events of gene activation, and in particular corrects earlier reports that SWI/SNF plays no role in GAL gene induction. Our finding that chromatin structure is irrelevant for repression as studied here-that is, repression sets in as efficiently whether or not promoter nucleosomes are allowed to reform-contradicts the widely held, but little tested, idea that nucleosomes are required for repression. These findings were made possible by our nucleosome occupancy assay. The assay, we believe, will prove useful in studying other outstanding issues in the field.", "title": "Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription" }, { "docid": "4305576", "text": "Chromatin allows the eukaryotic cell to package its DNA efficiently. To understand how chromatin structure is controlled across the Saccharomyces cerevisiae genome, we have investigated the role of the ATP-dependent chromatin remodelling complex Isw2 in positioning nucleosomes. We find that Isw2 functions adjacent to promoter regions where it repositions nucleosomes at the interface between genic and intergenic sequences. Nucleosome repositioning by Isw2 is directional and results in increased nucleosome occupancy of the intergenic region. Loss of Isw2 activity leads to inappropriate transcription, resulting in the generation of both coding and noncoding transcripts. Here we show that Isw2 repositions nucleosomes to enforce directionality on transcription by preventing transcription initiation from cryptic sites. Our analyses reveal how chromatin is organized on a global scale and advance our understanding of how transcription is regulated.", "title": "Chromatin remodelling at promoters suppresses antisense transcription" }, { "docid": "18074797", "text": "BACKGROUND Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. \n METHODS AND FINDINGS We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. \n CONCLUSIONS Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.", "title": "Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies" }, { "docid": "4455466", "text": "Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.", "title": "ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression" }, { "docid": "13770184", "text": "BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. \n METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). \n FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. \n INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. \n FUNDING Bill & Melinda Gates Foundation.", "title": "Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015" }, { "docid": "29788648", "text": "NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.", "title": "NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5." }, { "docid": "8502193", "text": "Traits such as clutch size vary markedly across species and environmental gradients but have usually been investigated from either a comparative or a geographic perspective, respectively. We analyzed the global variation in clutch size across 5,290 bird species, excluding brood parasites and pelagic species. We integrated intrinsic (morphological, behavioural), extrinsic (environmental), and phylogenetic effects in a combined model that predicts up to 68% of the interspecific variation in clutch size. We then applied the same species-level model to predict mean clutch size across 2,521 assemblages worldwide and found that it explains the observed eco-geographic pattern very well. Clutches are consistently largest in cavity nesters and in species occupying seasonal environments, highlighting the importance of offspring and adult mortality that is jointly expressed in intrinsic and extrinsic correlates. The findings offer a conceptual bridge between macroecology and comparative biology and provide a global and integrative understanding of the eco-geographic and cross-species variation in a core life-history trait.", "title": "The Worldwide Variation in Avian Clutch Size across Species and Space" }, { "docid": "15578265", "text": "Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.", "title": "A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes" }, { "docid": "3230361", "text": "Publisher Summary This chapter summarizes the development and characterization of rabbit polyclonal antibodies named histone that are directed against the methylated H3-K9 position. It provides protocols for peptide design, rabbit immunizations, and quality controls of methyl-lysine histone antibodies, followed by their in vivo characterization using indirect IF of inter-and metaphase chromatin in wild-type (wt) and mutant mouse cells that are deficient for the Suv39h histone methyltransferases (HMTases). Histone amino-termini (tails) protrude from the nucleosome core and are subject to a variety of post-translational modifications, including acetylation (on lysine residues), phosphorylation (on serine and threonine residues), methylation (on lysine and arginine residues), ubiquitination (on lysine residues), and ADP-ribosylation (on glutamic acid residues). In addition to their structural roles, histones play important functions in the control of gene expression by regulating access to the underlying nucleosomal template. It is without doubt that the development of high-quality, position-specific methyl-lysine histone antibodies can provide important tools for the further decoding of the epigenetic information, which is in part, indexed by distinct methylation states of selective lysine residues in the histone amino-termini. A comparative analysis indicates significant discrepancies in the specificity and avidity of the available methyl-lysine histone antibodies and highlights the need for extensive quality controls, such that experimental data can be correctly interpreted despite the exquisite complexity of histone lysine methylation.", "title": "Generation and characterization of methyl-lysine histone antibodies." }, { "docid": "18694784", "text": "The yeast histone variant H2AZ (Htz1) is implicated in transcription activation, prevention of the ectopic spread of heterochromatin, and genome integrity. Our genome-wide localization analysis revealed that Htz1 is widely, but nonrandomly, distributed throughout the genome in an SWR1-dependent manner. We found that Htz1 is enriched in intergenic regions compared with coding regions. Its occupancy is inversely proportional to transcription rates and the enrichment of the RNA polymerase II under different growth conditions. However, Htz1 does not seem to directly regulate transcription repression genome-wide; instead, the presence of Htz1 under the inactivated condition is essential for optimal activation of a subset of genes. In addition, Htz1 is not generally responsible for nucleosome positioning, even at those promoters where Htz1 is highly enriched. Finally, using a biochemical approach, we demonstrate that incorporation of Htz1 into nucleosomes inhibits activities of histone modifiers associated with transcription, Dot1, Set2, and NuA4 and reduces the nucleosome mobilization driven by chromatin remodeling complexes. These lines of evidence collectively suggest that Htz1 may serve to mark quiescent promoters for proper activation.", "title": "Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling." }, { "docid": "6536598", "text": "Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4-Rad23 and is recruited to chromatin by Rad4 in a UV damage-dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.", "title": "The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair" }, { "docid": "9993008", "text": "The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed \"bivalent domains,\" consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.", "title": "A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells" }, { "docid": "751192", "text": "BACKGROUND Open chromatin regions are correlated with active regulatory elements in development and are dysregulated in diseases. The BAF (SWI/SNF) complex is essential for development, and has been demonstrated to remodel reconstituted chromatin in vitro and to control the accessibility of a few individual regions in vivo. However, it remains unclear where and how BAF controls the open chromatin landscape to regulate developmental processes, such as human epidermal differentiation. \n RESULTS Using a novel \"on-plate\" ATAC-sequencing approach for profiling open chromatin landscapes with a low number of adherent cells, we demonstrate that the BAF complex is essential for maintaining 11.6 % of open chromatin regions in epidermal differentiation. These BAF-dependent open chromatin regions are highly cell-type-specific and are strongly enriched for binding sites for p63, a master epidermal transcription factor. The DNA sequences of p63 binding sites intrinsically favor nucleosome formation and are inaccessible in other cell types without p63 to prevent ectopic activation. In epidermal cells, BAF and p63 mutually recruit each other to maintain 14,853 open chromatin regions. We further demonstrate that BAF and p63 cooperatively position nucleosomes away from p63 binding sites and recruit transcriptional machinery to control tissue differentiation. \n CONCLUSIONS BAF displays high specificity in controlling the open chromatin landscape during epidermal differentiation by cooperating with the master transcription factor p63 to maintain lineage-specific open chromatin regions.", "title": "A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63" }, { "docid": "26673492", "text": "AIMS Few studies have examined the role of gender and both area-level and individual socio-economic status (SES) as independent predictors of alcohol-related aggression (ARA) in and around licensed venues. \n METHODS The aim of the present study was to investigate the relationship between gender, area-level SES and individual SES (operationalised as occupational category) and ARA in and around licensed venues. The sample comprised 697 men and 649 women aged 16-47, who completed a patron intercept survey as part of a larger study assessing trends in harm and stakeholders' views surrounding local community level interventions in dealing with alcohol-related problems in the night-time economy. \n RESULTS Binary logistic regression analyses showed that age, gender, occupational category, area-level SES and level of intoxication at time of interview were all significant predictors of involvement in ARA. Being male doubled the odds of involvement in ARA, while age was a protective factor. Blue collar workers had more than double the odds of ARA involvement of professionals, while those living in the most socio-economically disadvantaged areas were over twice as likely to report experiencing ARA compared to those living in the most advantaged areas. However, assessment of the predictive model by gender revealed that effects of age, occupational category and area-level SES were restricted to male participants, with greater intoxication no longer predictive. \n CONCLUSIONS ARA among patrons was significantly more likely to occur among men, those in blue collar occupations, and individuals living in low SES areas, suggesting both individual and area-level disadvantage may play a role in ARA.", "title": "Demographic Risk Factors for Alcohol-Related Aggression In and Around Licensed Venues." }, { "docid": "16626264", "text": "Histone variants help specialize chromatin regions; however, their impact on transcriptional regulation is largely unknown. Here, we determined the genome-wide localization and dynamics of Htz1, the yeast histone H2A variant. Htz1 localizes to hundreds of repressed/basal Pol II promoters and prefers TATA-less promoters. Specific Htz1 deposition requires the SWR1 complex, which largely colocalizes with Htz1. Htz1 occupancy correlates with particular histone modifications, and Htz1 deposition is partially reliant on Gcn5 (a histone acetyltransferase) and Bdf1, an SWR1 complex member that binds acetylated histones. Changes in growth conditions cause a striking redistribution of Htz1 from activated to repressed/basal promoters. Furthermore, Htz1 promotes full gene activation but does not generally impact repression. Importantly, Htz1 releases from purified chromatin in vitro under conditions where H2A and H3 remain associated. We suggest that Htz1-bearing nucleosomes are deposited at repressed/basal promoters but facilitate activation through their susceptibility to loss, thereby helping to expose promoter DNA.", "title": "Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss" } ]
724
Ly49Q directs the organization of neutrophil polarization by regulating membrane raft functions.
[ { "docid": "5531479", "text": "Neutrophils rapidly undergo polarization and directional movement to infiltrate the sites of infection and inflammation. Here, we show that an inhibitory MHC I receptor, Ly49Q, was crucial for the swift polarization of and tissue infiltration by neutrophils. During the steady state, Ly49Q inhibited neutrophil adhesion by preventing focal-complex formation, likely by inhibiting Src and PI3 kinases. However, in the presence of inflammatory stimuli, Ly49Q mediated rapid neutrophil polarization and tissue infiltration in an ITIM-domain-dependent manner. These opposite functions appeared to be mediated by distinct use of effector phosphatase SHP-1 and SHP-2. Ly49Q-dependent polarization and migration were affected by Ly49Q regulation of membrane raft functions. We propose that Ly49Q is pivotal in switching neutrophils to their polarized morphology and rapid migration upon inflammation, through its spatiotemporal regulation of membrane rafts and raft-associated signaling molecules.", "title": "The Ly49Q receptor plays a crucial role in neutrophil polarization and migration by regulating raft trafficking." } ]
[ { "docid": "4389252", "text": "Cytotoxic T lymphocytes (CTLs) destroy virally infected and tumorigenic cells by releasing the contents of specialized secretory lysosomes—termed ‘lytic granules’—at the immunological synapse formed between the CTL and the target. On contact with the target cell, the microtubule organizing centre of the CTL polarizes towards the target and granules move along microtubules in a minus-end direction towards the polarized microtubule organizing centre. However, the final steps of secretion have remained unclear. Here we show that CTLs do not require actin or plus-end microtubule motors for secretion, but instead the centrosome moves to and contacts the plasma membrane at the central supramolecular activation cluster of the immunological synapse. Actin and IQGAP1 are cleared away from the synapse, and granules are delivered directly to the plasma membrane. These data show that CTLs use a previously unreported mechanism for delivering secretory granules to the immunological synapse, with granule secretion controlled by centrosome delivery to the plasma membrane.", "title": "Centrosome polarization delivers secretory granules to the immunological synapse" }, { "docid": "17934082", "text": "Invadopodia are extracellular matrix (ECM)-degrading protrusions formed by invasive cancer cells. Podosomes are structures functionally similar to invadopodia that are found in oncogene-transformed fibroblasts and monocyte-derived cells, including macrophages and osteoclasts. These structures are thought to play important roles in the pericellular remodeling of ECM during cancer invasion and metastasis. Much effort has been directed toward identification of the molecular components and regulators of invadopodia/podosomes, which could be therapeutic targets in the treatment of malignant cancers. However, it remains largely unknown how these components are assembled into invadopodia/podosomes and how the assembly process is spatially and temporally regulated. This review will summarize recent progress on the molecular mechanisms of invadopodia/podosome formation, with strong emphasis on the roles of lipid rafts and phosphoinositides.", "title": "Membrane lipids in invadopodia and podosomes: Key structures for cancer invasion and metastasis" }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "8396189", "text": "Lipid rafts are microdomains of the phospholipid bilayer, proposed to form semi-stable \"islands\" that act as a platform for several important cellular processes; major classes of raft-resident proteins include signalling proteins and glycosylphosphatidylinositol (GPI)-anchored proteins. Proteomic studies into lipid rafts have been mainly carried out in mammalian cell lines and single cell organisms. The nematode Caenorhabditis elegans, the model organism with a well-defined developmental profile, is ideally suited for the study of this subcellular locale in a complex developmental context. A study of the lipid raft proteome of C. elegans is presented here. A total of 44 proteins were identified from the lipid raft fraction using geLC-MS/MS, of which 40 have been determined to be likely raft proteins after analysis of predicted functions. Prediction of GPI-anchoring of the proteins found 21 to be potentially modified in this way, two of which were experimentally confirmed to be GPI-anchored. This work is the first reported study of the lipid raft proteome in C. elegans. The results show that raft proteins, including numerous GPI-anchored proteins, may have a variety of potentially important roles within the nematode, and will hopefully lead to C. elegans becoming a useful model for the study of lipid rafts.", "title": "An analysis of the Caenorhabditis elegans lipid raft proteome using geLC-MS/MS." }, { "docid": "4350400", "text": "Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication—a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.", "title": "Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions" }, { "docid": "16128711", "text": "Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and β-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.", "title": "Differential regulation of adherens junction dynamics during apical-basal polarization." }, { "docid": "17017465", "text": "The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.", "title": "Endocytic Trafficking of Rac Is Required for the Spatial Restriction of Signaling in Cell Migration" }, { "docid": "5944514", "text": "Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.", "title": "Pointing in the right direction: new developments in the field of planar cell polarity" }, { "docid": "6936141", "text": "The HIV-1 protein Nef enhances viral pathogenicity and accelerates disease progression in vivo. Nef potentiates T cell activation by an unknown mechanism, probably by optimizing the intracellular environment for HIV replication. Using a new T cell reporter system, we have found that Nef more than doubles the number of cells expressing the transcription factors NF-kappaB and NFAT after TCR stimulation. This Nef-induced priming of TCR signaling pathways occurred independently of calcium signaling and involved a very proximal step before protein kinase C activation. Engagement of the TCR by MHC-bound Ag triggers the formation of the immunological synapse by recruiting detergent-resistant membrane microdomains, termed lipid rafts. Approximately 5-10% of the total cellular pool of Nef is localized within lipid rafts. Using confocal and real-time microscopy, we found that Nef in lipid rafts was recruited into the immunological synapse within minutes after Ab engagement of the TCR/CD3 and CD28 receptors. This recruitment was dependent on the N-terminal domain of Nef encompassing its myristoylation. Nef did not increase the number of cell surface lipid rafts or immunological synapses. Recently, studies have shown a specific interaction of Nef with an active subpopulation of p21-activated kinase-2 found only in the lipid rafts. Thus, the corecruitment of Nef and key cellular partners (e.g., activated p21-activated kinase-2) into the immunological synapse may underlie the increased frequency of cells expressing transcriptionally active forms of NF-kappaB and NFAT and the resultant changes in T cell activation.", "title": "Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement." }, { "docid": "12871281", "text": "The reorientation of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell enables the directional secretion of cytokines and lytic factors. By single-cell photoactivation of the T cell antigen receptor, we show that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG). MTOC reorientation was closely preceded first by production of DAG and then by recruitment of the microtubule motor protein dynein. Blocking DAG production or disrupting the localization of DAG impaired MTOC recruitment. Localized DAG accumulation was also required for cytotoxic T cell–mediated killing. Furthermore, photoactivation of DAG itself was sufficient to induce transient polarization. Our data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells.", "title": "Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells" }, { "docid": "17208742", "text": "The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM) to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW) with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1.1 million individual proteins (from 326 cells) suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport.", "title": "Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy" }, { "docid": "27569370", "text": "Early in animal development, gradients of secreted morphogenic molecules, such as Sonic hedgehog (Shh), Wnt and TGFbeta/Bmp family members, regulate cell proliferation and determine the fate and phenotype of the target cells by activating well-characterized signalling pathways, which ultimately control gene transcription. Shh, Wnt and TGFbeta/Bmp signalling also play an important and evolutionary conserved role in neural circuit assembly. They regulate neuronal polarization, axon and dendrite development and synaptogenesis, processes that require rapid and local changes in cytoskeletal organization and plasma membrane components. A key question then is whether morphogen signalling at the growth cone uses similar mechanisms and intracellular pathway components to those described for morphogen-mediated cell specification. This review discusses recent advances towards the understanding of this problem, showing how Shh, Wnt and TGFbeta/Bmp have adapted their 'classical' signalling pathways or adopted alternative and novel molecular mechanisms to influence different aspects of neuronal circuit formation.", "title": "Emerging mechanisms in morphogen-mediated axon guidance." }, { "docid": "38675228", "text": "Plants and some animals have a profound capacity to regenerate organs from adult tissues. Molecular mechanisms for regeneration have, however, been largely unexplored. Here we investigate a local regeneration response in Arabidopsis roots. Laser-induced wounding disrupts the flow of auxin-a cell-fate-instructive plant hormone-in root tips, and we demonstrate that resulting cell-fate changes require the PLETHORA, SHORTROOT, and SCARECROW transcription factors. These transcription factors regulate the expression and polar position of PIN auxin efflux-facilitating membrane proteins to reconstitute auxin transport in renewed root tips. Thus, a regeneration mechanism using embryonic root stem-cell patterning factors first responds to and subsequently stabilizes a new hormone distribution.", "title": "A molecular framework for plant regeneration." }, { "docid": "317204", "text": "Dishevelled (Dvl) proteins are important signaling components of both the canonical beta-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3(-/-) mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3(-/-) and LtapLp/+ mutants, Dvl3(+/-);LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.", "title": "Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development" }, { "docid": "33920995", "text": "No direct evidence has been reported whether the spatial organization of ICAM-1 on the cell surface is linked to its physiological function in terms of leukocyte adhesion and transendothelial migration (TEM). Here we observed that ICAM-1 by itself directly regulates the de novo elongation of microvilli and is thereby clustered on the microvilli. However, truncation of the intracellular domain resulted in uniform cell surface distribution of ICAM-1. Mutation analysis revealed that the C-terminal 21 amino acids are dispensable, whereas a segment of 5 amino acids ((507)RKIKK(511)) in the NH-terminal third of intracellular domain, is required for the proper localization and dynamic distribution of ICAM-1 and the association of ICAM-1 with F-actin, ezrin, and moesin. Importantly, deletion of the (507)RKIKK(511) significantly delayed the LFA-1-dependent membrane projection and decreased leukocyte adhesion and subsequent TEM. Endothelial cells treated with cell-permeant penetratin-ICAM-1 peptides comprising ICAM-1 RKIKK sequences inhibited leukocyte TEM. Collectively, these findings demonstrate that (507)RKIKK(511) is an essential motif for the microvillus ICAM-1 presentation and further suggest a novel regulatory role for ICAM-1 topography in leukocyte TEM.", "title": "RKIKK motif in the intracellular domain is critical for spatial and dynamic organization of ICAM-1: functional implication for the leukocyte adhesion and transmigration." }, { "docid": "1889358", "text": "We cloned a new member of the murine brain kinesin superfamily, KIF3B, and found that its amino acid sequence is highly homologous but not identical to KIF3A, which we previously cloned and named KIF3 (47% identical). KIF3B is localized in various organ tissues and developing neurons of mice and accumulates with anterogradely moving membranous organelles after ligation of nerve axons. Immunoprecipitation assay of the brain revealed that KIF3B forms a complex with KIF3A and three other high molecular weight (approximately 100 kD)-associated polypeptides, called the kinesin superfamily-associated protein 3 (KAP3). In vitro reconstruction using baculovirus expression systems showed that KIF3A and KIF3B directly bind with each other in the absence of KAP3. The recombinant KIF3A/B complex (approximately 50-nm rod with two globular heads and a single globular tail) demonstrated plus end-directed microtubule sliding activity in vitro. In addition, we showed that KIF3B itself has motor activity in vitro, by making a complex of wild-type KIF3B and a chimeric motor protein (KIF3B head and KIF3A rod tail). Subcellular fractionation of mouse brain homogenates showed a considerable amount of the native KIF3 complex to be associated with membrane fractions other than synaptic vesicles. Immunoprecipitation by anti-KIF3B antibody-conjugated beads and its electron microscopic study also revealed that KIF3 is associated with membranous organelles. Moreover, we found that the composition of KAP3 is different in the brain and testis. Our findings suggest that KIF3B forms a heterodimer with KIF3A and functions as a new microtubule-based anterograde translocator for membranous organelles, and that KAP3 may determine functional diversity of the KIF3 complex in various kinds of cells in vivo.", "title": "KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport" }, { "docid": "38300781", "text": "Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.", "title": "Ionic protein-lipid interaction at the plasma membrane: what can the charge do?" }, { "docid": "20608982", "text": "PURPOSE OF REVIEW As the migration of neutrophils from blood to inflamed tissues is an essential component of innate immunity and a key contributing factor to the pathogenesis of inflammatory disorders, this aspect of leukocyte biology continues to be a highly dynamic field of research. This review summarizes recent findings in this area, focusing on the mechanisms that mediate neutrophil transmigration, an area where significant progress has been made. RECENT FINDINGS The topics to be covered will include responses that are prerequisite to neutrophil migration through venular walls, such as leukocyte luminal crawling and cellular and molecular changes in leukocytes and endothelial cells (e.g. formation of protrusions) that collectively support leukocyte transendothelial cell migration. Advances in both paracellular and transcellular neutrophil migration through endothelial cells will be discussed, addressing the associated roles and regulation of expression of endothelial cell luminal and junctional adhesion molecules. Beyond the endothelium, migration through the vascular pericyte coverage and basement membrane will be reviewed. SUMMARY The unquestionable role of neutrophils in the development and progression of inflammatory conditions suggests that a better understanding of the tissue-specific and stimulus-specific mechanisms that mediate this response may identify novel pathways that could be exploited for the development of more specific anti-inflammatory interventions.", "title": "Recent developments and complexities in neutrophil transmigration." }, { "docid": "7093809", "text": "Secreted Wnt proteins influence neural connectivity by regulating axon guidance, dendritic morphogenesis and synapse formation. We report a new role for Wnt and Frizzled proteins in establishing the anteroposterior polarity of the mechanosensory neurons ALM and PLM in C. elegans. Disruption of Wnt signaling leads to a complete inversion of ALM and PLM polarity: the anterior process adopts the length, branching pattern and synaptic properties of the wild-type posterior process, and vice versa. Different but overlapping sets of Wnt proteins regulate neuronal polarity in different body regions. Wnts act directly on PLM via the Frizzled LIN-17. In addition, we show that they are needed for axon branching and anteriorly directed axon growth. We also find that the retromer, a conserved protein complex that mediates transcytosis and endosome-to-Golgi protein trafficking, plays a key role in Wnt signaling. Deletion mutations of retromer subunits cause ALM and PLM polarity, and other Wnt-related defects. We show that retromer protein VPS-35 is required in Wnt-expressing cells and propose that retromer activity is needed to generate a fully active Wnt signal.", "title": "Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans." } ]
726
Ly6C hi monocytes have a higher inflammatory capacity than Ly6C lo monocytes.
[ { "docid": "7521113", "text": "Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.", "title": "Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis." }, { "docid": "36444198", "text": "Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites.", "title": "Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response." } ]
[ { "docid": "22406695", "text": "Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation.", "title": "Origin and functions of tissue macrophages." }, { "docid": "12370881", "text": "AIM To examine the therapeutic/preventive potential of liposome-encapsulated spironolactone (SP; Lipo-SP) for acute lung injury (ALI) and fibrosis. MATERIALS & METHODS Lipo-SP was prepared by the film-ultrasonic method, and physicochemical and pharmacokinetic characterized for oral administration (10 and 20 mg/kg for SP-loaded liposome; 20 mg/kg for free SP) in a mouse model bleomycin-induced ALI. \n RESULTS Lipo-SP enhanced bioavailability of SP with significant amelioration in lung pathology. Mechanistically, SP-mediated mineralocorticoid receptor antagonism contributes to inflammatory monocyte/macrophage modulation via an inhibitory effect on Ly6C(hi) monocytosis-directed M2 polarization of alveolar macrophages. Moreover, Lipo-SP at lower dose (10 mg/kg) exhibited more improvement in body weight gain. \n CONCLUSION Our data highlight Lipo-SP as a promising approach with therapeutic/preventive potential for ALI and fibrosis.", "title": "Inflammatory monocyte/macrophage modulation by liposome-entrapped spironolactone ameliorates acute lung injury in mice." }, { "docid": "7948486", "text": "Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.", "title": "Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis." }, { "docid": "14492339", "text": "Peripheral blood monocytes are a heterogeneous population of circulating leukocytes. Using a murine adoptive transfer system to probe monocyte homing and differentiation in vivo, we identified two functional subsets among murine blood monocytes: a short-lived CX(3)CR1(lo)CCR2(+)Gr1(+) subset that is actively recruited to inflamed tissues and a CX(3)CR1(hi)CCR2(-)Gr1(-) subset characterized by CX(3)CR1-dependent recruitment to noninflamed tissues. Both subsets have the potential to differentiate into dendritic cells in vivo. The level of CX(3)CR1 expression also defines the two major human monocyte subsets, the CD14(+)CD16(-) and CD14(lo)CD16(+) monocytes, which share phenotype and homing potential with the mouse subsets. These findings raise the potential for novel therapeutic strategies in inflammatory diseases.", "title": "Blood monocytes consist of two principal subsets with distinct migratory properties" }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "2192419", "text": "During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.", "title": "Local proliferation dominates lesional macrophage accumulation in atherosclerosis" }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "14386505", "text": "Myeloid cells play pivotal roles in chronic inflammatory diseases through their broad proinflammatory, destructive, and remodeling capacities. CD200 is widely expressed on a variety of cell types, while the recently identified CD200R is expressed on myeloid cells and T cells. CD200 deletion in vivo results in myeloid cell dysregulation and enhanced susceptibility to autoimmune inflammation, suggesting that the CD200-CD200R interaction is involved in immune suppression. We demonstrate in this study that CD200R agonists suppress mouse and human myeloid cell function in vitro, and also define a dose relationship between receptor expression and cellular inhibition. IFN-gamma- and IL-17-stimulated cytokine secretion from mouse peritoneal macrophages was inhibited by CD200R engagement. Inhibitory effects were not universal, as LPS-stimulated responses were unaffected. Inhibition of U937 cell cytokine production correlated with CD200R expression levels, and inhibition was only observed in low CD200R expressing cells, if the CD200R agonists were further cross-linked. Tetanus toxoid-induced human PBMC IL-5 and IL-13 secretion was inhibited by CD200R agonists. This inhibition was dependent upon cross-linking the CD200R on monocytes, but not on cross-linking the CD200R on CD4+ T cells. In all, we provide direct evidence that the CD200-CD200R interaction controls monocyte/macrophage function in both murine and human systems, further supporting the potential clinical application of CD200R agonists for the treatment of chronic inflammatory diseases.", "title": "Regulation of myeloid cell function through the CD200 receptor." }, { "docid": "13902570", "text": "OBJECTIVE TGR5 is a G-protein-coupled receptor for bile acids. So far, little is known about the function of TGR5 in vascular endothelial cells. APPROACH AND RESULTS In bovine aortic endothelial cells, treatment with a bile acid having a high affinity to TGR5, taurolithocholic acid (TLCA), significantly increased NO production. This effect was abolished by small interfering RNA-mediated depletion of TGR5. TLCA-induced NO production was also observed in human umbilical vein endothelial cells measured via intracellular cGMP accumulation. TLCA increased endothelial NO synthase(ser1177) phosphorylation in human umbilical vein endothelial cells. This response was accompanied by increased Akt(ser473) phosphorylation and intracellular Ca(2+). Inhibition of these signals significantly decreased TLCA-induced NO production. We next examined whether TGR5-mediated NO production affects inflammatory responses of endothelial cells. In human umbilical vein endothelial cells, TLCA significantly reduced tumor necrosis factor-α-induced adhesion of monocytes, vascular cell adhesion molecule-1 expression, and activation of nuclear factor-κB. TLCA also inhibited lipopolysaccharide-induced monocyte adhesion to mesenteric venules in vivo. These inhibitory effects of TLCA were abrogated by NO synthase inhibition. \n CONCLUSIONS TGR5 agonism induces NO production via Akt activation and intracellular Ca(2+) increase in vascular endothelial cells, and this function inhibits monocyte adhesion in response to inflammatory stimuli.", "title": "Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells." }, { "docid": "21719289", "text": "Although most vaccines are administered i.m., little is known about the dendritic cells (DCs) that are present within skeletal muscles. In this article, we show that expression of CD64, the high-affinity IgG receptor FcγRI, distinguishes conventional DCs from monocyte-derived DCs (Mo-DCs). By using such a discriminatory marker, we defined the distinct DC subsets that reside in skeletal muscles and identified their migratory counterparts in draining lymph nodes (LNs). We further used this capability to analyze the functional specialization that exists among muscle DCs. After i.m. administration of Ag adsorbed to alum, we showed that alum-injected muscles contained large numbers of conventional DCs that belong to the CD8α(+)- and CD11b(+)-type DCs. Both conventional DC types were capable of capturing Ag and of migrating to draining LNs, where they efficiently activated naive T cells. In alum-injected muscles, Mo-DCs were as numerous as conventional DCs, but only a small fraction migrated to draining LNs. Therefore, alum by itself poorly induces Mo-DCs to migrate to draining LNs. We showed that addition of small amounts of LPS to alum enhanced Mo-DC migration. Considering that migratory Mo-DCs had, on a per cell basis, a higher capacity to induce IFN-γ-producing T cells than conventional DCs, the addition of LPS to alum enhanced the overall immunogenicity of Ags presented by muscle-derived DCs. Therefore, a full understanding of the role of adjuvants during i.m. vaccination needs to take into account the heterogeneous migratory and functional behavior of muscle DCs and Mo-DCs revealed in this study.", "title": "CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization." }, { "docid": "17934603", "text": "BACKGROUND CCR2 plays a key role in regulating monocyte trafficking to sites of inflammation and therefore has been the focus of much interest as a target for inflammatory disease. \n METHODS Here we examined the effects of CCR2 blockade with a potent small molecule antagonist to determine the pharmacodynamic consequences on the peripheral blood monocyte compartment in the context of acute and chronic inflammatory processes. \n RESULTS We demonstrate that CCR2 antagonism in vivo led to a rapid decrease in the number of circulating Ly6Chi monocytes and that this decrease was largely due to the CXCR4-dependent sequestration of these cells in the bone marrow, providing pharmacological evidence for a mechanism by which monocyte dynamics are regulated in vivo. CCR2 antagonism led to an accumulation of circulating CCL2 and CCL7 levels in the blood, indicating a role for CCR2 in regulating the levels of its ligands under homeostatic conditions. Finally, we show that the pharmacodynamic changes due to CCR2 antagonism were apparent after chronic dosing in mouse experimental autoimmune encephalomyelitis, a model in which CCR2 blockade demonstrated a dramatic reduction in disease severity, manifest in a reduced accumulation of monocytes and other cells in the CNS. \n CONCLUSION CCR2 antagonism in vivo has tractable pharmacodynamic effects that can be used to align target engagement with biologic effects on disease activity.", "title": "CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis" }, { "docid": "7489663", "text": "A current paradigm states that monocytes circulate freely and patrol blood vessels but differentiate irreversibly into dendritic cells (DCs) or macrophages upon tissue entry. Here we show that bona fide undifferentiated monocytes reside in the spleen and outnumber their equivalents in circulation. The reservoir monocytes assemble in clusters in the cords of the subcapsular red pulp and are distinct from macrophages and DCs. In response to ischemic myocardial injury, splenic monocytes increase their motility, exit the spleen en masse, accumulate in injured tissue, and participate in wound healing. These observations uncover a role for the spleen as a site for storage and rapid deployment of monocytes and identify splenic monocytes as a resource that the body exploits to regulate inflammation.", "title": "Identification of splenic reservoir monocytes and their deployment to inflammatory sites." }, { "docid": "11868606", "text": "Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes.", "title": "Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients" }, { "docid": "34016987", "text": "Monocytes are primary targets for human CMV (HCMV) infection and are proposed to be responsible for hematogenous dissemination of the virus. Monocytes acquire different functional traits during polarization to the classical proinflammatory M1 macrophage or the alternative antiinflammatory M2 macrophage. We hypothesized that HCMV induced a proinflammatory M1 macrophage following infection to promote viral dissemination because, biologically, a proinflammatory state provides the tools to drive infected monocytes from the blood into the tissue. To test this hypothesis of monocyte conversion from a normal quiescent phenotype to an inflammatory phenotype, we used Affymetrix Microarray to acquire a transcriptional profile of infected monocytes at a time point our data emphasized is a key temporal regulatory point following infection. We found that HCMV significantly up-regulated 583 (5.2%) of the total genes and down-regulated 621 (5.5%) of the total genes>or=1.5-fold at 4 h postinfection. Further ontology analysis revealed that genes implicated in classical M1 macrophage activation were stimulated by HCMV infection. We found that 65% of genes strictly associated with M1 polarization were up-regulated, while only 4% of genes solely associated with M2 polarization were up-regulated. Analysis of the monocyte chemokinome at the transcriptional level showed that 44% of M1 and 33% of M2 macrophage chemokines were up-regulated. Proteomic analysis using chemokine Ab arrays confirmed the secretion of these chemotactic proteins from HCMV-infected monocytes. Overall, the results identify that the HCMV-infected monocyte transcriptome displayed a unique M1/M2 polarization signature that was skewed toward the classical M1 activation phenotype.", "title": "Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage." }, { "docid": "12827098", "text": "Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.", "title": "Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes." }, { "docid": "22889972", "text": "Inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) have been implicated in atherogenesis. However, the precise role of TNF-alpha in atherogenesis is still unclear. To examine the effect of TNF-alpha on atherogenesis, we generated compound-deficient mice in apolipoprotein E (apoE) and TNF-alpha (apoE-/-/TNF-alpha-/-) and compared them with apoE-/- mice. Although serum total cholesterol levels were markedly elevated in both apoE-/-/TNF-alpha-/- and apoE-/- mice compared to wild-type mice, no differences were observed between apoE-/-/TNF-alpha-/- and apoE-/- mice. The atherosclerotic plaque area in the aortic luminal surface of apoE-/-/TNF-alpha-/- mice (n=8, 3.1+/-0.4%) was significantly smaller than that of apoE-/- mice (n=7, 4.7+/-0.4%, p<0.001) despite the lack of difference in serum cholesterol levels. The atherosclerotic lesion size in the aortic sinus of apoE-/-/TNF-alpha-/- mice (n=10, 5.1+/-0.3 x 10(5)microm(2)) was also significantly smaller than that of apoE-/- mice (n=11, 7.0+/-0.3 x 10(5)microm(2), p<0.0001). RT-PCR analysis indicated that the expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in apoE-/- than apoE-/-/TNF-alpha-/- mice. Macrophages from apoE(-/-) mice showed higher uptake level of oxidized LDL and increased expression level of scavenger receptor class A (SRA) compared to those from apoE-/-/TNF-alpha-/- mice. These results indicate that TNF-alpha plays an atherogenic role by upregulating the expressions of ICAM-1, VCAM-1 and MCP-1 in the vascular wall, and by inducing SRA expression and oxidized LDL uptake in macrophages.", "title": "Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice." }, { "docid": "20887554", "text": "BACKGROUND C-reactive protein (CRP) is a known risk factor for cardiovascular events in the healthy population and in patients with coronary artery disease. High CRP levels before cardiac surgery are associated with worse short-term outcome, but its role after discharge home remains unknown. The study objective was to evaluate the effect of CRP on short-term and mid-term outcome after cardiac surgery. \n METHODS From August 2000 to May 2004, values for preoperative CRP were available for 597 unselected patients undergoing cardiac operations. CRP was used to divide this cohort in two groups: a low inflammatory status (LHS) group of 354 patients with CRP of less than 0.5 mg/dL, and a high inflammatory status (HIS) group of 243 patients with a CRP of 0.5 mg/dL or more. Follow-up lasted a maximum of 3 years (median, 1.8 +/- 1.5 years) and was 92.6% complete. \n RESULTS In-hospital mortality was 8.2% in the HIS group and 3.4% in the LIS group (odds ratio [OR], 2.61; p = 0.02). Incidence of postoperative infections was 16.5% in the HIS group and 5.1% in the LIS group (OR, 3.25; p = 0.0001). Sternal wound infections were also more frequent in the HIS group (10.7% versus 2.8%; OR, 3.43; p = 0.002). During follow-up, the HIS group had worse survival (88.5% +/- 2.9% versus 91.9% +/- 2.5%; OR, 1.93; p = 0.05) and a higher need of hospitalization for cardiac-related causes (73.6% +/- 6% versus 86.5% +/- 3.2%; OR, 1.82; p = 0.05). \n CONCLUSIONS Patients undergoing cardiac surgery with a CRP level of 0.5 mg/dL or more are exposed to a higher risk of in-hospital mortality and postoperative infections. Despite surgical correction of cardiac disease, a high preoperative CRP value is an independent risk factor for mid-term survival and hospitalization for cardiac causes.", "title": "Preoperative C-reactive protein predicts mid-term outcome after cardiac surgery." }, { "docid": "17708753", "text": "Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.", "title": "Myeloid Cells Expressing VEGF and Arginase-1 Following Uptake of Damaged Retinal Pigment Epithelium Suggests Potential Mechanism That Drives the Onset of Choroidal Angiogenesis in Mice" } ]
730
Lysine histone demethylase inhibitor JIB 04 is inactive against KDM5A.
[ { "docid": "13400643", "text": "The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance.", "title": "A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth" } ]
[ { "docid": "4387494", "text": "PURPOSE Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clinical treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML. \n METHODS A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML. \n RESULTS Here we observed that the mRNA expression of KDM6B was up-regulated in AML and positively correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes. \n CONCLUSIONS In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML.", "title": "Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia" }, { "docid": "8548635", "text": "Methylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate that the JARID1 proteins RBP2, PLU1, and SMCX are histone demethylases specific for di- and trimethylated histone 3 lysine 4 (H3K4). Consistent with a role for the JARID1 Drosophila homolog Lid in regulating expression of homeotic genes during development, we show that RBP2 is displaced from Hox genes during embryonic stem (ES) cell differentiation correlating with an increase of their H3K4me3 levels and expression. Furthermore, we show that mutation or RNAi depletion of the C. elegans JARID1 homolog rbr-2 leads to increased levels of H3K4me3 during larval development and defects in vulva formation. Taken together, these results suggest that H3K4me3/me2 demethylation regulated by the JARID1 family plays an important role during development.", "title": "RBP2 Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on Histone 3" }, { "docid": "15215393", "text": "Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM.", "title": "Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors." }, { "docid": "18841257", "text": "Epigenetic chromatin marks restrict the ability of differentiated cells to change gene expression programs in response to environmental cues and to transdifferentiate. Polycomb group (PcG) proteins mediate gene silencing and repress transdifferentiation in a manner dependent on histone H3 lysine 27 trimethylation (H3K27me3). However, macrophages migrated into inflamed tissues can transdifferentiate, but it is unknown whether inflammation alters PcG-dependent silencing. Here we show that the JmjC-domain protein Jmjd3 is a H3K27me demethylase expressed in macrophages in response to bacterial products and inflammatory cytokines. Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcriptional activity. The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.", "title": "The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing" }, { "docid": "4547102", "text": "Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.", "title": "H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming." }, { "docid": "15803282", "text": "The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.", "title": "Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells." }, { "docid": "3230361", "text": "Publisher Summary This chapter summarizes the development and characterization of rabbit polyclonal antibodies named histone that are directed against the methylated H3-K9 position. It provides protocols for peptide design, rabbit immunizations, and quality controls of methyl-lysine histone antibodies, followed by their in vivo characterization using indirect IF of inter-and metaphase chromatin in wild-type (wt) and mutant mouse cells that are deficient for the Suv39h histone methyltransferases (HMTases). Histone amino-termini (tails) protrude from the nucleosome core and are subject to a variety of post-translational modifications, including acetylation (on lysine residues), phosphorylation (on serine and threonine residues), methylation (on lysine and arginine residues), ubiquitination (on lysine residues), and ADP-ribosylation (on glutamic acid residues). In addition to their structural roles, histones play important functions in the control of gene expression by regulating access to the underlying nucleosomal template. It is without doubt that the development of high-quality, position-specific methyl-lysine histone antibodies can provide important tools for the further decoding of the epigenetic information, which is in part, indexed by distinct methylation states of selective lysine residues in the histone amino-termini. A comparative analysis indicates significant discrepancies in the specificity and avidity of the available methyl-lysine histone antibodies and highlights the need for extensive quality controls, such that experimental data can be correctly interpreted despite the exquisite complexity of histone lysine methylation.", "title": "Generation and characterization of methyl-lysine histone antibodies." }, { "docid": "6455142", "text": "Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.", "title": "KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription." }, { "docid": "6948886", "text": "The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.", "title": "Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression." }, { "docid": "7426741", "text": "Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.", "title": "The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner." }, { "docid": "42267740", "text": "Various proteins have been found to play roles in both the repair of UV damaged DNA and heterochromatin-mediated silencing in the yeast Saccharomyces cerevisiae. In particular, factors that are involved in the methylation of lysine-79 of histone H3 by Dot1p have been implicated in both processes, suggesting a bipartite function for this modification. We find that a dot1 null mutation and a histone H3 point mutation at lysine-79 cause increased sensitivity to UV radiation, suggesting that lysine-79 methylation is important for efficient repair of UV damage. Epistasis analysis between dot1 and various UV repair genes indicates that lysine-79 methylation plays overlapping roles within the nucleotide excision, post-replication and recombination repair pathways, as well as RAD9-mediated checkpoint function. In contrast, epistasis analysis with the H3 lysine-79 point mutation indicates that the lysine-to-glutamic acid substitution exerts specific effects within the nucleotide excision repair and post-replication repair pathways, suggesting that this allele only disrupts a subset of the functions of lysine-79 methylation. The overall results indicate the existence of distinct and separable roles of histone H3 lysine-79 methylation in the response to UV damage, potentially serving to coordinate the various repair processes.", "title": "Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae." }, { "docid": "12887068", "text": "Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.", "title": "Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation" }, { "docid": "2831620", "text": "Lysine acetylation is a reversible posttranslational modifcation, an epigenetic phenomenon, referred to as transfer of an acetyl group from acetyl CoA to lysine e- amino group of targeted protein, which is modulated by acetyltransferases (histone/ lysine (K) acetyltransferases, HATs/KATs) and deacetylases (histone/lysine (K) deacetylases, HDACs/KDACs). Lysine acetylation regulates various metabolic processes, such as fatty acid oxidation, Krebs cycle, oxidative phosphorylation, angiogenesis and so on. Thus disorders of lysine acetylation may be correlated with obesity, diabetes and cardiovascular disease, which are termed as the metabolic complication. With accumulating studies on proteomic acetylation, lysine acetylation also involves in cell immune status and degenerative diseases, for example, Alzheimer’s disease and Huntington’s disease. This review primarily summarizes the current studies of lysine acetylation in metabolism modulation and in metabolism-related diseases, such as cardiovascular disease and fat metabolism disorder.", "title": "Protein Lysine Acetylated/Deacetylated Enzymes and the Metabolism-Related Diseases" }, { "docid": "3829232", "text": "BACKGROUND The Polycomb group (PcG) of proteins is a family of important developmental regulators. The respective members function as large protein complexes involved in establishment and maintenance of transcriptional repression of developmental control genes. MBTD1, Malignant Brain Tumor domain-containing protein 1, is one such PcG protein. MBTD1 contains four MBT repeats. \n METHODOLOGY/PRINCIPAL FINDINGS We have determined the crystal structure of MBTD1 (residues 130-566aa covering the 4 MBT repeats) at 2.5 A resolution by X-ray crystallography. The crystal structure of MBTD1 reveals its similarity to another four-MBT-repeat protein L3MBTL2, which binds lower methylated lysine histones. Fluorescence polarization experiments confirmed that MBTD1 preferentially binds mono- and di-methyllysine histone peptides, like L3MBTL1 and L3MBTL2. All known MBT-peptide complex structures characterized to date do not exhibit strong histone peptide sequence selectivity, and use a \"cavity insertion recognition mode\" to recognize the methylated lysine with the deeply buried methyl-lysine forming extensive interactions with the protein while the peptide residues flanking methyl-lysine forming very few contacts [1]. Nevertheless, our mutagenesis data based on L3MBTL1 suggested that the histone peptides could not bind to MBT repeats in any orientation. \n CONCLUSIONS The four MBT repeats in MBTD1 exhibits an asymmetric rhomboid architecture. Like other MBT repeat proteins characterized so far, MBTD1 binds mono- or dimethylated lysine histones through one of its four MBT repeats utilizing a semi-aromatic cage. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.", "title": "Structural Studies of a Four-MBT Repeat Protein MBTD1" }, { "docid": "1243475", "text": "A characteristic feature of anaplastic large cell lymphoma is the significant repression of the T-cell expression program despite its T-cell origin. The reasons for this down-regulation of T-cell phenotype are still unknown. To elucidate whether epigenetic mechanisms are responsible for the loss of the T-cell phenotype, we treated anaplastic large cell lymphoma and T-cell lymphoma/leukemia cell lines (n=4, each) with epigenetic modifiers to evoke DNA demethylation and histone acetylation. Global gene expression data from treated and untreated cell lines were generated and selected, and differentially expressed genes were evaluated by real-time reverse transcriptase polymerase chain reaction and western blot analysis. Additionally, histone H3 lysine 27 trimethylation was analyzed by chromatin immunoprecipitation. Combined DNA demethylation and histone acetylation of anaplastic large cell lymphoma cells was not able to reconstitute their T-cell phenotype. Instead, the same treatment induced in T cells: (i) an up-regulation of anaplastic large cell lymphoma-characteristic genes (e.g. ID2, LGALS1, c-JUN), and (ii) an almost complete extinction of their T-cell phenotype including CD3, LCK and ZAP70. In addition, suppressive trimethylation of histone H3 lysine 27 of important T-cell transcription factor genes (GATA3, LEF1, TCF1) was present in anaplastic large cell lymphoma cells, which is in line with their absence in primary tumor specimens as demonstrated by immunohistochemistry. Our data suggest that epigenetically activated suppressors (e.g. ID2) contribute to the down-regulation of the T-cell expression program in anaplastic large cell lymphoma, which is maintained by trimethylation of histone H3 lysine 27.", "title": "Histone acetylation and DNA demethylation of T cells result in an anaplastic large cell lymphoma-like phenotype." }, { "docid": "13639330", "text": "Nuclear receptors undergo ligand-dependent conformational changes that are required for corepressor-coactivator exchange, but whether there is an actual requirement for specific epigenetic landmarks to impose ligand dependency for gene activation remains unknown. Here we report an unexpected and general strategy that is based on the requirement for specific cohorts of inhibitory histone methyltransferases (HMTs) to impose gene-specific gatekeeper functions that prevent unliganded nuclear receptors and other classes of regulated transcription factors from binding to their target gene promoters and causing constitutive gene activation in the absence of stimulating signals. This strategy, based at least in part on an HMT-dependent inhibitory histone code, imposes a requirement for specific histone demethylases, including LSD1, to permit ligand- and signal-dependent activation of regulated gene expression. These events link an inhibitory methylation component of the histone code to a broadly used strategy that circumvents pathological constitutive gene induction by physiologically regulated transcription factors.", "title": "Histone Methylation-Dependent Mechanisms Impose Ligand Dependency for Gene Activation by Nuclear Receptors" }, { "docid": "12588500", "text": "Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.", "title": "Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly" }, { "docid": "46248894", "text": "Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.", "title": "Long noncoding RNA as modular scaffold of histone modification complexes" }, { "docid": "27134931", "text": "The trithorax (Trx) family of proteins is required for maintaining a specific pattern of gene expression in some organisms. Recently we reported the isolation and characterization of COMPASS, a multiprotein complex that includes the Trx-related protein Set1 of the yeast Saccharomyces cerevisiae. Here we report that COMPASS catalyzes methylation of the fourth lysine of histone H3 in vitro. Set1 and several other components of COMPASS are also required for histone H3 methylation in vivo and for transcriptional silencing of a gene located near a chromosome telomere.", "title": "COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression." } ]
732
M. stadtmanae does not induce ASC speck formation in BlaER1 monocytes.
[ { "docid": "34469966", "text": "Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an \"alternative inflammasome\" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans.", "title": "Human Monocytes Engage an Alternative Inflammasome Pathway." } ]
[ { "docid": "4345315", "text": "Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.", "title": "Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3" }, { "docid": "56486733", "text": "BACKGROUND The purpose of this study was to explore the function and mechanism of peroxisome proliferator activated receptor agonist (PPARγ) in the toll-like receptor 2 (TLR2)/nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle pathway of asthmatic mice. MATERIAL AND METHODS Eighteen female mice (C57) were randomly divided into 4 groups: the control group, the asthma model group challenged by ovalbumin (OVA), the rosiglitazone group, and the PPARγ agonist rosiglitazone treatment group. The infiltration of peribronchial inflammatory cells as well as the proliferation and mucus secretion of bronchial epithelial goblet cells were observed by hematoxylin and eosin and periodic acid-Schiff staining. Western blots were employed to detect the expression levels of TLR2, PPARγ, nuclear factor-kappa B (NF-kappaB), NLRP3, and ASC [apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain [CARD]).\n RESULTS The number of inflammatory cells and eosinophils, and the levels of OVAs IgE, interleukin-4 (IL-4), and IL-13 were significantly higher in the C57 asthma group compared to the C57 control group and the treatment group (P<0.05). The infiltration of peribronchiolar inflammatory cells, wall thickening, goblet cell hyperplasia, and mucus secretion in the treatment group were all significantly decreased compared to those in the asthma group. PPARg expression in the treatment group was significantly higher compared to the asthma group and the control group (P<0.05). The protein expression levels of TLR2, NF-kappaB, NLRP3, and ASC were significantly lower compared to the asthma group but were higher compared to the control group (P<0.05).\n CONCLUSIONS PPARγ rosiglitazone ameliorates airway inflammation by inhibiting NF-kappaB expression in asthmatic mice, and further inhibits the activation of TLR2/NLRP3 inflammatory corpuscles.", "title": "Peroxisome Proliferator Activated Receptor gamma (PPARγ) Agonist Rosiglitazone Ameliorate Airway Inflammation by Inhibiting Toll-Like Receptor 2 (TLR2)/Nod-Like Receptor with Pyrin Domain Containing 3 (NLRP3) Inflammatory Corpuscle Activation in Asthmatic Mice" }, { "docid": "7116734", "text": "Nicotinamide (Nam) phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in mammalian NAD synthesis, catalyzing nicotinamide mononucleotide (NMN) formation from Nam and 5-phosphoribosyl 1-pyrophosphate (PRPP). NAMPT has also been described as an adipocytokine visfatin with a variety of actions, although physiological significance of this protein remains unclear. It has been proposed that possible actions of visfatin are mediated through the extracellular formation of NMN. However, we did not detect NMN in mouse blood plasma, even with a highly specific and sensitive liquid chromatography/tandem mass spectrometry. Furthermore, there is no or little ATP, the activator of NAMPT, in extracellular spaces. We thus questioned whether visfatin catalyzes the in situ formation of NMN under such extracellular milieus. To address this question, we here determined K(m) values for the substrates Nam and PRPP in the NAMPT reaction without or with ATP using a recombinant human enzyme and found that 1 mM ATP dramatically decreases K(m) values for the substrates, in particular PRPP to its intracellular concentration. Consistent with the kinetic data, only when ATP is present at millimolar levels, NAMPT efficiently catalyzed the NMN formation at the intracellular concentrations of the substrates. Much lower concentrations of Nam and almost the absence of PRPP and ATP in the blood plasma suggest that NAMPT should not efficiently catalyze its reaction under the extracellular milieu. Indeed, NAMPT did not form NMN in the blood plasma. From these kinetic analyses of the enzyme and quantitative determination of its substrates, activator, and product, we conclude that visfatin does not participate in NMN formation under the extracellular milieus. Together with the absence of NMN in the blood plasma, our conclusion does not support the concept of \"NAMPT-mediated systemic NAD biosynthesis. \" Our study would advance current understanding of visfatin physiology.", "title": "Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma" }, { "docid": "36444198", "text": "Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites.", "title": "Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response." }, { "docid": "25915873", "text": "PURPOSE Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. \n RESULTS Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. EXPERIMENTAL DESIGN We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. \n CONCLUSION Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.", "title": "Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation." }, { "docid": "8596357", "text": "Functional disruption of dendritic cells (DC) is an important strategy for viral pathogens to evade host defences. In this context, porcine circovirus type 2 (PCV2), a single-stranded DNA virus, impairs plasmacytoid DC (pDC) and conventional DC activation by certain viruses or Toll-like receptor (TLR) ligands. This inhibitory capacity is associated with the viral DNA, but the impairment does not affect all signalling cascades; TLR7 ligation by small chemical molecules will still induce interleukin-6 (IL-6) and tumour necrosis factor-α secretion, but not interferon-α or IL-12. In this study, the molecular mechanisms by which silencing occurs were investigated. PP2, a potent inhibitor of the Lyn and Hck kinases, produced a similar profile to the PCV2 DNA interference with cytokine secretion by pDC, efficiently inhibiting cell activation induced through TLR9, but not TLR7, ligation. Confocal microscopy and cytometry analysis strongly suggested that PCV2 DNA impairs actin polymerization and endocytosis in pDC and monocyte-derived DC, respectively. Altogether, this study delineates for the first time particular molecular mechanisms involved in PCV2 interference with DC danger recognition, which may be responsible for the virus-induced immunosuppression observed in infected pigs.", "title": "Porcine circovirus type 2 DNA influences cytoskeleton rearrangements in plasmacytoid and monocyte-derived dendritic cells." }, { "docid": "12827098", "text": "Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.", "title": "Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes." }, { "docid": "33634749", "text": "OBJECTIVE Genes encoding the circadian transcriptional apparatus exhibit robust oscillatory expression in murine adipose tissues. This study tests the hypothesis that human subcutaneous adipose-derived stem cells (ASCs) provide an in vitro model in which to monitor the activity of the core circadian transcriptional apparatus. RESEARCH METHODS AND PROCEDURES Primary cultures of undifferentiated or adipocyte-differentiated ASCs were treated with dexamethasone, rosiglitazone, or 30% fetal bovine serum. The response of undifferentiated ASCs to dexamethasone was further evaluated in the presence of lithium chloride. Lithium inhibits glycogen synthase kinase 3, a key component of the circadian apparatus. Total RNA was harvested at 4-hour intervals over 48 hours and examined by real-time reverse transcription polymerase chain reaction (RT-PCR). \n RESULTS Adipocyte-differentiated cells responded more rapidly to treatments than their donor-matched undifferentiated controls; however, the period of the circadian gene oscillation was longer in the adipocyte-differentiated cells. Dexamethasone generated circadian gene expression patterns with mean periods of 25.4 and 26.7 hours in undifferentiated and adipocyte-differentiated ASCs, respectively. Both rosiglitazone and serum shock generated a significantly longer period in adipocyte-differentiated ASCs relative to undifferentiated ASCs. The Bmal1 profile was phase-shifted by approximately 8 to 12 hours relative to Per1, Per3, and Cry2, consistent with their expression in vivo. Lithium chloride inhibited adipogenesis and significantly lengthened the period of Per3 and Rev-erbalpha gene expression profiles by >5 hours in dexamethasone-activated undifferentiated ASCs. DISCUSSION These results support the initial hypothesis and validate ASCs as an in vitro model for the analysis of circadian biology in human adipose tissue.", "title": "Induction of circadian gene expression in human subcutaneous adipose-derived stem cells." }, { "docid": "15551129", "text": "Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.", "title": "The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth" }, { "docid": "623486", "text": "Centrifugal elutriation was used further to isolate human peripheral blood monocytes (HPBM) from mononuclear-enriched cells harvested as a secondary component following platelet concentration collection samples. HPBM were recovered in either one or two populations consisting of either total HPBM or small (SM) and large monocytes (LM). The elutriation was carried out at 3,500 +/- 5 rpm for the separation of lymphocytes and HPBM in Ca++- and Mg++-free PBS without EDTA. An average of 5.05 +/- 1.50 X 10(8) HPBM were recovered in the total HPBM with a purity of 95% +/- 3%. The SM and LM were obtained by splitting the total HPBM into two equal populations with an HPBM purity of 92% +/- 3% and 93% +/- 3, respectively, by nonspecific esterase staining. The elutriation media were shown to have no effect on viability by trypan blue exclusion. All three HPBM populations were shown to be histochemically (lack of reactivity to leu-1 and leu-7) and functionally (depletion of NK cell activity) purified from the lymphocyte population. The HPBM populations were enriched in HLA-Dr, OKM-1, OKM-5, MY-8, and leu M-3 monoclonal antibody marker staining. There were no differences in percent positive cells between SM and LM populations for any of the monocyte-specific monoclonal antibodies. All three monocyte populations mediated antibody-dependent cell-mediated cytotoxicity to human red blood cells, with LM mediating more lysis (27.0% +/- 5%) than SM (7% +/- 3%).(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes." }, { "docid": "2192419", "text": "During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.", "title": "Local proliferation dominates lesional macrophage accumulation in atherosclerosis" }, { "docid": "5372773", "text": "Human cytomegalovirus (HCMV) expresses several homologues of human interleukin 10 (hIL-10) possessing immunomodulatory properties which may promote viral infection by modulating the function of myeloid cells. We examined the phenotype and phagocytic capability of human monocytes exposed to hIL-10, an HCMV-encoded hIL-10 homologue expressed during the productive phase of infection (cmvIL-10), and a differentially spliced form of cmvIL-10 expressed during latent and productive phases of infection, (LAcmvIL-10). hIL-10 and cmvIL-10 upregulated expression of Fcgamma receptors, stimulated phagocytosis of IgG-opsonised erythrocytes and decreased MHC class II (HLA-DR) expression on purified monocytes within 24 h. In contrast, LAcmvIL-10 decreased HLA-DR expression at later times (48 h and 72 h) but did not increase Fcgamma receptor expression. We conclude that cmvIL-10 promotes differentiation of monocytes towards a pro-phagocytic phenotype and that LAcmvIL-10 does not affect monocytes by the same mechanism as cmvIL-10. The significance of these properties to cytomegalovirus pathogenesis is discussed.", "title": "Enhanced monocyte Fc phagocytosis by a homologue of interleukin-10 encoded by human cytomegalovirus." }, { "docid": "8764879", "text": "Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony–stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1Rhigh cells), but not those expressing low amounts of CSF1R (CSF1Rlow cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1Rhigh cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2–induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1Rhigh cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.", "title": "PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2" }, { "docid": "9334631", "text": "OBJECTIVE C-Reactive protein (CRP), a cardiovascular risk marker, could also participate in atherosclerosis. Atherosclerotic plaques express CRP and interleukin (IL)-10, a major antiinflammatory cytokine. IL-10 deficiency results in increased lesion formation, whereas IL-10 delivery attenuates lesions. We tested the effect of CRP on lipopolysaccharide (LPS)-induced IL-10 secretion in human monocyte-derived macrophages (HMDMs). \n METHODS AND RESULTS Incubation of HMDMs with CRP significantly decreased LPS-induced IL-10 mRNA and intracellular and secreted IL-10 protein and destabilized IL-10 mRNA. Also, CRP alone increased secretion of IL-8, IL-6, and tumor necrosis factor from HMDMs and did not inhibit LPS-induced secretion of these cytokines. Fc gamma receptor I antibodies significantly reversed CRP-mediated IL-10 inhibition. CRP significantly decreased intracellular cAMP, phospho-cAMP response element binding protein (pCREB), and adenyl cyclase activity. cAMP agonists reversed CRP-mediated IL-10 inhibition. Overexpression of wild-type and constitutively active CREB in THP-1 cells revealed attenuation of the inhibitory effect of CRP on LPS-induced IL-10 levels. CRP also inhibited hemoglobin:haptoglobin-induced IL-10 and heme oxygenase-1. Furthermore, administration of human CRP to rats significantly decreased IL-10 levels. \n CONCLUSIONS This study provides novel evidence that CRP, by decreasing IL-10 alters the antiinflammatory/proinflammatory balance, accentuating inflammation, which is pivotal in atherothrombosis.", "title": "C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production." }, { "docid": "12631182", "text": "The phagocyte NADPH oxidase (NOX2) is critical for the bactericidal activity of phagocytic cells and plays a major role in innate immunity. We showed recently that NOX2 activity in mouse dendritic cells (DCs) prevents acidification of phagosomes, promoting antigen cross-presentation. In order to investigate the role of NOX2 in the regulation of the phagosomal pH in human DCs, we analyzed the production of reactive oxygen species (ROS) and the phagosomal/endosomal pH in monocyte-derived DCs and macrophages (M(diameter)s) from healthy donors or patients with chronic granulomatous disease (CGD). As expected, we found that human M(diameter)s acidify their phagosomes more efficiently than human DCs. Accordingly, the expression of the vacuolar proton ATPase (V-H(+)-ATPase) was higher in M(diameter)s than in DCs. Phagosomal ROS production, however, was also higher in M(diameter)s than in DCs, due to higher levels of gp91phox expression and recruitment to phagosomes. In contrast, in the absence of active NOX2, the phagosomal and endosomal pH decreased. Both in the presence of a NOX2 inhibitor and in DCs derived from patients with CGD, the cross-presentation of 2 model tumor antigens was impaired. We conclude that NOX2 activity participates in the regulation of the phagosomal and endosomal pH in human DCs, and is required for efficient antigen cross-presentation.", "title": "NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells." }, { "docid": "1471041", "text": "Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo–isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.", "title": "High abundance of plasma cells secreting transglutaminase 2–specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions" }, { "docid": "11837657", "text": "Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.", "title": "Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis" }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "19332616", "text": "Coronary atherosclerosis is by far the most frequent cause of ischemic heart disease, and plaque disruption with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.1 2 3 4 5 Therefore, for event-free survival, the vital question is not why atherosclerosis develops but rather why, after years of indolent growth, it suddenly becomes complicated by life-threatening thrombosis. The composition and vulnerability of plaque rather than its volume or the consequent severity of stenosis produced have emerged as being the most important determinants for the development of the thrombus-mediated acute coronary syndromes; lipid-rich and soft plaques are more dangerous than collagen-rich and hard plaques because they are more unstable and rupture-prone and highly thrombogenic after disruption.6 This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.7 8 Atherosclerosis is the result of a complex interaction between blood elements, disturbed flow, and vessel wall abnormality, involving several pathological processes: inflammation, with increased endothelial permeability, endothelial activation, and monocyte recruitment9 10 11 12 13 14 ; growth, with smooth muscle cell (SMC) proliferation, migration, and matrix synthesis15 16 ; degeneration, with lipid accumulation17 18 ; necrosis, possibly related to the cytotoxic effect of oxidized lipid19 ; calcification/ossification, which may represent an active rather than a dystrophic process20 21 ; and thrombosis, with platelet recruitment and fibrin formation.1 22 23 Thrombotic factors may play a role early during atherogenesis, but a flow-limiting thrombus does not develop until mature plaques are present, which is why thrombosis often is classified as a complication rather than a genuine component of atherosclerosis. ### Mature Plaques: Atherosis and Sclerosis As the name atherosclerosis implies, mature …", "title": "Coronary plaque disruption." } ]
733
M. stadtmanae induces ASC speck formation in BlaER1 monocytes.
[ { "docid": "34469966", "text": "Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an \"alternative inflammasome\" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans.", "title": "Human Monocytes Engage an Alternative Inflammasome Pathway." } ]
[ { "docid": "4345315", "text": "Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.", "title": "Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3" }, { "docid": "56486733", "text": "BACKGROUND The purpose of this study was to explore the function and mechanism of peroxisome proliferator activated receptor agonist (PPARγ) in the toll-like receptor 2 (TLR2)/nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle pathway of asthmatic mice. MATERIAL AND METHODS Eighteen female mice (C57) were randomly divided into 4 groups: the control group, the asthma model group challenged by ovalbumin (OVA), the rosiglitazone group, and the PPARγ agonist rosiglitazone treatment group. The infiltration of peribronchial inflammatory cells as well as the proliferation and mucus secretion of bronchial epithelial goblet cells were observed by hematoxylin and eosin and periodic acid-Schiff staining. Western blots were employed to detect the expression levels of TLR2, PPARγ, nuclear factor-kappa B (NF-kappaB), NLRP3, and ASC [apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain [CARD]).\n RESULTS The number of inflammatory cells and eosinophils, and the levels of OVAs IgE, interleukin-4 (IL-4), and IL-13 were significantly higher in the C57 asthma group compared to the C57 control group and the treatment group (P<0.05). The infiltration of peribronchiolar inflammatory cells, wall thickening, goblet cell hyperplasia, and mucus secretion in the treatment group were all significantly decreased compared to those in the asthma group. PPARg expression in the treatment group was significantly higher compared to the asthma group and the control group (P<0.05). The protein expression levels of TLR2, NF-kappaB, NLRP3, and ASC were significantly lower compared to the asthma group but were higher compared to the control group (P<0.05).\n CONCLUSIONS PPARγ rosiglitazone ameliorates airway inflammation by inhibiting NF-kappaB expression in asthmatic mice, and further inhibits the activation of TLR2/NLRP3 inflammatory corpuscles.", "title": "Peroxisome Proliferator Activated Receptor gamma (PPARγ) Agonist Rosiglitazone Ameliorate Airway Inflammation by Inhibiting Toll-Like Receptor 2 (TLR2)/Nod-Like Receptor with Pyrin Domain Containing 3 (NLRP3) Inflammatory Corpuscle Activation in Asthmatic Mice" }, { "docid": "36444198", "text": "Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites.", "title": "Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response." }, { "docid": "25915873", "text": "PURPOSE Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. \n RESULTS Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. EXPERIMENTAL DESIGN We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. \n CONCLUSION Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.", "title": "Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation." }, { "docid": "12827098", "text": "Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.", "title": "Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes." }, { "docid": "33634749", "text": "OBJECTIVE Genes encoding the circadian transcriptional apparatus exhibit robust oscillatory expression in murine adipose tissues. This study tests the hypothesis that human subcutaneous adipose-derived stem cells (ASCs) provide an in vitro model in which to monitor the activity of the core circadian transcriptional apparatus. RESEARCH METHODS AND PROCEDURES Primary cultures of undifferentiated or adipocyte-differentiated ASCs were treated with dexamethasone, rosiglitazone, or 30% fetal bovine serum. The response of undifferentiated ASCs to dexamethasone was further evaluated in the presence of lithium chloride. Lithium inhibits glycogen synthase kinase 3, a key component of the circadian apparatus. Total RNA was harvested at 4-hour intervals over 48 hours and examined by real-time reverse transcription polymerase chain reaction (RT-PCR). \n RESULTS Adipocyte-differentiated cells responded more rapidly to treatments than their donor-matched undifferentiated controls; however, the period of the circadian gene oscillation was longer in the adipocyte-differentiated cells. Dexamethasone generated circadian gene expression patterns with mean periods of 25.4 and 26.7 hours in undifferentiated and adipocyte-differentiated ASCs, respectively. Both rosiglitazone and serum shock generated a significantly longer period in adipocyte-differentiated ASCs relative to undifferentiated ASCs. The Bmal1 profile was phase-shifted by approximately 8 to 12 hours relative to Per1, Per3, and Cry2, consistent with their expression in vivo. Lithium chloride inhibited adipogenesis and significantly lengthened the period of Per3 and Rev-erbalpha gene expression profiles by >5 hours in dexamethasone-activated undifferentiated ASCs. DISCUSSION These results support the initial hypothesis and validate ASCs as an in vitro model for the analysis of circadian biology in human adipose tissue.", "title": "Induction of circadian gene expression in human subcutaneous adipose-derived stem cells." }, { "docid": "15551129", "text": "Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.", "title": "The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth" }, { "docid": "623486", "text": "Centrifugal elutriation was used further to isolate human peripheral blood monocytes (HPBM) from mononuclear-enriched cells harvested as a secondary component following platelet concentration collection samples. HPBM were recovered in either one or two populations consisting of either total HPBM or small (SM) and large monocytes (LM). The elutriation was carried out at 3,500 +/- 5 rpm for the separation of lymphocytes and HPBM in Ca++- and Mg++-free PBS without EDTA. An average of 5.05 +/- 1.50 X 10(8) HPBM were recovered in the total HPBM with a purity of 95% +/- 3%. The SM and LM were obtained by splitting the total HPBM into two equal populations with an HPBM purity of 92% +/- 3% and 93% +/- 3, respectively, by nonspecific esterase staining. The elutriation media were shown to have no effect on viability by trypan blue exclusion. All three HPBM populations were shown to be histochemically (lack of reactivity to leu-1 and leu-7) and functionally (depletion of NK cell activity) purified from the lymphocyte population. The HPBM populations were enriched in HLA-Dr, OKM-1, OKM-5, MY-8, and leu M-3 monoclonal antibody marker staining. There were no differences in percent positive cells between SM and LM populations for any of the monocyte-specific monoclonal antibodies. All three monocyte populations mediated antibody-dependent cell-mediated cytotoxicity to human red blood cells, with LM mediating more lysis (27.0% +/- 5%) than SM (7% +/- 3%).(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes." }, { "docid": "8764879", "text": "Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony–stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1Rhigh cells), but not those expressing low amounts of CSF1R (CSF1Rlow cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1Rhigh cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2–induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1Rhigh cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.", "title": "PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2" }, { "docid": "9334631", "text": "OBJECTIVE C-Reactive protein (CRP), a cardiovascular risk marker, could also participate in atherosclerosis. Atherosclerotic plaques express CRP and interleukin (IL)-10, a major antiinflammatory cytokine. IL-10 deficiency results in increased lesion formation, whereas IL-10 delivery attenuates lesions. We tested the effect of CRP on lipopolysaccharide (LPS)-induced IL-10 secretion in human monocyte-derived macrophages (HMDMs). \n METHODS AND RESULTS Incubation of HMDMs with CRP significantly decreased LPS-induced IL-10 mRNA and intracellular and secreted IL-10 protein and destabilized IL-10 mRNA. Also, CRP alone increased secretion of IL-8, IL-6, and tumor necrosis factor from HMDMs and did not inhibit LPS-induced secretion of these cytokines. Fc gamma receptor I antibodies significantly reversed CRP-mediated IL-10 inhibition. CRP significantly decreased intracellular cAMP, phospho-cAMP response element binding protein (pCREB), and adenyl cyclase activity. cAMP agonists reversed CRP-mediated IL-10 inhibition. Overexpression of wild-type and constitutively active CREB in THP-1 cells revealed attenuation of the inhibitory effect of CRP on LPS-induced IL-10 levels. CRP also inhibited hemoglobin:haptoglobin-induced IL-10 and heme oxygenase-1. Furthermore, administration of human CRP to rats significantly decreased IL-10 levels. \n CONCLUSIONS This study provides novel evidence that CRP, by decreasing IL-10 alters the antiinflammatory/proinflammatory balance, accentuating inflammation, which is pivotal in atherothrombosis.", "title": "C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production." }, { "docid": "12631182", "text": "The phagocyte NADPH oxidase (NOX2) is critical for the bactericidal activity of phagocytic cells and plays a major role in innate immunity. We showed recently that NOX2 activity in mouse dendritic cells (DCs) prevents acidification of phagosomes, promoting antigen cross-presentation. In order to investigate the role of NOX2 in the regulation of the phagosomal pH in human DCs, we analyzed the production of reactive oxygen species (ROS) and the phagosomal/endosomal pH in monocyte-derived DCs and macrophages (M(diameter)s) from healthy donors or patients with chronic granulomatous disease (CGD). As expected, we found that human M(diameter)s acidify their phagosomes more efficiently than human DCs. Accordingly, the expression of the vacuolar proton ATPase (V-H(+)-ATPase) was higher in M(diameter)s than in DCs. Phagosomal ROS production, however, was also higher in M(diameter)s than in DCs, due to higher levels of gp91phox expression and recruitment to phagosomes. In contrast, in the absence of active NOX2, the phagosomal and endosomal pH decreased. Both in the presence of a NOX2 inhibitor and in DCs derived from patients with CGD, the cross-presentation of 2 model tumor antigens was impaired. We conclude that NOX2 activity participates in the regulation of the phagosomal and endosomal pH in human DCs, and is required for efficient antigen cross-presentation.", "title": "NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells." }, { "docid": "1471041", "text": "Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo–isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.", "title": "High abundance of plasma cells secreting transglutaminase 2–specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions" }, { "docid": "11837657", "text": "Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.", "title": "Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis" }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "5172048", "text": "Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK–ERK–MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.", "title": "Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling" }, { "docid": "7948486", "text": "Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.", "title": "Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis." }, { "docid": "13902570", "text": "OBJECTIVE TGR5 is a G-protein-coupled receptor for bile acids. So far, little is known about the function of TGR5 in vascular endothelial cells. APPROACH AND RESULTS In bovine aortic endothelial cells, treatment with a bile acid having a high affinity to TGR5, taurolithocholic acid (TLCA), significantly increased NO production. This effect was abolished by small interfering RNA-mediated depletion of TGR5. TLCA-induced NO production was also observed in human umbilical vein endothelial cells measured via intracellular cGMP accumulation. TLCA increased endothelial NO synthase(ser1177) phosphorylation in human umbilical vein endothelial cells. This response was accompanied by increased Akt(ser473) phosphorylation and intracellular Ca(2+). Inhibition of these signals significantly decreased TLCA-induced NO production. We next examined whether TGR5-mediated NO production affects inflammatory responses of endothelial cells. In human umbilical vein endothelial cells, TLCA significantly reduced tumor necrosis factor-α-induced adhesion of monocytes, vascular cell adhesion molecule-1 expression, and activation of nuclear factor-κB. TLCA also inhibited lipopolysaccharide-induced monocyte adhesion to mesenteric venules in vivo. These inhibitory effects of TLCA were abrogated by NO synthase inhibition. \n CONCLUSIONS TGR5 agonism induces NO production via Akt activation and intracellular Ca(2+) increase in vascular endothelial cells, and this function inhibits monocyte adhesion in response to inflammatory stimuli.", "title": "Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells." }, { "docid": "7116734", "text": "Nicotinamide (Nam) phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in mammalian NAD synthesis, catalyzing nicotinamide mononucleotide (NMN) formation from Nam and 5-phosphoribosyl 1-pyrophosphate (PRPP). NAMPT has also been described as an adipocytokine visfatin with a variety of actions, although physiological significance of this protein remains unclear. It has been proposed that possible actions of visfatin are mediated through the extracellular formation of NMN. However, we did not detect NMN in mouse blood plasma, even with a highly specific and sensitive liquid chromatography/tandem mass spectrometry. Furthermore, there is no or little ATP, the activator of NAMPT, in extracellular spaces. We thus questioned whether visfatin catalyzes the in situ formation of NMN under such extracellular milieus. To address this question, we here determined K(m) values for the substrates Nam and PRPP in the NAMPT reaction without or with ATP using a recombinant human enzyme and found that 1 mM ATP dramatically decreases K(m) values for the substrates, in particular PRPP to its intracellular concentration. Consistent with the kinetic data, only when ATP is present at millimolar levels, NAMPT efficiently catalyzed the NMN formation at the intracellular concentrations of the substrates. Much lower concentrations of Nam and almost the absence of PRPP and ATP in the blood plasma suggest that NAMPT should not efficiently catalyze its reaction under the extracellular milieu. Indeed, NAMPT did not form NMN in the blood plasma. From these kinetic analyses of the enzyme and quantitative determination of its substrates, activator, and product, we conclude that visfatin does not participate in NMN formation under the extracellular milieus. Together with the absence of NMN in the blood plasma, our conclusion does not support the concept of \"NAMPT-mediated systemic NAD biosynthesis. \" Our study would advance current understanding of visfatin physiology.", "title": "Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma" }, { "docid": "2692522", "text": "Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.", "title": "Gout-associated uric acid crystals activate the NALP3 inflammasome" } ]
734
MEK inhibitors are effective treatments in RAS-driven mouse models of cancer.
[ { "docid": "4961038", "text": "Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-alpha catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-alpha mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-alpha H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan-PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography-computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.", "title": "Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers" } ]
[ { "docid": "2272614", "text": "Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, we found that erlotinib resistance was associated with reduced expression of neurofibromin, the RAS GTPase-activating protein encoded by the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signaling when neurofibromin levels were reduced. Treatment of neurofibromin-deficient lung cancers with a MAP-ERK kinase (MEK) inhibitor restored sensitivity to erlotinib. Low levels of NF1 expression were associated with primary and acquired resistance of lung adenocarcinomas to EGFR TKIs in patients. These findings identify a subgroup of patients with EGFR-mutant lung adenocarcinoma who might benefit from combination therapy with EGFR and MEK inhibitors.", "title": "Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer." }, { "docid": "85665741", "text": "5247 Constitutive ERK signaling is common in human cancer and is often the result of activating mutations of BRAF, RAS and upstream receptor tyrosine kinases. Missense BRAF kinase domain mutations are frequently observed in melanoma, colon and thyroid cancers and less frequently in lung and other cancer types. The vast majority (>90%) involve a glutamic acid for valine substitution at codon 600 (V600E), which results in elevated BRAF kinase activity. BRAF kinase domain mutations with intermediate and impaired kinase activity have also been identified, most frequently in NSCLC. We have previously reported that tumors with V600E BRAF mutation are selectively sensitive to MEK inhibition. Using the potent and selective MEK1/2 inhibitor PD0325901 (Pfizer), we examined a panel of NSCLC cell lines with mutant EGFR, KRAS, and/or low, intermediate and high-activity BRAF kinase domain mutations for MEK dependence. In all but one case, EGFR, KRAS and BRAF mutations were mutually exclusive with the exception being a cell line with concurrent NRAS and intermediate activity BRAF mutations. Consistent with our prior results, NSCLC cells with V600E BRAF mutation were exquisitely sensitive to MEK inhibition (PD0325901 IC50 of 2nM). The proliferation of cells with non-V600E mutations, including those with high (G469A), intermediate (L597V) and impaired (G466V) kinase activities, was also MEK dependent with IC50’s ranging between 2.7 and 80 nM. Inhibition of MEK in these cells resulted in downregulation of cyclin D1 and G1 growth arrest, with variable induction of apoptosis. Despite high basal ERK activity, NSCLC tumor cells with EGFR mutation were uniformly resistant to MEK inhibition (at doses of up to 500nM), despite effective and prolonged inhibition of ERK phosphorylation. Tumor cells with RAS mutation had a more variable response, with some cell lines demonstrating sensitivity, while others were completely resistant. There was no correlation between basal ERK activity and sensitivity to MEK inhibition. A strong inverse correlation between Akt activity and PD0325901 sensitivity was observed. These results suggest that MEK inhibition may be useful therapeutically in tumors with V600E and non-V600E BRAF kinase domain mutations. The results also suggest that inhibition of both MEK and Akt signaling may be required in NSCLC tumors with high basal AKT activity.", "title": "BRAF mutation predicts for MEK-dependence in non-small cell lung cancer (NSCLC)." }, { "docid": "4920376", "text": "Induction of compensatory mechanisms and ERK reactivation has limited the effectiveness of Raf and MEK inhibitors in RAS-mutant cancers. We determined that direct pharmacologic inhibition of ERK suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines and that concurrent phosphatidylinositol 3-kinase (PI3K) inhibition caused synergistic cell death. Additional combinations that enhanced ERK inhibitor action were also identified. Unexpectedly, long-term treatment of sensitive cell lines caused senescence, mediated in part by MYC degradation and p16 reactivation. Enhanced basal PI3K-AKT-mTOR signaling was associated with de novo resistance to ERK inhibitor, as were other protein kinases identified by kinome-wide siRNA screening and a genetic gain-of-function screen. Our findings reveal distinct consequences of inhibiting this kinase cascade at the level of ERK.", "title": "Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression." }, { "docid": "28651643", "text": "Activating mutations within the K-ras gene occur in a high percentage of human pancreatic carcinomas. We reported previously that the presence of oncogenic, activated K-ras in human pancreatic carcinoma cell lines did not result in constitutive activation of the extracellular signal-regulated kinases (ERK1 and ERK2). In the present study, we further characterized the ERK signaling pathway in pancreatic tumor cell lines in order to determine whether the ERK pathway is subject to a compensatory downregulation. We found that the attenuation of serum-induced ERK activation was not due to a delay in the kinetics of ERK phosphorylation. Treatment with the tyrosine phosphatase inhibitor orthovanadate increased the level of ERK phosphorylation, implicating a vanadate-sensitive tyrosine phosphatase in the negative regulation of ERK. Furthermore, expression of a dual specificity phosphatase capable of inactivating ERK known as mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2) was elevated in most of the pancreatic tumor cell lines and correlated with the presence of active MAP kinase kinase (MEK). Taken together, these results suggest that pancreatic tumor cells expressing oncogenic K-ras compensate, in part, by upregulating the expression of MKP-2 to repress the ERK signaling pathway.", "title": "Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2." }, { "docid": "7821634", "text": "Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.", "title": "Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance" }, { "docid": "9225850", "text": "Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kβ/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation.", "title": "Non-canonical PI3K-Cdc42-Pak-Mek-Erk Signaling Promotes Immune-Complex-Induced Apoptosis in Human Neutrophils" }, { "docid": "3684342", "text": "LIN28B is a RNA-binding protein regulating predominantly let-7 microRNAs with essential functions in inflammation, wound healing, embryonic stem cells, and cancer. LIN28B expression is associated with tumor initiation, progression, resistance, and poor outcome in several solid cancers, including lung cancer. However, the functional role of LIN28B, especially in non-small cell lung adenocarcinomas, remains elusive. Here, we investigated the effects of LIN28B expression on lung tumorigenesis using LIN28B transgenic overexpression in an autochthonous KRASG12V-driven mouse model. We found that LIN28B overexpression significantly increased the number of CD44+/CD326+ tumor cells, upregulated VEGF-A and miR-21 and promoted tumor angiogenesis and epithelial-to-mesenchymal transition (EMT) accompanied by enhanced AKT phosphorylation and nuclear translocation of c-MYC. Moreover, LIN28B accelerated tumor initiation and enhanced proliferation which led to a shortened overall survival. In addition, we analyzed lung adenocarcinomas of the Cancer Genome Atlas (TCGA) and found LIN28B expression in 24% of KRAS-mutated cases, which underscore the relevance of our model.", "title": "LIN28B enhanced tumorigenesis in an autochthonous KRASG12V-driven lung carcinoma mouse model" }, { "docid": "28334217", "text": "Glutaminase (GLS), which converts glutamine to glutamate, plays a key role in cancer cell metabolism, growth, and proliferation. GLS is being explored as a cancer therapeutic target, but whether GLS inhibitors affect cancer cell-autonomous growth or the host microenvironment or have off-target effects is unknown. Here, we report that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma. Compared with results in untreated animals with MYC-induced hepatocellular carcinoma, administration of the GLS-specific inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) prolonged survival without any apparent toxicities. BPTES also inhibited growth of a MYC-dependent human B cell lymphoma cell line (P493) by blocking DNA replication, leading to cell death and fragmentation. In mice harboring P493 tumor xenografts, BPTES treatment inhibited tumor cell growth; however, P493 xenografts expressing a BPTES-resistant GLS mutant (GLS-K325A) or overexpressing GLS were not affected by BPTES treatment. Moreover, a customized Vivo-Morpholino that targets human GLS mRNA markedly inhibited P493 xenograft growth without affecting mouse Gls expression. Conversely, a Vivo-Morpholino directed at mouse Gls had no antitumor activity in vivo. Collectively, our studies demonstrate that GLS is required for tumorigenesis and support small molecule and genetic inhibition of GLS as potential approaches for targeting the tumor cell-autonomous dependence on GLS for cancer therapy.", "title": "Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis." }, { "docid": "3981033", "text": "The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.", "title": "IAP antagonists induce anti-tumor immunity in multiple myeloma" }, { "docid": "32001951", "text": "Treatment of the cultured human breast-cancer cells BC-M1 with dexamethasone induced a placental-type alkaline phosphatase (ALP). Both the ALP activity and the mRNA level in the cells were increased. The induction of ALP activity by dexamethasone was time- and dose-dependent. The accumulation of ALP mRNA was inhibited by both actinomycin D and cycloheximide, indicating that its induction is a complex event and may involve other regulatory proteins. Retinoic acid showed opposing effects with dexamethasone on the expression of alkaline phosphatase. Retinoic acid (RA) and phorbol 12-myristate 13-acetate also substantially reduced the dexamethasone-induced expression of ALP. Studies on thermostability and sensitivity to various amino acid inhibitors indicated that the BC-M1 ALP is most similar to the placental form. Northern hybridization analysis also revealed that ALP mRNA transcripts in BC-M1 and term placenta are similar in size and are distinct from that of the placental-like mRNA transcript in choriocarcinoma cells. Analysis of the degradation of BC-M1 ALP mRNA showed a similar half-life of 27 h in the untreated and in dexamethasone- or RA-treated cells. These findings demonstrated that the induction of ALP in BC-M1 cells by dexamethasone is mainly due to the increase in the transcription of the ALP gene.", "title": "Regulation of the expression of alkaline phosphatase in a human breast-cancer cell line." }, { "docid": "16119973", "text": "IBD is characterized by uncontrolled immune responses in inflamed mucosa, with dominance of IL-17-producing cells and deficiency of Treg cells. The aim of this study was to explore the effect and mechanisms of RA, the ligand of RARalpha, on immune responses in human and murine colitis. Colonic biopsies from patients with UC were cultured and treated with RA as the agonist of RARalpha or LE135 as the antagonist of RARalpha. Expressions of IL-17 and FOXP3 were detected by immunohistochemistry. Murine colitis was induced by intrarectal administration with TNBS at Day 1. Mice were then i.p.-treated with RA or LE135 daily for 7 days. Cytokine levels in the cultures of mouse LPMCs were measured. Expressions of FOXP3 and IL-17 in colon tissues or MLN were detected by immunohistological analysis. Body weight and colon inflammation were evaluated. RA treatment up-regulated FOXP3 expression and down-regulated IL-17 expression in colon biopsies of patients and in colon tissues and MLN of mice with colitis compared with controls. LPMCs from RA-treated mice produced lower levels of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-17) but more regulatory cytokines (IL-10, TGF-beta) compared with that of untreated mice. LE135 showed the opposite effect of RA. Furthermore, RA ameliorated TNBS-induced colitis in a dose-dependent manner, as seen by improved body weight and colon inflammation. RA down-regulates colon inflammatory responses in patients with IBD in vitro and in murine colitis in vivo, representing a potential therapeutic approach in IBD treatment.", "title": "Article" }, { "docid": "9767444", "text": "Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.", "title": "Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden." }, { "docid": "9955779", "text": "Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/β-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.", "title": "Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer" }, { "docid": "30658796", "text": "Neoplastic cells are genetically unstable. Strategies that target pathways affecting genome instability can be exploited to disrupt tumor cell growth, potentially with limited consequences to normal cells. Chromosomal instability (CIN) is one type of genome instability characterized by mitotic defects that increase the rate of chromosome mis-segregation. CIN is frequently caused by extra centrosomes that transiently disrupt normal bipolar spindle geometry needed for accurate chromosome segregation. Tumor cells survive with extra centrosomes because of biochemical pathways that cluster centrosomes and promote chromosome segregation on bipolar spindles. Recent work shows that targeted inhibition of these pathways prevents centrosome clustering and forces chromosomes to segregate to multiple daughter cells, an event triggering apoptosis that we refer to as anaphase catastrophe. Anaphase catastrophe specifically kills tumor cells with more than 2 centrosomes. This death program can occur after genetic or pharmacologic inhibition of cyclin dependent kinase 2 (Cdk2) and is augmented by combined treatment with a microtubule inhibitor. This proapoptotic effect occurs despite the presence of ras mutations in cancer cells. Anaphase catastrophe is a previously unrecognized mechanism that can be pharmacologically induced for apoptotic death of cancer cells and is, therefore, appealing to engage for cancer therapy and prevention.", "title": "Anaphase catastrophe is a target for cancer therapy." }, { "docid": "4387494", "text": "PURPOSE Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clinical treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML. \n METHODS A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML. \n RESULTS Here we observed that the mRNA expression of KDM6B was up-regulated in AML and positively correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes. \n CONCLUSIONS In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML.", "title": "Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia" }, { "docid": "4396105", "text": "Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.", "title": "K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions" }, { "docid": "26887439", "text": "To identify cancer-specific targets, we have conducted a synthetic lethal screen using a small interfering RNA (siRNA) library targeting approximately 4,000 individual genes for enhanced killing in the DLD-1 colon carcinoma cell line that expresses an activated copy of the K-Ras oncogene. We found that siRNAs targeting baculoviral inhibitor of apoptosis repeat-containing 5 (survivin) significantly reduced the survival of activated K-Ras-transformed cells compared with its normal isogenic counterpart in which the mutant K-Ras gene had been disrupted (DKS-8). In addition, survivin siRNA induced a transient G(2)-M arrest and marked polyploidy that was associated with increased caspase-3 activation in the activated K-Ras cells. These results indicate that tumors expressing the activated K-Ras oncogene may be particularly sensitive to inhibitors of the survivin protein.", "title": "Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells." }, { "docid": "5765455", "text": "Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.", "title": "Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?" }, { "docid": "5254463", "text": "Colorectal cancer is one of the major causes of cancer-related deaths. To gain further insights into the mechanisms underlying its development, we investigated the role of Wip1 phosphatase, which is highly expressed in intestinal stem cells, in the mouse model of APC(Min)-driven polyposis. We found that Wip1 removal increased the life span of APC(Min) mice through a significant suppression of polyp formation. This protection was dependent on the p53 tumor suppressor, which plays a putative role in the regulation of apoptosis of intestinal stem cells. Activation of apoptosis in stem cells of Wip1-deficient mice, but not wild-type APC(Min) mice, increased when the Wnt pathway was constitutively activated. We propose, therefore, that the Wip1 phosphatase regulates homeostasis of intestinal stem cells. In turn, Wip1 loss suppresses APC(Min)-driven polyposis by lowering the threshold for p53-dependent apoptosis of stem cells, thus preventing their conversion into tumor-initiating stem cells.", "title": "Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine." } ]
736
MFGE8 regulates fat absorption by binding to av-Beta3 and av-Beta5 integrins.
[ { "docid": "5389095", "text": "Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.", "title": "Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids" } ]
[ { "docid": "24335068", "text": "We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.", "title": "Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein." }, { "docid": "10342807", "text": "BACKGROUND The electrical activity of the atrioventricular node (AVN) is functionally heterogeneous, but how this relates to distinct cell types and the 3-dimensional structure of the AVN is unknown. To address this, we have studied the expression of Na(V)1.5 and other Na+ channel isoforms in the AVN. \n METHODS AND RESULTS The rat AVN was identified by Masson's trichrome staining together with immunolabeling of marker proteins: connexin40, connexin43, desmoplakin, atrial natriuretic peptide, and hyperpolarization-activated and cyclic nucleotide-gated channel 4. Na+ channel expression was investigated with immunohistochemistry with isoform-specific Na+ channel antibodies. Na(V)1.1 was distributed in a similar manner to Na(V)1.5. Na(V)1.2 was not detected. Na(V)1.3 labeling was present in nerve fibers and cell bodies (but not myocytes) and was abundant in the penetrating atrioventricular (AV) bundle and the common bundle but was much less abundant in other regions. Na(V)1.5 labeling was abundant in the atrial and ventricular myocardium and the left bundle branch. Na(V)1.5 labeling was absent in the open node, penetrating AV bundle, AV ring bundle, and common bundle but present at a reduced level in the inferior nodal extension and transitional zone. Na(V)1.6 was not detected. \n CONCLUSIONS Our findings provide molecular evidence of multiple electrophysiological cell types at the AV junction. Impaired AV conduction as a result of mutations in or loss of Na(V)1.5 must be the result of impaired conduction in the AVN inputs (inferior nodal extension and transitional zone) or output (bundle branches) rather than the AVN itself (open node and penetrating AV bundle).", "title": "Localization of Na+ channel isoforms at the atrioventricular junction and atrioventricular node in the rat." }, { "docid": "39985001", "text": "We retrospectively studied the long-term (2-year) outcome of 50 consecutive patients admitted to our inpatient headache program because of chronic daily headache (CDH) associated with the overuse of analgesics, ergotamine, or both. They had been detoxified, given repetitive intravenous dihydroergotamine (IV DHE) and prophylactic medications as part of the program, and had become headache-free on this regimen. At the time of admission, 37 of the 50 patients had transformed migraine (TM), 12 had new daily persistent headache (NDPH), and 1 had chronic tension-type headache; 29 of the patients with TM, 7 of those with NDPH, and the single patient with chronic tension-type headache had coexistent migraine. Substances abused, alone or in combination, included: caffeine in 39 patients (av. 441 mg/d), acetaminophen in 32 (av. 2187 mg/d), aspirin in 24 (av. 1807 mg/d), ibuprofen in 9 (av. 1156 mg/d), narcotics in 7 (av. 10.1 mg morphine equivalents/d) and ergotamine in 11 (av. 2.3 mg/d). Twenty patients were using preventive medication at the time of admission. Follow-up evaluations were performed at 3, 6, 12, and 24 months after discharge. Forty-three patients were analyzed at 3 months. Of these, 44% had an excellent or good result and 28% a fair result; 3 were overusing analgesics. At 24 months, 39 patients were analyzed: 59% had a good or excellent result and 28% a fair result; 5 were overusing analgesics, 4 of whom were doing poorly.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Chronic daily headache: long-term prognosis following inpatient treatment with repetitive IV DHE." }, { "docid": "364522", "text": "OBJECTIVES Calcific aortic valve (AV) disease is known to be an inflammation-related process. High-mobility group box-1 (HMGB1) protein and Toll-like receptor 4 (TLR4) have been reported to participate in several inflammatory diseases. The purpose of the present study was to determine whether the HMGB1-TLR4 axis is involved in calcific AV disease, and to evaluate the effect of HMGB1, and its potential mechanisms, on the pro-osteogenic phenotype change of valvular interstitial cells (VICs). \n METHODS Expression of HMGB1 and TLR4 in human calcific AVs was evaluated using immunohistochemical staining and immunoblotting. Cultured VICs were used as an in vitro model. The VICs were stimulated with HMGB1 for analysis, with versus without TLR4 small interfering ribonucleic acid (siRNA), c-Jun N-terminal kinase mitogen-activated protein kinase (JNK MAPK), and nuclear factor kappa-B (NF-κB) inhibitors. \n RESULTS Enhanced accumulation of HMGB1 and TLR4 was observed in calcific valves. Moreover, we found that HMGB1 induced high levels of pro-inflammatory cytokine production and promoted the osteoblastic differentiation and calcification of VICs. In addition, HMGB1 induced phosphorylation of JNK MAPK and NF-κB. However, these effects were markedly suppressed by siRNA silencing of TLR4. In addition, blockade of JNK MAPK and NF-κB phosphorylation prohibited HMGB1-induced production of pro-osteogenic factors, and mineralization of VICs. \n CONCLUSIONS The HMGB1 protein may promote osteoblastic differentiation and calcification of VICs, through the TLR4-JNK-NF-κB signaling pathway.", "title": "High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells." }, { "docid": "44640124", "text": "SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.", "title": "Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins." }, { "docid": "13573143", "text": "Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.", "title": "Intestinal Cgi-58 Deficiency Reduces Postprandial Lipid Absorption" }, { "docid": "24554740", "text": "Cell cycle progression in mammalian cells is strictly regulated by both integrin-mediated adhesion to the extracellular matrix and by binding of growth factors to their receptors. This regulation is mediated by G1 phase cyclin-dependent kinases (CDKs), which are downstream of signaling pathways under the integrated control of both integrins and growth factor receptors. Recent advances demonstrate a surprisingly diverse array of integrin-dependent signals that are channeled into the regulation of the G1 phase CDKs. Regulation of cyclin D1 by the ERK pathway may provide a paradigm for understanding how cell adhesion can determine cell cycle progression.", "title": "Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways." }, { "docid": "8856690", "text": "The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP9k, and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.", "title": "Molecular Mechanisms of Vitamin D Action" }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "10669582", "text": "The protein cross-linking enzyme tissue transglutaminase binds in vitro with high affinity to fibronectin via its 42-kD gelatin-binding domain. Here we report that cell surface transglutaminase mediates adhesion and spreading of cells on the 42-kD fibronectin fragment, which lacks integrin-binding motifs. Overexpression of tissue transglutaminase increases its amount on the cell surface, enhances adhesion and spreading on fibronectin and its 42-kD fragment, enlarges focal adhesions, and amplifies adhesion-dependent phosphorylation of focal adhesion kinase. These effects are specific for tissue transglutaminase and are not shared by its functional homologue, a catalytic subunit of factor XIII. Adhesive function of tissue transglutaminase does not require its cross-linking activity but depends on its stable noncovalent association with integrins. Transglutaminase interacts directly with multiple integrins of β1 and β3 subfamilies, but not with β2 integrins. Complexes of transglutaminase with integrins are formed inside the cell during biosynthesis and accumulate on the surface and in focal adhesions. Together our results demonstrate that tissue transglutaminase mediates the interaction of integrins with fibronectin, thereby acting as an integrin-associated coreceptor to promote cell adhesion and spreading.", "title": "Tissue Transglutaminase Is an Integrin-Binding Adhesion Coreceptor for Fibronectin" }, { "docid": "8219248", "text": "A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides.", "title": "Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III." }, { "docid": "19482914", "text": "Integrin-mediated platelet adhesion and aggregation are essential for sealing injured blood vessels and preventing blood loss, and excessive platelet aggregation can initiate arterial thrombosis, causing heart attacks and stroke. To ensure that platelets aggregate only at injury sites, integrins on circulating platelets exist in a low-affinity state and shift to a high-affinity state (in a process known as integrin activation or priming) after contacting a wounded vessel. The shift is mediated through binding of the cytoskeletal protein Talin to the β subunit cytoplasmic tail. Here we show that platelets lacking the adhesion plaque protein Kindlin-3 cannot activate integrins despite normal Talin expression. As a direct consequence, Kindlin-3 deficiency results in severe bleeding and resistance to arterial thrombosis. Mechanistically, Kindlin-3 can directly bind to regions of β-integrin tails distinct from those of Talin and trigger integrin activation. We have therefore identified Kindlin-3 as a novel and essential element for platelet integrin activation in hemostasis and thrombosis.", "title": "Kindlin-3 is essential for integrin activation and platelet aggregation" }, { "docid": "20943272", "text": "ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this \"adhesive\" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.", "title": "ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin." }, { "docid": "21380348", "text": "Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.", "title": "Intracellular transport of fat-soluble vitamins A and E." }, { "docid": "11200685", "text": "Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.", "title": "Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling." }, { "docid": "5821617", "text": "Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.", "title": "Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation" }, { "docid": "5321708", "text": "Cytokinesis is the final stage in cell division. Although integrins can regulate cytokinesis, the mechanisms involved are not fully understood. In this study, we demonstrate that integrin-regulated ERK (extracellular signal-related kinase) and RSK (p90 ribosomal S6 kinase) signaling promotes successful cytokinesis. Inhibiting the activation of ERK and RSK in CHO cells by a mutation in the integrin β1 cytoplasmic tail or with pharmacological inhibitors results in the accumulation of cells with midbodies and the formation of binucleated cells. Activation of ERK and RSK signaling by the expression of constitutively active RAF1 suppresses the mutant phenotype in a RSK-dependent manner. Constitutively active RSK2 also restores cytokinesis inhibited by the mutant integrin. Importantly, the regulatory role of the RSK pathway is not specific to CHO cells. MCF-10A human mammary epithelial cells and HPNE human pancreatic ductal epithelial cells exhibit a similar dependence on RSK for successful cytokinesis. In addition, depriving mitotic MCF10A cells of integrin-mediated adhesion by incubating them in suspension suppressed ERK and RSK activation and resulted in a failure of cytokinesis. Furthermore, inhibition of RSK or integrins within the 3D context of a developing salivary gland organ explant also leads to an accumulation of epithelial cells with midbodies, suggesting a similar defect in cytokinesis. Interestingly, neither ERK nor RSK regulates cytokinesis in human fibroblasts, suggesting cell-type specificity. Taken together, our results identify the integrin-RSK signaling axis as an important regulator of cytokinesis in epithelial cells. We propose that the proper interaction of cells with their microenvironment through integrins contributes to the maintenance of genomic stability by promoting the successful completion of cytokinesis.", "title": "Integrins promote cytokinesis through the RSK signaling axis." }, { "docid": "26461066", "text": "1. Following the dermal application of the carbon-14 labelled broad spectrum antimycotic 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridone, 2-aminoethanol salt (ciclopiroxolamine, Hoe 296, Batrafen) in the form of a 1% aqueous cream to healthy human dorsal skin (penetration time: 6 h; occlusive dressing for 5 h), percutaneous absorption accounted on average for 1.3% of the dose applied. Excretion occurred via the kidney, with biological half-lives of 1.7 h. As can be seen from penetration studies of cadaverous skin, the horny layer contained the highest concentrations, with values of 2300-4500 microgram/cm3. The levels determined in the corium were still above the minimum inhibitory concentrations. These concentrations were already obtained at the first test stage (1.5 h after application) and did not change virtually at all over the longer penetration period. According to studies using histoautoradiography, ciclopirox can penetrate the skin via the epidermis and the hair follicles. When ciclopirox-14C-olamine aqueous cream was spread on the surface of fingernails, the radioactive-labelled compound penetrated right through the nail. The percutaneous absorption in dogs was higher, at 5-15% of the dose, than it was in humans. 2. After vaginal application (1 mg/kg) of ciclopirox-14C-olamine in the form of a 1% aqueous cream to bitches, between 42 and 97% of the dose (depending on the animal) was recovered in the urine and faeces, the remainder having penetrated into the tampon used to close the vagina. 3. Ciclopirox is excreted by dogs and man in the urine, primarily as a glucuronide. In humans another glucuronide with properties similar to those of the original substance was detected. Two conjugated, relatively non-polar metabolites were also present in small amounts. The metabolite patterns after oral and dermal application were similar. The binding of ciclopirox to serum proteins in humans was 96 +/- 2% in a concentration range of 0.01-11.0 microgram/ml. 4. Placental transfer was low in the rats studied. Though there was good absorption by the mother animal, the radioactivity in the foetal tissues was always lower than that of the maternal blood.", "title": "[Pharmacokinetics and biotransformation of the antimycotic drug ciclopiroxolamine in animals and man after topical and systemic administration]." }, { "docid": "28086354", "text": "Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.", "title": "Tenectin is a novel alphaPS2betaPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila." } ]
737
MICAL redox enzymes regulate actin dynamics in many cell types.
[ { "docid": "16562534", "text": "The overall size and structure of a synaptic terminal is an important determinant of its function. In a large-scale mutagenesis screen, designed to identify Drosophila mutants with abnormally structured neuromuscular junctions (NMJs), we discovered mutations in Drosophila mical, a conserved gene encoding a multi-domain protein with a N-terminal monooxygenase domain. In mical mutants, synaptic boutons do not sprout normally over the muscle surface and tend to form clusters along synaptic branches and at nerve entry sites. Consistent with high expression of MICAL in somatic muscles, immunohistochemical stainings reveal that the subcellular localization and architecture of contractile muscle filaments are dramatically disturbed in mical mutants. Instead of being integrated into a regular sarcomeric pattern, actin and myosin filaments are disorganized and accumulate beneath the plasmamembrane. Whereas contractile elements are strongly deranged, the proposed organizer of sarcomeric structure, D-Titin, is much less affected. Transgenic expression of interfering RNA molecules demonstrates that MICAL is required in muscles for the higher order arrangement of myofilaments. Ultrastructural analysis confirms that myosin-rich thick filaments enter submembranous regions and interfere with synaptic development, indicating that the disorganized myofilaments may cause the synaptic growth phenotype. As a model, we suggest that the filamentous network around synaptic boutons restrains the spreading of synaptic branches.", "title": "Drosophila MICAL regulates myofilament organization and synaptic structure" }, { "docid": "6609935", "text": "The Drosophila melanogaster MICAL protein is essential for the neuronal growth cone machinery that functions through plexin- and semaphorin-mediated axonal signaling. Drosophila MICAL is also involved in regulating myofilament organization and synaptic structures, and serves as an actin disassembly factor downstream of plexin-mediated axonal repulsion. In mammalian cells there are three known isoforms, MICAL1, MICAL2 and MICAL3, as well as the MICAL-like proteins MICAL-L1 and MICAL-L2, but little is known of their function, and information comes almost exclusively from neural cells. In this study we show that in non-neural cells human MICALs are required for normal actin organization, and all three MICALs regulate actin stress fibers. Moreover, we provide evidence that the generation of reactive oxygen species by MICAL proteins is crucial for their actin-regulatory function. However, although MICAL1 is auto-inhibited by its C-terminal coiled-coil region, MICAL2 remains constitutively active and affects stress fibers. These data suggest differential but complementary roles for MICAL1 and MICAL2 in actin microfilament regulation.", "title": "Differential regulation of actin microfilaments by human MICAL proteins." } ]
[ { "docid": "4417558", "text": "How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer. Semaphorins/collapsins were characterized in part on the basis of their ability to drastically alter actin cytoskeletal dynamics in neuronal processes, but despite considerable progress in the identification of semaphorin receptors and their signalling pathways, the molecules linking them to the precise control of cytoskeletal elements remain unknown. Recently, highly unusual proteins of the Mical family of enzymes have been found to associate with the cytoplasmic portion of plexins, which are large cell-surface semaphorin receptors, and to mediate axon guidance, synaptogenesis, dendritic pruning and other cell morphological changes. Mical enzymes perform reduction–oxidation (redox) enzymatic reactions and also contain domains found in proteins that regulate cell morphology. However, nothing is known of the role of Mical or its redox activity in mediating morphological changes. Here we report that Mical directly links semaphorins and their plexin receptors to the precise control of actin filament (F-actin) dynamics. We found that Mical is both necessary and sufficient for semaphorin–plexin-mediated F-actin reorganization in vivo. Likewise, we purified Mical protein and found that it directly binds F-actin and disassembles both individual and bundled actin filaments. We also found that Mical utilizes its redox activity to alter F-actin dynamics in vivo and in vitro, indicating a previously unknown role for specific redox signalling events in actin cytoskeletal regulation. Mical therefore is a novel F-actin-disassembly factor that provides a molecular conduit through which actin reorganization—a hallmark of cell morphological changes including axon navigation—can be precisely achieved spatiotemporally in response to semaphorins.", "title": "Mical links semaphorins to F-actin disassembly" }, { "docid": "6969753", "text": "Metastatic tumor cells that actively migrate and invade surrounding tissues rely on invadopodia to degrade extracellular matrix (ECM) barriers. Invadopodia are membrane protrusions that localize enzymes required for ECM degradation. Little is known about the formation, function, and regulation of invadopodia. Here, we show that invadopodia have two distinct aspects: (a) structural for organizing the cellular actin cytoskeleton to form membrane protrusions and (b) functional for using proteolytic enzyme(s) for ECM degradation. Small interfering RNA (siRNA) inhibition established that organization of invadopodia structure requires cortactin, whereas protease inhibitor studies identified membrane type 1 matrix metalloproteinase (MT1-MMP) as the key invadopodial enzyme responsible for gelatin matrix degradation in the breast carcinoma cell line MDA-MB-231. The inhibition of invadopodial structure assembly by cortactin depletion resulted in a block of matrix degradation due to failure of invadopodia formation. Either protease inhibition or MT1-MMP siRNA depletion moderately decreased the formation of invadopodial structures that were identified as actin-cortactin accumulations at the ventral cell membrane adherent to matrix. The invadopodia that were able to form upon MT1-MMP inhibition or depletion retained actin-cortactin accumulations but were unable to degrade matrix. Examination of cells at different time points as well as live-cell imaging revealed four distinct invadopodial stages: membrane cortactin aggregation at membranes adherent to matrix, MT1-MMP accumulation at the region of cortactin accumulation, matrix degradation at the invadopodia region, and subsequent cortactin dissociation from the area of continued MT1-MMP accumulation associated with foci of degraded matrix. Based on these results, we propose a stepwise model of invadopodia formation and function.", "title": "Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function." }, { "docid": "29073751", "text": "Rac and Rho GTPases function as critical regulators of actin cytoskeleton remodelling during cell spreading and migration. Here we demonstrate that Rac-mediated reactive oxygen species (ROS) production results in the downregulation of Rho activity. The redox-dependent decrease in Rho activity is required for Rac-induced formation of membrane ruffles and integrin-mediated cell spreading. The pathway linking generation of ROS to downregulation of Rho involves inhibition of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP) and then an increase in the tyrosine phosphorylation and activation of its target, p190Rho-GAP. Our findings define a novel mechanism for the coupling of changes in cellular redox state to the control of actin cytoskeleton rearrangements by Rho GTPases.", "title": "Redox-dependent downregulation of Rho by Rac" }, { "docid": "1539159", "text": "Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.", "title": "Lifeact: a versatile marker to visualize F-actin" }, { "docid": "2721426", "text": "RNA molecules contain a variety of chemically diverse, posttranscriptionally modified bases. The most abundant modified base found in cellular RNAs, pseudouridine (Ψ), has recently been mapped to hundreds of sites in mRNAs, many of which are dynamically regulated. Though the pseudouridine landscape has been determined in only a few cell types and growth conditions, the enzymes responsible for mRNA pseudouridylation are universally conserved, suggesting many novel pseudouridylated sites remain to be discovered. Here, we present Pseudo-seq, a technique that allows the identification of sites of pseudouridylation genome-wide with single-nucleotide resolution. In this chapter, we provide a detailed description of Pseudo-seq. We include protocols for RNA isolation from Saccharomyces cerevisiae, Pseudo-seq library preparation, and data analysis, including descriptions of processing and mapping of sequencing reads, computational identification of sites of pseudouridylation, and assignment of sites to specific pseudouridine synthases. The approach presented here is readily adaptable to any cell or tissue type from which high-quality mRNA can be isolated. Identification of novel pseudouridylation sites is an important first step in elucidating the regulation and functions of these modifications.", "title": "Pseudo-Seq: Genome-Wide Detection of Pseudouridine Modifications in RNA." }, { "docid": "3506723", "text": "The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.", "title": "Formins at the Junction." }, { "docid": "15491404", "text": "The synapse is a highly organized cellular specialization whose structure and composition are reorganized, both positively and negatively, depending on the strength of input signals. The mechanisms orchestrating these changes are not well understood. A plausible locus for the reorganization of synapse components and structure is actin, because it serves as both cytoskeleton and scaffold for synapses and exists in a dynamic equilibrium between F-actin and G-actin that is modulated bidirectionally by cellular signaling. Using a new FRET-based imaging technique to monitor F-actin/G-actin equilibrium, we show here that tetanic stimulation causes a rapid, persistent shift of actin equilibrium toward F-actin in the dendritic spines of rat hippocampal neurons. This enlarges the spines and increases postsynaptic binding capacity. In contrast, prolonged low-frequency stimulation shifts the equilibrium toward G-actin, resulting in a loss of postsynaptic actin and of structure. This bidirectional regulation of actin is actively involved in protein assembly and disassembly and provides a substrate for bidirectional synaptic plasticity.", "title": "Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity" }, { "docid": "3720107", "text": "Cadherin-mediated cell-cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell-cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell-cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell-cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell-cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.", "title": "Formin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair" }, { "docid": "17919731", "text": "Genetic information is packaged in the highly dynamic nucleoprotein structure called chromatin. Many biological processes are regulated via post-translational modifications of key proteins. Acetylation of lysine residues at the N-terminal histone tails is one of the most studied covalent modifications influencing gene regulation in eukaryotic cells. This review focuses on the role of enzymes involved in controlling both histone and non-histone proteins acetylation levels in the cell, with particular emphasis on their effects on cancer.", "title": "BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS. VOL 5. NO 3. 209^221 doi:10.1093/bfgp/ell028 Histone acetylation in gene regulation" }, { "docid": "17194716", "text": "In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.", "title": "Role of fascin in filopodial protrusion" }, { "docid": "797114", "text": "A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.", "title": "A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆" }, { "docid": "16128711", "text": "Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and β-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.", "title": "Differential regulation of adherens junction dynamics during apical-basal polarization." }, { "docid": "16736872", "text": "Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three dimensions. Here, however, we report that rapid three-dimensional (3D) dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultrathin planar illumination produced by scanned Bessel beams with super-resolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context.", "title": "Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens" }, { "docid": "23887844", "text": "Neurons and cancer cells use glucose extensively, yet the precise advantage of this adaptation remains unclear. These two seemingly disparate cell types also show an increased regulation of the apoptotic pathway, which allows for their long-term survival. Here we show that both neurons and cancer cells strictly inhibit cytochrome c-mediated apoptosis by a mechanism dependent on glucose metabolism. We report that the pro-apoptotic activity of cytochrome c is influenced by its redox state and that increases in reactive oxygen species (ROS) following an apoptotic insult lead to the oxidation and activation of cytochrome c. In healthy neurons and cancer cells, however, cytochrome c is reduced and held inactive by intracellular glutathione (GSH), generated as a result of glucose metabolism by the pentose phosphate pathway. These results uncover a striking similarity in apoptosis regulation between neurons and cancer cells and provide insight into an adaptive advantage offered by the Warburg effect for cancer cell evasion of apoptosis and for long-term neuronal survival.", "title": "Glucose Metabolism Inhibits Apoptosis in Neurons and Cancer Cells by Redox Inactivation of Cytochrome c" }, { "docid": "3831884", "text": "Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP(+) ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.", "title": "Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway" }, { "docid": "44640124", "text": "SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.", "title": "Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins." }, { "docid": "600437", "text": "VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.", "title": "Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P" }, { "docid": "23702805", "text": "Secreted semaphorins act as guidance cues in the developing nervous system and may have additional functions in mature neurons. How semaphorins are transported and secreted by neurons is poorly understood. We find that endogenous semaphorin 3A (Sema3A) displays a punctate distribution in axons and dendrites of cultured cortical neurons. GFP-Sema3A shows a similar distribution and co-localizes with secretory vesicle cargo proteins. Live-cell imaging reveals highly dynamic trafficking of GFP-Sema3A vesicles with distinct properties in axons and dendrites regarding directionality, velocity, mobility and pausing time. In axons, most GFP-Sema3A vesicles move fast without interruption, almost exclusively in the anterograde direction, while in dendrites many GFP-Sema3A vesicles are stationary and move equally frequent in both directions. Disruption of microtubules, but not of actin filaments, significantly impairs GFP-Sema3A transport. Interestingly, depolarization induces a reversible arrest of axonal transport of GFP-Sema3A vesicles but has little effect on dendritic transport. Conversely, action potential blockade using tetrodotoxin (TTX) accelerates axonal transport, but not dendritic transport. These data indicate that axons and dendrites regulate trafficking of Sema3A and probably other secretory vesicles in distinct ways, with axons specializing in fast, uninterrupted, anterograde transport. Furthermore, neuronal activity regulates secretory vesicle trafficking in axons by a depolarization-evoked trafficking arrest.", "title": "Vesicular trafficking of semaphorin 3A is activity-dependent and differs between axons and dendrites." } ]
738
MICAL redox enzymes regulate actin dynamics.
[ { "docid": "16562534", "text": "The overall size and structure of a synaptic terminal is an important determinant of its function. In a large-scale mutagenesis screen, designed to identify Drosophila mutants with abnormally structured neuromuscular junctions (NMJs), we discovered mutations in Drosophila mical, a conserved gene encoding a multi-domain protein with a N-terminal monooxygenase domain. In mical mutants, synaptic boutons do not sprout normally over the muscle surface and tend to form clusters along synaptic branches and at nerve entry sites. Consistent with high expression of MICAL in somatic muscles, immunohistochemical stainings reveal that the subcellular localization and architecture of contractile muscle filaments are dramatically disturbed in mical mutants. Instead of being integrated into a regular sarcomeric pattern, actin and myosin filaments are disorganized and accumulate beneath the plasmamembrane. Whereas contractile elements are strongly deranged, the proposed organizer of sarcomeric structure, D-Titin, is much less affected. Transgenic expression of interfering RNA molecules demonstrates that MICAL is required in muscles for the higher order arrangement of myofilaments. Ultrastructural analysis confirms that myosin-rich thick filaments enter submembranous regions and interfere with synaptic development, indicating that the disorganized myofilaments may cause the synaptic growth phenotype. As a model, we suggest that the filamentous network around synaptic boutons restrains the spreading of synaptic branches.", "title": "Drosophila MICAL regulates myofilament organization and synaptic structure" }, { "docid": "6609935", "text": "The Drosophila melanogaster MICAL protein is essential for the neuronal growth cone machinery that functions through plexin- and semaphorin-mediated axonal signaling. Drosophila MICAL is also involved in regulating myofilament organization and synaptic structures, and serves as an actin disassembly factor downstream of plexin-mediated axonal repulsion. In mammalian cells there are three known isoforms, MICAL1, MICAL2 and MICAL3, as well as the MICAL-like proteins MICAL-L1 and MICAL-L2, but little is known of their function, and information comes almost exclusively from neural cells. In this study we show that in non-neural cells human MICALs are required for normal actin organization, and all three MICALs regulate actin stress fibers. Moreover, we provide evidence that the generation of reactive oxygen species by MICAL proteins is crucial for their actin-regulatory function. However, although MICAL1 is auto-inhibited by its C-terminal coiled-coil region, MICAL2 remains constitutively active and affects stress fibers. These data suggest differential but complementary roles for MICAL1 and MICAL2 in actin microfilament regulation.", "title": "Differential regulation of actin microfilaments by human MICAL proteins." }, { "docid": "33912020", "text": "Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule interacting with CasL) and oxidized CRMP2, enabling it to form a disulfide-linked homodimer through cysteine-504. Oxidized CRMP2 then formed a transient disulfide-linked complex with TRX, which stimulated CRMP2 phosphorylation by glycogen synthase kinase-3, leading to growth cone collapse. We also reconstituted oxidation-dependent phosphorylation of CRMP2 in vitro, using a limited set of purified proteins. Our results not only clarify the importance of H2O2 and CRMP2 oxidation in Sema3A-induced growth cone collapse but also indicate an unappreciated role for TRX in linking CRMP2 oxidation to phosphorylation.", "title": "Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse." } ]
[ { "docid": "4417558", "text": "How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer. Semaphorins/collapsins were characterized in part on the basis of their ability to drastically alter actin cytoskeletal dynamics in neuronal processes, but despite considerable progress in the identification of semaphorin receptors and their signalling pathways, the molecules linking them to the precise control of cytoskeletal elements remain unknown. Recently, highly unusual proteins of the Mical family of enzymes have been found to associate with the cytoplasmic portion of plexins, which are large cell-surface semaphorin receptors, and to mediate axon guidance, synaptogenesis, dendritic pruning and other cell morphological changes. Mical enzymes perform reduction–oxidation (redox) enzymatic reactions and also contain domains found in proteins that regulate cell morphology. However, nothing is known of the role of Mical or its redox activity in mediating morphological changes. Here we report that Mical directly links semaphorins and their plexin receptors to the precise control of actin filament (F-actin) dynamics. We found that Mical is both necessary and sufficient for semaphorin–plexin-mediated F-actin reorganization in vivo. Likewise, we purified Mical protein and found that it directly binds F-actin and disassembles both individual and bundled actin filaments. We also found that Mical utilizes its redox activity to alter F-actin dynamics in vivo and in vitro, indicating a previously unknown role for specific redox signalling events in actin cytoskeletal regulation. Mical therefore is a novel F-actin-disassembly factor that provides a molecular conduit through which actin reorganization—a hallmark of cell morphological changes including axon navigation—can be precisely achieved spatiotemporally in response to semaphorins.", "title": "Mical links semaphorins to F-actin disassembly" }, { "docid": "29073751", "text": "Rac and Rho GTPases function as critical regulators of actin cytoskeleton remodelling during cell spreading and migration. Here we demonstrate that Rac-mediated reactive oxygen species (ROS) production results in the downregulation of Rho activity. The redox-dependent decrease in Rho activity is required for Rac-induced formation of membrane ruffles and integrin-mediated cell spreading. The pathway linking generation of ROS to downregulation of Rho involves inhibition of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP) and then an increase in the tyrosine phosphorylation and activation of its target, p190Rho-GAP. Our findings define a novel mechanism for the coupling of changes in cellular redox state to the control of actin cytoskeleton rearrangements by Rho GTPases.", "title": "Redox-dependent downregulation of Rho by Rac" }, { "docid": "6969753", "text": "Metastatic tumor cells that actively migrate and invade surrounding tissues rely on invadopodia to degrade extracellular matrix (ECM) barriers. Invadopodia are membrane protrusions that localize enzymes required for ECM degradation. Little is known about the formation, function, and regulation of invadopodia. Here, we show that invadopodia have two distinct aspects: (a) structural for organizing the cellular actin cytoskeleton to form membrane protrusions and (b) functional for using proteolytic enzyme(s) for ECM degradation. Small interfering RNA (siRNA) inhibition established that organization of invadopodia structure requires cortactin, whereas protease inhibitor studies identified membrane type 1 matrix metalloproteinase (MT1-MMP) as the key invadopodial enzyme responsible for gelatin matrix degradation in the breast carcinoma cell line MDA-MB-231. The inhibition of invadopodial structure assembly by cortactin depletion resulted in a block of matrix degradation due to failure of invadopodia formation. Either protease inhibition or MT1-MMP siRNA depletion moderately decreased the formation of invadopodial structures that were identified as actin-cortactin accumulations at the ventral cell membrane adherent to matrix. The invadopodia that were able to form upon MT1-MMP inhibition or depletion retained actin-cortactin accumulations but were unable to degrade matrix. Examination of cells at different time points as well as live-cell imaging revealed four distinct invadopodial stages: membrane cortactin aggregation at membranes adherent to matrix, MT1-MMP accumulation at the region of cortactin accumulation, matrix degradation at the invadopodia region, and subsequent cortactin dissociation from the area of continued MT1-MMP accumulation associated with foci of degraded matrix. Based on these results, we propose a stepwise model of invadopodia formation and function.", "title": "Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function." }, { "docid": "3506723", "text": "The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.", "title": "Formins at the Junction." }, { "docid": "15491404", "text": "The synapse is a highly organized cellular specialization whose structure and composition are reorganized, both positively and negatively, depending on the strength of input signals. The mechanisms orchestrating these changes are not well understood. A plausible locus for the reorganization of synapse components and structure is actin, because it serves as both cytoskeleton and scaffold for synapses and exists in a dynamic equilibrium between F-actin and G-actin that is modulated bidirectionally by cellular signaling. Using a new FRET-based imaging technique to monitor F-actin/G-actin equilibrium, we show here that tetanic stimulation causes a rapid, persistent shift of actin equilibrium toward F-actin in the dendritic spines of rat hippocampal neurons. This enlarges the spines and increases postsynaptic binding capacity. In contrast, prolonged low-frequency stimulation shifts the equilibrium toward G-actin, resulting in a loss of postsynaptic actin and of structure. This bidirectional regulation of actin is actively involved in protein assembly and disassembly and provides a substrate for bidirectional synaptic plasticity.", "title": "Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity" }, { "docid": "3720107", "text": "Cadherin-mediated cell-cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell-cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell-cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell-cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell-cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.", "title": "Formin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair" }, { "docid": "5700349", "text": "The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.", "title": "Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines" }, { "docid": "1539159", "text": "Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.", "title": "Lifeact: a versatile marker to visualize F-actin" }, { "docid": "797114", "text": "A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.", "title": "A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆" }, { "docid": "600437", "text": "VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.", "title": "Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P" }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "16128711", "text": "Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and β-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.", "title": "Differential regulation of adherens junction dynamics during apical-basal polarization." }, { "docid": "3831884", "text": "Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP(+) ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.", "title": "Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway" }, { "docid": "14188138", "text": "In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.", "title": "Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice" }, { "docid": "44640124", "text": "SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.", "title": "Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins." }, { "docid": "34735369", "text": "Recent advances in the field of intercellular adhesion highlight the importance of adherens junction association with the underlying actin cytoskeleton. In skin epithelial cells a dynamic feature of adherens junction formation involves filopodia, which physically project into the membrane of adjacent cells, catalyzing the clustering of adherens junction protein complexes at their tips. In turn, actin polymerization is stimulated at the cytoplasmic interface of these complexes. Although the mechanism remains unclear, the VASP/Mena family of proteins seems to be involved in organizing actin polymerization at these sites. In vivo, adherens junction formation appears to rely upon filopodia in processes where epithelial sheets must be physically moved closer to form stable intercellular connections, for example, in ventral closure in embryonic development or wound healing in the postnatal animal.", "title": "Actin dynamics and cell-cell adhesion in epithelia." }, { "docid": "17194716", "text": "In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.", "title": "Role of fascin in filopodial protrusion" }, { "docid": "6784372", "text": "The mammalian CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors (CKIs) comprises three proteins--p21(Cip1/WAF1), p27(Kip1), and p57(Kip2)--that bind and inhibit cyclin-CDK complexes, which are key regulators of the cell cycle. CIP/KIP CKIs have additional independent functions in regulating transcription, apoptosis and actin cytoskeletal dynamics. These divergent functions are performed in distinct cellular compartments and contribute to the seemingly contradictory observation that the CKIs can both suppress and promote cancer. Multiple ubiquitin ligases (E3s) direct the proteasome-mediated degradation of p21, p27 and p57. This review analyzes recent data highlighting our current understanding of how distinct E3 pathways regulate subpopulations of the CKIs to control their diverse functions.", "title": "Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors." } ]
739
MT binding domain drives amyloid structure formation.
[ { "docid": "4446814", "text": "Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.", "title": "Cryo-EM structures of Tau filaments from Alzheimer’s disease brain" } ]
[ { "docid": "1684489", "text": "BACKGROUND Production of the GTP-bound form of the Ran GTPase (RanGTP) around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)-containing proteins. Several NLS proteins have been identified as spindle assembly factors, but the complexity of the process led us to search for additional proteins with distinct roles in spindle assembly. \n RESULTS We identify a chromatin-remodeling ATPase, CHD4, as a RanGTP-dependent microtubule (MT)-associated protein (MAP). MT binding occurs via the region containing an NLS and chromatin-binding domains. In Xenopus egg extracts and cultured cells, CHD4 largely dissociates from mitotic chromosomes and partially localizes to the spindle. Immunodepletion of CHD4 from egg extracts significantly reduces the quantity of MTs produced around chromatin and prevents spindle assembly. CHD4 RNAi in both HeLa and Drosophila S2 cells induces defects in spindle assembly and chromosome alignment in early mitosis, leading to chromosome missegregation. Further analysis in egg extracts and in HeLa cells reveals that CHD4 is a RanGTP-dependent MT stabilizer. Moreover, the CHD4-containing NuRD complex promotes organization of MTs into bipolar spindles in egg extracts. Importantly, this function of CHD4 is independent of chromatin remodeling. \n CONCLUSIONS Our results uncover a new role for CHD4 as a MAP required for MT stabilization and involved in generating spindle bipolarity.", "title": "CHD4 Is a RanGTP-Dependent MAP that Stabilizes Microtubules and Regulates Bipolar Spindle Formation" }, { "docid": "35531883", "text": "Nearly all members of the inwardly rectifying potassium (Kir) channel family share a cytoplasmic domain structure that serves as an unusual AP-1 clathrin adaptor-dependent Golgi export signal in one Kir channel, Kir2.1 (KCNJ2), raising the question whether Kir channels share a common Golgi export mechanism. Here we explore this idea, focusing on two structurally and functionally divergent Kir family members, Kir2.3 (KCNJ4) and Kir4.1/5.1 (KCNJ10/16), which have ∼50% amino identity. We found that Golgi export of both channels is blocked upon siRNA-mediated knockdown of the AP-1 γ subunit, as predicted for the common AP-1-dependent trafficking process. A comprehensive mutagenic analysis, guided by homology mapping in atomic resolution models of Kir2.1, Kir2.3, and Kir4.1/5.1, identified a common structure that serves as a recognition site for AP-1 binding and governs Golgi export. Larger than realized from previous studies with Kir2.1, the signal is created by a patch of residues distributed at the confluence of cytoplasmic N and C termini. The signal involves a stretch of hydrophobic residues from the C-terminal region that form a hydrophobic cleft, an adjacent cluster of basic residues within the N terminus, and a potential network of salt bridges that join the N- and C-terminal poles together. Because patch formation and AP-1 binding are dependent on proper folding of the cytoplasmic domains, the signal provides a common quality control mechanism at the Golgi for Kir channels. These findings identify a new proteostatic mechanism that couples protein folding of channels to forward trafficking in the secretory pathway.", "title": "A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels." }, { "docid": "15426878", "text": "A model for the unidirectional movement of dynein is presented based on structural observations and biochemical experimental results available. In this model, the binding affinity of dynein for microtubule is independent of its nucleotide state and the change between strong and weak microtubule-binding is determined naturally by the variation of relative orientation between the stalk and microtubule as the stalk rotates following nucleotide-state transition. Thus the enigmatic communication from the ATP binding site in the globular domain to the far MT-binding site in the tip of the stalk, which is prerequisite in conventional models, is not required. Using the present model, the previous experimental results such as the effect of ATP and ADP bindings on dissociation of dynein from microtubule, the processive movement of single-headed axonemal dyneins at saturating ATP concentration, the load dependence of step size for the processive movement of two-headed cytoplasmic dyneins and the dependence of stall force on ATP concentration can be well explained.", "title": "Model for unidirectional movement of axonemal and cytoplasmic dynein molecules" }, { "docid": "4462139", "text": "Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions. How local chromatin interactions govern higher-order folding of chromatin fibres and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes. Our analyses of wild-type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form 'globules'. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fibre compaction at centromeres and promotes prominent inter-arm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions.", "title": "Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe" }, { "docid": "2194320", "text": "The formation of beta-amyloid in the brains of individuals with Alzheimer disease requires the proteolytic cleavage of a membrane-associated precursor protein. The proteases that may be involved in this process have not yet been identified. Cathepsins are normally intracellular proteolytic enzymes associated with lysosomes; however, when sections from Alzheimer brains were stained by antisera to cathepsin D and cathepsin B, high levels of immunoreactivity were also detected in senile plaques. Extracellular sites of cathepsin immunoreactivity were not seen in control brains from age-matched individuals without neurologic disease or from patients with Huntington disease or Parkinson disease. In situ enzyme histochemistry of cathepsin D and cathepsin B on sections of neocortex using synthetic peptides and protein substrates showed that senile plaques contained the highest levels of enzymatically active cathepsin. At the ultrastructural level, cathepsin immunoreactivity in senile plaques was localized principally to lysosomal dense bodies and lipofuscin granules, which were extracellular. Similar structures were abundant in degenerating neurons of Alzheimer neocortex, and cathepsin-laden neuronal perikarya in various stages of disintegration could be seen within some senile plaques. The high levels of enzymatically competent lysosomal proteases abnormally localized in senile plaques represent evidence for candidate enzymes that may mediate the proteolytic formation of amyloid. We propose that amyloid precursor protein within senile plaques is processed by lysosomal proteases principally derived from degenerating neurons. Escape of cathepsins from the stringently regulated intracellular milieu provides a basis for an abnormal sequence of proteolytic cleavages of accumulating amyloid precursor protein.", "title": "Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain." }, { "docid": "35684881", "text": "Tumor-derived p53 mutants can transcriptionally activate a number of promoters of genes involved in cellular proliferation. For this transactivation, mutant p53 does not use the wild-type p53 DNA-binding site, suggesting a mechanism of transactivation that is independent of direct DNA binding. Here we describe our analysis of the domain requirements for mutant p53 to transactivate promoters of the human epidermal growth factor receptor (EGFR), human multiple drug resistance 1 (MDR-1) and human proliferating cell nuclear antigen (PCNA) genes. We also report the identification of a structural domain required for the `gain of function' property of mutant p53-281G. `Gain of function' is measured as the tumorigenicity (in nude mice) of 10(3) murine cells expressing mutant p53 constitutively. We have generated internal deletion mutants of p53-281G deleting conserved domains I, II, III, IV and V, individually. We have also generated one deletion mutant eliminating amino acids 100 through 300 that removes four of the five conserved domains (II–V); another mutant, p53-281G del 393-327, deletes the oligomerization and nonsequence-specific nucleic acid-binding domains of p53. For the EGFR and MDR-1 promoters, all these mutants have significantly lower transactivation ability than intact p53-281G. These deletion mutants, however, significantly activated the pCNA promoter, suggesting that the mechanism of transactivation of the PCNA promoter is different from that of the EGFR and MDR-1 promoters. When expressed constitutively in 10(3) cells, p53-281G del 393-327 was found to be defective in inducing tumor formation in nude mice although intact p53-281G was very efficient. Thus, our results suggest that structural domains near the C-terminus are needed for `gain of function'.", "title": "`Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain" }, { "docid": "36180468", "text": "Proteolytic processing of the beta-amyloid precursor proteins (APP) is required for release of the beta/A4 protein and its deposition into the amyloid plaques characteristic of aging and Alzheimer's disease. We have examined the involvement of acidic intracellular compartments in APP processing in cultured human cells. The use of acidotropic agents and inhibitors to a specific class of lysosomal protease, coupled with metabolic labeling and immunoprecipitation, revealed that APP is degraded within an acidic compartment to produce at least 12 COOH-terminal fragments. Nine likely contain the entire beta/A4 domain and, therefore, are potentially amyloidogenic. Treatment with E64 or Z-Phe-Ala-CHN2 irreversibly blocked activities of the lysosomal cysteine proteases cathepsins B and L but did not inhibit the lysosomal aspartic protease cathepsin D and did not alter the production of potentially amyloidogenic fragments. Instead, the inhibitors prevented further degradation of the fragments. Thus, large numbers of potentially amyloidogenic fragments of APP are routinely generated in an acidic compartment by noncysteine proteases and then are eliminated within lysosomes by cysteine proteases. Immunoblot and immunohistochemical analyses confirmed that chronic cysteine protease inhibition leads to accumulation of potentially amyloidogenic APP fragments in lysosomes. The results provide further support for the hypothesis that an acidic compartment may be involved in amyloid formation and begin to define the proteolytic events that may be important for amyloidogenesis.", "title": "Processing of the beta-amyloid precursor. Multiple proteases generate and degrade potentially amyloidogenic fragments." }, { "docid": "6472746", "text": "Chromosome segregation during cell division depends on stable attachment of kinetochores to spindle microtubules. Mitotic spindle formation and kinetochore-microtubule (K-MT) capture typically occur within minutes of nuclear envelope breakdown. In contrast, during meiosis I in mouse oocytes, formation of the acentrosomal bipolar spindle takes 3-4 h, and stabilization of K-MT attachments is delayed an additional 3-4 h. The mechanism responsible for this delay, which likely prevents stabilization of erroneous attachments during spindle formation, is unknown. Here we show that during meiosis I, attachments are regulated by CDK1 activity, which gradually increases through prometaphase and metaphase I. Partial reduction of CDK1 activity delayed formation of stable attachments, whereas a premature increase in CDK1 activity led to precocious formation of stable attachments and eventually lagging chromosomes at anaphase I. These results indicate that the slow increase in CDK1 activity in meiosis I acts as a timing mechanism to allow stable K-MT attachments only after bipolar spindle formation, thus preventing attachment errors.", "title": "Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I" }, { "docid": "16280642", "text": "Podosomes (also termed invadopodia in cancer cells) are actin-rich adhesion structures with matrix degradation activity that develop in various cell types. Despite their significant physiological importance, the molecular mechanism of podosome formation is largely unknown. In this study, we investigated the molecular mechanisms of podosome formation. The expression of various phosphoinositide-binding domains revealed that the podosomes in Src-transformed NIH3T3 (NIH-src) cells are enriched with PtdIns(3,4)P2, suggesting an important role of this phosphoinositide in podosome formation. Live-cell imaging analysis revealed that Src-expression stimulated podosome formation at focal adhesions of NIH3T3 cells after PtdIns(3,4)P2 accumulation. The adaptor protein Tks5/FISH, which is essential for podosome formation, was found to form a complex with Grb2 at adhesion sites in an Src-dependent manner. Further, it was found that N-WASP bound all SH3 domains of Tks5/FISH, which facilitated circular podosome formation. These results indicate that augmentation of the N-WASP-Arp2/3 signal was accomplished on the platform of Tks5/FISH-Grb2 complex at focal adhesions, which is stabilized by PtdIns(3,4)P2.", "title": "Sequential signals toward podosome formation in NIH-src cells" }, { "docid": "40383969", "text": "TGF-beta ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-beta ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.", "title": "The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding." }, { "docid": "29863668", "text": "The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.", "title": "P446L-importin-beta inhibits nuclear envelope assembly by sequestering nuclear envelope assembly factors to the microtubules." }, { "docid": "4398832", "text": "The most conspicuous event in the cell cycle is the alignment of chromosomes in metaphase. Chromosome alignment fosters faithful segregation through the formation of bi-oriented attachments of kinetochores to spindle microtubules. Notably, numerous kinetochore-microtubule (k-MT) attachment errors are present in early mitosis (prometaphase), and the persistence of those errors is the leading cause of chromosome mis-segregation in aneuploid human tumour cells that continually mis-segregate whole chromosomes and display chromosomal instability. How robust error correction is achieved in prometaphase to ensure error-free mitosis remains unknown. Here we show that k-MT attachments in prometaphase cells are considerably less stable than in metaphase cells. The switch to more stable k-MT attachments in metaphase requires the proteasome-dependent destruction of cyclin A in prometaphase. Persistent cyclin A expression prevents k-MT stabilization even in cells with aligned chromosomes. By contrast, k-MTs are prematurely stabilized in cyclin-A-deficient cells. Consequently, cells lacking cyclin A display higher rates of chromosome mis-segregation. Thus, the stability of k-MT attachments increases decisively in a coordinated fashion among all chromosomes as cells transit from prometaphase to metaphase. Cyclin A creates a cellular environment that promotes microtubule detachment from kinetochores in prometaphase to ensure efficient error correction and faithful chromosome segregation.", "title": "Cyclin A Regulates Kinetochore-Microtubules to Promote Faithful Chromosome Segregation" }, { "docid": "14205246", "text": "The spindle apparatus is a microtubule (MT)-based machinery that attaches to and segregates the chromosomes during mitosis and meiosis. Self-organization of the spindle around chromatin involves the assembly of MTs, their attachment to the chromosomes, and their organization into a bipolar array. One regulator of spindle self-organization is RanGTP. RanGTP is generated at chromatin and activates a set of soluble, Ran-regulated spindle factors such as TPX2, NuMA, and NuSAP . How the spindle factors direct and attach MTs to the chromosomes are key open questions. Nucleolar and Spindle-Associated Protein (NuSAP) was recently identified as an essential MT-stabilizing and bundling protein that is enriched at the central part of the spindle . Here, we show by biochemical reconstitution that NuSAP efficiently adsorbs to isolated chromatin and DNA and that it can directly produce and retain high concentrations of MTs in the immediate vicinity of chromatin or DNA. Moreover, our data reveal that NuSAP-chromatin interaction is subject to Ran regulation and can be suppressed by Importin alpha (Impalpha) and Imp7. We propose that the presence of MT binding agents such as NuSAP, which can be directly immobilized on chromatin, are critical for targeting MT production to vertebrate chromosomes during spindle self-organization.", "title": "A Role for NuSAP in Linking Microtubules to Mitotic Chromosomes" }, { "docid": "4429388", "text": "The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.", "title": "ESCRT-III recognition by VPS4 ATPases" }, { "docid": "16242975", "text": "In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.", "title": "A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs" }, { "docid": "22495397", "text": "The Tat protein of human immunodeficiency virus type 1 (HIV-1) plays a key role as inducer of viral gene expression. We report that Tat function can be potently inhibited in human microglial cells by the recently described nuclear receptor cofactor chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (CTIP2). Overexpression of CTIP2 leads to repression of HIV-1 replication, as a result of inhibition of Tat-mediated transactivation. In contrast, the related CTIP1 was unable to affect Tat function and viral replication. Using confocal microscopy to visualize Tat subcellular distribution in the presence of the CTIPs, we found that overexpression of CTIP2, and not of CTIP1, leads to disruption of Tat nuclear localization and recruitment of Tat within CTIP2-induced nuclear ball-like structures. In addition, our studies demonstrate that CTIP2 colocalizes and associates with the heterochromatin-associated protein HP1alpha. The CTIP2 protein harbors two Tat and HP1 interaction interfaces, the 145-434 and the 717-813 domains. CTIP2 and HP1alpha associate with Tat to form a three-protein complex in which the 145-434 CTIP2 domain interacts with the N-terminal region of Tat, while the 717-813 domain binds to HP1. The importance of this Tat binding interface and of Tat subnuclear relocation was confirmed by analysis of CTIP2 deletion mutants. Our findings suggest that inhibition of HIV-1 expression by CTIP2 correlates with recruitment of Tat within CTIP2-induced structures and relocalization within inactive regions of the chromatin via formation of the Tat-CTIP2-HP1alpha complex. These data highlight a new mechanism of Tat inactivation through subnuclear relocalization that may ultimately lead to inhibition of viral pathogenesis.", "title": "Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells." }, { "docid": "47240151", "text": "BACKGROUND Steroidogenic acute regulatory (StAR) protein related lipid transfer (START) domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease. PRINCIPAL FINDINGS We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains. SIGNIFICANCE Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.", "title": "Comparative Structural Analysis of Lipid Binding START Domains" }, { "docid": "8087082", "text": "The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division.", "title": "A Microtubule Interactome: Complexes with Roles in Cell Cycle and Mitosis" }, { "docid": "17518195", "text": "Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin.", "title": "The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling" }, { "docid": "2617858", "text": "Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.", "title": "Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin" } ]
740
MUC1-C activates the NF-κB p65 signaling pathway by interacting with IκB kinase ß.
[ { "docid": "23078022", "text": "Nuclear factor-κB (NF-κB) is constitutively activated in diverse human malignancies by mechanisms that are not understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and, similarly to NF-κB, blocks apoptosis and induces transformation. This study demonstrates that overexpression of MUC1 in human carcinoma cells is associated with constitutive activation of NF-κB p65. We show that MUC1 interacts with the high-molecular-weight IκB kinase (IKK) complex in vivo and that the MUC1 cytoplasmic domain binds directly to IKKβ and IKKγ. Interaction of MUC1 with both IKKβ and IKKγ is necessary for IKKβ activation, resulting in phosphorylation and degradation of IκBα. Studies in non-malignant epithelial cells show that MUC1 is recruited to the TNF-R1 complex and interacts with IKKβ–IKKγ in response to TNFα stimulation. TNFα-induced recruitment of MUC1 is dependent on TRADD and TRAF2, but not the death-domain kinase RIP1. In addition, MUC1-mediated activation of IKKβ is dependent on TAK1 and TAB2. These findings indicate that MUC1 is important for physiological activation of IKKβ and that overexpression of MUC1, as found in human cancers, confers sustained induction of the IKKβ–NF-κB p65 pathway.", "title": "MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF-κB signalling" } ]
[ { "docid": "83308790", "text": "In mammals, the canonical nuclear factor κB (NF-κB) signaling pathway activated in response to infections is based on degradation of IκB inhibitors. This pathway depends on the IκB kinase (IKK), which contains two catalytic subunits, IKKα and IKKβ. IKKβ is essential for inducible IκB phosphorylation and degradation, whereas IKKα is not. Here we show that IKKα is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-κB target genes, and processing of the NF-κB2 (p100) precursor. IKKα preferentially phosphorylates NF-κB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-κB–inducing kinase (NIK). IKKα is therefore a pivotal component of a second NF-κB activation pathway based on regulated NF-κB2 processing rather than IκB degradation.", "title": "Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway" }, { "docid": "27093166", "text": "BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. \n METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. \n RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). \n CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.", "title": "Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression." }, { "docid": "39424916", "text": "Wedelolactone is a major coumarin of Eclipta prostrata, which is used for preventing liver damage. However the effects of wedelolactone on hepatic fibrosis remained unexplored. The purpose of this study was to demonstrate the anti-fibrotic effects of wedelolactone on activated human hepatic stellate cell (HSC) line LX-2 and the possible underlying mechanisms by means of MTT assay, Hoechst staining, as well as real-time quantitative PCR and western blot. The results showed that wedelolactone reduced the cellular viability of LX-2 in a time and dose-dependent manner. After treatment of wedelolactone, the expressions of collagen I and α-smooth muscle actin, two biomarkers of LX-2 activation, were remarkably decreased. The apoptosis of LX-2 cells was induced by wedelolactone accompanied with the decreasing expression of anti-apoptotic Bcl-2 and increasing expression of pro-apoptotic Bax. In addition, phosphorylated status of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was up-regulated, but not in p38. Moreover, wedelolactone significantly repressed the level of phosphorylated inhibitor of nuclear factor κB (IκB) and p65 in nucleus in spite of tumor necrosis factor-α stimulation. In conclusion, wedelolactone could significantly inhibit the activation of LX-2 cells, the underlying mechanisms of which included inducing Bcl-2 family involved apoptosis, up-regulating phosphorylated status of ERK and JNK expressions, and inhibiting nuclear factor-κB (NF-κB) mediated activity. Wedelolactone might present as a useful tool for the prevention and treatment of hepatic fibrosis.", "title": "Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2." }, { "docid": "23737024", "text": "Two studies were performed to investigate the effects of an acute bout of physical exercise on the nuclear protein kappaB (NF-kappaB) signaling pathway in rat skeletal muscle. In Study 1, a group of rats (n=6) was run on the treadmill at 25 m/min, 5% grade, for 1 h or until exhaustion (Ex), and compared with a second group (n=6) injected with two doses of pyrrolidine dithiocarbamate (PDTC, 100 mg/kg, i.p.) 24 and 1 h prior to the acute exercise bout. Three additional groups of rats (n=6) were injected with either 8 mg/kg (i.p.) of lipopolysaccharide (LPS), 1 mmol/kg (i.p.) t-butylhydroperoxide (tBHP), or saline (C) and killed at resting condition. Ex rats showed higher levels of NF-kappaB binding and P50 protein content in muscle nuclear extracts compared with C rats. Cytosolic IkappaBalpha and IkappaB kinase (IKK) contents were decreased, whereas phospho-IkappaBalpha and phospho-IKK contents were increased, comparing Ex vs. C. The exercise-induced activation of NF-kappaB signaling cascade was partially abolished by PDTC treatment. LPS, but not tBHP, treatment mimicked and exaggerated the effects observed in Ex rats. In Study 2, the time course of exercise-induced NF-kappaB activation was examined. Highest levels of NF-kappaB binding were observed at 2 h postexercise. Decreased cytosolic IkappaBalpha and increased phosphor-IkappaBalpha content were found 0-1 h postexercise whereas P65 reached peak levels at 2-4 h. These data suggest that the NF-kappaB signaling pathway can be activated in a redox-sensitive manner during muscular contraction, presumably due to increased oxidant production. The cascade of intracellular events may be the overture to elevated gene expression of manganese superoxide dismutase reported earlier (Pfluegers Arch. 442, 426-434, 2001).", "title": "Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle." }, { "docid": "41913714", "text": "Digitoxin and structurally related cardiac glycoside drugs potently block activation of the TNF-α/NF-κB signaling pathway. We have hypothesized that the mechanism might be discovered by searching systematically for selective inhibitory action through the entire pathway. We report that the common action of these drugs is to block the TNF-α-dependent binding of TNF receptor 1 to TNF receptor-associated death domain. This drug action can be observed with native cells, such as HeLa, and reconstituted systems prepared in HEK293 cells. All other antiinflammatory effects of digitoxin on NF-κB and c-Jun N-terminal kinase pathways appear to follow from the blockade of this initial upstream signaling event.", "title": "Cardiac glycosides inhibit TNF-α/NF-κB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor" }, { "docid": "9956893", "text": "OBJECTIVE Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. \n METHODS Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. \n RESULTS AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. \n CONCLUSIONS In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.", "title": "The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes" }, { "docid": "364522", "text": "OBJECTIVES Calcific aortic valve (AV) disease is known to be an inflammation-related process. High-mobility group box-1 (HMGB1) protein and Toll-like receptor 4 (TLR4) have been reported to participate in several inflammatory diseases. The purpose of the present study was to determine whether the HMGB1-TLR4 axis is involved in calcific AV disease, and to evaluate the effect of HMGB1, and its potential mechanisms, on the pro-osteogenic phenotype change of valvular interstitial cells (VICs). \n METHODS Expression of HMGB1 and TLR4 in human calcific AVs was evaluated using immunohistochemical staining and immunoblotting. Cultured VICs were used as an in vitro model. The VICs were stimulated with HMGB1 for analysis, with versus without TLR4 small interfering ribonucleic acid (siRNA), c-Jun N-terminal kinase mitogen-activated protein kinase (JNK MAPK), and nuclear factor kappa-B (NF-κB) inhibitors. \n RESULTS Enhanced accumulation of HMGB1 and TLR4 was observed in calcific valves. Moreover, we found that HMGB1 induced high levels of pro-inflammatory cytokine production and promoted the osteoblastic differentiation and calcification of VICs. In addition, HMGB1 induced phosphorylation of JNK MAPK and NF-κB. However, these effects were markedly suppressed by siRNA silencing of TLR4. In addition, blockade of JNK MAPK and NF-κB phosphorylation prohibited HMGB1-induced production of pro-osteogenic factors, and mineralization of VICs. \n CONCLUSIONS The HMGB1 protein may promote osteoblastic differentiation and calcification of VICs, through the TLR4-JNK-NF-κB signaling pathway.", "title": "High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells." }, { "docid": "18956141", "text": "Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.", "title": "NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions" }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "6690087", "text": "We addressed the regulatory function of mammalian target of rapamycin (mTOR) in the mechanism of thrombin-induced ICAM-1 gene expression in endothelial cells. Pretreatment of HUVECs with rapamycin, an inhibitor of mTOR, augmented thrombin-induced ICAM-1 expression. Inhibition of mTOR by this approach promoted whereas over-expression of mTOR inhibited thrombin-induced transcriptional activity of NF-kappaB, an essential regulator of ICAM-1 transcription. Analysis of the NF-kappaB signaling pathway revealed that inhibition of mTOR potentiated IkappaB kinase activation resulting in a rapid and persistent phosphorylation of IkappaBalpha on Ser32 and Ser36, a requirement for IkappaBalpha degradation. Consistent with these data, we observed a more efficient and stable nuclear localization of RelA/p65 and, subsequently, the DNA binding activity of NF-kappaB by thrombin following mTOR inhibition. These data define a novel role of mTOR in down-regulating thrombin-induced ICAM-1 expression in endothelial cells by controlling a delayed and transient activation of NF-kappaB.", "title": "Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells." }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "52873726", "text": "The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.", "title": "Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation" }, { "docid": "22210434", "text": "The kinase TAK1 is critical for innate and B cell immunity. The function of TAK1 in T cells is unclear, however. We show here that T cell–specific deletion of the gene encoding TAK1 resulted in reduced development of thymocytes, especially of regulatory T cells expressing the transcription factor Foxp3. In mature thymocytes, TAK1 was required for interleukin 7–mediated survival and T cell receptor–dependent activation of transcription factor NF-κB and the kinase Jnk. In effector T cells, TAK1 was dispensable for T cell receptor–dependent NF-κB activation and cytokine production, but was important for proliferation and activation of the kinase p38 in response to interleukins 2, 7 and 15. Thus, TAK1 is essential for the integration of T cell receptor and cytokine signals to regulate the development, survival and function of T cells.", "title": "The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function" }, { "docid": "6936141", "text": "The HIV-1 protein Nef enhances viral pathogenicity and accelerates disease progression in vivo. Nef potentiates T cell activation by an unknown mechanism, probably by optimizing the intracellular environment for HIV replication. Using a new T cell reporter system, we have found that Nef more than doubles the number of cells expressing the transcription factors NF-kappaB and NFAT after TCR stimulation. This Nef-induced priming of TCR signaling pathways occurred independently of calcium signaling and involved a very proximal step before protein kinase C activation. Engagement of the TCR by MHC-bound Ag triggers the formation of the immunological synapse by recruiting detergent-resistant membrane microdomains, termed lipid rafts. Approximately 5-10% of the total cellular pool of Nef is localized within lipid rafts. Using confocal and real-time microscopy, we found that Nef in lipid rafts was recruited into the immunological synapse within minutes after Ab engagement of the TCR/CD3 and CD28 receptors. This recruitment was dependent on the N-terminal domain of Nef encompassing its myristoylation. Nef did not increase the number of cell surface lipid rafts or immunological synapses. Recently, studies have shown a specific interaction of Nef with an active subpopulation of p21-activated kinase-2 found only in the lipid rafts. Thus, the corecruitment of Nef and key cellular partners (e.g., activated p21-activated kinase-2) into the immunological synapse may underlie the increased frequency of cells expressing transcriptionally active forms of NF-kappaB and NFAT and the resultant changes in T cell activation.", "title": "Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement." }, { "docid": "22703082", "text": "Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.", "title": "Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium" }, { "docid": "4702639", "text": "Tumour cells, with stem-like properties, are highly aggressive and often show drug resistance. Here, we reveal that integrin αvβ3 serves as a marker of breast, lung and pancreatic carcinomas with stem-like properties that are highly resistant to receptor tyrosine kinase inhibitors such as erlotinib. This was observed in vitro and in mice bearing patient-derived tumour xenografts or in clinical specimens from lung cancer patients who had progressed on erlotinib. Mechanistically, αvβ3, in the unliganded state, recruits KRAS and RalB to the tumour cell plasma membrane, leading to the activation of TBK1 and NF-κB. In fact, αvβ3 expression and the resulting KRAS–RalB–NF-κB pathway were both necessary and sufficient for tumour initiation, anchorage independence, self-renewal and erlotinib resistance. Pharmacological targeting of this pathway with bortezomib reversed both tumour stemness and erlotinib resistance. These findings not only identify αvβ3 as a marker/driver of carcinoma stemness but also reveal a therapeutic strategy to sensitize such tumours to RTK inhibition.", "title": "An integrin β3–KRAS–RalB complex drives tumour stemness and resistance to EGFR inhibition" }, { "docid": "23305884", "text": "Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.", "title": "Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation." }, { "docid": "29509926", "text": "Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.", "title": "High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling." }, { "docid": "4345315", "text": "Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.", "title": "Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3" } ]
745
MafA phosphorylation decreases its ubiquitination.
[ { "docid": "11291348", "text": "The Maf oncoproteins are b-Zip transcription factors of the AP-1 superfamily. They are involved in developmental, metabolic, and tumorigenic processes. Maf proteins are overexpressed in about 50% of human multiple myelomas. Here, we show that Maf-transforming activity is controlled by GSK-3-dependent phosphorylation and that phosphorylation by GSK-3 can increase the oncogenic activity of a protein. Using microarray analysis, we identify a gene-expression subprogram regulated by GSK-3-mediated Maf phosphorylation involved in extracellular matrix remodeling and relevant to cancer progression. We also demonstrate that GSK-3 triggers MafA sequential phosphorylation on residues S61, T57, T53, and S49, inducing its ubiquitination and degradation. Paradoxically, this phosphorylation increases MafA-transcriptional activity through the recruitment of the coactivator P/CAF. We further demonstrate that P/CAF protects MafA from ubiquitination and degradation, suggesting that, upon the release of the coactivator complex, MafA becomes polyubiquitinated and degraded to allow the response to terminate.", "title": "GSK-3-mediated phosphorylation enhances Maf-transforming activity." } ]
[ { "docid": "9680193", "text": "The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.", "title": "Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation." }, { "docid": "21307488", "text": "HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.", "title": "HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation" }, { "docid": "23972114", "text": "Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.", "title": "Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth." }, { "docid": "33068577", "text": "F-box and WD repeat domain-containing 7 (FBW7), the substrate-binding subunit of E3 ubiquitin ligase SCFFBW7 (a complex of SKP1, cullin-1 and FBW7), plays important roles in various physiological and pathological processes. Although FBW7 is required for vascular development, its function in the endothelium remains to be investigated. In this study, we show that FBW7 is an important regulator of endothelial functions, including angiogenesis, leukocyte adhesion and the endothelial barrier integrity. Using RNA interference, we found that the depletion of FBW7 markedly impairs angiogenesis in vitro and in vivo. We identified the zinc finger transcription factor Krüppel-like factor 2 (KLF2) as a physiological target of FBW7 in endothelial cells. Knockdown of FBW7 expression resulted in the accumulation of endogenous KLF2 protein in endothelial cells. FBW7-mediated KLF2 destruction was shown to depend on the phosphorylation of KLF2 via glycogen synthase kinase-3 (GSK3) at two conserved phosphodegrons. Mutating these phosphodegron motifs abolished the FBW7-mediated degradation and ubiquitination of KLF2. The siRNA-mediated knockdown of FBW7 showed that KLF2 is an essential target of FBW7 in the regulation of endothelial functions. Moreover, FBW7-mediated KLF2 degradation was shown to be critical for angiogenesis in teratomas and in zebrafish development. Taken together, our study suggests a role for FBW7 in the processes of endothelial cell migration, angiogenesis, inflammation and barrier integrity, and provides novel insights into the regulation of KLF2 stability in vivo.", "title": "FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation" }, { "docid": "21562657", "text": "K3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.", "title": "Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus." }, { "docid": "23513818", "text": "The level of the Mcl-1 pro-survival protein is highly regulated, and the down-regulation of Mcl-1 expression favors the apoptotic process. Mcl-1 physically interacts with different BH3-only proteins; particularly, Noxa is involved in the modulation of Mcl-1 expression. In this study, we demonstrated that Noxa triggers the degradation of Mcl-1 at the mitochondria according to the exclusive location of Noxa at this compartment. The Noxa-induced degradation of Mcl-1 required the E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Because the USP9X deubiquitinase was recently demonstrated to be involved in Mcl-1 protein turnover by preventing its degradation through the removal of conjugated ubiquitin, we investigated whether Noxa affected the deubiquitination process. Interestingly, Noxa over-expression caused a decrease in the USP9X/Mcl-1 interaction associated with an increase in the Mcl-1 polyubiquitinated forms. Additionally, Noxa over-expression triggered an increase in the Mule/Mcl-1 interaction in parallel with the decrease in Mule/USP9X complex formation. Taken together, these modifications result in the degradation of Mcl-1 by the proteasome machinery. The implication of Noxa in the regulation of Mcl-1 proteasomal degradation adds complexity to this process, which is governed by multiple interactions.", "title": "Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction." }, { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" }, { "docid": "23634484", "text": "A predominantly nuclear RNA-binding protein, HuR translocates to the cytoplasm in response to stress and proliferative signals, where it stabilizes or modulates the translation of target mRNAs. Here, we present evidence that HuR phosphorylation at S202 by the G2-phase kinase Cdk1 influences its subcellular distribution. HuR was specifically phosphorylated in synchronous G2-phase cultures; its cytoplasmic levels increased by Cdk1-inhibitory interventions and declined in response to Cdk1-activating interventions. In keeping with the prominently cytoplasmic location of the nonphosphorylatable point mutant HuR(S202A), phospho-HuR(S202) was shown to be predominantly nuclear using a novel anti-phospho-HuR(S202) antibody. The enhanced cytoplasmic presence of unphosphorylated HuR was linked to its decreased association with 14-3-3 and to its heightened binding to target mRNAs. Our findings suggest that Cdk1 phosphorylates HuR during G2, thereby helping to retain it in the nucleus in association with 14-3-3 and hindering its post-transcriptional function and anti-apoptotic influence.", "title": "Nuclear HuR accumulation through phosphorylation by Cdk1." }, { "docid": "6268106", "text": "The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.", "title": "The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta." }, { "docid": "6422576", "text": "A growing number of cellular regulatory mechanisms are being linked to protein modification by the polypeptide ubiquitin. These include key transitions in the cell cycle, class I antigen processing, signal transduction pathways, and receptor-mediated endocytosis. In most, but not all, of these examples, ubiquitination of a protein leads to its degradation by the 26S proteasome. Following attachment of ubiquitin to a substrate and binding of the ubiquitinated protein to the proteasome, the bound substrate must be unfolded (and eventually deubiquitinated) and translocated through a narrow set of channels that leads to the proteasome interior, where the polypeptide is cleaved into short peptides. Protein ubiquitination and deubiquitination are both mediated by large enzyme families, and the proteasome itself comprises a family of related but functionally distinct particles. This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves.", "title": "Ubiquitin-dependent protein degradation." }, { "docid": "35884026", "text": "Phosphorylation of AMPA receptors is a major mechanism for the regulation of receptor function and underlies several forms of synaptic plasticity in the CNS. Although serine and threonine phosphorylation of AMPA receptors has been well studied, the potential role of tyrosine phosphorylation of AMPA receptors has not been investigated. Here, we show that the GluR2 subunit of AMPA receptors is tyrosine phosphorylated in vitro and in vivo by Src family tyrosine kinases on tyrosine 876 near its C terminus. In addition, GluR agonist treatment of cultured cortical neurons increased phosphorylation of tyrosine 876. The association with GluR2-interacting molecules GRIP1/2 was decreased by tyrosine phosphorylation of GluR2, whereas PICK1 interaction was not influenced. Moreover, mutation of tyrosine 876 eliminated AMPA- and NMDA-induced internalization of the GluR2 subunit. These data indicate that tyrosine phosphorylation of tyrosine 876 on the GluR2 C terminus by Src family tyrosine kinases is important for the regulation of AMPA receptor function and may be important for synaptic plasticity.", "title": "Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases." }, { "docid": "5927534", "text": "The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is critically required for the synaptic recruitment of AMPA-type glutamate receptors (AMPARs) during both development and plasticity. However, the underlying mechanism is unknown. Using single-particle tracking of AMPARs, we show that CaMKII activation and postsynaptic translocation induce the synaptic trapping of AMPARs diffusing in the membrane. AMPAR immobilization requires both phosphorylation of the auxiliary subunit Stargazin and its binding to PDZ domain scaffolds. It does not depend on the PDZ binding domain of GluA1 AMPAR subunit nor its phosphorylation at Ser831. Finally, CaMKII-dependent AMPAR immobilization regulates short-term plasticity. Thus, NMDA-dependent Ca(2+) influx in the post-synapse triggers a CaMKII- and Stargazin-dependent decrease in AMPAR diffusional exchange at synapses that controls synaptic function.", "title": "CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin" }, { "docid": "8698857", "text": "TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.", "title": "The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation" }, { "docid": "23974474", "text": "AMP-activated protein kinase (AMPK) is an energy-sensing enzyme whose activity is inhibited in settings of insulin resistance. Exposure to a high glucose concentration has recently been shown to increase phosphorylation of AMPK at Ser(485/491) of its α1/α2 subunit; however, the mechanism by which it does so is not known. Diacylglycerol (DAG), which is also increased in muscle exposed to high glucose, activates a number of signaling molecules including protein kinase (PK)C and PKD1. We sought to determine whether PKC or PKD1 is involved in inhibition of AMPK by causing Ser(485/491) phosphorylation in skeletal muscle cells. C2C12 myotubes were treated with the PKC/D1 activator phorbol 12-myristate 13-acetate (PMA), which acts as a DAG mimetic. This caused dose- and time-dependent increases in AMPK Ser(485/491) phosphorylation, which was associated with a ∼60% decrease in AMPKα2 activity. Expression of a phosphodefective AMPKα2 mutant (S491A) prevented the PMA-induced reduction in AMPK activity. Serine phosphorylation and inhibition of AMPK activity were partially prevented by the broad PKC inhibitor Gö6983 and fully prevented by the specific PKD1 inhibitor CRT0066101. Genetic knockdown of PKD1 also prevented Ser(485/491) phosphorylation of AMPK. Inhibition of previously identified kinases that phosphorylate AMPK at this site (Akt, S6K, and ERK) did not prevent these events. PMA treatment also caused impairments in insulin-signaling through Akt, which were prevented by PKD1 inhibition. Finally, recombinant PKD1 phosphorylated AMPKα2 at Ser(491) in cell-free conditions. These results identify PKD1 as a novel upstream kinase of AMPKα2 Ser(491) that plays a negative role in insulin signaling in muscle cells.", "title": "PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells." }, { "docid": "4389394", "text": "The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.", "title": "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization" }, { "docid": "38477436", "text": "Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction.", "title": "Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum." }, { "docid": "13277623", "text": "FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCFFBW7 degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.", "title": "FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation" }, { "docid": "14198646", "text": "Obesity and type 2 diabetes are associated with increased lipogenesis in the liver. This results in fat accumulation in hepatocytes, a condition known as hepatic steatosis, which is a form of nonalcoholic fatty liver disease (NAFLD), the most common cause of liver dysfunction in the United States. Carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, has emerged as a major player in the development of hepatic steatosis in mice. However, the molecular mechanisms enhancing its transcriptional activity remain largely unknown. In this study, we have identified the histone acetyltransferase (HAT) coactivator p300 and serine/threonine kinase salt-inducible kinase 2 (SIK2) as key upstream regulators of ChREBP activity. In cultured mouse hepatocytes, we showed that glucose-activated p300 acetylated ChREBP on Lys672 and increased its transcriptional activity by enhancing its recruitment to its target gene promoters. SIK2 inhibited p300 HAT activity by direct phosphorylation on Ser89, which in turn decreased ChREBP-mediated lipogenesis in hepatocytes and mice overexpressing SIK2. Moreover, both liver-specific SIK2 knockdown and p300 overexpression resulted in hepatic steatosis, insulin resistance, and inflammation, phenotypes reversed by SIK2/p300 co-overexpression. Finally, in mouse models of type 2 diabetes and obesity, low SIK2 activity was associated with increased p300 HAT activity, ChREBP hyperacetylation, and hepatic steatosis. Our findings suggest that inhibition of hepatic p300 activity may be beneficial for treating hepatic steatosis in obesity and type 2 diabetes and identify SIK2 activators and specific p300 inhibitors as potential targets for pharmaceutical intervention.", "title": "Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." } ]
746
MafA phosphorylation enhances its ubiquitination.
[ { "docid": "11291348", "text": "The Maf oncoproteins are b-Zip transcription factors of the AP-1 superfamily. They are involved in developmental, metabolic, and tumorigenic processes. Maf proteins are overexpressed in about 50% of human multiple myelomas. Here, we show that Maf-transforming activity is controlled by GSK-3-dependent phosphorylation and that phosphorylation by GSK-3 can increase the oncogenic activity of a protein. Using microarray analysis, we identify a gene-expression subprogram regulated by GSK-3-mediated Maf phosphorylation involved in extracellular matrix remodeling and relevant to cancer progression. We also demonstrate that GSK-3 triggers MafA sequential phosphorylation on residues S61, T57, T53, and S49, inducing its ubiquitination and degradation. Paradoxically, this phosphorylation increases MafA-transcriptional activity through the recruitment of the coactivator P/CAF. We further demonstrate that P/CAF protects MafA from ubiquitination and degradation, suggesting that, upon the release of the coactivator complex, MafA becomes polyubiquitinated and degraded to allow the response to terminate.", "title": "GSK-3-mediated phosphorylation enhances Maf-transforming activity." } ]
[ { "docid": "21307488", "text": "HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.", "title": "HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation" }, { "docid": "23972114", "text": "Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.", "title": "Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth." }, { "docid": "9680193", "text": "The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.", "title": "Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation." }, { "docid": "33068577", "text": "F-box and WD repeat domain-containing 7 (FBW7), the substrate-binding subunit of E3 ubiquitin ligase SCFFBW7 (a complex of SKP1, cullin-1 and FBW7), plays important roles in various physiological and pathological processes. Although FBW7 is required for vascular development, its function in the endothelium remains to be investigated. In this study, we show that FBW7 is an important regulator of endothelial functions, including angiogenesis, leukocyte adhesion and the endothelial barrier integrity. Using RNA interference, we found that the depletion of FBW7 markedly impairs angiogenesis in vitro and in vivo. We identified the zinc finger transcription factor Krüppel-like factor 2 (KLF2) as a physiological target of FBW7 in endothelial cells. Knockdown of FBW7 expression resulted in the accumulation of endogenous KLF2 protein in endothelial cells. FBW7-mediated KLF2 destruction was shown to depend on the phosphorylation of KLF2 via glycogen synthase kinase-3 (GSK3) at two conserved phosphodegrons. Mutating these phosphodegron motifs abolished the FBW7-mediated degradation and ubiquitination of KLF2. The siRNA-mediated knockdown of FBW7 showed that KLF2 is an essential target of FBW7 in the regulation of endothelial functions. Moreover, FBW7-mediated KLF2 degradation was shown to be critical for angiogenesis in teratomas and in zebrafish development. Taken together, our study suggests a role for FBW7 in the processes of endothelial cell migration, angiogenesis, inflammation and barrier integrity, and provides novel insights into the regulation of KLF2 stability in vivo.", "title": "FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation" }, { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" }, { "docid": "23634484", "text": "A predominantly nuclear RNA-binding protein, HuR translocates to the cytoplasm in response to stress and proliferative signals, where it stabilizes or modulates the translation of target mRNAs. Here, we present evidence that HuR phosphorylation at S202 by the G2-phase kinase Cdk1 influences its subcellular distribution. HuR was specifically phosphorylated in synchronous G2-phase cultures; its cytoplasmic levels increased by Cdk1-inhibitory interventions and declined in response to Cdk1-activating interventions. In keeping with the prominently cytoplasmic location of the nonphosphorylatable point mutant HuR(S202A), phospho-HuR(S202) was shown to be predominantly nuclear using a novel anti-phospho-HuR(S202) antibody. The enhanced cytoplasmic presence of unphosphorylated HuR was linked to its decreased association with 14-3-3 and to its heightened binding to target mRNAs. Our findings suggest that Cdk1 phosphorylates HuR during G2, thereby helping to retain it in the nucleus in association with 14-3-3 and hindering its post-transcriptional function and anti-apoptotic influence.", "title": "Nuclear HuR accumulation through phosphorylation by Cdk1." }, { "docid": "6268106", "text": "The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.", "title": "The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta." }, { "docid": "6422576", "text": "A growing number of cellular regulatory mechanisms are being linked to protein modification by the polypeptide ubiquitin. These include key transitions in the cell cycle, class I antigen processing, signal transduction pathways, and receptor-mediated endocytosis. In most, but not all, of these examples, ubiquitination of a protein leads to its degradation by the 26S proteasome. Following attachment of ubiquitin to a substrate and binding of the ubiquitinated protein to the proteasome, the bound substrate must be unfolded (and eventually deubiquitinated) and translocated through a narrow set of channels that leads to the proteasome interior, where the polypeptide is cleaved into short peptides. Protein ubiquitination and deubiquitination are both mediated by large enzyme families, and the proteasome itself comprises a family of related but functionally distinct particles. This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves.", "title": "Ubiquitin-dependent protein degradation." }, { "docid": "3113630", "text": "Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.", "title": "Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia-telangiectasia" }, { "docid": "14198646", "text": "Obesity and type 2 diabetes are associated with increased lipogenesis in the liver. This results in fat accumulation in hepatocytes, a condition known as hepatic steatosis, which is a form of nonalcoholic fatty liver disease (NAFLD), the most common cause of liver dysfunction in the United States. Carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, has emerged as a major player in the development of hepatic steatosis in mice. However, the molecular mechanisms enhancing its transcriptional activity remain largely unknown. In this study, we have identified the histone acetyltransferase (HAT) coactivator p300 and serine/threonine kinase salt-inducible kinase 2 (SIK2) as key upstream regulators of ChREBP activity. In cultured mouse hepatocytes, we showed that glucose-activated p300 acetylated ChREBP on Lys672 and increased its transcriptional activity by enhancing its recruitment to its target gene promoters. SIK2 inhibited p300 HAT activity by direct phosphorylation on Ser89, which in turn decreased ChREBP-mediated lipogenesis in hepatocytes and mice overexpressing SIK2. Moreover, both liver-specific SIK2 knockdown and p300 overexpression resulted in hepatic steatosis, insulin resistance, and inflammation, phenotypes reversed by SIK2/p300 co-overexpression. Finally, in mouse models of type 2 diabetes and obesity, low SIK2 activity was associated with increased p300 HAT activity, ChREBP hyperacetylation, and hepatic steatosis. Our findings suggest that inhibition of hepatic p300 activity may be beneficial for treating hepatic steatosis in obesity and type 2 diabetes and identify SIK2 activators and specific p300 inhibitors as potential targets for pharmaceutical intervention.", "title": "Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice." }, { "docid": "18810195", "text": "How oncogenic signalling coordinates glycolysis and anabolic biosynthesis in cancer cells remains unclear. We recently reported that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) regulates anabolic biosynthesis by controlling intracellular levels of its substrate 3-phosphoglycerate and product 2-phosphoglycerate. Here we report a novel mechanism in which Y26 phosphorylation enhances PGAM1 activation through release of inhibitory E19 that blocks the active site, stabilising cofactor 2,3-bisphosphoglycerate binding and H11 phosphorylation. We also report the crystal structure of H11-phosphorylated PGAM1 and find that phospho-H11 activates PGAM1 at least in part by promoting substrate 3-phosphoglycerate binding. Moreover, Y26 phosphorylation of PGAM1 is common in human cancer cells and contributes to regulation of 3-phosphoglycerate and 2-phosphoglycerate levels, promoting cancer cell proliferation and tumour growth. As PGAM1 is a negative transcriptional target of TP53, and is therefore commonly upregulated in human cancers, these findings suggest that Y26 phosphorylation represents an additional acute mechanism underlying phosphoglycerate mutase 1 upregulation.", "title": "Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation" }, { "docid": "21562657", "text": "K3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.", "title": "Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus." }, { "docid": "4389394", "text": "The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.", "title": "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization" }, { "docid": "20054396", "text": "In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.", "title": "Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation." }, { "docid": "38477436", "text": "Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction.", "title": "Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum." }, { "docid": "13277623", "text": "FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCFFBW7 degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.", "title": "FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation" }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." }, { "docid": "21465696", "text": "Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.", "title": "Acetylation controls Notch3 stability and function in T-cell leukemia" } ]
747
MafA ubiquitination decreases the recruitment of coavtivator P/CAF by MafA.
[ { "docid": "11291348", "text": "The Maf oncoproteins are b-Zip transcription factors of the AP-1 superfamily. They are involved in developmental, metabolic, and tumorigenic processes. Maf proteins are overexpressed in about 50% of human multiple myelomas. Here, we show that Maf-transforming activity is controlled by GSK-3-dependent phosphorylation and that phosphorylation by GSK-3 can increase the oncogenic activity of a protein. Using microarray analysis, we identify a gene-expression subprogram regulated by GSK-3-mediated Maf phosphorylation involved in extracellular matrix remodeling and relevant to cancer progression. We also demonstrate that GSK-3 triggers MafA sequential phosphorylation on residues S61, T57, T53, and S49, inducing its ubiquitination and degradation. Paradoxically, this phosphorylation increases MafA-transcriptional activity through the recruitment of the coactivator P/CAF. We further demonstrate that P/CAF protects MafA from ubiquitination and degradation, suggesting that, upon the release of the coactivator complex, MafA becomes polyubiquitinated and degraded to allow the response to terminate.", "title": "GSK-3-mediated phosphorylation enhances Maf-transforming activity." } ]
[ { "docid": "3727986", "text": "Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.", "title": "A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion" }, { "docid": "15832146", "text": "Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.", "title": "Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion" }, { "docid": "3559136", "text": "Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects.", "title": "Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors." }, { "docid": "952111", "text": "Cancer associated fibroblasts (CAFs) is one of the most crucial components of the tumor microenvironment which promotes the growth and invasion of cancer cells by various mechanisms. CAFs demonstrate a high degree of heterogeneity due to their various origins; however, many distinct morphological features and physiological functions of CAFs have been identified. It is becoming clear that the crosstalk between the cancer cells and the CAFs plays a key role in the progression of cancer, and understanding this mutual relationship would eventually enable us to treat cancer patients by targeting CAFs. In this review, we will discuss the latest findings on the role of CAFs in tumorigenesis and metastasis as well as potential therapeutic implication of CAFs.", "title": "Cancer associated fibroblasts (CAFs) in tumor microenvironment." }, { "docid": "9648896", "text": "Lung cancer is the leading cause of cancer-related mortality in humans worldwide. Moreover, the overall 5-year survival rate is only 15%. Pathologically almost 80% of all lung cancer cases are non-small cell lung cancer (NSCLC). Cancer-associated fibroblasts (CAFs) have been found to exist in a large number of NSCLCs. CAFs have been proven to promote tumor progression, metastasis and resistance to therapy through paracrine effects in most solid tumors. In the present study, firstly we isolated CAFs from patient tissues and demonstrated that they promoted cell proliferation and chemoresistance to cisplatin in the lung cancer cell lines A549 and 95D in a paracrine manner. Secondly, using ELISA and quantative PCR, we found that a higher amount of stromal cell-derived factor 1 (SDF-1) existed in the CAFs rather than that observed in the normal fibroblasts (NFs). Thirdly, we detected that SDF-1 facilitated lung cancer cell proliferation and drug resistance via the CXCR4-mediated signaling pathway which involved NF-κB and Bcl-xL. Moreover, we also confirmed that the expression level of SDF-1 in the CAFs was negatively regulated by microRNA mir-1 through microRNA overexpression and quantitative PCR. Overall, our data provide one explanation for the effects of CAFs on lung cancer cells. Meanwhile, our results also suggest CAFs as a potential therapeutic target in tumor treatment.", "title": "mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance." }, { "docid": "35993767", "text": "Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells.", "title": "Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "21562657", "text": "K3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.", "title": "Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus." }, { "docid": "8533245", "text": "The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism.", "title": "Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins." }, { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "32742683", "text": "Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.", "title": "Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts" }, { "docid": "23513818", "text": "The level of the Mcl-1 pro-survival protein is highly regulated, and the down-regulation of Mcl-1 expression favors the apoptotic process. Mcl-1 physically interacts with different BH3-only proteins; particularly, Noxa is involved in the modulation of Mcl-1 expression. In this study, we demonstrated that Noxa triggers the degradation of Mcl-1 at the mitochondria according to the exclusive location of Noxa at this compartment. The Noxa-induced degradation of Mcl-1 required the E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Because the USP9X deubiquitinase was recently demonstrated to be involved in Mcl-1 protein turnover by preventing its degradation through the removal of conjugated ubiquitin, we investigated whether Noxa affected the deubiquitination process. Interestingly, Noxa over-expression caused a decrease in the USP9X/Mcl-1 interaction associated with an increase in the Mcl-1 polyubiquitinated forms. Additionally, Noxa over-expression triggered an increase in the Mule/Mcl-1 interaction in parallel with the decrease in Mule/USP9X complex formation. Taken together, these modifications result in the degradation of Mcl-1 by the proteasome machinery. The implication of Noxa in the regulation of Mcl-1 proteasomal degradation adds complexity to this process, which is governed by multiple interactions.", "title": "Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction." }, { "docid": "12588500", "text": "Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.", "title": "Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly" }, { "docid": "9680193", "text": "The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.", "title": "Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation." }, { "docid": "10812605", "text": "Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.", "title": "Fibroblast heterogeneity in the cancer wound" }, { "docid": "5145974", "text": "STUDY QUESTION In women undergoing IVF, are urinary bisphenol A (BPA) concentrations associated with ovarian response and early reproductive outcomes, including oocyte maturation and fertilization, Day 3 embryo quality and blastocyst formation? SUMMARY ANSWER Higher urinary BPA concentrations were found to be associated with decreased ovarian response, number of fertilized oocytes and decreased blastocyst formation. WHAT IS KNOWN ALREADY Experimental animal and in vitro studies have reported associations between BPA exposure and adverse reproductive outcomes. We previously reported an association between urinary BPA and decreased ovarian response [peak serum estradiol (E(2)) and oocyte count at the time of retrieval] in women undergoing IVF; however, there are limited human data on reproductive health outcomes, such as fertilization and embryo development. STUDY DESIGN, SIZE AND DURATION Prospective preconception cohort study. One hundred and seventy-four women aged 18-45 years and undergoing 237 IVF cycles were recruited at the Massachusetts General Hospital Fertility Center, Boston, MA, USA, between November 2004 and August 2010. These women were followed until they either had a live birth or discontinued treatment. Cryothaw and donor egg cycles were not included in the analysis. \n PARTICIPANTS/MATERIALS, SETTING AND METHODS Urinary BPA concentrations were measured by online solid-phase extraction-high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Mixed effect models, poisson regression and multivariate logistic regression models were used wherever appropriate to evaluate the association between cycle-specific urinary BPA concentrations and measures of ovarian response, oocyte maturation (metaphase II), fertilization, embryo quality and cleavage rate. We accounted for correlation among multiple IVF cycles in the same woman using generalized estimating equations. \n MAIN RESULTS AND THE ROLE OF CHANCE The geometric mean (SD) for urinary BPA concentrations was 1.50 (2.22) µg/l. After adjustment for age and other potential confounders (Day 3 serum FSH, smoking, BMI), there was a significant linear dose-response association between increased urinary BPA concentrations and decreased number of oocytes (overall and mature), decreased number of normally fertilized oocytes and decreased E(2) levels (mean decreases of 40, 253 and 471 pg/ml for urinary BPA quartiles 2, 3 and 4, when compared with the lowest quartile, respectively; P-value for trend = 0.001). The mean number of oocytes and normally fertilized oocytes decreased by 24 and 27%, respectively, for the highest versus the lowest quartile of urinary BPA (trend test P < 0.001 and 0.002, respectively). Women with urinary BPA above the lowest quartile had decreased blastocyst formation (trend test P-value = 0.08). LIMITATIONS AND REASONS FOR CAUTION Potential limitations include exposure misclassification due to the very short half-life of BPA and its high variability over time; uncertainty about the generalizability of the results to the general population of women conceiving naturally and limited sample. WIDER IMPLICATIONS OF THE FINDINGS The results from this extended study, using IVF as a model to study early reproductive health outcomes in humans, indicate a negative dose-response association between urinary BPA concentrations and serum peak E(2) and oocyte yield, confirming our previous findings. In addition, we found significantly decreased metaphase II oocyte count and number of normally fertilizing oocytes and a suggestive association between BPA urinary concentrations and decreased blastocyst formation, thus indicating that BPA may alter reproductive function in susceptible women undergoing IVF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants ES009718 and ES000002 from the National Institute of Environmental Health Sciences and grant OH008578 from the National Institute for Occupational Safety and Health. None of the authors has actual or potential competing financial interests. DISCLAIMER The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.", "title": "Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF." }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "10582939", "text": "CONTEXT Antibody-based induction therapy plus calcineurin inhibitors (CNIs) reduce acute rejection rates in kidney recipients; however, opportunistic infections and toxic CNI effects remain challenging. Reportedly, mesenchymal stem cells (MSCs) have successfully treated graft-vs-host disease. \n OBJECTIVE To assess autologous MSCs as replacement of antibody induction for patients with end-stage renal disease who undergo ABO-compatible, cross-match-negative kidney transplants from a living-related donor. \n DESIGN, SETTING, AND PATIENTS One hundred fifty-nine patients were enrolled in this single-site, prospective, open-label, randomized study from February 2008-May 2009, when recruitment was completed. \n INTERVENTION Patients were inoculated with marrow-derived autologous MSC (1-2 x 10(6)/kg) at kidney reperfusion and two weeks later. Fifty-three patients received standard-dose and 52 patients received low-dose CNIs (80% of standard); 51 patients in the control group received anti-IL-2 receptor antibody plus standard-dose CNIs. \n MAIN OUTCOME MEASURES The primary measure was 1-year incidence of acute rejection and renal function (estimated glomerular filtration rate [eGFR]); the secondary measure was patient and graft survival and incidence of adverse events. \n RESULTS Patient and graft survival at 13 to 30 months was similar in all groups. After 6 months, 4 of 53 patients (7.5%) in the autologous MSC plus standard-dose CNI group (95% CI, 0.4%-14.7%; P = .04) and 4 of 52 patients (7.7%) in the low-dose group (95% CI, 0.5%-14.9%; P = .046) compared with 11 of 51 controls (21.6%; 95% CI, 10.5%-32.6%) had biopsy-confirmed acute rejection. None of the patients in either autologous MSC group had glucorticoid-resistant rejection, whereas 4 patients (7.8%) in the control group did (95% CI, 0.6%-15.1%; overall P = .02). Renal function recovered faster among both MSC groups showing increased eGFR levels during the first month after surgery than the control group. Patients receiving standard-dose CNI had a mean difference of 6.2 mL/min per 1.73 m(2) (95% CI, 0.4-11.9; P=.04) and those in the low-dose CNI of 10.0 mL/min per 1.73 m(2) (95% CI, 3.8-16.2; P=.002). Also, during the 1-year follow-up, combined analysis of MSC-treated groups revealed significantly decreased risk of opportunistic infections than the control group (hazard ratio, 0.42; 95% CI, 0.20-0.85, P=.02) CONCLUSION Among patients undergoing renal transplant, the use of autologous MSCs compared with anti-IL-2 receptor antibody induction therapy resulted in lower incidence of acute rejection, decreased risk of opportunistic infection, and better estimated renal function at 1 year. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00658073.", "title": "Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial." }, { "docid": "12225214", "text": "Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases encoded by Kaposi's sarcoma-associated herpesvirus that mediate the ubiquitination of major histocompatibility complex class I (MHC I) molecules and subsequent internalization. Here, we found that MIR1, but not MIR2, promoted down-regulation of MHC I molecules lacking lysine residues in their intracytoplasmic domain. In the presence of MIR1, these MHC I molecules were ubiquitinated, and their association with ubiquitin was sensitive to beta2-mercaptoethanol, unlike lysine-ubiquitin bonds. This form of ubiquitination required a cysteine residue in the intracytoplasmic tail of MHC I molecules. An MHC I molecule containing a single cysteine residue in an artificial glycine and alanine intracytoplasmic domain was endocytosed and degraded in the presence of MIR1. Thus, ubiquitination can occur on proteins lacking accessible lysines or an accessible N terminus.", "title": "Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase." } ]
748
MafA ubiquitination increases the recruitment of coavtivator P/CAF by MafA.
[ { "docid": "11291348", "text": "The Maf oncoproteins are b-Zip transcription factors of the AP-1 superfamily. They are involved in developmental, metabolic, and tumorigenic processes. Maf proteins are overexpressed in about 50% of human multiple myelomas. Here, we show that Maf-transforming activity is controlled by GSK-3-dependent phosphorylation and that phosphorylation by GSK-3 can increase the oncogenic activity of a protein. Using microarray analysis, we identify a gene-expression subprogram regulated by GSK-3-mediated Maf phosphorylation involved in extracellular matrix remodeling and relevant to cancer progression. We also demonstrate that GSK-3 triggers MafA sequential phosphorylation on residues S61, T57, T53, and S49, inducing its ubiquitination and degradation. Paradoxically, this phosphorylation increases MafA-transcriptional activity through the recruitment of the coactivator P/CAF. We further demonstrate that P/CAF protects MafA from ubiquitination and degradation, suggesting that, upon the release of the coactivator complex, MafA becomes polyubiquitinated and degraded to allow the response to terminate.", "title": "GSK-3-mediated phosphorylation enhances Maf-transforming activity." } ]
[ { "docid": "3727986", "text": "Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.", "title": "A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion" }, { "docid": "3559136", "text": "Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects.", "title": "Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors." }, { "docid": "15832146", "text": "Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.", "title": "Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion" }, { "docid": "35993767", "text": "Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells.", "title": "Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways." }, { "docid": "952111", "text": "Cancer associated fibroblasts (CAFs) is one of the most crucial components of the tumor microenvironment which promotes the growth and invasion of cancer cells by various mechanisms. CAFs demonstrate a high degree of heterogeneity due to their various origins; however, many distinct morphological features and physiological functions of CAFs have been identified. It is becoming clear that the crosstalk between the cancer cells and the CAFs plays a key role in the progression of cancer, and understanding this mutual relationship would eventually enable us to treat cancer patients by targeting CAFs. In this review, we will discuss the latest findings on the role of CAFs in tumorigenesis and metastasis as well as potential therapeutic implication of CAFs.", "title": "Cancer associated fibroblasts (CAFs) in tumor microenvironment." }, { "docid": "12588500", "text": "Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.", "title": "Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly" }, { "docid": "9648896", "text": "Lung cancer is the leading cause of cancer-related mortality in humans worldwide. Moreover, the overall 5-year survival rate is only 15%. Pathologically almost 80% of all lung cancer cases are non-small cell lung cancer (NSCLC). Cancer-associated fibroblasts (CAFs) have been found to exist in a large number of NSCLCs. CAFs have been proven to promote tumor progression, metastasis and resistance to therapy through paracrine effects in most solid tumors. In the present study, firstly we isolated CAFs from patient tissues and demonstrated that they promoted cell proliferation and chemoresistance to cisplatin in the lung cancer cell lines A549 and 95D in a paracrine manner. Secondly, using ELISA and quantative PCR, we found that a higher amount of stromal cell-derived factor 1 (SDF-1) existed in the CAFs rather than that observed in the normal fibroblasts (NFs). Thirdly, we detected that SDF-1 facilitated lung cancer cell proliferation and drug resistance via the CXCR4-mediated signaling pathway which involved NF-κB and Bcl-xL. Moreover, we also confirmed that the expression level of SDF-1 in the CAFs was negatively regulated by microRNA mir-1 through microRNA overexpression and quantitative PCR. Overall, our data provide one explanation for the effects of CAFs on lung cancer cells. Meanwhile, our results also suggest CAFs as a potential therapeutic target in tumor treatment.", "title": "mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance." }, { "docid": "8533245", "text": "The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism.", "title": "Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins." }, { "docid": "10557471", "text": "The aim of the present investigation was to study the effect of a dietary intervention which combined nutrition information with increased availability of vegetables, fruits and wholegrain bread. The effect of the intervention was determined by changes in the intake of vegetables, fruits, wholegrain bread and estimated nutrients. Furthermore, the study investigated whether changes in relative contribution from different food sources of folate were related to changes in the concentration of plasma total homocysteine (p-tHcy). The 5-month intervention study included 376 male recruits from the Norwegian National Guard, Vaernes (intervention group) and 105 male recruits from the Norwegian National Guard, Heggelia (control group). The study resulted in an increase in the total consumption of vegetables, fruits, berries and juice (P < 0.001) and of wholegrain bread (P < 0.001). The participants in the intervention group showed a higher increase in the intake of dietary fibre (P < 0.001) and folate (P < 0.001) compared with the control group. The relative contribution of folate intake from fruits, vegetables and wholegrain bread was higher in the intervention group compared with the control group (P < 0.001 for all). The increased intake of folate from wholegrain bread was inversely associated with a reduced concentration of p-tHcy (P = 0.017). In summary, the dietary intervention resulted in an increased intake of vegetables, fruits and wholegrain bread and a subsequent increase in folate intake from these food components. Reduction in the concentration of p-tHcy was significantly related to an increased folate intake due to an increased consumption of wholegrain bread.", "title": "Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults." }, { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "32742683", "text": "Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.", "title": "Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts" }, { "docid": "25817686", "text": "BACKGROUND Prolonged hypothermia, as occurs during solid organ transplantation, negatively influences transplantation outcome. Proteolysis is one of the deleterious events implicated in preservation injury of organ allografts. This strongly affects graft quality and hence immediate organ function. Since donor catecholamine treatment improves transplantation outcome after renal transplantation, the present study was conducted to examine the influence of dopamine (DA) pretreatment on hypothermia induced proteolysis in endothelial cells subjected to prolonged cold storage. MATERIALS AND METHODS Lactate dehydrogenase (LDH) assay, two-dimensional electrophoresis, ubiquitination analysis, intracellular calcium measurement, and Western blot analysis were performed on human umbilical vein endothelial cells (HUVEC) subjected to hypothermic preservation or not. \n RESULTS HUVEC were highly susceptible to cold storage, which was reflected by morphological changes, loss of viability, and by significant changes in cellular proteome. DA pretreatment prevented cell death during cold storage. Western blot analysis demonstrated a time dependent up-regulation of calpain 1 and 2 during cold storage, which could be prevented by addition of EDTA. DA pretreatment abolished autoproteolysis of calpain 1. Analysis of ubiquitination revealed a significant increase in ubiquitinated conjugates after cold storage. This was not prevented by DA pretreatment. Neither proteasome nor calpain inhibitors prevented cell death during cold storage. \n CONCLUSION In endothelial cells subjected to cold preservation, activation of the calpain pathway and the ubiquitin proteasome system occur. Although DA pretreatment inhibits the former, calpain inhibition did not protect endothelial cells during cold storage. DA pretreatment might influence proteolysis, but proteolysis is not the major cause of endothelial cell death.", "title": "Hypothermic preservation up-regulates calpain expression and increases ubiquitination in cultured vascular endothelial cells: influence of dopamine pretreatment." }, { "docid": "4389394", "text": "The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.", "title": "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization" }, { "docid": "10812605", "text": "Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.", "title": "Fibroblast heterogeneity in the cancer wound" }, { "docid": "38477436", "text": "Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction.", "title": "Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum." }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "23972114", "text": "Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.", "title": "Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth." }, { "docid": "12225214", "text": "Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases encoded by Kaposi's sarcoma-associated herpesvirus that mediate the ubiquitination of major histocompatibility complex class I (MHC I) molecules and subsequent internalization. Here, we found that MIR1, but not MIR2, promoted down-regulation of MHC I molecules lacking lysine residues in their intracytoplasmic domain. In the presence of MIR1, these MHC I molecules were ubiquitinated, and their association with ubiquitin was sensitive to beta2-mercaptoethanol, unlike lysine-ubiquitin bonds. This form of ubiquitination required a cysteine residue in the intracytoplasmic tail of MHC I molecules. An MHC I molecule containing a single cysteine residue in an artificial glycine and alanine intracytoplasmic domain was endocytosed and degraded in the presence of MIR1. Thus, ubiquitination can occur on proteins lacking accessible lysines or an accessible N terminus.", "title": "Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase." }, { "docid": "1727493", "text": "Advanced ovarian cancer usually spreads to the visceral adipose tissue of the omentum. However, the omental stromal cell-derived molecular determinants that modulate ovarian cancer growth have not been characterized. Here, using next-generation sequencing technology, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and tissue lysates isolated from cancer-associated adipocytes (CAAs) and fibroblasts (CAFs) than in those from ovarian cancer cells. Functional studies reveal that miR21 is transferred from CAAs or CAFs to the cancer cells, where it suppresses ovarian cancer apoptosis and confers chemoresistance by binding to its direct novel target, APAF1. These data suggest that the malignant phenotype of metastatic ovarian cancer cells can be altered by miR21 delivered by exosomes derived from neighbouring stromal cells in the omental tumour microenvironment, and that inhibiting the transfer of stromal-derived miR21 is an alternative modality in the treatment of metastatic and recurrent ovarian cancer.", "title": "Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1" } ]
749
Major antigen-induced signals from the T cell receptor and secondary signals from costimulatory receptors are required for T cell activation.
[ { "docid": "13868795", "text": "Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.", "title": "CD28 Costimulation: From Mechanism to Therapy." } ]
[ { "docid": "40608679", "text": "Sustained signaling from the T cell receptor (TCR) and costimulatory molecules is thought necessary for generating high numbers of effector T cells. Here, we show that Survivin is controlled in peripheral T cells by OX40 cosignaling via sustained PI3k and PKB activation. Survivin is induced by OX40 independent of mitotic progression in late G1, and blocking Survivin suppresses S-phase transition and division of T cells and leads to apoptosis. Moreover, Survivin expression alone is sufficient to restore proliferation and to antagonize apoptosis in costimulation-deficient T cells and can rescue T cell expansion in vivo. Survivin allows effector T cells to accumulate in large numbers, but Bcl-2 family proteins are required for T cell survival after the phase of active division. Thus, sustained Survivin expression from costimulatory signaling maintains T cell division over time and regulates the extent of clonal expansion.", "title": "Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion." }, { "docid": "28006126", "text": "CD28 is one of the most important costimulatory receptors necessary for full T lymphocyte activation. The CD28 receptor can enhance T cell antigen receptor (TCR) signals, as well as deliver independent signals. Indeed, CD28 engagement by B7 can generate TCR-independent signals leading to IkappaB kinase and NF-kappaB activation. Here we demonstrate that the TCR-independent CD28 signal leads to the selective transcription of survival (Bcl-xL) and inflammatory (IL-8 and B cell activation factor, but not proliferative (IL-2), genes, in a NF-kappaB-dependent manner. CD28-stimulated T cells actively secrete IL-8, and Bcl-xL up-regulation protects T cells from radiation-induced apoptosis. The transcription of CD28-induced genes is mediated by the specific recruitment of RelA and p52 NF-kappaB subunits to target promoters. In contrast, p50 and c-Rel, which preferentially bind NF-kappaB sites on the IL-2 gene promoter after anti-CD3 stimulation, are not involved. Thus, we identify CD28 as a key regulator of genes important for both survival and inflammation.", "title": "CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters." }, { "docid": "18231807", "text": "Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic antitumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We show that tonic CAR CD3-ζ phosphorylation, triggered by antigen-independent clustering of CAR single-chain variable fragments, can induce early exhaustion of CAR T cells that limits antitumor efficacy. Such activation is present to varying degrees in all CARs studied, except the highly effective CD19 CAR. We further determine that CD28 costimulation augments, whereas 4-1BB costimulation reduces, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the antitumor effects of CD19 CARs and for the observations that CD19 CAR T cells incorporating the 4-1BB costimulatory domain are more persistent than those incorporating CD28 in clinical trials.", "title": "4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors" }, { "docid": "18237384", "text": "Induction of tumor-specific immunity requires that dendritic cells (DCs) efficiently capture and present tumor antigens to result in the expansion and activation of tumor-specific cytotoxic T cells. The transition from antigen capture to T cell stimulation requires a maturation signal; in its absence tolerance, rather than immunity may develop. While immune complexes (ICs) are able to enhance antigen capture, they can be poor at inducing DC maturation, naive T cell activation and protective immunity. We now demonstrate that interfering with the inhibitory signal delivered by FcγRIIB on DCs converts ICs to potent maturation agents and results in T cell activation. Applying this approach to immunization with DCs pulsed ex-vivo with ICs, we have generated antigen-specific CD8+ T cells in vivo and achieved efficient protective immunity in a murine melanoma model. These data imply that ICs may normally function to maintain tolerance through the binding to inhibitory FcγRs on DCs, but they can be converted to potent immunogenic stimuli by selective engagement of activating FcγRs. This mechanism suggests a novel approach to the development of tumor vaccines.", "title": "Inducing Tumor Immunity through the Selective Engagement of Activating Fcγ Receptors on Dendritic Cells" }, { "docid": "1550937", "text": "Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.", "title": "The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells" }, { "docid": "22210434", "text": "The kinase TAK1 is critical for innate and B cell immunity. The function of TAK1 in T cells is unclear, however. We show here that T cell–specific deletion of the gene encoding TAK1 resulted in reduced development of thymocytes, especially of regulatory T cells expressing the transcription factor Foxp3. In mature thymocytes, TAK1 was required for interleukin 7–mediated survival and T cell receptor–dependent activation of transcription factor NF-κB and the kinase Jnk. In effector T cells, TAK1 was dispensable for T cell receptor–dependent NF-κB activation and cytokine production, but was important for proliferation and activation of the kinase p38 in response to interleukins 2, 7 and 15. Thus, TAK1 is essential for the integration of T cell receptor and cytokine signals to regulate the development, survival and function of T cells.", "title": "The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function" }, { "docid": "3952288", "text": "Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance.", "title": "RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla" }, { "docid": "29288582", "text": "GITR (glucocorticoid-induced TNFR family related gene) is a member of the TNFR superfamily (TNFRSF) that is expressed in different cell types, including T lymphocytes. Because of a high homology in its cytoplasmic region with other known costimulatory members of the TNFRSF, we investigated whether GITR played a costimulatory role in T lymphocyte subpopulations. Our results show that the proliferation response of CD8+ and CD4+ peripheral T cell subpopulations was potentiated when a GITR costimulus was added to an anti-CD3 stimulus. Furthermore, expression of the main activation-induced receptor (IL-2Ralpha) and production of IL-2 and IFN-gamma were increased more with a GITR costimulus than with anti-CD3 alone. GITR stimulation also enhanced anti-CD3-induced ERK phosphorylation, suggesting that GITR is involved in MAPK-pathway activation. Interestingly, CD4+CD25+ regulatory T cell (Treg cell) proliferation was triggered by the GITR costimulus; Treg cell proliferation was paralleled by the loss of the anergic phenotype and suppressor activity. Nevertheless, unstimulated GITR(-/-) CD4+CD25+ and GITR(+/+) CD4+CD25+ cells were equally able to exert suppressor activity on CD4+CD25- responder cells. These results indicate a novel function for GITR as costimulatory molecule of T cell subsets.", "title": "GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations." }, { "docid": "6123924", "text": "Immune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3(+) regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44(lo)CD62L(hi) T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7. In contrast, CD44(hi)CD62L(lo)CCR7(lo) T reg cells that populate nonlymphoid tissues do not access IL-2-prevalent regions in vivo and are insensitive to IL-2 blockade; instead, their maintenance depends on continued signaling through the co-stimulatory receptor ICOS (inducible co-stimulator). Thus, we define a fundamental homeostatic subdivision in T reg cell populations based on their localization and provide an integrated framework for understanding how T reg cell abundance and function are controlled by unique signals in different tissue environments.", "title": "CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets" }, { "docid": "4422734", "text": "The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide–I-Ek class II MHC complexes labelled with the phycobiliprotein phycoerythrin in an effort to characterize T-cell sensitivity and the requirements for forming an immunological synapse in single cells. We show that T cells expressing the CD4 antigen respond with transient calcium signalling to even a single agonist peptide–MHC ligand, and that the organization of molecules in the contact zone of the T cell and APC takes on the characteristics of an immunological synapse when only about ten agonists are present. This sensitivity is highly dependant on CD4, because blocking this molecule with antibodies renders T cells unable to detect less than about 30 ligands.", "title": "Direct observation of ligand recognition by T cells" }, { "docid": "15972906", "text": "T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward.", "title": "Functional anatomy of T cell activation and synapse formation." }, { "docid": "25479072", "text": "Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide–major histo-compatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen. These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.", "title": "Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex" }, { "docid": "36271512", "text": "INTRODUCTION • • CELLULAR AND MOLECULAR REQUIREMENTS FOR T-CELL ACTIVATION . The T-Cell Antigen Receptor Complex . . . .. . . . ..... . . . . . . . . . . . . . . . . ...... . . . T-Cell Activation by Antibodies and Leetins . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Cell Surface Structures (Accessory Molecules) Involved in Antigen Recognition and Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal Requirements/or T-Cell Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONSEQUE�CES o�, T-CELL AC::IV A TION ; . ExpressIOn of ActIVatIOn Anllgens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanisms of Signal Transmission via the TCR Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Mode of Control of Gene Expression during T-Cell Activation . . . . . . . . . . . . . . . . . . . . . . . . . . The Mechanism of Action of IL-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acquisition of Cytolytic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ANALOGIES WITH IMMATURE T CELLS .", "title": "T-cell activation." }, { "docid": "2825380", "text": "Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein–GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70–containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.", "title": "T cell receptor ligation induces the formation of dynamically regulated signaling assemblies" }, { "docid": "85326624", "text": "Summary Signals transduced by Notch receptors are indispensable for T cell specification and differentiation of αβ T lineage cells. However, the role of Notch signals during αβ versus γδ T lineage decision remains controversial. Here, we addressed this question by employing a clonal analysis of CD4 − CD8 − (DN) progenitor potential to position the divergence of αβ and γδ T cell lineages to the late DN2 to DN3 developmental stages. Accordingly, αβ and γδ precursor frequencies within these T cell progenitor subsets were determined, both in the presence and absence of Notch signaling through Delta-like 1. Notch signals were found to be critical for the DN to CD4 + CD8 + (DP) transition, irrespective of the identity (pTαβ or γδ) of the inducing T cell receptor complex, whereas γδ T cells developed from γδTCR-expressing T cell progenitors in the absence of further Notch ligand interaction. Collectively, our findings demonstrate a differential, stage-specific requirement for Notch receptor-ligand interactions in the differentiation of αβ and γδ T cells from T cell progenitors.", "title": "Stage-Specific and Differential Notch Dependency at the αβ and γδ T Lineage Bifurcation" }, { "docid": "10562341", "text": "The activation of T cells is the fundamental on switch for the adaptive immune system. Ca2+ signaling is essential for T cell activation and starts as initial, short-lived, localized Ca2+ signals. The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) forms rapidly upon T cell activation and stimulates early Ca2+ signaling. We developed a high-resolution imaging technique using multiple fluorescent Ca2+ indicator dyes to characterize these early signaling events and investigate the channels involved in NAADP-dependent Ca2+ signals. In the first seconds of activation of either primary murine T cells or human Jurkat cells with beads coated with an antibody against CD3, we detected Ca2+ signals with diameters close to the limit of detection and that were close to the activation site at the plasma membrane. In Jurkat cells in which the ryanodine receptor (RyR) was knocked down or in primary T cells from RyR1−/− mice, either these early Ca2+ signals were not detected or the number of signals was markedly reduced. Local Ca2+ signals observed within 20 ms upon microinjection of Jurkat cells with NAADP were also sensitive to RyR knockdown. In contrast, TRPM2 (transient receptor potential channel, subtype melastatin 2), a potential NAADP target channel, was not required for the formation of initial Ca2+ signals in primary T cells. Thus, through our high-resolution imaging method, we characterized early Ca2+ release events in T cells and obtained evidence for the involvement of RyR and NAADP in such signals.", "title": "Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor" }, { "docid": "2462673", "text": "Activation of self-reactive T cells and their trafficking to target tissues leads to autoimmune organ destruction. Mice lacking the co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) develop fatal autoimmunity characterized by lymphocytic infiltration into nonlymphoid tissues. Here, we demonstrate that the CD28 co-stimulatory pathway regulates the trafficking of self-reactive Ctla4(-/-) T cells to tissues. Concurrent ablation of the CD28-activated Tec family kinase ITK does not block spontaneous T cell activation but instead causes self-reactive Ctla4(-/-) T cells to accumulate in secondary lymphoid organs. Despite excessive spontaneous T cell activation and proliferation in lymphoid organs, Itk(-/-); Ctla4(-/-) mice are otherwise healthy, mount antiviral immune responses and exhibit a long lifespan. We propose that ITK specifically licenses autoreactive T cells to enter tissues to mount destructive immune responses. Notably, ITK inhibitors mimic the null mutant phenotype and also prevent pancreatic islet infiltration by diabetogenic T cells in mouse models of type 1 diabetes, highlighting their potential utility for the treatment of human autoimmune disorders.", "title": "CD28 and ITK signals regulate autoreactive T cell trafficking" }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "25353658", "text": "CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (T(FH)) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in T(FH) differentiation, as defined by common T(FH) surface markers. CXCR5(+) T(FH) cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC T(FH)) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of T(FH) and GC T(FH) populations. GC T(FH) cells are a functionally discrete subset of further polarized T(FH) cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a T(H)2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC T(FH) cell subset and SAP(-) T(FH) cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC T(FH) cells. GC T(FH) cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in T(FH) cell and GC T(FH) cell differentiation.", "title": "Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150)." }, { "docid": "12871281", "text": "The reorientation of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell enables the directional secretion of cytokines and lytic factors. By single-cell photoactivation of the T cell antigen receptor, we show that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG). MTOC reorientation was closely preceded first by production of DAG and then by recruitment of the microtubule motor protein dynein. Blocking DAG production or disrupting the localization of DAG impaired MTOC recruitment. Localized DAG accumulation was also required for cytotoxic T cell–mediated killing. Furthermore, photoactivation of DAG itself was sufficient to induce transient polarization. Our data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells.", "title": "Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells" } ]
751
Major vault protein (MVP) leads to more aggressive tumors by regulating the sorting of tumor suppressive miR-193a into extracellular vesicles (EVs).
[ { "docid": "19800147", "text": "Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.", "title": "MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression" } ]
[ { "docid": "1905095", "text": "AIMS Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. \n METHODS AND RESULTS CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. -21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. \n CONCLUSION EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation.", "title": "Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction." }, { "docid": "14768471", "text": "Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.", "title": "Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells" }, { "docid": "654735", "text": "Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis.", "title": "Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients" }, { "docid": "3588621", "text": "Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.", "title": "Extracellular vesicle isolation and characterization: toward clinical application." }, { "docid": "4435369", "text": "Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.", "title": "Extracellular vesicles for drug delivery." }, { "docid": "982650", "text": "BACKGROUND & AIMS Tumor cells survive hypoxic conditions by inducing autophagy. We investigated the roles of microRNAs (miRNAs) in regulating autophagy of hepatocellular carcinoma (HCC) cells under hypoxic conditions. \n METHODS We used gain- and loss-of-function methods to evaluate the effect of miRNAs on autophagy in human HCC cell lines (Huh7 and Hep3B) under hypoxic conditions. Autophagy was quantified by immunoblot, immunofluoresence, and transmission electron microscopy analyses, and after incubation of cells with bafilomycin A1. We used a luciferase reporter assay to confirm associations between miRNAs and their targets. We analyzed growth of HCC xenograft tumors in nude mice. \n RESULTS miR-375 was down-regulated in HCC cells and tissues; it inhibited autophagy under hypoxic conditions by suppressing the conversion of LC3I to LC3II and thereby autophagic flux. The ability of miR-375 to inhibit autophagy was independent of its ability to regulate 3'-phosphoinositide-dependent protein kinase-1-AKT-mammalian target of rapamycin signaling, but instead involved suppression of ATG7, an autophagy-associated gene. miR-375 bound directly to a predicted site in the 3' untranslated region of ATG7. Up-regulating miR-375 or down-regulating ATG7 inhibited mitochondrial autophagy of HCC cells, reduced the elimination of damaged mitochondria under hypoxia, increased release of mitochondrial apoptotic proteins, and reduced viability of HCC cells. In mice, xenograft tumors that expressed miR-375 had fewer autophagic cells, larger areas of necrosis, and grew more slowly than tumors from HCC cells that expressed lower levels of miR-375. \n CONCLUSIONS miR-375 inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice. miRNAs that inhibit autophagy of cancer cells might be developed as therapeutics.", "title": "miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions." }, { "docid": "17209919", "text": "Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV–cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia–EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies.", "title": "Ciliary Extracellular Vesicles: Txt Msg Organelles" }, { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "16532419", "text": "BACKGROUND Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. \n METHODS Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 μg/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. \n RESULTS We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. \n CONCLUSIONS Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles.", "title": "Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes" }, { "docid": "53211308", "text": "BACKGROUND microRNAs (miRNAs) stably exist in circulating blood and are encapsulated in extracellular vesicles such as exosomes. The aims of this study were to identify which exosomal miRNAs are highly produced from epithelial ovarian cancer (EOC) cells, to analyze whether serum miRNA can be used to discriminate patients with EOC from healthy volunteers, and to investigate the functional role of exosomal miRNAs in ovarian cancer progression. \n METHODS Exosomes were collected from the culture media of serous ovarian cancer cell lines, namely TYK-nu and HeyA8 cells. An exosomal miRNA microarray revealed that several miRNAs including miR-99a-5p were specifically elevated in EOC-derived exosomes. Expression levels of serum miR-99a-5p in 62 patients with EOC, 26 patients with benign ovarian tumors, and 20 healthy volunteers were determined by miRNA quantitative reverse transcription-polymerase chain reaction. To investigate the role of exosomal miR-99a-5p in peritoneal dissemination, neighboring human peritoneal mesothelial cells (HPMCs) were treated with EOC-derived exosomes and then expression levels of miR-99a-5p were examined. Furthermore, mimics of miR-99a-5p were transfected into HPMCs and the effect of miR-99a-5p on cancer invasion was analyzed using a 3D culture model. Proteomic analysis with the tandem mass tag method was performed on HPMCs transfected with miR-99a-5p and then potential target genes of miR-99a-5p were examined. \n RESULTS The serum miR-99a-5p levels were significantly increased in patients with EOC, compared with those in benign tumor patients and healthy volunteers (1.7-fold and 2.8-fold, respectively). A receiver operating characteristic curve analysis showed with a cut-off of 1.41 showed sensitivity and specificity of 0.85 and 0.75, respectively, for detecting EOC (area under the curve = 0.88). Serum miR-99a-5p expression levels were significantly decreased after EOC surgeries (1.8 to 1.3, p = 0.002), indicating that miR-99a-5p reflects tumor burden. Treatment with EOC-derived exosomes significantly increased miR-99a-5p expression in HPMCs. HPMCs transfected with miR-99a-5p promoted ovarian cancer invasion and exhibited increased expression levels of fibronectin and vitronectin. \n CONCLUSIONS Serum miR-99a-5p is significantly elevated in ovarian cancer patients. Exosomal miR-99a-5p from EOC cells promotes cell invasion by affecting HPMCs through fibronectin and vitronectin upregulation and may serve as a target for inhibiting ovarian cancer progression.", "title": "Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells" }, { "docid": "19358586", "text": "The myc oncogene is overexpressed in almost half of all breast and ovarian cancers, but attempts at therapeutic interventions against myc have proven to be challenging. Myc regulates multiple biological processes, including the cell cycle, and as such is associated with cell proliferation and tumor progression. We identified a protein signature of high myc, low p27 and high phospho-Rb significantly correlated with poor patient survival in breast and ovarian cancers. Screening of a miRNA library by functional proteomics in multiple cell lines and integration of data from patient tumors revealed a panel of five microRNAs (miRNAs) (miR-124, miR-365, miR-34b*, miR-18a and miR-506) as potential tumor suppressors capable of reversing the p27/myc/phospho-Rb protein signature. Mechanistic studies revealed an RNA-activation function of miR-124 resulting in direct induction of p27 protein levels by binding to and inducing transcription on the p27 promoter region leading to a subsequent G1 arrest. Additionally, in vivo studies utilizing a xenograft model demonstrated that nanoparticle-mediated delivery of miR-124 could reduce tumor growth and sensitize cells to etoposide, suggesting a clinical application of miRNAs as therapeutics to target the functional effect of myc on tumor growth.", "title": "Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer" }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "5783785", "text": "The discovery of microRNAs (miRNAs) provides a new and powerful tool for studying the mechanism, diagnosis and treatment of human cancers. Currently, down-regulation of tumor suppressive miRNAs by CpG island hypermethylation is emerging as a common hallmark of cancer. Here, we reported that the down-regulation of miR-33b was associated with pM stage of gastric cancer (GC) patients. Ectopic expression of miR-33b in HGC-27 and MGC-803 cells inhibited cell proliferation, migration and invasion, which might be due to miR-33b targeting oncogene c-Myc. Moreover, enhanced methylation level of the CpG island upstream of miR-33b in GC patients with down-regulated miR-33b was confirmed by methylation-specific PCR (MSP) amplification. Furthermore, re-introduction of miR-33b significantly suppressed tumorigenesis of GC cells in the nude mice. In conclusion, miR-33b acts as a tumor suppressor and hypermethylation of the CpG island upstream of miR-33b is responsible for its down-regulation in gastric cancer.", "title": "DNA Methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer" }, { "docid": "1782201", "text": "Integrins regulate adhesion-dependent growth, survival and invasion of tumor cells. In particular, expression of integrin alpha(v)beta(3) is associated with progression of a variety of human tumors. Here we reveal a previously undescribed adhesion-independent role for integrin alpha(v)beta(3) in pancreatic cancer and other carcinomas. Specifically, alpha(v)beta(3) expressed in carcinoma cells enhanced anchorage-independent tumor growth in vitro and increased lymph node metastases in vivo. These effects required recruitment of c-Src to the beta(3) integrin cytoplasmic tail, leading to c-Src activation, Crk-associated substrate (CAS) phosphorylation and tumor cell survival that, unexpectedly, was independent of cell adhesion or focal adhesion kinase (FAK) activation. Pharmacological blockade of c-Src kinase activity or decreased expression of endogenous alpha(v)beta(3) integrin or c-Src not only inhibited anchorage-independent growth but also suppressed metastasis in vivo, yet these manipulations did not affect tumor cell migration or invasion. These data define an unexpected role for an integrin as a mediator of anchorage independence, suggesting that an alpha(v)beta(3)-c-Src signaling module may account for the aggressive behavior of integrin alpha(v)beta(3)-expressing tumors in humans.", "title": "Integrin αvβ3/c-src “Oncogenic Unit” Promotes Anchorage-independence and Tumor Progression" }, { "docid": "12887068", "text": "Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.", "title": "Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation" }, { "docid": "2260571", "text": "RATIONALE Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. \n OBJECTIVE The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. \n METHODS AND RESULTS Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. \n CONCLUSIONS This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention.", "title": "Vascular smooth muscle cell calcification is mediated by regulated exosome secretion." }, { "docid": "13964633", "text": "BACKGROUND Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. \n METHODS AND FINDINGS Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. \n CONCLUSION Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.", "title": "Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions" }, { "docid": "7764903", "text": "Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.", "title": "Classification, functions, and clinical relevance of extracellular vesicles." } ]
752
Major vault protein regulates sorting of tumor suppressive miR-193a into EVs.
[ { "docid": "19800147", "text": "Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.", "title": "MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression" } ]
[ { "docid": "1905095", "text": "AIMS Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. \n METHODS AND RESULTS CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. -21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. \n CONCLUSION EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation.", "title": "Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction." }, { "docid": "982650", "text": "BACKGROUND & AIMS Tumor cells survive hypoxic conditions by inducing autophagy. We investigated the roles of microRNAs (miRNAs) in regulating autophagy of hepatocellular carcinoma (HCC) cells under hypoxic conditions. \n METHODS We used gain- and loss-of-function methods to evaluate the effect of miRNAs on autophagy in human HCC cell lines (Huh7 and Hep3B) under hypoxic conditions. Autophagy was quantified by immunoblot, immunofluoresence, and transmission electron microscopy analyses, and after incubation of cells with bafilomycin A1. We used a luciferase reporter assay to confirm associations between miRNAs and their targets. We analyzed growth of HCC xenograft tumors in nude mice. \n RESULTS miR-375 was down-regulated in HCC cells and tissues; it inhibited autophagy under hypoxic conditions by suppressing the conversion of LC3I to LC3II and thereby autophagic flux. The ability of miR-375 to inhibit autophagy was independent of its ability to regulate 3'-phosphoinositide-dependent protein kinase-1-AKT-mammalian target of rapamycin signaling, but instead involved suppression of ATG7, an autophagy-associated gene. miR-375 bound directly to a predicted site in the 3' untranslated region of ATG7. Up-regulating miR-375 or down-regulating ATG7 inhibited mitochondrial autophagy of HCC cells, reduced the elimination of damaged mitochondria under hypoxia, increased release of mitochondrial apoptotic proteins, and reduced viability of HCC cells. In mice, xenograft tumors that expressed miR-375 had fewer autophagic cells, larger areas of necrosis, and grew more slowly than tumors from HCC cells that expressed lower levels of miR-375. \n CONCLUSIONS miR-375 inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice. miRNAs that inhibit autophagy of cancer cells might be developed as therapeutics.", "title": "miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions." }, { "docid": "654735", "text": "Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis.", "title": "Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients" }, { "docid": "5783785", "text": "The discovery of microRNAs (miRNAs) provides a new and powerful tool for studying the mechanism, diagnosis and treatment of human cancers. Currently, down-regulation of tumor suppressive miRNAs by CpG island hypermethylation is emerging as a common hallmark of cancer. Here, we reported that the down-regulation of miR-33b was associated with pM stage of gastric cancer (GC) patients. Ectopic expression of miR-33b in HGC-27 and MGC-803 cells inhibited cell proliferation, migration and invasion, which might be due to miR-33b targeting oncogene c-Myc. Moreover, enhanced methylation level of the CpG island upstream of miR-33b in GC patients with down-regulated miR-33b was confirmed by methylation-specific PCR (MSP) amplification. Furthermore, re-introduction of miR-33b significantly suppressed tumorigenesis of GC cells in the nude mice. In conclusion, miR-33b acts as a tumor suppressor and hypermethylation of the CpG island upstream of miR-33b is responsible for its down-regulation in gastric cancer.", "title": "DNA Methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer" }, { "docid": "14768471", "text": "Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.", "title": "Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells" }, { "docid": "28704738", "text": "The miR-294 and miR-302 microRNAs promote the abbreviated G1 phase of the embryonic stem cell (ESC) cell cycle and suppress differentiation induced by let-7. Here, we evaluated the role of the retinoblastoma (Rb) family proteins in these settings. Under normal growth conditions, miR-294 promoted the rapid G1-S transition independent of the Rb family. In contrast, miR-294 suppressed the further accumulation of cells in G1 in response to nutrient deprivation and cell-cell contact in an Rb-dependent fashion. We uncovered five additional miRNAs (miR-26a, miR-99b, miR-193, miR-199a-5p, and miR-218) that silenced ESC self-renewal in the absence of other miRNAs, all of which were antagonized by miR-294 and miR-302. Four of the six differentiation-inducing miRNAs induced an Rb-dependent G1 accumulation. However, all six still silenced self-renewal in the absence of the Rb proteins. These results show that the miR-294/miR-302 family acts through Rb-dependent and -independent pathways to regulate the G1 restriction point and the silencing of self-renewal, respectively.", "title": "miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms." }, { "docid": "4653837", "text": "The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed in muscle progenitor cells (MPC), their proliferation was impaired while SA-βgal expression increased signifying the development of senescence. Impaired MPC proliferation resulted from interactions between miR-29 and the 3'-UTR of p85a, IGF-1 and B-myb, suppressing the translation of these mediators of myoblast proliferation. In vivo, electroporation of miR-29 into muscles of young mice suppressed the proliferation and increased levels of cellular arrest proteins, recapitulating aging-induced responses in muscle. A potential stimulus of miR-29 expression is Wnt-3a since we found that exogenous Wnt-3a stimulated miR-29 expression 2.7-fold in primary cultures of MPCs. Thus, aging-induced muscle senescence results from activation of miR-29 by Wnt-3a leading to suppressed expression of several signaling proteins (p85α, IGF-1 and B-myb) that act coordinately to impair the proliferation of MPCs contributing to muscle atrophy. The increase in miR-29 provides a potential mechanism for aging-induced sarcopenia.", "title": "MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways" }, { "docid": "41548287", "text": "Pancreatic ductal adenocarcinoma (PDAC) and other carcinomas are hierarchically organized, with cancer stem cells (CSC) residing at the top of the hierarchy, where they drive tumor progression, metastasis, and chemoresistance. As CSC and non-CSC share an identical genetic background, we hypothesize that differences in epigenetics account for the striking functional differences between these two cell populations. Epigenetic mechanisms, such as DNA methylation, play an important role in maintaining pluripotency and regulating the differentiation of stem cells, but the role of DNA methylation in pancreatic CSC is obscure. In this study, we investigated the genome-wide DNA methylation profile of PDAC CSC, and we determined the importance of DNA methyltransferases for CSC maintenance and tumorigenicity. Using high-throughput methylation analysis, we discovered that sorted CSCs have a higher level of DNA methylation, regardless of the heterogeneity or polyclonality of the CSC populations present in the tumors analyzed. Mechanistically, CSC expressed higher DNMT1 levels than non-CSC. Pharmacologic or genetic targeting of DNMT1 in CSCs reduced their self-renewal and in vivo tumorigenic potential, defining DNMT1 as a candidate CSC therapeutic target. The inhibitory effect we observed was mediated in part through epigenetic reactivation of previously silenced miRNAs, in particular the miR-17-92 cluster. Together, our findings indicate that DNA methylation plays an important role in CSC biology and also provide a rationale to develop epigenetic modulators to target CSC plasticity and improve the poor outcome of PDAC patients. Cancer Res; 76(15); 4546-58. ©2016 AACR.", "title": "DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster." }, { "docid": "19358586", "text": "The myc oncogene is overexpressed in almost half of all breast and ovarian cancers, but attempts at therapeutic interventions against myc have proven to be challenging. Myc regulates multiple biological processes, including the cell cycle, and as such is associated with cell proliferation and tumor progression. We identified a protein signature of high myc, low p27 and high phospho-Rb significantly correlated with poor patient survival in breast and ovarian cancers. Screening of a miRNA library by functional proteomics in multiple cell lines and integration of data from patient tumors revealed a panel of five microRNAs (miRNAs) (miR-124, miR-365, miR-34b*, miR-18a and miR-506) as potential tumor suppressors capable of reversing the p27/myc/phospho-Rb protein signature. Mechanistic studies revealed an RNA-activation function of miR-124 resulting in direct induction of p27 protein levels by binding to and inducing transcription on the p27 promoter region leading to a subsequent G1 arrest. Additionally, in vivo studies utilizing a xenograft model demonstrated that nanoparticle-mediated delivery of miR-124 could reduce tumor growth and sensitize cells to etoposide, suggesting a clinical application of miRNAs as therapeutics to target the functional effect of myc on tumor growth.", "title": "Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer" }, { "docid": "33677323", "text": "MicroRNAs are frequently deregulated in cancer. Here we show that miR-22 is upregulated in myelodysplastic syndrome (MDS) and leukemia and its aberrant expression correlates with poor survival. To explore its role in hematopoietic stem cell function and malignancy, we generated transgenic mice conditionally expressing miR-22 in the hematopoietic compartment. These mice displayed reduced levels of global 5-hydroxymethylcytosine (5-hmC) and increased hematopoietic stem cell self-renewal accompanied by defective differentiation. Conversely, miR-22 inhibition blocked proliferation in both mouse and human leukemic cells. Over time, miR-22 transgenic mice developed MDS and hematological malignancies. We also identify TET2 as a key target of miR-22 in this context. Ectopic expression of TET2 suppressed the miR-22-induced phenotypes. Downregulation of TET2 protein also correlated with poor clinical outcomes and miR-22 overexpression in MDS patients. Our results therefore identify miR-22 as a potent proto-oncogene and suggest that aberrations in the miR-22/TET2 regulatory network are common in hematopoietic malignancies.", "title": "The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation." }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "13964633", "text": "BACKGROUND Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. \n METHODS AND FINDINGS Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. \n CONCLUSION Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.", "title": "Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions" }, { "docid": "3588621", "text": "Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.", "title": "Extracellular vesicle isolation and characterization: toward clinical application." }, { "docid": "3730196", "text": "Despite progress in treatment of small cell lung cancer (SCLC), its multidrug chemoresistance and poor prognosis still remain. Recently, we globally assessed long non-coding RNAs (lncRNAs) for contributions to SCLC chemoresistance using microarray data, in vitro and in vivo assays. Here we reported that HOTTIP, encoding a lncRNA that is frequently amplified in SCLC, was associated with SCLC cell chemosensitivity, proliferation, and poor prognosis of SCLC patients. Moreover, mechanistic investigations showed that HOTTIP functioned as an oncogene in SCLC progression by binding miR-216a and abrogating its tumor-suppressive function in this setting. On the other hand, HOTTIP increased the expression of anti-apoptotic factor BCL-2, another important target gene of miR-216a, and jointly enhanced chemoresistance of SCLC by regulating BCL-2. Taken together, our study established a role for HOTTIP in SCLC progression and chemoresistance suggest its candidacy as a new diagnostic and prognostic biomarker for clinical management of SCLC.", "title": "Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a" }, { "docid": "16605494", "text": "BACKGROUND Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. \n METHODOLOGY/PRINCIPAL FINDINGS We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington's disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington's and Alzheimer's disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22's targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. \n CONCLUSIONS These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.", "title": "MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington’s Disease-Related Mechanisms" }, { "docid": "16882895", "text": "In the present study, we constructed a lentivirus vector encoding the miR-29a precursor and established two stably infected cell lines, PLC-29a and 97L-29a. The overexpression of miR-29a was confirmed by TaqMan RT-PCR and significantly suppressed the growth of the hepatocellular carcinoma cell lines MHCC-97L and PLC. Dual-luciferase reporter assays indicated that the SPARC mRNA 3'UTR was directly targeted by miR-29a since the mutated 3'UTR was not affected. Silencing SPARC expression by RNAi knockdown resulted in a similar effect as miR-29a overexpression on hepatocellular carcinoma (HCC) cell growth regulation. Anti-miR-29a oligonucleotides (AMOs) upregulated the levels of SPARC in the HCC cells. The phosphorylation of AKT/mTOR downstream of SPARC was inhibited in miR-29a-overexpressing HCC cells. We further examined and compared the expression levels of miR-29a in HCC tissues and the corresponding nearby non-cancerous liver tissues of 110 patients with HCC by qRT-PCR, and significantly lower expression of miR-29a was observed in the tissues affected by HCC. Our findings demonstrate that the expression of miR-29a is important in the regulation of the SPARC-AKT pathway and HCC growth.", "title": "microRNA-29a suppresses cell proliferation by targeting SPARC in hepatocellular carcinoma." }, { "docid": "16346504", "text": "BACKGROUND Growth arrest-specific 5 (GAS5) was reported to be implicated and aberrantly express in multiple cancers. However, the expression and mechanism of action of GAS5 were largely poor understood in endometrial carcinoma. \n RESULTS According to the result of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and flow cytometry analysis, we identified that GAS5 was down-regulated in endometrial cancer cells and stimulated the apoptosis of endometrial cancer cells. To investigate the expression of GAS5, PTEN and miR-103, RT-PCR was performed. And we found that the expression of PTEN was up-regulated when endometrial cancer cells overexpressed GAS5. The prediction of bioinformatics online revealed that GAS5 could bind to miR-103, which was further found to be regulated by GAS5. Finally, we found that miR-103 mimic could decrease the mRNA and protein levels of PTEN through luciferase reporter assay and western blotting, and GAS5 plasmid may reverse this regulation effect in endometrial cancer cells. \n CONCLUSION In summary, we demonstrate that GAS5 acts as an tumor suppressor lncRNA in endometrial cancer. Through inhibiting the expression of miR-103, GAS5 significantly enhanced the expression of PTEN to promote cancer cell apoptosis, and, thus, could be an important mediator in the pathogenesis of endometrial cancer.", "title": "LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells" }, { "docid": "23934390", "text": "MicroRNAs are proposed to serve vital functions in the regulation of tumor progression and invasion. However, the expression levels of miR-203 in non-small cell lung cancer (NSCLC) and its clinical significance remain unknown. In the present study, the association between B-cell-specific moloney murine leukemia virus insertion site 1 (Bmi1) and miR-203 was investigated. miR-203 was demonstrated to act as a tumor suppressor by regulating the expression of Bmi1. miR-203 expression levels were downregulated in NSCLC tissues while Bmi1 expression was upregulated in NSCLC tissues and cell lines. Furthermore, downregulated Bmi1 or enhanced miR-203 expression inhibited NSCLC cell proliferation and invasion in vitro. In addition, a dual-luciferase reporter assay was performed, which identified Bmi1 as a novel target of miR-203. In conclusion, the present study demonstrated that miR-203 functions as a tumor suppressor and is important in inhibiting the proliferation of NSCLC cells through targeting Bmi1. These findings indicate that miR-203 may be useful as a novel potential therapeutic target for NSCLC.", "title": "MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non-small cell lung cancer." } ]
753
Malaria has a high vectorial capacity.
[ { "docid": "1173667", "text": "Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.", "title": "Ranking of elimination feasibility between malaria-endemic countries" } ]
[ { "docid": "25938221", "text": "A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.", "title": "The spectrum of retinopathy in adults with Plasmodium falciparum malaria" }, { "docid": "3929361", "text": "BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. \n METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. \n CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.", "title": "Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance" }, { "docid": "27841037", "text": "The documented history of malaria in parts of Asia goes back more than 2,000 years, during which the disease has been a major player on the socioeconomic stage in many nation states as they waxed and waned in power and prosperity. On a much shorter time scale, the last half century has seen in microcosm a history of large fluctuations in endemicity and impact of malaria across the spectrum of rice fields and rain forests, mountains and plains that reflect the vast ecological diversity inhabited by this majority aggregation of mankind. That period has seen some of the most dramatic changes in social and economic structure, in population size, density and mobility, and in political structure in history: all have played a part in the changing face of malaria in this extensive region of the world. While the majority of global malaria cases currently reside in Africa, greater numbers inhabited Asia earlier this century before malaria programs savored significant success, and now Asia harbors a global threat in the form of the epicenter of multidrug resistant Plasmodium falciparum which is gradually encompassing the tropical world. The latter reflects directly the vicissitudes of economic change over recent decades, particularly the mobility of populations in search of commerce, trade and personal fortunes, or caught in the misfortunes of physical conflicts. The period from the 1950s to the 1990s has witnessed near \"eradication\" followed by resurgence of malaria in Sri Lanka, control and resurgence in India, the influence of war and postwar instability on drug resistance in Cambodia, increase in severe and cerebral malaria in Myanmar during prolonged political turmoil, the essential disappearance of the disease from all but forested border areas of Thailand where it remains for the moment intractable, the basic elimination of vivax malaria from many provinces of central China. Both positive and negative experiences have lessons to teach in the debate between eradication and control as alternative strategies. China has for years held high the goal of \"basic elimination\", eradication by another name, in sensible semi-defiance of WHO dictates. The Chinese experience makes it clear that, given community organization, exhaustive attention to case detection, management and focus elimination, plus the political will at all levels of society, it is possible both to eliminate malaria from large areas of an expansive nation and to implement surveillance necessary to maintain something approaching eradication status in those areas. But China has not succeeded in the international border regions of the tropical south where unfettered population movement confounds the program. Thailand, Malaysia and to an extent Vietnam have also reached essential elimination in their rice field plains by vigorous vertical programs but fall short at their forested borders. Economics is central to the history of the rise and fall of nations, and to the history of disease in the people who constitute nations. The current love affair with free market economics as the main driving force for advance of national wealth puts severe limitations on the essential involvement of communities in malaria management. The task of malaria control or elimination needs to be clearly related to the basic macroeconomic process that preoccupies governments, not cloistered away in the health sector Historically malaria has had a severe, measurable, negative impact on the productivity of nations. Economic models need rehoning with political aplomb and integrating with technical and demographic strategies. Recent decades in Chinese malaria history carry some lessons that may be relevant in this context.", "title": "Ecology, economics and political will: the vicissitudes of malaria strategies in Asia." }, { "docid": "14337960", "text": "Decisions to eliminate malaria from all or part of a country involve a complex set of factors, and this complexity is compounded by ambiguity surrounding some of the key terminology, most notably \"control\" and \"elimination. \" It is impossible to forecast resource and operational requirements accurately if endpoints have not been defined clearly, yet even during the Global Malaria Eradication Program, debate raged over the precise definition of \"eradication. \" Analogous deliberations regarding the meaning of \"elimination\" and \"control\" are basically nonexistent today despite these terms' core importance to programme planning. To advance the contemporary debate about these issues, this paper presents a historical review of commonly used terms, including control, elimination, and eradication, to help contextualize current understanding of these concepts. The review has been supported by analysis of the underlying mathematical concepts on which these definitions are based through simple branching process models that describe the proliferation of malaria cases following importation. Through this analysis, the importance of pragmatic definitions that are useful for providing malaria control and elimination programmes with a practical set of strategic milestones is emphasized, and it is argued that current conceptions of elimination in particular fail to achieve these requirements. To provide all countries with precise targets, new conceptual definitions are suggested to more precisely describe the old goals of \"control\" - here more exactly named \"controlled low-endemic malaria\" - and \"elimination. \" Additionally, it is argued that a third state, called \"controlled non-endemic malaria,\" is required to describe the epidemiological condition in which endemic transmission has been interrupted, but malaria resulting from onwards transmission from imported infections continues to occur at a sufficiently high level that elimination has not been achieved. Finally, guidelines are discussed for deriving the separate operational definitions and metrics that will be required to make these concepts relevant, measurable, and achievable for a particular environment.", "title": "How absolute is zero? An evaluation of historical and current definitions of malaria elimination" }, { "docid": "3770726", "text": "BACKGROUND Microfluidic platforms for quantitative evaluation of cell biologic processes allow low cost and time efficient research studies of biological and pathological events, such as monitoring cell migration by real-time imaging. In healthy and disease states, cell migration is crucial in development and wound healing, as well as to maintain the body's homeostasis. NEW METHOD The microfluidic chambers allow precise measurements to investigate whether fibroblasts carrying a mutation in the TOR1A gene, underlying the hereditary neurologic disease--DYT1 dystonia, have decreased migration properties when compared to control cells. \n RESULTS We observed that fibroblasts from DYT1 patients showed abnormalities in basic features of cell migration, such as reduced velocity and persistence of movement. COMPARISON WITH EXISTING METHOD The microfluidic method enabled us to demonstrate reduced polarization of the nucleus and abnormal orientation of nuclei and Golgi inside the moving DYT1 patient cells compared to control cells, as well as vectorial movement of single cells. \n CONCLUSION We report here different assays useful in determining various parameters of cell migration in DYT1 patient cells as a consequence of the TOR1A gene mutation, including a microfluidic platform, which provides a means to evaluate real-time vectorial movement with single cell resolution in a three-dimensional environment.", "title": "Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia." }, { "docid": "13959707", "text": "BACKGROUND Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. \n METHODS AND FINDINGS Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR) = 2.7 (95% CI 1.42, 5.01, P = 0.002) but not in those without detectable parasitaemia (HR = 1.0 (95% CI 0.74, 1.42, P = 0.9). \n CONCLUSIONS We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection.", "title": "The Ratio of Monocytes to Lymphocytes in Peripheral Blood Correlates with Increased Susceptibility to Clinical Malaria in Kenyan Children" }, { "docid": "18074797", "text": "BACKGROUND Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. \n METHODS AND FINDINGS We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. \n CONCLUSIONS Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.", "title": "Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies" }, { "docid": "5289038", "text": "Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms.", "title": "Partitioning regulatory mechanisms of within-host malaria dynamics using the effective propagation number." }, { "docid": "1349033", "text": "Based on sensitivity analysis of the MacDonald-Ross model, it has long been argued that the best way to reduce malaria transmission is to target adult female mosquitoes with insecticides that can reduce the longevity and human-feeding frequency of vectors. However, these analyses have ignored a fundamental biological difference between mosquito adults and the immature stages that precede them: adults are highly mobile flying insects that can readily detect and avoid many intervention measures whereas mosquito eggs, larvae and pupae are confined within relatively small aquatic habitats and cannot readily escape control measures. We hypothesize that the control of adult but not immature mosquitoes is compromised by their ability to avoid interventions such as excito-repellant insecticides. We apply a simple model of intervention avoidance by mosquitoes and demonstrate that this can substantially reduce effective coverage, in terms of the proportion of the vector population that is covered, and overall impact on malaria transmission. We review historical evidence that larval control of African malaria vectors can be effective and conclude that the only limitations to the effective coverage of larval control are practical rather than fundamental. Larval control strategies against the vectors of malaria in sub-Saharan Africa could be highly effective, complementary to adult control interventions, and should be prioritized for further development, evaluation and implementation as an integral part of Rolling Back Malaria.", "title": "Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage" }, { "docid": "8593263", "text": "An observational prospective cohort study assessed malaria risk perception, knowledge and prophylaxis practices among individuals of African ethnicity living in Paris and travelling to their country of origin to visit friends or relatives (VFR). The study compared two groups of VFR who had visited a travel clinic (TC; n=122) or a travel agency (TA; n=69) before departure. Of the 47% of VFR citing malaria as a health concern, 75% knew that malaria is mosquito-borne and that bed nets are an effective preventive measure. Perception of high malaria risk was greater in the TA group (33%) than in the TC group (7%). The availability of a malaria vaccine was mentioned by 35% of VFR, with frequent confusion between yellow fever vaccine and malaria prevention. Twenty-nine percent took adequate chemoprophylaxis with complete adherence, which was higher among the TC group (41%) than the TA group (12%). Effective antivector protection measures used were bed nets (16%), wearing long clothes at night (14%) and air conditioning (8%), with no differences between the study groups except in the use of impregnated bed nets (11% of the TC group and none of the TA group). Media coverage, malaria chemoprophylaxis repayment and cultural adaptation of preventive messages should be improved to reduce the high rate of inadequate malaria prophylaxis in VFR.", "title": "Malaria risk perception, knowledge and prophylaxis practices among travellers of African ethnicity living in Paris and visiting their country of origin in sub-Saharan Africa." }, { "docid": "5710820", "text": "BACKGROUND Following the last major malaria epidemic in 2000, malaria incidence in South Africa has declined markedly. The decrease has been so emphatic that South Africa now meets the World Health Organization (WHO) threshold for malaria elimination. Given the Millennium Development Goal of reversing the spread of malaria by 2015, South Africa is being urged to adopt an elimination agenda. This study aimed to determine the appropriateness of implementing a malaria elimination programme in present day South Africa. \n METHODS An assessment of the progress made by South Africa in terms of implementing an integrated malaria control programme across the three malaria-endemic provinces was undertaken. Vector control and case management data were analysed from the period of 2000 until 2011. \n RESULTS Both malaria-related morbidity and mortality have decreased significantly across all three malaria-endemic provinces since 2000. The greatest decline was seen in KwaZulu-Natal where cases decreased from 42,276 in 2000 to 380 in 2010 and deaths dropped from 122 in 2000 to six in 2010. Although there has been a 49.2 % (8,553 vs 4,214) decrease in the malaria cases reported in Limpopo Province, currently it is the largest contributor to the malaria incidence in South Africa. Despite all three provinces reporting average insecticide spray coverage of over 80%, malaria incidence in both Mpumalanga and Limpopo remains above the elimination threshold. Locally transmitted case numbers have declined in all three malaria provinces but imported case numbers have been increasing. Knowledge gaps in vector distribution, insecticide resistance status and drug usage were also identified. \n CONCLUSIONS Malaria elimination in South Africa is a realistic possibility if certain criteria are met. Firstly, there must be continued support for the existing malaria control programmes to ensure the gains made are sustained. Secondly, cross border malaria control initiatives with neighbouring countries must be strongly encouraged and supported to reduce malaria in the region and the importation of malaria into South Africa. Thirdly, operational research, particularly on vector distribution and insecticide resistance status must be conducted as a matter of urgency, and finally, the surveillance systems must be refined to ensure the information required to inform an elimination agenda are routinely collected.", "title": "The feasibility of malaria elimination in South Africa" }, { "docid": "13948920", "text": "Artemisinin-based combination therapies are the frontline treatment of Plasmodium falciparum malaria. The circulation of falsified and substandard artemisinin-based antimalarials in Southeast Asia has been a major predicament for the malaria elimination campaign. To provide an update of this situation, we purchased 153 artemisinin-containing antimalarials, as convenience samples, in private drug stores from different regions of Myanmar. The quality of these drugs in terms of their artemisinin derivative content was tested using specific dipsticks for these artemisinin derivatives, as point-of-care devices. A subset of these samples was further tested by high-performance liquid chromatography (HPLC). This survey identified that > 35% of the collected drugs were oral artesunate and artemether monotherapies. When tested with the dipsticks, all but one sample passed the assays, indicating that the detected artemisinin derivative content corresponded approximately to the labeled contents. However, one artesunate injection sample was found to contain no active ingredient at all by the dipstick assay and subsequent HPLC analysis. The continued circulation of oral monotherapies and the description, for the first time, of falsified parenteral artesunate provides a worrisome picture of the antimalarial drug quality in Myanmar during the malaria elimination phase, a situation that deserves more oversight from regulatory authorities.", "title": "Quality Testing of Artemisinin-Based Antimalarial Drugs in Myanmar." }, { "docid": "20999249", "text": "BACKGROUND Falciparum malaria or malaria tropica is one of the leading causes of childhood mortality worldwide. Malaria-related deaths occur mainly in sub-Saharan Africa, where an estimated 365 million clinical cases of Plasmodium falciparum malaria occur each year. In Europe, imported malaria cases occur due to returning travellers or immigration mostly from African countries. Children are more at risk than adults. The objective of this study was to identify high risk groups for imported childhood malaria in Europe in order to guide development of strategies for prevention, early recognition and management. \n METHODS In the period May 2003-January 2005 we reviewed all cases of paediatric malaria in the Netherlands notified by the Dutch Paediatric Surveillance System (Nederland Signalerings Centrum Kindergeneeskunde, NSCK) and the literature on imported malaria in children in Europe published between 1996 and 2006. \n RESULTS Malaria occurred mainly in children of long-term (n = 15, 47%) and new (n = 8, 25%) immigrants and was mostly acquired in sub-Saharan Africa. The dominant species was P. falciparum. Only one quarter of children had used adequate malaria chemoprophylaxis. Complicated disease occurred in 10 (31%) of cases. We also reviewed the literature and found 6082 reported cases of imported malaria among children in Europe; among these, four died and only one was reported to develop neurological sequelae. \n CONCLUSION Imported malaria in children remains an important problem and is unlikely to decrease unless the reasons for inadequate prophylaxis are addressed.", "title": "Imported malaria in children: a national surveillance in the Netherlands and a review of European studies." }, { "docid": "40900567", "text": "The multiplication rates and invasiveness of Plasmodium falciparum parasites isolated from adult Thai patients hospitalized with uncomplicated malaria (n=34) were compared with those from persons with severe malaria (n=42). To simulate severe malaria and control for host effects, the in vitro cultures were adjusted to 1% parasitemia and used the same red blood cell donor. P. falciparum isolates from persons with severe malaria had initial cycle multiplication rates in vitro that were 3-fold higher than those from uncomplicated malaria (median [95% confidence interval], 8.3 [7. 1-10.5] vs. 2.8 [1.7-3.9]; P=.001). Parasites causing severe malaria exhibited unrestricted red blood cell invasion, whereas those from uncomplicated malaria were restricted to a geometric mean of 40 (31%-53%) of red blood cells. P. falciparum parasites causing severe malaria were less selective and multiplied more at high parasitemias than those causing uncomplicated malaria.", "title": "Parasite multiplication potential and the severity of Falciparum malaria." }, { "docid": "17433284", "text": "BACKGROUND According to willingness of the Ministry of Health, Iran and presence of appropriate conditions for disease elimination, national malaria control program decided to conduct a research to clarify malaria status in 2007 and to provide required information to perform the elimination program. This review is comprised of the basis of national malaria elimination program in vision of 2025, which was started in 2010. \n METHODS In this descriptive study, data were analyzed by applications of different variables at district level. All districts in the three south eastern provinces, in which malaria has local transmission, were considered. Malaria cases has been determined and studied based on the national malaria surveillance system. \n RESULTS Since vivax malaria is predominant in Sistan & Baluchestan Province, number of vivax cases is equal to malaria positive cases approximately. The important point is that Nikshahr contains the maximum number of local vivax cases in this province and the maximum number of falciparum cases is reported from Sarbaz district. Among all districts of Hormozgan Province, no case of autochthonous falciparum was detected except in Bandar Jask and one case in Minab. There was no case of autochthonous falciparum in Kerman Province, except in Kahnoj and Ghale Ganj that each of them had one case in 2007. \n CONCLUSION It appears that the report of locally transmitted cases in Iran is increasing over the past few years, before starting malaria elimination plan. Since the Afghan refugees started to return to their own country so the main source of reporting of imported malaria cases reduced and local cases would be demonstrated more clearly.", "title": "Determination of Malaria Epidemiological Status in Iran’s Malarious Areas as Baseline Information for Implementation of Malaria Elimination Program in Iran" }, { "docid": "32390525", "text": "CONTEXT Long-term travelers, defined here as those traveling for periods of 6 months or longer, face particular challenges regarding malaria prevention. Current guidelines for malaria prevention primarily address prevention of Plasmodium falciparum infections in short-term travelers. \n OBJECTIVES To examine the risk of malaria in long-term travelers, recent developments in personal protective measures, and the safety and tolerability of malaria chemoprophylaxis during long-term use and to consider prevention strategies including continuous chemoprophylaxis, stand-by emergency self-treatment, seasonal prophylaxis, and strategies to prevent primary infection and relapses from P vivax malaria. EVIDENCE ACQUISITION Comprehensive search of scientific publications including MEDLINE via both OVID and PubMED for relevant studies and articles with a cutoff date of July 2006, using the search terms long-term travel and malaria prevention, long-term malaria chemoprophylaxis, and insect repellent and malaria. Additional references were obtained from searching the bibliographies of the selected articles, from dissertations, and from the proceedings of relevant conferences on travel medicine. There were no language restrictions. EVIDENCE SYNTHESIS Long-term travelers have a higher risk of malaria than short-term travelers. Long-term travelers underuse personal protective measures and adhere poorly to continuous chemoprophylaxis regimens. A number of strategies are used during long-term stays: discontinuation of chemoprophylaxis after the initial period, sequential regimens with different medications for chemoprophylaxis, stand-by emergency self-treatment, and seasonal chemoprophylaxis targeting high-incidence periods or locations. All strategies have advantages and drawbacks. Counterfeit drugs sold in countries endemic for malaria pose serious concern for long-term travelers who purchase their medications overseas. Vivax malaria causes significant illness in travelers, but relapses of vivax malaria are not prevented with the current first-line chemoprophylaxis regimens. Consensus guidelines are needed for prevention of malaria in long-term travelers. \n CONCLUSIONS Prevention of malaria in long-term travelers is a complex issue and requires expert advice from travel medicine specialists. Recommendations for prevention of malaria in long-term travelers must be individualized.", "title": "Prevention of malaria in long-term travelers." }, { "docid": "6503185", "text": "Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.", "title": "Malaria biology and disease pathogenesis: insights for new treatments" }, { "docid": "25420421", "text": "Little is known about the changes in white blood cells and platelets in children with falciparum malaria in endemic areas. We measured the white cell count (WCC) and platelets of 230 healthy children from the community, 1369 children admitted to hospital with symptomatic malaria, and 1461 children with other medical conditions. Children with malaria had a higher WCC compared with community controls, and leucocytosis was strongly associated with younger age, deep breathing, severe anaemia, thrombocytopenia and death. The WCC was not associated with a positive blood culture. In children with malaria, high lymphocyte and low monocyte counts were independently associated with mortality. A platelet count of less than 150 x 109/l was found in 56.7% of children with malaria, and was associated with age, prostration and parasite density, but not with bleeding problems or mortality. The mean platelet volume was also higher in children with malaria compared with other medical conditions. This may reflect early release from the bone marrow in response to peripheral platelet destruction. Thus, leucocytosis was associated with both severity and mortality in children with falciparum malaria, irrespective of bacteraemia, whereas thrombocytopenia, although very common, was not associated with adverse outcome.", "title": "Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome." }, { "docid": "20931483", "text": "Understanding local variability in malaria transmission risk is critically important when designing intervention or vaccine trials. Using a combination of field data, satellite image analysis, and GIS modeling, we developed a high-resolution map of malaria entomological inoculation rates (EIR) in The Gambia, West Africa. The analyses are based on the variation in exposure to malaria parasites experienced in 48 villages in 1996 and 21 villages in 1997. The entomological inoculation rate (EIR) varied from 0 to 166 infective bites per person per rainy season. Detailed field surveys identified the major Anopheles gambiae s.l. breeding habitats. These habitats were mapped by classification of a LANDSAT TM satellite image with an overall accuracy of 85%. Village EIRs decreased as a power function based on the breeding areas size and proximity. We use this relationship and the breeding habitats to map the variation in EIR over the entire 2500-km(2) study area.", "title": "High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery." }, { "docid": "37248570", "text": "After a lapse of almost 40 years, malaria eradication is back on the global health agenda. Inspired by the Gates Malaria Forum in October 2007,1,2 key organizations are starting to debate the pros and cons of redefining eradication as an explicit goal of malaria control efforts. Attempts to eliminate malaria in southern Africa3 and Pacific Island states,4 and WHO’s Global Malaria Programme agenda and field manual for malaria elimination,5,6 foreshadow this movement towards another global attempt at eradication. When marking 60 years of WHO’s commitment to fighting malaria, we must ask what has been achieved, but also what can we learn from the past. We now know so much more about the biology of parasite-host responses, the determinants of endemicity and transmission dynamics, the social, economic and cultural implications of malaria at household, community and national levels, and the demands made upon health systems in endemic countries. We do not yet know how to synthesize and integrate this knowledge to achieve elimination in different settings. Regional malaria elimination campaigns were first conducted in the late 1940s, preparing the ground for the Global Malaria Eradication Program in 1955. This campaign succeeded in eliminating malaria from Europe, North America, the Caribbean and parts of Asia and South-Central America.7 But no major success occurred in sub-Saharan Africa, which accounts for 80% of today’s burden of malaria.8 When the aspiration of global eradication was abandoned in 1969, the main reasons for failure were technical challenges of executing the strategy especially in Africa. The post-eradication era from 1969 to 1991 focused on technical issues, and research and development for new tools, leading to advances in drug and vaccine development, vector control and insecticide-treated nets. These decades also brought a better understanding of the social, economic and cultural dimensions of malaria. There was little global support provided specifically for malaria control in the newly independent states of Africa that were struggling to establish broad-based health systems and primary health care. By 1992, the combination of a worsening malaria situation and promising technical developments led to renewed global focus on malaria control. The Roll Back Malaria initiative, launched by WHO in 1998, led to the Abuja Declaration in 2000, which defined progressive intervention coverage targets for control designed to eliminate malaria as a public health problem, while emphasizing that this could only be achieved through vastly strengthened local health systems.9 Increased resources through the Global Fund to Fight AIDS, Tuberculosis and Malaria, the World Bank’s Booster Program, the US President’s Malaria Initiative and many others has meant that this page is finally beginning to turn as intervention coverage is rising.10 It is against this background that we hear this call for elimination/eradication. The challenges remain formidable. We all know that elimination in Africa is not possible with current tools. But efforts must focus beyond simply developing better tools, to include how existing and future tools can be strategically combined for maximum synergistic effectiveness when integrated into different health and social systems prevailing in endemic areas. Aiming at elimination and eradication further implies the need for effective surveillance strategies to monitor progress (again a challenge for health systems). This in turn requires a better understanding of malaria transmission heterogeneity in a globalized world with rapidly changing dynamics in environment, climate, migration and transnational cooperation. Maintaining long-term momentum in the face of success in regional elimination while waiting to achieve final eradication will be a major challenge. Shrinking the map by starting on the malaria margins with the “easy-to-eliminate” settings will boost morale initially but may bring marginal benefits to such areas at the expense of those where the burden of malaria is highest. Any strategic plan – and here we learn again from the past – needs to be a synchronous global effort, locally adapted in all endemic areas. Although we lack sufficient knowledge, systems and tools to eradicate malaria today, we do have a window of political will and financial resources to refocus on the goal of effective control through universal coverage of appropriate interventions. The prerequisites for a successful start are: (i) a process of inclusive discourse to agree on global vision, goals and strategy; and (ii) a global plan for all endemic areas describing how, where and when we move from control towards elimination. What must distinguish the new era, especially in Africa, is a real rather than rhetorical emphasis on health systems. ■", "title": "Malaria eradication back on the table." } ]
755
Many cytokines that are produced by cancer cells also contribute to carcinogenesis.
[ { "docid": "17844478", "text": "It is established that tumor cell-derived VEGF acts on endothelial cells to promote angiogenesis and tumor growth. Here, we demonstrate that in K5-SOS-dependent mouse skin tumors, autocrine VEGF is required for tumor cell proliferation in a cell-autonomous and angiogenesis-independent manner. VEGF is upregulated in SOS-expressing tumors, and its deletion in epidermal cells delays tumorigenesis by suppressing angiogenesis and tumor cell proliferation. Epidermis-specific Flt1 deletion also impairs tumorigenesis and proliferation. Surprisingly, complete tumor inhibition occurs in the absence of VEGF in EGFR mutant mice, demonstrating that VEGFR and EGFR synergize in neoplastic cells to promote tumor growth. Mechanistically, K5-SOS upregulates VEGF, Flt1, and Neuropilin-1 in an Erk-dependent manner, thereby activating an autocrine proliferation loop, whereas EGFR prevents tumor cells from apoptosis. Moreover, Flt1 is upregulated in human SCC, and its inhibition in SCC cells impairs proliferation. Thus, in addition to regulating angiogenesis, VEGF has to be considered as a potent growth factor for epidermal tumors.", "title": "Autocrine VEGF Signaling Synergizes with EGFR in Tumor Cells to Promote Epithelial Cancer Development" } ]
[ { "docid": "31933981", "text": "The synthesis of acute-phase protein serum amyloid A (SAA) is largely regulated by inflammation- associated cytokines and a high concentration of circulating SAA may represent an ideal marker for acute and chronic inflammatory diseases. However, SAA is also synthesized in extrahepatic tissues, e.g. human carcinoma metastases and cancer cell lines. An increasing body of in vitro data supports the concept of involvement of SAA in carcinogenesis and neoplastic diseases. Accumulating evidence suggests that SAA might be included in a group of biomarkers to detect a pattern of physiological events that reflect the growth of malignancy and host response. This review is meant to provide a broad overview of the many ways that SAA could contribute to tumour development, and accelerate tumour progression and metastasis, and to gain a better understanding of this acute-phase reactant as a possible link between chronic inflammation and neoplasia.", "title": "Serum amyloid A: An acute-phase protein involved in tumour pathogenesis" }, { "docid": "10494012", "text": "Amodel that explains both the origin and sporadic nature of cancer argues that cancer cells are a chance result of events that cause genomic and epigenetic variability. The prevailing view is that these events are mutations that affect chromosome segregation or stability. However, genomic and epigenetic variability is also triggered by cell fusion, which is often caused by viruses. Yet, cells fused by viruses are considered harmless because they die. We provide evidence that a primate virus uses both viral and exosomal proteins involved in cell fusion to produce transformed proliferating human cells. Although normal cells indeed fail to proliferate after fusion, expression of an oncogene or a mutated tumor suppressor p53 in just one of the fusion partners is sufficient to produce heterogeneous progeny. We also show that this virus can produce viable oncogenically transformed cells by fusing cells that are otherwise destined to die. Therefore, we argue that viruses can contribute to carcinogenesis by fusing cells.", "title": "A primate virus generates transformed human cells by fusion" }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "7451018", "text": "Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human cancers including the oncogene activation and tumor suppressor gene inactivation.", "title": "Viral Carcinogenesis." }, { "docid": "597790", "text": "Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders.", "title": "Deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice" }, { "docid": "1834762", "text": "Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity.", "title": "Amyloid-DNA Composites of Bacterial Biofilms Stimulate Autoimmunity." }, { "docid": "16532419", "text": "BACKGROUND Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. \n METHODS Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 μg/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. \n RESULTS We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. \n CONCLUSIONS Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles.", "title": "Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes" }, { "docid": "23122306", "text": "In an experiment to clarify the involvement of oxygen radicals in lung carcinogenesis induced by diesel exhaust particles (DEP), we found that there is a strong relation between lung tumor response and formation of 8-hydroxydeoxyguanosine (8-OHdG) in lung DNA of mice administered DEP by repeated intratracheal instillation. Repeated intratracheal instillation of DEP also induced the activity of cytochrome P-450 reductase in the lungs as a representative enzyme of superoxide generation, and two types of nitric oxide (NO) synthase, cNOS and iNOS, in the lungs. On the other hand, activities of CuZn-superoxide dismutase (SOD) and Mn-SOD antioxidant enzymes were depressed by the instillation of DEP. These results suggest that generation of superoxide, hydroxyI radical, and nitric oxide are increased in epithelial cells in airways, and that the increased superoxide and nitric oxide react very easily to produce peroxynitrite (ONOO(-)). The peroxynitrite also produce hydroxyI radical. The hydroxyl radical may play an important role in carcinogenesis by DEP.", "title": "Lung Carcinogenesis by Diesel Exhaust Particles and the Carcinogenic Mechanism Via Active Oxygens." }, { "docid": "40127292", "text": "Multidrug resistance remains an unresolved problem in clinical oncology. Over a decade ago genes encoding cellular efflux pumps were shown to confer resistance to a broad spectrum of biochemically unrelated anticancer drugs even before the compounds reached their intracellular targets. More recently it has become apparent that many drugs induce a common apoptotic program, such that mutations in this program can also produce multidrug resistance. However, a thorough evaluation of the contribution of apoptotic defects to this \"postdamage\" drug resistant phenotype is technically complicated, and this has led to uncertainty about the overall significance of apoptosis in therapy-induced cell death. For example, correlative analyses using patient specimens are limited by unknown background mutations in the biopsy material, and assays using cancer cell lines can be biased by unphysiological conditions. We sought to circumvent these restrictions by utilizing a tractable transgenic cancer model to examine the impact of apoptosis on treatment outcome. Here we discuss potential caveats of cell culture based assays, highlight features of genetically engineered mice as potential model systems, and describe a tractable transgenic mouse model to study drug responses in a series of primary lymphomas with genetically defined lesions treated at their natural site.", "title": "Apoptosis and chemoresistance in transgenic cancer models" }, { "docid": "13329980", "text": "AIMS AND BACKGROUND The PI3 kinase signalling pathway is now accepted as being at least as important as the ras-MAP kinase pathway in cell survival and proliferation, and hence its potential role in cancer is of great interest. The purpose of this review is briefly to examine evidence for an involvement of PI3K in human cancers, discuss the mechanisms by which its activation promotes tumor progression, and consider its utility as a novel target for anticancer therapy. \n METHODS AND STUDY DESIGN A Medline review of recent literature concerning the role of PI3 kinase in tumor progression--mechanisms of action and clinical implications. \n RESULTS Evidence is presented that misregulation of the PI3 kinase pathway is a feature of many common cancers, either by loss of the suppressor protein PTEN, or by constitutive activation of PI3 kinase isoforms or downstream elements such as AKT and mTOR. This activation potentiates not only cell survival and proliferation, but also cytoskeletal deformability and motility; key elements in tumor invasion. In addition the PI3K pathway is implicated in many aspects of angiogenesis, including upregulation of angiogenic cytokines due to tumor hypoxia or oncogene activation and endothelial cell responses to them. These cytokines signal though receptors such as VEGF-R, FGF-R and Tie-2 and potentiate processes essential for neoangiogenesis including cell proliferation, migration, differentiation into tubules and \"invasion\" of these capillary sprouts into extracellular matrix (ECM). \n CONCLUSIONS A more complete understanding of the role of the PI3 kinase pathway in cancer will lead the way to the development of more potent and selective inhibitors which should be a useful adjunct to conventional therapies, potentially interfering with tumor progression at several pivotal points; in particular cell survival, invasion and angiogenesis.", "title": "Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis." }, { "docid": "16086778", "text": "The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ∼50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.", "title": "Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis" }, { "docid": "39164524", "text": "Accumulation of adipocytes and collagen type-I-producing cells (fibrosis) is observed in muscular dystrophies. The origin of these cells had been largely unknown, but recently we identified mesenchymal progenitors positive for platelet-derived growth factor receptor alpha (PDGFRα) as the origin of adipocytes in skeletal muscle. However, the origin of muscle fibrosis remains largely unknown. In this study, clonal analyses show that PDGFRα(+) cells also differentiate into collagen type-I-producing cells. In fact, PDGFRα(+) cells accumulated in fibrotic areas of the diaphragm in the mdx mouse, a model of Duchenne muscular dystrophy. Furthermore, mRNA of fibrosis markers was expressed exclusively in the PDGFRα(+) cell fraction in the mdx diaphragm. Importantly, TGF-β isoforms, known as potent profibrotic cytokines, induced expression of markers of fibrosis in PDGFRα(+) cells but not in myogenic cells. Transplantation studies revealed that fibrogenic PDGFRα(+) cells mainly derived from pre-existing PDGFRα(+) cells and that the contribution of PDGFRα(-) cells and circulating cells was limited. These results indicate that mesenchymal progenitors are the main origin of not only fat accumulation but also fibrosis in skeletal muscle.", "title": "Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle." }, { "docid": "25315295", "text": "Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.", "title": "Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications." }, { "docid": "39128592", "text": "The thymic medulla provides a microenvironment where medullary thymic epithelial cells (mTECs) express autoimmune regulator and diverse tissue-restricted genes, contributing to launching self-tolerance. Positive selection is essential for thymic medulla formation via a previously unknown mechanism. Here we show that the cytokine RANK ligand (RANKL) was produced by positively selected thymocytes and regulated the cellularity of mTEC by interacting with RANK and osteoprotegerin. Forced expression of RANKL restored thymic medulla in mice lacking positive selection, whereas RANKL perturbation impaired medulla formation. These results indicate that RANKL produced by positively selected thymocytes is responsible for fostering thymic medulla formation, thereby establishing central tolerance.", "title": "The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator." }, { "docid": "883747", "text": "Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.", "title": "IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs" }, { "docid": "4928282", "text": "&NA; Immune cells communicate by exchanging cytokines to achieve a context‐appropriate response, but the distances over which such communication happens are not known. Here, we used theoretical considerations and experimental models of immune responses in vitro and in vivo to quantify the spatial extent of cytokine communications in dense tissues. We established that competition between cytokine diffusion and consumption generated spatial niches of high cytokine concentrations with sharp boundaries. The size of these self‐assembled niches scaled with the density of cytokine‐consuming cells, a parameter that gets tuned during immune responses. In vivo, we measured interactions on length scales of 80–120 &mgr;m, which resulted in a high degree of cell‐to‐cell variance in cytokine exposure. Such heterogeneous distributions of cytokines were a source of non‐genetic cell‐to‐cell variability that is often overlooked in single‐cell studies. Our findings thus provide a basis for understanding variability in the patterning of immune responses by diffusible factors. Graphical Abstract Figure. No caption available. HighlightsCytokine penetration in tissues is governed by a diffusion‐consumption mechanismSpherical cytokine niches are generated around cytokine‐producing cellsThe characteristic niche size depends on the density of cytokine consumersCytokine niches are a source of variability in otherwise identical cells &NA; Cytokine‐mediated communication allows immune cells to achieve a context‐appropriate response, but the distance over which this communication happens is unclear. Oyler‐Yaniv et al. (2017) show that a simple diffusion‐consumption mechanism quantitatively describes the spatial spread of cytokines in vivo and results in localized niches of high cytokine concentrations that contribute to cell‐to‐cell variability.", "title": "A Tunable Diffusion‐Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell‐to‐Cell Communication in the Immune System" }, { "docid": "24726600", "text": "Evidence suggests that cancer immunotherapy will be a major part of the combination treatment plan for many patients with many cancer types in the near future. There are many types of immune processes involving different antitumour and tumour-promoting leucocytes, and tumour cells use many strategies to evade the immune response. The tumour microenvironment can help determine which immune suppressive pathways become activated to restrain antitumour immunity. This includes immune checkpoint receptors on effector T-cells and myeloid cells, and release of inhibitory cytokines and metabolites. Therapeutic approaches that target these pathways, particularly immune-checkpoint receptors, can induce durable antitumour responses in patients with advanced-stage cancers, including melanoma. Nevertheless, many patients do not have a good response to monotherapy approaches and alternative strategies are required to achieve optimal therapeutic benefit. These strategies include eliminating the bulk of tumour cells to provoke tumour-antigen release and antigen-presenting cell (APC) function, using adjuvants to enhance APC function, and using agents that enhance effector-cell activity. In this Review, we discuss the stratification of the tumour microenvironment according to tumour-infiltrating lymphocytes and PD-L1 expression in the tumour, and how this stratification enables the design of optimal combination cancer therapies tailored to target different tumour microenvironments.", "title": "Combination cancer immunotherapies tailored to the tumour microenvironment" }, { "docid": "43619625", "text": "Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.", "title": "Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts." }, { "docid": "46617075", "text": "Lung cancer is the leading cause of cancer related deaths accounting for more deaths than breast, colon and prostate cancers combined. The Rb-p16 regulatory pathway plays an essential role in tumor suppression in the lung epithelium. This is evidenced by the nearly universal alterations in Rb-p16 pathway components in lung cancer, and the increased incidence of pulmonary carcinomas in persons with germline Rb mutations. Interestingly, p16 loss and Rb mutations preferentially occur in phenotypically distinct lung cancer subtypes. Analysis of human tumors has identified progressive preneoplastic lesions that accumulate molecular alterations in an orderly sequence. Epigenetic p16 gene modifications represent an early event in lung cancer progression. This review summarizes the human studies that demonstrate a critical role for the Rb-p16 tumor suppressor pathway in lung carcinogenesis, and discusses how these findings in combination with genetically engineered mouse models have significantly contributed to our understanding of lung cancer pathogenesis.", "title": "Retinoblastoma regulatory pathway in lung cancer." }, { "docid": "4325398", "text": "Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.", "title": "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes" } ]
757
Many transmembrane receptors transmit signals by long-range conformational changes in the association of alpha-helices across the plasma membrane.
[ { "docid": "17123657", "text": "Studying how protein transmembrane domains transmit signals across membranes is beset by unique challenges. Here, we discuss the circumstances that have led to success and reflect on what has been learned from these examples. Such efforts suggest that some of the most interesting properties of transmembrane helix interactions may be the least amenable to study by current techniques.", "title": "Dynamic Helix Interactions in Transmembrane Signaling" } ]
[ { "docid": "2617858", "text": "Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.", "title": "Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin" }, { "docid": "33499189", "text": "T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.", "title": "Full activation of the T cell receptor requires both clustering and conformational changes at CD3." }, { "docid": "2714623", "text": "How membrane receptors initiate signal transduction upon ligand binding is a matter of intense scrutiny. The T cell receptor complex (TCR-CD3) is composed of TCR alpha/beta ligand binding subunits bound to the CD3 subunits responsible for signal transduction. Although it has long been speculated that TCR-CD3 may undergo a conformational change, confirmation is still lacking. We present strong evidence that ligand engagement of TCR-CD3 induces a conformational change that exposes a proline-rich sequence in CD3 epsilon and results in recruitment of the adaptor protein Nck. This occurs earlier than and independently of tyrosine kinase activation. Finally, by interfering with Nck-CD3 epsilon association in vivo, we demonstrate that TCR-CD3 recruitment of Nck is critical for maturation of the immune synapse and for T cell activation.", "title": "Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation" }, { "docid": "31107919", "text": "G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation.", "title": "Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors." }, { "docid": "31154082", "text": "Dehydrins (DHNs; late embryogenesis abundant D-11) are a family of plant proteins induced in response to abiotic stresses such as drought, low temperature, and salinity or during the late stages of embryogenesis. Spectral and thermal properties of these proteins in purified form suggest that they are \"intrinsically unstructured. \" However, DHNs contain at least one copy of a consensus 15-amino acid sequence, the \"K segment,\" which resembles a class A2 amphipathic alpha-helical, lipid-binding domain found in other proteins such as apolipoproteins and alpha-synuclein. The presence of the K segment raises the question of whether DHNs bind lipids, bilayers, or phospholipid vesicles. Here, we show that maize (Zea mays) DHN DHN1 can bind to lipid vesicles that contain acidic phospholipids. We also observe that DHN1 binds more favorably to vesicles of smaller diameter than to larger vesicles, and that the association of DHN1 with vesicles results in an apparent increase of alpha-helicity of the protein. Therefore, DHNs, and presumably somewhat similar plant stress proteins in the late embryogenesis abundant and cold-regulated classes may undergo function-related conformational changes at the water/membrane interface, perhaps related to the stabilization of vesicles or other endomembrane structures under stress conditions.", "title": "The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity." }, { "docid": "6788835", "text": "The human cytomegalovirus gene product US11 causes rapid degradation of class I major histocompatibility complex (MHCI) heavy chains by inducing their dislocation from the endoplasmic reticulum (ER) and subsequent degradation by the proteasome. This set of reactions resembles the endogenous cellular quality control pathway that removes misfolded or unassembled proteins from the ER. We show that the transmembrane domain (TMD) of US11 is essential for MHCI heavy chain dislocation, but dispensable for MHCI binding. A Gln residue at position 192 in the US11 TMD is crucial for the ubiquitination and degradation of MHCI heavy chains. Cells that express US11 TMD mutants allow formation of MHCI-beta2m complexes, but their rate of egress from the ER is significantly impaired. Further mutagenesis data are consistent with the presence of an alpha-helical structure in the US11 TMD essential for MHCI heavy chain dislocation. The failure of US11 TMD mutants to catalyze dislocation is a unique instance in which a polar residue in the TMD of a type I membrane protein is required for that protein's function. Targeting of MHCI heavy chains for dislocation by US11 thus requires the formation of interhelical hydrogen bonds within the ER membrane.", "title": "Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer." }, { "docid": "8246090", "text": "Ion channels are classically understood to regulate the flux of ions across the plasma membrane in response to a variety of environmental and intracellular cues. Ion channels serve a number of functions in intracellular membranes as well. These channels may be temporarily localized to intracellular membranes as a function of their biosynthetic or secretory pathways, i.e., en route to their destination location. Intracellular membrane ion channels may also be located in the endocytic pathways, either being recycled back to the plasma membrane or targeted to the lysosome for degradation. Several channels do participate in intracellular signal transduction; the most well known example is the inositol 1,4,5-trisphosphate receptor (IP(3)R) in the endoplasmic reticulum. Some organellar intracellular membrane channels are required for the ionic homeostasis of their residing organelles. Several newly-discovered intracellular membrane Ca(2+) channels actually play active roles in membrane trafficking. Transient receptor potential (TRP) proteins are a superfamily (28 members in mammal) of Ca(2+)-permeable channels with diverse tissue distribution, subcellular localization, and physiological functions. Almost all mammalian TRP channels studied thus far, like their ancestor yeast TRP channel (TRPY1) that localizes to the vacuole compartment, are also (in addition to their plasma membrane localization) found to be localized to intracellular membranes. Accumulated evidence suggests that intracellularly-localized TRP channels actively participate in regulating membrane traffic, signal transduction, and vesicular ion homeostasis. This review aims to provide a summary of these recent works. The discussion will also be extended to the basic membrane and electrical properties of the TRP-residing compartments.", "title": "TRP channels of intracellular membranes." }, { "docid": "21754541", "text": "Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.", "title": "Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor." }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "20460020", "text": "Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of cutaneous healing. However, an understanding of estrogen/estrogen receptor (ER) contribution to macrophage polarization and subsequent local effects on wound healing is lacking. Here we identify, to our knowledge previously unreported, a role whereby estrogen receptor α (ERα) signaling preferentially polarizes macrophages from a range of sources to an alternative phenotype. Cell-specific ER ablation studies confirm an in vivo role for inflammatory cell ERα, but not ERβ, in poor healing associated with an altered cytokine profile and fewer alternatively activated macrophages. Furthermore, we reveal intrinsic changes in ERα-deficient macrophages, which are unable to respond to alternative activation signals in vitro. Collectively, our data reveal that inflammatory cell-expressed ERα promotes alternative macrophage polarization, which is beneficial for timely healing. Given the diverse physiological roles of ERs, these findings will likely be of relevance to many pathologies involving excessive inflammation.", "title": "Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair." }, { "docid": "1574014", "text": "Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate either agonist or inverse agonist modulation as well as high constitutive activity of the virally encoded oncogene ORF74 and that these mutant forms presumably can be used in transgenic animals to identify the molecular mechanism of its transforming activity.", "title": "Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74." }, { "docid": "82665667", "text": "An optical fiber-based nanobiosensor, for advanced detection of [Ca 2+ ]i (i.e. intracellular Ca 2+ concentration) changes in sub-plasma membrane microdomains in a single living smooth muscle cell and a single living cardiomyocyte, was successfully prepared by coating silver and then immobilizing Calcium Green-1 Dextran, a calcium ion sensitive dye, on the distal end of the nanoprobe. The constructed nanobiosensor was capable of detecting ultra-low and local intracellular calcium ion concentration within the nanomolar range, which is around the physiological level of free cytosolic calcium ion in a single living cell. The response time was less than milliseconds enabling the detection of transient elementary calcium ion signaling events associated with calcium ion microdomains. The effects of stimulants such as high potassium buffer solution and norepinephrine solution were also investigated. The resulting system could thus greatly facilitate the development of an advanced nano-diagnostic platform for in vivo and real-time sensing/diagnosing of [Ca 2+ ]i at the single cell level.", "title": "Detection of [Ca2+]I Changes In Sub-Plasma Membrane Micro Domains in A Single Living Cell By an Optical Fiber-Based Nanobiosensor" }, { "docid": "7643848", "text": "We have characterized the membrane topology of a 60-kDa inner membrane protein from Escherichia coli that is homologous to the recently identified Oxa1p protein in Saccharomyces cerevisiae mitochondria implicated in the assembly of mitochondrial inner membrane proteins. Hydrophobicity and alkaline phosphatase fusion analyses suggest a membrane topology with six transmembrane segments, including an N-terminal signal-anchor sequence not present in mitochondrial Oxa1p. In contrast to partial N-terminal fusion protein constructs, the full-length protein folds into a protease-resistant conformation, suggesting that important folding determinants are present in the C-terminal part of the molecule.", "title": "Membrane topology of the 60-kDa Oxa1p homologue from Escherichia coli." }, { "docid": "36399109", "text": "Recent studies by our group and others demonstrated a required and conserved role of Stim in store-operated Ca(2+) influx and Ca(2+) release-activated Ca(2+) (CRAC) channel activity. By using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, we now identify 75 hits that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin. Among these hits are 11 predicted transmembrane proteins, including Stim, and one, olf186-F, that upon RNA interference-mediated knockdown exhibited a profound reduction of thapsigargin-evoked Ca(2+) entry and CRAC current, and upon overexpression a 3-fold augmentation of CRAC current. CRAC currents were further increased to 8-fold higher than control and developed more rapidly when olf186-F was cotransfected with Stim. olf186-F is a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human. The endoplasmic reticulum (ER) Ca(2+) pump sarco-/ER calcium ATPase (SERCA) and the single transmembrane-soluble N-ethylmaleimide-sensitive (NSF) attachment receptor (SNARE) protein Syntaxin5 also were required for CRAC channel activity, consistent with a signaling pathway in which Stim senses Ca(2+) depletion within the ER, translocates to the plasma membrane, and interacts with olf186-F to trigger CRAC channel activity.", "title": "Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity." }, { "docid": "24142891", "text": "The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.", "title": "Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation." }, { "docid": "8533245", "text": "The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism.", "title": "Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins." }, { "docid": "37643601", "text": "Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide beta-barrel structure covers the fusion loop in E, preventing fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.", "title": "The flavivirus precursor membrane-envelope protein complex: structure and maturation." }, { "docid": "22191759", "text": "Cathelicidins are a novel family of antimicrobial peptide precursors from mammalian myeloid cells. They are characterized by a conserved N-terminal region while the C-terminal antimicrobial domain can vary considerably in both primary sequence and length. Four cathelicidins, proBac5, proBac7, prododecapeptide and proBMAP-28, have been concurrently purified from bovine neutrophils, using simple and rapid methodologies. The correlation of ES-MS data from the purified proteins with their cDNA-deduced sequences has revealed several common features of their primary sequence, such as the presence of N-terminal 5-oxoproline (pyroglutamate) residues and two disulfide bridges in a 1-2, 3-4 arrangement. The N-terminal domains of the cathelicidins present one or two Asp-Pro bonds, which are particularly acid-labile in proBac5 and proBac7, but stable in prododecapeptide. This suggests that the spatial organization around these bonds may vary in different cathelicidins, and favour hydrolysis in some cases. An unexpected feature of the prododecapeptide is that it exists as dimers formed by three possible combinations of its two isoforms. The isolation of a truncated, monomeric form of this protein, lacking the cysteine-containing antimicrobial dodecapeptide, indicates that dimerization occurs via disulfide bridge formation at the level of the C-terminal domain and that the dodecapeptide is likely released as a dimer from its precursor. Sequence-based secondary structure predictions and CD results indicate for cathelicidins a 30-50% content of extended conformation and <20% content of alpha-helical conformation, with the alpha-helical segment placed near the N-terminus. Finally, similarity searching and topology-based structure prediction underline a significant sequential and structural similarity between the conserved N-terminal domain of cathelicidins and cystatin-like domains, placing this family within the cystatin superfamily. When assayed against cathepsin L, unlike the potent cystatin inhibitors, three of the four cathelicidins show only a poor inhibitory activity (Ki = 0.6-3 microM).", "title": "Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides." }, { "docid": "5993745", "text": "BACKGROUND Corin is a transmembrane protease that processes natriuretic peptides in the heart. Like many membrane proteins, corin is shed from the cell surface. \n METHODS AND RESULTS In this study, we obtained plasma samples from healthy controls and patients with heart failure (HF) and acute myocardial infarction. Soluble corin levels in plasma were measured by an ELISA method. In healthy adults (n=198), plasma corin levels were 690 pg/mL (SD, 260 pg/mL). The corin levels did not differ significantly among different age groups. In patients with HF (n=291), plasma corin levels were significantly lower compared with that of healthy controls (365 pg/mL [SD, 259]; P<0.001). The reduction in plasma corin levels seemed to correlate with the severity of HF. In patients of New York Heart Association classes II, III, and IV, plasma corin levels were 450 pg/mL (SD, 281 pg/mL; n=69), 377 pg/mL (SD, 270 pg/mL; n=132), and 282 pg/mL (SD, 194 pg/mL; n=90), respectively (P<0.001 class II vs class IV; P<0.05 class III vs class IV). In contrast, plasma corin levels in patients with acute myocardial infarction (n=73) were similar to that of healthy controls (678 pg/mL [SD, 285 pg/mL]; P>0.05). \n CONCLUSIONS Soluble corin was detected in human plasma. Plasma corin levels were reduced significantly in patients with HF but not in those with acute myocardial infarction. Our results indicate that corin deficiency may contribute to the pathogenesis of HF and that plasma corin may be used as a biomarker in the diagnosis of HF.", "title": "Plasma soluble corin in patients with heart failure." } ]
758
Marmosets have a brain region homologous to Broca's area.
[ { "docid": "14195528", "text": "The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.", "title": "Responses of primate frontal cortex neurons during natural vocal communication." } ]
[ { "docid": "1391126", "text": "Primates often rely on vocal communication to mediate social interactions. Although much is known about the acoustic structure of primate vocalizations and the social context in which they are usually uttered, our knowledge about the neocortical control of audio-vocal interactions in primates is still incipient, being mostly derived from lesion studies in squirrel monkeys and macaques. To map the neocortical areas related to vocal control in a New World primate species, the common marmoset, we employed a method previously used with success in other vertebrate species: Analysis of the expression of the immediate early gene Egr-1 in freely behaving animals. The neocortical distribution of Egr-1 immunoreactive cells in three marmosets that were exposed to the playback of conspecific vocalizations and vocalized spontaneously (H/V group) was compared to data from three other marmosets that also heard the playback but did not vocalize (H/n group). The anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex presented a higher number of Egr-1 immunoreactive cells in the H/V group than in H/n animals. Our results provide direct evidence that the ventrolateral prefrontal cortex, the region that comprises Broca's area in humans and has been associated with auditory processing of species-specific vocalizations and orofacial control in macaques, is engaged during vocal output in marmosets. Altogether, our results support the notion that the network of neocortical areas related to vocal communication in marmosets is quite similar to that of Old world primates. The vocal production role played by these areas and their importance for the evolution of speech in primates are discussed.", "title": "Activation of Frontal Neocortical Areas by Vocal Production in Marmosets" }, { "docid": "3095620", "text": "The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.", "title": "Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey" }, { "docid": "27815697", "text": "The common marmoset (Callithrix jacchus), a small New World primate, has been attracting much attention in the research field of biomedical science and neuroscience, based on its (i) cross-reactivity with human cytokines or hormones, (ii) comparative ease in handling due to its small size, (iii) high reproductive efficiency, (iv) establishment of basic research tools, and (v) advantages of its unique behavioral and cognitive characters. Various neurological disease models have been developed in the common marmoset, including Parkinson's disease, Huntington's disease, Alzheimer's disease, stroke, multiple sclerosis and spinal cord injury. We recently developed transgenic common marmoset with germline transmission, which is expected to provide a new animal model for the study of human diseases. In this review, we summarize the recent progress of biomedical research and neuroscience using common marmoset as an excellent model system.", "title": "The common marmoset as a novel animal model system for biomedical and neuroscience research applications." }, { "docid": "4404433", "text": "The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.", "title": "Generation of transgenic non-human primates with germline transmission" }, { "docid": "41239107", "text": "In this study, we investigated the presence and role of immunoproteasome and its LMP2 subunit polymorphism at codon 60 in Alzheimer's disease (AD). Immunoproteasome was present in brain areas such as hippocampus and cerebellum and localized in neurons, astrocytes and endothelial cells. A higher expression of immunoproteasome was found in brain of AD patients than in brain of non-demented elderly, being its expression in young brain negligible or absent. Furthermore, AD affected regions showed a partial decrease in proteasome trypsin-like activity. The study of LMP2 polymorphism (R/H) showed that it does not influence LMP2 expression (neither the mRNA nor mature protein) in brain tissue. However, control brain areas of AD patients carrying the RR genotype showed an increased proteasome activity in comparison with RH carriers. To test whether this effect of the genotype might be related to AD onset we performed a genetic study, which allowed us to exclude an association of LMP2 codon 60 polymorphism with AD onset, despite its influence on the proteasome activity in human brain.", "title": "Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains." }, { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "6036535", "text": "BACKGROUND There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. \n METHODOLOGY/HYPOTHESES We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. \n RESULTS Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. \n DISCUSSION/CONCLUSION Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.", "title": "Structural Brain Correlates Associated with Professional Handball Playing" }, { "docid": "23869951", "text": "UNLABELLED The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions. SIGNIFICANCE STATEMENT In this study, we show that the genetic ablation of LHA glutamatergic neurons enhances caloric intake. Some of these LHA glutamatergic neurons project to the lateral habenula, a brain area important for generating behavioral avoidance. Optogenetic stimulation of this circuit has net excitatory effects on postsynaptic LHb neurons. This is the first study to characterize the functional connectivity and behavioral relevance of this circuit within the context of feeding and reward-related behavior.", "title": "Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward." }, { "docid": "45820464", "text": "Five strains of scrapie agent were used as intracerebral inocula for 2 inbred mouse strains, C57BL and VM, and their F1 cross. The degree of vacuolation in specified regions of the brain, and the relative distribution of this damage in 9 regions represented as a “lesion profile”, was different for each agent. Any of the 5 scrapie agents could be distinguished from the others with a very high degree of reliability solely on the basis of these histological parameters, using either strain of mouse. The lesion profile was unaffected by the dose of the agent, using doses of ME7 agent ranging over 6 orders of magnitude in C57BL mice. The genotype of mouse had a marked effect on the overall degree of vacuolation and on the shape of the lesion profile: these effects were more profound with some agents than others. In certain areas of the brain, depending upon the strain of agent used, the (C57BL × VM)F1 cross was found to have either significantly more or significantly less vacuolation than either parental genotype. The genetic control of the lesion profile was found to be too complex for more detailed analysis in these data.", "title": "Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation." }, { "docid": "15669393", "text": "Transient activation of estrogen receptors (ER) in the developing brain during a limited perinatal \"window of time\" is recognized as a key mechanism of defeminization of neural control of reproductive function and sexual behavior. Two major ER isoforms, alpha and beta, are present in neural circuits that govern ovarian cycle and sexual behavior. Using highly selective ER agonists, this study provides the first evidence for distinct contribution of individual ER isoforms to the process of estrogen dependent defeminization. Neonatal activation of the ERalpha in female rats resulted in abrogation of cyclic ovarian activity and female sexual behavior in adulthood. These effects are associated with male-like alterations in the morphology of the anteroventral periventricular (AVPV) and sexually dimorphic nucleus of the preoptic area (SDN-POA), as well as refractoriness to estrogen-mediated induction of sexual receptivity. Exposure to an ERbeta-selective agonist induced persistent estrus and had a strong defeminizing effect on the hypothalamic gonadotropin \"surge generator\" AVPV. However, neonatal ERbeta activation failed to alter female sexual behavior, responsiveness to estrogens and morphometric features of the behaviorally relevant SDN-POA. Thus, although co-present in several brain regions involved in the control of female reproductive function, ER isoforms convey different, and probably not synergistic, chemical signals in the course of neonatal sex-specific brain organization.", "title": "brain organization" }, { "docid": "18379855", "text": "Humans, like other animals, are exposed to a continuous stream of signals, which are dynamic, multimodal, extended, and time varying in nature. This complex input space must be transduced and sampled by our sensory systems and transmitted to the brain where it can guide the selection of appropriate actions. To simplify this process, it's been suggested that the brain exploits statistical regularities in the stimulus space. Tests of this idea have largely been confined to unimodal signals and natural scenes. One important class of multisensory signals for which a quantitative input space characterization is unavailable is human speech. We do not understand what signals our brain has to actively piece together from an audiovisual speech stream to arrive at a percept versus what is already embedded in the signal structure of the stream itself. In essence, we do not have a clear understanding of the natural statistics of audiovisual speech. In the present study, we identified the following major statistical features of audiovisual speech. First, we observed robust correlations and close temporal correspondence between the area of the mouth opening and the acoustic envelope. Second, we found the strongest correlation between the area of the mouth opening and vocal tract resonances. Third, we observed that both area of the mouth opening and the voice envelope are temporally modulated in the 2-7 Hz frequency range. Finally, we show that the timing of mouth movements relative to the onset of the voice is consistently between 100 and 300 ms. We interpret these data in the context of recent neural theories of speech which suggest that speech communication is a reciprocally coupled, multisensory event, whereby the outputs of the signaler are matched to the neural processes of the receiver.", "title": "The Natural Statistics of Audiovisual Speech" }, { "docid": "21257564", "text": "The paramount feature of long-term potentiation (LTP) as a memory mechanism is its characteristic persistence over time. Although the basic phenomenology of LTP persistence was established 30 years ago, new insights have emerged recently about the extent of LTP persistence and its regulation by activity and experience. Thus, it is now evident that LTP, at least in the dentate gyrus, can either be decremental, lasting from hours to weeks, or stable, lasting months or longer. Although mechanisms engaged during the induction of LTP regulate its subsequent persistence, the maintenance of LTP is also governed by activity patterns post-induction, whether induced experimentally or generated by experience. These new findings establish dentate gyrus LTP as a useful model system for studying the mechanisms governing the induction, maintenance and interference with long-term memory, including very long-term memory lasting months or longer. The challenge is to study LTP persistence in other brain areas, and to relate, if possible, the properties and regulation of LTP maintenance to these same properties of the information that is actually stored in those regions.", "title": "How long will long-term potentiation last?" }, { "docid": "9433958", "text": "Although susceptibility of neurons in the brain to microbial infection is a major determinant of clinical outcome, little is known about the molecular factors governing this vulnerability. Here we show that two types of neurons from distinct brain regions showed differential permissivity to replication of several positive-stranded RNA viruses. Granule cell neurons of the cerebellum and cortical neurons from the cerebral cortex have unique innate immune programs that confer differential susceptibility to viral infection ex vivo and in vivo. By transducing cortical neurons with genes that were expressed more highly in granule cell neurons, we identified three interferon-stimulated genes (ISGs; Ifi27, Irg1 and Rsad2 (also known as Viperin)) that mediated the antiviral effects against different neurotropic viruses. Moreover, we found that the epigenetic state and microRNA (miRNA)-mediated regulation of ISGs correlates with enhanced antiviral response in granule cell neurons. Thus, neurons from evolutionarily distinct brain regions have unique innate immune signatures, which probably contribute to their relative permissiveness to infection.", "title": "Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive stranded RNA viruses" }, { "docid": "46451940", "text": "Lateral hypothalamic (LH) injections of the excitatory neurotransmitter glutamate, or its excitatory amino acid (EAA) agonists, kainic acid (KA), D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA), or N-methyl-D-aspartic acid (NMDA), can rapidly elicit an intense feeding response in satiated rats. To determine whether the LH is the actual locus of this effect, we compared these compounds' ability to stimulate feeding when injected into the LH, versus when injected into sites bracketing this region. Food intake in groups of adult male rats was measured 1 h after injection of glutamate (30-900 nmol), KA (0.1-1.0 nmol), AMPA (0.33-3.3 nmol), NMDA (0.33-33.3 nmol) or vehicle, through chronically implanted guide cannulas, into one of seven brain sites. These sites were: the LH, the anterior and posterior tips of the LH, the thalamus immediately dorsal to the LH, the amygdala just lateral to the LH, or the paraventricular and perifornical areas medial to the LH. The results show that across doses and agonists the eating-stimulatory effects were largest with injections into the LH. In the LH, glutamate between 300 and 900 nmol elicited a dose-dependent eating response of up to 5 g within 1 h (P < 0.01). Each of the other agonists at doses of 3.3 nmol or less elicited eating responses of at least 10 g with injections into this site. Injections into the other brain sites produced either no eating, or occasionally smaller and less consistent eating responses.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating." }, { "docid": "40769868", "text": "The inwardly rectifying K+ channel subunit Kir5.1 is expressed abundantly in the brain, but its precise distribution and function are still largely unknown. Because Kir5.1 is co-expressed with Kir4.1 in retinal glial Muller cells, we have compared the biochemical and immunological properties of Kir5.1 and Kir4.1 in the mouse brain. Immunoprecipitation experiments suggested that brain expressed at least two subsets of Kir channels, heteromeric Kir4.1/5.1 and homomeric Kir4.1. Immunolabeling using specific antibodies showed that channels comprising Kir4.1 and Kir5.1 subunits were assembled in a region-specific fashion. Heteromeric Kir4.1/5.1 was identified in the neocortex and in the glomeruli of the olfactory bulb. Homomeric Kir4.1 was confined to the hippocampus and the thalamus. Homomeric Kir5.1 was not identified. Kir4.1/5.1 and Kir4.1 expression appeared to occur only in astrocytes, specifically in the membrane domains facing the pia mater and blood vessels or in the processes surrounding synapses. Both Kir4.1/5.1 and Kir4.1 could be associated with PDZ domain-containing syntrophins, which might be involved in the subcellular targeting of these astrocyte Kir channels. Because heteromeric Kir4.1/5.1 and homomeric Kir4.1 have distinct ion channel properties (Tanemoto, M., Kittaka, N., Inanobe, A., and Kurachi, Y. (2000) J. Physiol. (Lond.) 525, 587-592 and Tucker, S. J., Imbrici, P., Salvatore, L., D'Adamo, M. C., and Pessia, M. (2000) J. Biol. Chem. 275, 16404-16407), it is plausible that these channels play differential physiological roles in the K+ -buffering action of brain astrocytes in a region-specific manner.", "title": "Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes." }, { "docid": "1871499", "text": "5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.", "title": "Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease." }, { "docid": "13966946", "text": "OBJECTIVE To determine spatial patterns of co-endemicity of schistosomiasis mansoni and the soil-transmitted helminths (STHs) Ascaris lumbricoides, Trichuris trichiura and hookworm in the Great Lakes region of East Africa, to help plan integrated neglected tropical disease programmes in this region. \n METHOD Parasitological surveys were conducted in Uganda, Tanzania, Kenya and Burundi in 28 213 children in 404 schools. Bayesian geostatistical models were used to interpolate prevalence of these infections across the study area. Interpolated prevalence maps were overlaid to determine areas of co-endemicity. \n RESULTS In the Great Lakes region, prevalence was 18.1% for Schistosoma mansoni, 50.0% for hookworm, 6.8% for A. lumbricoides and 6.8% for T. trichiura. Hookworm infection was ubiquitous, whereas S. mansoni, A. lumbricoides and T. trichiura were highly focal. Most areas were endemic (prevalence >or=10%) or hyperendemic (prevalence >or=50%) for one or more STHs, whereas endemic areas for schistosomiasis mansoni were restricted to foci adjacent large perennial water bodies. \n CONCLUSION Because of the ubiquity of hookworm, treatment programmes are required for STH throughout the region but efficient schistosomiasis control should only be targeted at limited high-risk areas. Therefore, integration of schistosomiasis with STH control is only indicated in limited foci in East Africa.", "title": "Spatial co-distribution of neglected tropical diseases in the east African great lakes region: revisiting the justification for integrated control." }, { "docid": "25141908", "text": "The human cytomegalovirus UL111A region is active during both productive and latent phases of infection. During productive infection, the virus expresses ORF79, a protein with oncogenic properties, and cmvIL-10, a functional homolog of human IL-10. During latent infection of myeloid progenitor cells, an alternately spliced variant of cmvIL-10, termed latency-associated (LA) cmvIL-10 has previously been identified. To determine whether LAcmvIL-10 transcription occurs during productive infection, we performed 5' and 3' RACE to map UL111A-region transcripts in productively infected human foreskin fibroblasts (HFFs). This analysis revealed the presence of a singly spliced UL111A-region transcript predicted to encode LAcmvIL-10. This transcript was expressed in HFFs with early (beta) kinetics, a temporal class that differs from that of ORF79 (alpha kinetics) and cmvIL-10 (gamma kinetics). These data identify and map a transcript encoding a latency-associated homolog of IL-10 which is expressed by the virus during the productive phase of infection.", "title": "Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection." }, { "docid": "31208367", "text": "PURPOSE To evaluate the association between rates of progressive loss in different regions of the visual field and longitudinal changes in quality of life (QoL). \n DESIGN Prospective, observational cohort study. \n PARTICIPANTS The study included 236 patients with glaucomatous visual field loss followed for an average of 4.3±1.5 years. \n METHODS All subjects had the 25-item National Eye Institute Visual Functioning Questionnaire (NEI VFQ-25) performed annually and standard automated perimetry (SAP) at 6-month intervals. Subjects were included if they had a minimum of 2 NEI VFQ-25 and 5 SAP tests during follow-up. Evaluation of rates of visual field change was performed using 4 different regions (central inferior, central superior, peripheral inferior, and peripheral superior) of the integrated binocular visual field. The association between change in NEI VFQ-25 Rasch-calibrated scores and change in different regions of the visual field was investigated with a joint multivariable longitudinal linear mixed model. \n MAIN OUTCOME MEASURES The relationship between change in QoL scores and change of mean sensitivity in different regions of the visual field. \n RESULTS There was a significant correlation between change in the NEI VFQ-25 Rasch scores during follow-up and change in different regions of the visual field. Each 1 decibel (dB)/year change in binocular mean sensitivity of the central inferior area was associated with a decline of 2.6 units/year in the NEI VFQ-25 scores (R(2) = 35%; P < 0.001). Corresponding associations with change in QoL scores for the peripheral inferior, central superior, and peripheral superior areas of the visual field had R(2) values of 30%, 24%, and 19%, respectively. The association for the central inferior visual field area was statistically significantly stronger than those of the central superior area (P = 0.011) and peripheral superior area (P = 0.001), but not the peripheral inferior area (P = 0.171). Greater declines in NEI VFQ-25 scores were also seen in patients who had worse visual field sensitivity at baseline. \n CONCLUSIONS Progressive decline in sensitivity in the central inferior area of the visual field had the strongest association with longitudinal decline in QoL of patients with glaucoma.", "title": "The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma." } ]
760
Mathematical models predict that using Artemisinin-based combination therapy over nongametocytocidal drugs have only a modest impact in reducing malaria transmission.
[ { "docid": "1805641", "text": "BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. \n METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. \n CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.", "title": "Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity" } ]
[ { "docid": "3929361", "text": "BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. \n METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. \n CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.", "title": "Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance" }, { "docid": "13899137", "text": "BACKGROUND Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. \n METHODS AND FINDINGS Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. \n CONCLUSIONS Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.", "title": "HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa" }, { "docid": "12409683", "text": "BACKGROUND Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. \n METHODS Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. \n RESULTS ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. \n CONCLUSION Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission.", "title": "Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials" }, { "docid": "18074797", "text": "BACKGROUND Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. \n METHODS AND FINDINGS We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. \n CONCLUSIONS Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.", "title": "Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies" }, { "docid": "10617916", "text": "Background. Artemisinin-based combination therapy (ACT) reduces microscopically confirmed gametocytemia and mosquito infection. However, molecular techniques have recently revealed high prevalences of submicroscopic gametocytemia. Our objective here was to determine the effect of sulfadoxine-pyrimethamine (SP) monotherapy and treatment with SP plus amodiaquine (AQ), SP plus artesunate (AS), and artemether-lumefantrine (AL; Coartem) on submicroscopic gametocytemia and infectiousness. Methods. Kenyan children (n=528) 6 months-10 years of age were randomized to 4 treatment arms. Gametocytemia was determined by both microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. Results. Gametocyte prevalence, as determined by Pfs25 QT-NASBA, was 89.4% (219/245) at enrollment and decreased after treatment with SP plus AS, SP plus AQ, and AL. Membrane-feeding assays for a group of randomly selected children revealed that the proportion of infectious children was as much as 4-fold higher than expected when based on microscopy. ACT did not significantly reduce the proportion of infectious children but did reduce the proportion of infected mosquitoes. Conclusions. Submicroscopic gametocytemia is common after treatment and contributes considerably to mosquito infection. Our findings should be interpreted in the context of transmission intensity, but the effect of ACT on malaria transmission appears to be moderate and restricted to the duration of gametocyte carriage and the proportion of mosquitoes that are infected by carriers.", "title": "Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum." }, { "docid": "13948920", "text": "Artemisinin-based combination therapies are the frontline treatment of Plasmodium falciparum malaria. The circulation of falsified and substandard artemisinin-based antimalarials in Southeast Asia has been a major predicament for the malaria elimination campaign. To provide an update of this situation, we purchased 153 artemisinin-containing antimalarials, as convenience samples, in private drug stores from different regions of Myanmar. The quality of these drugs in terms of their artemisinin derivative content was tested using specific dipsticks for these artemisinin derivatives, as point-of-care devices. A subset of these samples was further tested by high-performance liquid chromatography (HPLC). This survey identified that > 35% of the collected drugs were oral artesunate and artemether monotherapies. When tested with the dipsticks, all but one sample passed the assays, indicating that the detected artemisinin derivative content corresponded approximately to the labeled contents. However, one artesunate injection sample was found to contain no active ingredient at all by the dipstick assay and subsequent HPLC analysis. The continued circulation of oral monotherapies and the description, for the first time, of falsified parenteral artesunate provides a worrisome picture of the antimalarial drug quality in Myanmar during the malaria elimination phase, a situation that deserves more oversight from regulatory authorities.", "title": "Quality Testing of Artemisinin-Based Antimalarial Drugs in Myanmar." }, { "docid": "13901073", "text": "BACKGROUND Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study's finding. The objective of our study is to better understand the implications of different model structures and assumptions, so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV. \n METHODS AND FINDINGS We developed nine structurally different mathematical models of the South African HIV epidemic in a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model, while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4 count ≤350 cells/µl will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many additional life-years would be saved. The study's major limitations are that elimination was defined as incidence below 1/1,000 person-years rather than 0% prevalence, and drug resistance was not modeled. \n CONCLUSIONS Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less cost-effective than previously predicted because the current South African ART treatment policy alone could already drive HIV into elimination. Please see later in the article for the Editors' Summary.", "title": "Elimination of HIV in South Africa through Expanded Access to Antiretroviral Therapy: A Model Comparison Study" }, { "docid": "25499612", "text": "Despite its key role in determining the stability and intensity of malaria transmission, the infectiousness of human populations to mosquitoes has rarely been estimated. Field-based analyses of malaria transmission have frequently relied on the prevalence of asexual parasites or gametocytes as proxies for infectiousness. We now summarize empirical data on human infectiousness from Africa and Papua New Guinea. Over a wide range of transmission intensities there is little relationship between the infectiousness of human populations to vector mosquitoes and mosquito-to-human transmission intensity. We compare these data with the predictions of a stochastic simulation model of Plasmodium falciparum epidemiology. This model predicted little variation in the infectiousness of the human population for entomologic inoculation rates (EIRs) greater than approximately 10 infectious bites per year, demonstrating that the lack of relationship between the EIR and the infectious reservoir can be explained without invoking any effects of acquired transmission-blocking immunity. The near absence of field data from areas with an EIR < 10 per year precluded validation of the model predictions for low EIR values. These results suggest that interventions reducing mosquito-to-human transmission will have little or no effect on human infectiousness at the levels of transmission found in most rural areas of sub-Saharan Africa. Unless very large reductions in transmission can be achieved, measures to prevent mosquito-to-human transmission need to be complemented with interventions that reduce the density or infectiousness of blood stage parasites.", "title": "Infectiousness of malaria-endemic human populations to vectors." }, { "docid": "6503185", "text": "Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.", "title": "Malaria biology and disease pathogenesis: insights for new treatments" }, { "docid": "8133050", "text": "Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.", "title": "Quantifying Transmission Investment in Malaria Parasites" }, { "docid": "25953438", "text": "Understanding of the age- and season- dependence of malaria mortality is an important prerequisite for epidemiologic models of malaria immunity. However, most studies of malaria mortality have aggregated their results into broad age groups and across seasons, making it hard to predict the likely impact of interventions targeted at specific age groups of children. We present age-specific mortality rates for children aged < 15 years for the period of 2001-2005 in 7 demographic surveillance sites in areas of sub-Saharan Africa with stable endemic Plasmodium falciparum malaria. We use verbal autopsies (VAs) to estimate the proportion of deaths by age group due to malaria, and thus calculate malaria-specific mortality rates for each site, age-group, and month of the year. In all sites a substantial proportion of deaths (ranging from 20.1% in a Mozambican site to 46.2% in a site in Burkina Faso) were attributed to malaria. The overall age patterns of malaria mortality were similar in the different sites. Deaths in the youngest children (< 3 months old) were only rarely attributed to malaria, but in children over 1 year of age the proportion of deaths attributed to malaria was only weakly age-dependent. In most of the sites all-cause mortality rates peaked during the rainy season, but the strong seasonality in malaria transmission in these sites was not reflected in strong seasonality in the proportion of deaths attributed to malaria, except in the two sites in Burkina Faso. Improvement in the specificity of malaria verbal autopsies would make it easier to interpret the age and season patterns in such data.", "title": "Patterns of age-specific mortality in children in endemic areas of sub-Saharan Africa." }, { "docid": "4999387", "text": "Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are currently the preferred methods of malaria vector control. In many cases, these methods are used together in the same households, especially to suppress transmission in holoendemic and hyperendemic scenarios. Though widespread, there has been limited evidence suggesting that such co-application confers greater protective benefits than either ITNs or IRS when used alone. Since both methods are insecticide-based and intradomicilliary, this article hypothesises that outcomes of their combination would depend on effects of the candidate active ingredients on mosquitoes that enter or those that attempt to enter houses. It is suggested here that enhanced household level protection can be achieved if the ITNs and IRS have divergent yet complementary properties, e.g. highly deterrent IRS compounds coupled with highly toxic ITNs. To ensure that the problem of insecticide resistance is avoided, the ITNs and IRS products should preferably be of different insecticide classes, e.g. pyrethroid-based nets combined with organophosphate or carbamate based IRS. The overall community benefits would however depend also on other factors such as proportion of people covered by the interventions and the behaviour of vector species. This article concludes by emphasizing the need for basic and operational research, including mathematical modelling to evaluate IRS/ITN combinations in comparison to IRS alone or ITNs alone.", "title": "Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future" }, { "docid": "374902", "text": "BACKGROUND Roughly 3 million people worldwide were receiving antiretroviral therapy (ART) at the end of 2007, but an estimated 6.7 million were still in need of treatment and a further 2.7 million became infected with HIV in 2007. Prevention efforts might reduce HIV incidence but are unlikely to eliminate this disease. We investigated a theoretical strategy of universal voluntary HIV testing and immediate treatment with ART, and examined the conditions under which the HIV epidemic could be driven towards elimination. \n METHODS We used mathematical models to explore the effect on the case reproduction number (stochastic model) and long-term dynamics of the HIV epidemic (deterministic transmission model) of testing all people in our test-case community (aged 15 years and older) for HIV every year and starting people on ART immediately after they are diagnosed HIV positive. We used data from South Africa as the test case for a generalised epidemic, and assumed that all HIV transmission was heterosexual. \n FINDINGS The studied strategy could greatly accelerate the transition from the present endemic phase, in which most adults living with HIV are not receiving ART, to an elimination phase, in which most are on ART, within 5 years. It could reduce HIV incidence and mortality to less than one case per 1000 people per year by 2016, or within 10 years of full implementation of the strategy, and reduce the prevalence of HIV to less than 1% within 50 years. We estimate that in 2032, the yearly cost of the present strategy and the theoretical strategy would both be US$1.7 billion; however, after this time, the cost of the present strategy would continue to increase whereas that of the theoretical strategy would decrease. \n INTERPRETATION Universal voluntary HIV testing and immediate ART, combined with present prevention approaches, could have a major effect on severe generalised HIV/AIDS epidemics. This approach merits further mathematical modelling, research, and broad consultation.", "title": "Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model." }, { "docid": "14337960", "text": "Decisions to eliminate malaria from all or part of a country involve a complex set of factors, and this complexity is compounded by ambiguity surrounding some of the key terminology, most notably \"control\" and \"elimination. \" It is impossible to forecast resource and operational requirements accurately if endpoints have not been defined clearly, yet even during the Global Malaria Eradication Program, debate raged over the precise definition of \"eradication. \" Analogous deliberations regarding the meaning of \"elimination\" and \"control\" are basically nonexistent today despite these terms' core importance to programme planning. To advance the contemporary debate about these issues, this paper presents a historical review of commonly used terms, including control, elimination, and eradication, to help contextualize current understanding of these concepts. The review has been supported by analysis of the underlying mathematical concepts on which these definitions are based through simple branching process models that describe the proliferation of malaria cases following importation. Through this analysis, the importance of pragmatic definitions that are useful for providing malaria control and elimination programmes with a practical set of strategic milestones is emphasized, and it is argued that current conceptions of elimination in particular fail to achieve these requirements. To provide all countries with precise targets, new conceptual definitions are suggested to more precisely describe the old goals of \"control\" - here more exactly named \"controlled low-endemic malaria\" - and \"elimination. \" Additionally, it is argued that a third state, called \"controlled non-endemic malaria,\" is required to describe the epidemiological condition in which endemic transmission has been interrupted, but malaria resulting from onwards transmission from imported infections continues to occur at a sufficiently high level that elimination has not been achieved. Finally, guidelines are discussed for deriving the separate operational definitions and metrics that will be required to make these concepts relevant, measurable, and achievable for a particular environment.", "title": "How absolute is zero? An evaluation of historical and current definitions of malaria elimination" }, { "docid": "1349033", "text": "Based on sensitivity analysis of the MacDonald-Ross model, it has long been argued that the best way to reduce malaria transmission is to target adult female mosquitoes with insecticides that can reduce the longevity and human-feeding frequency of vectors. However, these analyses have ignored a fundamental biological difference between mosquito adults and the immature stages that precede them: adults are highly mobile flying insects that can readily detect and avoid many intervention measures whereas mosquito eggs, larvae and pupae are confined within relatively small aquatic habitats and cannot readily escape control measures. We hypothesize that the control of adult but not immature mosquitoes is compromised by their ability to avoid interventions such as excito-repellant insecticides. We apply a simple model of intervention avoidance by mosquitoes and demonstrate that this can substantially reduce effective coverage, in terms of the proportion of the vector population that is covered, and overall impact on malaria transmission. We review historical evidence that larval control of African malaria vectors can be effective and conclude that the only limitations to the effective coverage of larval control are practical rather than fundamental. Larval control strategies against the vectors of malaria in sub-Saharan Africa could be highly effective, complementary to adult control interventions, and should be prioritized for further development, evaluation and implementation as an integral part of Rolling Back Malaria.", "title": "Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage" }, { "docid": "20931483", "text": "Understanding local variability in malaria transmission risk is critically important when designing intervention or vaccine trials. Using a combination of field data, satellite image analysis, and GIS modeling, we developed a high-resolution map of malaria entomological inoculation rates (EIR) in The Gambia, West Africa. The analyses are based on the variation in exposure to malaria parasites experienced in 48 villages in 1996 and 21 villages in 1997. The entomological inoculation rate (EIR) varied from 0 to 166 infective bites per person per rainy season. Detailed field surveys identified the major Anopheles gambiae s.l. breeding habitats. These habitats were mapped by classification of a LANDSAT TM satellite image with an overall accuracy of 85%. Village EIRs decreased as a power function based on the breeding areas size and proximity. We use this relationship and the breeding habitats to map the variation in EIR over the entire 2500-km(2) study area.", "title": "High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery." }, { "docid": "1986482", "text": "BACKGROUND Since November 2009, WHO recommends that adults infected with HIV should initiate antiretroviral therapy (ART) at CD4+ cell counts of ≤350 cells/µl rather than ≤200 cells/µl. South Africa decided to adopt this strategy for pregnant and TB co-infected patients only. We estimated the impact of fully adopting the new WHO guidelines on HIV epidemic dynamics and associated costs. \n METHODS AND FINDING We used an established model of the transmission and control of HIV in specified sexual networks and healthcare settings. We quantified the model to represent Hlabisa subdistrict, KwaZulu-Natal, South Africa. We predicted the HIV epidemic dynamics, number on ART and program costs under the new guidelines relative to treating patients at ≤200 cells/µl for the next 30 years. During the first five years, the new WHO treatment guidelines require about 7% extra annual investments, whereas 28% more patients receive treatment. Furthermore, there will be a more profound impact on HIV incidence, leading to relatively less annual costs after seven years. The resulting cumulative net costs reach a break-even point after on average 16 years. \n CONCLUSIONS Our study strengthens the WHO recommendation of starting ART at ≤350 cells/µl for all HIV-infected patients. Apart from the benefits associated with many life-years saved, a modest frontloading appears to lead to net savings within a limited time-horizon. This finding is robust to alternative assumptions and foreseeable changes in ART prices and effectiveness. Therefore, South Africa should aim at rapidly expanding its healthcare infrastructure to fully embrace the new WHO guidelines.", "title": "The Impact of the New WHO Antiretroviral Treatment Guidelines on HIV Epidemic Dynamics and Cost in South Africa" }, { "docid": "18153456", "text": "BACKGROUND Good-quality artemisinin drugs are essential for malaria treatment, but increasing prevalence of poor-quality artemisinin drugs in many endemic countries hinders effective management of malaria cases. \n METHODS To develop a point-of-care assay for rapid identification of counterfeit and substandard artemisinin drugs for resource-limited areas, we used specific monoclonal antibodies against artesunate and artemether, and developed prototypes of lateral flow dipstick assays. In this pilot test, we evaluated the feasibility of these dipsticks under different endemic settings and their performance in the hands of untrained personnel. \n RESULTS The results showed that the dipstick tests can be successfully performed by different investigators with the included instruction sheet. None of the artemether and artesunate drugs collected from public pharmacies in different endemic countries failed the test. \n CONCLUSION It is possible that the simple dipstick assays, with future optimization of test conditions and sensitivity, can be used as a qualitative and semi-quantitative assay for rapid screening of counterfeit artemisinin drugs in endemic settings.", "title": "Pilot testing of dipsticks as point-of-care assays for rapid diagnosis of poor-quality artemisinin drugs in endemic settings" }, { "docid": "20761364", "text": "Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.", "title": "Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays." } ]
761
MeCP2 influences the synaptic maturation of neurons.
[ { "docid": "10009203", "text": "As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved.", "title": "Structural Homeostasis: Compensatory Adjustments of Dendritic Arbor Geometry in Response to Variations of Synaptic Input " } ]
[ { "docid": "41644178", "text": "Rett syndrome is caused by loss-of-function mutations in the gene encoding the methyl DNA-binding factor MeCP2. As brain mass and neuronal complexity tend to be diminished in Rett patients, we tested whether MeCP2 directly influences the morphological complexity of developing neurons. Our results show that cultured mouse neurons overexpressing MeCP2beta (MECP2A) develop more complex morphologies, having longer axonal and dendritic processes, and an increased number of axonal and dendritic terminal endings. We then tested whether overexpressing a mutant form of MeCP2beta lacking its carboxyl terminus would elicit the same effects. Interestingly, while neurons overexpressing this mutant failed to enhance axonal and dendritic process elongation, the complexity of their axonal and dendritic processes remained significantly elevated. Taken together, these data support the hypothesis that MeCP2 directly regulates neuronal maturation and/or synaptogenesis, and provides evidence that MeCP2 may influence neuritic elongation and process branching through different mechanisms.", "title": "Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2" }, { "docid": "33986200", "text": "Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.", "title": "Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction." }, { "docid": "1964163", "text": "Mutations or duplications in MECP2 cause Rett and Rett-like syndromes, neurodevelopmental disorders characterized by mental retardation, motor dysfunction, and autistic behaviors. MeCP2 is expressed in many mammalian tissues and functions as a global repressor of transcription; however, the molecular mechanisms by which MeCP2 dysfunction leads to the neural-specific phenotypes of RTT remain poorly understood. Here, we show that neuronal activity and subsequent calcium influx trigger the de novo phosphorylation of MeCP2 at serine 421 (S421) by a CaMKII-dependent mechanism. MeCP2 S421 phosphorylation is induced selectively in the brain in response to physiological stimuli. Significantly, we find that S421 phosphorylation controls the ability of MeCP2 to regulate dendritic patterning, spine morphogenesis, and the activity-dependent induction of Bdnf transcription. These findings suggest that, by triggering MeCP2 phosphorylation, neuronal activity regulates a program of gene expression that mediates nervous system maturation and that disruption of this process in individuals with mutations in MeCP2 may underlie the neural-specific pathology of RTT.", "title": "Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation" }, { "docid": "7997337", "text": "There is mounting evidence showing that the structural and molecular organization of synaptic connections is affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett syndrome (RS). RS (MIM312750) is an X-linked dominant neurological disorder that is caused in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2). This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.", "title": "Synaptic Determinants of Rett Syndrome" }, { "docid": "36637129", "text": "Reprogramming of somatic cells into pluripotency stem cell state has opened new opportunities in cell replacement therapy and disease modeling in a number of neurological disorders. It still remains unknown, however, to what degree the grafted human-induced pluripotent stem cells (hiPSCs) differentiate into a functional neuronal phenotype and if they integrate into the host circuitry. Here, we present a detailed characterization of the functional properties and synaptic integration of hiPSC-derived neurons grafted in an in vitro model of hyperexcitable epileptic tissue, namely organotypic hippocampal slice cultures (OHSCs), and in adult rats in vivo. The hiPSCs were first differentiated into long-term self-renewing neuroepithelial stem (lt-NES) cells, which are known to form primarily GABAergic neurons. When differentiated in OHSCs for 6 weeks, lt-NES cell-derived neurons displayed neuronal properties such as tetrodotoxin-sensitive sodium currents and action potentials (APs), as well as both spontaneous and evoked postsynaptic currents, indicating functional afferent synaptic inputs. The grafted cells had a distinct electrophysiological profile compared to host cells in the OHSCs with higher input resistance, lower resting membrane potential, and APs with lower amplitude and longer duration. To investigate the origin of synaptic afferents to the grafted lt-NES cell-derived neurons, the host neurons were transduced with Channelrhodopsin-2 (ChR2) and optogenetically activated by blue light. Simultaneous recordings of synaptic currents in grafted lt-NES cell-derived neurons using whole-cell patch-clamp technique at 6 weeks after grafting revealed limited synaptic connections from host neurons. Longer differentiation times, up to 24 weeks after grafting in vivo, revealed more mature intrinsic properties and extensive synaptic afferents from host neurons to the lt-NES cell-derived neurons, suggesting that these cells require extended time for differentiation/maturation and synaptogenesis. However, even at this later time point, the grafted cells maintained a higher input resistance. These data indicate that grafted lt-NES cell-derived neurons receive ample afferent input from the host brain. Since the lt-NES cells used in this study show a strong propensity for GABAergic differentiation, the host-to-graft synaptic afferents may facilitate inhibitory neurotransmitter release, and normalize hyperexcitable neuronal networks in brain diseases, for example, such as epilepsy.", "title": "Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors." }, { "docid": "980008", "text": "Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2), encoding a transcriptional repressor, cause Rett syndrome and a variety of related neurodevelopmental disorders. The vast majority of mutations associated with human disease are loss-of-function mutations, but precisely what aspect of MeCP2 function is responsible for these phenotypes remains unknown. We overexpressed wild-type human protein in transgenic mice using a large genomic clone containing the entire human MECP2 locus. Detailed neurobehavioral and electrophysiological studies in transgenic line MeCP2(Tg1), which expresses MeCP2 at approximately 2-fold wild-type levels, demonstrated onset of phenotypes around 10 weeks of age. Surprisingly, these mice displayed enhanced motor and contextual learning and enhanced synaptic plasticity in the hippocampus. After 20 weeks of age, however, these mice developed seizures, became hypoactive and approximately 30% of them died by 1 year of age. These data demonstrate that MeCP2 levels must be tightly regulated in vivo, and that even mild overexpression of this protein is detrimental. Furthermore, these results support the possibility that duplications or gain-of-function mutations in MECP2 might underlie some cases of X-linked delayed-onset neurobehavioral disorders.", "title": "Mild overexpression of MeCP2 causes a progressive neurological disorder in mice." }, { "docid": "13072113", "text": "Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.", "title": "Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system." }, { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" }, { "docid": "17123316", "text": "Perturbations in neuregulin-1 (NRG1)/ErbB4 function have been associated with schizophrenia. Affected patients exhibit altered levels of these proteins and display hypofunction of glutamatergic synapses as well as altered neuronal circuitry. However, the role of NRG1/ErbB4 in regulating synapse maturation and neuronal process formation has not been extensively examined. Here we demonstrate that ErbB4 is expressed in inhibitory interneurons at both excitatory and inhibitory postsynaptic sites. Overexpression of ErbB4 postsynaptically enhances size but not number of presynaptic inputs. Conversely, knockdown of ErbB4 using shRNA decreases the size of presynaptic inputs, demonstrating a specific role for endogenous ErbB4 in synapse maturation. Using ErbB4 mutant constructs, we demonstrate that ErbB4-mediated synapse maturation requires its extracellular domain, whereas its tyrosine kinase activity is dispensable for this process. We also demonstrate that depletion of ErbB4 decreases the number of primary neurites and that stimulation of ErbB4 using a soluble form of NRG1 results in exuberant dendritic arborization through activation of the tyrosine kinase domain of ErbB4 and the phosphoinositide 3-kinase pathway. These findings demonstrate that NRG1/ErbB4 signaling differentially regulates synapse maturation and dendritic morphology via two distinct mechanisms involving trans-synaptic signaling and tyrosine kinase activity, respectively.", "title": "ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms." }, { "docid": "12932176", "text": "The balance between excitatory and inhibitory synapses is crucial for normal brain function. Wnt proteins stimulate synapse formation by increasing synaptic assembly. However, it is unclear whether Wnt signaling differentially regulates the formation of excitatory and inhibitory synapses. Here, we demonstrate that Wnt7a preferentially stimulates excitatory synapse formation and function. In hippocampal neurons, Wnt7a increases the number of excitatory synapses, whereas inhibitory synapses are unaffected. Wnt7a or postsynaptic expression of Dishevelled-1 (Dvl1), a core Wnt signaling component, increases the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents (mIPSCs). Wnt7a increases the density and maturity of dendritic spines, whereas Wnt7a-Dvl1-deficient mice exhibit defects in spine morphogenesis and mossy fiber-CA3 synaptic transmission in the hippocampus. Using a postsynaptic reporter for Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) activity, we demonstrate that Wnt7a rapidly activates CaMKII in spines. Importantly, CaMKII inhibition abolishes the effects of Wnt7a on spine growth and excitatory synaptic strength. These data indicate that Wnt7a signaling is critical to regulate spine growth and synaptic strength through the local activation of CaMKII at dendritic spines. Therefore, aberrant Wnt7a signaling may contribute to neurological disorders in which excitatory signaling is disrupted.", "title": "Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca²⁺/Calmodulin-dependent protein kinase II." }, { "docid": "14405193", "text": "Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment.", "title": "Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors." }, { "docid": "17150648", "text": "Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.", "title": "Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes." }, { "docid": "4405194", "text": "Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.", "title": "Induction of human neuronal cells by defined transcription factors" }, { "docid": "5700349", "text": "The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.", "title": "Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines" }, { "docid": "3140772", "text": "Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.", "title": "Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision" }, { "docid": "35884026", "text": "Phosphorylation of AMPA receptors is a major mechanism for the regulation of receptor function and underlies several forms of synaptic plasticity in the CNS. Although serine and threonine phosphorylation of AMPA receptors has been well studied, the potential role of tyrosine phosphorylation of AMPA receptors has not been investigated. Here, we show that the GluR2 subunit of AMPA receptors is tyrosine phosphorylated in vitro and in vivo by Src family tyrosine kinases on tyrosine 876 near its C terminus. In addition, GluR agonist treatment of cultured cortical neurons increased phosphorylation of tyrosine 876. The association with GluR2-interacting molecules GRIP1/2 was decreased by tyrosine phosphorylation of GluR2, whereas PICK1 interaction was not influenced. Moreover, mutation of tyrosine 876 eliminated AMPA- and NMDA-induced internalization of the GluR2 subunit. These data indicate that tyrosine phosphorylation of tyrosine 876 on the GluR2 C terminus by Src family tyrosine kinases is important for the regulation of AMPA receptor function and may be important for synaptic plasticity.", "title": "Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases." }, { "docid": "4418269", "text": "Spinal reflexes are mediated by synaptic connections between sensory afferents and motor neurons. The organization of these circuits shows several levels of specificity. Only certain classes of proprioceptive sensory neurons make direct, monosynaptic connections with motor neurons. Those that do are bound by rules of motor pool specificity: they form strong connections with motor neurons supplying the same muscle, but avoid motor pools supplying antagonistic muscles. This pattern of connectivity is initially accurate and is maintained in the absence of activity, implying that wiring specificity relies on the matching of recognition molecules on the surface of sensory and motor neurons. However, determinants of fine synaptic specificity here, as in most regions of the central nervous system, have yet to be defined. To address the origins of synaptic specificity in these reflex circuits we have used molecular genetic methods to manipulate recognition proteins expressed by subsets of sensory and motor neurons. We show here that a recognition system involving expression of the class 3 semaphorin Sema3e by selected motor neuron pools, and its high-affinity receptor plexin D1 (Plxnd1) by proprioceptive sensory neurons, is a critical determinant of synaptic specificity in sensory–motor circuits in mice. Changing the profile of Sema3e–Plxnd1 signalling in sensory or motor neurons results in functional and anatomical rewiring of monosynaptic connections, but does not alter motor pool specificity. Our findings indicate that patterns of monosynaptic connectivity in this prototypic central nervous system circuit are constructed through a recognition program based on repellent signalling.", "title": "Specificity of sensory–motor connections encoded by Sema3e–Plxnd1 recognition" }, { "docid": "7093809", "text": "Secreted Wnt proteins influence neural connectivity by regulating axon guidance, dendritic morphogenesis and synapse formation. We report a new role for Wnt and Frizzled proteins in establishing the anteroposterior polarity of the mechanosensory neurons ALM and PLM in C. elegans. Disruption of Wnt signaling leads to a complete inversion of ALM and PLM polarity: the anterior process adopts the length, branching pattern and synaptic properties of the wild-type posterior process, and vice versa. Different but overlapping sets of Wnt proteins regulate neuronal polarity in different body regions. Wnts act directly on PLM via the Frizzled LIN-17. In addition, we show that they are needed for axon branching and anteriorly directed axon growth. We also find that the retromer, a conserved protein complex that mediates transcytosis and endosome-to-Golgi protein trafficking, plays a key role in Wnt signaling. Deletion mutations of retromer subunits cause ALM and PLM polarity, and other Wnt-related defects. We show that retromer protein VPS-35 is required in Wnt-expressing cells and propose that retromer activity is needed to generate a fully active Wnt signal.", "title": "Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans." }, { "docid": "1771079", "text": "In the mammalian brain, astrocytes modulate neuronal function, in part, by synchronizing neuronal firing and coordinating synaptic networks. Little, however, is known about how this is accomplished from a structural standpoint. To investigate the structural basis of astrocyte-mediated neuronal synchrony and synaptic coordination, the three-dimensional relationships between cortical astrocytes and neurons was investigated. Using a transgenic and viral approach to label astrocytes with enhanced green fluorescent protein, we performed a three-dimensional reconstruction of astrocytes from tissue sections or live animals in vivo. We found that cortical astrocytes occupy nonoverlapping territories similar to those described in the hippocampus. Using immunofluorescence labeling of neuronal somata, a single astrocyte enwraps on average four neuronal somata with an upper limit of eight. Single-neuron dye-fills allowed us to estimate that one astrocyte contacts 300-600 neuronal dendrites. Together with the recent findings showing that glial Ca2+ signaling is restricted to individual astrocytes in vivo, and that Ca2+ signaling leads to gliotransmission, we propose the concept of functional islands of synapses in which groups of synapses confined within the boundaries of an individual astrocyte are modulated by the gliotransmitter environment controlled by that astrocyte. Our description offers a new structurally based conceptual framework to evaluate functional data involving interactions between neurons and astrocytes in the mammalian brain.", "title": "Synaptic islands defined by the territory of a single astrocyte." }, { "docid": "28436879", "text": "Neuromodulation underlies the flexibility of neural circuit operation and behavior. Individual neuromodulators can have divergent actions in a neuron by targeting multiple physiological mechanisms. Conversely, multiple neuromodulators may have convergent actions through overlapping targets. The divergent and convergent neuromodulator actions can be unambiguously synergistic or antagonistic, but neuromodulation often entails balanced adjustment of nonlinear membrane and synaptic properties by targeting ion channel and synaptic dynamics rather than just excitability or synaptic strength. In addition, neuromodulators can exert effects at multiple timescales, from short-term adjustments of neuron and synapse function to persistent long-term regulation. This short review summarizes some highlights of the diverse actions of neuromodulators on ion channel and synaptic properties.", "title": "Neuromodulation of neurons and synapses." } ]
762
Measuring routine outcomes is more beneficial to clinical practice than assessing treatment adherence.
[ { "docid": "4695046", "text": "OBJECTIVES To examine the effect of routinely administered psychiatric questionnaires on the recognition, management, and outcome of psychiatric disorders in non-psychiatric settings. \n DATA SOURCES Embase, Medline, PsycLIT, Cinahl, Cochrane Controlled Trials Register, and hand searches of key journals. \n METHODS A systematic review of randomised controlled trials of the administration and routine feedback of psychiatric screening and outcome questionnaires to clinicians in non-psychiatric settings. Narrative overview of key design features and end points, together with a random effects quantitative synthesis of comparable studies. \n MAIN OUTCOME MEASURES Recognition of psychiatric disorders after feedback of questionnaire results; interventions for psychiatric disorders; and outcome of psychiatric disorders. \n RESULTS Nine randomised studies were identified that examined the use of common psychiatric instruments in primary care and general hospital settings. Studies compared the effect of the administration of these instruments followed by the feedback of the results to clinicians, with administration with no feedback. Meta-analytic pooling was possible for four of these studies (2457 participants), which measured the effect of feedback on the recognition of depressive disorders. Routine administration and feedback of scores for all patients (irrespective of score) did not increase the overall rate of recognition of mental disorders such as anxiety and depression (relative risk of detection of depression by clinician after feedback 0.95, 95% confidence interval 0.83 to 1.09). Two studies showed that routine administration followed by selective feedback for only high scorers increased the rate of recognition of depression (relative risk of detection of depression after feedback 2.64, 1.62 to 4.31). This increased recognition, however, did not translate into an increased rate of intervention. Overall, studies of routine administration of psychiatric measures did not show an effect on patient outcome. \n CONCLUSIONS The routine measurement of outcome is a costly exercise. Little evidence shows that it is of benefit in improving psychosocial outcomes of those with psychiatric disorder managed in non-psychiatric settings.", "title": "Anxiety" } ]
[ { "docid": "5824985", "text": "BACKGROUND Bariatric surgery is becoming a more widespread treatment for obesity. Comprehensive evidence of the long-term effects of contemporary surgery on a broad range of clinical outcomes in large populations treated in routine clinical practice is lacking. The objective of this study was to measure the association between bariatric surgery, weight, body mass index, and obesity-related co-morbidities. \n METHODS AND FINDINGS This was an observational retrospective cohort study using data from the United Kingdom Clinical Practice Research Datalink. All 3,882 patients registered in the database and with bariatric surgery on or before 31 December 2014 were included and matched by propensity score to 3,882 obese patients without surgery. The main outcome measures were change in weight and body mass index over 4 y; incident diagnoses of type 2 diabetes mellitus (T2DM), hypertension, angina, myocardial infarction (MI), stroke, fractures, obstructive sleep apnoea, and cancer; mortality; and resolution of hypertension and T2DM. Weight measures were available for 3,847 patients between 1 and 4 mo, 2,884 patients between 5 and 12 mo, and 2,258 patients between 13 and 48 mo post-procedure. Bariatric surgery patients exhibited rapid weight loss for the first four postoperative months, at a rate of 4.98 kg/mo (95% CI 4.88-5.08). Slower weight loss was sustained to the end of 4 y. Gastric bypass (6.56 kg/mo) and sleeve gastrectomy (6.29 kg/mo) were associated with greater initial weight reduction than gastric banding (2.77 kg/mo). Protective hazard ratios (HRs) were detected for bariatric surgery for incident T2DM, 0.68 (95% CI 0.55-0.83); hypertension, 0.35 (95% CI 0.27-0.45); angina, 0.59 (95% CI 0.40-0.87);MI, 0.28 (95% CI 0.10-0.74); and obstructive sleep apnoea, 0.55 (95% CI 0.40-0.87). Strong associations were found between bariatric surgery and the resolution of T2DM, with a HR of 9.29 (95% CI 6.84-12.62), and between bariatric surgery and the resolution of hypertension, with a HR of 5.64 (95% CI 2.65-11.99). No association was detected between bariatric surgery and fractures, cancer, or stroke. Effect estimates for mortality found no protective association with bariatric surgery overall, with a HR of 0.97 (95% CI 0.66-1.43). The data used were recorded for the management of patients in primary care and may be subject to inaccuracy, which would tend to lead to underestimates of true relative effect sizes. \n CONCLUSIONS Bariatric surgery as delivered in the UK healthcare system is associated with dramatic weight loss, sustained at least 4 y after surgery. This weight loss is accompanied by substantial improvements in pre-existing T2DM and hypertension, as well as a reduced risk of incident T2DM, hypertension, angina, MI, and obstructive sleep apnoea. Widening the availability of bariatric surgery could lead to substantial health benefits for many people who are morbidly obese.", "title": "Bariatric Surgery in the United Kingdom: A Cohort Study of Weight Loss and Clinical Outcomes in Routine Clinical Care." }, { "docid": "21884449", "text": "AIMS To explore the utility of self-report measures of inhaled corticosteroid (ICS) adherence, degree of rhinitis and smoking status and their association with asthma control. \n METHODS Patients prescribed ICS for asthma at 85 UK practices were sent validated questionnaire measures of control (Asthma Control Questionnaire; ACQ) and adherence (Medication Adherence Report Scale), a two-item measure of smoking status, and a single-item measure of rhinitis. \n RESULTS Complete anonymised questionnaires were available for 3916 participants. Poor asthma control (ACQ >1.5) was associated with reported rhinitis (OR = 4.62; 95% CI: 3.71-5.77), smoking (OR = 4.33; 95% CI: 3.58-5.23) and low adherence to ICS (OR = 1.35; 95% CI: 1.18-1.55). The degree of rhinitis was important, with those reporting severe rhinitis exhibiting the worst asthma control, followed by those reporting mild rhinitis and then those reporting no rhinitis symptoms (F(2, 3913)=128.7, p<.001). There was a relationship between the number of cigarettes smoked each day and asthma control (F(5,655)=6.08, p<.001). \n CONCLUSIONS Poor asthma control is associated with self-reported rhinitis, smoking and low medication adherence. These potentially modifiable predictors of poor asthma control can be identified through a brief self-report questionnaire, used routinely as part of an asthma review.", "title": "The value of self-report assessment of adherence, rhinitis and smoking in relation to asthma control." }, { "docid": "5912283", "text": "CONTEXT Insomnia is a common condition in older adults and is associated with a number of adverse medical, social, and psychological consequences. Previous research has suggested beneficial outcomes of both psychological and pharmacological treatments, but blinded placebo-controlled trials comparing the effects of these treatments are lacking. \n OBJECTIVE To examine short- and long-term clinical efficacy of cognitive behavioral therapy (CBT) and pharmacological treatment in older adults experiencing chronic primary insomnia. \n DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blinded, placebo-controlled trial of 46 adults (mean age, 60.8 y; 22 women) with chronic primary insomnia conducted between January 2004 and December 2005 in a single Norwegian university-based outpatient clinic for adults and elderly patients. \n INTERVENTION CBT (sleep hygiene, sleep restriction, stimulus control, cognitive therapy, and relaxation; n = 18), sleep medication (7.5-mg zopiclone each night; n = 16), or placebo medication (n = 12). All treatment duration was 6 weeks, and the 2 active treatments were followed up at 6 months. \n MAIN OUTCOME MEASURES Ambulant clinical polysomnographic data and sleep diaries were used to determine total wake time, total sleep time, sleep efficiency, and slow-wave sleep (only assessed using polysomnography) on all 3 assessment points. \n RESULTS CBT resulted in improved short- and long-term outcomes compared with zopiclone on 3 out of 4 outcome measures. For most outcomes, zopiclone did not differ from placebo. Participants receiving CBT improved their sleep efficiency from 81.4% at pretreatment to 90.1% at 6-month follow-up compared with a decrease from 82.3% to 81.9% in the zopiclone group. Participants in the CBT group spent much more time in slow-wave sleep (stages 3 and 4) compared with those in other groups, and spent less time awake during the night. Total sleep time was similar in all 3 groups; at 6 months, patients receiving CBT had better sleep efficiency using polysomnography than those taking zopiclone. \n CONCLUSION These results suggest that interventions based on CBT are superior to zopiclone treatment both in short- and long-term management of insomnia in older adults. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00295386.", "title": "Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a randomized controlled trial." }, { "docid": "14395738", "text": "Studies from sub-Saharan Africa indicate that children made vulnerable by poverty have been disproportionately affected by HIV with many exposed via mother-to-child transmission. For youth living with HIV, adherence to life-saving treatment regimens are likely to be affected by the complex set of economic and social circumstances that challenge their families and also exacerbate health problems. Using baseline data from the National Institute of Child and Human Development (NICHD) funded Suubi+Adherence study, we examined the extent to which individual and composite measures of equity predict self-reported adherence among Ugandan adolescents aged 10-16 (n = 702) living with HIV. Results showed that greater asset ownership, specifically familial possession of seven or more tangible assets, was associated with greater odds of self-reported adherence (OR 1.69, 95% CI: 1.00-2.85). Our analyses also indicated that distance to the nearest health clinic impacts youth's adherence to an ARV regimen. Youth who reported living nearest to a clinic were significantly more likely to report optimal adherence (OR 1.49, 95% CI: 0.92-2.40). Moreover, applying the composite equity scores, we found that adolescents with greater economic advantage in ownership of household assets, financial savings, and caregiver employment had higher odds of adherence by a factor of 1.70 (95% CI: 1.07-2.70). These findings suggest that interventions addressing economic and social inequities may be beneficial to increase antiretroviral therapy (ART) uptake among economically vulnerable youth, especially in sub-Saharan Africa. This is one of the first studies to address the question of equity in adherence to ART among economically vulnerable youth with HIV.", "title": "Equity in adherence to antiretroviral therapy among economically vulnerable adolescents living with HIV in Uganda" }, { "docid": "39059143", "text": "CONTEXT The association of an adult tele-intensive care unit (ICU) intervention with hospital mortality, length of stay, best practice adherence, and preventable complications for an academic medical center has not been reported. \n OBJECTIVE To quantify the association of a tele-ICU intervention with hospital mortality, length of stay, and complications that are preventable by adherence to best practices. \n DESIGN, SETTING, AND PATIENTS Prospective stepped-wedge clinical practice study of 6290 adults admitted to any of 7 ICUs (3 medical, 3 surgical, and 1 mixed cardiovascular) on 2 campuses of an 834-bed academic medical center that was performed from April 26, 2005, through September 30, 2007. Electronically supported and monitored processes for best practice adherence, care plan creation, and clinician response times to alarms were evaluated. \n MAIN OUTCOME MEASURES Case-mix and severity-adjusted hospital mortality. Other outcomes included hospital and ICU length of stay, best practice adherence, and complication rates. \n RESULTS The hospital mortality rate was 13.6% (95% confidence interval [CI], 11.9%-15.4%) during the preintervention period compared with 11.8% (95% CI, 10.9%-12.8%) during the tele-ICU intervention period (adjusted odds ratio [OR], 0.40 [95% CI, 0.31-0.52]). The tele-ICU intervention period compared with the preintervention period was associated with higher rates of best clinical practice adherence for the prevention of deep vein thrombosis (99% vs 85%, respectively; OR, 15.4 [95% CI, 11.3-21.1]) and prevention of stress ulcers (96% vs 83%, respectively; OR, 4.57 [95% CI, 3.91-5.77], best practice adherence for cardiovascular protection (99% vs 80%, respectively; OR, 30.7 [95% CI, 19.3-49.2]), prevention of ventilator-associated pneumonia (52% vs 33%, respectively; OR, 2.20 [95% CI, 1.79-2.70]), lower rates of preventable complications (1.6% vs 13%, respectively, for ventilator-associated pneumonia [OR, 0.15; 95% CI, 0.09-0.23] and 0.6% vs 1.0%, respectively, for catheter-related bloodstream infection [OR, 0.50; 95% CI, 0.27-0.93]), and shorter hospital length of stay (9.8 vs 13.3 days, respectively; hazard ratio for discharge, 1.44 [95% CI, 1.33-1.56]). The results for medical, surgical, and cardiovascular ICUs were similar. \n CONCLUSION In a single academic medical center study, implementation of a tele-ICU intervention was associated with reduced adjusted odds of mortality and reduced hospital length of stay, as well as with changes in best practice adherence and lower rates of preventable complications.", "title": "Hospital mortality, length of stay, and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes." }, { "docid": "11718220", "text": "BACKGROUND Deep vein thrombosis (DVT) and pulmonary embolism are common after stroke. In small trials of patients undergoing surgery, graduated compression stockings (GCS) reduce the risk of DVT. National stroke guidelines extrapolating from these trials recommend their use in patients with stroke despite insufficient evidence. We assessed the effectiveness of thigh-length GCS to reduce DVT after stroke. \n METHODS In this outcome-blinded, randomised controlled trial, 2518 patients who were admitted to hospital within 1 week of an acute stroke and who were immobile were enrolled from 64 centres in the UK, Italy, and Australia. Patients were allocated via a central randomisation system to routine care plus thigh-length GCS (n=1256) or to routine care plus avoidance of GCS (n=1262). A technician who was blinded to treatment allocation undertook compression Doppler ultrasound of both legs at about 7-10 days and, when practical, again at 25-30 days after enrolment. The primary outcome was the occurrence of symptomatic or asymptomatic DVT in the popliteal or femoral veins. Analyses were by intention to treat. This study is registered, number ISRCTN28163533. \n FINDINGS All patients were included in the analyses. The primary outcome occurred in 126 (10.0%) patients allocated to thigh-length GCS and in 133 (10.5%) allocated to avoid GCS, resulting in a non-significant absolute reduction in risk of 0.5% (95% CI -1.9% to 2.9%). Skin breaks, ulcers, blisters, and skin necrosis were significantly more common in patients allocated to GCS than in those allocated to avoid their use (64 [5%] vs 16 [1%]; odds ratio 4.18, 95% CI 2.40-7.27). \n INTERPRETATION These data do not lend support to the use of thigh-length GCS in patients admitted to hospital with acute stroke. National guidelines for stroke might need to be revised on the basis of these results. \n FUNDING Medical Research Council (UK), Chief Scientist Office of Scottish Government, Chest Heart and Stroke Scotland, Tyco Healthcare (Covidien) USA, and UK Stroke Research Network.", "title": "Effectiveness of thigh-length graduated compression stockings to reduce the risk of deep vein thrombosis after stroke (CLOTS trial 1): a multicentre, randomised controlled trial" }, { "docid": "8593263", "text": "An observational prospective cohort study assessed malaria risk perception, knowledge and prophylaxis practices among individuals of African ethnicity living in Paris and travelling to their country of origin to visit friends or relatives (VFR). The study compared two groups of VFR who had visited a travel clinic (TC; n=122) or a travel agency (TA; n=69) before departure. Of the 47% of VFR citing malaria as a health concern, 75% knew that malaria is mosquito-borne and that bed nets are an effective preventive measure. Perception of high malaria risk was greater in the TA group (33%) than in the TC group (7%). The availability of a malaria vaccine was mentioned by 35% of VFR, with frequent confusion between yellow fever vaccine and malaria prevention. Twenty-nine percent took adequate chemoprophylaxis with complete adherence, which was higher among the TC group (41%) than the TA group (12%). Effective antivector protection measures used were bed nets (16%), wearing long clothes at night (14%) and air conditioning (8%), with no differences between the study groups except in the use of impregnated bed nets (11% of the TC group and none of the TA group). Media coverage, malaria chemoprophylaxis repayment and cultural adaptation of preventive messages should be improved to reduce the high rate of inadequate malaria prophylaxis in VFR.", "title": "Malaria risk perception, knowledge and prophylaxis practices among travellers of African ethnicity living in Paris and visiting their country of origin in sub-Saharan Africa." }, { "docid": "18025240", "text": "OBJECTIVE To summarise the effects of anthelmintic drug treatment on growth and cognitive performance in children. \n DATA SOURCES Electronic databases: Cochrane Infectious Diseases Group controlled trial register, Cochrane controlled trials register, Embase, and Medline. Citations of all identified trials. Contact with the World Health Organization and field researchers. REVIEW METHODS Systematic review of randomised controlled trials in children aged 1-16 that compared anthelmintic treatment with placebo or no treatment. Assessment of validity and data abstraction conducted independently by two reviewers. \n MAIN OUTCOME MEASURES Growth and cognitive performance. \n RESULTS Thirty randomised controlled trials in more than 15 000 children were identified. Effects on mean weight were unremarkable, and heterogeneity was evident in the results. There were some positive effects on mean weight change in the trials reporting this outcome: after a single dose (any anthelmintic) the pooled estimates were 0.24 kg (95% confidence interval 0.15 kg to 0. 32 kg; fixed effects model assumed) and 0.38 kg (0.01 kg to 0.77 kg; random effects model assumed). Results from trials of multiple doses showed mean weight change in up to one year of follow up of 0.10 kg (0.04 kg to 0.17 kg; fixed effects) or 0.15 kg (0.00 to 0.30; random effects). At more than one year of follow up, mean weight change was 0.12 kg (-0.02 kg to 0.26 kg; fixed effects) and 0.43 (-0.61 to 1. 47; random effects). Results from studies of cognitive performance were inconclusive. \n CONCLUSIONS There is some limited evidence that routine treatment of children in areas where helminths are common has effects on weight gain, but this is not consistent between trials. There is insufficient evidence as to whether this intervention improves cognitive performance.", "title": "Effects of treatment for intestinal helminth infection on growth and cognitive performance in children: systematic review of randomised trials." }, { "docid": "25643818", "text": "AIMS Lactic acidosis is a well recognized complication of biguanide therapy which is potentially serious. Although the prevalence of metformin-associated lactic acidosis (MALA) is much lower than that associated with phenformin, it is still being reported sporadically which raises concerns for the practising clinicians. We review the currently available world-wide data of the prevalence of MALA, the risk factors for its development and the current practical guidelines on the use of metformin to minimize the risk of this potential hazard. \n METHODS An extensive literature search was conducted from both Medline and Ovid (1965-98) using the following keywords: 'Type 2 diabetes mellitus', 'oral hypoglycaemic drugs', 'biguanides', 'metformin-associated lactic acidosis' and 'renal impairment'. \n RESULTS MALA was found to be a very rare clinical entity, being 20 times less common than phenformin-associated lactic acidosis. Amongst all the risk factors, renal impairment appears to be the major precipitating factor for the development of MALA in metformin-treated patients. We also found cases of MALA where no precipitating factors were identified and the underlying mechanism in these cases remains unclear. Practical recommendations of metformin use to minimize the risk of MALA have been listed based on previous reports. \n CONCLUSIONS The low prevalence of MALA is comparable to the prevalence of sulphonylurea-induced hypoglycaemia. Metformin has many beneficial metabolic effects in the management of Type 2 diabetes mellitus. Provided that the recommended guidelines for metformin use are strictly adhered to, its widespread use would be safe and the incidence of MALA will be further reduced.", "title": "Metformin-associated lactic acidosis: a rare or very rare clinical entity?" }, { "docid": "35087728", "text": "Highly active antiretroviral therapy (HAART) has radically changed the course of HIV disease, producing substantial reductions in both HIV-related morbidity and mortality. However, the complexity of the typical daily HAART regimen is substantial, and high levels of adherence are essential for complete and long-term viral suppression and the avoidance of drug resistance. The complexity of HAART has made the assessment of medication adherence of paramount importance. Even though various methods are in use, each measures only a subset of adherence behaviors, and each measure has limited predictive validity. Given the individual and public health concerns associated with adherence to HAART, there is a need for the continued development and validation of measures of medication adherence.", "title": "Measuring adherence to highly active antiretroviral therapy: implications for research and practice." }, { "docid": "3272084", "text": "Inappropriate use of antibiotics is contributing to the increasing rates of antimicrobial resistance. Several Danish guidelines on antibiotic prescribing for acute respiratory tract infections in general practice have been issued to promote rational prescribing of antibiotics, however it is unclear if these recommendations are followed. We aimed to characterise the pattern of antibiotic prescriptions for patients diagnosed with acute respiratory tract infections, by means of electronic prescriptions, labeled with clinical indications, from Danish general practice. Acute respiratory tract infections accounted for 456,532 antibiotic prescriptions issued between July 2012 and June 2013. Pneumonia was the most common indication with 178,354 prescriptions (39%), followed by acute tonsillitis (21%) and acute otitis media (19%). In total, penicillin V accounted for 58% of all prescriptions, followed by macrolides (18%) and amoxicillin (15%). The use of second-line agents increased with age for all indications, and comprised more than 40% of the prescriptions in patients aged >75 years. Women were more often prescribed antibiotics regardless of clinical indication. This is the first Danish study to characterise antibiotic prescription patterns for acute respiratory tract infections by data linkage of clinical indications. The findings confirm that penicillin V is the most commonly prescribed antibiotic agent for treatment of patients with an acute respiratory tract infection in Danish general practice. However, second-line agents like macrolides and amoxicillin with or without clavulanic acid are overused. Strategies to improve the quality of antibiotic prescribing especially for pneumonia, acute otitis media and acute rhinosinusitis are warranted. RESPIRATORY TRACT INFECTIONS TRACKING THE OVERUSE OF ANTIBIOTICS: Better adherence to guidelines for prescribing antibiotics for different respiratory tract infections are warranted in Danish general practice. The over-use of antibiotics, particularly so-called 'second-line' agents such as amoxicillin, increases resistance and may lead to a potentially catastrophic scenario where antibiotics are no longer effective. Exactly how widespread the over-use of antibiotics is for different infections, however, is not clear. Rune Aabenhus at the University of Copenhagen and co-workers analyzed primary care data regarding antibiotic prescriptions for acute respiratory tract infections including pneumonia and ear infections in Denmark. They found that penicillin V-the current recommended first-line drug in Scandinavian countries-accounted for 58 per cent of prescriptions, a figure which should be improved. Amoxicillin and macrolides were over-prescribed, particularly in elderly patients. The team also call for further analysis of prescriptions given by out-of-hours clinics.", "title": "Characterisation of antibiotic prescriptions for acute respiratory tract infections in Danish general practice: a retrospective registry based cohort study" }, { "docid": "57121667", "text": "The ART-adherence club model described here provides patient-friendly access to antiretroviral therapy (ART) for clinically stable patients. It reduces the burden that stable patients place on healthcare facilities, increasing clinical human resources for new patients, and those clinically unstable and at risk of failing treatment. In the model, 30 patients are allocated to an ART club. The group meets either at a facility or community venue for less than an hour every 2 months. Group meetings are facilitated by a lay club facilitator who provides a quick clinical assessment, referral where necessary, and dispenses pre-packed ART. From January 2011 to December 2012, after adoption for phased rollout by the Western Cape Government, more than 600 ART clubs were established in Cape Town, providing ART care to over 16 000 patients. This extensive, rapid rollout demonstrates active buy-in from patients and facility staff. South Africa should consider a similar model for national rollout.", "title": "ART adherence clubs: A long-term retention strategy for clinically stable patients receiving antiretroviral therapy" }, { "docid": "3654468", "text": "Importance Glucagon-like peptide-1 (GLP-1) receptor agonists are effective therapies for the treatment of type 2 diabetes and are all currently available as an injection. Objectives To compare the effects of oral semaglutide with placebo (primary) and open-label subcutaneous semaglutide (secondary) on glycemic control in patients with type 2 diabetes. Design, Setting, and Patients Phase 2, randomized, parallel-group, dosage-finding, 26-week trial with 5-week follow-up at 100 sites (hospital clinics, general practices, and clinical research centers) in 14 countries conducted between December 2013 and December 2014. Of 1106 participants assessed, 632 with type 2 diabetes and insufficient glycemic control using diet and exercise alone or a stable dose of metformin were randomized. Randomization was stratified by metformin use. Interventions Once-daily oral semaglutide of 2.5 mg (n = 70), 5 mg (n = 70), 10 mg (n = 70), 20 mg (n = 70), 40-mg 4-week dose escalation (standard escalation; n = 71), 40-mg 8-week dose escalation (slow escalation; n = 70), 40-mg 2-week dose escalation (fast escalation, n = 70), oral placebo (n = 71; double-blind) or once-weekly subcutaneous semaglutide of 1.0 mg (n = 70) for 26 weeks. Main Outcomes and Measures The primary end point was change in hemoglobing A1c (HbA1c) from baseline to week 26. Secondary end points included change from baseline in body weight and adverse events. Results Baseline characteristics were comparable across treatment groups. Of the 632 randomized patients (mean age, 57.1 years [SD, 10.6]; men, 395 (62.7%); diabetes duration, 6.3 years [SD, 5.2]; body weight, 92.3 kg [SD, 16.8]; BMI, 31.7 [SD, 4.3]), 583 (92%) completed the trial. Mean change in HbA1c level from baseline to week 26 decreased with oral semaglutide (dosage-dependent range, −0.7% to −1.9%) and subcutaneous semaglutide (−1.9%) and placebo (−0.3%); oral semaglutide reductions were significant vs placebo (dosage-dependent estimated treatment difference [ETD] range for oral semaglutide vs placebo, –0.4% to –1.6%; P = .01 for 2.5 mg, <.001 for all other dosages). Reductions in body weight were greater with oral semaglutide (dosage-dependent range, −2.1 kg to −6.9 kg) and subcutaneous semaglutide (−6.4 kg) vs placebo (−1.2 kg), and significant for oral semaglutide dosages of 10 mg or more vs placebo (dosage-dependent ETD range, –0.9 to –5.7 kg; P < .001). Adverse events were reported by 63% to 86% (371 of 490 patients) in the oral semaglutide groups, 81% (56 of 69 patients) in the subcutaneous semaglutide group, and 68% (48 of 71 patients) in the placebo group; mild to moderate gastrointestinal events were most common. Conclusions and Relevance Among patients with type 2 diabetes, oral semaglutide resulted in better glycemic control than placebo over 26 weeks. These findings support phase 3 studies to assess longer-term and clinical outcomes, as well as safety. Trial Registration clinicaltrials.gov Identifier: NCT01923181", "title": "Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial" }, { "docid": "27024392", "text": "Cannabis has a potential for clinical use often obscured by unreliable and purely anecdotal reports. The most important natural cannabinoid is the psychoactive tetrahydrocannabinol (Δ9-THC); others include cannabidiol (CBD) and cannabigerol (CBG). Not all the observed effects can be ascribed to THC, and the other constituents may also modulate its action; for example CBD reduces anxiety induced by THC. A standardised extract of the herb may be therefore be more beneficial in practice and clinical trial protocols have been drawn up to assess this. The mechanism of action is still not fully understood, although cannabinoid receptors have been cloned and natural ligands identified. Cannabis is frequently used by patients with multiple sclerosis (MS) for muscle spasm and pain, and in an experimental model of MS low doses of cannabinoids alleviated tremor. Most of the controlled studies have been carried out with THC rather than cannabis herb and so do not mimic the usual clincal situation. Small clinical studies have confirmed the usefulness of THC as an analgesic; CBD and CBG also have analgesic and antiinflammatory effects, indicating that there is scope for developing drugs which do not have the psychoactive properties ofTHC. Patients taking the synthetic derivative nabilone for neurogenic pain actually preferred cannabis herb and reported that it relieved not only pain but the associated depression and anxiety. Cannabinoids are effective in chemotherapy-induced emesis and nabilone has been licensed for this use for several years. Currently, the synthetic cannabinoid HU211 is undergoing trials as a protective agent after brain trauma. Anecdotal reports of cannabis use include case studies in migraine and Tourette’s syndrome, and as a treatment for asthma and glaucoma. Apart from the smoking aspect, the safety profile of cannabis is fairly good. However, adverse reactions include panic or anxiety attacks, which are worse in the elderly and in women, and less likely in children. Although psychosis has been cited as a consequence of cannabis use, an examination of psychiatric hospital admissions found no evidence of this, however, it may exacerbate existing symptoms. The relatively slow elimination from the body of the cannabinoids has safety implications for cognitive tasks, especially driving and operating machinery; although driving impairment with cannabis is only moderate, there is a significant interaction with alcohol. Natural materials are highly variable and multiple components need to be standardised to ensure reproducible effects. Pure natural and synthetic compounds do not have these disadvantages but may not have the overall therapeutic effect of the herb.", "title": "Cannabinoids in Clinical Practice" }, { "docid": "39281140", "text": "CONTEXT Sexual dysfunction is a common adverse effect of antidepressants that frequently results in treatment noncompliance. \n OBJECTIVE To assess the efficacy of sildenafil citrate in men with sexual dysfunction associated with the use of selective and nonselective serotonin reuptake inhibitor (SRI) antidepressants. \n DESIGN, SETTING, AND PATIENTS Prospective, parallel-group, randomized, double-blind, placebo-controlled trial conducted between November 1, 2000, and January 1, 2001, at 3 US university medical centers among 90 male outpatients (mean [SD] age, 45 [8] years) with major depression in remission and sexual dysfunction associated with SRI antidepressant treatment. \n INTERVENTION Patients were randomly assigned to take sildenafil (n = 45) or placebo (n = 45) at a flexible dose starting at 50 mg and adjustable to 100 mg before sexual activity for 6 weeks. \n MAIN OUTCOME MEASURES The primary outcome measure was score on the Clinical Global Impression-Sexual Function (CGI-SF); secondary measures were scores on the International Index of Erectile Function, Arizona Sexual Experience Scale, Massachusetts General Hospital-Sexual Functioning Questionnaire, and Hamilton Rating Scale for Depression (HAM-D). \n RESULTS Among the 90 randomized patients, 93% (83/89) of patients treated per protocol took at least 1 dose of study drug and 85% (76/89) completed week 6 end-point assessments with last observation carried forward analyses. At a CGI-SF score of 2 or lower, 54.5% (24/44) of sildenafil compared with 4.4% (2/45) of placebo patients were much or very much improved (P<.001). Erectile function, arousal, ejaculation, orgasm, and overall satisfaction domain measures improved significantly in sildenafil compared with placebo patients. Mean depression scores remained consistent with remission (HAM-D score < or =10) in both groups for the study duration. \n CONCLUSION In our study, sildenafil effectively improved erectile function and other aspects of sexual function in men with sexual dysfunction associated with the use of SRI antidepressants. These improvements may allow patients to maintain adherence with effective antidepressant treatment.", "title": "Treatment of antidepressant-associated sexual dysfunction with sildenafil: a randomized controlled trial." }, { "docid": "3610080", "text": "OBJECTIVES To identify and describe misunderstandings between patients and doctors associated with prescribing decisions in general practice. \n DESIGN Qualitative study. \n SETTING 20 general practices in the West Midlands and south east England. \n PARTICIPANTS 20 general practitioners and 35 consulting patients. \n MAIN OUTCOME MEASURES Misunderstandings between patients and doctors that have potential or actual adverse consequences for taking medicine. \n RESULTS 14 categories of misunderstanding were identified relating to patient information unknown to the doctor, doctor information unknown to the patient, conflicting information, disagreement about attribution of side effects, failure of communication about doctor's decision, and relationship factors. All the misunderstandings were associated with lack of patients' participation in the consultation in terms of the voicing of expectations and preferences or the voicing of responses to doctors' decisions and actions. They were all associated with potential or actual adverse outcomes such as non-adherence to treatment. Many were based on inaccurate guesses and assumptions. In particular doctors seemed unaware of the relevance of patients' ideas about medicines for successful prescribing. \n CONCLUSIONS Patients' participation in the consultation and the adverse consequences of lack of participation are important. The authors are developing an educational intervention that builds on these findings.", "title": "Misunderstandings in prescribing decisions in general practice: qualitative study." }, { "docid": "6945285", "text": "OBJECTIVE To assess the effect of bezafibrate on the risk of coronary heart disease and stroke in men with lower extremity arterial disease. \n DESIGN Double blind placebo controlled randomised trial. \n SETTING 85 general practices and nine hospital vascular clinics. \n PARTICIPANTS 1568 men, mean age 68.2 years (range 35 to 92) at recruitment. \n INTERVENTIONS Bezafibrate 400 mg daily (783 men) or placebo (785 men). \n MAIN OUTCOME MEASURES Combination of coronary heart disease and of stroke. All coronary events, fatal and non-fatal coronary events separately, and strokes alone (secondary end points). \n RESULTS Bezafibrate did not reduce the incidence of coronary heart disease and stroke. There were 150 and 160 events in the active and placebo groups respectively (relative risk 0.96, 95% confidence interval 0.76 to 1.21). There were 90 and 111 major coronary events in the active and placebo groups respectively (0.81, 0.60 to 1.08), of which 64 and 65 were fatal (0.95, 0.66 to 1.37) and 26 and 46 non-fatal (0.60, 0.36 to 0.99). Beneficial effects on non-fatal events were greatest in men aged <65 years at entry, in whom benefit was also seen for all coronary events (0.38, 0.20 to 0.72). There were no significant effects in older men. There were 60 strokes in those on active treatment and 49 in those on placebo (1.34, 0.80 to 2.01). There were 204 and 195 deaths from all causes in the two groups respectively (1.03, 0.83 to 1.26). Bezafibrate reduced the severity of intermittent claudication for up to three years. \n CONCLUSIONS Bezafibrate has no effect on the incidence of coronary heart disease and of stroke combined but may reduce the incidence of non-fatal coronary events, particularly in those aged <65 years at entry, in whom all coronary events may also be reduced.", "title": "Bezafibrate in men with lower extremity arterial disease: randomised controlled trial." }, { "docid": "19308127", "text": "BACKGROUND P2Y12 inhibitor switching has appeared in clinical practice as a consequence of prasugrel and ticagrelor availability, apart from clopidogrel, for use in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). \n METHODS In the context of the GReek AntiPlatelet REgistry (GRAPE) we assessed the prevalence, predictive factors and short-term outcome of in-hospital P2Y12 inhibitor switching in 1794 ACS patients undergoing PCI. \n RESULTS Switching occurred in 636 (35.5%) patients of which in the form of clopidogrel to a novel agent, novel agent to clopidogrel and between prasugrel and ticagrelor in 574 (90.4%), 34 (5.3%) and 27 (4.3%) patients, respectively. Presentation to non PCI-capable hospital, bivalirudin use, age ≥75 years (inverse predictor), and regional trends emerged as predictive factors of switching to a novel agent. At combined in-hospital and one-month follow-up, propensity matched pairs analysis showed no differences in major adverse cardiovascular (MACE) or bleeding events between switching from clopidogrel to a novel agent vs novel agent constant administration. More Bleeding Academic Research Consortium type 1, type 2 and any type events and fewer MACE were seen when switching from clopidogrel to a novel agent vs only clopidogrel administration (23.7%, 3.8%, 30.6%, 1.2% vs 8.9%, 1.2%, 12.0%, 3.8% with P < .001, P = .03, P < .001 and P = .03 respectively). \n CONCLUSIONS In a real-life experience with contemporary antiplatelet treatment in ACS patients undergoing PCI, in-hospital switching represents common clinical practice. Clinical factors and regional practice differences seem to affect this strategy's choice, while switching to a novel agent may be associated with higher risk of bleeding.", "title": "In-hospital switching of oral P2Y12 inhibitor treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention: prevalence, predictors and short-term outcome." }, { "docid": "29981186", "text": "BACKGROUND Venous thromboembolism (VTE) is a common complication in cancer patients and a significant cause of morbidity and mortality. However, little information is available on oncologists' perceptions of the risk of VTE and its management. The Fundamental Research in Oncology and Thrombosis (FRONTLINE) study is the first comprehensive global survey of thrombosis and cancer. The study was designed to collect data on the perceived risk and patterns of practice with regard to VTE in cancer patients undergoing surgical and medical management of their malignancy and to provide information on international and regional practice patterns, allowing for the design of research studies to answer the concerns of practicing clinicians. \n METHODS Literature reviews were performed to provide a current evidence base against which to compare the findings, and a survey was developed under the guidance of an advisory board. A paper-based reply-paid questionnaire was distributed globally between July and November 2001 to clinicians involved in cancer care and was made available on a dedicated website. \n FINDINGS A total of 3,891 completed responses were available for analysis. Brain and pancreatic tumors were considered to carry a high risk for VTE, and 80% of respondents considered the use of central venous lines to be associated with a high risk of VTE. Marked differences were seen in the use of thromboprophylaxis for surgical and medical cancer patients, with over 50% of surgeons reporting that they initiated thromboprophylaxis routinely, while most medical oncologists reported using thromboprophylaxis in less than 5% of medical patients. Low molecular weight heparin (LMWH) was the most popular method of thromboprophylaxis employed in both surgical and medical patients and was more favored by European than U.S. clinicians. Some 20% of respondents reported using aspirin for prophylaxis, despite there being no reliable evidence for this agent as effective in prevention in this population. For the treatment of VTE, LMWH was again the most common initial treatment, although, for the long-term, oral anticoagulation therapy was widely adopted. Many patients were treated for VTE on an outpatient basis, and secondary prevention of VTE was typically continued for 3 to 6 months after an episode of deep vein thrombosis or for longer in the case of pulmonary embolism. \n INTERPRETATION The results of the FRONTLINE survey demonstrate a need for guidelines to direct clinical practice in line with evidence-based data concerning cancer and VTE. Oncologists need to be educated regarding the true risks of VTE associated with certain cancers and on strategies for prevention and treatment to reduce the morbidity and mortality associated with VTE in all cancer patients. The study has also helped identify areas for future research.", "title": "Venous thrombosis in cancer patients: insights from the FRONTLINE survey." }, { "docid": "5151024", "text": "BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. \n METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. \n FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. \n INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. \n FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence.", "title": "Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study." } ]
764
Medications to treat obesity are highly effective.
[ { "docid": "7552215", "text": "OBJECTIVE To summarise the long term efficacy of anti-obesity drugs in reducing weight and improving health status. \n DESIGN Updated meta-analysis of randomised trials. \n DATA SOURCES Medline, Embase, the Cochrane controlled trials register, the Current Science meta-register of controlled trials, and reference lists of identified articles. All data sources were searched from December 2002 (end date of last search) to December 2006. STUDIES REVIEWED Double blind randomised placebo controlled trials of approved anti-obesity drugs used in adults (age over 18) for one year or longer. \n RESULTS 30 trials of one to four years' duration met the inclusion criteria: 16 orlistat (n=10 631 participants), 10 sibutramine (n=2623), and four rimonabant (n=6365). Of these, 14 trials were new and 16 had previously been identified. Attrition rates averaged 30-40%. Compared with placebo, orlistat reduced weight by 2.9 kg (95% confidence interval 2.5 kg to 3.2 kg), sibutramine by 4.2 kg (3.6 kg to 4.7 kg), and rimonabant by 4.7 kg (4.1 kg to 5.3 kg). Patients receiving active drug treatment were significantly more likely to achieve 5% and 10% weight loss thresholds. Orlistat reduced the incidence of diabetes and improved concentrations of total cholesterol and low density lipoprotein cholesterol, blood pressure, and glycaemic control in patients with diabetes but increased rates of gastrointestinal side effects and slightly lowered concentrations of high density lipoprotein. Sibutramine improved [corrected] concentrations of high density lipoprotein cholesterol and triglycerides [corrected] Rimonabant improved concentrations of high density lipoprotein cholesterol and triglycerides, blood pressure, and glycaemic control in patients with diabetes but increased the risk of mood disorders. \n CONCLUSIONS Orlistat, sibutramine, and rimonabant modestly reduce weight, have differing effects on cardiovascular risk profiles, and have specific adverse effects.", "title": "Long term pharmacotherapy for obesity and overweight: updated meta-analysis." } ]
[ { "docid": "11481946", "text": "Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.", "title": "Obesity, type 2 diabetes, and cancer: the insulin and IGF connection." }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." }, { "docid": "7627167", "text": "BACKGROUND The objective of this study was to evaluate the effectiveness of a brief, 4-session cognitive behavioral, group psychotherapy for binge eating among bariatric surgery candidates at an academic medical center. Binge eating behaviors have been linked to poorer outcomes among bariatric surgery patients, and binge eating disorder have be considered a contraindication in surgery programs, some of which have mandated preoperative binge eating treatment. However, no previous studies have examined whether a preoperative binge eating intervention could successfully reduce binge eating behaviors among severely obese bariatric surgery candidates. \n METHODS A total of 243 bariatric surgery candidates completed a brief cognitive behavioral group treatment for binge eating behaviors and were administered the Binge Eating Scale and reported the number of weekly binge eating episodes at the initial psychological evaluation and again after the group sessions. The study used a pre-post intervention design. \n RESULTS The results suggested significant reductions in both binge eating behaviors and cognitions and binge eating episodes after the group intervention. The intervention's effectiveness did not differ according to gender or ethnicity (black versus white). \n CONCLUSION A brief cognitive behavioral intervention can reduce binge eating behaviors among bariatric surgery candidates. Given the potential influence of binge eating on outcomes, bariatric surgery programs could benefit by treating binge eating before surgery.", "title": "Brief, four-session group CBT reduces binge eating behaviors among bariatric surgery candidates." }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "4345757", "text": "Obesity is now so common within the world's population that it is beginning to replace undernutrition and infectious diseases as the most significant contributor to ill health. In particular, obesity is associated with diabetes mellitus, coronary heart disease, certain forms of cancer, and sleep-breathing disorders. Obesity is defined by a body-mass index (weight divided by square of the height) of 30 kg m(-2) or greater, but this does not take into account the morbidity and mortality associated with more modest degrees of overweight, nor the detrimental effect of intra-abdominal fat. The global epidemic of obesity results from a combination of genetic susceptibility, increased availability of high-energy foods and decreased requirement for physical activity in modern society. Obesity should no longer be regarded simply as a cosmetic problem affecting certain individuals, but an epidemic that threatens global well being.", "title": "Obesity as a medical problem." }, { "docid": "1831916", "text": "OBJECTIVE Impulsivity and inattention related to attention deficit hyperactivity disorder (ADHD) may increase food intake and, consequently, weight gain. However, findings on the association between obesity/overweight and ADHD are mixed. The authors conducted a meta-analysis to estimate this association. \n METHOD A broad range of databases was searched through Aug. 31, 2014. Unpublished studies were also obtained. Study quality was rated with the Newcastle-Ottawa Scale. Random-effects models were used. \n RESULTS Forty-two studies that included a total of 728,136 individuals (48,161 ADHD subjects; 679,975 comparison subjects) were retained. A significant association between obesity and ADHD was found for both children (odds ratio=1.20, 95% CI=1.05-1.37) and adults (odds ratio=1.55, 95% CI=1.32-1.81). The pooled prevalence of obesity was increased by about 70% in adults with ADHD (28.2%, 95% CI=22.8-34.4) compared with those without ADHD (16.4%, 95% CI=13.4-19.9), and by about 40% in children with ADHD (10.3%, 95% CI=7.9-13.3) compared with those without ADHD (7.4%, 95% CI=5.4-10.1). The significant association between ADHD and obesity remained when limited to studies 1) reporting odds ratios adjusted for possible confounding factors; 2) diagnosing ADHD by direct interview; and 3) using directly measured height and weight. Gender, study setting, study country, and study quality did not moderate the association between obesity and ADHD. ADHD was also significantly associated with overweight. Individuals medicated for ADHD were not at higher risk of obesity. \n CONCLUSIONS This study provides meta-analytic evidence for a significant association between ADHD and obesity/overweight. Further research should address possible underlying mechanisms and the long-term effects of ADHD treatments on weight in individuals with both ADHD and obesity.", "title": "Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis." }, { "docid": "4353857", "text": "The extreme obesity of the obese (ob/ob) mouse is attributable to mutations in the gene encoding leptin, an adipocyte-specific secreted protein which has profound effects on appetite and energy expenditure. We know of no equivalent evidence regarding leptin's role in the control of fat mass in humans. We have examined two severely obese children who are members of the same highly consanguineous pedigree. Their serum leptin levels were very low despite their markedly elevated fat mass and, in both, a homozygous frame-shift mutation involving the deletion of a single guanine nucleotide in codon 133 of the gene for leptin was found. The severe obesity found in these congenitally leptin-deficient subjects provides the first genetic evidence that leptin is an important regulator of energy balance in humans.", "title": "Congenital leptin deficiency is associated with severe early-onset obesity in humans." }, { "docid": "6588614", "text": "Diabetes and associated metabolic conditions have reached pandemic proportions worldwide, and there is a clear unmet medical need for new therapies that are both effective and safe. FGF19 and FGF21 are distinctive members of the FGF family that function as endocrine hormones. Both have potent effects on normalizing glucose, lipid, and energy homeostasis, and therefore, represent attractive potential next generation therapies for combating the growing epidemics of type 2 diabetes and obesity. The mechanism responsible for these impressive metabolic effects remains unknown. While both FGF19 and FGF21 can activate FGFRs 1c, 2c, and 3c in the presence of co-receptor βKlotho in vitro, which receptor is responsible for the metabolic activities observed in vivo remains unknown. Here we have generated a variant of FGF19, FGF19-7, that has altered receptor specificity with a strong bias toward FGFR1c. We show that FGF19-7 is equally efficacious as wild type FGF19 in regulating glucose, lipid, and energy metabolism in both diet-induced obesity and leptin-deficient mouse models. These results are the first direct demonstration of the central role of the βKlotho/FGFR1c receptor complex in glucose and lipid regulation, and also strongly suggest that activation of this receptor complex alone might be sufficient to achieve all the metabolic functions of endocrine FGF molecules.", "title": "Characterization of a FGF19 Variant with Altered Receptor Specificity Revealed a Central Role for FGFR1c in the Regulation of Glucose Metabolism" }, { "docid": "13441037", "text": "In this review, we address the natural history of obesity in children, the most promising family- and school-based approaches to the prevention of obesity, and the barriers and opportunities associated with secondary prevention. In childhood, the most important periods of risk appear to be the periods of adiposity rebound and adolescence. Caution regarding the period of adiposity rebound is still warranted, because it is not yet clear that early rebound is attributable to changes in body fat. Families and schools represent the most important foci for preventive efforts in children and adolescents. One productive approach is to proceed from an examination of factors that affect energy balance to the identification of more proximal influences on those factors. This approach may help to narrow the strategies necessary to prevent or treat childhood obesity. For example, television viewing affects both energy intake and energy expenditure, and therefore represents a logical target for interventions. Anticipatory guidance by pediatricians may offer an effective mechanism by which to change parental attitudes and practices regarding television viewing. A similar process is used to emphasize the potential influence of school-based interventions directed at changes in food choices and sedentary behavior.", "title": "Preventing obesity in children and adolescents." }, { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "23601616", "text": "Objective:Consumption of high-fat diet exerts adverse effects on learning and memory formation, which is linked to impaired hippocampal function. Activation of glucagon-like peptide-1 (GLP-1) signalling ameliorates detrimental effects of obesity-diabetes on cognitive function; however, mechanisms underlying these beneficial actions remain unclear. This study examined effects of daily subcutaneous treatment with GLP-1 mimetic, Liraglutide, on synaptic plasticity, hippocampal gene expression and metabolic control in adult obese diabetic (ob/ob) mice. Results:Long-term potentiation (LTP) induced by area CA1 was completely abolished in ob/ob mice compared with lean controls. Deleterious effects on LTP were rescued (P<0.001) with Liraglutide. Indeed, Liraglutide-treated mice exhibited superior LTP profile compared with lean controls (P<0.01). Expression of hippocampal brain-derived neurotropic factor and neurotrophic tyrosine kinase receptor-type 2 were not significantly different, but synaptophysin and Mash1 were decreased in ob/ob mice. Treatment with Liraglutide over 21 days increased expression of Mash1 in ob/ob mice (2.0-fold; P<0.01). These changes were associated with significantly reduced plasma glucose (21% reduction; P<0.05) and markedly improved plasma insulin concentrations (2.1- to 3.3-fold; P<0.05 to P<0.01). Liraglutide also significantly reduced the glycaemic excursion following an intraperitonal glucose load (area under curve (AUC) values: 22%; P<0.05) and markedly enhanced the insulin response to glucose (AUC values: 1.6-fold; P<0.05). O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by Liraglutide therapy. On day 21, accumulated food intake (32% reduction; P<0.05) and number of feeding bouts (32% reduction; P<0.05) were significantly reduced but simple energy restriction was not responsible for the beneficial actions of Liraglutide. Conclusion:Liraglutide elicits beneficial effects on metabolic control and synaptic plasticity in mice with severe obesity and insulin resistance mediated in part through increased expression of Mash1 believed to improve hippocampal neurogenesis and cell survival.", "title": "Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice" }, { "docid": "6191684", "text": "CONTEXT Chronic tension-type headaches are characterized by near-daily headaches and often are difficult to manage in primary practice. Behavioral and pharmacological therapies each appear modestly effective, but data are lacking on their separate and combined effects. \n OBJECTIVE To evaluate the clinical efficacy of behavioral and pharmacological therapies, singly and combined, for chronic tension-type headaches. \n DESIGN AND SETTING Randomized placebo-controlled trial conducted from August 1995 to January 1998 at 2 outpatient sites in Ohio. \n PARTICIPANTS Two hundred three adults (mean age, 37 years; 76% women) with diagnosis of chronic tension-type headaches (mean, 26 headache d/mo). \n INTERVENTIONS Participants were randomly assigned to receive tricyclic antidepressant (amitriptyline hydrochloride, up to 100 mg/d, or nortriptyline hydrochloride, up to 75 mg/d) medication (n = 53), placebo (n = 48), stress management (eg, relaxation, cognitive coping) therapy (3 sessions and 2 telephone contacts) plus placebo (n = 49), or stress management therapy plus antidepressant medication (n = 53). \n MAIN OUTCOME MEASURES Monthly headache index scores calculated as the mean of pain ratings (0-10 scale) recorded by participants in a daily diary 4 times per day; number of days per month with at least moderate pain (pain rating >/=5), analgesic medication use, and Headache Disability Inventory scores, compared by intervention group. \n RESULTS Tricyclic antidepressant medication and stress management therapy each produced larger reductions in headache activity, analgesic medication use, and headache-related disability than placebo, but antidepressant medication yielded more rapid improvements in headache activity. Combined therapy was more likely to produce clinically significant (>/=50%) reductions in headache index scores (64% of participants) than antidepressant medication (38% of participants; P =.006), stress management therapy (35%; P =.003), or placebo (29%; P =.001). On other measures the combined therapy and its 2 component therapies produced similar outcomes. \n CONCLUSIONS Our results indicate that antidepressant medication and stress management therapy are each modestly effective in treating chronic tension-type headaches. Combined therapy may improve outcome relative to monotherapy.", "title": "Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial." }, { "docid": "25315295", "text": "Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.", "title": "Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications." }, { "docid": "36003142", "text": "OBJECTIVE Mortality rates in the year following new antipsychotic medication starts for neuropsychiatric symptoms of dementia were compared with rates after starts of other psychiatric medications. \n METHOD The retrospective, cohort study used national data from the Department of Veterans Affairs (fiscal years 2001-2005) on patients older than 65 years who began outpatient treatment with psychiatric medication following a dementia diagnosis (N=10,615). Twelve-month mortality rates were compared in patients taking antipsychotics and those taking other psychiatric medications. The authors controlled for confounding by using multivariate models and propensity-scoring methods. Secondary analyses included a no-medication group and examination of mortality causes. \n RESULTS All groups taking antipsychotics had significantly higher mortality rates (22.6%-29.1%) than patients taking nonantipsychotic medications (14.6%). Adjusted mortality risks for atypicals and for combined atypical and conventional antipsychotics were similar to those for conventional antipsychotics. The mortality risk was significantly lower for nonantipsychotic medications than conventional antipsychotics. Except for anticonvulsants, the adjusted risks for all individual classes of nonantipsychotics were significantly lower than the risk for antipsychotics. Mortality risks did not change over 12 months. The proportions of patients taking antipsychotics who died from cerebrovascular, cardiovascular, or infectious causes were not higher than rates for those taking nonantipsychotic psychiatric medications. \n CONCLUSIONS Antipsychotic medications taken by patients with dementia were associated with higher mortality rates than were most other medications used for neuropsychiatric symptoms. The association between mortality and antipsychotics is not well understood and may be due to a direct medication effect or the pathophysiology underlying neuropsychiatric symptoms that prompt antipsychotic use.", "title": "Mortality risk in patients with dementia treated with antipsychotics versus other psychiatric medications." }, { "docid": "5824985", "text": "BACKGROUND Bariatric surgery is becoming a more widespread treatment for obesity. Comprehensive evidence of the long-term effects of contemporary surgery on a broad range of clinical outcomes in large populations treated in routine clinical practice is lacking. The objective of this study was to measure the association between bariatric surgery, weight, body mass index, and obesity-related co-morbidities. \n METHODS AND FINDINGS This was an observational retrospective cohort study using data from the United Kingdom Clinical Practice Research Datalink. All 3,882 patients registered in the database and with bariatric surgery on or before 31 December 2014 were included and matched by propensity score to 3,882 obese patients without surgery. The main outcome measures were change in weight and body mass index over 4 y; incident diagnoses of type 2 diabetes mellitus (T2DM), hypertension, angina, myocardial infarction (MI), stroke, fractures, obstructive sleep apnoea, and cancer; mortality; and resolution of hypertension and T2DM. Weight measures were available for 3,847 patients between 1 and 4 mo, 2,884 patients between 5 and 12 mo, and 2,258 patients between 13 and 48 mo post-procedure. Bariatric surgery patients exhibited rapid weight loss for the first four postoperative months, at a rate of 4.98 kg/mo (95% CI 4.88-5.08). Slower weight loss was sustained to the end of 4 y. Gastric bypass (6.56 kg/mo) and sleeve gastrectomy (6.29 kg/mo) were associated with greater initial weight reduction than gastric banding (2.77 kg/mo). Protective hazard ratios (HRs) were detected for bariatric surgery for incident T2DM, 0.68 (95% CI 0.55-0.83); hypertension, 0.35 (95% CI 0.27-0.45); angina, 0.59 (95% CI 0.40-0.87);MI, 0.28 (95% CI 0.10-0.74); and obstructive sleep apnoea, 0.55 (95% CI 0.40-0.87). Strong associations were found between bariatric surgery and the resolution of T2DM, with a HR of 9.29 (95% CI 6.84-12.62), and between bariatric surgery and the resolution of hypertension, with a HR of 5.64 (95% CI 2.65-11.99). No association was detected between bariatric surgery and fractures, cancer, or stroke. Effect estimates for mortality found no protective association with bariatric surgery overall, with a HR of 0.97 (95% CI 0.66-1.43). The data used were recorded for the management of patients in primary care and may be subject to inaccuracy, which would tend to lead to underestimates of true relative effect sizes. \n CONCLUSIONS Bariatric surgery as delivered in the UK healthcare system is associated with dramatic weight loss, sustained at least 4 y after surgery. This weight loss is accompanied by substantial improvements in pre-existing T2DM and hypertension, as well as a reduced risk of incident T2DM, hypertension, angina, MI, and obstructive sleep apnoea. Widening the availability of bariatric surgery could lead to substantial health benefits for many people who are morbidly obese.", "title": "Bariatric Surgery in the United Kingdom: A Cohort Study of Weight Loss and Clinical Outcomes in Routine Clinical Care." }, { "docid": "437924", "text": "As the global incidence of HIV exceeds 2 million new infections annually, effective interventions to decrease HIV transmission are needed. Randomized, placebo-controlled studies have demonstrated that daily oral antiretroviral pre-exposure prophylaxis (PrEP) with a fixed-dose combination tablet containing tenofovir disoproxil fumarate and emtricitabine can significantly reduce HIV incidence among diverse at-risk populations. In these studies, the efficacy of PrEP was correlated with levels of adherence. Official guidelines recommend provision of PrEP to people at greatest risk of HIV acquisition, and demonstration projects suggest that high levels of uptake and adherence are possible outside of controlled studies. However, several potential barriers to implementing PrEP remain. These challenges include low awareness and utilization of PrEP by at-risk individuals, uncertainty about adherence in ‘real-world’ settings, the majority of healthcare providers being untrained in PrEP provision, limited data about potential adverse effects from long-term use of tenofovir–emtricitabine, high costs of PrEP medications, and stigma associated with PrEP use and the behaviors that would warrant PrEP. Innovative pharmacologic chemoprophylactic approaches could provide solutions to some of these challenges. Less-than-daily oral dosing regimens and long-acting injectable medications could reduce pill burdens and facilitate adherence, and local delivery of PrEP medications to genital compartments via gels, rings and films may limit systemic drug exposure and potential toxicities. As the portfolio of chemoprophylactic agents and delivery systems expands to meet the diverse sexual health needs and product preferences of individuals who may benefit from PrEP, it is hoped that antiretroviral chemoprophylaxis could become an acceptable, feasible, and highly effective addition to existing HIV prevention strategies.", "title": "Pre-Exposure Prophylaxis to Prevent HIV Infection: Current Status, Future Opportunities and Challenges" }, { "docid": "17973630", "text": "IMPORTANCE Sleep disturbances are most prevalent among older adults and often go untreated. Treatment options for sleep disturbances remain limited, and there is a need for community-accessible programs that can improve sleep. \n OBJECTIVE To determine the efficacy of a mind-body medicine intervention, called mindfulness meditation, to promote sleep quality in older adults with moderate sleep disturbances. \n DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial with 2 parallel groups conducted from January 1 to December 31, 2012, at a medical research center among an older adult sample (mean [SD] age, 66.3 [7.4] years) with moderate sleep disturbances (Pittsburgh Sleep Quality Index [PSQI] >5). \n INTERVENTIONS A standardized mindful awareness practices (MAPs) intervention (n = 24) or a sleep hygiene education (SHE) intervention (n = 25) was randomized to participants, who received a 6-week intervention (2 hours per week) with assigned homework. \n MAIN OUTCOMES AND MEASURES The study was powered to detect between-group differences in moderate sleep disturbance measured via the PSQI at postintervention. Secondary outcomes pertained to sleep-related daytime impairment and included validated measures of insomnia symptoms, depression, anxiety, stress, and fatigue, as well as inflammatory signaling via nuclear factor (NF)-κB. RESULTS Using an intent-to-treat analysis, participants in the MAPs group showed significant improvement relative to those in the SHE group on the PSQI. With the MAPs intervention, the mean (SD) PSQIs were 10.2 (1.7) at baseline and 7.4 (1.9) at postintervention. With the SHE intervention, the mean (SD) PSQIs were 10.2 (1.8) at baseline and 9.1 (2.0) at postintervention. The between-group mean difference was 1.8 (95% CI, 0.6-2.9), with an effect size of 0.89. The MAPs group showed significant improvement relative to the SHE group on secondary health outcomes of insomnia symptoms, depression symptoms, fatigue interference, and fatigue severity (P < .05 for all). Between-group differences were not observed for anxiety, stress, or NF-κB, although NF-κB concentrations significantly declined over time in both groups (P < .05). \n CONCLUSIONS AND RELEVANCE The use of a community-accessible MAPs intervention resulted in improvements in sleep quality at immediate postintervention, which was superior to a highly structured SHE intervention. Formalized mindfulness-based interventions have clinical importance by possibly serving to remediate sleep problems among older adults in the short term, and this effect appears to carry over into reducing sleep-related daytime impairment that has implications for quality of life. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01534338.", "title": "Mindfulness meditation and improvement in sleep quality and daytime impairment among older adults with sleep disturbances: a randomized clinical trial." }, { "docid": "10463997", "text": "Objectives: Autophagy is a highly regulated process that has an important role in the control of a wide range of cellular functions, such as organelle recycling, nutrient availability and tissue differentiation. A recent study has shown an increased autophagic activity in the adipose tissue of obese subjects, and a role for autophagy in obesity-associated insulin resistance was proposed. Body mass reduction is the most efficient approach to tackle insulin resistance in over-weight subjects; however, the impact of weight loss in adipose tissue autophagy is unknown. Subjects:Adipose tissue autophagy was evaluated in mice and humans. Results:First, a mouse model of diet-induced obesity and diabetes was maintained on a 15-day, 40% caloric restriction. At baseline, markers of autophagy were increased in obese mice as compared with lean controls. Upon caloric restriction, autophagy increased in the lean mice, whereas it decreased in the obese mice. The reintroduction of ad libitum feeding was sufficient to rapidly reduce autophagy in the lean mice and increase autophagy in the obese mice. In the second part of the study, autophagy was evaluated in the subcutaneous adipose tissue of nine obese-non-diabetic and six obese-diabetic subjects undergoing bariatric surgery for body mass reduction. Specimens were collected during the surgery and approximately 1 year later. Markers of systemic inflammation, such as tumor necrosis factor-1α, interleukin (IL)-6 and IL-1β were evaluated. As in the mouse model, human obesity was associated with increased autophagy, and body mass reduction led to an attenuation of autophagy in the adipose tissue. Conclusion:Obesity and caloric overfeeding are associated with the defective regulation of autophagy in the adipose tissue. The studies in obese-diabetic subjects undergoing improved metabolic control following calorie restriction suggest that autophagy and inflammation are regulated independently.", "title": "Defective regulation of adipose tissue autophagy in obesity" }, { "docid": "5402581", "text": "CONTEXT Atypical antipsychotic medications are widely used to treat delusions, aggression, and agitation in people with Alzheimer disease and other dementia; however, concerns have arisen about the increased risk for cerebrovascular adverse events, rapid cognitive decline, and mortality with their use. \n OBJECTIVE To assess the evidence for increased mortality from atypical antipsychotic drug treatment for people with dementia. \n DATA SOURCES MEDLINE (1966 to April 2005), the Cochrane Controlled Trials Register (2005, Issue 1), meetings presentations (1997-2004), and information from the sponsors were searched using the terms for atypical antipsychotic drugs (aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone), dementia, Alzheimer disease, and clinical trial. STUDY SELECTION Published and unpublished randomized placebo-controlled, parallel-group clinical trials of atypical antipsychotic drugs marketed in the United States to treat patients with Alzheimer disease or dementia were selected by consensus of the authors. \n DATA EXTRACTION Trials, baseline characteristics, outcomes, all-cause dropouts, and deaths were extracted by one reviewer; treatment exposure was obtained or estimated. Data were checked by a second reviewer. \n DATA SYNTHESIS Fifteen trials (9 unpublished), generally 10 to 12 weeks in duration, including 16 contrasts of atypical antipsychotic drugs with placebo met criteria (aripiprazole [n = 3], olanzapine [n = 5], quetiapine [n = 3], risperidone [n = 5]). A total of 3353 patients were randomized to study drug and 1757 were randomized to placebo. Outcomes were assessed using standard methods (with random- or fixed-effects models) to calculate odds ratios (ORs) and risk differences based on patients randomized and relative risks based on total exposure to treatment. There were no differences in dropouts. Death occurred more often among patients randomized to drugs (118 [3.5%] vs 40 [2.3%]. The OR by meta-analysis was 1.54; 95% confidence interval [CI], 1.06-2.23; P = .02; and risk difference was 0.01; 95% CI, 0.004-0.02; P = .01). Sensitivity analyses did not show evidence for differential risks for individual drugs, severity, sample selection, or diagnosis. \n CONCLUSIONS Atypical antipsychotic drugs may be associated with a small increased risk for death compared with placebo. This risk should be considered within the context of medical need for the drugs, efficacy evidence, medical comorbidity, and the efficacy and safety of alternatives. Individual patient analyses modeling survival and causes of death are needed.", "title": "Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials." }, { "docid": "13001323", "text": "Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.", "title": "SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance." } ]
765
Medications to treat obesity do not have side effects.
[ { "docid": "7552215", "text": "OBJECTIVE To summarise the long term efficacy of anti-obesity drugs in reducing weight and improving health status. \n DESIGN Updated meta-analysis of randomised trials. \n DATA SOURCES Medline, Embase, the Cochrane controlled trials register, the Current Science meta-register of controlled trials, and reference lists of identified articles. All data sources were searched from December 2002 (end date of last search) to December 2006. STUDIES REVIEWED Double blind randomised placebo controlled trials of approved anti-obesity drugs used in adults (age over 18) for one year or longer. \n RESULTS 30 trials of one to four years' duration met the inclusion criteria: 16 orlistat (n=10 631 participants), 10 sibutramine (n=2623), and four rimonabant (n=6365). Of these, 14 trials were new and 16 had previously been identified. Attrition rates averaged 30-40%. Compared with placebo, orlistat reduced weight by 2.9 kg (95% confidence interval 2.5 kg to 3.2 kg), sibutramine by 4.2 kg (3.6 kg to 4.7 kg), and rimonabant by 4.7 kg (4.1 kg to 5.3 kg). Patients receiving active drug treatment were significantly more likely to achieve 5% and 10% weight loss thresholds. Orlistat reduced the incidence of diabetes and improved concentrations of total cholesterol and low density lipoprotein cholesterol, blood pressure, and glycaemic control in patients with diabetes but increased rates of gastrointestinal side effects and slightly lowered concentrations of high density lipoprotein. Sibutramine improved [corrected] concentrations of high density lipoprotein cholesterol and triglycerides [corrected] Rimonabant improved concentrations of high density lipoprotein cholesterol and triglycerides, blood pressure, and glycaemic control in patients with diabetes but increased the risk of mood disorders. \n CONCLUSIONS Orlistat, sibutramine, and rimonabant modestly reduce weight, have differing effects on cardiovascular risk profiles, and have specific adverse effects.", "title": "Long term pharmacotherapy for obesity and overweight: updated meta-analysis." } ]
[ { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "5839365", "text": "The ideal anti-obesity drug would produce sustained weight loss with minimal side effects. The mechanisms that regulate energy balance have substantial built-in redundancy, overlap considerably with other physiological functions, and are influenced by social, hedonic and psychological factors that limit the effectiveness of pharmacological interventions. It is therefore unsurprising that anti-obesity drug discovery programmes have been littered with false starts, failures in clinical development, and withdrawals due to adverse effects that were not fully appreciated at the time of launch. Drugs that target pathways in metabolic tissues, such as adipocytes, liver and skeletal muscle, have shown potential in preclinical studies but none has yet reached clinical development. Recent improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus, have opened up new possibilities. Although some have now reached clinical development, it is uncertain whether they will meet the strict regulatory hurdles required for licensing of an anti-obesity drug. However, GLP-1 receptor agonists have already succeeded in diabetes treatment and, owing to their attractive body-weight-lowering effects in humans, will perhaps also pave the way for other anti-obesity agents. To succeed in developing drugs that control body weight to the extent seen following surgical intervention, it seems obvious that a new paradigm is needed. In other therapeutic arenas, such as diabetes and hypertension, lower doses of multiple agents targeting different pathways often yield better results than strategies that modify one pathway alone. Some combination approaches using peptides and small molecules have now reached clinical trials, although recent regulatory experience suggests that large challenges lie ahead. In future, this polytherapeutic strategy could possibly rival surgery in terms of efficacy, safety and sustainability of weight loss.", "title": "Anti-obesity drugs: past, present and future" }, { "docid": "32777637", "text": "BACKGROUND Concurrent use of multiple standing antipsychotics (antipsychotic polypharmacy) is increasingly common among both inpatients and outpatients. Although this has often been cited as a potential quality-of-care problem, reviews of research evidence on antipsychotic polypharmacy have not distinguished between appropriate versus inappropriate use. \n METHODS A MEDLINE search from 1966 to December 2007 was completed to identify studies comparing changes in symptoms, functioning, and/or side effects between patients treated with multiple antipsychotics and patients treated with a single antipsychotic. The studies were reviewed in two groups on the basis of whether prescribing was concordant with guideline recommendations for multiple-antipsychotic use. \n RESULTS A review of the literature, including three randomized controlled trials, found no support for the use of antipsychotic polypharmacy in patients without an established history of treatment resistance to multiple trials of monotherapy. In patients with a history of treatment resistance to multiple monotherapy trials, limited data support antipsychotic polypharmacy, but positive outcomes were primarily found in studies of clozapine augmented with a second-generation antipsychotic. DISCUSSION Research evidence is consistent with the goal of avoiding antipsychotic polypharmacy in patients who lack guideline-recommended indications for its use. The Joint Commission is implementing a core measure set for Hospital-Based Inpatient Psychiatric Services. Two of the measures address antipsychotic polypharmacy. The first measure assesses the overall rate. The second measure determines whether clinically appropriate justification has been documented supporting the use of more than one antipsychotic medication.", "title": "When is antipsychotic polypharmacy supported by research evidence? Implications for QI." }, { "docid": "7627167", "text": "BACKGROUND The objective of this study was to evaluate the effectiveness of a brief, 4-session cognitive behavioral, group psychotherapy for binge eating among bariatric surgery candidates at an academic medical center. Binge eating behaviors have been linked to poorer outcomes among bariatric surgery patients, and binge eating disorder have be considered a contraindication in surgery programs, some of which have mandated preoperative binge eating treatment. However, no previous studies have examined whether a preoperative binge eating intervention could successfully reduce binge eating behaviors among severely obese bariatric surgery candidates. \n METHODS A total of 243 bariatric surgery candidates completed a brief cognitive behavioral group treatment for binge eating behaviors and were administered the Binge Eating Scale and reported the number of weekly binge eating episodes at the initial psychological evaluation and again after the group sessions. The study used a pre-post intervention design. \n RESULTS The results suggested significant reductions in both binge eating behaviors and cognitions and binge eating episodes after the group intervention. The intervention's effectiveness did not differ according to gender or ethnicity (black versus white). \n CONCLUSION A brief cognitive behavioral intervention can reduce binge eating behaviors among bariatric surgery candidates. Given the potential influence of binge eating on outcomes, bariatric surgery programs could benefit by treating binge eating before surgery.", "title": "Brief, four-session group CBT reduces binge eating behaviors among bariatric surgery candidates." }, { "docid": "22534357", "text": "OBJECTIVE To compare pregnancy rates (PR) for letrozole and gonadotropins in individuals who failed to conceive with clomiphene citrate (CC). \n DESIGN Retrospective cohort study. \n SETTING University reproductive center. \n PATIENT(S) Individuals treated with letrozole or gonadotropins who failed to conceive with CC. \n INTERVENTION(S) Controlled ovarian hyperstimulation (COH), transvaginal ultrasound, ovulation induction, IUI. \n MAIN OUTCOME MEASURE(S) Pregnancy rates per cycle. \n RESULT(S) Among patients who failed to conceive with at least three cycles of CC, gonadotropins had a higher PR per cycle than letrozole. Among individuals who failed to conceive with less than three cycles of CC and whose medications were changed because of thin uterine lining or intolerable side effects, average PR per cycle for letrozole and gonadotropin treatments were equivalent. All patients conceived within three stimulation cycles with either gonadotropins or letrozole. \n CONCLUSION(S) In patients who failed to conceive with CC, gonadotropins have higher PR for ovulation induction than letrozole. However, PR were high enough with letrozole to justify its use in this population of patients. Letrozole and gonadotropins should not be used for more than three cycles without a conception.", "title": "A comparison of letrozole to gonadotropins for ovulation induction, in subjects who failed to conceive with clomiphene citrate." }, { "docid": "583260", "text": "Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.", "title": "Adverse drug events: database construction and in silico prediction." }, { "docid": "37336085", "text": "PURPOSE We assessed the nephroprotective effects of montelukast sodium and N-acetylcysteine on secondary renal damage due to unilateral ureteral obstruction in a rat model. MATERIALS AND METHODS In this study 30 Wistar albino male rats were randomized into 3 groups, including placebo, N-acetylcysteine and montelukast sodium. Three rats served as the control group. The left ureter of the rats was sutured with 4-zero polyglactin sutures. Medications were given 3 days before obstruction and continued for 15 days. Dimercaptosuccinic acid renal scintigraphy was performed before obstruction and on day 15. Rats were sacrificed on day 15 and histopathological examinations were done. We biochemically assessed oxidative stress markers (myeloperoxidase and malondialdehyde), sulfhydryl and total nitrite for lipid peroxidation, oxidative protein damage and antioxidant levels, respectively. \n RESULTS On pathological examination inflammation and tubular epithelial damage in the N-acetylcysteine and montelukast sodium groups were less than in the placebo group (p <0.05). No difference was seen in normal kidneys. Myeloperoxidase, malondialdehyde and total nitrite levels in the N-acetylcysteine group, and myeloperoxidase and malondialdehyde levels in the montelukast sodium group were lower than in the placebo group (p <0.05). No statistical difference was seen in sulfhydryl levels (p >0.05) or among the N-acetylcysteine, montelukast sodium and placebo groups on scintigraphy (p >0.05). No pathological, chemical and scintigraphic differences were seen among the N-acetylcysteine, montelukast sodium and sham treated groups (p >0.05). \n CONCLUSIONS N-acetylcysteine and montelukast sodium have a protective effect against obstructive damage of the kidney. However, further investigations are needed.", "title": "Do Montelukast Sodium and N-Acetylcysteine Have a Nephroprotective Effect on Unilateral Ureteral Obstruction? A Placebo Controlled Trial in a Rat Model." }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "10749308", "text": "Placebo-controlled trials are used extensively in the development of new pharmaceuticals. They are sometimes challenged as unethical in settings in which patients could be treated with an existing therapy (1-7). The issues of when placebo controls are ethically acceptable and when they are scientifically necessary are important and worthy of discussion. The Ethics of Placebo Controls The Declaration of Helsinki The Declaration of Helsinki (8) is an international document that describes ethical principles for clinical investigation. Those who contend that placebo controls are unethical whenever known effective therapy exists for a condition usually cite the following sentence in the Declaration as support for that position: In any medical study, every patientincluding those of a control group, if anyshould be assured of the best proven diagnostic and therapeutic method. We believe that an interpretation of this sentence as barring placebo controls whenever an effective treatment exists is untenable. First, the requirement that all patients receive the best proven diagnostic and therapeutic method would bar not only placebo-controlled trials but also active-control and historically controlled trials. When effective treatment exists, the patient receiving the investigational treatment instead of the established therapy is clearly not getting the best proven treatment. Second, it does not seem reasonable to consider as equivalent all failures to use known effective therapy. Historically, concerns about placebo use have usually arisen in the context of serious illness. There is universal agreement that use of placebo or otherwise untreated controls is almost always unethical when therapy shown to improve survival or decrease serious morbidity is available. But in cases in which the treatment does not affect the patient's long-term health, an ethical imperative to use existing therapy is not plausible. Can it be, for example, that because topical minoxidil or oral finasteride can grow hair, a placebo-controlled trial of a new remedy for baldness is unethical? Is it really unethical to use placebos in short-term studies of drugs for allergic rhinitis, insomnia, anxiety, dermatoses, heartburn, or headaches in fully informed patients? We do not believe that there is a reasonable basis for arguing that such studies and many other placebo-controlled studies of symptom relief are unethical and that an informed patient cannot properly be asked to participate in them. Third, there is good reason to doubt that the cited phrase was intended to discourage placebo-controlled trials. The phrase under discussion was not part of the original 1964 Declaration but was added in 1975 to reinforce the idea that the physicianpatient relationship must be respected just as it would be in a purely therapeutic situation not involving research objectives (8). In the explanation accompanying the 1975 change, the issue of placebo-controlled trials was not even mentioned (9). The American Medical Association (10), the World Health Organization (11), and the Council for International Organizations of Medical Sciences (12) have rejected the position that the Declaration uniformly bars placebo-controlled trials when proven therapy is available. Informed Consent in Placebo-Controlled Trials Patients asked to participate in a placebo-controlled trial must be informed of the existence of any effective therapy, must be able to explore the consequences of deferring such therapy with the investigator, and must provide fully informed consent. Concern about whether consent to participate in trials is as informed as we would like to believe is valid, but these concerns apply as much to the patient's decision to forgo known effective treatment and risk exposure to a potentially ineffective or even harmful new agent in an active-control trial as to a decision to accept possible persistence of symptoms in a placebo-controlled trial. Thus, this problem is not unique to placebo-controlled trials. For the above reasons, we conclude that placebo-controlled trials may be ethically conducted even when effective therapy exists, as long as patients will not be harmed by participation and are fully informed about their alternatives. Although in many cases application of this standard will be fairly straightforward, in others it will not, and there may be debate about the consequences of deferring treatment (13). Assessment of Effectiveness with Active-Control Trials Clinical trials that, because of deficiencies in study design or conduct, are unlikely to provide scientifically valid and clinically meaningful results raise their own ethical concerns (12, 14). The remainder of this paper will address the inability of commonly proposed alternatives to placebo-controlled trials to evaluate the effectiveness of new treatments in many medical settings. Active-Control Equivalence Trials (Noninferiority Trials) The ability to conduct a placebo-controlled trial ethically in a given situation does not necessarily mean that placebo-controlled trials should be carried out when effective therapy exists. Patients and physicians might still prefer a trial in which every participant is given an active treatment. What remains to be examined is why placebo-controlled trials (or, more generally, trials intended to show an advantage of one treatment over another) are frequently needed to demonstrate the effectiveness of new treatments and often cannot be replaced by active-control trials showing that a new drug is equivalent or noninferior to a known effective agent. The limitations of active-control equivalence trials (ACETs) that are intended to show the effectiveness of a new drug have long been recognized and are well described (15-33) but are perhaps not as widely appreciated as they should be. A recent proposed international guideline on choice of control group addresses this issue in detail (33). The Fundamental Problem: Need for Assay Sensitivity There are two distinct ways to show that a new therapy is effective. One can show that the new therapy is superior to a control treatment, or one can show that the new therapy is equivalent to or not worse by some defined amount than a known effective treatment. Each method can be valid, but each requires entirely different inferential approaches. A well-designed study that shows superiority of a treatment to a control (placebo or active therapy) provides strong evidence of the effectiveness of the new treatment, limited only by the statistical uncertainty of the result. No information external to the trial is needed to support the conclusion of effectiveness. In contrast, a study that successfully shows equivalencethat is, little difference between a new drug and known active treatmentdoes not by itself demonstrate that the new treatment is effective. Equivalence could mean that the treatments were both effective in the study, but it could also mean that both treatments were ineffective in the study. To conclude from an ACET that a new treatment is effective on the basis of its similarity to the active control, one must make the critical (and untestable within the study) assumption that the active control had an effect in that particular study. In other words, one must assume that if a placebo group had been included, the placebo would have been inferior to the active control (15-33). Support for this assumption must come from sources external to the trial. Although it might appear reasonable to expect a known active agent to be superior to placebo in any given appropriately designed trial, experience has shown that this is not the case for many types of drugs. The ability of a study to distinguish between active and inactive treatments is termed assay sensitivity. If assay sensitivity cannot be assumed, then even if the new and standard treatments appear virtually identical and the confidence interval for their comparison is exquisitely narrow, the study cannot demonstrate effectiveness of the new drug. (Note that in practice, ACETs are not designed simply to show lack of a statistically significant difference between treatments. Rather, such trials are designed to show noninferioritythat the new treatment is not inferior to the control by more than a specified margin. This approach is described in the Appendix.) The best evidence that an active drug would have an effect superior to that of placebo in a given study would be a series of trials of similar design in which the active drug has reliably outperformed placebo. The ACET thus requires information external to the trial (the information about past placebo-controlled studies of the active control) to interpret the results. In this respect, an ACET is similar to a historically controlled trial. In some settings, such as highly responsive cancers, most infectious diseases, and some cardiovascular conditions, such external information is available and ACETs can and do provide a valid and reliable basis for evaluating new treatments. In many cases, however, the historically based assumption of assay sensitivity cannot be made; for many types of effective drugs, studies of apparently adequate size and design do not regularly distinguish drugs from placebo (16-18, 25, 34). More than 20 years ago, Lasagna (19) described this difficulty particularly well (reflecting long recognition of the problem among analgesiologists): a comparison between new drug and standard is convincing only when the new remedy is superior to standard treatment. If it is inferior, or even indistinguishable from a standard remedy, the results are not readily interpretable. In the absence of placebo controls, one does not know if the inferior new medicine has any efficacy at all, and equivalent performance may reflect simply a patient population that cannot distinguish between two active treatments that differ considerably from each other, or between active drug and placebo. Certain clinical conditions, such as seri", "title": "Placebo-Controlled Trials and Active-Control Trials in the Evaluation of New Treatments. Part 1: Ethical and Scientific Issues" }, { "docid": "11481946", "text": "Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.", "title": "Obesity, type 2 diabetes, and cancer: the insulin and IGF connection." }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." }, { "docid": "6588614", "text": "Diabetes and associated metabolic conditions have reached pandemic proportions worldwide, and there is a clear unmet medical need for new therapies that are both effective and safe. FGF19 and FGF21 are distinctive members of the FGF family that function as endocrine hormones. Both have potent effects on normalizing glucose, lipid, and energy homeostasis, and therefore, represent attractive potential next generation therapies for combating the growing epidemics of type 2 diabetes and obesity. The mechanism responsible for these impressive metabolic effects remains unknown. While both FGF19 and FGF21 can activate FGFRs 1c, 2c, and 3c in the presence of co-receptor βKlotho in vitro, which receptor is responsible for the metabolic activities observed in vivo remains unknown. Here we have generated a variant of FGF19, FGF19-7, that has altered receptor specificity with a strong bias toward FGFR1c. We show that FGF19-7 is equally efficacious as wild type FGF19 in regulating glucose, lipid, and energy metabolism in both diet-induced obesity and leptin-deficient mouse models. These results are the first direct demonstration of the central role of the βKlotho/FGFR1c receptor complex in glucose and lipid regulation, and also strongly suggest that activation of this receptor complex alone might be sufficient to achieve all the metabolic functions of endocrine FGF molecules.", "title": "Characterization of a FGF19 Variant with Altered Receptor Specificity Revealed a Central Role for FGFR1c in the Regulation of Glucose Metabolism" }, { "docid": "2475059", "text": "OBJECTIVE Methylphenidate (MPH), the most commonly prescribed drug for attention-deficit/hyperactivity disorder (ADHD), has a short half-life, which necessitates multiple daily doses. The need for multiple doses produces problems with medication administration during school and after-school hours, and therefore with compliance. Previous long-acting stimulants and preparations have shown effects equivalent to twice-daily dosing of MPH. This study tests the efficacy and duration of action, in natural and laboratory settings, of an extended-release MPH preparation designed to last 12 hours and therefore be equivalent to 3-times-daily dosing. \n METHODS Sixty-eight children with ADHD, 6 to 12 years old, participated in a within-subject, double-blind comparison of placebo, immediate-release (IR) MPH 3 times a day (tid), and Concerta, a once-daily MPH formulation. Three dosing levels of medication were used: 5 mg IR MPH tid/18 mg Concerta once a day (qd); 10 mg IR MPH tid/36 mg Concerta qd; and 15 mg IR MPH tid/54 mg Concerta qd. All children were currently medicated with MPH at enrollment, and each child's dose level was based on that child's MPH dosing before the study. The doses of Concerta were selected to be comparable to the daily doses of MPH that each child received. To achieve the ascending rate of MPH delivery determined by initial investigations to provide the necessary continuous coverage, Concerta doses were 20% higher on a daily basis than a comparable tid regimen of IR MPH. Children received each medication condition for 7 days. The investigation was conducted in the context of a background clinical behavioral intervention in both the natural environment and the laboratory setting. Parents received behavioral parent training and teachers were taught to establish a school-home daily report card (DRC). A DRC is a list of individual target behaviors that represent a child's most salient areas of impairment. Teachers set daily goals for each child's impairment targets, and parents provided rewards at home for goal attainment. Each weekday, teachers completed the DRC, and it was used as a dependent measure of individualized medication response. Teachers and parents also completed weekly standardized ratings of behavior and treatment effectiveness. To evaluate the time course of medication effects, children spent 12 hours in a laboratory setting on Saturdays and medication effects were measured using procedures and methods adapted from our summer treatment program. Measures of classroom behavior and academic productivity/accuracy were taken in a laboratory classroom setting during which children completed independent math and reading worksheets. Measures of social behavior were taken in structured, small-group board game settings and unstructured recess settings. Measures included behavior frequency counts, academic problems completed and accuracy, independent observations, teacher and counselor ratings, and individualized behavioral target goals. Reports of adverse events, sleep quality, and appetite were collected. \n RESULTS On virtually all measures in all settings, both drug conditions were significantly different from placebo, and the 2 drugs were not different from each other. In children's regular school settings, both medications improved behavior as measured by teacher ratings and individualized target behaviors (the DRC); these effects were seen into the evening as measured by parent ratings. In the laboratory setting, effects of Concerta were equivalent to tid MPH and lasted at least through 12 hours after dosing. Concerta was significantly superior to tid MPH on 2 parent rating scores, and when asked, more parents preferred Concerta than preferred tid IR MPH or placebo. Side effects on children's sleep and appetite were similar for the 2 preparations. In the lab setting, both medications improved productivity and accuracy on arithmetic seatwork assignments, disruptive and on-task behavior, and classroom rule following. Both medications improved children's rule following and negative behavior in small group board games, as well as in unstructured recess settings. Individual target behaviors also showed significant improvement with medication across domains in the laboratory setting. Children's behavior across settings deteriorated across the laboratory day, and the primary effect of medication was to prevent this deterioration as the day wore on. Results support the use of background behavioral treatment in clinical trials of stimulant medication, and illustrate the utility of a measure of individualized daily target goals (ie, the DRC) as an objective measure of medication response in both the laboratory and natural school settings. \n CONCLUSION This investigation clearly supports the efficacy of the Concerta long-acting formulation of MPH for parents who desire to have medication benefits for their child throughout the day and early evening. (ABSTRACT TRUNCATED)", "title": "Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings." }, { "docid": "22635278", "text": "From April 1986 to September 2000, 122 MRCC patients were treated by monthly intralymphatic injections (containing a mean of 573 IL-2 U and 26 x 10(6) LAK cells) and i.m. administration of IFN and TF; 71 patients also received a 3-day cycle of monthly IL-2 inhalations with a mean of 998 daily U. MRCC cases not treated by immunotherapy (n = 89) represent our historical controls. Adverse clinical side effects related to treatment were negligible. CR (n = 11) and PR (n = 13) were noticed in 24/122 patients. Of 24 responding patients, 17 resumed progression, whereas 7 remain in remission 11-69 months later. The overall median survival of treated patients (28 months) was 3.5-fold higher than the median survival of historical controls (7.5 months), and a Kaplan-Meier curve showed 25% survival 11 years after the beginning of immunotherapy. Apparently, the addition of IL-2 by inhalation improved survival. The present immunotherapy protocol appears to be efficacious, safe, devoid of adverse side effects, far less costly than others and able to offer a good quality of life to MRCC patients; if confirmed in a multicenter trial, it could set the basis for developing low-dose immunomodulatory treatments.", "title": "Immunotherapy of metastatic kidney cancer." }, { "docid": "25691541", "text": "How to manage the preterm patent ductus arteriosus (PDA) remains a conundrum. On the one hand, physiology and statistical association with adverse outcomes suggest that it is pathological. On the other hand, clinical trials of treatment strategies have failed to show any long-term benefit. Ultrasound studies of PDA have suggested that the haemodynamic impact may be much earlier after birth than previously thought (in the first hours); however, we still do not know when to treat PDA. Studies that have tested symptomatic or pre-symptomatic treatment are mainly historical and have not tested the effect of no treatment. Prophylactic treatment is the best-studied regimen but improvements in some short-term outcomes do not translate to any difference in longer-term outcomes. Neonatologists have been reluctant to engage in trials that test treatment against almost never treating. Observations of very early postnatal haemodynamic significance suggest that targeting treatment on the basis of the early postnatal constrictive response of the duct may optimize benefits. A pilot trial of this strategy showed reduction in the incidence of pulmonary haemorrhage but more trials of this strategy are needed.", "title": "Preterm patent ductus arteriosus: A continuing conundrum for the neonatologist?" }, { "docid": "1495563", "text": "OBJECTIVE To observe the therapeutic effect of \"Xingnao Kaiqiao Zhenfa\" (Acupuncture Technique for Restoring Consciousness) in the treatment of post-stroke depression. \n METHODS A total of 256 stroke patients were divided into acupuncture group (n = 180, male 138, female 42) and medication group (n = 76, male 57 and female 19) according to their visiting sequence to our hospital. Acupoints used were Neiguan (PC 6), Renzhong (GV 26), Baihui (GV 20), Yintang (EX-HN 3) and Sanyinjiao (SP 6,the affected side) and the needles were retained for 20 min every time. Patients of medication group were asked to take Amitriptyline (50 mg/d at first, 200 mg/d). Acupuncture treatment was conducted twice daily, and after one month's treatment the therapeutic effect was evaluated. Self-Rating Depression Scale (SDS) and Hamilton Rating Scale for Depression (HRSD) were used to assess the patient's state of depression. \n RESULTS After the treatment, of the 180 and 76 cases in acupuncture and medication groups, 31 (17.2%) and 13 (17.1%) were cured, 73 (40.6%) and 18 (23.7%) had a marked improvement in their depression state, 27 (15.0%) and 12 (15.8%) had an improvement, 49 (27.2%) and 33 (43.4%) failed, with the effective rates being 72.8% and 56.6% respectively. The markedly effective rate and the total effective rate of acupuncture group were significantly higher than those of medication group (P < 0.05). After the treatment, the total scores of SDS and HRSD and the severity index of two groups decreased pronouncedly in comparison with those of their individual pre-treatment; and the therapeutic effects of acupuncture group were significantly better than those of medication group in reducing SDS, HRSD and severity index (P < 0 .05). In addition, the decreased values of depression, pessimistic mood and irritability of acupuncture group were all bigger than those of medication group (P < 0.05). No significant difference was found between two groups in the decreased value of insomnia (P > 0.05). \n CONCLUSION \"Acupuncture Technique for Restoring Consciousness\" can effectively improve depression patients' symptoms and the therapeutic effect of acupuncture is markedly superior to that of medication for post-stroke patients.", "title": "[Clinical study on the therapeutic effect of acupuncture in the treatment of post-stroke depression]." }, { "docid": "24494539", "text": "OBJECTIVE To observe the clinical effects of acupuncture combined with auricular point sticking based on the western medication for post stroke depression (PSD). \n METHODS Sixty patients with PSD were randomly assigned into an acupuncture plus auricular application group (a combination group) and a medication group, 30 cases in each one. 20 mg paroxetine hydrochloride was prescribed orally in the medication group, once a day for continuous 8 weeks. Based on the above treatment, 30-minute acupuncture was used in the combination group for 8 weeks at Baihui (GV 20), Sishencong (EX-HN 1), Shenting (GV 24), Yintang (GV 29), Shenmen (HT 7), Neiguan (PC 6), Taichong (LR 3), Hegu (LI 4), Zusanli (ST 36), Sanyinjiao (SP 6) and Fenglong (ST 40), once the other day and three times a week. Auricular point sticking therapy for 8 weeks was applied at shenmen (TF4), pizhixia (AT4), xin (CO15), and gan (CO12), with pressing 3 times a day and once 3-5 days. The total score and each factor scores of Hamilton's depression scale (HAMD) were observed in the two groups before and after treatment, and Asberg's antidepressant side-effect rating scale (SERS) and clinical effect were evaluated. \n RESULTS After treatment, the total HAMD scores of the two groups decreased compared with those before treatment (both P<0.05), with better effect in the combination group (P<0.05). The scores of the combination group after treatment were lower than those in the medication group, including the anxiety/somatization factor, sleep disturbance factor, hopelessness factor (all P<0.05). The total effective rate of the combination group was 86.7% (26/30), which was better than 66.7% (20/30) of the medication group (P<0.05). The SERS score of the combination group was lower than that of the medication group (P<0.05). \n CONCLUSIONS Acupuncture combined with auricular point sticking can improve the clinical symptoms and are effective and safe for PSD.", "title": "[Acupuncture combined with auricular point sticking therapy for post stroke depression:a randomized controlled trial]." }, { "docid": "4345757", "text": "Obesity is now so common within the world's population that it is beginning to replace undernutrition and infectious diseases as the most significant contributor to ill health. In particular, obesity is associated with diabetes mellitus, coronary heart disease, certain forms of cancer, and sleep-breathing disorders. Obesity is defined by a body-mass index (weight divided by square of the height) of 30 kg m(-2) or greater, but this does not take into account the morbidity and mortality associated with more modest degrees of overweight, nor the detrimental effect of intra-abdominal fat. The global epidemic of obesity results from a combination of genetic susceptibility, increased availability of high-energy foods and decreased requirement for physical activity in modern society. Obesity should no longer be regarded simply as a cosmetic problem affecting certain individuals, but an epidemic that threatens global well being.", "title": "Obesity as a medical problem." }, { "docid": "9745001", "text": "OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size in patients with non-toxic multinodular goitre. \n DESIGN Consecutive patients with multinodular non-toxic goitre selected for radioactive iodine treatment and followed for a minimum of 12 months (median 48 months) after an intended dose of 3.7 MBq/g thyroid tissue corrected to a 100% uptake of iodine-131 in 24 hours. \n PATIENTS 69 patients with a growing multinodular non-toxic goitre causing local compression symptoms or cosmetic inconveniences. The treatment was chosen because of a high operative risk, previous thyroidectomy, or refusal to be operated on. \n MAIN OUTCOME MEASUREMENTS Standard thyroid function variables and ultrasonically determined thyroid volume before treatment as well as 1, 2, 3, 6, and 12 months after treatment and then once a year. \n RESULTS 56 patients were treated with a single dose of 131I, 12 with two doses, and one with four doses. In 45 patients treated with one dose and remaining euthyroid the median thyroid volume was reduced from 73 (interquartile range 50-106) ml to 29 (23-48) ml at 24 months in the 39 patients in whom this was measured during follow up. The median reduction was 40 (22-48) ml (60% reduction, p < 0.0001), half of which occurred within three months. Patients treated with two doses as well as those developing hypothyroidism and hyperthyroidism had a significant reduction in thyroid volume. Eleven patients developed hypothyroidism (cumulative five year risk 22%, 95% confidence interval 4.8% to 38.4%). Side effects were few: three cases of hyperthyroidism and two cases of radiation thyroiditis. Only one patient was dissatisfied with the result; she was referred for operation six months after treatment. \n CONCLUSIONS A substantial reduction in thyroid volume accompanied by a low incidence of hypothyroidism and few side effects makes the use of radioactive iodine an attractive alternative to surgery in selected cases of non-toxic multinodular goitre.", "title": "Radioiodine treatment of multinodular non-toxic goitre." } ]
766
Medications to treat obesity have unwanted side effects.
[ { "docid": "7552215", "text": "OBJECTIVE To summarise the long term efficacy of anti-obesity drugs in reducing weight and improving health status. \n DESIGN Updated meta-analysis of randomised trials. \n DATA SOURCES Medline, Embase, the Cochrane controlled trials register, the Current Science meta-register of controlled trials, and reference lists of identified articles. All data sources were searched from December 2002 (end date of last search) to December 2006. STUDIES REVIEWED Double blind randomised placebo controlled trials of approved anti-obesity drugs used in adults (age over 18) for one year or longer. \n RESULTS 30 trials of one to four years' duration met the inclusion criteria: 16 orlistat (n=10 631 participants), 10 sibutramine (n=2623), and four rimonabant (n=6365). Of these, 14 trials were new and 16 had previously been identified. Attrition rates averaged 30-40%. Compared with placebo, orlistat reduced weight by 2.9 kg (95% confidence interval 2.5 kg to 3.2 kg), sibutramine by 4.2 kg (3.6 kg to 4.7 kg), and rimonabant by 4.7 kg (4.1 kg to 5.3 kg). Patients receiving active drug treatment were significantly more likely to achieve 5% and 10% weight loss thresholds. Orlistat reduced the incidence of diabetes and improved concentrations of total cholesterol and low density lipoprotein cholesterol, blood pressure, and glycaemic control in patients with diabetes but increased rates of gastrointestinal side effects and slightly lowered concentrations of high density lipoprotein. Sibutramine improved [corrected] concentrations of high density lipoprotein cholesterol and triglycerides [corrected] Rimonabant improved concentrations of high density lipoprotein cholesterol and triglycerides, blood pressure, and glycaemic control in patients with diabetes but increased the risk of mood disorders. \n CONCLUSIONS Orlistat, sibutramine, and rimonabant modestly reduce weight, have differing effects on cardiovascular risk profiles, and have specific adverse effects.", "title": "Long term pharmacotherapy for obesity and overweight: updated meta-analysis." } ]
[ { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "5839365", "text": "The ideal anti-obesity drug would produce sustained weight loss with minimal side effects. The mechanisms that regulate energy balance have substantial built-in redundancy, overlap considerably with other physiological functions, and are influenced by social, hedonic and psychological factors that limit the effectiveness of pharmacological interventions. It is therefore unsurprising that anti-obesity drug discovery programmes have been littered with false starts, failures in clinical development, and withdrawals due to adverse effects that were not fully appreciated at the time of launch. Drugs that target pathways in metabolic tissues, such as adipocytes, liver and skeletal muscle, have shown potential in preclinical studies but none has yet reached clinical development. Recent improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus, have opened up new possibilities. Although some have now reached clinical development, it is uncertain whether they will meet the strict regulatory hurdles required for licensing of an anti-obesity drug. However, GLP-1 receptor agonists have already succeeded in diabetes treatment and, owing to their attractive body-weight-lowering effects in humans, will perhaps also pave the way for other anti-obesity agents. To succeed in developing drugs that control body weight to the extent seen following surgical intervention, it seems obvious that a new paradigm is needed. In other therapeutic arenas, such as diabetes and hypertension, lower doses of multiple agents targeting different pathways often yield better results than strategies that modify one pathway alone. Some combination approaches using peptides and small molecules have now reached clinical trials, although recent regulatory experience suggests that large challenges lie ahead. In future, this polytherapeutic strategy could possibly rival surgery in terms of efficacy, safety and sustainability of weight loss.", "title": "Anti-obesity drugs: past, present and future" }, { "docid": "32777637", "text": "BACKGROUND Concurrent use of multiple standing antipsychotics (antipsychotic polypharmacy) is increasingly common among both inpatients and outpatients. Although this has often been cited as a potential quality-of-care problem, reviews of research evidence on antipsychotic polypharmacy have not distinguished between appropriate versus inappropriate use. \n METHODS A MEDLINE search from 1966 to December 2007 was completed to identify studies comparing changes in symptoms, functioning, and/or side effects between patients treated with multiple antipsychotics and patients treated with a single antipsychotic. The studies were reviewed in two groups on the basis of whether prescribing was concordant with guideline recommendations for multiple-antipsychotic use. \n RESULTS A review of the literature, including three randomized controlled trials, found no support for the use of antipsychotic polypharmacy in patients without an established history of treatment resistance to multiple trials of monotherapy. In patients with a history of treatment resistance to multiple monotherapy trials, limited data support antipsychotic polypharmacy, but positive outcomes were primarily found in studies of clozapine augmented with a second-generation antipsychotic. DISCUSSION Research evidence is consistent with the goal of avoiding antipsychotic polypharmacy in patients who lack guideline-recommended indications for its use. The Joint Commission is implementing a core measure set for Hospital-Based Inpatient Psychiatric Services. Two of the measures address antipsychotic polypharmacy. The first measure assesses the overall rate. The second measure determines whether clinically appropriate justification has been documented supporting the use of more than one antipsychotic medication.", "title": "When is antipsychotic polypharmacy supported by research evidence? Implications for QI." }, { "docid": "22057077", "text": "Methylphenidate is a medication used routinely in the management of attention deficit hyperactivity disorder. We report a case of a prepubertal child who developed unwanted erections after commencing a response-adjusted dosing regimen of sustained release methylphenidate. Despite priapism being a rare adverse reaction associated with methylphenidate, physicians and parents need to be aware as it can have significant long-term complications.", "title": "Methylphenidate-induced erections in a prepubertal child." }, { "docid": "7627167", "text": "BACKGROUND The objective of this study was to evaluate the effectiveness of a brief, 4-session cognitive behavioral, group psychotherapy for binge eating among bariatric surgery candidates at an academic medical center. Binge eating behaviors have been linked to poorer outcomes among bariatric surgery patients, and binge eating disorder have be considered a contraindication in surgery programs, some of which have mandated preoperative binge eating treatment. However, no previous studies have examined whether a preoperative binge eating intervention could successfully reduce binge eating behaviors among severely obese bariatric surgery candidates. \n METHODS A total of 243 bariatric surgery candidates completed a brief cognitive behavioral group treatment for binge eating behaviors and were administered the Binge Eating Scale and reported the number of weekly binge eating episodes at the initial psychological evaluation and again after the group sessions. The study used a pre-post intervention design. \n RESULTS The results suggested significant reductions in both binge eating behaviors and cognitions and binge eating episodes after the group intervention. The intervention's effectiveness did not differ according to gender or ethnicity (black versus white). \n CONCLUSION A brief cognitive behavioral intervention can reduce binge eating behaviors among bariatric surgery candidates. Given the potential influence of binge eating on outcomes, bariatric surgery programs could benefit by treating binge eating before surgery.", "title": "Brief, four-session group CBT reduces binge eating behaviors among bariatric surgery candidates." }, { "docid": "22534357", "text": "OBJECTIVE To compare pregnancy rates (PR) for letrozole and gonadotropins in individuals who failed to conceive with clomiphene citrate (CC). \n DESIGN Retrospective cohort study. \n SETTING University reproductive center. \n PATIENT(S) Individuals treated with letrozole or gonadotropins who failed to conceive with CC. \n INTERVENTION(S) Controlled ovarian hyperstimulation (COH), transvaginal ultrasound, ovulation induction, IUI. \n MAIN OUTCOME MEASURE(S) Pregnancy rates per cycle. \n RESULT(S) Among patients who failed to conceive with at least three cycles of CC, gonadotropins had a higher PR per cycle than letrozole. Among individuals who failed to conceive with less than three cycles of CC and whose medications were changed because of thin uterine lining or intolerable side effects, average PR per cycle for letrozole and gonadotropin treatments were equivalent. All patients conceived within three stimulation cycles with either gonadotropins or letrozole. \n CONCLUSION(S) In patients who failed to conceive with CC, gonadotropins have higher PR for ovulation induction than letrozole. However, PR were high enough with letrozole to justify its use in this population of patients. Letrozole and gonadotropins should not be used for more than three cycles without a conception.", "title": "A comparison of letrozole to gonadotropins for ovulation induction, in subjects who failed to conceive with clomiphene citrate." }, { "docid": "583260", "text": "Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.", "title": "Adverse drug events: database construction and in silico prediction." }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "11481946", "text": "Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.", "title": "Obesity, type 2 diabetes, and cancer: the insulin and IGF connection." }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." }, { "docid": "6588614", "text": "Diabetes and associated metabolic conditions have reached pandemic proportions worldwide, and there is a clear unmet medical need for new therapies that are both effective and safe. FGF19 and FGF21 are distinctive members of the FGF family that function as endocrine hormones. Both have potent effects on normalizing glucose, lipid, and energy homeostasis, and therefore, represent attractive potential next generation therapies for combating the growing epidemics of type 2 diabetes and obesity. The mechanism responsible for these impressive metabolic effects remains unknown. While both FGF19 and FGF21 can activate FGFRs 1c, 2c, and 3c in the presence of co-receptor βKlotho in vitro, which receptor is responsible for the metabolic activities observed in vivo remains unknown. Here we have generated a variant of FGF19, FGF19-7, that has altered receptor specificity with a strong bias toward FGFR1c. We show that FGF19-7 is equally efficacious as wild type FGF19 in regulating glucose, lipid, and energy metabolism in both diet-induced obesity and leptin-deficient mouse models. These results are the first direct demonstration of the central role of the βKlotho/FGFR1c receptor complex in glucose and lipid regulation, and also strongly suggest that activation of this receptor complex alone might be sufficient to achieve all the metabolic functions of endocrine FGF molecules.", "title": "Characterization of a FGF19 Variant with Altered Receptor Specificity Revealed a Central Role for FGFR1c in the Regulation of Glucose Metabolism" }, { "docid": "2475059", "text": "OBJECTIVE Methylphenidate (MPH), the most commonly prescribed drug for attention-deficit/hyperactivity disorder (ADHD), has a short half-life, which necessitates multiple daily doses. The need for multiple doses produces problems with medication administration during school and after-school hours, and therefore with compliance. Previous long-acting stimulants and preparations have shown effects equivalent to twice-daily dosing of MPH. This study tests the efficacy and duration of action, in natural and laboratory settings, of an extended-release MPH preparation designed to last 12 hours and therefore be equivalent to 3-times-daily dosing. \n METHODS Sixty-eight children with ADHD, 6 to 12 years old, participated in a within-subject, double-blind comparison of placebo, immediate-release (IR) MPH 3 times a day (tid), and Concerta, a once-daily MPH formulation. Three dosing levels of medication were used: 5 mg IR MPH tid/18 mg Concerta once a day (qd); 10 mg IR MPH tid/36 mg Concerta qd; and 15 mg IR MPH tid/54 mg Concerta qd. All children were currently medicated with MPH at enrollment, and each child's dose level was based on that child's MPH dosing before the study. The doses of Concerta were selected to be comparable to the daily doses of MPH that each child received. To achieve the ascending rate of MPH delivery determined by initial investigations to provide the necessary continuous coverage, Concerta doses were 20% higher on a daily basis than a comparable tid regimen of IR MPH. Children received each medication condition for 7 days. The investigation was conducted in the context of a background clinical behavioral intervention in both the natural environment and the laboratory setting. Parents received behavioral parent training and teachers were taught to establish a school-home daily report card (DRC). A DRC is a list of individual target behaviors that represent a child's most salient areas of impairment. Teachers set daily goals for each child's impairment targets, and parents provided rewards at home for goal attainment. Each weekday, teachers completed the DRC, and it was used as a dependent measure of individualized medication response. Teachers and parents also completed weekly standardized ratings of behavior and treatment effectiveness. To evaluate the time course of medication effects, children spent 12 hours in a laboratory setting on Saturdays and medication effects were measured using procedures and methods adapted from our summer treatment program. Measures of classroom behavior and academic productivity/accuracy were taken in a laboratory classroom setting during which children completed independent math and reading worksheets. Measures of social behavior were taken in structured, small-group board game settings and unstructured recess settings. Measures included behavior frequency counts, academic problems completed and accuracy, independent observations, teacher and counselor ratings, and individualized behavioral target goals. Reports of adverse events, sleep quality, and appetite were collected. \n RESULTS On virtually all measures in all settings, both drug conditions were significantly different from placebo, and the 2 drugs were not different from each other. In children's regular school settings, both medications improved behavior as measured by teacher ratings and individualized target behaviors (the DRC); these effects were seen into the evening as measured by parent ratings. In the laboratory setting, effects of Concerta were equivalent to tid MPH and lasted at least through 12 hours after dosing. Concerta was significantly superior to tid MPH on 2 parent rating scores, and when asked, more parents preferred Concerta than preferred tid IR MPH or placebo. Side effects on children's sleep and appetite were similar for the 2 preparations. In the lab setting, both medications improved productivity and accuracy on arithmetic seatwork assignments, disruptive and on-task behavior, and classroom rule following. Both medications improved children's rule following and negative behavior in small group board games, as well as in unstructured recess settings. Individual target behaviors also showed significant improvement with medication across domains in the laboratory setting. Children's behavior across settings deteriorated across the laboratory day, and the primary effect of medication was to prevent this deterioration as the day wore on. Results support the use of background behavioral treatment in clinical trials of stimulant medication, and illustrate the utility of a measure of individualized daily target goals (ie, the DRC) as an objective measure of medication response in both the laboratory and natural school settings. \n CONCLUSION This investigation clearly supports the efficacy of the Concerta long-acting formulation of MPH for parents who desire to have medication benefits for their child throughout the day and early evening. (ABSTRACT TRUNCATED)", "title": "Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings." }, { "docid": "22635278", "text": "From April 1986 to September 2000, 122 MRCC patients were treated by monthly intralymphatic injections (containing a mean of 573 IL-2 U and 26 x 10(6) LAK cells) and i.m. administration of IFN and TF; 71 patients also received a 3-day cycle of monthly IL-2 inhalations with a mean of 998 daily U. MRCC cases not treated by immunotherapy (n = 89) represent our historical controls. Adverse clinical side effects related to treatment were negligible. CR (n = 11) and PR (n = 13) were noticed in 24/122 patients. Of 24 responding patients, 17 resumed progression, whereas 7 remain in remission 11-69 months later. The overall median survival of treated patients (28 months) was 3.5-fold higher than the median survival of historical controls (7.5 months), and a Kaplan-Meier curve showed 25% survival 11 years after the beginning of immunotherapy. Apparently, the addition of IL-2 by inhalation improved survival. The present immunotherapy protocol appears to be efficacious, safe, devoid of adverse side effects, far less costly than others and able to offer a good quality of life to MRCC patients; if confirmed in a multicenter trial, it could set the basis for developing low-dose immunomodulatory treatments.", "title": "Immunotherapy of metastatic kidney cancer." }, { "docid": "1495563", "text": "OBJECTIVE To observe the therapeutic effect of \"Xingnao Kaiqiao Zhenfa\" (Acupuncture Technique for Restoring Consciousness) in the treatment of post-stroke depression. \n METHODS A total of 256 stroke patients were divided into acupuncture group (n = 180, male 138, female 42) and medication group (n = 76, male 57 and female 19) according to their visiting sequence to our hospital. Acupoints used were Neiguan (PC 6), Renzhong (GV 26), Baihui (GV 20), Yintang (EX-HN 3) and Sanyinjiao (SP 6,the affected side) and the needles were retained for 20 min every time. Patients of medication group were asked to take Amitriptyline (50 mg/d at first, 200 mg/d). Acupuncture treatment was conducted twice daily, and after one month's treatment the therapeutic effect was evaluated. Self-Rating Depression Scale (SDS) and Hamilton Rating Scale for Depression (HRSD) were used to assess the patient's state of depression. \n RESULTS After the treatment, of the 180 and 76 cases in acupuncture and medication groups, 31 (17.2%) and 13 (17.1%) were cured, 73 (40.6%) and 18 (23.7%) had a marked improvement in their depression state, 27 (15.0%) and 12 (15.8%) had an improvement, 49 (27.2%) and 33 (43.4%) failed, with the effective rates being 72.8% and 56.6% respectively. The markedly effective rate and the total effective rate of acupuncture group were significantly higher than those of medication group (P < 0.05). After the treatment, the total scores of SDS and HRSD and the severity index of two groups decreased pronouncedly in comparison with those of their individual pre-treatment; and the therapeutic effects of acupuncture group were significantly better than those of medication group in reducing SDS, HRSD and severity index (P < 0 .05). In addition, the decreased values of depression, pessimistic mood and irritability of acupuncture group were all bigger than those of medication group (P < 0.05). No significant difference was found between two groups in the decreased value of insomnia (P > 0.05). \n CONCLUSION \"Acupuncture Technique for Restoring Consciousness\" can effectively improve depression patients' symptoms and the therapeutic effect of acupuncture is markedly superior to that of medication for post-stroke patients.", "title": "[Clinical study on the therapeutic effect of acupuncture in the treatment of post-stroke depression]." }, { "docid": "24494539", "text": "OBJECTIVE To observe the clinical effects of acupuncture combined with auricular point sticking based on the western medication for post stroke depression (PSD). \n METHODS Sixty patients with PSD were randomly assigned into an acupuncture plus auricular application group (a combination group) and a medication group, 30 cases in each one. 20 mg paroxetine hydrochloride was prescribed orally in the medication group, once a day for continuous 8 weeks. Based on the above treatment, 30-minute acupuncture was used in the combination group for 8 weeks at Baihui (GV 20), Sishencong (EX-HN 1), Shenting (GV 24), Yintang (GV 29), Shenmen (HT 7), Neiguan (PC 6), Taichong (LR 3), Hegu (LI 4), Zusanli (ST 36), Sanyinjiao (SP 6) and Fenglong (ST 40), once the other day and three times a week. Auricular point sticking therapy for 8 weeks was applied at shenmen (TF4), pizhixia (AT4), xin (CO15), and gan (CO12), with pressing 3 times a day and once 3-5 days. The total score and each factor scores of Hamilton's depression scale (HAMD) were observed in the two groups before and after treatment, and Asberg's antidepressant side-effect rating scale (SERS) and clinical effect were evaluated. \n RESULTS After treatment, the total HAMD scores of the two groups decreased compared with those before treatment (both P<0.05), with better effect in the combination group (P<0.05). The scores of the combination group after treatment were lower than those in the medication group, including the anxiety/somatization factor, sleep disturbance factor, hopelessness factor (all P<0.05). The total effective rate of the combination group was 86.7% (26/30), which was better than 66.7% (20/30) of the medication group (P<0.05). The SERS score of the combination group was lower than that of the medication group (P<0.05). \n CONCLUSIONS Acupuncture combined with auricular point sticking can improve the clinical symptoms and are effective and safe for PSD.", "title": "[Acupuncture combined with auricular point sticking therapy for post stroke depression:a randomized controlled trial]." }, { "docid": "4345757", "text": "Obesity is now so common within the world's population that it is beginning to replace undernutrition and infectious diseases as the most significant contributor to ill health. In particular, obesity is associated with diabetes mellitus, coronary heart disease, certain forms of cancer, and sleep-breathing disorders. Obesity is defined by a body-mass index (weight divided by square of the height) of 30 kg m(-2) or greater, but this does not take into account the morbidity and mortality associated with more modest degrees of overweight, nor the detrimental effect of intra-abdominal fat. The global epidemic of obesity results from a combination of genetic susceptibility, increased availability of high-energy foods and decreased requirement for physical activity in modern society. Obesity should no longer be regarded simply as a cosmetic problem affecting certain individuals, but an epidemic that threatens global well being.", "title": "Obesity as a medical problem." }, { "docid": "9745001", "text": "OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size in patients with non-toxic multinodular goitre. \n DESIGN Consecutive patients with multinodular non-toxic goitre selected for radioactive iodine treatment and followed for a minimum of 12 months (median 48 months) after an intended dose of 3.7 MBq/g thyroid tissue corrected to a 100% uptake of iodine-131 in 24 hours. \n PATIENTS 69 patients with a growing multinodular non-toxic goitre causing local compression symptoms or cosmetic inconveniences. The treatment was chosen because of a high operative risk, previous thyroidectomy, or refusal to be operated on. \n MAIN OUTCOME MEASUREMENTS Standard thyroid function variables and ultrasonically determined thyroid volume before treatment as well as 1, 2, 3, 6, and 12 months after treatment and then once a year. \n RESULTS 56 patients were treated with a single dose of 131I, 12 with two doses, and one with four doses. In 45 patients treated with one dose and remaining euthyroid the median thyroid volume was reduced from 73 (interquartile range 50-106) ml to 29 (23-48) ml at 24 months in the 39 patients in whom this was measured during follow up. The median reduction was 40 (22-48) ml (60% reduction, p < 0.0001), half of which occurred within three months. Patients treated with two doses as well as those developing hypothyroidism and hyperthyroidism had a significant reduction in thyroid volume. Eleven patients developed hypothyroidism (cumulative five year risk 22%, 95% confidence interval 4.8% to 38.4%). Side effects were few: three cases of hyperthyroidism and two cases of radiation thyroiditis. Only one patient was dissatisfied with the result; she was referred for operation six months after treatment. \n CONCLUSIONS A substantial reduction in thyroid volume accompanied by a low incidence of hypothyroidism and few side effects makes the use of radioactive iodine an attractive alternative to surgery in selected cases of non-toxic multinodular goitre.", "title": "Radioiodine treatment of multinodular non-toxic goitre." }, { "docid": "1831916", "text": "OBJECTIVE Impulsivity and inattention related to attention deficit hyperactivity disorder (ADHD) may increase food intake and, consequently, weight gain. However, findings on the association between obesity/overweight and ADHD are mixed. The authors conducted a meta-analysis to estimate this association. \n METHOD A broad range of databases was searched through Aug. 31, 2014. Unpublished studies were also obtained. Study quality was rated with the Newcastle-Ottawa Scale. Random-effects models were used. \n RESULTS Forty-two studies that included a total of 728,136 individuals (48,161 ADHD subjects; 679,975 comparison subjects) were retained. A significant association between obesity and ADHD was found for both children (odds ratio=1.20, 95% CI=1.05-1.37) and adults (odds ratio=1.55, 95% CI=1.32-1.81). The pooled prevalence of obesity was increased by about 70% in adults with ADHD (28.2%, 95% CI=22.8-34.4) compared with those without ADHD (16.4%, 95% CI=13.4-19.9), and by about 40% in children with ADHD (10.3%, 95% CI=7.9-13.3) compared with those without ADHD (7.4%, 95% CI=5.4-10.1). The significant association between ADHD and obesity remained when limited to studies 1) reporting odds ratios adjusted for possible confounding factors; 2) diagnosing ADHD by direct interview; and 3) using directly measured height and weight. Gender, study setting, study country, and study quality did not moderate the association between obesity and ADHD. ADHD was also significantly associated with overweight. Individuals medicated for ADHD were not at higher risk of obesity. \n CONCLUSIONS This study provides meta-analytic evidence for a significant association between ADHD and obesity/overweight. Further research should address possible underlying mechanisms and the long-term effects of ADHD treatments on weight in individuals with both ADHD and obesity.", "title": "Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis." }, { "docid": "11254040", "text": "Multidrug-resistant tuberculosis (MDR-TB) is a growing public health problem. Due to long duration of therapy and concurrent use of multiple second-line drugs, adverse drug events (ADEs) are regarded as the most important clinical consideration in patients undergoing anti-MDR-TB treatment. To evaluate the frequency and type of treatment-related ADEs owing to MDR-TB therapy. The Cochrane Library, MEDLINE, and EMBASE were searched from inception through October 1, 2012, with additional manual search of International Journal of Tuberculosis and Lung Disease. Studies with available ADEs were selected if MDR-TB patients were treated with regimen including second-line drugs. Pooled estimations of incidence for each specific type of ADEs were calculated with 95% confidence intervals using random-effects model. Of the 5346 patients included, 2602 (57.3%) experienced at least 1 kind of ADE. The 3 most common side effects were gastrointestinal disorders (32.1%), ototoxicity (14.6%), and psychiatric disorders (13.2%). Subgroup analyses based on each characteristic (study population, previous tuberculosis treated, human immunodeficiency virus prevalence, and length of treatment) did not show any significant difference between groups. Additionally, among 1519 patients who developed ADEs with available data of impact on MDR-TB therapy, 70.4% required change of MDR-TB treatment. Adverse events were common among MDR-TB cases, occurring in more than half of the cases, with over two-thirds requiring change of anti-MDR-TB treatment. MDR-TB patients should be monitored closely and managed aggressively for side effects during therapy, especially for ototoxicity and psychiatric disorders.", "title": "Adverse Events Associated With the Treatment of Multidrug-Resistant Tuberculosis: A Systematic Review and Meta-analysis." } ]
767
Men are more susceptible to death due to pneumonia when compared to women.
[ { "docid": "2488880", "text": "CONTEXT While it is established that management strategies and outcomes differ by gender for many diseases, its effect on infection has not been adequately studied. \n OBJECTIVE To investigate the role of gender among hospitalized patients treated for infection. \n DESIGN Observational cohort study conducted during a 26-month period from December 1996 through January 1999. \n SETTING University-affiliated hospital. \n PARTICIPANTS A total of 892 patients in the surgical units of the hospital with 1470 consecutive infectious episodes (782 in men and 688 in women). \n MAIN OUTCOME MEASURES Mortality during hospitalization by gender for infection episodes overall and for specific infectious sites, including lung, peritoneum, bloodstream, catheter, urine, surgical site, and skin/soft tissue. \n RESULTS Among all infections, there was no significant difference in mortality based on gender (men, 11.1% vs women, 14.2%; P = .07). After logistic regression analysis, factors independently associated with mortality included higher APACHE (Acute Physiology and Chronic Health Evaluation) II score, older age, malignancy, blood transfusion, and diagnosis of infection more than 7 days after admission, but not gender (female odds ratio [OR] for death, 1.32; 95% confidence interval [CI], 0.90-1.94; P = .16). Mortality was higher in women for lung (men, 18% vs women, 34%; P = .002) and soft tissue (men, 2% vs women, 10%; P < or = .05) infection; for other infectious sites, mortality did not differ by gender. Factors associated with mortality due to pneumonia by logistic regression included higher APACHE II score, malignancy, diabetes mellitus, diagnosis of infection more than 7 days after admission, older age, transplantation, and female gender (OR for death, 2.25; 95% CI, 1.17-4.32; P = .02). \n CONCLUSIONS Although gender may not be predictive of mortality among all infections, women appear to be at increased risk for death from hospital-acquired pneumonia, even after controlling for other comorbidities.", "title": "Gender-dependent differences in outcome after the treatment of infection in hospitalized patients." } ]
[ { "docid": "33835579", "text": "Tuberculosis remains one of the world's leading infectious causes of death. Approximately 80% of all disease is due to postprimary (secondary) tuberculosis in the lung. Unfortunately, tissues of developing lesions are seldom available and there are no recognized models of postprimary tuberculosis. In the preantibiotic era when tissues were more abundant, several investigators described early postprimary tuberculosis as a lipid pneumonia quite different from the caseating granulomas commonly described today. We used histopathologic, immunohistochemical and acid fast stains to examine tissues from several people with untreated primary and postprimary tuberculosis and compared the findings with those of mice with reactivation tuberculosis. The results confirmed that developing postprimary tuberculosis begins as a lipid pneumonia accompanied by bronchial obstruction in which infection is restricted to foamy alveolar macrophages. Cavities result from a combination of caseation of tuberculous pneumonia and microvascular occlusion characteristic of delayed type hypersensitivity (DTH). Reactivation tuberculosis in the mouse begins as a similar tuberculous lipid pneumonia with bronchial obstruction and evidence for participation of DTH. Developing necrosis in both species is associated with localization of organisms within lipid droplets. These results suggest that reactivation tuberculosis in mice is a valuable model of developing human postprimary tuberculosis.", "title": "Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs." }, { "docid": "29253460", "text": "OBJECTIVE To assess whether sex differences exist in the angiographic severity, management and outcomes of acute coronary syndromes (ACS). \n METHODS The study comprised 7638 women and 19 117 men with ACS who underwent coronary angiography and were included in GRACE (Global Registry of Acute Coronary Events) from 1999-2006. Normal vessels/mild disease was defined as <50% stenosis in all epicardial vessels; advanced disease was defined as >or=one vessel with >or=50% stenosis. \n RESULTS Women were older than men and had higher rates of cardiovascular risk factors. Men and women presented equally with chest pain; however, jaw pain and nausea were more frequent among women. Women were more likely to have normal/mild disease (12% vs 6%, p<0.001) and less likely to have left-main and three-vessel disease (27% vs 32%, p<0.001) or undergo percutaneous coronary intervention (65% vs 68%, p<0.001). Women and men with normal and mild disease were treated less aggressively than those with advanced disease. Women with advanced disease had a higher risk of death (4% vs 3%, p<0.01). After adjustment for age and extent of disease, women were more likely to have adverse outcomes (death, myocardial infarction, stroke and rehospitalisation) at six months compared to men (odds ratio 1.24, 95% confidence interval 1.14 to 1.34); however, sex differences in mortality were no longer statistically significant. \n CONCLUSIONS Women with ACS were more likely to have cardiovascular disease risk factors and atypical symptoms such as nausea compared with men, but were more likely to have normal/mild angiographic coronary artery disease. Further study regarding sex differences related to disease severity is warranted.", "title": "Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: the Global Registry of Acute Coronary Events." }, { "docid": "15984735", "text": "OBJECTIVE To evaluate the association between migraine and cardiovascular disease, including stroke, myocardial infarction, and death due to cardiovascular disease. \n DESIGN Systematic review and meta-analysis. \n DATA SOURCES Electronic databases (PubMed, Embase, Cochrane Library) and reference lists of included studies and reviews published until January 2009. Selection criteria Case-control and cohort studies investigating the association between any migraine or specific migraine subtypes and cardiovascular disease. Review methods Two investigators independently assessed eligibility of identified studies in a two step approach. Disagreements were resolved by consensus. Studies were grouped according to a priori categories on migraine and cardiovascular disease. \n DATA EXTRACTION Two investigators extracted data. Pooled relative risks and 95% confidence intervals were calculated. \n RESULTS Studies were heterogeneous for participant characteristics and definition of cardiovascular disease. Nine studies investigated the association between any migraine and ischaemic stroke (pooled relative risk 1.73, 95% confidence interval 1.31 to 2.29). Additional analyses indicated a significantly higher risk among people who had migraine with aura (2.16, 1.53 to 3.03) compared with people who had migraine without aura (1.23, 0.90 to 1.69; meta-regression for aura status P=0.02). Furthermore, results suggested a greater risk among women (2.08, 1.13 to 3.84) compared with men (1.37, 0.89 to 2.11). Age less than 45 years, smoking, and oral contraceptive use further increased the risk. Eight studies investigated the association between migraine and myocardial infarction (1.12, 0.95 to 1.32) and five between migraine and death due to cardiovascular disease (1.03, 0.79 to 1.34). Only one study investigated the association between women who had migraine with aura and myocardial infarction and death due to cardiovascular disease, showing a twofold increased risk. \n CONCLUSION Migraine is associated with a twofold increased risk of ischaemic stroke, which is only apparent among people who have migraine with aura. Our results also suggest a higher risk among women and risk was further magnified for people with migraine who were aged less than 45, smokers, and women who used oral contraceptives. We did not find an overall association between any migraine and myocardial infarction or death due to cardiovascular disease. Too few studies are available to reliably evaluate the impact of modifying factors, such as migraine aura, on these associations.", "title": "Migraine and cardiovascular disease: systematic review and meta-analysis." }, { "docid": "20526907", "text": "OBJECTIVE To quantify the effects of quantity and frequency of alcohol consumption on risk of acute myocardial infarction and coronary death. \n DESIGN Case-control study. \n SETTING Lower Hunter region of New South Wales, Australia, 1983-94. SUBJECTS Men and women aged 35-69 years. \n MAIN OUTCOME MEASURE Acute myocardial infarction or coronary death. \n RESULTS Alcohol consumption patterns were compared between 11,511 cases of acute myocardial infarction or coronary death and 6077 controls randomly selected from the same study population. After adjusting for the effects of age, smoking, and medical history, men and women who consumed one or two drinks of alcohol on five or six days a week had a reduction in risk of a major coronary event compared with men and women who were non-drinkers (odds ratios: men 0.31 (95% confidence interval 0.22 to 0.45); women 0.33 (0.18 to 0.59)). A similar reduction in risk was found after excluding non-drinkers who were formerly moderate to heavy drinkers. An acute protective effect of alcohol consumption was also found for regular drinkers who consumed one or two drinks in the 24 hours preceding the onset of symptoms (odds ratios: men 0.74 (0.51 to 1.09); women 0.43 (0.20 to 0.95)). \n CONCLUSIONS Frequency and quantity of alcohol consumption are important in assessing the risk of a major coronary event. Risk is lowest among men who report one to four drinks daily on five or six days a week and among women who report one or two drinks daily on five or six days a week.", "title": "How much alcohol and how often? Population based case-control study of alcohol consumption and risk of a major coronary event." }, { "docid": "12794099", "text": "BACKGROUND There is overwhelming evidence that behavioural factors influence health, but their combined impact on the general population is less well documented. We aimed to quantify the potential combined impact of four health behaviours on mortality in men and women living in the general community. \n METHODS AND FINDINGS We examined the prospective relationship between lifestyle and mortality in a prospective population study of 20,244 men and women aged 45-79 y with no known cardiovascular disease or cancer at baseline survey in 1993-1997, living in the general community in the United Kingdom, and followed up to 2006. Participants scored one point for each health behaviour: current non-smoking, not physically inactive, moderate alcohol intake (1-14 units a week) and plasma vitamin C >50 mmol/l indicating fruit and vegetable intake of at least five servings a day, for a total score ranging from zero to four. After an average 11 y follow-up, the age-, sex-, body mass-, and social class-adjusted relative risks (95% confidence intervals) for all-cause mortality(1,987 deaths) for men and women who had three, two, one, and zero compared to four health behaviours were respectively, 1.39 (1.21-1.60), 1.95 (1.70--2.25), 2.52 (2.13-3.00), and 4.04 (2.95-5.54) p < 0.001 trend. The relationships were consistent in subgroups stratified by sex, age, body mass index, and social class, and after excluding deaths within 2 y. The trends were strongest for cardiovascular causes. The mortality risk for those with four compared to zero health behaviours was equivalent to being 14 y younger in chronological age. \n CONCLUSIONS Four health behaviours combined predict a 4-fold difference in total mortality in men and women, with an estimated impact equivalent to 14 y in chronological age.", "title": "Combined Impact of Health Behaviours and Mortality in Men and Women: The EPIC-Norfolk Prospective Population Study" }, { "docid": "5151024", "text": "BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. \n METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. \n FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. \n INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. \n FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence.", "title": "Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study." }, { "docid": "1358909", "text": "To assess the age- and sex-specific prevalence of peripheral arterial disease (PAD) and intermittent claudication (IC) in an elderly population, we performed a population-based study in 7715 subjects (40% men, 60% women) aged 55 years and over. The presence of PAD and IC was determined by measuring the ankle-arm systolic blood pressure index (AAI) and by means of the World Health Organization/Rose questionnaire, respectively. PAD was considered present when the AAI was <0.90 in either leg. The prevalence of PAD was 19.1% (95% confidence interval, 18.1% to 20.0%): 16.9% in men and 20.5% in women. Symptoms of IC were reported by 1.6% (95% confidence interval, 1.3% to 1.9%) of the study population (2.2% in men, 1.2% in women). Of those with PAD, 6.3% reported symptoms of IC (8.7% in men, 4.9% in women), whereas in 68.9% of those with IC an AAI below 0.90 was found. Subjects with an AAI <0.90 were more likely to be smokers, to have hypertension, and to have symptomatic or asymptomatic cardiovascular disease compared with subjects with an AAI of 0.90 or higher. The authors conclude that the prevalence of PAD in the elderly is high whereas the prevalence of IC is rather low, although both prevalences clearly increase with advancing age. The vast majority of PAD patients reports no symptoms of IC.", "title": "Peripheral arterial disease in the elderly: The Rotterdam Study." }, { "docid": "12709184", "text": "IMPORTANCE Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. \n OBJECTIVE To evaluate the association between vegetarian dietary patterns and mortality. \n DESIGN Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. \n SETTING Adventist Health Study 2 (AHS-2), a large North American cohort. \n PARTICIPANTS A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. \n MAIN OUTCOME AND MEASURE The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. \n RESULTS There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97). The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality. Associations in men were larger and more often significant than were those in women. \n CONCLUSIONS AND RELEVANCE Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality. Results appeared to be more robust in males. These favorable associations should be considered carefully by those offering dietary guidance.", "title": "Vegetarian dietary patterns and mortality in Adventist Health Study 2." }, { "docid": "12561083", "text": "BACKGROUND Several studies have demonstrated that women with nonobstructive coronary disease have a high rate of subsequent investigations, rehospitalizations for recurrent chest pain, and repeat coronary angiography. The sex specificity of this finding is unclear. We therefore undertook an evaluation of sex differences in rehospitalization for acute coronary syndrome (ACS) or chest pain in patients with \"angiographically normal\" coronaries. \n METHODS A retrospective cohort study using prospectively collected angiographic and clinical data on all patients in British Columbia, Canada, presenting for their first cardiac catheterization with suspected ischemic heart disease but angiographically normal coronaries. \n RESULTS Among 32,856 patients, 7.1% of men versus 23.3% of women were angiographically normal (P < .001). Among angiographically normal patients, women were older and more likely to present with hypertension, prior stroke, chronic obstructive pulmonary disease, and peripheral vascular disease than men, but Canadian Cardiovascular Society class of angina did not vary by sex. Within 1 year, 1.0% died, (19 women, 18 men, P = .27) and 0.6% had a stroke (13 women, 9 men, P = .91). Readmission to hospital for ACS or chest pain requiring catheterization was significantly higher in women compared to men (adjusted OR 4.06; 95% CI 1.15-14.31). \n CONCLUSIONS In a contemporary, population-based cohort presenting for cardiac catheterization for suspected ischemia, women with angiographically normal coronaries were >4 times more likely to be readmitted to hospital for ACS/chest pain within 180 days compared to men. The observed sex difference has important social and economic implications and suggests that traditional diagnostic methods may not be optimal for women.", "title": "Angina with \"normal\" coronary arteries: sex differences in outcomes." }, { "docid": "33533307", "text": "BACKGROUND The Digitalis Investigation Group trial reported that treatment with digoxin did not decrease overall mortality among patients with heart failure and depressed left ventricular systolic function, although it did reduce hospitalizations slightly. Even though the epidemiologic features, causes, and prognosis of heart failure vary between men and women, sex-based differences in the effect of digoxin were not evaluated. \n METHODS We conducted a post hoc subgroup analysis to assess whether there were sex-based differences in the effect of digoxin therapy among the 6800 patients in the Digitalis Investigation Group study. The presence of an interaction between sex and digoxin therapy with respect to the primary end point of death from any cause was evaluated with the use of Mantel-Haenszel tests of heterogeneity and a multivariable Cox proportional-hazards model, adjusted for demographic and clinical variables. \n RESULTS There was an absolute difference of 5.8 percent (95 percent confidence interval, 0.5 to 11.1) between men and women in the effect of digoxin on the rate of death from any cause (P=0.034 for the interaction). Specifically, women who were randomly assigned to digoxin had a higher rate of death than women who were randomly assigned to placebo (33.1 percent vs. 28.9 percent; absolute difference, 4.2 percent, 95 percent confidence interval, -0.5 to 8.8). In contrast, the rate of death was similar among men randomly assigned to digoxin and men randomly assigned to placebo (35.2 percent vs. 36.9 percent; absolute difference, -1.6 percent; 95 percent confidence interval, -4.2 to 1.0). In the multivariable analysis, digoxin was associated with a significantly higher risk of death among women (adjusted hazard ratio for the comparison with placebo, 1.23; 95 percent confidence interval, 1.02 to 1.47), but it had no significant effect among men (adjusted hazard ratio, 0.93; 95 percent confidence interval, 0.85 to 1.02; P=0.014 for the interaction). \n CONCLUSIONS The effect of digoxin therapy differs between men and women. Digoxin therapy is associated with an increased risk of death from any cause among women, but not men, with heart failure and depressed left ventricular systolic function.", "title": "Sex-based differences in the effect of digoxin for the treatment of heart failure." }, { "docid": "6647414", "text": "IMPORTANCE The 2008 Physical Activity Guidelines for Americans recommended a minimum of 75 vigorous-intensity or 150 moderate-intensity minutes per week (7.5 metabolic-equivalent hours per week) of aerobic activity for substantial health benefit and suggested additional benefits by doing more than double this amount. However, the upper limit of longevity benefit or possible harm with more physical activity is unclear. \n OBJECTIVE To quantify the dose-response association between leisure time physical activity and mortality and define the upper limit of benefit or harm associated with increased levels of physical activity. \n DESIGN, SETTING, AND PARTICIPANTS We pooled data from 6 studies in the National Cancer Institute Cohort Consortium (baseline 1992-2003). Population-based prospective cohorts in the United States and Europe with self-reported physical activity were analyzed in 2014. A total of 661,137 men and women (median age, 62 years; range, 21-98 years) and 116,686 deaths were included. We used Cox proportional hazards regression with cohort stratification to generate multivariable-adjusted hazard ratios (HRs) and 95% CIs. Median follow-up time was 14.2 years. EXPOSURES Leisure time moderate- to vigorous-intensity physical activity. \n MAIN OUTCOMES AND MEASURES The upper limit of mortality benefit from high levels of leisure time physical activity. \n RESULTS Compared with individuals reporting no leisure time physical activity, we observed a 20% lower mortality risk among those performing less than the recommended minimum of 7.5 metabolic-equivalent hours per week (HR, 0.80 [95% CI, 0.78-0.82]), a 31% lower risk at 1 to 2 times the recommended minimum (HR, 0.69 [95% CI, 0.67-0.70]), and a 37% lower risk at 2 to 3 times the minimum (HR, 0.63 [95% CI, 0.62-0.65]). An upper threshold for mortality benefit occurred at 3 to 5 times the physical activity recommendation (HR, 0.61 [95% CI, 0.59-0.62]); however, compared with the recommended minimum, the additional benefit was modest (31% vs 39%). There was no evidence of harm at 10 or more times the recommended minimum (HR, 0.69 [95% CI, 0.59-0.78]). A similar dose-response relationship was observed for mortality due to cardiovascular disease and to cancer. \n CONCLUSIONS AND RELEVANCE Meeting the 2008 Physical Activity Guidelines for Americans minimum by either moderate- or vigorous-intensity activities was associated with nearly the maximum longevity benefit. We observed a benefit threshold at approximately 3 to 5 times the recommended leisure time physical activity minimum and no excess risk at 10 or more times the minimum. In regard to mortality, health care professionals should encourage inactive adults to perform leisure time physical activity and do not need to discourage adults who already participate in high-activity levels.", "title": "Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship." }, { "docid": "22414304", "text": "There is little information about treatment outcome in patients with smear-negative pulmonary tuberculosis (PTB) or extrapulmonary tuberculosis (EPTB) treated under routine programme conditions in subsaharan Africa. A prospective study was carried out to determine treatment outcome in an unselected cohort of TB patients admitted to Zomba General Hospital, Malawi. Eight hundred and twenty-seven adult TB patients (451 men and 376 women) were registered between 1 July and 31 December 1995. Standardized treatment outcomes of treatment completion, death, default, and transfer to another district were assessed in relation to type of TB, human immunodeficiency virus (HIV) serostatus, age and gender. Two hundred and fifty-four patients (31%) died by the end of treatment, half of the deaths occurring in the first month. Death rates were 19% among 386 patients with smear-positive PTB, 46% among 211 patients with smear-negative PTB, and 37% among 230 patients with EPTB; 77% of the patients were HIV seropositive. Among new patients, HIV-positive patients had higher death rates than HIV-negative patients (hazard ratio [HR] 2.5; 95% confidence interval [95% CI] 1.6-3.8). Smear-negative patients had the highest death rates (HR 3.9; 95% CI 2.7-5.5 compared to smear-positive patients), followed by EPTB patients (HR 2.6, 95% CI 1.8-3.7 compared to smear-positive patients). Death rates increased with age but were similar in men and women. Adult patients in Malawi with smear-negative PTB and EPTB have low treatment completion and high death rates, related to high levels of HIV infection. National TB control programmes in areas of high HIV prevalence should no longer ignore treatment outcomes in patients with smear-negative PTB or EPTB.", "title": "Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba Hospital, Malawi." }, { "docid": "5558754", "text": "OBJECTIVES To quantify the diagnostic accuracy of selected inflammatory markers in addition to symptoms and signs for predicting pneumonia and to derive a diagnostic tool. \n DESIGN Diagnostic study performed between 2007 and 2010. Participants had their history taken, underwent physical examination and measurement of C reactive protein (CRP) and procalcitonin in venous blood on the day they first consulted, and underwent chest radiography within seven days. \n SETTING Primary care centres in 12 European countries. \n PARTICIPANTS Adults presenting with acute cough. \n MAIN OUTCOME MEASURES Pneumonia as determined by radiologists, who were blind to all other information when they judged chest radiographs. \n RESULTS Of 3106 eligible patients, 286 were excluded because of missing or inadequate chest radiographs, leaving 2820 patients (mean age 50, 40% men) of whom 140 (5%) had pneumonia. Re-assessment of a subset of 1675 chest radiographs showed agreement in 94% (κ 0.45, 95% confidence interval 0.36 to 0.54). Six published \"symptoms and signs models\" varied in their discrimination (area under receiver operating characteristics curve (ROC) ranged from 0.55 (95% confidence interval 0.50 to 0.61) to 0.71 (0.66 to 0.76)). The optimal combination of clinical prediction items derived from our patients included absence of runny nose and presence of breathlessness, crackles and diminished breath sounds on auscultation, tachycardia, and fever, with an ROC area of 0.70 (0.65 to 0.75). Addition of CRP at the optimal cut off of >30 mg/L increased the ROC area to 0.77 (0.73 to 0.81) and improved the diagnostic classification (net reclassification improvement 28%). In the 1556 patients classified according to symptoms, signs, and CRP >30 mg/L as \"low risk\" (<2.5%) for pneumonia, the prevalence of pneumonia was 2%. In the 132 patients classified as \"high risk\" (>20%), the prevalence of pneumonia was 31%. The positive likelihood ratio of low, intermediate, and high risk for pneumonia was 0.4, 1.2, and 8.6 respectively. Measurement of procalcitonin added no relevant additional diagnostic information. A simplified diagnostic score based on symptoms, signs, and CRP >30 mg/L resulted in proportions of pneumonia of 0.7%, 3.8%, and 18.2% in the low, intermediate, and high risk group respectively. \n CONCLUSIONS A clinical rule based on symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough performed best in patients with mild or severe clinical presentation. Addition of CRP concentration at the optimal cut off of >30 mg/L improved diagnostic information, but measurement of procalcitonin concentration did not add clinically relevant information in this group.", "title": "Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: diagnostic study" }, { "docid": "14408200", "text": "CONTEXT Rates of hospital-onset methicillin-resistant Staphylococcus aureus (MRSA) infections are reported as decreasing, but recent rates of community-onset S. aureus infections are less known. \n OBJECTIVES To characterize the overall and annual incidence rates of community-onset and hospital-onset S. aureus bacteremia and skin and soft tissue infections (SSTIs) in a national health care system and to evaluate trends in the incidence rates of S. aureus bacteremia and SSTIs and the proportion due to MRSA. \n DESIGN, SETTING, AND PARTICIPANTS Observational study of all Department of Defense TRICARE beneficiaries from January 2005 through December 2010. Medical record databases were used to identify and classify all annual first-positive S. aureus blood and wound or abscess cultures as methicillin-susceptible S. aureus or MRSA, and as community-onset or hospital-onset infections (isolates collected >3 days after hospital admission). \n MAIN OUTCOME MEASURES Unadjusted incidence rates per 100,000 person-years of observation, the proportion of infections that was due to MRSA, and annual trends for 2005 through 2010 (examined using the Spearman rank correlation test or the Mantel-Haenszel χ2 test for linear trend). \n RESULTS During 56 million person-years (nonactive duty: 47 million person-years; active duty: 9 million person-years), there were 2643 blood and 80,281 wound or abscess annual first-positive S. aureus cultures. Annual incidence rates varied from 3.6 to 6.0 per 100,000 person-years for S. aureus bacteremia and 122.7 to 168.9 per 100,000 person-years for S. aureus SSTIs. The annual incidence rates for community-onset MRSA bacteremia decreased from 1.7 per 100,000 person-years (95% CI, 1.5-2.0 per 100,000 person-years) in 2005 to 1.2 per 100,000 person-years (95% CI, 0.9-1.4 per 100,000 person-years) in 2010 (P = .005 for trend). The annual incidence rates for hospital-onset MRSA bacteremia also decreased from 0.7 per 100,000 person-years (95% CI, 0.6-0.9 per 100,000 person-years) in 2005 to 0.4 per 100,000 person-years (95% CI, 0.3-0.5 per 100,000 person-years) in 2010 (P = .005 for trend). Concurrently, the proportion of community-onset SSTI due to MRSA peaked at 62% in 2006 before decreasing annually to 52% in 2010 (P < .001 for trend). \n CONCLUSION In the Department of Defense population consisting of men and women of all ages from across the United States, the rates of both community-onset and hospital-onset MRSA bacteremia decreased in parallel, while the proportion of community-onset SSTIs due to MRSA has more recently declined.", "title": "Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010." }, { "docid": "37065914", "text": "BACKGROUND AND PURPOSE Soluble corin was decreased in coronary heart disease. Given the connections between cardiac dysfunction and stroke, circulating corin might be a candidate marker of stroke risk. However, the association between circulating corin and stroke has not yet been studied in humans. Here, we aimed to examine the association in patients wtith stroke and community-based healthy controls. \n METHODS Four hundred eighty-one patients with ischemic stroke, 116 patients with hemorrhagic stroke, and 2498 healthy controls were studied. Serum soluble corin and some conventional risk factors of stroke were examined. Because circulating corin was reported to be varied between men and women, the association between serum soluble corin and stroke was evaluated in men and women, respectively. \n RESULTS Patients with ischemic and hemorrhagic stroke had a significantly lower level of serum soluble corin than healthy controls in men and women (all P values, <0.05). In multivariate analysis, men in the lowest quartile of serum soluble corin were more likely to have ischemic (odds ratio [OR], 4.90; 95% confidence interval, 2.99-8.03) and hemorrhagic (OR, 17.57; 95% confidence interval, 4.85-63.71) stroke than men in the highest quartile. Women in the lowest quartile of serum soluble corin were also more likely to have ischemic (OR, 3.10; 95% confidence interval, 1.76-5.44) and hemorrhagic (OR, 8.54; 95% confidence interval, 2.35-31.02) stroke than women in the highest quartile. ORs of ischemic and hemorrhagic stroke were significantly increased with the decreasing levels of serum soluble corin in men and women (all P values for trend, <0.001). \n CONCLUSIONS Serum soluble corin was decreased in patients with stroke compared with healthy controls. Our findings raise the possibility that serum soluble corin may have a pathogenic role in stroke.", "title": "Serum Soluble Corin is Decreased in Stroke." }, { "docid": "11630388", "text": "BACKGROUND Obesity is associated with diverse health risks, but the role of body weight as a risk factor for death remains controversial. \n METHODS We examined the association between body weight and the risk of death in a 12-year prospective cohort study of 1,213,829 Koreans between the ages of 30 and 95 years. We examined 82,372 deaths from any cause and 48,731 deaths from specific diseases (including 29,123 from cancer, 16,426 from atherosclerotic cardiovascular disease, and 3362 from respiratory disease) in relation to the body-mass index (BMI) (the weight in kilograms divided by the square of the height in meters). \n RESULTS In both sexes, the average baseline BMI was 23.2, and the rate of death from any cause had a J-shaped association with the BMI, regardless of cigarette-smoking history. The risk of death from any cause was lowest among patients with a BMI of 23.0 to 24.9. In all groups, the risk of death from respiratory causes was higher among subjects with a lower BMI, and the risk of death from atherosclerotic cardiovascular disease or cancer was higher among subjects with a higher BMI. The relative risk of death associated with BMI declined with increasing age. \n CONCLUSIONS Underweight, overweight, and obese men and women had higher rates of death than men and women of normal weight. The association of BMI with death varied according to the cause of death and was modified by age, sex, and smoking history.", "title": "Body-mass index and mortality in Korean men and women." }, { "docid": "75636923", "text": "Metabolic syndrome is diagnosed when three or more of the following criteria are met: abdominal obesity (waist circumference more than 102 cm in men and 88 cm in women); hypertriglyceridemia of 150 mg/dl or above; a high-density lipoprotein (HDL) cholesterol level less than 40 mg/dl in men or 50 mg/dl in women; blood pressure of 130/85 mm Hg or higher; or fasting glucose of at least 110 mg/dl. Individuals with metabolic syndrome are likelier than others to develop diabetes and cardiovascular disease and have increased mortality from all causes (and from cardiovascular disease in particular). The investigators attempted to determine the prevalence of the syndrome in the United States by analyzing data on 8814 men and women 20 years of age or older who took part in the Third National Health and Nutrition Examination Survey in the years 1988 to 1994. This is a cross-sectional health survey of a sample of the noninstitutionalized civilian American population. The overall age-adjusted prevalence of metabolic syndrome was 23.7%. The prevalence rose from 6.7% in persons 20 to 29 years of age to 42% in those aged 70 years and more. There was virtually no gender-related difference in prevalence rates for the combined racial groups. Metabolic syndrome was most prevalent in Mexican Americans and least prevalent in whites, African Americans, and \"others. \" Among both African Americans and Mexican Americans, women had higher prevalence rates than men. Extrapolating from age-specific prevalence rates and US census counts from the year 2000, 47 million US residents have metabolic syndrome. Considering its prevalence, it seems important to estimate the direct medical costs of metabolic syndrome. In the great majority of cases the critical causes are improper nutrition and insufficient physical activity, emphasizing the importance of controlling obesity and encouraging physical activity in the United States.", "title": "Prevalence of the Metabolic Syndrome Among Us Adults: Findings From the Third National Health and Nutrition Examination Survey" }, { "docid": "17124832", "text": "CONTEXT Previous studies indicate that the population attributable risk (PAR) of bladder cancer for tobacco smoking is 50% to 65% in men and 20% to 30% in women and that current cigarette smoking triples bladder cancer risk relative to never smoking. During the last 30 years, incidence rates have remained stable in the United States in men (123.8 per 100,000 person-years to 142.2 per 100,000 person-years) and women (32.5 per 100,000 person-years to 33.2 per 100,000 person-years); however, changing smoking prevalence and cigarette composition warrant revisiting risk estimates for smoking and bladder cancer. \n OBJECTIVE To evaluate the association between tobacco smoking and bladder cancer. \n DESIGN, SETTING, AND PARTICIPANTS Men (n = 281,394) and women (n = 186,134) of the National Institutes of Health-AARP (NIH-AARP) Diet and Health Study cohort completed a lifestyle questionnaire and were followed up between October 25, 1995, and December 31, 2006. Previous prospective cohort studies of smoking and incident bladder cancer were identified by systematic review and relative risks were estimated from fixed-effects models with heterogeneity assessed by the I(2) statistic. \n MAIN OUTCOME MEASURES Hazard ratios (HRs), PARs, and number needed to harm (NNH). \n RESULTS During 4,518,941 person-years of follow-up, incident bladder cancer occurred in 3896 men (144.0 per 100,000 person-years) and 627 women (34.5 per 100,000 person-years). Former smokers (119.8 per 100,000 person-years; HR, 2.22; 95% confidence interval [CI], 2.03-2.44; NNH, 1250) and current smokers (177.3 per 100,000 person-years; HR, 4.06; 95% CI, 3.66-4.50; NNH, 727) had higher risks of bladder cancer than never smokers (39.8 per 100,000 person-years). In contrast, the summary risk estimate for current smoking in 7 previous studies (initiated between 1963 and 1987) was 2.94 (95% CI, 2.45-3.54; I(2) = 0.0%). The PAR for ever smoking in our study was 0.50 (95% CI, 0.45-0.54) in men and 0.52 (95% CI, 0.45-0.59) in women. \n CONCLUSION Compared with a pooled estimate of US data from cohorts initiated between 1963 and 1987, relative risks for smoking in the more recent NIH-AARP Diet and Health Study cohort were higher, with PARs for women comparable with those for men.", "title": "Association between smoking and risk of bladder cancer among men and women." }, { "docid": "45027320", "text": "BACKGROUND The aim of this study was to examine the clustering of four major lifestyle risk factors (smoking, heavy drinking, lack of fruit and vegetables consumption, and lack of physical activity), and to examine the variation across different socio-demographic groups in the English adult population. \n METHODS The study population was derived from the 2003 Health Survey for England (n=11,492). Clustering was examined by comparing the observed and expected prevalence of the different possible combinations. A multinomial multilevel regression model was conducted to examine the socio-demographic variation in the clustering of the four risk factors. \n RESULTS The study found that, when using British health recommendations, a majority of the English population have multiple lifestyle risk factors at the same time. Clustering was found at both ends of the lifestyle spectrum and was more pronounced for women than for men. Overall, multiple risk factors were more prevalent among men, lower social class households, singles, and people who are economically inactive, but less prevalent among home owners and older age groups. \n CONCLUSIONS The clustering of multiple risk factors provides support for multiple-behavior interventions as opposed to single-behavior interventions.", "title": "The prevalence and clustering of four major lifestyle risk factors in an English adult population." } ]
771
Metastatic colorectal cancer treated with a single agent fluoropyrimidines resulted in similar efficacy and better quality of life when compared with oxaliplatin-based chemotherapy in elderly patients.
[ { "docid": "15476777", "text": "BACKGROUND Elderly and frail patients with cancer, although often treated with chemotherapy, are under-represented in clinical trials. We designed FOCUS2 to investigate reduced-dose chemotherapy options and to seek objective predictors of outcome in frail patients with advanced colorectal cancer. \n METHODS We undertook an open, 2 × 2 factorial trial in 61 UK centres for patients with previously untreated advanced colorectal cancer who were considered unfit for full-dose chemotherapy. After comprehensive health assessment (CHA), patients were randomly assigned by minimisation to: 48-h intravenous fluorouracil with levofolinate (group A); oxaliplatin and fluorouracil (group B); capecitabine (group C); or oxaliplatin and capecitabine (group D). Treatment allocation was not masked. Starting doses were 80% of standard doses, with discretionary escalation to full dose after 6 weeks. The two primary outcome measures were: addition of oxaliplatin ([A vs B] + [C vs D]), assessed with progression-free survival (PFS); and substitution of fluorouracil with capecitabine ([A vs C] + [B vs D]), assessed by change from baseline to 12 weeks in global quality of life (QoL). Analysis was by intention to treat. Baseline clinical and CHA data were modelled against outcomes with a novel composite measure, overall treatment utility (OTU). This study is registered, number ISRCTN21221452. \n FINDINGS 459 patients were randomly assigned (115 to each of groups A-C, 114 to group D). Factorial comparison of addition of oxaliplatin versus no addition suggested some improvement in PFS, but the finding was not significant (median 5·8 months [IQR 3·3-7·5] vs 4·5 months [2·8-6·4]; hazard ratio 0·84, 95% CI 0·69-1·01, p=0·07). Replacement of fluorouracil with capecitabine did not improve global QoL: 69 of 124 (56%) patients receiving fluorouracil reported improvement in global QoL compared with 69 of 123 (56%) receiving capecitabine. The risk of having any grade 3 or worse toxic effect was not significantly increased with oxaliplatin (83/219 [38%] vs 70/221 [32%]; p=0·17), but was higher with capecitabine than with fluorouracil (88/222 [40%] vs 65/218 [30%]; p=0·03). In multivariable analysis, fewer baseline symptoms (odds ratio 1·32, 95% CI 1·14-1·52), less widespread disease (1·51, 1·05-2·19), and use of oxaliplatin (0·57, 0·39-0·82) were predictive of better OTU. \n INTERPRETATION FOCUS2 shows that with an appropriate design, including reduced starting doses of chemotherapy, frail and elderly patients can participate in a randomised controlled trial. On balance, a combination including oxaliplatin was preferable to single-agent fluoropyrimidines, although the primary endpoint of PFS was not met. Capecitabine did not improve QoL compared with fluorouracil. Comprehensive baseline assessment holds promise as an objective predictor of treatment benefit. \n FUNDING Cancer Research UK and the Medical Research Council.", "title": "Chemotherapy options in elderly and frail patients with metastatic colorectal cancer (MRC FOCUS2): an open-label, randomised factorial trial" } ]
[ { "docid": "2492146", "text": "Metastatic colorectal cancer (mCRC) is increasingly treated using targeted therapies. Post-marketing safety of these agents is understudied, especially in the elderly. This study aimed to compare, according to age, the adverse drug reactions (ADRs) of targeted therapies used for mCRC in real life. An extraction of VigiBase, which contains World Health Organization individual case safety reports (ICSRs), was performed. All ADR reports with aflibercept, bevacizumab, cetuximab, panitumumab, or regorafenib used in CRC were considered. For all drugs, chi-square tests were used to compare frequencies of serious ADRs between patients aged ≥75 and <75 years. For selected ADRs and each drug, the drug-ADR association compared to other anticancer drugs was estimated through the proportional reporting ratio (PRR) in both age groups. There were 21,565 ICSRs included, among which 74% were serious and 11% were fatal. Median age was 64 years (Inter Quartile Range = 56–71) and 15% of patients were aged ≥75; 57% were male. Serious ICSRs accounted for 47,292 ADRs. Neutropenia was not more reported in elderly for all drugs while diarrhea was more reported in elderly for panitumumab. Cardiac disorders were more reported in elderly patients, in particular heart failure, especially for bevacizumab, cetuximab, and regorafenib, as were respiratory, thoracic, and mediastinal disorders. Most of PRR were not different between the two groups, except encephalopathies, which were significantly associated with bevacizumab in the elderly only. ADRs related to targeted therapies used for mCRC treatment were different across age groups; yet, not systematically more reported or worse in elderly patients. Selected elderly patients could, therefore, be treated with these targeted therapies.", "title": "Comparative Safety of Targeted Therapies for Metastatic Colorectal Cancer between Elderly and Younger Patients: a Study Using the International Pharmacovigilance Database" }, { "docid": "13256155", "text": "BACKGROUND Molecularly targeted agents have been reported to have anti-tumour activity for patients whose tumours harbour the matching molecular alteration. These results have led to increased off-label use of molecularly targeted agents on the basis of identified molecular alterations. We assessed the efficacy of several molecularly targeted agents marketed in France, which were chosen on the basis of tumour molecular profiling but used outside their indications, in patients with advanced cancer for whom standard-of-care therapy had failed. \n METHODS The open-label, randomised, controlled phase 2 SHIVA trial was done at eight French academic centres. We included adult patients with any kind of metastatic solid tumour refractory to standard of care, provided they had an Eastern Cooperative Oncology Group performance status of 0 or 1, disease that was accessible for a biopsy or resection of a metastatic site, and at least one measurable lesion. The molecular profile of each patient's tumour was established with a mandatory biopsy of a metastatic tumour and large-scale genomic testing. We only included patients for whom a molecular alteration was identified within one of three molecular pathways (hormone receptor, PI3K/AKT/mTOR, RAF/MEK), which could be matched to one of ten regimens including 11 available molecularly targeted agents (erlotinib, lapatinib plus trastuzumab, sorafenib, imatinib, dasatinib, vemurafenib, everolimus, abiraterone, letrozole, tamoxifen). We randomly assigned these patients (1:1) to receive a matched molecularly targeted agent (experimental group) or treatment at physician's choice (control group) by central block randomisation (blocks of size six). Randomisation was done centrally with a web-based response system and was stratified according to the Royal Marsden Hospital prognostic score (0 or 1 vs 2 or 3) and the altered molecular pathway. Clinicians and patients were not masked to treatment allocation. Treatments in both groups were given in accordance with the approved product information and standard practice protocols at each institution and were continued until evidence of disease progression. The primary endpoint was progression-free survival in the intention-to-treat population, which was not assessed by independent central review. We assessed safety in any patients who received at least one dose of their assigned treatment. This trial is registered with ClinicalTrials.gov, number NCT01771458. \n FINDINGS Between Oct 4, 2012, and July 11, 2014, we screened 741 patients with any tumour type. 293 (40%) patients had at least one molecular alteration matching one of the 10 available regimens. At the time of data cutoff, Jan 20, 2015, 195 (26%) patients had been randomly assigned, with 99 in the experimental group and 96 in the control group. All patients in the experimental group started treatment, as did 92 in the control group. Two patients in the control group received a molecularly targeted agent: both were included in their assigned group for efficacy analyses, the patient who received an agent that was allowed in the experimental group was included in the experimental group for the purposes of safety analyses, while the other patient, who received a molecularly targeted agent and chemotherapy, was kept in the control group for safety analyses. Median follow-up was 11·3 months (IQR 5·8-11·6) in the experimental group and 11·3 months (8·1-11·6) in the control group at the time of the primary analysis of progression-free survival. Median progression-free survival was 2·3 months (95% CI 1·7-3·8) in the experimental group versus 2·0 months (1·8-2·1) in the control group (hazard ratio 0·88, 95% CI 0·65-1·19, p=0·41). In the safety population, 43 (43%) of 100 patients treated with a molecularly targeted agent and 32 (35%) of 91 patients treated with cytotoxic chemotherapy had grade 3-4 adverse events (p=0·30). \n INTERPRETATION The use of molecularly targeted agents outside their indications does not improve progression-free survival compared with treatment at physician's choice in heavily pretreated patients with cancer. Off-label use of molecularly targeted agents should be discouraged, but enrolment in clinical trials should be encouraged to assess predictive biomarkers of efficacy.", "title": "Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial." }, { "docid": "20606520", "text": "OBJECTIVES To assess mortality, quality of life (QOL), and quality-adjusted life-years (QALYs) for critically ill elderly patients. \n DESIGN Cross-sectional survey. \n SETTING A ten-bed medical-surgical intensive care unit (ICU) in a tertiary care university hospital. \n PATIENTS The study group included 882 elderly patients (> or =65 yrs of age) and 1,827 controls (<65 yrs of age) treated during the period of 1995 to 2000. \n INTERVENTION None. \n MEASUREMENTS AND MAIN RESULTS Mortality was assessed during the ICU and hospital stays, and 12, 24, and 36 months after ICU discharge. The cumulative 3-yr mortality rate among the elderly (57%) was higher (p < .05) than that among the controls (40%). The majority (66%) of the elderly nonsurvivors died within 1 month after intensive care discharge. All elderly patients with day-1 Sequential Organ Failure (SOFA) scores >15 died during the ICU stay. QOL was assessed with EQ-5D and RAND-36 measures from 10 months to 7 yrs after discharge. The majority (88%) of the elderly survivors assessed their present health state as good or satisfactory; 66% found it to be similar or better than 12 months earlier, and 48% similar or better than their preadmission state. QOL measures by RAND-36 revealed that aging decreased their competencies most in physical functioning, physical role limitations, and vitality, but the elderly had better values in mental health than the controls. However, QALYs of the elderly respondents were 21% to 35% lower than the mean QALY minus 2 sd units of the age- and gender-adjusted general population. \n CONCLUSIONS High age alone is not a valid reason to refuse intensive care, but the benefits perceived by intensive care seem to decrease with aging, if reflected as QALYs. However, 97% of the elderly survivors lived at home and 88% of them considered their QOL satisfactory or good after hospital discharge. Therefore, more reliable information on the outcome for the elderly is clearly needed.", "title": "Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients." }, { "docid": "7165938", "text": "PURPOSE The circadian clock gene Bmal1 is involved in cancer cell proliferation and DNA damage sensitivity. The aim of this study was to explore the effect of Bmal1 on oxaliplatin sensitivity and to determine its clinical significance in colorectal cancer. EXPERIMENTAL DESIGN Three colorectal cancer cell lines, HCT116, THC8307 and HT29, were used. The Bmal1-mediated control of colorectal cancer cell proliferation was tested in vitro and in vivo. MTT and colony formation assays were performed to determine the sensitivity of colorectal cancer cells to oxaliplatin. Flow cytometry was used to examine changes in the cell-cycle distribution and apoptosis rate. Proteins expressed downstream of Bmal1 upon its overexpression were determined by Western blotting. Immunohistochemistry was used to analyze Bmal1 expression in 82 archived colorectal cancer tumors from patients treated with oxaliplatin-based regimens. \n RESULTS Bmal1 overexpression inhibited colorectal cancer cell proliferation and increased colorectal cancer sensitivity to oxaliplatin in three colorectal cancer cell lines and HCT116 cells model in vivo. Furthermore, the overall survival of patients with colorectal cancer with high Bmal1 levels in their primary tumors was significantly longer than that of patients with low Bmal1 levels (27 vs. 19 months; P = 0.043). The progression-free survival of patients with high Bmal1 expression was also significantly longer than that of patients with low Bmal1 expression (11 vs. 5 months; P = 0.015). Mechanistically, the effect of Bmal1 was associated with its ability to regulate G2-M arrest by activating the ATM pathway. \n CONCLUSION Bmal1 shows the potential as a novel prognostic biomarker and may represent a new therapeutic target in colorectal cancer.", "title": "Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer." }, { "docid": "9929089", "text": "BACKGROUND Patients with advanced or metastatic non-small cell lung cancer (NSCLC) can develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. Here, we report the successful treatment with alternating chemotherapy and TKIs of two cases of advanced NSCLC who developed resistance to TKI. CASE PRESENTATION Two patients with advanced or metastatic NSCLC were treated with palliative chemotherapy followed by erlotinib/gefitinib. When TKI therapy failed, two cycles of chemotherapy were provided, which were followed by re-challenge with erlotinib or gefitinib. \n CONCLUSION NSCLC patients with acquired TKI resistance should be managed aggressively whenever possible. Subsequent chemotherapy and target treatment is one of the reasonable choices for those with an initial dramatic clinical response with erlotinib/gefitinib treatment. Further studies are warranted to substantiate the association of erlotinib /gefitinib treatment with the efficacy of NSCLC patients with acquired TKI failure.", "title": "Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-small-cell lung cancer" }, { "docid": "24974080", "text": "New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.", "title": "Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis." }, { "docid": "24873253", "text": "Patients with metastatic bone disease are at risk for developing skeletal-related events that can negatively influence quality of life, contributing to loss of autonomy and functional capabilities. Bisphosphonates have become an important component in the treatment of patients with bone metastases as they delay the onset and reduce the risk of skeletal-related events and also palliate or control bone pain in multiple cancer types, thus preserving quality of life. Zoledronic acid has proven efficacy and safety in patients with bone lesions from breast cancer, prostate cancer, lung cancer, and other solid tumors, as well as in patients with multiple myeloma. Current data suggest that early treatment with zoledronic acid (before the onset of bone pain) may provide additional clinical benefits and also positive effects on survival in subsets of patients who have elevated levels of N-telopeptide of type I collagen (NTX), a biochemical marker of bone resorption. Studies have shown that in patients with breast cancer, prostate cancer, lung cancer, or other solid tumors, normalization of elevated levels of NTX was observed in the majority of patients who received zoledronic acid. Furthermore, normalization of NTX values correlated with extended survival.", "title": "Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease." }, { "docid": "25589047", "text": "CONTEXT Fatal adverse events (FAEs) have been reported in cancer patients treated with the widely used angiogenesis inhibitor bevacizumab in combination with chemotherapy. Currently, the role of bevacizumab in treatment-related mortality is not clear. \n OBJECTIVE To perform a systematic review and meta-analysis of published randomized controlled trials (RCTs) to determine the overall risk of FAEs associated with bevacizumab. \n DATA SOURCES PubMed, EMBASE, and Web of Science databases as well as abstracts presented at American Society of Clinical Oncology conferences from January 1966 to October 2010 were searched to identify relevant studies. STUDY SELECTION AND DATA EXTRACTION Eligible studies included prospective RCTs in which bevacizumab in combination with chemotherapy or biological therapy was compared with chemotherapy or biological therapy alone. Summary incidence rates, relative risks (RRs), and 95% confidence intervals (CIs) were calculated using fixed- or random-effects models. \n DATA SYNTHESIS A total of 10,217 patients with a variety of advanced solid tumors from 16 RCTs were included in the analysis. The overall incidence of FAEs with bevacizumab was 2.5% (95% CI, 1.7%-3.9%). Compared with chemotherapy alone, the addition of bevacizumab was associated with an increased risk of FAEs, with an RR of 1.46 (95% CI, 1.09-1.94; P = .01; incidence, 2.5% vs 1.7%). This association varied significantly with chemotherapeutic agents (P = .045) but not with tumor types (P = .13) or bevacizumab doses (P = .16). Bevacizumab was associated with an increased risk of FAEs in patients receiving taxanes or platinum agents (RR, 3.49; 95% CI, 1.82-6.66; incidence, 3.3% vs 1.0%) but was not associated with increased risk of FAEs when used in conjunction with other agents (RR, 0.85; 95% CI, 0.25-2.88; incidence, 0.8% vs 0.9%). The most common causes of FAEs were hemorrhage (23.5%), neutropenia (12.2%), and gastrointestinal tract perforation (7.1%). \n CONCLUSION In a meta-analysis of RCTs, bevacizumab in combination with chemotherapy or biological therapy, compared with chemotherapy alone, was associated with increased treatment-related mortality.", "title": "Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis." }, { "docid": "9558539", "text": "Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.", "title": "CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis." }, { "docid": "20127522", "text": "PURPOSE Five or more circulating tumor cells (CTCs) per 7.5 mL of blood predicts for poorer progression-free survival (PFS) in patients with metastatic breast cancer (MBC). We conducted a prospective study to demonstrate that CTC results correlate strongly with radiographic disease progression at the time of and in advance of imaging. \n PATIENTS AND METHODS Serial CTC levels were obtained in patients starting a new treatment regimen for progressive, radiographically measurable MBC. Peripheral blood was collected for CTC enumeration at baseline and at 3- to 4-week intervals. Clinical outcomes were based on radiographic studies performed in 9- to 12-week intervals. \n RESULTS Sixty-eight patients were evaluable for the CTC-imaging correlations, and 74 patients were evaluable for the PFS analysis. Median follow-up was 13.3 months. A statistically significant correlation was demonstrated between CTC levels and radiographic disease progression in patients receiving chemotherapy or endocrine therapy. This correlation applied to CTC results obtained at the time of imaging (odds ratio [OR], 6.3), 3 to 5 weeks before imaging (OR, 3.1), and 7 to 9 weeks before imaging (OR, 4.9). Results from analyses stratified by type of therapy remained statistically significant. Shorter PFS was observed for patients with five or more CTCs at 3 to 5 weeks and at 7 to 9 weeks after the start of treatment. \n CONCLUSION We provide, to our knowledge, the first evidence of a strong correlation between CTC results and radiographic disease progression in patients receiving chemotherapy or endocrine therapy for MBC. These findings support the role of CTC enumeration as an adjunct to standard methods of monitoring disease status in MBC.", "title": "Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer." }, { "docid": "6334188", "text": "BACKGROUND Chemotherapy-induced febrile neutropenia (FN) is a clinically important complication that affects patient outcome by delaying chemotherapy doses or reducing dose intensity. Risk of FN depends on chemotherapy- and patient-level factors. We sought to determine the effects of chronic comorbidities on risk of FN. \n DESIGN We conducted a cohort study to examine the association between a variety of chronic comorbidities and risk of FN in patients diagnosed with six types of cancer (non-Hodgkin lymphoma and breast, colorectal, lung, ovary, and gastric cancer) from 2000 to 2009 who were treated with chemotherapy at Kaiser Permanente Southern California, a large managed care organization. We excluded those patients who received primary prophylactic granulocyte colony-stimulating factor. History of comorbidities and FN events were identified using electronic medical records. Cox models adjusting for propensity score, stratified by cancer type, were used to determine the association between comorbid conditions and FN. Models that additionally adjusted for cancer stage, baseline neutrophil count, chemotherapy regimen, and dose reduction were also evaluated. \n RESULTS A total of 19 160 patients with mean age of 60 years were included; 963 (5.0%) developed FN in the first chemotherapy cycle. Chronic obstructive pulmonary disease [hazard ratio (HR) = 1.30 (1.07-1.57)], congestive heart failure [HR = 1.43 (1.00-1.98)], HIV infection [HR = 3.40 (1.90-5.63)], autoimmune disease [HR = 2.01 (1.10-3.33)], peptic ulcer disease [HR = 1.57 (1.05-2.26)], renal disease [HR = 1.60 (1.21-2.09)], and thyroid disorder [HR = 1.32 (1.06-1.64)] were all associated with a significantly increased FN risk. \n CONCLUSIONS These results provide evidence that history of several chronic comorbidities increases risk of FN, which should be considered when managing patients during chemotherapy.", "title": "History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis." }, { "docid": "22635278", "text": "From April 1986 to September 2000, 122 MRCC patients were treated by monthly intralymphatic injections (containing a mean of 573 IL-2 U and 26 x 10(6) LAK cells) and i.m. administration of IFN and TF; 71 patients also received a 3-day cycle of monthly IL-2 inhalations with a mean of 998 daily U. MRCC cases not treated by immunotherapy (n = 89) represent our historical controls. Adverse clinical side effects related to treatment were negligible. CR (n = 11) and PR (n = 13) were noticed in 24/122 patients. Of 24 responding patients, 17 resumed progression, whereas 7 remain in remission 11-69 months later. The overall median survival of treated patients (28 months) was 3.5-fold higher than the median survival of historical controls (7.5 months), and a Kaplan-Meier curve showed 25% survival 11 years after the beginning of immunotherapy. Apparently, the addition of IL-2 by inhalation improved survival. The present immunotherapy protocol appears to be efficacious, safe, devoid of adverse side effects, far less costly than others and able to offer a good quality of life to MRCC patients; if confirmed in a multicenter trial, it could set the basis for developing low-dose immunomodulatory treatments.", "title": "Immunotherapy of metastatic kidney cancer." }, { "docid": "5912283", "text": "CONTEXT Insomnia is a common condition in older adults and is associated with a number of adverse medical, social, and psychological consequences. Previous research has suggested beneficial outcomes of both psychological and pharmacological treatments, but blinded placebo-controlled trials comparing the effects of these treatments are lacking. \n OBJECTIVE To examine short- and long-term clinical efficacy of cognitive behavioral therapy (CBT) and pharmacological treatment in older adults experiencing chronic primary insomnia. \n DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blinded, placebo-controlled trial of 46 adults (mean age, 60.8 y; 22 women) with chronic primary insomnia conducted between January 2004 and December 2005 in a single Norwegian university-based outpatient clinic for adults and elderly patients. \n INTERVENTION CBT (sleep hygiene, sleep restriction, stimulus control, cognitive therapy, and relaxation; n = 18), sleep medication (7.5-mg zopiclone each night; n = 16), or placebo medication (n = 12). All treatment duration was 6 weeks, and the 2 active treatments were followed up at 6 months. \n MAIN OUTCOME MEASURES Ambulant clinical polysomnographic data and sleep diaries were used to determine total wake time, total sleep time, sleep efficiency, and slow-wave sleep (only assessed using polysomnography) on all 3 assessment points. \n RESULTS CBT resulted in improved short- and long-term outcomes compared with zopiclone on 3 out of 4 outcome measures. For most outcomes, zopiclone did not differ from placebo. Participants receiving CBT improved their sleep efficiency from 81.4% at pretreatment to 90.1% at 6-month follow-up compared with a decrease from 82.3% to 81.9% in the zopiclone group. Participants in the CBT group spent much more time in slow-wave sleep (stages 3 and 4) compared with those in other groups, and spent less time awake during the night. Total sleep time was similar in all 3 groups; at 6 months, patients receiving CBT had better sleep efficiency using polysomnography than those taking zopiclone. \n CONCLUSION These results suggest that interventions based on CBT are superior to zopiclone treatment both in short- and long-term management of insomnia in older adults. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00295386.", "title": "Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a randomized controlled trial." }, { "docid": "24341590", "text": "CONTEXT The growth inhibitory effect of tamoxifen, which is used for the treatment of hormone receptor-positive breast cancer, is mediated by its metabolites, 4-hydroxytamoxifen and endoxifen. The formation of active metabolites is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. \n OBJECTIVE To determine whether CYP2D6 variation is associated with clinical outcomes in women receiving adjuvant tamoxifen. \n DESIGN, SETTING, AND PATIENTS Retrospective analysis of German and US cohorts of patients treated with adjuvant tamoxifen for early stage breast cancer. The 1325 patients had diagnoses between 1986 and 2005 of stage I through III breast cancer and were mainly postmenopausal (95.4%). Last follow-up was in December 2008; inclusion criteria were hormone receptor positivity, no metastatic disease at diagnosis, adjuvant tamoxifen therapy, and no chemotherapy. DNA from tumor tissue or blood was genotyped for CYP2D6 variants associated with reduced (*10, *41) or absent (*3, *4, *5) enzyme activity. Women were classified as having an extensive (n=609), heterozygous extensive/intermediate (n=637), or poor (n=79) CYP2D6 metabolism. \n MAIN OUTCOME MEASURES Time to recurrence, event-free survival, disease-free survival, and overall survival. \n RESULTS Median follow-up was 6.3 years. At 9 years of follow-up, the recurrence rates were 14.9% for extensive metabolizers, 20.9% for heterozygous extensive/intermediate metabolizers, and 29.0% for poor metabolizers, and all-cause mortality rates were 16.7%, 18.0%, and 22.8%, respectively. Compared with extensive metabolizers, there was a significantly increased risk of recurrence for heterozygous extensive/intermediate metabolizers (time to recurrence adjusted hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.04-1.90) and for poor metabolizers (time to recurrence HR, 1.90; 95% CI, 1.10-3.28). Compared with extensive metabolizers, those with decreased CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had worse event-free survival (HR, 1.33; 95% CI, 1.06-1.68) and disease-free survival (HR, 1.29; 95% CI, 1.03-1.61), but there was no significant difference in overall survival (HR, 1.15; 95% CI, 0.88-1.51). \n CONCLUSION Among women with breast cancer treated with tamoxifen, there was an association between CYP2D6 variation and clinical outcomes, such that the presence of 2 functional CYP2D6 alleles was associated with better clinical outcomes and the presence of nonfunctional or reduced-function alleles with worse outcomes.", "title": "Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen." }, { "docid": "42731834", "text": "Functional studies on colorectal cancer cells indicated a protective role of the interferon-inducible dsDNA sensor Absent in Melanoma 2 (AIM2) in cancer progression. Given that a high mutation rate and lack of AIM2 expression was previously detected in a subset of colorectal cancers, we here investigated the association of AIM2 expression in tumor cells and patient prognosis (5-year follow-up). A tissue microarray analysis of 476 matched tissue pairs (colorectal tumor and adjacent normal colon epithelium) was performed by two independent observers. Samples from 62 patients were excluded because of missing follow-up information or due to neo-adjuvant therapy before tissue sampling. Out of the remaining 414 tissue pairs, 279 (67.4%) displayed reduced AIM2 expression in cancer cells when compared to epithelial cells of their normal counterpart. Thirty-eight patients (9.18%) had completely lost AIM2 expression in tumor cells. After adjustment for sex, age, cancer stage, tumor site, tumor grade and chemotherapy, complete lack of AIM2 expression was associated with an up to 3-fold increase in overall mortality (HR=2.40; 95% CI=1.44-3.99) and disease specific mortality (HR=3.14; 95% CI=1.75-5.65) in comparison to AIM2-positive tumor samples. Our results demonstrate that lack of AIM2 expression is closely associated with poor outcome in colorectal cancer. The data thus strongly substantiate a protective role of AIM2 against progression of colorectal tumors. Further studies are required to assess whether lack of AIM2 expression may be used as a biomarker for the identification of colorectal cancer patients with poor prognosis.", "title": "Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients." }, { "docid": "25690516", "text": "The aim of the study was to evaluate whether treatment with recombinant human growth hormone (rhGH) affects the quality of life of young adults who were diagnosed as idiopathic short stature (ISS) during childhood, and whether their quality of life and aspects of the personality are different from normal. Experiences and expectations concerning rhGH treatment of the subjects and their parents were also investigated. Eighty-nine subjects were included into the study: 24 subjects (16M, 8F) were treated with rhGH from childhood, whereas 65 subjects (40M, 25F) were never treated. At the time of the interview all subjects had attained final height [mean (SD) -2.3 (0.9) SDS for Dutch references], and the age of the treated subjects was 20.5 (1.0) y, and 25.7 (3.5) y of the control subjects (p < 0.001). The level of education was similar, but the treated subjects had less often a partner compared to the control subjects (adjusted for age and gender, p < 0.001). The Nottingham Health Profile and Short Form 36 Health Survey showed no difference in general health state between treated and control subjects, and the healthy Dutch age-specific references (norm group). Although 74% of the subjects reported one or more negative events related to their height, and 61% would like to be taller, only 22% and 11% were willing to trade-off at Time Trade-Off and Standard Gamble, respectively. The personality of the subjects, which was measured by the Minnesota Multiphasic Personality Inventory, was not different from the norm group. The satisfaction with the rhGH treatment was high, as it had caused 12 (8) cm and 13 (7) cm gain in final height according to the subjects and parents, respectively. Based on initial predicted adult height (Bayley & Pinneau), this gain was only 3.3 (5.6) cm. We concluded that although the treated subjects had a partner less often when compared to the control subjects, the quality of life of subjects with ISS at adult age is normal and appears not to be affected by rhGH therapy, The treated subjects were very satisfied with the treatment, probably by overestimation of the final height gain.", "title": "Quality of life of young adults with idiopathic short stature: effect of growth hormone treatment. Dutch Growth Hormone Working Group." }, { "docid": "15041758", "text": "OBJECTIVE To evaluate the effectiveness of integrated care for chronic physical diseases and depression in reducing disability and improving quality of life. \n DESIGN A randomised controlled trial of multi-condition collaborative care for depression and poorly controlled diabetes and/or risk factors for coronary heart disease compared with usual care among middle aged and elderly people SETTING Fourteen primary care clinics in Seattle, Washington. PARTICIPANTS Patients with diabetes or coronary heart disease, or both, and blood pressure above 140/90 mm Hg, low density lipoprotein concentration >3.37 mmol/L, or glycated haemoglobin 8.5% or higher, and PHQ-9 depression scores of ≥ 10. \n INTERVENTION A 12 month intervention to improve depression, glycaemic control, blood pressure, and lipid control by integrating a \"treat to target\" programme for diabetes and risk factors for coronary heart disease with collaborative care for depression. The intervention combined self management support, monitoring of disease control, and pharmacotherapy to control depression, hyperglycaemia, hypertension, and hyperlipidaemia. \n MAIN OUTCOME MEASURES Social role disability (Sheehan disability scale), global quality of life rating, and World Health Organization disability assessment schedule (WHODAS-2) scales to measure disabilities in activities of daily living (mobility, self care, household maintenance). \n RESULTS Of 214 patients enrolled (106 intervention and 108 usual care), disability and quality of life measures were obtained for 97 intervention patients at six months (92%) and 92 at 12 months (87%), and for 96 usual care patients at six months (89%) and 92 at 12 months (85%). Improvements from baseline on the Sheehan disability scale (-0.9, 95% confidence interval -1.5 to -0.2; P = 0.006) and global quality of life rating (0.7, 0.2 to 1.2; P = 0.005) were significantly greater at six and 12 months in patients in the intervention group. There was a trend toward greater improvement in disabilities in activities of daily living (-1.5, -3.3 to 0.4; P = 0.10). \n CONCLUSIONS Integrated care that covers chronic physical disease and comorbid depression can reduce social role disability and enhance global quality of life. Trial registration Clinical Trials NCT00468676.", "title": "Functional outcomes of multi-condition collaborative care and successful ageing: results of randomised trial" }, { "docid": "52180874", "text": "OBJECTIVE To evaluate the relative efficacy of programmed cell death 1 (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors versus conventional drugs in patients with cancer that were PD-L1 positive and PD-L1 negative. \n DESIGN Meta-analysis of randomised controlled trials. \n DATA SOURCES PubMed, Embase, Cochrane database, and conference abstracts presented at the American Society of Clinical Oncology and European Society of Medical Oncology up to March 2018. REVIEW METHODS Studies of PD-1 or PD-L1 inhibitors (avelumab, atezolizumab, durvalumab, nivolumab, and pembrolizumab) that had available hazard ratios for death based on PD-L1 positivity or negativity were included. The threshold for PD-L1 positivity or negativity was that PD-L1 stained cell accounted for 1% of tumour cells, or tumour and immune cells, assayed by immunohistochemistry staining methods. \n RESULTS 4174 patients with advanced or metastatic cancers from eight randomised controlled trials were included in this study. Compared with conventional agents, PD-1 or PD-L1 inhibitors were associated with significantly prolonged overall survival in both patients that were PD-L1 positive (n=2254, hazard ratio 0.66, 95% confidence interval 0.59 to 0.74) and PD-L1 negative (1920, 0.80, 0.71 to 0.90). However, the efficacies of PD-1 or PD-L1 blockade treatment in patients that were PD-L1 positive and PD-L1 negative were significantly different (P=0.02 for interaction). Additionally, in both patients that were PD-L1 positive and PD-L1 negative, the long term clinical benefits from PD-1 or PD-L1 blockade were observed consistently across interventional agent, cancer histotype, method of randomisation stratification, type of immunohistochemical scoring system, drug target, type of control group, and median follow-up time. \n CONCLUSIONS PD-1 or PD-L1 blockade therapy is a preferable treatment option over conventional therapy for both patients that are PD-L1 positive and PD-L1 negative. This finding suggests that PD-L1 expression status alone is insufficient in determining which patients should be offered PD-1 or PD-L1 blockade therapy.", "title": "Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis" }, { "docid": "52188256", "text": "This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.", "title": "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries." } ]
772
Mice are incapable of producing neutralizing antibodies in reponse to the Chikungunya virus (CHIKV) produced in mosquitos.
[ { "docid": "24922825", "text": "Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.", "title": "A chikungunya fever vaccine utilizing an insect-specific virus platform" } ]
[ { "docid": "152245", "text": "The genomic RNA of an alphavirus encodes four different nonstructural proteins, nsP1, nsP2, nsP3, and nsP4. The polyprotein P123 is produced when translation terminates at an opal termination codon between nsP3 and nsP4. The polyprotein P1234 is produced when translational readthrough occurs or when the opal termination codon has been replaced by a sense codon in the alphavirus genome. Evolutionary pressures appear to have maintained genomic sequences encoding both a stop codon (opal) and an open reading frame (arginine) as a general feature of the O'nyong-nyong virus (ONNV) genome, indicating that both are required at some point. Alternate replication of ONNVs in both vertebrate and invertebrate hosts may determine predominance of a particular codon at this locus in the viral quasispecies. However, no systematic study has previously tested this hypothesis in whole animals. We report here the results of the first study to investigate in a natural mosquito host the functional significance of the opal stop codon in an alphavirus genome. We used a full-length cDNA clone of ONNV to construct a series of mutants in which the arginine between nsP3 and nsP4 was replaced with an opal, ochre, or amber stop codon. The presence of an opal stop codon upstream of nsP4 nearly doubled (75.5%) the infectivity of ONNV over that of virus possessing a codon for the amino acid arginine at the corresponding position (39.8%). Although the frequency with which the opal virus disseminated from the mosquito midgut did not differ significantly from that of the arginine virus on days 8 and 10, dissemination did began earlier in mosquitoes infected with the opal virus. Although a clear fitness advantage is provided to ONNV by the presence of an opal codon between nsP3 and nsP4 in Anopheles gambiae, sequence analysis of ONNV RNA extracted from mosquito bodies and heads indicated codon usage at this position corresponded with that of the virus administered in the blood meal. These results suggest that while selection of ONNV variants is occurring, de novo mutation at the position between nsP3 and nsP4 does not readily occur in the mosquito. Taken together, these results suggest that the primary fitness advantage provided to ONNV by the presence of an opal codon between nsP3 and nsP4 is related to mosquito infectivity.", "title": "Effects of an opal termination codon preceding the nsP4 gene sequence in the O'Nyong-Nyong virus genome on Anopheles gambiae infectivity." }, { "docid": "21150010", "text": "Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.", "title": "Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer." }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "9831859", "text": "Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.", "title": "Pancreatic stellate cells: partners in crime with pancreatic cancer cells." }, { "docid": "23915841", "text": "The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.", "title": "Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "3566945", "text": "Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.", "title": "Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage" }, { "docid": "12885341", "text": "West Nile virus (WNV) is the most common arthropod-borne flavivirus in the United States; however, the vector ligand(s) that participate in infection are not known. We now show that an Aedes aegypti C-type lectin, mosGCTL-1, is induced by WNV, interacts with WNV in a calcium-dependent manner, and facilitates infection in vivo and in vitro. A mosquito homolog of human CD45 in A. aegypti, designated mosPTP-1, recruits mosGCTL-1 to enable viral attachment to cells and to enhance viral entry. In vivo experiments show that mosGCTL-1 and mosPTP-1 function as part of the same pathway and are critical for WNV infection of mosquitoes. A similar phenomenon was also observed in Culex quinquefasciatus, a natural vector of WNV, further demonstrating that these genes participate in WNV infection. During the mosquito blood-feeding process, WNV infection was blocked in vivo with mosGCTL-1 antibodies. A molecular understanding of flaviviral-arthropod interactions may lead to strategies to control viral dissemination in nature.", "title": "A C-Type Lectin Collaborates with a CD45 Phosphatase Homolog to Facilitate West Nile Virus Infection of Mosquitoes" }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "2947124", "text": "During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell-dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.", "title": "Persistent LCMV infection is controlled by blockade of type I interferon signaling." }, { "docid": "34630025", "text": "Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.", "title": "Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica." }, { "docid": "6144337", "text": "Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.", "title": "AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System " }, { "docid": "9539248", "text": "Mosquito-borne viruses cause significant levels of morbidity and mortality in humans and domesticated animals. Maintenance of mosquito-borne viruses in nature requires a biological transmission cycle that involves alternating virus replication in a susceptible vertebrate and mosquito host. Although the vertebrate infection is acute and often associated with disease, continual transmission of these viruses in nature depends on the establishment of a persistent, nonpathogenic infection in the mosquito vector. An antiviral RNAi response has been shown to limit the replication of RNA viruses in flies. However, the importance of the RNAi pathway as an antiviral defense in mammals is unclear. Differences in the immune responses of mammals and mosquitoes may explain why these viruses are not generally associated with pathology in the invertebrate host. We identified virus-derived small interfering RNAs (viRNAs), 21 nt in length, in Aedes aegypti infected with the mosquito-borne virus, Sindbis (SINV). viRNAs had an asymmetric distribution that spanned the length of the SINV genome. To determine the role of viRNAs in controlling pathogenic potential, mosquitoes were infected with recombinant alphaviruses expressing suppressors of RNA silencing. Decreased survival was observed in mosquitoes in which the accumulation of viRNAs was suppressed. These results suggest that an exogenous siRNA pathway is essential to the survival of mosquitoes infected with alphaviruses and, thus, the maintenance of these viruses in nature.", "title": "Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes." }, { "docid": "32170702", "text": "Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.", "title": "Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche." }, { "docid": "8246922", "text": "BACKGROUND Interleukin (IL)-12 exerts a potent proinflammatory effect by stimulating T-helper (Th) 1 responses. This effect is believed to be mediated primarily through the activation of STAT4 and subsequent production of interferon (IFN)-gamma. Methods and Results- We examined the role of IL-12 receptor (IL-12R) signaling in the development of murine experimental autoimmune myocarditis (EAM) induced by cardiac myosin immunization. Both IL-12Rbeta1-deficient mice and STAT4-deficient mice were resistant to the induction of myocarditis. Treatment with exogenous IL-12 exacerbated disease. We questioned whether IFN-gamma is required for the disease-promoting activity of IL-12. On the contrary, we found that IFN-gamma suppresses EAM. Lack of IFN-gamma due to either depletion with an antibody or a genetic deficiency exacerbated myocarditis. Spleens from IFN-gamma-deficient mice immunized with cardiac myosin showed increased cellularity; greater numbers of CD3+, CD4+, CD8+, and IL-2-producing cells; and heightened ability to produce cytokines on stimulation in vitro. Treatment of mice with recombinant IFN-gamma suppressed the development of myocarditis. \n CONCLUSIONS IL-12/IL-12R/STAT4 signaling promotes the development of EAM. In contrast, IFN-gamma plays a protective role. The disease-limiting effects of IFN-gamma might be explained by its ability to control the expansion of activated T lymphocytes.", "title": "the Development of Autoimmune Myocarditis in Mice by an" }, { "docid": "13469921", "text": "Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%-30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2-3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination.", "title": "Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1" }, { "docid": "10627801", "text": "The DExD/H box RNA helicase retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) are key intracellular receptors that recognize virus infection to produce type I IFN. A third helicase gene, Lgp2, is homologous to Rig-I and Mda5 but lacks a caspase activation and recruitment domain. We generated Lgp2-deficient mice and report that the loss of this gene greatly sensitizes cells to cytosolic polyinosinic/polycytidylic acid-mediated induction of type I IFN. However, negative feedback inhibition of IFN-beta transcription was found to be normal in the absence of LGP2, indicating that LGP2 is not the primary negative regulator of type I IFN production. Our data further indicate that Lgp2-/- mice exhibited resistance to lethal vesicular stomatitis virus infection, a virus whose replicative RNA intermediates are recognized specifically by RIG-I rather than by MDA5 to trigger the production of type I IFN. However, mice lacking LGP2 were observed to exhibit a defect in type I IFN production in response to infection by the encephalomyocarditis virus, the replication of which activates MDA5-dependent innate immune responses. Collectively, our data indicate a disparate regulatory role for LGP2 in the triggering of innate immune signaling pathways following RNA virus infection.", "title": "Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses." }, { "docid": "1970884", "text": "Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they \"snatch\" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.", "title": "Rational design of a flavivirus vaccine by abolishing viral RNA 2'-O methylation." }, { "docid": "4421578", "text": "Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.", "title": "Broad and potent neutralization of HIV-1 by a gp41-specific human antibody" } ]
774
Mice defective for deoxyribonucleic acid (DNA) polymerase I (polI) fail to reveal increased sensitivity to ionizing radiation (IR).
[ { "docid": "32275758", "text": "DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability.", "title": "Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo." } ]
[ { "docid": "11569583", "text": "DNA polymerase β (Pol β) is an error-prone enzyme which has been found to be overexpressed in several human tumors. By using a couple of recombinant CHO cells differing only from the exogenous expression of Pol β, we showed here that cells overexpressing Pol β are much more sensitive to IR treatments by increasing apoptosis. We also found that the surviving cells displayed an hypermutator phenotype which could be explained by different pathways involving Pol β, such as (i) an increased capacity to incorporate into DNA the mutagenic dGTP analog, 8-oxo-dGTP, one of the most abundant purine-derived nucleotides exposed to γ-irradiation, (ii) the induction of IR-induced DNA breaks and (iii) accumulation of chromosome aberrations induced by radiation. Alteration of Pol β expression in irradiated cells thus appears to strengthen both cell death and genetic changes associated with a malignant phenotype. These data provide new insights into the cellular response to radiations and the associated carcinogenic consequences.", "title": "Deregulated DNA polymerase β strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities" }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "31293581", "text": "Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR-induced senescence markers could persist long-term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16(INK4a) expression, two hallmarks of cellular senescence and aging. BrdU-labeling experiments revealed that IR-induced damaged cells are preferentially eliminated, at least partially, in a tissue-dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild-type and Rag2(-/-) gammaC(-/-) mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long-term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.", "title": "Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status." }, { "docid": "3173489", "text": "DNA replication stress promotes genome instability in cancer. However, the contribution of the replication stress response to the development of malignancies remains unresolved. The DNA replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the proliferation burst following IR and an impaired ability to repopulate the thymus after IR. Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA replication stress response and, specifically, Smarcal1 in hematopoietic cell survival and tumor development. Our results also provide important insight into the immunodeficiency observed in individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.", "title": "Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution" }, { "docid": "23599024", "text": "Background/Aims: Radiotherapy is applied to patients with inoperable cancer types including advanced stage non-small cell lung cancer (NSCLC) and radioresistance functions as a critical obstacle in radiotherapy. This study was aimed to investigate the mechanism of radioresistance regulated by surfactant protein B (SP-B). Methods: To investigate the role of SP-B in radioresistance, ΔSFTPB A549 cell line was established and SP-B expression was analyzed. In response to ionizing radiation (IR), the change of SP-B expression was analyzed in A549 and NCI-H441 cell lines. Conditioned media (CM) from NSCLC cells were utilized to evaluate the downstream signaling pathway. The in vivo effects of SP-B were assessed through mouse xenograft model with intratumoral injection of CM. Results: In response to IR, NSCLC cell lines showed decreased SP-B regulated by the TGF-β signaling and decreased SP-B stimulated cell survival and epithelial-mesenchymal transition. Treatment with CM from irradiated cells activated sPLA2, enhanced protein kinase Cδ-MAPKs signaling pathway, and increased arachidonic acid production. We confirmed the in vivo roles of SP-B through mouse xenograft model. Conclusion: Our results revealed that down-regulation of SP-B was involved in the radiation-induced metastatic conversion of NSCLC and provided evidence that SP-B acted as a suppressor of NSCLC progression.", "title": "Surfactant Protein B Suppresses Lung Cancer Progression by Inhibiting Secretory Phospholipase A2 Activity and Arachidonic Acid Production" }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "16630060", "text": "Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a \"stemness checkpoint\" to maintain the stem cell quality and quantity.", "title": "Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation" }, { "docid": "6536598", "text": "Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4-Rad23 and is recruited to chromatin by Rad4 in a UV damage-dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.", "title": "The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair" }, { "docid": "43014661", "text": "Xeroderma pigmentosum variant (XPV) patients with mutations in the DNA polymerase eta (pol eta) gene are hypersensitive to sunlight and have greatly increased susceptibility to sunlight-induced skin cancer. Consistent with the ability of Pol eta to efficiently bypass UV light-induced cyclobutane pyrimidine dimers, XPV cells lacking Pol eta have diminished capacity to replicate UV-damaged DNA and are sensitive to UV light-induced killing and mutagenesis. To better understand these and other Pol eta functions, we generated Pol eta-deficient mice. Mice homozygous for a null mutation in pol eta are viable, fertile, and do not show any obvious spontaneous defects during the first year of life. However, fibroblasts derived from these mutant mice are sensitive to killing by exposure to UV light, and all Pol eta-deficient mice develop skin tumors after UV irradiation, in contrast to the wild-type littermate controls that did not develop such tumors. These results and biochemical studies of translesion synthesis by mouse Pol eta indicate that Pol eta-dependent bypass of cyclobutane pyrimidine dimers suppresses UV light-induced skin cancer in mice. Moreover, 37.5% of pol eta heterozygous mice also developed skin cancer during 5 months after a 5-month exposure to UV light, suggesting that humans who are heterozygous for mutations in pol eta may also have an increased risk of skin cancer.", "title": "Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice." }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "40901687", "text": "The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway.", "title": "PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response." }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "1711571", "text": "PURPOSE Patients with type 2 diabetes mellitus (T2DM) have an increased fracture risk despite having higher areal bone mineral density (aBMD). This study aimed to clarify the association between glycemic and insulin resistance status and bone microarchitecture, and whether pentosidine and bone turnover markers play any roles in the association. \n METHODS A total of 2012 community-dwelling men aged ≥65years completed baseline measurements of spine aBMD, fasting plasma glucose (FPG) and serum insulin, hemoglobin A1c (HbA1c), osteocalcin, type I procollagen N-terminal propeptide, type I collagen C-terminal crosslinking telopeptide, tartrate-resistant acid phosphatase isoenzyme 5b, pentosidine, height and weight and an interview regarding past disease history. Homeostasis model assessment-insulin resistance (HOMA-IR) was also calculated. T2DM was defined as physician-diagnosed middle age or elderly-onset diabetes mellitus, or according to biochemical test results. To evaluate bone microarchitecture, trabecular bone score (TBS) was calculated at the same vertebrae as those used for aBMD measurement. \n RESULTS After excluding participants who had a disease history and/or were taking medications affecting bone metabolism, 1683 men (age, 72.9±5.2years) were analyzed. Men with T2DM had significantly higher aBMD compared to those without T2DM. There was no significant difference in TBS. However, FPG, HbA1c and HOMA-IR levels were significantly inversely correlated with TBS after adjusting for age, BMI and aBMD. Multivariate linear regression analyses revealed that glycemic indices (FPG and HbA1c) were significantly associated with increased aBMD and decreased TBS, and that HOMA-IR was associated only with TBS. These associations did not change after further adjusting for bone turnover makers and pentosidine levels. \n CONCLUSIONS Hyperglycemia and elevated insulin-resistance were associated with low TBS independently of bone turnover and pentosidine levels.", "title": "Hyperglycemia is associated with increased bone mineral density and decreased trabecular bone score in elderly Japanese men: The Fujiwara-kyo osteoporosis risk in men (FORMEN) study." }, { "docid": "10627801", "text": "The DExD/H box RNA helicase retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) are key intracellular receptors that recognize virus infection to produce type I IFN. A third helicase gene, Lgp2, is homologous to Rig-I and Mda5 but lacks a caspase activation and recruitment domain. We generated Lgp2-deficient mice and report that the loss of this gene greatly sensitizes cells to cytosolic polyinosinic/polycytidylic acid-mediated induction of type I IFN. However, negative feedback inhibition of IFN-beta transcription was found to be normal in the absence of LGP2, indicating that LGP2 is not the primary negative regulator of type I IFN production. Our data further indicate that Lgp2-/- mice exhibited resistance to lethal vesicular stomatitis virus infection, a virus whose replicative RNA intermediates are recognized specifically by RIG-I rather than by MDA5 to trigger the production of type I IFN. However, mice lacking LGP2 were observed to exhibit a defect in type I IFN production in response to infection by the encephalomyocarditis virus, the replication of which activates MDA5-dependent innate immune responses. Collectively, our data indicate a disparate regulatory role for LGP2 in the triggering of innate immune signaling pathways following RNA virus infection.", "title": "Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses." }, { "docid": "4993011", "text": "ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.", "title": "Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers" }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "13025574", "text": "High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.", "title": "Cancer risks attributable to low doses of ionizing radiation: assessing what we really know." }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "15305881", "text": "Deinococcus spp. are renowned for their amazing ability to recover rapidly from severe genomic fragmentation as a result of exposure to extreme levels of ionizing radiation or desiccation. Despite having been originally characterized over 50 years ago, the mechanism underlying this remarkable repair process is still poorly understood. Here, we report the 2.8 A structure of DdrB, a single-stranded DNA (ssDNA) binding protein unique to Deinococcus spp. that is crucial for recovery following DNA damage. DdrB forms a pentameric ring capable of binding single-stranded but not double-stranded DNA. Unexpectedly, the crystal structure reveals that DdrB comprises a novel fold that is structurally and topologically distinct from all other single-stranded binding (SSB) proteins characterized to date. The need for a unique ssDNA binding function in response to severe damage, suggests a distinct role for DdrB which may encompass not only standard SSB protein function in protection of ssDNA, but also more specialized roles in protein recruitment or DNA architecture maintenance. Possible mechanisms of DdrB action in damage recovery are discussed.", "title": "The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins" } ]
776
Mice defective for deoxyribonucleic acid (DNA) polymerase m (polm) fail to reveal increased sensitivity to ionizing radiation (IR).
[ { "docid": "32275758", "text": "DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability.", "title": "Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo." } ]
[ { "docid": "11569583", "text": "DNA polymerase β (Pol β) is an error-prone enzyme which has been found to be overexpressed in several human tumors. By using a couple of recombinant CHO cells differing only from the exogenous expression of Pol β, we showed here that cells overexpressing Pol β are much more sensitive to IR treatments by increasing apoptosis. We also found that the surviving cells displayed an hypermutator phenotype which could be explained by different pathways involving Pol β, such as (i) an increased capacity to incorporate into DNA the mutagenic dGTP analog, 8-oxo-dGTP, one of the most abundant purine-derived nucleotides exposed to γ-irradiation, (ii) the induction of IR-induced DNA breaks and (iii) accumulation of chromosome aberrations induced by radiation. Alteration of Pol β expression in irradiated cells thus appears to strengthen both cell death and genetic changes associated with a malignant phenotype. These data provide new insights into the cellular response to radiations and the associated carcinogenic consequences.", "title": "Deregulated DNA polymerase β strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities" }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "31293581", "text": "Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR-induced senescence markers could persist long-term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16(INK4a) expression, two hallmarks of cellular senescence and aging. BrdU-labeling experiments revealed that IR-induced damaged cells are preferentially eliminated, at least partially, in a tissue-dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild-type and Rag2(-/-) gammaC(-/-) mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long-term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.", "title": "Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status." }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "3173489", "text": "DNA replication stress promotes genome instability in cancer. However, the contribution of the replication stress response to the development of malignancies remains unresolved. The DNA replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the proliferation burst following IR and an impaired ability to repopulate the thymus after IR. Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA replication stress response and, specifically, Smarcal1 in hematopoietic cell survival and tumor development. Our results also provide important insight into the immunodeficiency observed in individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.", "title": "Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution" }, { "docid": "23599024", "text": "Background/Aims: Radiotherapy is applied to patients with inoperable cancer types including advanced stage non-small cell lung cancer (NSCLC) and radioresistance functions as a critical obstacle in radiotherapy. This study was aimed to investigate the mechanism of radioresistance regulated by surfactant protein B (SP-B). Methods: To investigate the role of SP-B in radioresistance, ΔSFTPB A549 cell line was established and SP-B expression was analyzed. In response to ionizing radiation (IR), the change of SP-B expression was analyzed in A549 and NCI-H441 cell lines. Conditioned media (CM) from NSCLC cells were utilized to evaluate the downstream signaling pathway. The in vivo effects of SP-B were assessed through mouse xenograft model with intratumoral injection of CM. Results: In response to IR, NSCLC cell lines showed decreased SP-B regulated by the TGF-β signaling and decreased SP-B stimulated cell survival and epithelial-mesenchymal transition. Treatment with CM from irradiated cells activated sPLA2, enhanced protein kinase Cδ-MAPKs signaling pathway, and increased arachidonic acid production. We confirmed the in vivo roles of SP-B through mouse xenograft model. Conclusion: Our results revealed that down-regulation of SP-B was involved in the radiation-induced metastatic conversion of NSCLC and provided evidence that SP-B acted as a suppressor of NSCLC progression.", "title": "Surfactant Protein B Suppresses Lung Cancer Progression by Inhibiting Secretory Phospholipase A2 Activity and Arachidonic Acid Production" }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "16630060", "text": "Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a \"stemness checkpoint\" to maintain the stem cell quality and quantity.", "title": "Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation" }, { "docid": "6536598", "text": "Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4-Rad23 and is recruited to chromatin by Rad4 in a UV damage-dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.", "title": "The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair" }, { "docid": "43014661", "text": "Xeroderma pigmentosum variant (XPV) patients with mutations in the DNA polymerase eta (pol eta) gene are hypersensitive to sunlight and have greatly increased susceptibility to sunlight-induced skin cancer. Consistent with the ability of Pol eta to efficiently bypass UV light-induced cyclobutane pyrimidine dimers, XPV cells lacking Pol eta have diminished capacity to replicate UV-damaged DNA and are sensitive to UV light-induced killing and mutagenesis. To better understand these and other Pol eta functions, we generated Pol eta-deficient mice. Mice homozygous for a null mutation in pol eta are viable, fertile, and do not show any obvious spontaneous defects during the first year of life. However, fibroblasts derived from these mutant mice are sensitive to killing by exposure to UV light, and all Pol eta-deficient mice develop skin tumors after UV irradiation, in contrast to the wild-type littermate controls that did not develop such tumors. These results and biochemical studies of translesion synthesis by mouse Pol eta indicate that Pol eta-dependent bypass of cyclobutane pyrimidine dimers suppresses UV light-induced skin cancer in mice. Moreover, 37.5% of pol eta heterozygous mice also developed skin cancer during 5 months after a 5-month exposure to UV light, suggesting that humans who are heterozygous for mutations in pol eta may also have an increased risk of skin cancer.", "title": "Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice." }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "9291596", "text": "Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G(2)/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G(1), S, and G(2) cells were treated with photoactivated 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G(2) did not result in a G(2)/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G(1) did not cause a G(1)/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to approximately 2,500 ICLs/genome at an average rate of 11 ICLs/genome/h.", "title": "DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "40901687", "text": "The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway.", "title": "PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response." }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "13025574", "text": "High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.", "title": "Cancer risks attributable to low doses of ionizing radiation: assessing what we really know." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "15305881", "text": "Deinococcus spp. are renowned for their amazing ability to recover rapidly from severe genomic fragmentation as a result of exposure to extreme levels of ionizing radiation or desiccation. Despite having been originally characterized over 50 years ago, the mechanism underlying this remarkable repair process is still poorly understood. Here, we report the 2.8 A structure of DdrB, a single-stranded DNA (ssDNA) binding protein unique to Deinococcus spp. that is crucial for recovery following DNA damage. DdrB forms a pentameric ring capable of binding single-stranded but not double-stranded DNA. Unexpectedly, the crystal structure reveals that DdrB comprises a novel fold that is structurally and topologically distinct from all other single-stranded binding (SSB) proteins characterized to date. The need for a unique ssDNA binding function in response to severe damage, suggests a distinct role for DdrB which may encompass not only standard SSB protein function in protection of ssDNA, but also more specialized roles in protein recruitment or DNA architecture maintenance. Possible mechanisms of DdrB action in damage recovery are discussed.", "title": "The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins" }, { "docid": "17695748", "text": "Transglutaminase 2 (TGase 2) is a Ca+2-dependent enzyme that catalyzes both intracellular and extracellular cross-linking reactions by transamidation of specific glutamine residues. TGase 2 is known to be involved in the membrane-mediated events required for glucose-stimulated insulin release from the pancreatic beta cells. Here we show that targeted disruption of TGase 2 impairs glucose-stimulated insulin secretion. TGase 2-/- mice show glucose intolerance after intraperitoneal glucose loading. TGase 2-/- mice manifest a tendency to develop hypoglycemia after administration of exogenous insulin as a consequence of enhanced insulin receptor substrate 2 (IRS-2) phosphorylation. We suggest that the increased peripheral sensitivity to insulin partially compensates for the defective secretion in this animal model. TGase 2-/- mouse phenotype resembles that of the maturity-onset diabetes of young (MODY) patients. In the course of screening for human TGase 2 gene in Italian subjects with the clinical features of MODY, we detected a missense mutation (N333S) in the active site of the enzyme. Collectively, these results identify TGase 2 as a potential candidate gene in type 2 diabetes.", "title": "in" } ]
777
Mice defective for deoxyribonucleic acid (DNA) polymerase m (polm) reveal increased sensitivity to ionizing radiation (IR).
[ { "docid": "32275758", "text": "DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability.", "title": "Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo." } ]
[ { "docid": "11569583", "text": "DNA polymerase β (Pol β) is an error-prone enzyme which has been found to be overexpressed in several human tumors. By using a couple of recombinant CHO cells differing only from the exogenous expression of Pol β, we showed here that cells overexpressing Pol β are much more sensitive to IR treatments by increasing apoptosis. We also found that the surviving cells displayed an hypermutator phenotype which could be explained by different pathways involving Pol β, such as (i) an increased capacity to incorporate into DNA the mutagenic dGTP analog, 8-oxo-dGTP, one of the most abundant purine-derived nucleotides exposed to γ-irradiation, (ii) the induction of IR-induced DNA breaks and (iii) accumulation of chromosome aberrations induced by radiation. Alteration of Pol β expression in irradiated cells thus appears to strengthen both cell death and genetic changes associated with a malignant phenotype. These data provide new insights into the cellular response to radiations and the associated carcinogenic consequences.", "title": "Deregulated DNA polymerase β strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities" }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "31293581", "text": "Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR-induced senescence markers could persist long-term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16(INK4a) expression, two hallmarks of cellular senescence and aging. BrdU-labeling experiments revealed that IR-induced damaged cells are preferentially eliminated, at least partially, in a tissue-dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild-type and Rag2(-/-) gammaC(-/-) mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long-term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.", "title": "Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status." }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "3173489", "text": "DNA replication stress promotes genome instability in cancer. However, the contribution of the replication stress response to the development of malignancies remains unresolved. The DNA replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the proliferation burst following IR and an impaired ability to repopulate the thymus after IR. Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA replication stress response and, specifically, Smarcal1 in hematopoietic cell survival and tumor development. Our results also provide important insight into the immunodeficiency observed in individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.", "title": "Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution" }, { "docid": "23599024", "text": "Background/Aims: Radiotherapy is applied to patients with inoperable cancer types including advanced stage non-small cell lung cancer (NSCLC) and radioresistance functions as a critical obstacle in radiotherapy. This study was aimed to investigate the mechanism of radioresistance regulated by surfactant protein B (SP-B). Methods: To investigate the role of SP-B in radioresistance, ΔSFTPB A549 cell line was established and SP-B expression was analyzed. In response to ionizing radiation (IR), the change of SP-B expression was analyzed in A549 and NCI-H441 cell lines. Conditioned media (CM) from NSCLC cells were utilized to evaluate the downstream signaling pathway. The in vivo effects of SP-B were assessed through mouse xenograft model with intratumoral injection of CM. Results: In response to IR, NSCLC cell lines showed decreased SP-B regulated by the TGF-β signaling and decreased SP-B stimulated cell survival and epithelial-mesenchymal transition. Treatment with CM from irradiated cells activated sPLA2, enhanced protein kinase Cδ-MAPKs signaling pathway, and increased arachidonic acid production. We confirmed the in vivo roles of SP-B through mouse xenograft model. Conclusion: Our results revealed that down-regulation of SP-B was involved in the radiation-induced metastatic conversion of NSCLC and provided evidence that SP-B acted as a suppressor of NSCLC progression.", "title": "Surfactant Protein B Suppresses Lung Cancer Progression by Inhibiting Secretory Phospholipase A2 Activity and Arachidonic Acid Production" }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "16630060", "text": "Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a \"stemness checkpoint\" to maintain the stem cell quality and quantity.", "title": "Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation" }, { "docid": "6536598", "text": "Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4-Rad23 and is recruited to chromatin by Rad4 in a UV damage-dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.", "title": "The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair" }, { "docid": "43014661", "text": "Xeroderma pigmentosum variant (XPV) patients with mutations in the DNA polymerase eta (pol eta) gene are hypersensitive to sunlight and have greatly increased susceptibility to sunlight-induced skin cancer. Consistent with the ability of Pol eta to efficiently bypass UV light-induced cyclobutane pyrimidine dimers, XPV cells lacking Pol eta have diminished capacity to replicate UV-damaged DNA and are sensitive to UV light-induced killing and mutagenesis. To better understand these and other Pol eta functions, we generated Pol eta-deficient mice. Mice homozygous for a null mutation in pol eta are viable, fertile, and do not show any obvious spontaneous defects during the first year of life. However, fibroblasts derived from these mutant mice are sensitive to killing by exposure to UV light, and all Pol eta-deficient mice develop skin tumors after UV irradiation, in contrast to the wild-type littermate controls that did not develop such tumors. These results and biochemical studies of translesion synthesis by mouse Pol eta indicate that Pol eta-dependent bypass of cyclobutane pyrimidine dimers suppresses UV light-induced skin cancer in mice. Moreover, 37.5% of pol eta heterozygous mice also developed skin cancer during 5 months after a 5-month exposure to UV light, suggesting that humans who are heterozygous for mutations in pol eta may also have an increased risk of skin cancer.", "title": "Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice." }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "9291596", "text": "Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G(2)/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G(1), S, and G(2) cells were treated with photoactivated 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G(2) did not result in a G(2)/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G(1) did not cause a G(1)/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to approximately 2,500 ICLs/genome at an average rate of 11 ICLs/genome/h.", "title": "DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "40901687", "text": "The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway.", "title": "PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response." }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "13025574", "text": "High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.", "title": "Cancer risks attributable to low doses of ionizing radiation: assessing what we really know." }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "15305881", "text": "Deinococcus spp. are renowned for their amazing ability to recover rapidly from severe genomic fragmentation as a result of exposure to extreme levels of ionizing radiation or desiccation. Despite having been originally characterized over 50 years ago, the mechanism underlying this remarkable repair process is still poorly understood. Here, we report the 2.8 A structure of DdrB, a single-stranded DNA (ssDNA) binding protein unique to Deinococcus spp. that is crucial for recovery following DNA damage. DdrB forms a pentameric ring capable of binding single-stranded but not double-stranded DNA. Unexpectedly, the crystal structure reveals that DdrB comprises a novel fold that is structurally and topologically distinct from all other single-stranded binding (SSB) proteins characterized to date. The need for a unique ssDNA binding function in response to severe damage, suggests a distinct role for DdrB which may encompass not only standard SSB protein function in protection of ssDNA, but also more specialized roles in protein recruitment or DNA architecture maintenance. Possible mechanisms of DdrB action in damage recovery are discussed.", "title": "The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins" }, { "docid": "17695748", "text": "Transglutaminase 2 (TGase 2) is a Ca+2-dependent enzyme that catalyzes both intracellular and extracellular cross-linking reactions by transamidation of specific glutamine residues. TGase 2 is known to be involved in the membrane-mediated events required for glucose-stimulated insulin release from the pancreatic beta cells. Here we show that targeted disruption of TGase 2 impairs glucose-stimulated insulin secretion. TGase 2-/- mice show glucose intolerance after intraperitoneal glucose loading. TGase 2-/- mice manifest a tendency to develop hypoglycemia after administration of exogenous insulin as a consequence of enhanced insulin receptor substrate 2 (IRS-2) phosphorylation. We suggest that the increased peripheral sensitivity to insulin partially compensates for the defective secretion in this animal model. TGase 2-/- mouse phenotype resembles that of the maturity-onset diabetes of young (MODY) patients. In the course of screening for human TGase 2 gene in Italian subjects with the clinical features of MODY, we detected a missense mutation (N333S) in the active site of the enzyme. Collectively, these results identify TGase 2 as a potential candidate gene in type 2 diabetes.", "title": "in" }, { "docid": "43880096", "text": "Activation of p53 can occur in response to a number of cellular stresses, including DNA damage, hypoxia and nucleotide deprivation. Several forms of DNA damage have been shown to activate p53, including those generated by ionising radiation (IR), radio-mimetic drugs, ultraviolet light (UV) and chemicals such as methyl methane sulfonate (MMS). Under normal conditions, p53 levels are maintained at a low state by virtue of the extremely short-half life of the polypeptide. In addition to this, p53 normally exists in an largely inactive state that is relatively inefficient at binding to DNA and activating transcription. Activation of p53 in response to DNA damage is associated with a rapid increase in its levels and with an increased ability of p53 to bind DNA and mediate transcriptional activation. This then leads to the activation of a number of genes whose products trigger cell-cycle arrest, apoptosis, or DNA repair. Recent work has suggested that this regulation is brought about largely through DNA damage triggering a series of phosphorylation, de-phosphorylation and acetylation events on the p53 polypeptide. Here, we discuss the nature of these modifications, the enzymes that bring them about, and how changes in p53 modification lead to p53 activation.", "title": "Regulation of p53 in response to DNA damage" } ]
778
Mice lacking Sirt1 in Sf1-expressing neurons are immune to diet-induced obesity and insulin resistance.
[ { "docid": "13001323", "text": "Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.", "title": "SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance." } ]
[ { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "10889845", "text": "Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.", "title": "Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance." }, { "docid": "43192375", "text": "Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or \"alternatively activated\" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or \"classically activated\" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.", "title": "Obesity induces a phenotypic switch in adipose tissue macrophage polarization." }, { "docid": "9513785", "text": "We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85alpha (P = 0.018), p110beta (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.", "title": "Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice" }, { "docid": "11886686", "text": "The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia.", "title": "Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia." }, { "docid": "52805891", "text": "Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics), the metabolic characteristics, and insulin signaling in TLR2 knockout (KO) mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes, and even other immunological disorders.", "title": "Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice" }, { "docid": "31001322", "text": "We show that NF-kappaB and transcriptional targets are activated in liver by obesity and high-fat diet (HFD). We have matched this state of chronic, subacute 'inflammation' by low-level activation of NF-kappaB in the liver of transgenic mice, designated LIKK, by selectively expressing constitutively active IKK-b in hepatocytes. These mice exhibit a type 2 diabetes phenotype, characterized by hyperglycemia, profound hepatic insulin resistance, and moderate systemic insulin resistance, including effects in muscle. The hepatic production of proinflammatory cytokines, including IL-6, IL-1beta and TNF-alpha, was increased in LIKK mice to a similar extent as induced by HFD in in wild-type mice. Parallel increases were observed in cytokine signaling in liver and mucscle of LIKK mice. Insulin resistance was improved by systemic neutralization of IL-6 or salicylate inhibition of IKK-beta. Hepatic expression of the IkappaBalpha superrepressor (LISR) reversed the phenotype of both LIKK mice and wild-type mice fed an HFD. These findings indicate that lipid accumulation in the liver leads to subacute hepatic 'inflammation' through NF-kappaB activation and downstream cytokine production. This causes insulin resistance both locally in liver and systemically.", "title": "Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB." }, { "docid": "21547032", "text": "Objective:In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ.Design and Measurement:C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg−1 body weight), alone or with APAP (30 mg kg−1 body weight) or THII (4.5 mg kg−1 body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined. Results:OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O2 uptake and H2O2 production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT.Conclusions:We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.", "title": "Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole" }, { "docid": "5389095", "text": "Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.", "title": "Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids" }, { "docid": "6171953", "text": "Inflammation accompanies obesity and its comorbidities-type 2 diabetes, non-alcoholic fatty liver disease and atherosclerosis, among others-and may contribute to their pathogenesis. Yet the cellular machinery that links nutrient sensing to inflammation remains incompletely characterized. The protein deacetylase sirtuin-1 (SirT1) is activated by energy depletion and plays a critical role in the mammalian response to fasting. More recently it has been implicated in the repression of inflammation. SirT1 mRNA and protein expression are suppressed in obese rodent and human white adipose tissue, while experimental reduction of SirT1 in adipocytes and macrophages causes low-grade inflammation that mimics that observed in obesity. Thus suppression of SirT1 during overnutrition may be critical to the development of obesity-associated inflammation. This effect is attributable to multiple actions of SirT1, including direct deacetylation of NFκB and chromatin remodeling at inflammatory gene promoters. In this work, we report that SirT1 is also suppressed by diet-induced obesity in macrophages, which are key contributors to the ontogeny of metabolic inflammation. Thus, SirT1 may be a common mechanism by which cells sense nutrient status and modulate inflammatory signaling networks in accordance with organismal energy availability.", "title": "Sirtuin-1 is a nutrient-dependent modulator of inflammation" }, { "docid": "10463997", "text": "Objectives: Autophagy is a highly regulated process that has an important role in the control of a wide range of cellular functions, such as organelle recycling, nutrient availability and tissue differentiation. A recent study has shown an increased autophagic activity in the adipose tissue of obese subjects, and a role for autophagy in obesity-associated insulin resistance was proposed. Body mass reduction is the most efficient approach to tackle insulin resistance in over-weight subjects; however, the impact of weight loss in adipose tissue autophagy is unknown. Subjects:Adipose tissue autophagy was evaluated in mice and humans. Results:First, a mouse model of diet-induced obesity and diabetes was maintained on a 15-day, 40% caloric restriction. At baseline, markers of autophagy were increased in obese mice as compared with lean controls. Upon caloric restriction, autophagy increased in the lean mice, whereas it decreased in the obese mice. The reintroduction of ad libitum feeding was sufficient to rapidly reduce autophagy in the lean mice and increase autophagy in the obese mice. In the second part of the study, autophagy was evaluated in the subcutaneous adipose tissue of nine obese-non-diabetic and six obese-diabetic subjects undergoing bariatric surgery for body mass reduction. Specimens were collected during the surgery and approximately 1 year later. Markers of systemic inflammation, such as tumor necrosis factor-1α, interleukin (IL)-6 and IL-1β were evaluated. As in the mouse model, human obesity was associated with increased autophagy, and body mass reduction led to an attenuation of autophagy in the adipose tissue. Conclusion:Obesity and caloric overfeeding are associated with the defective regulation of autophagy in the adipose tissue. The studies in obese-diabetic subjects undergoing improved metabolic control following calorie restriction suggest that autophagy and inflammation are regulated independently.", "title": "Defective regulation of adipose tissue autophagy in obesity" }, { "docid": "23601616", "text": "Objective:Consumption of high-fat diet exerts adverse effects on learning and memory formation, which is linked to impaired hippocampal function. Activation of glucagon-like peptide-1 (GLP-1) signalling ameliorates detrimental effects of obesity-diabetes on cognitive function; however, mechanisms underlying these beneficial actions remain unclear. This study examined effects of daily subcutaneous treatment with GLP-1 mimetic, Liraglutide, on synaptic plasticity, hippocampal gene expression and metabolic control in adult obese diabetic (ob/ob) mice. Results:Long-term potentiation (LTP) induced by area CA1 was completely abolished in ob/ob mice compared with lean controls. Deleterious effects on LTP were rescued (P<0.001) with Liraglutide. Indeed, Liraglutide-treated mice exhibited superior LTP profile compared with lean controls (P<0.01). Expression of hippocampal brain-derived neurotropic factor and neurotrophic tyrosine kinase receptor-type 2 were not significantly different, but synaptophysin and Mash1 were decreased in ob/ob mice. Treatment with Liraglutide over 21 days increased expression of Mash1 in ob/ob mice (2.0-fold; P<0.01). These changes were associated with significantly reduced plasma glucose (21% reduction; P<0.05) and markedly improved plasma insulin concentrations (2.1- to 3.3-fold; P<0.05 to P<0.01). Liraglutide also significantly reduced the glycaemic excursion following an intraperitonal glucose load (area under curve (AUC) values: 22%; P<0.05) and markedly enhanced the insulin response to glucose (AUC values: 1.6-fold; P<0.05). O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by Liraglutide therapy. On day 21, accumulated food intake (32% reduction; P<0.05) and number of feeding bouts (32% reduction; P<0.05) were significantly reduced but simple energy restriction was not responsible for the beneficial actions of Liraglutide. Conclusion:Liraglutide elicits beneficial effects on metabolic control and synaptic plasticity in mice with severe obesity and insulin resistance mediated in part through increased expression of Mash1 believed to improve hippocampal neurogenesis and cell survival.", "title": "Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice" }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "5108807", "text": "Ciliary neurotrophic factor (CNTF) induces weight loss and improves glucose tolerance in humans and rodents. CNTF is thought to act centrally by inducing hypothalamic neurogenesis to modulate food intake and peripherally by altering hepatic gene expression, in a manner similar to that of leptin. Here, we show that CNTF signals through the CNTFRα–IL-6R–gp130β receptor complex to increase fatty-acid oxidation and reduce insulin resistance in skeletal muscle by activating AMP-activated protein kinase (AMPK), independent of signaling through the brain. Thus, our findings further show that the antiobesogenic effects of CNTF in the periphery result from direct effects on skeletal muscle, and that these peripheral effects are not suppressed by diet-induced or genetic models of obesity, an essential requirement for the therapeutic treatment of obesity-related diseases.", "title": "CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK" }, { "docid": "1907601", "text": "Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger HIF-1α induction, setting off the chronic adipose tissue inflammatory response characteristic of obesity. At the molecular level, these events involve saturated fatty acid stimulation of the adenine nucleotide translocase 2 (ANT2), an inner mitochondrial membrane protein, which leads to the uncoupled respiratory state. Genetic or pharmacologic inhibition of either ANT2 or HIF-1α can prevent or reverse these pathophysiologic events, restoring a state of insulin sensitivity and glucose tolerance. These results reveal the sequential series of events in obesity-induced inflammation and insulin resistance.", "title": "Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity" }, { "docid": "3621011", "text": "Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity.", "title": "Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion." }, { "docid": "1365188", "text": "Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.", "title": "Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice." } ]
779
Mice lacking Sirt1 in Sf1-expressing neurons have increased susceptibility to diet-induced obesity and insulin resistance.
[ { "docid": "13001323", "text": "Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.", "title": "SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance." } ]
[ { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "43192375", "text": "Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or \"alternatively activated\" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or \"classically activated\" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.", "title": "Obesity induces a phenotypic switch in adipose tissue macrophage polarization." }, { "docid": "10889845", "text": "Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.", "title": "Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance." }, { "docid": "11886686", "text": "The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia.", "title": "Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia." }, { "docid": "9513785", "text": "We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85alpha (P = 0.018), p110beta (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.", "title": "Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice" }, { "docid": "52805891", "text": "Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics), the metabolic characteristics, and insulin signaling in TLR2 knockout (KO) mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes, and even other immunological disorders.", "title": "Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice" }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "31001322", "text": "We show that NF-kappaB and transcriptional targets are activated in liver by obesity and high-fat diet (HFD). We have matched this state of chronic, subacute 'inflammation' by low-level activation of NF-kappaB in the liver of transgenic mice, designated LIKK, by selectively expressing constitutively active IKK-b in hepatocytes. These mice exhibit a type 2 diabetes phenotype, characterized by hyperglycemia, profound hepatic insulin resistance, and moderate systemic insulin resistance, including effects in muscle. The hepatic production of proinflammatory cytokines, including IL-6, IL-1beta and TNF-alpha, was increased in LIKK mice to a similar extent as induced by HFD in in wild-type mice. Parallel increases were observed in cytokine signaling in liver and mucscle of LIKK mice. Insulin resistance was improved by systemic neutralization of IL-6 or salicylate inhibition of IKK-beta. Hepatic expression of the IkappaBalpha superrepressor (LISR) reversed the phenotype of both LIKK mice and wild-type mice fed an HFD. These findings indicate that lipid accumulation in the liver leads to subacute hepatic 'inflammation' through NF-kappaB activation and downstream cytokine production. This causes insulin resistance both locally in liver and systemically.", "title": "Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB." }, { "docid": "21547032", "text": "Objective:In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ.Design and Measurement:C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg−1 body weight), alone or with APAP (30 mg kg−1 body weight) or THII (4.5 mg kg−1 body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined. Results:OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O2 uptake and H2O2 production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT.Conclusions:We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.", "title": "Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole" }, { "docid": "5389095", "text": "Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.", "title": "Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids" }, { "docid": "10463997", "text": "Objectives: Autophagy is a highly regulated process that has an important role in the control of a wide range of cellular functions, such as organelle recycling, nutrient availability and tissue differentiation. A recent study has shown an increased autophagic activity in the adipose tissue of obese subjects, and a role for autophagy in obesity-associated insulin resistance was proposed. Body mass reduction is the most efficient approach to tackle insulin resistance in over-weight subjects; however, the impact of weight loss in adipose tissue autophagy is unknown. Subjects:Adipose tissue autophagy was evaluated in mice and humans. Results:First, a mouse model of diet-induced obesity and diabetes was maintained on a 15-day, 40% caloric restriction. At baseline, markers of autophagy were increased in obese mice as compared with lean controls. Upon caloric restriction, autophagy increased in the lean mice, whereas it decreased in the obese mice. The reintroduction of ad libitum feeding was sufficient to rapidly reduce autophagy in the lean mice and increase autophagy in the obese mice. In the second part of the study, autophagy was evaluated in the subcutaneous adipose tissue of nine obese-non-diabetic and six obese-diabetic subjects undergoing bariatric surgery for body mass reduction. Specimens were collected during the surgery and approximately 1 year later. Markers of systemic inflammation, such as tumor necrosis factor-1α, interleukin (IL)-6 and IL-1β were evaluated. As in the mouse model, human obesity was associated with increased autophagy, and body mass reduction led to an attenuation of autophagy in the adipose tissue. Conclusion:Obesity and caloric overfeeding are associated with the defective regulation of autophagy in the adipose tissue. The studies in obese-diabetic subjects undergoing improved metabolic control following calorie restriction suggest that autophagy and inflammation are regulated independently.", "title": "Defective regulation of adipose tissue autophagy in obesity" }, { "docid": "3621011", "text": "Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity.", "title": "Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion." }, { "docid": "1907601", "text": "Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger HIF-1α induction, setting off the chronic adipose tissue inflammatory response characteristic of obesity. At the molecular level, these events involve saturated fatty acid stimulation of the adenine nucleotide translocase 2 (ANT2), an inner mitochondrial membrane protein, which leads to the uncoupled respiratory state. Genetic or pharmacologic inhibition of either ANT2 or HIF-1α can prevent or reverse these pathophysiologic events, restoring a state of insulin sensitivity and glucose tolerance. These results reveal the sequential series of events in obesity-induced inflammation and insulin resistance.", "title": "Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity" }, { "docid": "23601616", "text": "Objective:Consumption of high-fat diet exerts adverse effects on learning and memory formation, which is linked to impaired hippocampal function. Activation of glucagon-like peptide-1 (GLP-1) signalling ameliorates detrimental effects of obesity-diabetes on cognitive function; however, mechanisms underlying these beneficial actions remain unclear. This study examined effects of daily subcutaneous treatment with GLP-1 mimetic, Liraglutide, on synaptic plasticity, hippocampal gene expression and metabolic control in adult obese diabetic (ob/ob) mice. Results:Long-term potentiation (LTP) induced by area CA1 was completely abolished in ob/ob mice compared with lean controls. Deleterious effects on LTP were rescued (P<0.001) with Liraglutide. Indeed, Liraglutide-treated mice exhibited superior LTP profile compared with lean controls (P<0.01). Expression of hippocampal brain-derived neurotropic factor and neurotrophic tyrosine kinase receptor-type 2 were not significantly different, but synaptophysin and Mash1 were decreased in ob/ob mice. Treatment with Liraglutide over 21 days increased expression of Mash1 in ob/ob mice (2.0-fold; P<0.01). These changes were associated with significantly reduced plasma glucose (21% reduction; P<0.05) and markedly improved plasma insulin concentrations (2.1- to 3.3-fold; P<0.05 to P<0.01). Liraglutide also significantly reduced the glycaemic excursion following an intraperitonal glucose load (area under curve (AUC) values: 22%; P<0.05) and markedly enhanced the insulin response to glucose (AUC values: 1.6-fold; P<0.05). O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by Liraglutide therapy. On day 21, accumulated food intake (32% reduction; P<0.05) and number of feeding bouts (32% reduction; P<0.05) were significantly reduced but simple energy restriction was not responsible for the beneficial actions of Liraglutide. Conclusion:Liraglutide elicits beneficial effects on metabolic control and synaptic plasticity in mice with severe obesity and insulin resistance mediated in part through increased expression of Mash1 believed to improve hippocampal neurogenesis and cell survival.", "title": "Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice" }, { "docid": "5108807", "text": "Ciliary neurotrophic factor (CNTF) induces weight loss and improves glucose tolerance in humans and rodents. CNTF is thought to act centrally by inducing hypothalamic neurogenesis to modulate food intake and peripherally by altering hepatic gene expression, in a manner similar to that of leptin. Here, we show that CNTF signals through the CNTFRα–IL-6R–gp130β receptor complex to increase fatty-acid oxidation and reduce insulin resistance in skeletal muscle by activating AMP-activated protein kinase (AMPK), independent of signaling through the brain. Thus, our findings further show that the antiobesogenic effects of CNTF in the periphery result from direct effects on skeletal muscle, and that these peripheral effects are not suppressed by diet-induced or genetic models of obesity, an essential requirement for the therapeutic treatment of obesity-related diseases.", "title": "CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK" }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "6171953", "text": "Inflammation accompanies obesity and its comorbidities-type 2 diabetes, non-alcoholic fatty liver disease and atherosclerosis, among others-and may contribute to their pathogenesis. Yet the cellular machinery that links nutrient sensing to inflammation remains incompletely characterized. The protein deacetylase sirtuin-1 (SirT1) is activated by energy depletion and plays a critical role in the mammalian response to fasting. More recently it has been implicated in the repression of inflammation. SirT1 mRNA and protein expression are suppressed in obese rodent and human white adipose tissue, while experimental reduction of SirT1 in adipocytes and macrophages causes low-grade inflammation that mimics that observed in obesity. Thus suppression of SirT1 during overnutrition may be critical to the development of obesity-associated inflammation. This effect is attributable to multiple actions of SirT1, including direct deacetylation of NFκB and chromatin remodeling at inflammatory gene promoters. In this work, we report that SirT1 is also suppressed by diet-induced obesity in macrophages, which are key contributors to the ontogeny of metabolic inflammation. Thus, SirT1 may be a common mechanism by which cells sense nutrient status and modulate inflammatory signaling networks in accordance with organismal energy availability.", "title": "Sirtuin-1 is a nutrient-dependent modulator of inflammation" }, { "docid": "1365188", "text": "Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.", "title": "Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice." } ]
780
Mice that lack Interferon-γ or its receptor are highly susceptible to experimental autoimmune myocarditis.
[ { "docid": "8246922", "text": "BACKGROUND Interleukin (IL)-12 exerts a potent proinflammatory effect by stimulating T-helper (Th) 1 responses. This effect is believed to be mediated primarily through the activation of STAT4 and subsequent production of interferon (IFN)-gamma. Methods and Results- We examined the role of IL-12 receptor (IL-12R) signaling in the development of murine experimental autoimmune myocarditis (EAM) induced by cardiac myosin immunization. Both IL-12Rbeta1-deficient mice and STAT4-deficient mice were resistant to the induction of myocarditis. Treatment with exogenous IL-12 exacerbated disease. We questioned whether IFN-gamma is required for the disease-promoting activity of IL-12. On the contrary, we found that IFN-gamma suppresses EAM. Lack of IFN-gamma due to either depletion with an antibody or a genetic deficiency exacerbated myocarditis. Spleens from IFN-gamma-deficient mice immunized with cardiac myosin showed increased cellularity; greater numbers of CD3+, CD4+, CD8+, and IL-2-producing cells; and heightened ability to produce cytokines on stimulation in vitro. Treatment of mice with recombinant IFN-gamma suppressed the development of myocarditis. \n CONCLUSIONS IL-12/IL-12R/STAT4 signaling promotes the development of EAM. In contrast, IFN-gamma plays a protective role. The disease-limiting effects of IFN-gamma might be explained by its ability to control the expansion of activated T lymphocytes.", "title": "the Development of Autoimmune Myocarditis in Mice by an" }, { "docid": "24338780", "text": "BACKGROUND Interferon-gamma (IFN-gamma) is an essential cytokine in the regulation of inflammatory responses in autoimmune diseases. Little is known about its role in inflammatory heart disease. \n METHODS AND RESULTS We showed that IFN-gamma receptor-deficient mice (IFN-gammaR(-/-)) on a BALB/c background immunized with a peptide derived from cardiac alpha-myosin heavy chain develop severe myocarditis with high mortality. Although myocarditis subsided in wild-type mice after 3 weeks, IFN-gammaR(-/-) mice showed persistent disease. The persistent inflammation was accompanied by vigorous in vitro CD4 T-cell responses and impaired inducible nitric oxide synthase expression, together with evidence of impaired nitric oxide production in IFN-gammaR(-/-) hearts. Treatment of wild-type mice with the nitric oxide synthetase inhibitor N:-nitro-l-arginine-methyl-ester enhanced in vitro CD4 T-cell proliferation and prevented healing of myocarditis. \n CONCLUSIONS Our data provide evidence that IFN-gamma protects mice from lethal autoimmune myocarditis by inducing the expression of inducible nitric oxide synthase followed by the downregulation of T-cell responses.", "title": "Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction." } ]
[ { "docid": "40632104", "text": "IL-12 and IFN-gamma positively regulate each other and type 1 inflammatory responses, which are believed to cause tissue damage in autoimmune diseases. We investigated the role of the IL-12/IFN-gamma (Th1) axis in the development of autoimmune myocarditis. IL-12p40-deficient mice on a susceptible background resisted myocarditis. In the absence of IL-12, autospecific CD4(+) T cells proliferated poorly and showed increased Th2 cytokine responses. However, IFN-gamma-deficient mice developed fatal autoimmune disease, and blockade of IL-4R signaling did not confer susceptibility to myocarditis in IL-12p40-deficient mice, demonstrating that IL-12 triggers autoimmunity by a mechanism independent of the effector cytokines IFN-gamma and IL-4. In conclusion, our results suggest that the IL-12/IFN-gamma axis is a double-edged sword for the development of autoimmune myocarditis. Although IL-12 mediates disease by induction/expansion of Th1-type cells, IFN-gamma production from these cells limits disease progression.", "title": "Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma." }, { "docid": "7155555", "text": "Listeria monocytogenes is widely used as a model to study immune responses against intracellular bacteria. It has been shown that neutrophils and macrophages play an important role to restrict bacterial replication in the early phase of primary infection in mice, and that the cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) are essential for protection. However, the involved signaling pathways and effector mechanisms are still poorly understood. This study investigated mouse strains deficient for the IFN-dependent transcription factors interferon consensus sequence binding protein (ICSBP), interferon regulatory factor (IRF)1 or 2 for their capacity to eliminate Listeria in vivo and in vitro and for production of inducible reactive nitrogen intermediates (RNI) or reactive oxygen intermediates (ROI) in macrophages. ICSBP−/− and to a lesser degree also IRF2−/− mice were highly susceptible to Listeria infection. This correlated with impaired elimination of Listeria from infected peritoneal macrophage (PEM) cultures stimulated with IFN-γ in vitro; in addition these cultures showed reduced and delayed oxidative burst upon IFN-γ stimulation, whereas nitric oxide production was normal. In contrast, mice deficient for IRF1 were not able to produce nitric oxide, but they efficiently controlled Listeria in vivo and in vitro. These results indicate that (a) the ICSBP/IRF2 complex is essential for IFN-γ–mediated protection against Listeria and that (b) ROI together with additional still unknown effector mechanisms may be responsible for the anti-Listeria activity of macrophages, whereas IRF1-induced RNI are not limiting.", "title": "Crucial Role of Interferon Consensus Sequence Binding Protein, but neither of Interferon Regulatory Factor 1 nor of Nitric Oxide Synthesis for Protection Against Murine Listeriosis" }, { "docid": "7115651", "text": "IL-21 is a pleiotropic type 1 cytokine that shares the common cytokine receptor γ-chain, γ(c), with IL-2, IL-4, IL-7, IL-9, and IL-15. IL-21 is most homologous to IL-2. These cytokines are encoded by adjacent genes, but they are functionally distinct. Whereas IL-2 promotes development of regulatory T cells and confers protection from autoimmune disease, IL-21 promotes differentiation of Th17 cells and is implicated in several autoimmune diseases, including type 1 diabetes and systemic lupus erythematosus. However, the roles of IL-21 and IL-2 in CNS autoimmune diseases such as multiple sclerosis and uveitis have been controversial. Here, we generated Il21-mCherry/Il2-emGFP dual-reporter transgenic mice and showed that development of experimental autoimmune uveitis (EAU) correlated with the presence of T cells coexpressing IL-21 and IL-2 into the retina. Furthermore, Il21r(-/-) mice were more resistant to EAU development than wild-type mice, and adoptive transfer of Il21r(-/-) T cells induced much less severe EAU, underscoring the need for IL-21 in the development of this disease and suggesting that blocking IL-21/γ(c)-signaling pathways may provide a means for controlling CNS auto-inflammatory diseases.", "title": "Key role for IL-21 in experimental autoimmune uveitis." }, { "docid": "6270720", "text": "RATIONALE The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. \n OBJECTIVE The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. \n METHODS AND RESULTS Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. \n CONCLUSIONS Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.", "title": "Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy." }, { "docid": "39084565", "text": "Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after alpha-myosin H chain peptide (MyHC-alpha)/CFA immunization and largely resolving thereafter. In IFN-gammaR(-/-) mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-gammaR(-/-) mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b(+) monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b(+) monocytes suppressed MyHC-alpha-specific Th17 T cell responses IFN-gamma-dependently in vitro. In vivo, injection of IFN-gammaR(+/+)CD11b(+), but not IFN-gammaR(-/-)CD11b(+), monocytes, suppressed MyHC-alpha-specific T cells, and abrogated the progressive disease course in IFN-gammaR(-/-) mice. Finally, coinjection of MyHC-alpha-specific, but not OVA-transgenic, IFN-gamma-releasing CD4(+) Th1 T cell lines, together with MyHC-alpha-specific Th17 T cells protected RAG2(-/-) mice from EAM. In conclusion, CD11b(+) monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-gamma-dependent negative feedback loop confining disease progression.", "title": "CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis." }, { "docid": "51952430", "text": "The toll-like receptor (TLR) and interleukin (IL)-1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll-IL-1 receptor homology domain-containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R-induced phosphoinositide 3-kinase-Akt-mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β-induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.", "title": "BCAP links IL-1R to the PI3K–mTOR pathway and regulates pathogenic Th17 cell differentiation" }, { "docid": "19130782", "text": "Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.", "title": "Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion" }, { "docid": "23912923", "text": "V domain-containing Ig suppressor of T-cell activation (VISTA) is a negative checkpoint regulator that suppresses T cell-mediated immune responses. Previous studies using a VISTA-neutralizing monoclonal antibody show that VISTA blockade enhances T-cell activation. The current study describes a comprehensive characterization of mice in which the gene for VISTA has been deleted. Despite the apparent normal hematopoietic development in young mice, VISTA genetic deficiency leads to a gradual accumulation of spontaneously activated T cells, accompanied by the production of a spectrum of inflammatory cytokines and chemokines. Enhanced T-cell responsiveness was also observed upon immunization with neoantigen. Despite the presence of multiorgan chronic inflammation, aged VISTA-deficient mice did not develop systemic or organ-specific autoimmune disease. Interbreeding of the VISTA-deficient mice with 2D2 T-cell receptor transgenic mice, which are predisposed to the development of experimental autoimmune encephalomyelitis, drastically enhanced disease incidence and intensity. Disease development is correlated with the increase in the activation of encephalitogenic T cells in the periphery and enhanced infiltration into the CNS. Taken together, our data suggest that VISTA is a negative checkpoint regulator whose loss of function lowers the threshold for T-cell activation, allowing for an enhanced proinflammatory phenotype and an increase in the frequency and intensity of autoimmunity under susceptible conditions.", "title": "Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity." }, { "docid": "854417", "text": "The effectiveness of interleukin 10 (IL-10) in the treatment of autoimmune-mediated central nervous system inflammation is controversial. Studies of the model system, experimental autoimmune encephalomyelitis (EAE), using various routes, regimens, and delivery methods of IL-10 suggest that these variables may affect its immunoregulatory function. To study the influence of these factors on IL-10 regulation of EAE pathogenesis, we have analyzed transgenic mice expressing human IL-10 (hIL-10) transgene under the control of a class II major histocompatibility complex (MHC) promoter. The hIL-10 transgenic mice are highly resistant to EAE induced by active immunization, and this resistance appears to be mediated by suppression of autoreactive T cell function. Myelin-reactive T helper 1 cells are induced but nonpathogenic in the IL-10 transgenic mice. Antibody depletion confirmed that EAE resistance is dependent on the presence of the transgenic IL-10. Mice expressing the hIL-10 transgene but not the endogenous murine IL-10 gene demonstrated that transgenic IL-10 from MHC class II–expressing cells is sufficient to block induction of EAE. This study demonstrates that IL-10 can prevent EAE completely if present at appropriate levels and times during disease induction.", "title": "Transgenic Interleukin 10 Prevents Induction of Experimental Autoimmune Encephalomyelitis " }, { "docid": "10559501", "text": "Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.", "title": "Beta interferon controls West Nile virus infection and pathogenesis in mice." }, { "docid": "13106686", "text": "Immune sensing of DNA is critical for antiviral immunity but can also trigger autoimmune diseases such as lupus erythematosus (LE). Here we have provided evidence for the involvement of a damage-associated DNA modification in the detection of cytosolic DNA. The oxidized base 8-hydroxyguanosine (8-OHG), a marker of oxidative damage in DNA, potentiated cytosolic immune recognition by decreasing its susceptibility to 3' repair exonuclease 1 (TREX1)-mediated degradation. Oxidizative modifications arose physiologically in pathogen DNA during lysosomal reactive oxygen species (ROS) exposure, as well as in neutrophil extracellular trap (NET) DNA during the oxidative burst. 8-OHG was also abundant in UV-exposed skin lesions of LE patients and colocalized with type I interferon (IFN). Injection of oxidized DNA in the skin of lupus-prone mice induced lesions that closely matched respective lesions in patients. Thus, oxidized DNA represents a prototypic damage-associated molecular pattern (DAMP) with important implications for infection, sterile inflammation, and autoimmunity.", "title": "Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing." }, { "docid": "1574014", "text": "Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate either agonist or inverse agonist modulation as well as high constitutive activity of the virally encoded oncogene ORF74 and that these mutant forms presumably can be used in transgenic animals to identify the molecular mechanism of its transforming activity.", "title": "Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74." }, { "docid": "5386514", "text": "The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.", "title": "Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors" }, { "docid": "1386103", "text": "Tuberculosis, a major health problem in developing countries, has reemerged in recent years in many industrialized countries. The increased susceptibility of immunocompromised individuals to tuberculosis, and many experimental studies indicate that T cell-mediated immunity plays an important role in resistance. The lymphokine interferon gamma (IFN-gamma) is thought to be a principal mediator of macrophage activation and resistance to intracellular pathogens. Mice have been developed which fail to produce IFN-gamma (gko), because of a targeted disruption of the gene for IFN-gamma. Upon infection with Mycobacterium tuberculosis, although they develop granulomas, gko mice fail to produce reactive nitrogen intermediates and are unable to restrict the growth of the bacilli. In contrast to control mice, gko mice exhibit heightened tissue necrosis and succumb to a rapid and fatal course of tuberculosis that could be delayed, but not prevented, by treatment with exogenous recombinant IFN-gamma.", "title": "An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection" }, { "docid": "22647695", "text": "Autoreactive T cell responses have a crucial role in central nervous system (CNS) diseases such as multiple sclerosis. Recent data indicate that CNS autoimmunity can be mediated by two distinct lineages of CD4+ T cells that are defined by the production of either interferon-γ or interleukin-17. The activity of these CD4+ T cell subsets within the CNS influences the pathology and clinical course of disease. New animal models show that myelin-specific CD8+ T cells can also mediate CNS autoimmunity. This Review focuses on recent progress in delineating the pathogenic mechanisms, regulation and interplay between these different T cell subsets in CNS autoimmunity.", "title": "Autoimmune T cell responses in the central nervous system" }, { "docid": "9784254", "text": "The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone marrow transplant studies point to altered macrophage function as the major determinant of susceptibility. LXR-null macrophages undergo accelerated apoptosis when challenged with LM and exhibit defective bacterial clearance in vivo. These defects result, at least in part, from loss of regulation of the antiapoptotic factor SPalpha, a direct target for regulation by LXRalpha. Expression of LXRalpha or SPalpha in macrophages inhibits apoptosis in the setting of LM infection. Our results demonstrate that LXR-dependent gene expression plays an unexpected role in innate immunity and suggest that common nuclear receptor pathways mediate macrophage responses to modified lipoproteins and intracellular pathogens.", "title": "LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response" }, { "docid": "4391121", "text": "Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients’ leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vγ1+ γδ T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or γδ T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-γ (IFN-γ), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vγ4+ γδ and Foxp3+ αβ T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.", "title": "Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease" }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." } ]
782
Mice without IFN-γ or its receptor are highly susceptible to EAM induced with α-MyHC/CFA.
[ { "docid": "8246922", "text": "BACKGROUND Interleukin (IL)-12 exerts a potent proinflammatory effect by stimulating T-helper (Th) 1 responses. This effect is believed to be mediated primarily through the activation of STAT4 and subsequent production of interferon (IFN)-gamma. Methods and Results- We examined the role of IL-12 receptor (IL-12R) signaling in the development of murine experimental autoimmune myocarditis (EAM) induced by cardiac myosin immunization. Both IL-12Rbeta1-deficient mice and STAT4-deficient mice were resistant to the induction of myocarditis. Treatment with exogenous IL-12 exacerbated disease. We questioned whether IFN-gamma is required for the disease-promoting activity of IL-12. On the contrary, we found that IFN-gamma suppresses EAM. Lack of IFN-gamma due to either depletion with an antibody or a genetic deficiency exacerbated myocarditis. Spleens from IFN-gamma-deficient mice immunized with cardiac myosin showed increased cellularity; greater numbers of CD3+, CD4+, CD8+, and IL-2-producing cells; and heightened ability to produce cytokines on stimulation in vitro. Treatment of mice with recombinant IFN-gamma suppressed the development of myocarditis. \n CONCLUSIONS IL-12/IL-12R/STAT4 signaling promotes the development of EAM. In contrast, IFN-gamma plays a protective role. The disease-limiting effects of IFN-gamma might be explained by its ability to control the expansion of activated T lymphocytes.", "title": "the Development of Autoimmune Myocarditis in Mice by an" } ]
[ { "docid": "39084565", "text": "Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after alpha-myosin H chain peptide (MyHC-alpha)/CFA immunization and largely resolving thereafter. In IFN-gammaR(-/-) mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-gammaR(-/-) mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b(+) monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b(+) monocytes suppressed MyHC-alpha-specific Th17 T cell responses IFN-gamma-dependently in vitro. In vivo, injection of IFN-gammaR(+/+)CD11b(+), but not IFN-gammaR(-/-)CD11b(+), monocytes, suppressed MyHC-alpha-specific T cells, and abrogated the progressive disease course in IFN-gammaR(-/-) mice. Finally, coinjection of MyHC-alpha-specific, but not OVA-transgenic, IFN-gamma-releasing CD4(+) Th1 T cell lines, together with MyHC-alpha-specific Th17 T cells protected RAG2(-/-) mice from EAM. In conclusion, CD11b(+) monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-gamma-dependent negative feedback loop confining disease progression.", "title": "CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis." }, { "docid": "7155555", "text": "Listeria monocytogenes is widely used as a model to study immune responses against intracellular bacteria. It has been shown that neutrophils and macrophages play an important role to restrict bacterial replication in the early phase of primary infection in mice, and that the cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) are essential for protection. However, the involved signaling pathways and effector mechanisms are still poorly understood. This study investigated mouse strains deficient for the IFN-dependent transcription factors interferon consensus sequence binding protein (ICSBP), interferon regulatory factor (IRF)1 or 2 for their capacity to eliminate Listeria in vivo and in vitro and for production of inducible reactive nitrogen intermediates (RNI) or reactive oxygen intermediates (ROI) in macrophages. ICSBP−/− and to a lesser degree also IRF2−/− mice were highly susceptible to Listeria infection. This correlated with impaired elimination of Listeria from infected peritoneal macrophage (PEM) cultures stimulated with IFN-γ in vitro; in addition these cultures showed reduced and delayed oxidative burst upon IFN-γ stimulation, whereas nitric oxide production was normal. In contrast, mice deficient for IRF1 were not able to produce nitric oxide, but they efficiently controlled Listeria in vivo and in vitro. These results indicate that (a) the ICSBP/IRF2 complex is essential for IFN-γ–mediated protection against Listeria and that (b) ROI together with additional still unknown effector mechanisms may be responsible for the anti-Listeria activity of macrophages, whereas IRF1-induced RNI are not limiting.", "title": "Crucial Role of Interferon Consensus Sequence Binding Protein, but neither of Interferon Regulatory Factor 1 nor of Nitric Oxide Synthesis for Protection Against Murine Listeriosis" }, { "docid": "6270720", "text": "RATIONALE The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. \n OBJECTIVE The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. \n METHODS AND RESULTS Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. \n CONCLUSIONS Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.", "title": "Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy." }, { "docid": "29015485", "text": "CD8(+) T cells can respond to unrelated infections in an Ag-independent manner. This rapid innate-like immune response allows Ag-experienced T cells to alert other immune cell types to pathogenic intruders. In this study, we show that murine CD8(+) T cells can sense TLR2 and TLR7 ligands, resulting in rapid production of IFN-γ but not of TNF-α and IL-2. Importantly, Ag-experienced T cells activated by TLR ligands produce sufficient IFN-γ to augment the activation of macrophages. In contrast to Ag-specific reactivation, TLR-dependent production of IFN-γ by CD8(+) T cells relies exclusively on newly synthesized transcripts without inducing mRNA stability. Furthermore, transcription of IFN-γ upon TLR triggering depends on the activation of PI3K and serine-threonine kinase Akt, and protein synthesis relies on the activation of the mechanistic target of rapamycin. We next investigated which energy source drives the TLR-induced production of IFN-γ. Although Ag-specific cytokine production requires a glycolytic switch for optimal cytokine release, glucose availability does not alter the rate of IFN-γ production upon TLR-mediated activation. Rather, mitochondrial respiration provides sufficient energy for TLR-induced IFN-γ production. To our knowledge, this is the first report describing that TLR-mediated bystander activation elicits a helper phenotype of CD8(+) T cells. It induces a short boost of IFN-γ production that leads to a significant but limited activation of Ag-experienced CD8(+) T cells. This activation suffices to prime macrophages but keeps T cell responses limited to unrelated infections.", "title": "TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis." }, { "docid": "19130782", "text": "Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.", "title": "Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion" }, { "docid": "5386514", "text": "The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.", "title": "Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors" }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "5500086", "text": "Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell–mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN–related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.", "title": "Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy" }, { "docid": "6767271", "text": "Although adjuvants are critical vaccine components, their modes of action are poorly understood. In this study, we investigated the mechanisms by which the heat-killed mycobacteria in CFA promote Th17 CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1R signaling. Through measurement of Ag-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase-1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule caspase activation and recruitment domain 9 (CARD9) plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C-type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase-1- and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators.", "title": "Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome." }, { "docid": "17671145", "text": "The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.", "title": "ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer" }, { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" }, { "docid": "24338780", "text": "BACKGROUND Interferon-gamma (IFN-gamma) is an essential cytokine in the regulation of inflammatory responses in autoimmune diseases. Little is known about its role in inflammatory heart disease. \n METHODS AND RESULTS We showed that IFN-gamma receptor-deficient mice (IFN-gammaR(-/-)) on a BALB/c background immunized with a peptide derived from cardiac alpha-myosin heavy chain develop severe myocarditis with high mortality. Although myocarditis subsided in wild-type mice after 3 weeks, IFN-gammaR(-/-) mice showed persistent disease. The persistent inflammation was accompanied by vigorous in vitro CD4 T-cell responses and impaired inducible nitric oxide synthase expression, together with evidence of impaired nitric oxide production in IFN-gammaR(-/-) hearts. Treatment of wild-type mice with the nitric oxide synthetase inhibitor N:-nitro-l-arginine-methyl-ester enhanced in vitro CD4 T-cell proliferation and prevented healing of myocarditis. \n CONCLUSIONS Our data provide evidence that IFN-gamma protects mice from lethal autoimmune myocarditis by inducing the expression of inducible nitric oxide synthase followed by the downregulation of T-cell responses.", "title": "Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction." }, { "docid": "10559501", "text": "Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.", "title": "Beta interferon controls West Nile virus infection and pathogenesis in mice." }, { "docid": "28015516", "text": "Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)-induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)-dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid-recognizing antibodies and type I IFN production in this disease.", "title": "Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus." }, { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "11415809", "text": "OBJECTIVES Non-celiac wheat sensitivity (NCWS) is defined as a reaction to ingested wheat after exclusion of celiac disease and wheat allergy. As its pathogenesis is incompletely understood, we evaluated the inflammatory response in the rectal mucosa of patients with well-defined NCWS. \n METHODS The prospective study included 22 patients with irritable bowel syndrome (IBS)-like clinical presentation, diagnosed with NCWS by double-blind placebo-controlled challenge. Eight IBS patients not improving on wheat-free diet were used as controls. Two weeks after oral challenge was performed with 80 grams of wheat daily, cells were isolated from rectal biopsies and thoroughly characterized by fluorescence-activated cell sorting analysis for intracellular cytokines and surface markers. \n RESULTS Rectal biopsies from wheat-challenged NCWS patients showed that a significant mucosal CD45(+) infiltrate consisted of CD3(+) and CD3(-) lymphocytes, with the latter spontaneously producing more interferon (IFN)-γ than IBS controls. About 30% of IFN-γ-producing CD45(+) cells were T-bet(+), CD56(-), NKP44(-), and CD117(-), defining them as a type-1 innate lymphoid cells (ILC1). IFN-γ-producing ILC1 cells significantly decreased in 10 patients analyzed 2 weeks after they resumed a wheat-free diet. \n CONCLUSIONS These data indicate that, in patients with active NCWS, IFN-γ-producing ILC1 cells infiltrate rectal mucosa and support a role for this innate lymphoid cell population in the pathogenesis of NCWS.", "title": "Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet" }, { "docid": "21878751", "text": "CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.", "title": "Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis." }, { "docid": "25988622", "text": "Monocyte-derived macrophages (mo-MΦs) and T cells have been shown to contribute to spinal cord repair. Recently, the remote brain choroid plexus epithelium (CP) was identified as a portal for monocyte recruitment, and its activation for leukocyte trafficking was found to be IFN-γ-dependent. Here, we addressed how the need for effector T cells can be reconciled with the role of inflammation-resolving immune cells in the repair process. Using an acute spinal cord injury model, we show that in mice deficient in IFN-γ-producing T cells, the CP was not activated, and recruitment of inflammation-resolving mo-MΦ to the spinal cord parenchyma was limited. We further demonstrate that mo-MΦ locally regulated recruitment of thymic-derived Foxp3(+) regulatory T (Treg) cells to the injured spinal cord parenchyma at the subacute/chronic phase. Importantly, an ablation protocol that resulted in reduced Tregs at this stage interfered with tissue remodeling, in contrast to Treg transient ablation, restricted to the 4 d period before the injury, which favored repair. The enhanced functional recovery observed following such a controlled decrease of Tregs suggests that reduced systemic immunosuppression at the time of the insult can enhance CNS repair. Overall, our data highlight a dynamic immune cell network needed for repair, acting in discrete compartments and stages, and involving effector and regulatory T cells, interconnected by mo-MΦ. Any of these populations may be detrimental to the repair process if their level or activity become dysregulated. Accordingly, therapeutic interventions must be both temporally and spatially controlled.", "title": "CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles." } ]
787
Microcin J25 encourages nucleoside triphosphate (NTP) binding.
[ { "docid": "4740447", "text": "The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the \"NTP-uptake channel\" or \"pore\"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a \"cork in a bottle. \" Obstruction of the RNAP secondary channel represents an attractive target for drug discovery.", "title": "Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel." } ]
[ { "docid": "4393153", "text": "RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template–product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template–product duplex in the site occupied by the DNA–RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3′ end. Short RNA stem-loops with a 5′ extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.", "title": "Molecular basis of RNA-dependent RNA polymerase II activity" }, { "docid": "25014337", "text": "We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.", "title": "The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs." }, { "docid": "393001", "text": "A human placental soluble \"high Km\" 5'-nucleotidase has been separated from \"low Km\" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.", "title": "High Km soluble 5'-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP." }, { "docid": "21186109", "text": "Low case detection rates of new smear-positive pulmonary tuberculosis (PTB) patients globally are a cause for concern. The aim of this study was to determine for patients registered for TB in Malawi the number and percentage who lived in a neighbouring country and the registration, recording and reporting practices for these 'foreign' patients. All 44 non-private hospitals, which register and treat all TB patients in the public health sector in Malawi, were visited. Ten (23%) hospitals in 2001 and 14 (32%) in 2002 maintained a separate register for cross-border TB cases. Patients recorded in these registers were not formally reported to the Malawi National TB Programme (NTP), the neighbouring country's NTP, nor to WHO. They therefore constitute missing cases. In Malawi, the number of cross-border new smear-positive PTB cases was 77 in 2001 and 91 in 2002, constituting about 3% of missing smear-positive cases in those hospitals that maintain cross-border registers and about 1% of missing cases nationally.", "title": "The missing cases of tuberculosis in Malawi: the contribution from cross-border registrations." }, { "docid": "6426919", "text": "Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.", "title": "A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors." }, { "docid": "15419873", "text": "Retinoic acid inducible-gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5'-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5'-triphosphate-powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5'-triphosphate, and the activation by 5'-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.", "title": "Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA." }, { "docid": "25543207", "text": "Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. The candidates include various blockers of the purinergic P2Y12 receptor such as prasugrel, an oral irreversible thienopyridine; two adenosine triphosphate analogues that bind reversibly to the P2Y12 receptor: ticagrelor (oral) and cangrelor (intravenous); elinogrel, a direct-acting reversible P2Y12 receptor inhibitor (the only antiplatelet compound that can be administered both intravenously and orally); BX 667, an orally active and reversible small-molecule P2Y12 receptor antagonist; SCH 530348, SCH 205831, SCH 602539 and E5555, highly selective and orally active antagonists on the protease-activated receptor 1. A number of drugs also hit new targets: terutroban, an oral, selective and specific inhibitor of the thromboxane receptor; ARC1779, a second-generation, nuclease resistant aptamer which inhibits von Willebrand factor-dependent platelet aggregation; ALX-0081, a bivalent humanized nanobody targeting the GPIb binding site of von Willebrand factor and AJW200, an IgG4 monoclonal antibody of von Willebrand factor. The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.", "title": "Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases." }, { "docid": "4402497", "text": "Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase. RIG-I binds PAMP RNA and signals interferon regulatory factor 3 activation to induce the expression of interferon-α/β and antiviral/interferon-stimulated genes (ISGs) that limit infection. Here we identify the polyuridine motif of the HCV genome 3′ non-translated region and its replication intermediate as the PAMP substrate of RIG-I, and show that this and similar homopolyuridine or homopolyriboadenine motifs present in the genomes of RNA viruses are the chief feature of RIG-I recognition and immune triggering in human and murine cells. 5′ terminal triphosphate on the PAMP RNA was necessary but not sufficient for RIG-I binding, which was primarily dependent on homopolymeric ribonucleotide composition, linear structure and length. The HCV PAMP RNA stimulated RIG-I-dependent signalling to induce a hepatic innate immune response in vivo, and triggered interferon and ISG expression to suppress HCV infection in vitro. These results provide a conceptual advance by defining specific homopolymeric RNA motifs within the genome of HCV and other RNA viruses as the PAMP substrate of RIG-I, and demonstrate immunogenic features of the PAMP–RIG-I interaction that could be used as an immune adjuvant for vaccine and immunotherapy approaches.", "title": "Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA" }, { "docid": "2319305", "text": "Drug resistance-associated mutations in HIV-1 reverse transcriptase (RT) can affect the balance between polymerase and ribonuclease H (RNase H) activities of the enzyme. We have recently demonstrated that the N348I mutation in the connection domain causes selective dissociation from RNase H-competent complexes, whereas the functional integrity of the polymerase-competent complex remains largely unaffected. N348I has been associated with resistance to the non-nucleoside RT inhibitor (NNRTI), nevirapine; however, a possible mechanism that links changes in RNase H activity to changes in NNRTI susceptibility remains to be established. To address this problem, we consider recent findings suggesting that NNRTIs may affect the orientation of RT on its nucleic acid substrate and increase RNase H activity. Here we demonstrate that RNase H-mediated primer removal is indeed more efficient in the presence of NNRTIs; however, the N348I mutant enzyme is able to counteract this effect. Efavirenz, a tight binding inhibitor, restricts the influence of the mutation. These findings provide strong evidence to suggest that N348I can thwart the inhibitory effects of nevirapine during initiation of (+)-strand DNA synthesis, which provides a novel mechanism for resistance. The data are in agreement with clinical data, which demonstrate a stronger effect of N348I on susceptibility to nevirapine as compared with efavirenz.", "title": "N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation." }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "1569031", "text": "The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.", "title": "RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA" }, { "docid": "20996244", "text": "Productive infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile, reverse transcripts. We have previously identified G1b as the cell cycle stage required for the optimal completion of the reverse transcription process in T lymphocytes. However, the mechanism(s) involved in the blockage of reverse transcription remains undefined. In this study we investigated whether nucleotide levels influence viral reverse transcription in G0 cells. For this purpose the role of the enzyme ribonucleotide reductase was bypassed, by adding exogenous deoxyribonucleosides to highly purified T cells in the G0 or the G1a phase of the cell cycle. Our data showed a significant increase in the efficiency of the reverse transcription process following the addition of the deoxyribonucleosides. To define the stability and functionality of these full reverse transcripts, we used an HIV-1 reporter virus that expresses the murine heat-stable antigen on the surfaces of infected cells. Following activation of infected quiescent cells treated with exogenous nucleosides, no increased rescue of productive infection was seen. Thus, in addition to failure to complete reverse transcription, there was an additional nonreversible blockage of productive infection in quiescent T cells. These experiments have important relevance in the gene therapy arena, in terms of improving the ability of lentivirus vectors to enter metabolically inactive cells, such as hematopoietic stem cells.", "title": "Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes." }, { "docid": "34498325", "text": "Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.", "title": "A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast." }, { "docid": "984825", "text": "Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.", "title": "Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells" }, { "docid": "7260461", "text": "The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.", "title": "position-specific gap penalties" }, { "docid": "14806256", "text": "CONTEXT Use of antiretroviral drugs, including protease inhibitors, for treatment of human immunodeficiency virus (HIV) infection has been anecdotally associated with hepatotoxicity, particularly in persons coinfected with hepatitis C or B virus. \n OBJECTIVES To ascertain if incidence of severe hepatotoxicity during antiretroviral therapy is similar for all antiretroviral drug combinations, and to define the role of chronic viral hepatitis in its development. \n DESIGN Prospective cohort study. \n SETTING University-based urban HIV clinic. \n PATIENTS A total of 298 patients who were prescribed new antiretroviral therapies between January 1996 and January 1998, 211 (71%) of whom received protease inhibitors as part of combination therapy (median follow-up, 182 days) and 87 (29%) of whom received dual nucleoside analog regimens (median follow-up, 167 days). Chronic hepatitis C and B virus infection was present in 154 (52%) and 8 (2.7%) patients, respectively. \n MAIN OUTCOME MEASURE Severe hepatotoxicity, defined as a grade 3 or 4 change in levels of serum alanine aminotransferase and aspartate aminotransferase, evaluated before and during therapy. \n RESULTS Severe hepatotoxicity was observed in 31 (10.4%) of 298 patients (95% confidence interval [CI], 7.2%-14.4%). Ritonavir use was associated with a higher incidence of toxicity (30%; 95% CI, 17.9% -44.6%). However, no significant difference was detected in hepatotoxicity incidence in other treatment groups, ie, nucleoside analogs (5.7%; 95% CI, 1.2%-12.9%), nelfinavir (5.9%; 95% CI, 1.2%-16.2%), saquinavir (5.9%; 95% CI, 0.15%-28.7%), and indinavir(6.8%; 95% CI, 3.0%-13.1 %). Although chronicviral hepatitis was associated with an increased risk of severe hepatotoxicity among patients prescribed nonritonavir regimens (relative risk, 3.7; 95% CI, 1.0-11.8), most patients with chronic hepatitis C or B virus infection (88%) did not experience significant toxic effects. Rate of severe toxicity with use of any protease inhibitor in patients with hepatitis C infection was 12.2% (13/107; 95% CI, 6.6%-19.9%). In multivariate logistic regression, only ritonavir (adjusted odds ratio [AOR], 8.6; 95% CI, 3.0-24.6) and a CD4 cell count increase of more than 0.05 x 10(9)/L (AOR, 3.6; 95% CI, 1.0-12.9) were associated with severe hepatotoxicity. No irreversible outcomes were seen in patients with severe hepatotoxicity. \n CONCLUSIONS Our data indicate that use of ritonavir may increase risk of severe hepatotoxicity. Although hepatotoxicity may be more common in persons with chronic viral hepatitis, these data do not support withholding protease inhibitor therapy from persons coinfected with hepatitis B or C virus.", "title": "Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection." }, { "docid": "9881829", "text": "The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.", "title": "ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex." }, { "docid": "20428155", "text": "Various active anticancer agents are derived from plants and terrestrial microorganisms. The isolation of C-nucleosides from the Caribbean sponge, Cryptotheca crypta, four decades ago, provided the basis for the synthesis of cytarabine, the first marine-derived anticancer agent to be developed for clinical use. Cytarabine is currently used in the routine treatment of patients with leukaemia and lymphoma. Gemcitabine, one of its fluorinated derivatives, has also been approved for use in patients with pancreatic, breast, bladder, and non-small-cell lung cancer. Over the past decade, several new experimental anticancer agents derived from marine sources have entered preclinical and clinical trials. This field has expanded significantly as a result of improvements in the technology of deep-sea collection, extraction, and large-scale production through aquaculture and synthesis. In this paper, examples of marine-derived experimental agents that are currently undergoing preclinical and early clinical evaluation are briefly discussed. A summary of the available information on the results of phase I and II trials of agents such as aplidine, ecteinascidin-734 (ET-734), dolastatin 10 and bryostatin 1 is also presented.", "title": "Marine organisms as a source of new anticancer agents." }, { "docid": "641786", "text": "Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.", "title": "Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia" } ]
788
Microcin J25 inhibits nucleoside triphosphate (NTP) binding.
[ { "docid": "4740447", "text": "The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the \"NTP-uptake channel\" or \"pore\"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a \"cork in a bottle. \" Obstruction of the RNAP secondary channel represents an attractive target for drug discovery.", "title": "Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel." } ]
[ { "docid": "4393153", "text": "RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template–product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template–product duplex in the site occupied by the DNA–RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3′ end. Short RNA stem-loops with a 5′ extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.", "title": "Molecular basis of RNA-dependent RNA polymerase II activity" }, { "docid": "25014337", "text": "We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.", "title": "The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs." }, { "docid": "393001", "text": "A human placental soluble \"high Km\" 5'-nucleotidase has been separated from \"low Km\" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.", "title": "High Km soluble 5'-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP." }, { "docid": "25543207", "text": "Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. The candidates include various blockers of the purinergic P2Y12 receptor such as prasugrel, an oral irreversible thienopyridine; two adenosine triphosphate analogues that bind reversibly to the P2Y12 receptor: ticagrelor (oral) and cangrelor (intravenous); elinogrel, a direct-acting reversible P2Y12 receptor inhibitor (the only antiplatelet compound that can be administered both intravenously and orally); BX 667, an orally active and reversible small-molecule P2Y12 receptor antagonist; SCH 530348, SCH 205831, SCH 602539 and E5555, highly selective and orally active antagonists on the protease-activated receptor 1. A number of drugs also hit new targets: terutroban, an oral, selective and specific inhibitor of the thromboxane receptor; ARC1779, a second-generation, nuclease resistant aptamer which inhibits von Willebrand factor-dependent platelet aggregation; ALX-0081, a bivalent humanized nanobody targeting the GPIb binding site of von Willebrand factor and AJW200, an IgG4 monoclonal antibody of von Willebrand factor. The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.", "title": "Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases." }, { "docid": "21186109", "text": "Low case detection rates of new smear-positive pulmonary tuberculosis (PTB) patients globally are a cause for concern. The aim of this study was to determine for patients registered for TB in Malawi the number and percentage who lived in a neighbouring country and the registration, recording and reporting practices for these 'foreign' patients. All 44 non-private hospitals, which register and treat all TB patients in the public health sector in Malawi, were visited. Ten (23%) hospitals in 2001 and 14 (32%) in 2002 maintained a separate register for cross-border TB cases. Patients recorded in these registers were not formally reported to the Malawi National TB Programme (NTP), the neighbouring country's NTP, nor to WHO. They therefore constitute missing cases. In Malawi, the number of cross-border new smear-positive PTB cases was 77 in 2001 and 91 in 2002, constituting about 3% of missing smear-positive cases in those hospitals that maintain cross-border registers and about 1% of missing cases nationally.", "title": "The missing cases of tuberculosis in Malawi: the contribution from cross-border registrations." }, { "docid": "6426919", "text": "Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.", "title": "A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors." }, { "docid": "15419873", "text": "Retinoic acid inducible-gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5'-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5'-triphosphate-powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5'-triphosphate, and the activation by 5'-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.", "title": "Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA." }, { "docid": "4402497", "text": "Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase. RIG-I binds PAMP RNA and signals interferon regulatory factor 3 activation to induce the expression of interferon-α/β and antiviral/interferon-stimulated genes (ISGs) that limit infection. Here we identify the polyuridine motif of the HCV genome 3′ non-translated region and its replication intermediate as the PAMP substrate of RIG-I, and show that this and similar homopolyuridine or homopolyriboadenine motifs present in the genomes of RNA viruses are the chief feature of RIG-I recognition and immune triggering in human and murine cells. 5′ terminal triphosphate on the PAMP RNA was necessary but not sufficient for RIG-I binding, which was primarily dependent on homopolymeric ribonucleotide composition, linear structure and length. The HCV PAMP RNA stimulated RIG-I-dependent signalling to induce a hepatic innate immune response in vivo, and triggered interferon and ISG expression to suppress HCV infection in vitro. These results provide a conceptual advance by defining specific homopolymeric RNA motifs within the genome of HCV and other RNA viruses as the PAMP substrate of RIG-I, and demonstrate immunogenic features of the PAMP–RIG-I interaction that could be used as an immune adjuvant for vaccine and immunotherapy approaches.", "title": "Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA" }, { "docid": "2991954", "text": "Production of Ran-guanosine triphosphate (GTP) around chromosomes induces local nucleation and plus end stabilization of microtubules (MTs). The nuclear protein TPX2 is required for RanGTP-dependent MT nucleation. To find the MT stabilizer, we affinity purify nuclear localization signal (NLS)-containing proteins from Xenopus laevis egg extracts. This NLS protein fraction contains the MT stabilization activity. After further purification, we used mass spectrometry to identify proteins in active fractions, including cyclin-dependent kinase 11 (Cdk11). Cdk11 localizes on spindle poles and MTs in Xenopus culture cells and egg extracts. Recombinant Cdk11 demonstrates RanGTP-dependent MT stabilization activity, whereas a kinase-dead mutant does not. Inactivation of Cdk11 in egg extracts blocks RanGTP-dependent MT stabilization and dramatically decreases the spindle assembly rate. Simultaneous depletion of TPX2 completely inhibits centrosome-dependent spindle assembly. Our results indicate that Cdk11 is responsible for RanGTP-dependent MT stabilization around chromosomes and that this local stabilization is essential for normal rates of spindle assembly and spindle function.", "title": "Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate" }, { "docid": "2319305", "text": "Drug resistance-associated mutations in HIV-1 reverse transcriptase (RT) can affect the balance between polymerase and ribonuclease H (RNase H) activities of the enzyme. We have recently demonstrated that the N348I mutation in the connection domain causes selective dissociation from RNase H-competent complexes, whereas the functional integrity of the polymerase-competent complex remains largely unaffected. N348I has been associated with resistance to the non-nucleoside RT inhibitor (NNRTI), nevirapine; however, a possible mechanism that links changes in RNase H activity to changes in NNRTI susceptibility remains to be established. To address this problem, we consider recent findings suggesting that NNRTIs may affect the orientation of RT on its nucleic acid substrate and increase RNase H activity. Here we demonstrate that RNase H-mediated primer removal is indeed more efficient in the presence of NNRTIs; however, the N348I mutant enzyme is able to counteract this effect. Efavirenz, a tight binding inhibitor, restricts the influence of the mutation. These findings provide strong evidence to suggest that N348I can thwart the inhibitory effects of nevirapine during initiation of (+)-strand DNA synthesis, which provides a novel mechanism for resistance. The data are in agreement with clinical data, which demonstrate a stronger effect of N348I on susceptibility to nevirapine as compared with efavirenz.", "title": "N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation." }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "1569031", "text": "The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.", "title": "RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA" }, { "docid": "20996244", "text": "Productive infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile, reverse transcripts. We have previously identified G1b as the cell cycle stage required for the optimal completion of the reverse transcription process in T lymphocytes. However, the mechanism(s) involved in the blockage of reverse transcription remains undefined. In this study we investigated whether nucleotide levels influence viral reverse transcription in G0 cells. For this purpose the role of the enzyme ribonucleotide reductase was bypassed, by adding exogenous deoxyribonucleosides to highly purified T cells in the G0 or the G1a phase of the cell cycle. Our data showed a significant increase in the efficiency of the reverse transcription process following the addition of the deoxyribonucleosides. To define the stability and functionality of these full reverse transcripts, we used an HIV-1 reporter virus that expresses the murine heat-stable antigen on the surfaces of infected cells. Following activation of infected quiescent cells treated with exogenous nucleosides, no increased rescue of productive infection was seen. Thus, in addition to failure to complete reverse transcription, there was an additional nonreversible blockage of productive infection in quiescent T cells. These experiments have important relevance in the gene therapy arena, in terms of improving the ability of lentivirus vectors to enter metabolically inactive cells, such as hematopoietic stem cells.", "title": "Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes." }, { "docid": "34498325", "text": "Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.", "title": "A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast." }, { "docid": "984825", "text": "Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.", "title": "Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells" }, { "docid": "25251625", "text": "The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.", "title": "Caspase inhibitors promote alternative cell death pathways." }, { "docid": "778436", "text": "The yeast transcriptional activator GAL4 binds specific sites on DNA to activate transcription of adjacent genes1–5. The distinct activating regions of GAL4 are rich in acidic residues and it has been suggested that these regions interact with another protein component of the transcriptional machinery (such as the TATA-binding protein or RNA polymerase II) while the DNA-binding region serves to position the activating region near the gene6,7,8. Here we show that various GAL4 derivatives, when expressed at high levels in yeast, inhibit transcription of certain genes lacking GAL4 binding sites, that more efficient activators inhibit more strongly and that inhibition does not depend on the DNA-binding domain. We suggest that this inhibition, which we call squelching, reflects titration of a transcription factor by the activating region of GAL4.", "title": "Negative effect of the transcriptional activator GAL4" }, { "docid": "14806256", "text": "CONTEXT Use of antiretroviral drugs, including protease inhibitors, for treatment of human immunodeficiency virus (HIV) infection has been anecdotally associated with hepatotoxicity, particularly in persons coinfected with hepatitis C or B virus. \n OBJECTIVES To ascertain if incidence of severe hepatotoxicity during antiretroviral therapy is similar for all antiretroviral drug combinations, and to define the role of chronic viral hepatitis in its development. \n DESIGN Prospective cohort study. \n SETTING University-based urban HIV clinic. \n PATIENTS A total of 298 patients who were prescribed new antiretroviral therapies between January 1996 and January 1998, 211 (71%) of whom received protease inhibitors as part of combination therapy (median follow-up, 182 days) and 87 (29%) of whom received dual nucleoside analog regimens (median follow-up, 167 days). Chronic hepatitis C and B virus infection was present in 154 (52%) and 8 (2.7%) patients, respectively. \n MAIN OUTCOME MEASURE Severe hepatotoxicity, defined as a grade 3 or 4 change in levels of serum alanine aminotransferase and aspartate aminotransferase, evaluated before and during therapy. \n RESULTS Severe hepatotoxicity was observed in 31 (10.4%) of 298 patients (95% confidence interval [CI], 7.2%-14.4%). Ritonavir use was associated with a higher incidence of toxicity (30%; 95% CI, 17.9% -44.6%). However, no significant difference was detected in hepatotoxicity incidence in other treatment groups, ie, nucleoside analogs (5.7%; 95% CI, 1.2%-12.9%), nelfinavir (5.9%; 95% CI, 1.2%-16.2%), saquinavir (5.9%; 95% CI, 0.15%-28.7%), and indinavir(6.8%; 95% CI, 3.0%-13.1 %). Although chronicviral hepatitis was associated with an increased risk of severe hepatotoxicity among patients prescribed nonritonavir regimens (relative risk, 3.7; 95% CI, 1.0-11.8), most patients with chronic hepatitis C or B virus infection (88%) did not experience significant toxic effects. Rate of severe toxicity with use of any protease inhibitor in patients with hepatitis C infection was 12.2% (13/107; 95% CI, 6.6%-19.9%). In multivariate logistic regression, only ritonavir (adjusted odds ratio [AOR], 8.6; 95% CI, 3.0-24.6) and a CD4 cell count increase of more than 0.05 x 10(9)/L (AOR, 3.6; 95% CI, 1.0-12.9) were associated with severe hepatotoxicity. No irreversible outcomes were seen in patients with severe hepatotoxicity. \n CONCLUSIONS Our data indicate that use of ritonavir may increase risk of severe hepatotoxicity. Although hepatotoxicity may be more common in persons with chronic viral hepatitis, these data do not support withholding protease inhibitor therapy from persons coinfected with hepatitis B or C virus.", "title": "Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection." }, { "docid": "8065561", "text": "Fluorometric titration of E. coli single-stranded DNA binding protein with various RNAs showed that the protein specifically and cooperatively binds to its own mRNA. The binding inhibited in vitro expression of ssb and bla but not nusA. This inhibition takes place at a physiological concentration of SSB. The function of the protein in gene regulation is discussed.", "title": "Specific and cooperative binding of E. coli single-stranded DNA binding protein to mRNA." } ]
789
Microglia are an innate immune cell type of the central nervous system.
[ { "docid": "15493354", "text": "Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.", "title": "Sublime Microglia: Expanding Roles for the Guardians of the CNS" } ]
[ { "docid": "15889329", "text": "Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.", "title": "A JOURNAL OF NEUROLOGY" }, { "docid": "17991818", "text": "Some authors claim that microglia originate from the neuroepithelium, although most now believe that microglial cells are of mesodermal origin, and probably belong to the monocyte/macrophage cell line. These cells must enter the developing central nervous system (CNS) from the blood stream, the ventricular space or the meninges. Afterward microglial cells are distributed more or less homogeneously through the entire nervous parenchyma. Stereotyped patterns of migration have been recognized during development, in which long-distance tangential migration precedes radial migration of individual cells. Microglial cells moving through the nervous parenchyma are ameboid microglia, which apparently differentiate into ramified microglia after reaching their definitive location. This is supported by the presence of cells showing intermediate features between those of ameboid and ramified microglia. The factors that control the invasion of the nervous parenchyma, migration within the developing CNS and differentiation of microglial cells are not well known. These phenomena apparently depend on environmental factors such as soluble or cell-surface bound molecules and components of the extracellular matrix. Microglial cells within the developing CNS are involved in clearing cell debris and withdrawing misdirected or transitory axons, and presumably support cell survival and neurite growth.", "title": "THE ORIGIN AND DIFFERENTIATION OF MICROGLIAL CELLS DURING DEVELOPMENT" }, { "docid": "16863359", "text": "Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.", "title": "Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases." }, { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" }, { "docid": "14753395", "text": "Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.", "title": "Structure and function of the blood–brain barrier" }, { "docid": "2506153", "text": "Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.", "title": "Invariant natural killer T cells: bridging innate and adaptive immunity" }, { "docid": "11581157", "text": "The invertebrate's innate immune system was reported to show some form of adaptive features, termed trained immunity. However, the memory characteristics of innate immune system and the mechanisms behind such phenomena remain unclear. Using the invertebrate model Artemia, we verified the possibility or impossibility of trained immunity, examining the presence or absence of enduring memory against homologous and heterologous antigens (Vibrio spp.) during a transgenerational study. We also determined the mechanisms behind such phenomenon. Our results showed the occurrence of memory and partial discrimination in Artemia's immune system, as manifested by increased resistance, for three successive generations, of the progenies of Vibrio-exposed ancestors towards a homologous bacterial strain, rather than to a heterologous strain. This increased resistance phenotype was associated with elevated levels of hsp70 and hmgb1 signaling molecules and alteration in the expression of key innate immunity-related genes. Our results also showed stochastic pattern in the acetylation and methylation levels of H4 and H3K4me3 histones, respectively, in the progenies whose ancestors were challenged. Overall results suggest that innate immune responses in invertebrates have the capacity to be trained, and epigenetic reprogramming of (selected) innate immune effectors is likely to have central place in the mechanisms leading to trained immunity.", "title": "Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system" }, { "docid": "24989194", "text": "The presence of extracellular deposits of beta-amyloid protein in the brain is a hallmark of Alzheimer's disease (AD). In an effort to determine the effect of amyloid in an animal model, the authors injected amyloid cores isolated from AD brains into the cortex and hippocampus of rats. Lipofuscin, a major contaminant of the plaque core preparation, was injected on the contralateral side and used as a control to induce an analogous phagocytic cell response. Rats were sacrificed 2 days, 7 days, and 1 month after injection and amyloid located by four histochemical techniques. Amyloid and lipofuscin move from the site of injection into otherwise undamaged neuropil, persist for at least 1 month and are both associated with increases in glial fibrillary acidic protein and microglia (OX-42) staining. By 1 week, many of the amyloid cores are ingested by phagocytes. Some of the beta-amyloid-containing phagocytes migrate to the vessels and to the ventricles, and by 1 month, a significant amount of the amyloid is directly associated with the vessels. This suggests that phagocytic cells can internalize exogenous amyloid and attempt to clear it from the central nervous system (CNS). Therefore, the observed distribution of amyloid is not necessarily the initial site of deposition.", "title": "Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid." }, { "docid": "19238", "text": "Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled us to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is approximately 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcripts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.", "title": "The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems." }, { "docid": "14893428", "text": "This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.", "title": "In vivo electroporation in the embryonic mouse central nervous system" }, { "docid": "5476778", "text": "One hypothesis that couples infection with autoimmune disease is molecular mimicry. Molecular mimicry is characterized by an immune response to an environmental agent that cross-reacts with a host antigen, resulting in disease. This hypothesis has been implicated in the pathogenesis of diabetes, lupus and multiple sclerosis (MS). There is limited direct evidence linking causative agents with pathogenic immune reactions in these diseases. Our study establishes a clear link between viral infection, autoimmunity and neurological disease in humans. As a model for molecular mimicry, we studied patients with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease that can be indistinguishable from MS (refs. 5,6,7). HAM/TSP patients develop antibodies to neurons. We hypothesized these antibodies would identify a central nervous system (CNS) autoantigen. Immunoglobulin G isolated from HAM/TSP patients identified heterogeneous nuclear ribonuclear protein-A1 (hnRNP-A1) as the autoantigen. Antibodies to hnRNP-A1 cross-reacted with HTLV-1-tax, the immune response to which is associated with HAM/TSP (refs. 5,9). Immunoglobulin G specifically stained human Betz cells, whose axons are preferentially damaged. Infusion of autoantibodies in brain sections inhibited neuronal firing, indicative of their pathogenic nature. These data demonstrate the importance of molecular mimicry between an infecting agent and hnRNP-A1 in autoimmune disease of the CNS.", "title": "Autoimmunity due to molecular mimicry as a cause of neurological disease" }, { "docid": "40312663", "text": "Inflammasome-mediated IL-1beta production is central to the innate immune defects that give rise to certain autoinflammatory diseases and may also be associated with the generation of IL-17-producing CD4(+) T (Th17) cells that mediate autoimmunity. However, the role of the inflammasome in driving adaptive immunity to infection has not been addressed. In this article, we demonstrate that inflammasome-mediated IL-1beta plays a critical role in promoting Ag-specific Th17 cells and in generating protective immunity against Bordetella pertussis infection. Using a murine respiratory challenge model, we demonstrated that the course of B. pertussis infection was significantly exacerbated in IL-1R type I-defective (IL-1RI(-/-)) mice. We found that adenylate cyclase toxin (CyaA), a key virulence factor secreted by B. pertussis, induced robust IL-1beta production by dendritic cells through activation of caspase-1 and the NALP3-containing inflammasome complex. Using mutant toxins, we demonstrate that CyaA-mediated activation of caspase-1 was not dependent on adenylate cyclase enzyme activity but was dependent on the pore-forming capacity of CyaA. In addition, CyaA promoted the induction of Ag-specific Th17 cells in wild-type but not IL-1RI(-/-) mice. Furthermore, the bacterial load was enhanced in IL-17-defective mice. Our findings demonstrate that CyaA, a virulence factor from B. pertussis, promotes innate IL-1beta production via activation of the NALP3 inflammasome and, thereby, polarizes T cell responses toward the Th17 subtype. In addition to its known role in subverting host immunity, our findings suggest that CyaA can promote IL-1beta-mediated Th17 cells, which promote clearance of the bacteria from the respiratory tract.", "title": "Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis." }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "41822527", "text": "Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.", "title": "Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury." }, { "docid": "5519177", "text": "Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.", "title": "Gene regulation in the immune system by long noncoding RNAs" }, { "docid": "2601324", "text": "Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.", "title": "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity" }, { "docid": "22647695", "text": "Autoreactive T cell responses have a crucial role in central nervous system (CNS) diseases such as multiple sclerosis. Recent data indicate that CNS autoimmunity can be mediated by two distinct lineages of CD4+ T cells that are defined by the production of either interferon-γ or interleukin-17. The activity of these CD4+ T cell subsets within the CNS influences the pathology and clinical course of disease. New animal models show that myelin-specific CD8+ T cells can also mediate CNS autoimmunity. This Review focuses on recent progress in delineating the pathogenic mechanisms, regulation and interplay between these different T cell subsets in CNS autoimmunity.", "title": "Autoimmune T cell responses in the central nervous system" } ]
790
Microglia are an innate immune cell type of the peripheral nervous system.
[ { "docid": "15493354", "text": "Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.", "title": "Sublime Microglia: Expanding Roles for the Guardians of the CNS" } ]
[ { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "15889329", "text": "Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.", "title": "A JOURNAL OF NEUROLOGY" }, { "docid": "16863359", "text": "Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.", "title": "Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases." }, { "docid": "17991818", "text": "Some authors claim that microglia originate from the neuroepithelium, although most now believe that microglial cells are of mesodermal origin, and probably belong to the monocyte/macrophage cell line. These cells must enter the developing central nervous system (CNS) from the blood stream, the ventricular space or the meninges. Afterward microglial cells are distributed more or less homogeneously through the entire nervous parenchyma. Stereotyped patterns of migration have been recognized during development, in which long-distance tangential migration precedes radial migration of individual cells. Microglial cells moving through the nervous parenchyma are ameboid microglia, which apparently differentiate into ramified microglia after reaching their definitive location. This is supported by the presence of cells showing intermediate features between those of ameboid and ramified microglia. The factors that control the invasion of the nervous parenchyma, migration within the developing CNS and differentiation of microglial cells are not well known. These phenomena apparently depend on environmental factors such as soluble or cell-surface bound molecules and components of the extracellular matrix. Microglial cells within the developing CNS are involved in clearing cell debris and withdrawing misdirected or transitory axons, and presumably support cell survival and neurite growth.", "title": "THE ORIGIN AND DIFFERENTIATION OF MICROGLIAL CELLS DURING DEVELOPMENT" }, { "docid": "2506153", "text": "Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.", "title": "Invariant natural killer T cells: bridging innate and adaptive immunity" }, { "docid": "20960682", "text": "BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. \n METHODS Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. \n RESULTS GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. \n CONCLUSIONS Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. LAY SUMMARY GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic hepatitis B virus (HBV) infection. GS-9620 has previously been shown to suppress HBV in various animal models, but the underlying antiviral mechanisms were not completely understood. In this study, we determined that GS-9620 does not directly activate antiviral pathways in human liver cells, but can induce prolonged suppression of HBV via induction of an antiviral cytokine called interferon. However, interferon did not destroy the HBV genome, suggesting that other parts of the immune response (e.g. activation of immune cells that kill infected cells) also play an important role in the antiviral response to GS-9620.", "title": "Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism." }, { "docid": "21498497", "text": "Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease.", "title": "TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells" }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" }, { "docid": "20544428", "text": "Recent studies have highlighted the involvement of the peripheral immune system in delayed cellular degeneration after stroke. In the permanent middle cerebral artery occlusion (MCAO) model of stroke, the spleen decreases in size. This reduction occurs through the release of splenic immune cells. Systemic treatment with human umbilical cord blood cells (HUCBC) 24 h post-stroke blocks the reduction in spleen size while significantly reducing infarct volume. Splenectomy 2 weeks prior to MCAO also reduces infarct volume, further demonstrating the detrimental role of this organ in stroke-induced neurodegeneration. Activation of the sympathetic nervous system after MCAO results in elevated catecholamine levels both at the level of the spleen, through direct splenic innervation, and throughout the systemic circulation upon release from the adrenal medulla. These catecholamines bind to splenic alpha and beta adrenoreceptors. This study examines whether catecholamines regulate the splenic response to stroke. Male Sprague-Dawley rats either underwent splenic denervation 2 weeks prior to MCAO or received injections of carvedilol, a pan adrenergic receptor blocker, prazosin, an alpha1 receptor blocker, or propranolol, a beta receptor blocker. Denervation was confirmed by reduced splenic expression of tyrosine hydroxylase. Denervation prior to MCAO did not alter infarct volume or spleen size. Propranolol treatment also had no effects on these outcomes. Treatment with either prazosin or carvedilol prevented the reduction in spleen size, yet only carvedilol significantly reduced infarct volume (p < 0.05). These results demonstrate that circulating blood borne catecholamines regulate the splenic response to stroke through the activation of both alpha and beta adrenergic receptors.", "title": "Blockade of adrenoreceptors inhibits the splenic response to stroke." }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "36618603", "text": "The differentiation in vitro of murine embryonic stem cells to embryoid bodies mimics events that occur in vivo shortly before and after embryonic implantation. We have used this system, together with differential cDNA cloning, to identify genes the expression of which is regulated during early embryogenesis. Here we describe the isolation of several such cDNA clones, one of which corresponds to the gene H19. This gene is activated in extraembryonic cell types at the time of implantation, suggesting that it may play a role at this stage of development, and is subsequently expressed in all of the cells of the mid-gestation embryo with the striking exception of most of those of the developing central and peripheral nervous systems. After birth, expression of this gene ceases or is dramatically reduced in all tissues.", "title": "The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo." }, { "docid": "5519177", "text": "Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.", "title": "Gene regulation in the immune system by long noncoding RNAs" }, { "docid": "14753395", "text": "Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.", "title": "Structure and function of the blood–brain barrier" }, { "docid": "7221410", "text": "The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD.", "title": "Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta" }, { "docid": "17682477", "text": "To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.", "title": "Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation." }, { "docid": "8137081", "text": "Leukocyte trafficking between the various body compartments has an important surveillance function that ensures the detection of antigen and enables the immune system to initiate a rapid and effective response. Repeated social defeat of group-housed male mice induced by daily, acute encounters with an aggressive conspecific substantially altered leukocyte trafficking and led to a gradual redistribution of immune cells in bone marrow, peripheral blood and spleen. Recurrent exposure to the stressor over a period of 2, 4 or 6 consecutive days was associated with cell mobilization and increased myelopoiesis in the bone marrow that was paralleled by an accumulation of neutrophils and monocytes in circulation and spleen. Substantial depletion of B cells in bone marrow and blood was associated with an increase in splenic B cells indicating a redirection of this cell type to the spleen. In contrast, T cells were markedly reduced in these immune compartments. The recruitment of CD11b+ leukocytes (i.e., monocytes/macrophages and neutrophils) from the bone marrow to the spleen might play a critical role in the development of functional glucocorticoid resistance in the murine spleen that was reported in context with repeated social defeat.", "title": "Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen" }, { "docid": "11581157", "text": "The invertebrate's innate immune system was reported to show some form of adaptive features, termed trained immunity. However, the memory characteristics of innate immune system and the mechanisms behind such phenomena remain unclear. Using the invertebrate model Artemia, we verified the possibility or impossibility of trained immunity, examining the presence or absence of enduring memory against homologous and heterologous antigens (Vibrio spp.) during a transgenerational study. We also determined the mechanisms behind such phenomenon. Our results showed the occurrence of memory and partial discrimination in Artemia's immune system, as manifested by increased resistance, for three successive generations, of the progenies of Vibrio-exposed ancestors towards a homologous bacterial strain, rather than to a heterologous strain. This increased resistance phenotype was associated with elevated levels of hsp70 and hmgb1 signaling molecules and alteration in the expression of key innate immunity-related genes. Our results also showed stochastic pattern in the acetylation and methylation levels of H4 and H3K4me3 histones, respectively, in the progenies whose ancestors were challenged. Overall results suggest that innate immune responses in invertebrates have the capacity to be trained, and epigenetic reprogramming of (selected) innate immune effectors is likely to have central place in the mechanisms leading to trained immunity.", "title": "Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system" } ]
791
Migraine with aura is associated with ischemic stroke.
[ { "docid": "15984735", "text": "OBJECTIVE To evaluate the association between migraine and cardiovascular disease, including stroke, myocardial infarction, and death due to cardiovascular disease. \n DESIGN Systematic review and meta-analysis. \n DATA SOURCES Electronic databases (PubMed, Embase, Cochrane Library) and reference lists of included studies and reviews published until January 2009. Selection criteria Case-control and cohort studies investigating the association between any migraine or specific migraine subtypes and cardiovascular disease. Review methods Two investigators independently assessed eligibility of identified studies in a two step approach. Disagreements were resolved by consensus. Studies were grouped according to a priori categories on migraine and cardiovascular disease. \n DATA EXTRACTION Two investigators extracted data. Pooled relative risks and 95% confidence intervals were calculated. \n RESULTS Studies were heterogeneous for participant characteristics and definition of cardiovascular disease. Nine studies investigated the association between any migraine and ischaemic stroke (pooled relative risk 1.73, 95% confidence interval 1.31 to 2.29). Additional analyses indicated a significantly higher risk among people who had migraine with aura (2.16, 1.53 to 3.03) compared with people who had migraine without aura (1.23, 0.90 to 1.69; meta-regression for aura status P=0.02). Furthermore, results suggested a greater risk among women (2.08, 1.13 to 3.84) compared with men (1.37, 0.89 to 2.11). Age less than 45 years, smoking, and oral contraceptive use further increased the risk. Eight studies investigated the association between migraine and myocardial infarction (1.12, 0.95 to 1.32) and five between migraine and death due to cardiovascular disease (1.03, 0.79 to 1.34). Only one study investigated the association between women who had migraine with aura and myocardial infarction and death due to cardiovascular disease, showing a twofold increased risk. \n CONCLUSION Migraine is associated with a twofold increased risk of ischaemic stroke, which is only apparent among people who have migraine with aura. Our results also suggest a higher risk among women and risk was further magnified for people with migraine who were aged less than 45, smokers, and women who used oral contraceptives. We did not find an overall association between any migraine and myocardial infarction or death due to cardiovascular disease. Too few studies are available to reliably evaluate the impact of modifying factors, such as migraine aura, on these associations.", "title": "Migraine and cardiovascular disease: systematic review and meta-analysis." } ]
[ { "docid": "23785605", "text": "BACKGROUND Migraine, particularly with aura, is a risk factor for early-onset ischemic stroke. The underlying mechanisms are unknown, but may in part be due to migraineurs having an increased risk profile for cardiovascular disease. In this study, the authors compare the cardiovascular risk profile of adult migraineurs to that of nonmigraineurs. \n METHODS Participants (n = 5,755, 48% men, age 20 to 65 years) are from the Genetic Epidemiology of Migraine (GEM) study, a population-based study in the Netherlands. A total of 620 current migraineurs were identified: 31% with aura (MA), 64% without aura (MO), and 5% unclassified. Controls were 5,135 individuals without lifetime migraine. Measured cardiovascular risk factors included blood pressure (BP), serum total and high-density lipoprotein cholesterol (TC, HDL), smoking, oral contraceptive use, and the Framingham risk score for myocardial infarction or coronary heart disease (CHD) death. \n RESULTS Compared to controls, migraineurs were more likely to smoke (OR = 1.43 [1.1 to 1.8]), less likely to consume alcohol (OR = 0.58 [0.5 to 0.7]), and more likely to report a parental history of early myocardial infarction. Migraineurs with aura were more likely to have an unfavorable cholesterol profile (TC > or = 240 mg/dL [OR = 1.43 (0.97 to 2.1)], TC:HDL ratio > 5.0 [OR = 1.64 (1.1 to 2.4)]), have elevated BP (systolic BP > 140 mm Hg or diastolic BP > 90 mm Hg [OR = 1.76 (1.04 to 3.0)]), and report a history of early onset CHD or stroke (OR = 3.96 [1.1 to 14.3]); female migraineurs with aura were more likely to be using oral contraceptives (OR = 2.06 [1.05 to 4.0]). The odds of having an elevated Framingham risk score for CHD were approximately doubled for the migraineurs with aura. \n CONCLUSIONS Migraineurs, particularly with aura, have a higher cardiovascular risk profile than individuals without migraine.", "title": "Cardiovascular risk factors and migraine: the GEM population-based study." }, { "docid": "14566771", "text": "The relationship of migraine and stroke is complex. Stroke may be coincidental with migraine but migraine may confer an increased risk of stroke in women under 45 years of age and possibly in men who have migraine with aura. Stroke may mimic migraine but migraine syndromes may be symptomatic of underlying cerebrovascular disorders. True migraine-induced stroke is rare. The mechanisms of stroke induced during a migraine attack remain to be determined but probably involve an interaction between the dynamic shifts in cerebral blood flow and stroke risk factors.", "title": "Stroke and migraine--the spectrum of cause and effect." }, { "docid": "8672737", "text": "BACKGROUND AND PURPOSE Migraineurs are at increased risk of cerebellar infarcts and supratentorial white matter lesions. The prevalence, frequency, and distribution of infratentorial hyperintense lesions in migraine are unknown. \n METHODS Migraineurs with aura (n=161), without aura (n=134), and controls (n=140) from a population-based sample of adults (30 to 60 years of age) were evaluated with MRI. \n RESULTS Infratentorial hyperintensities were identified in 13 of 295 (4.4%) migraineurs and in 1 of 140 (0.7%) controls (P=0.04). Twelve cases had hyperintensities, mostly bilaterally, in the dorsal basis pontis. Those with infratentorial hyperintensities also had supratentorial white matter lesions more often. \n CONCLUSIONS We found an increased prevalence of infratentorial (mostly pontine) hyperintensities in migraineurs from the general population. This extends the knowledge about vulnerable brain regions and type of lesions in migraine brains. A hemodynamic ischemic pathogenesis is likely, but further research is needed.", "title": "Brain stem and cerebellar hyperintense lesions in migraine." }, { "docid": "14726759", "text": "BACKGROUND AND PURPOSE There are only few small studies assessing potential risk factors, comorbidity, and prognostic factors in adult spontaneous cervicocerebral artery dissection (CAD). \n METHODS We conducted a retrospective, hospital-based analysis on the prognostic factors and association of CAD with vascular risk factors in 301 consecutive Finnish patients, diagnosed from 1994 to 2007. \n RESULTS Two thirds of the patients were men (68%). Women were younger than men. Migraine (36% of all patients), especially with visual aura (63% of all migraineurs), and smoking were more common in patients with CAD compared with the general Finnish population. At 3 months, 247 (83%) patients reached a favorable outcome. Occlusion of the dissected artery, internal carotid artery dissection (ICAD), and recent infection in infarction patients were associated with a poorer outcome. ICAD patients had less often brain infarction, but the strokes they had were more severe. Seven (2.3%) patients died during the follow-up (mean 4.0 years, 1186 patient years). Six (2%) patients had verified CAD recurrence. \n CONCLUSIONS This study provides evidence for the association of CAD with male sex, and possible association with smoking and migraine. Occlusion of the dissected artery, ICAD, and infection appear to be associated with poorer outcome.", "title": "Adult cervicocerebral artery dissection: a single-center study of 301 Finnish patients." }, { "docid": "38369817", "text": "BACKGROUND Transcranial contrast Doppler studies have shown an increased prevalence of right-to-left shunts in patients with migraine with aura compared with controls. The anatomy and size of these right-to-left shunts have never been directly assessed. \n METHODS In a cross-sectional case-control study, the authors performed transesophageal contrast echocardiography in 93 consecutive patients with migraine with aura and 93 healthy controls. \n RESULTS A patent foramen ovale was present in 44 (47% [95% CI 37 to 58%]) patients with migraine with aura and 16 (17% [95% CI 10 to 26%]) control subjects (OR 4.56 [95% CI 1.97 to 10.57]; p < 0.001). A small shunt was equally prevalent in migraineurs (10% [95% CI 5 to 18%]) and controls (10% [95% CI 5 to 18%]), but a moderate-sized or large shunt was found more often in the migraine group (38% [95% CI 28 to 48%] vs 8% [95% CI 2 to 13%] in controls; p < 0.001). The presence of more than a small shunt increased the odds of having migraine with aura 7.78-fold (95% CI 2.53 to 29.30; p < 0.001). Besides patent foramen ovale prevalence and shunt size, no other echocardiographic differences were found between the study groups. Headache and baseline characteristics did not differ in migraine patients with and without shunt. \n CONCLUSIONS Nearly half of all patients with migraine with aura have a right-to-left shunt due to a patent foramen ovale. Shunt size is larger in migraineurs than controls. The clinical presentation of migraine is identical in patients with and without a patent foramen ovale.", "title": "Prevalence and size of directly detected patent foramen ovale in migraine with aura." }, { "docid": "17930286", "text": "OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. \n DESIGN Population based, cross sectional study. \n SETTING Epidemiology of Vascular Ageing study, Nantes, France. \n PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. \n MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. \n RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. \n CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking.", "title": "Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study" }, { "docid": "24148722", "text": "OBJECTIVE The aim of this study was to investigate the possible microstructural abnormalities of the corpus callosum (CC) in adult patients with migraine without aura complicated with depressive/anxious disorder. \n BACKGROUND Emotional disorders, especially depression and anxiety, are with relatively higher incidence in migraine population. However, the mechanism of migraine complicated with depressive/anxious disorder remains unclear. \n METHODS Diffusion tensor magnetic resonance imaging was carried out in 12 adult patients with simple migraine (without aura and without depressive/anxious disorder) (S-M group), 12 adult patients with complicated migraine (without aura but complicated with depressive/anxious disorder) (Co-M group), and 12 age- and sex-matched healthy subjects (Control group). Fractional anisotropy (FA) and apparent diffusion coefficient were measured at genu, body, and splenium of the CC, respectively. \n RESULTS There were significant differences in FA values at all locations of the CC among the 3 groups. The FA values from both the SM and Co-M groups were significantly lower than the control (P < .05 and P < .01, respectively). The FA values from Co-M group were significantly lower than the SM group (P < .01). The apparent diffusion coefficient values of the above regions had no significant differences among these groups (P > .05). There were negative correlations between FA value of genu of the CC and disease course as well as FA value of genu and body of the CC and headache frequency (P < .05). Negative correlations were also found between FA values at all locations of the CC and Hamilton anxiety and Hamilton depression scores (both P < .05). \n CONCLUSIONS There might be an integrity change of neurofibrotic microstructures existing as a possible neuroanatomical basis in the CC of migraine patients complicated with depressive/anxious disorder.", "title": "A diffusion tensor magnetic resonance imaging study of corpus callosum from adult patients with migraine complicated with depressive/anxious disorder." }, { "docid": "23627419", "text": "RATIONALE Although obstructive sleep apnea is associated with physiological perturbations that increase risk of hypertension and are proatherogenic, it is uncertain whether sleep apnea is associated with increased stroke risk in the general population. \n OBJECTIVES To quantify the incidence of ischemic stroke with sleep apnea in a community-based sample of men and women across a wide range of sleep apnea. \n METHODS Baseline polysomnography was performed between 1995 and 1998 in a longitudinal cohort study. The primary exposure was the obstructive apnea-hypopnea index (OAHI) and outcome was incident ischemic stroke. \n MEASUREMENTS AND MAIN RESULTS A total of 5,422 participants without a history of stroke at the baseline examination and untreated for sleep apnea were followed for a median of 8.7 years. One hundred ninety-three ischemic strokes were observed. In covariate-adjusted Cox proportional hazard models, a significant positive association between ischemic stroke and OAHI was observed in men (P value for linear trend: P = 0.016). Men in the highest OAHI quartile (>19) had an adjusted hazard ratio of 2.86 (95% confidence interval, 1.1-7.4). In the mild to moderate range (OAHI, 5-25), each one-unit increase in OAHI in men was estimated to increase stroke risk by 6% (95% confidence interval, 2-10%). In women, stroke was not significantly associated with OAHI quartiles, but increased risk was observed at an OAHI greater than 25. \n CONCLUSIONS The strong adjusted association between ischemic stroke and OAHI in community-dwelling men with mild to moderate sleep apnea suggests that this is an appropriate target for future stroke prevention trials.", "title": "Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study." }, { "docid": "37065914", "text": "BACKGROUND AND PURPOSE Soluble corin was decreased in coronary heart disease. Given the connections between cardiac dysfunction and stroke, circulating corin might be a candidate marker of stroke risk. However, the association between circulating corin and stroke has not yet been studied in humans. Here, we aimed to examine the association in patients wtith stroke and community-based healthy controls. \n METHODS Four hundred eighty-one patients with ischemic stroke, 116 patients with hemorrhagic stroke, and 2498 healthy controls were studied. Serum soluble corin and some conventional risk factors of stroke were examined. Because circulating corin was reported to be varied between men and women, the association between serum soluble corin and stroke was evaluated in men and women, respectively. \n RESULTS Patients with ischemic and hemorrhagic stroke had a significantly lower level of serum soluble corin than healthy controls in men and women (all P values, <0.05). In multivariate analysis, men in the lowest quartile of serum soluble corin were more likely to have ischemic (odds ratio [OR], 4.90; 95% confidence interval, 2.99-8.03) and hemorrhagic (OR, 17.57; 95% confidence interval, 4.85-63.71) stroke than men in the highest quartile. Women in the lowest quartile of serum soluble corin were also more likely to have ischemic (OR, 3.10; 95% confidence interval, 1.76-5.44) and hemorrhagic (OR, 8.54; 95% confidence interval, 2.35-31.02) stroke than women in the highest quartile. ORs of ischemic and hemorrhagic stroke were significantly increased with the decreasing levels of serum soluble corin in men and women (all P values for trend, <0.001). \n CONCLUSIONS Serum soluble corin was decreased in patients with stroke compared with healthy controls. Our findings raise the possibility that serum soluble corin may have a pathogenic role in stroke.", "title": "Serum Soluble Corin is Decreased in Stroke." }, { "docid": "39390206", "text": "OBJECTIVE To measure in vivo, using diffusion tensor magnetic resonance imaging (DT-MRI) the extent of pathological damage of normal appearing brain tissue (NABT) from patients with migraine. \n METHODS Dual echo and DT-MRI scans of the brain were acquired from 34 patients with migraine and 17 sex and age matched healthy volunteers. Mean diffusivity (MD) and fractional anisotropy (FA) histograms of the NABT were obtained from all subjects and the histograms' peak heights and average NABT MD and FA measured. When present, average MD and FA values of T2 visible lesions were also measured. \n RESULTS In comparison with healthy volunteers, patients with migraine had lower MD histogram peak height (p=0.02) of the NABT. No differences were found in FA histogram derived metrics between migraine patients and healthy subjects. No difference was found for any MD and FA histogram derived metrics between migraine patients with and without brain MRI lesions, and between patients with and without aura. \n CONCLUSIONS This study shows that, although brain damage may extend beyond T2 weighted abnormalities in patients with migraine, the severity of these \"occult\" changes is mild compared with that found in other diseases associated with white matter abnormality.", "title": "A diffusion tensor magnetic resonance imaging study of brain tissue from patients with migraine." }, { "docid": "32328114", "text": "Stroke ranks as the third leading cause of death in the United States. It is now estimated that there are more than 700 000 incident strokes annually and 4.4 million stroke survivors.1 2 The economic burden of stroke was estimated by the American Heart Association to be $51 billion (direct and indirect costs) in 1999.3 Despite the advent of treatment of selected patients with acute ischemic stroke with tissue plasminogen activator and the promise of other experimental therapies, the best approach to reducing the burden of stroke remains prevention.4 5 High-risk or stroke-prone individuals can be identified and targeted for specific interventions.6 This is important because epidemiological data suggest a substantial leveling off of prior declines in stroke-related mortality and a possible increase in stroke incidence.7 8 The Stroke Council of the American Heart Association formed an ad hoc writing group to provide a clear and concise overview of the evidence regarding various established and potential stroke risk factors. The writing group was chosen based on expertise in specific subject areas, and it used literature review, reference to previously published guidelines, and expert opinion to summarize existing evidence and formulate recommendations (Table 1⇓). View this table: Table 1. Levels of Evidence and Grading of Recommendations As given in Tables 2 through 4⇓⇓⇓, risk factors or risk markers for a first stroke were classified according to potential for modification (nonmodifiable, modifiable, or potentially modifiable) and strength of evidence (well documented, less well documented).5 The tables give the estimated prevalence, population attributable risk, relative risk, and risk reduction with treatment for each factor when known. Population attributable risk reflects the proportion of ischemic strokes in the population that can be attributed to a particular risk factor and is given by the formula 100×[prevalence(relative risk−1)/prevalence(relative risk−1)+1]). …", "title": "Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association." }, { "docid": "43647194", "text": "The availability of valid migraine-specific questionnaires is important when large numbers of migraine patients have to be analysed. The Finnish Migraine-Specific Questionnaire has been validated in two stages. In the first, a clinical diagnosis of migraine was reached, using International Headache Society criteria, in 100 consecutive patients. Migraine was then diagnosed independently on the basis of responses to the Finnish Migraine-Specific Questionnaire. In the second stage, responses to 100 questionnaires returned consecutively in a family study in progress were analysed, and respondents were contacted by telephone for interview and diagnosis of migraine. Contact proved impossible in six cases. The sensitivity of the questionnaire for migraine was 0.99 (167 out of 168; validation stages 1 and 2 combined) and specificity was 0.96 (25 out of 26 cases; validation stage 2). It also proved possible to differentiate between migraine with and without aura on the basis of responses to the Finnish Migraine-Specific Questionnaire: chance-corrected agreement (Cohen's kappa) was 0.804 in relation to diagnoses reached on the basis of responses to the Finnish Migraine-Specific Questionnaire and clinically was 0.858 in relation to diagnoses reached on the basis of responses to the Finnish Migraine-Specific Questionnaire combined with the results of the telephone interviews. A value for Cohen's kappa > 0.75 indicates good agreement. Therefore, use of the Finnish Migraine-Specific Questionnaire in research into migraine genetics is justified.", "title": "Validation of a migraine-specific questionnaire for use in family studies." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "21571708", "text": "CONTEXT Circulating concentration of lipoprotein(a) (Lp[a]), a large glycoprotein attached to a low-density lipoprotein-like particle, may be associated with risk of coronary heart disease (CHD) and stroke. \n OBJECTIVE To assess the relationship of Lp(a) concentration with risk of major vascular and nonvascular outcomes. STUDY SELECTION Long-term prospective studies that recorded Lp(a) concentration and subsequent major vascular morbidity and/or cause-specific mortality published between January 1970 and March 2009 were identified through electronic searches of MEDLINE and other databases, manual searches of reference lists, and discussion with collaborators. \n DATA EXTRACTION Individual records were provided for each of 126,634 participants in 36 prospective studies. During 1.3 million person-years of follow-up, 22,076 first-ever fatal or nonfatal vascular disease outcomes or nonvascular deaths were recorded, including 9336 CHD outcomes, 1903 ischemic strokes, 338 hemorrhagic strokes, 751 unclassified strokes, 1091 other vascular deaths, 8114 nonvascular deaths, and 242 deaths of unknown cause. Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. Analyses excluded participants with known preexisting CHD or stroke at baseline. \n DATA SYNTHESIS Lipoprotein(a) concentration was weakly correlated with several conventional vascular risk factors and it was highly consistent within individuals over several years. Associations of Lp(a) with CHD risk were broadly continuous in shape. In the 24 cohort studies, the rates of CHD in the top and bottom thirds of baseline Lp(a) distributions, respectively, were 5.6 (95% confidence interval [CI], 5.4-5.9) per 1000 person-years and 4.4 (95% CI, 4.2-4.6) per 1000 person-years. The risk ratio for CHD, adjusted for age and sex only, was 1.16 (95% CI, 1.11-1.22) per 3.5-fold higher usual Lp(a) concentration (ie, per 1 SD), and it was 1.13 (95% CI, 1.09-1.18) following further adjustment for lipids and other conventional risk factors. The corresponding adjusted risk ratios were 1.10 (95% CI, 1.02-1.18) for ischemic stroke, 1.01 (95% CI, 0.98-1.05) for the aggregate of nonvascular mortality, 1.00 (95% CI, 0.97-1.04) for cancer deaths, and 1.00 (95% CI, 0.95-1.06) for nonvascular deaths other than cancer. \n CONCLUSION Under a wide range of circumstances, there are continuous, independent, and modest associations of Lp(a) concentration with risk of CHD and stroke that appear exclusive to vascular outcomes.", "title": "Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality." }, { "docid": "24510595", "text": "PURPOSE Patients with daily or near-daily headaches are commonly seen in neurology practices and in headache subspecialty centers, but there is little information on the prevalence of this condition in the general population. We present the first US-based study describing the prevalence and characteristics of frequent headache in the general population. \n METHODS In Baltimore County, Maryland, 13 343 individuals 18 to 65 years of age were selected by random-digit dialing and interviewed by telephone about their headaches. Subjects reporting 180 or more headaches per year were classified as having frequent headache. Three mutually exclusive subtypes of frequent headache were identified: frequent headache with migrainous features, chronic tension-type headache, and unclassified frequent headache. \n RESULTS The overall prevalence of frequent headache was 4.1% (5.0% female, 2.8% male; 1.8:1 female to male ratio). Frequent headache was 33% more common in Caucasians (4.4%) than in African Americans (3.3%). In both males and females, prevalence was highest in the lowest educational category. Among frequent headache sufferers, more than half (52% female, 56% male) met criteria for chronic tension-type headache, almost one third (33% female, 25% male) met criteria for frequent headache with migrainous features, and the remainder (15% female, 19% male) were unclassified. Overall, 30% of female and 25% of male frequent headache sufferers met International Headache Society (IHS) criteria for migraine (with or without aura). \n CONCLUSIONS Frequent headache is common in the general population and is more prevalent in Caucasians and in those with less than a high school education. Chronic tension-type headache is more common than frequent headache with migrainous features, though the latter is more disabling. Although more common in females than males, the female preponderance of frequent headache is less marked than in migraine. The sex ratio varies by frequent headache subtype.", "title": "Prevalence of frequent headache in a population sample." }, { "docid": "16760369", "text": "CONTEXT Clinicians and trialists have difficulty with identifying which patients are highest risk for cardiovascular events. Prior ischemic events, polyvascular disease, and diabetes mellitus have all been identified as predictors of ischemic events, but their comparative contributions to future risk remain unclear. \n OBJECTIVE To categorize the risk of cardiovascular events in stable outpatients with various initial manifestations of atherothrombosis using simple clinical descriptors. \n DESIGN, SETTING, AND PATIENTS Outpatients with coronary artery disease, cerebrovascular disease, or peripheral arterial disease or with multiple risk factors for atherothrombosis were enrolled in the global Reduction of Atherothrombosis for Continued Health (REACH) Registry and were followed up for as long as 4 years. Patients from 3647 centers in 29 countries were enrolled between 2003 and 2004 and followed up until 2008. Final database lock was in April 2009. \n MAIN OUTCOME MEASURES Rates of cardiovascular death, myocardial infarction, and stroke. \n RESULTS A total of 45,227 patients with baseline data were included in this 4-year analysis. During the follow-up period, a total of 5481 patients experienced at least 1 event, including 2315 with cardiovascular death, 1228 with myocardial infarction, 1898 with stroke, and 40 with both a myocardial infarction and stroke on the same day. Among patients with atherothrombosis, those with a prior history of ischemic events at baseline (n = 21,890) had the highest rate of subsequent ischemic events (18.3%; 95% confidence interval [CI], 17.4%-19.1%); patients with stable coronary, cerebrovascular, or peripheral artery disease (n = 15,264) had a lower risk (12.2%; 95% CI, 11.4%-12.9%); and patients without established atherothrombosis but with risk factors only (n = 8073) had the lowest risk (9.1%; 95% CI, 8.3%-9.9%) (P < .001 for all comparisons). In addition, in multivariable modeling, the presence of diabetes (hazard ratio [HR], 1.44; 95% CI, 1.36-1.53; P < .001), an ischemic event in the previous year (HR, 1.71; 95% CI, 1.57-1.85; P < .001), and polyvascular disease (HR, 1.99; 95% CI, 1.78-2.24; P < .001) each were associated with a significantly higher risk of the primary end point. \n CONCLUSION Clinical descriptors can assist clinicians in identifying high-risk patients within the broad range of risk for outpatients with atherothrombosis.", "title": "Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis." }, { "docid": "3761017", "text": "BACKGROUND Metformin, a widely used hypoglycemic drug, reduces stroke incidence and alleviates chronic inflammation in clinical trials. However, the effect of metformin in ischemic stroke is unclear. Here, we investigated the effect of metformin on ischemic stroke in mice and further explored the possible underlying mechanisms. \n METHODS Ninety-eight adult male CD-1 mice underwent 90-minute transient middle cerebral artery occlusion (tMCAO). Metformin (200 mg/kg) was administrated for up to 14 days. Neurobehavioral outcomes, brain infarct volume, inflammatory factors, blood-brain barrier (BBB) permeability and AMPK signaling pathways were evaluated following tMCAO. Oxygen glucose deprivation was performed on bEND.3 cells to explore the mechanisms of metformin in inhibiting inflammatory signaling pathways. \n RESULTS Infarct volume was reduced in metformin-treated mice compared to the control group following tMCAO (P < 0.05). Neurobehavioral outcomes were greatly improved in metformin-treated mice (P < 0.05). MPO+ cells, Gr1+ cells, MPO activity and BBB permeability were decreased after metformin administration (P < 0.05). In addition, metformin activated AMPK phosphorylation, inhibited NF-κB activation, down-regulated cytokine (IL-1β, IL-6, TNF-α) and ICAM-1 expression following tMCAO (P < 0.05). Furthermore, metformin activated AMPK signaling pathway and alleviated oxygen-glucose deprivation-induced ICAM-1 expression in bEND.3 cells (P < 0.05). Compound C, a selective AMPK inhibitor, eliminated this promotional effect. \n CONCLUSIONS Metformin down-regulated ICAM-1 in an AMPK-dependent manner, which could effectively prevent ischemia-induced brain injury by alleviating neutrophil infiltration, suggesting that metformin is a promising therapeutic agent in stroke therapy.", "title": "Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion" }, { "docid": "7157436", "text": "In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.", "title": "Neuronal replacement from endogenous precursors in the adult brain after stroke" }, { "docid": "23983289", "text": "OBJECTIVES We sought to determine which ICD-9-CM codes in Medicare Part A data identify cardiovascular and stroke risk factors. \n DESIGN AND PARTICIPANTS This was a cross-sectional study comparing ICD-9-CM data to structured medical record review from 23,657 Medicare beneficiaries aged 20 to 105 years who had atrial fibrillation. \n MEASUREMENTS Quality improvement organizations used standardized abstraction instruments to determine the presence of 9 cardiovascular and stroke risk factors. Using the chart abstractions as the gold standard, we assessed the accuracy of ICD-9-CM codes to identify these risk factors. \n MAIN RESULTS ICD-9-CM codes for all risk factors had high specificity (>0.95) and low sensitivity (< or =0.76). The positive predictive values were greater than 0.95 for 5 common, chronic risk factors-coronary artery disease, stroke/transient ischemic attack, heart failure, diabetes, and hypertension. The sixth common risk factor, valvular heart disease, had a positive predictive value of 0.93. For all 6 common risk factors, negative predictive values ranged from 0.52 to 0.91. The rare risk factors-arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis-had high negative predictive value (> or =0.98) but moderate positive predictive values (range, 0.54-0.77) in this population. \n CONCLUSIONS Using ICD-9-CM codes alone, heart failure, coronary artery disease, diabetes, hypertension, and stroke can be ruled in but not necessarily ruled out. Where feasible, review of additional data (eg, physician notes or imaging studies) should be used to confirm the diagnosis of valvular disease, arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis.", "title": "Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors." } ]
792
Misunderstandings between doctors and patients can lead to non-adherence.
[ { "docid": "3610080", "text": "OBJECTIVES To identify and describe misunderstandings between patients and doctors associated with prescribing decisions in general practice. \n DESIGN Qualitative study. \n SETTING 20 general practices in the West Midlands and south east England. \n PARTICIPANTS 20 general practitioners and 35 consulting patients. \n MAIN OUTCOME MEASURES Misunderstandings between patients and doctors that have potential or actual adverse consequences for taking medicine. \n RESULTS 14 categories of misunderstanding were identified relating to patient information unknown to the doctor, doctor information unknown to the patient, conflicting information, disagreement about attribution of side effects, failure of communication about doctor's decision, and relationship factors. All the misunderstandings were associated with lack of patients' participation in the consultation in terms of the voicing of expectations and preferences or the voicing of responses to doctors' decisions and actions. They were all associated with potential or actual adverse outcomes such as non-adherence to treatment. Many were based on inaccurate guesses and assumptions. In particular doctors seemed unaware of the relevance of patients' ideas about medicines for successful prescribing. \n CONCLUSIONS Patients' participation in the consultation and the adverse consequences of lack of participation are important. The authors are developing an educational intervention that builds on these findings.", "title": "Misunderstandings in prescribing decisions in general practice: qualitative study." } ]
[ { "docid": "13914633", "text": "BACKGROUND HIV and tuberculosis (TB) services are provided free of charge in many sub-Saharan African countries, but patients still incur costs. \n METHODS Patient-exit interviews were conducted in primary health care clinics in rural South Africa with representative samples of 200 HIV-infected patients enrolled in a pre-antiretroviral treatment (pre-ART) program, 300 patients receiving antiretroviral treatment (ART), and 300 patients receiving TB treatment. For each group, we calculated health expenditures across different spending categories, time spent traveling to and using services, and how patients financed their spending. Associations between patient group and costs were assessed in multivariate regression models. \n RESULTS Total monthly health expenditures [1 USD = 7.3 South African Rand (ZAR)] were ZAR 171 [95% confidence interval (CI): 134 to 207] for pre-ART, ZAR 164 (95% CI: 141 to 187) for ART, and ZAR 122 (95% CI: 105 to 140) for TB patients (P = 0.01). Total monthly time costs (in hours) were 3.4 (95% CI: 3.3 to 3.5) for pre-ART, 5.0 (95% CI: 4.7 to 5.3) for ART, and 3.2 (95% CI: 2.9 to 3.4) for TB patients (P < 0.01). Although overall patient costs were similar across groups, pre-ART patients spent on average ZAR 29.2 more on traditional healers and ZAR 25.9 more on chemists and private doctors than ART patients, whereas ART patients spent ZAR 34.0 more than pre-ART patients on transport to clinics (P < 0.05 for all results). Thirty-one percent of pre-ART, 39% of ART, and 41% of TB patients borrowed money or sold assets to finance health care. \n CONCLUSIONS Patients receiving nominally free care for HIV/TB face large private costs, commonly leading to financial distress. Subsidized transport, fewer clinic visits, and drug pick-up points closer to home could reduce costs for ART patients, potentially improving retention and adherence. Large expenditure on alternative care among pre-ART patients suggests that transitioning patients to ART earlier, as under HIV treatment-as-prevention policies, may not substantially increase patients' financial burden.", "title": "Time and Money: The True Costs of Health Care Utilization for Patients Receiving \"Free\" HIV/Tuberculosis Care and Treatment in Rural KwaZulu-Natal." }, { "docid": "17779800", "text": "OBJECTIVE To explore how a group of Swedish general practitioners (GPs) manage patients with a sore throat in relation to current guidelines as expressed in interviews. \n DESIGN Qualitative content analysis was used to analyse semi-structured interviews. \n SETTING Swedish primary care. SUBJECTS A strategic sample of 25 GPs. \n MAIN OUTCOME MEASURES Perceived management of sore throat patients. \n RESULTS It was found that nine of the interviewed GPs were adherent to current guidelines for sore throat and 16 were non-adherent. The two groups differed in terms of guideline knowledge, which was shared within the team for adherent GPs while idiosyncratic knowledge dominated for the non-adherent GPs. Adherent GPs had no or low concerns for bacterial infections and differential diagnosis whilst non-adherent GPs believed that in patients with a sore throat any bacterial infection should be identified and treated with antibiotics. Patient history and examination was mainly targeted by adherent GPs whilst for non-adherent GPs it was often redundant. Non-adherent GPs reported problems getting patients to abstain from antibiotics, whilst no such problems were reported in adherent GPs. \n CONCLUSION This interview study of sore throat management in a strategically sampled group of Swedish GPs showed that while two-thirds were non-adherent and had a liberal attitude to antibiotics one-third were guideline adherent with a restricted view on antibiotics. Non-adherent GPs revealed significant knowledge gaps. Adherent GPs had discussed guidelines within the primary care team while non-adherent GPs had not. Guideline implementation thus seemed to be promoted by knowledge shared in team discussions.", "title": "Management of patients with sore throats in relation to guidelines: An interview study in Sweden" }, { "docid": "27711043", "text": "OBJECTIVES To describe the impact of musculoskeletal pain (MP); to compare management of MP by the population and by primary care physicians; and to identify misconceptions about treatment. \n METHODS 5803 people with MP and 1483 primary care physicians, randomly selected, in eight European countries were interviewed by telephone. A structured questionnaire was used to ask about usual management of MP and perceived benefits and risks of treatment. Current health status (SF-12) was also assessed. \n RESULTS From primary care physicians' perceptions, MP appears to be well managed. All presenting patients are offered some form of treatment, 90% or more doctors are trying to improve patients' quality of life, and most are aware and concerned about the risks of treatment with NSAIDs. From a population perspective, up to 27% of people with pain do not seek medical help and of those who do, several wait months/years before seeing a doctor. 55% or fewer patients who have seen a doctor are currently receiving prescription treatment for their pain. Communication between doctors and patients is poor; few patients are given information about their condition; and many have misconceptions about treatment. \n CONCLUSIONS Management of MP is similar across eight European countries, but there is discordance between physician and patient perspectives of care. Some people with pain have never sought medical help despite being in constant/daily pain. Those who do seek help receive little written information or explanation and many have misperceptions about the benefits and risks of treatment that limit their ability to actively participate in decisions about their care.", "title": "Musculoskeletal pain in Europe: its impact and a comparison of population and medical perceptions of treatment in eight European countries." }, { "docid": "841371", "text": "OBJECTIVE To assess the robustness of patient responses to a new national survey of patient experience as a basis for providing financial incentives to doctors. \n DESIGN Analysis of the representativeness of the respondents to the GP Patient Survey compared with those who were sampled (5.5 million patients registered with 8273 general practices in England in January 2009) and with the general population. Analysis of non-response bias looked at the relation between practice response rates and scores on the survey. Analysis of the reliability of the survey estimated the proportion of the variance of practice scores attributable to true differences between practices. \n RESULTS The overall response rate was 38.2% (2.2 million responses), which is comparable to that in surveys using similar methodology in the UK. Men, young adults, and people living in deprived areas were under-represented among respondents. However, for questions related to pay for performance, there was no systematic association between response rates and questionnaire scores. Two questions which triggered payments to general practitioners were reliable measures of practice performance, with average practice-level reliability coefficients of 93.2% and 95.0%. Less than 3% and 0.5% of practices had fewer than the number of responses required to achieve conventional reliability levels of 90% and 70%. A change to the payment formula in 2009 resulted in an increase in the average impact of random variation in patient scores on payments to general practitioners compared with payments made in 2007 and 2008. \n CONCLUSIONS There is little evidence to support the concern of some general practitioners that low response rates and selective non-response bias have led to systematic unfairness in payments attached to questionnaire scores. The study raises issues relating to the validity and reliability of payments based on patient surveys and provides lessons for the UK and for other countries considering the use of patient experience as part of pay for performance schemes.", "title": "Reliability of patient responses in pay for performance schemes: analysis of national General Practitioner Patient Survey data in England" }, { "docid": "35186640", "text": "There is considerable variation in opinion about the importance of drug interactions between the combined oral contraceptive pill (COCP) and broad-spectrum antibiotics. Clinical practice varies widely, especially between doctors in Europe and those in the US. Rifampicin and griseofulvin induce hepatic enzymes and do appear to have a genuine interaction with the COCP, leading to reduced efficacy. The situation with the broad-spectrum antibiotics is less clear. There are relatively few prospective studies of the pharmacokinetics of concurrent COCP and antibiotic use and few, if any, demonstrate a convincing basis for any reduced contraceptive efficacy. There is evidence, however, that variable contraceptive steroid handling could make some women, at some times, more susceptible to COCP failure. Given the serious consequences of unwanted pregnancy, the cautious approach of using additional or alternative contraception during short courses of broad-spectrum antibiotics and the initial weeks of long-term antibiotic administration may be justified to safeguard the few unidentifiable women who may be at risk. Conflicting opinion and advice is potentially confusing to both professionals and patients, and instructions for additional precautions during and after concurrent COCP and antibiotic use are complicated. Many women are ignorant of, or confused about, the circumstances that can cause OC to fail. Health professionals who prescribe the COCP must continue to strive to educate women about the mode of action and about the times when there is the greatest danger of failure. Professionals who feel that concurrent antibiotic use represents a real threat to contraceptive efficacy of the COCP should be prepared to present the advice for additional contraceptive precautions in a simple and consistent way, backed up with written information and reinforced at regular intervals.", "title": "Interaction between broad-spectrum antibiotics and the combined oral contraceptive pill. A literature review." }, { "docid": "21902910", "text": "OBJECTIVES To assess the knowledge of interns on standard precautions and post-exposure prophylaxis for HIV, and identify the gap between knowledge and practice relating to standard precautions, as well as determining the perceived barriers against adherence to standard precautions. \n METHODS The study was conducted on 130 interns of 2010-11 batch from a government-run medical college in Kolkata, India. All participants completed a self-administered questionnaire with items relating to basic components of standard precautions and post-exposure prophylaxis for HIV. The questionnaire also included open ended questions relating to reasons for non-adherence to the practice of standard precautions along with additional space for specific comments, if any. \n RESULTS Poor adherence in the use of personal protective equipment, hand washing, safe handling and disposal of needles and sharp objects were found to be among the practices for which the interns expressed correct knowledge. While the main reasons for non-adherence were found to be clumsiness in handling needles, wearing gloves, feeling uncomfortable when wearing aprons, impracticality of regular hand-washing and non-availability of equipment. Although the majority of the respondents (84.6%) expressed awareness of washing sites of injured with soap and water, approximately 32.3% did not know that antiseptics could cause more damage. Also, only 63.8% expressed awareness of reporting any incidence of occupational exposure, while knowledge on post-exposure prophylaxis regimens was generally found to be poor. \n CONCLUSION The considerable gap between knowledge and practice of standard precautions and inadequate knowledge of post-exposure prophylaxis emphasizes the need for continuous onsite training of interns with supportive supervision and monitoring of their activities.", "title": "Knowledge and Practice of Standard Precautions and Awareness Regarding Post-Exposure Prophylaxis for HIV among Interns of a Medical College in West Bengal, India." }, { "docid": "21884449", "text": "AIMS To explore the utility of self-report measures of inhaled corticosteroid (ICS) adherence, degree of rhinitis and smoking status and their association with asthma control. \n METHODS Patients prescribed ICS for asthma at 85 UK practices were sent validated questionnaire measures of control (Asthma Control Questionnaire; ACQ) and adherence (Medication Adherence Report Scale), a two-item measure of smoking status, and a single-item measure of rhinitis. \n RESULTS Complete anonymised questionnaires were available for 3916 participants. Poor asthma control (ACQ >1.5) was associated with reported rhinitis (OR = 4.62; 95% CI: 3.71-5.77), smoking (OR = 4.33; 95% CI: 3.58-5.23) and low adherence to ICS (OR = 1.35; 95% CI: 1.18-1.55). The degree of rhinitis was important, with those reporting severe rhinitis exhibiting the worst asthma control, followed by those reporting mild rhinitis and then those reporting no rhinitis symptoms (F(2, 3913)=128.7, p<.001). There was a relationship between the number of cigarettes smoked each day and asthma control (F(5,655)=6.08, p<.001). \n CONCLUSIONS Poor asthma control is associated with self-reported rhinitis, smoking and low medication adherence. These potentially modifiable predictors of poor asthma control can be identified through a brief self-report questionnaire, used routinely as part of an asthma review.", "title": "The value of self-report assessment of adherence, rhinitis and smoking in relation to asthma control." }, { "docid": "72580164", "text": "Background: Family doctors play an important role in the health care for terminal ill and patients. The current level of palliative care in Germany is strongly criticised, however, empirical data is scare, particularly with respect to family doctors. Methods: Therefore, the attitudes of family doctors (sample: n= 257) in four representative regions in Lower Saxony were studied by using semi-structured telephone interviews. This was part of a health system researchers’ expert report. Results: 71doctors could be interviewed (28%). On the average, they cared for four palliative patients with cancer diseases and eight palliative patients with other diseases than cancer at that time. Many of the doctors were available for their patients around the clock, particularly in the final phase. The main area for improvement was considered to be the psychosocial support – rather than pain therapy, which is usually focussed. Furthermore, a considerable openness for the establishment of new palliative care structures was shown. Conclusion: Family doctors are highly motivated for palliative care and open for improvements. In the process, the diversity of opinion among professions and disciplines about the current situation and the further development of palliative care should be respected and considered.", "title": "Ansichten von Hausärzten zur Versorgung von unheilbar kranken Patienten am Lebensende - Ergebnisse einer Befragung in Niedersachsen" }, { "docid": "4380004", "text": "The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.", "title": "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche" }, { "docid": "30861948", "text": "The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R. , Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174-15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevDelta3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(-), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(-) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.", "title": "Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase." }, { "docid": "19529370", "text": "Although skeletal pain can have a marked impact on a patient's functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague-Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15-16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP(+)) sensory nerve fibers, but not 200 kDa neurofilament H positive (NF200(+)) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain-related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP(+) C-fibers) and capsaicin-insensitive (primarily NF200(+) A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain.", "title": "Capsaicin-sensitive sensory nerve fibers contribute to the generation and maintenance of skeletal fracture pain." }, { "docid": "20187433", "text": "Family members are an integral part of a patient's cancer care from the moment the diagnosis is delivered to the conclusion of treatment. Family members bring with them a range of emotional reactions, interpersonal dynamics and expectations for the care the patient receives. This study is part of a multi-institutional project to continue to improve the process of cancer care. In this study, 19 focus groups (11 patient and 8 provider) were conducted concerning issues related to doctor-patient communication in eight cancer centers in the United States. The content of the conversations was analyzed and thematic categories emerged that highlight the various strengths and difficulties associated with family involvement. The focus groups' comments support the need for explicit conversations between professional caregivers, patients and their loved ones, in order to negotiate the expectations and needs of each team member. Implications for clinical practice and strategies for working with family members are offered.", "title": "Involving family members in cancer care: focus group considerations of patients and oncological providers." }, { "docid": "77971703", "text": "BACKGROUND Due to demographic changes with an increasing number of older people with chronic illness and multimorbidity palliative care for geriatric patients has become increasingly important. The aim of this study was to explore the perspective of bereaved relatives with regard to their experiences and expectations concerning the delivery of care for older people in the last phase of life.\n METHODS Qualitative interviews with 12 relatives of deceased older patients (aged 60 years or older). The interviews were recorded, transcribed, coded and analysed using the approach of qualitative content analysis according to Mayring.\n RESULTS The bereaved relatives perceived that the care for geriatric patients in the last phase of life was inappropriate in various respects. They criticised overtreatment (e.g. skin cancer diagnostic) as well as unmet needs (e.g. treatment of pain, patient centred care, communication). Family doctors were seen as the primary contact persons in the professional health system.\n CONCLUSIONS From the perspective of bereaved relatives care for older people in the last phase of life has serious deficits. They criticise an inappropriate priority setting and the disregard of palliative care. There is a need for better communication and information exchange regarding the needs and expectations of patients and relatives, and regarding the targets of treatment. Therefore it may be helpful to use advance directives more intensively. Furthermore, it seems to be necessary to strengthen generalist palliative care particularly delivered by family doctors and community nurses.", "title": "Older People at the End of Life: Delivery of Care and Needs for Improvement from the Perspective of Bereaved Relatives" }, { "docid": "20188586", "text": "BACKGROUND Real-time adherence monitoring is now possible through medication storage devices equipped with cellular technology. We assessed the effect of triggered cell phone reminders and counseling using objective adherence data on antiretroviral therapy (ART) adherence among Chinese HIV-infected patients. \n METHODS We provided ART patients in Nanning, China, with a medication device (Wisepill) to monitor their ART adherence electronically. After 3 months, we randomized subjects within optimal (≥95%) and suboptimal (<95%) adherence strata to intervention vs. control arms. In months 4-9, intervention subjects received individualized reminders triggered by late dose taking (no device opening by 30 minutes past dose time) and counseling using device-generated data. Controls received no reminders or data-informed counseling. We compared postintervention proportions achieving optimal adherence, mean adherence, and clinical outcomes. \n RESULTS Of 120 subjects enrolled, 116 (96.7%) completed the trial. Preintervention optimal adherence was similar in intervention vs. control arms (63.5% vs. 58.9%, respectively; P = 0.60). In the last intervention month, 87.3% vs. 51.8% achieved optimal adherence [risk ratio (RR): 1.7, 95% confidence interval (CI): 1.3 to 2.2] and mean adherence was 96.2% vs. 89.1% (P = 0.003). Among preintervention suboptimal adherers, 78.3% vs. 33.3% (RR: 2.4, CI: 1.2 to 4.5) achieved optimal adherence and mean adherence was 93.3% vs. 84.7% (P = 0.039). Proportions were 92.5% and 62.9% among optimal adherers, respectively (RR: 1.5, CI: 1.1 to 1.9) and mean adherence was 97.8% vs. 91.7% (P = 0.028). Postintervention clinical outcomes were not significant. \n CONCLUSIONS Real-time reminders significantly improved ART adherence in this population. This approach seems promising for managing HIV and other chronic diseases and warrants further investigation and adaptation in other settings.", "title": "Improving Adherence to Antiretroviral Therapy With Triggered Real-time Text Message Reminders: The China Adherence Through Technology Study." }, { "docid": "44562904", "text": "BACKGROUND Many patients with lung cancer report delays in diagnosing their disease. This may contribute to advanced stage at diagnosis and poor long term survival. This study explores the delays experienced by patients referred to a regional cancer centre with lung cancer. \n METHODS A prospective cohort of patients referred with newly diagnosed lung cancer were surveyed over a 3 month period to assess delays in diagnosis. Patients were asked when they first experienced symptoms, saw their doctor, what tests were done, when they saw a specialist and when they started treatment. Descriptive statistics were used to summarize the different time intervals. \n RESULTS 56 of 73 patients consented (RR 77%). However only 52 patients (30M, 22F) were interviewed as 2 died before being interviewed and two could not be contacted. The mean age was 68yrs. Stage distribution was as follows (IB/IIA 10%, stage IIIA 20%, IIIB/IV 70%). Patients waited a median of 21 days (iqr 7-51d) before seeing a doctor and a further 22d (iqr 0-38d) to complete any investigations. The median time from presentation to specialist referral was 27d (iqr 12-49d) and a further 23.5d (iqr 10-56d) to complete investigations. The median wait to start treatment once patients were seen at the cancer centre was 10d (iqr 2-28d). The overall time from development of first symptoms to starting treatment was 138d (iqr 79-175d). \n CONCLUSIONS Lung cancer patients experience substantial delays from development of symptoms to first initiating treatment. There is a need to promote awareness of lung cancer symptoms and develop and evaluate rapid assessment clinics for patients with suspected lung cancers.", "title": "Delays in the diagnosis of lung cancer." }, { "docid": "1996292", "text": "BMI-1 is overexpressed in a variety of cancers, which can elicit an immune response leading to the induction of autoantibodies. However, BMI-1 autoantibody as a biomarker has seldom been studied with the exception of nasopharyngeal carcinoma. Whether BMI-1 autoantibodies can be used as a biomarker for cervical carcinoma is unclear. In this study,BMI-1 proteins were isolated by screening of a T7 phage cDNA library from mixed cervical carcinoma tissues. We analyzed BMI-1 autoantibody levels in serum samples from 67 patients with cervical carcinoma and 65 controls using ELISA and immunoblot. BMI-1 mRNA or protein levels were over-expressed in cervical carcinoma cell lines. Immunoblot results exhibited increased BMI-1 autoantibody levels in patient sera compared to normal sera. Additionally, the results for antibody affinity assay showed that there was no difference between cervical polyps and normal sera of BMI-1 autoantibody levels, but it was significantly greater in patient sera than that in normal controls (patient 0.827±0.043 and normal 0.445±0.023; P<0.001). What's more, the levels of BMI-1 autoantibody increased significantly at stage I (0.672±0.019) compared to normal sera (P<0.001), and levels of BMI-1 autoantibodies were increased gradually during the tumor progression (stage I 0.672±0.019; stage II 0.775 ±0.019; stage III 0.890 ±0.027; stage IV 1.043±0.041), which were significantly correlated with disease progression of cervical cancer (P<0.001). Statistical analyses using logistic regression and receiver operating characteristics (ROC) curves indicated that the BMI-1 autoantibody level can be used as a biomarker for cervical carcinoma (sensitivity 0.78 and specificity 0.76; AUC = 0.922). In conclusion, measuring BMI-1 autoantibody levels of patients with cervical cancer could have clinical prognostic value as well as a non-tissue specific biomarker for neoplasms expressing BMI-1.", "title": "BMI-1 Autoantibody as a New Potential Biomarker for Cervical Carcinoma" }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "3272084", "text": "Inappropriate use of antibiotics is contributing to the increasing rates of antimicrobial resistance. Several Danish guidelines on antibiotic prescribing for acute respiratory tract infections in general practice have been issued to promote rational prescribing of antibiotics, however it is unclear if these recommendations are followed. We aimed to characterise the pattern of antibiotic prescriptions for patients diagnosed with acute respiratory tract infections, by means of electronic prescriptions, labeled with clinical indications, from Danish general practice. Acute respiratory tract infections accounted for 456,532 antibiotic prescriptions issued between July 2012 and June 2013. Pneumonia was the most common indication with 178,354 prescriptions (39%), followed by acute tonsillitis (21%) and acute otitis media (19%). In total, penicillin V accounted for 58% of all prescriptions, followed by macrolides (18%) and amoxicillin (15%). The use of second-line agents increased with age for all indications, and comprised more than 40% of the prescriptions in patients aged >75 years. Women were more often prescribed antibiotics regardless of clinical indication. This is the first Danish study to characterise antibiotic prescription patterns for acute respiratory tract infections by data linkage of clinical indications. The findings confirm that penicillin V is the most commonly prescribed antibiotic agent for treatment of patients with an acute respiratory tract infection in Danish general practice. However, second-line agents like macrolides and amoxicillin with or without clavulanic acid are overused. Strategies to improve the quality of antibiotic prescribing especially for pneumonia, acute otitis media and acute rhinosinusitis are warranted. RESPIRATORY TRACT INFECTIONS TRACKING THE OVERUSE OF ANTIBIOTICS: Better adherence to guidelines for prescribing antibiotics for different respiratory tract infections are warranted in Danish general practice. The over-use of antibiotics, particularly so-called 'second-line' agents such as amoxicillin, increases resistance and may lead to a potentially catastrophic scenario where antibiotics are no longer effective. Exactly how widespread the over-use of antibiotics is for different infections, however, is not clear. Rune Aabenhus at the University of Copenhagen and co-workers analyzed primary care data regarding antibiotic prescriptions for acute respiratory tract infections including pneumonia and ear infections in Denmark. They found that penicillin V-the current recommended first-line drug in Scandinavian countries-accounted for 58 per cent of prescriptions, a figure which should be improved. Amoxicillin and macrolides were over-prescribed, particularly in elderly patients. The team also call for further analysis of prescriptions given by out-of-hours clinics.", "title": "Characterisation of antibiotic prescriptions for acute respiratory tract infections in Danish general practice: a retrospective registry based cohort study" }, { "docid": "38799797", "text": "Interventions by the pharmacists have always been considered as a valuable input by the health care community in the patient care process by reducing the medication errors, rationalizing the therapy and reducing the cost of therapy. The primary objective of this study was to determine the number and types of medication errors intervened by the dispensing pharmacists at OPD pharmacy in the Khoula Hospital during 2009 retrospectively. The interventions filed by the pharmacists and assistant pharmacists in OPD pharmacy were collected. Then they were categorized and analyzed after a detailed review. The results show that 72.3% of the interventions were minor of which 40.5% were about change medication order. Comparatively more numbers of prescriptions were intervened in female patients than male patients. 98.2% of the interventions were accepted by the prescribers reflecting the awareness of the doctors about the importance of the pharmacy practice. In this study only 688 interventions were due to prescribing errors of which 40.5% interventions were done in changing the medication order of clarifying the medicine. 14.9% of the interventions were related to administrative issues, 8.7% of the interventions were related to selection of medications as well as errors due to ignorance of history of patients. 8.2% of the interventions were to address the overdose of medications. Moderately significant interventions were observed in 19.4% and 7.5% of them were having the impact on major medication errors. Pharmacists have intervened 20.8% of the prescriptions to prevent complications, 25.1% were to rationalize the treatment, 7.9% of them were to improve compliance. Based on the results we conclude that the role of pharmacist in improving the health care system is vital. We recommend more number of such research based studies to bring awareness among health care professionals, provide solution to the prescription and dispensing problems, as it can also improve the documentation system, emphasize the importance of it, reduce prescribing errors, and update the knowledge of pharmacists and other health care professionals.", "title": "Interventions by pharmacists in out-patient pharmaceutical care." } ]
795
Mitochondria play a major role in apoptosis.
[ { "docid": "8551160", "text": "Mitochondria are the primary energy-generating system in most eukaryotic cells. Additionally, they participate in intermediary metabolism, calcium signaling, and apoptosis. Given these well-established functions, it might be expected that mitochondrial dysfunction would give rise to a simple and predictable set of defects in all tissues. However, mitochondrial dysfunction has pleiotropic effects in multicellular organisms. Clearly, much about the basic biology of mitochondria remains to be understood. Here we discuss recent work that suggests that the dynamics (fusion and fission) of these organelles is important in development and disease.", "title": "Mitochondria: Dynamic Organelles in Disease, Aging, and Development" } ]
[ { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "27693891", "text": "Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.", "title": "Transcriptional integration of mitochondrial biogenesis." }, { "docid": "3107733", "text": "Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.", "title": "Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity" }, { "docid": "8425533", "text": "A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process.", "title": "Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1" }, { "docid": "5254463", "text": "Colorectal cancer is one of the major causes of cancer-related deaths. To gain further insights into the mechanisms underlying its development, we investigated the role of Wip1 phosphatase, which is highly expressed in intestinal stem cells, in the mouse model of APC(Min)-driven polyposis. We found that Wip1 removal increased the life span of APC(Min) mice through a significant suppression of polyp formation. This protection was dependent on the p53 tumor suppressor, which plays a putative role in the regulation of apoptosis of intestinal stem cells. Activation of apoptosis in stem cells of Wip1-deficient mice, but not wild-type APC(Min) mice, increased when the Wnt pathway was constitutively activated. We propose, therefore, that the Wip1 phosphatase regulates homeostasis of intestinal stem cells. In turn, Wip1 loss suppresses APC(Min)-driven polyposis by lowering the threshold for p53-dependent apoptosis of stem cells, thus preventing their conversion into tumor-initiating stem cells.", "title": "Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine." }, { "docid": "25251625", "text": "The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.", "title": "Caspase inhibitors promote alternative cell death pathways." }, { "docid": "9784254", "text": "The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone marrow transplant studies point to altered macrophage function as the major determinant of susceptibility. LXR-null macrophages undergo accelerated apoptosis when challenged with LM and exhibit defective bacterial clearance in vivo. These defects result, at least in part, from loss of regulation of the antiapoptotic factor SPalpha, a direct target for regulation by LXRalpha. Expression of LXRalpha or SPalpha in macrophages inhibits apoptosis in the setting of LM infection. Our results demonstrate that LXR-dependent gene expression plays an unexpected role in innate immunity and suggest that common nuclear receptor pathways mediate macrophage responses to modified lipoproteins and intracellular pathogens.", "title": "LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response" }, { "docid": "40232172", "text": "The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.", "title": "Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies." }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "23403754", "text": "In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.", "title": "Bioenergetic aspects of apoptosis, necrosis and mitoptosis" }, { "docid": "20456030", "text": "Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.", "title": "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies." }, { "docid": "32556431", "text": "MicroRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of viral gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category is a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection.", "title": "Virus-encoded microRNAs." }, { "docid": "16242975", "text": "In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.", "title": "A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs" }, { "docid": "14362780", "text": "The role of microRNAs (miRNAs) in infectious diseases is becoming more and more apparent, and the use of miRNAs as a diagnostic tool and their therapeutic application has become the major focus of investigation. The aim of this study was to identify miRNAs involved in the immune signaling of macrophages in response to Arcobacter (A.) butzleri infection, an emerging foodborne pathogen causing gastroenteritis. Therefore, primary human macrophages were isolated and infected, and miRNA expression was studied by means of RNAseq. Analysis of the data revealed the expression of several miRNAs, which were previously associated with bacterial infections such as miR-155, miR-125, and miR-212. They were shown to play a key role in Toll-like receptor signaling where they act as fine-tuners to establish a balanced immune response. In addition, miRNAs which have yet not been identified during bacterial infections such as miR-3613, miR-2116, miR-671, miR-30d, and miR-629 were differentially regulated in A. butzleri-infected cells. Targets of these miRNAs accumulated in pathways such as apoptosis and endocytosis - processes that might be involved in A. butzleri pathogenesis. Our study contributes new findings about the interaction of A. butzleri with human innate immune cells helping to understand underlying regulatory mechanisms in macrophages during infection.", "title": "MicroRNA Response of Primary Human Macrophages to Arcobacter Butzleri Infection" }, { "docid": "1991105", "text": "Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER-mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER-mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER-mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI:http://dx.doi.org/10.7554/eLife.00422.001.", "title": "ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast" }, { "docid": "25677651", "text": "Microbe-macrophage interactions play a central role in the pathogenesis of many infections. The ability of some bacterial pathogens to induce macrophage apoptosis has been suggested to contribute to their ability to elude innate immune responses and successfully colonize the host. Here, we provide evidence that activation of liver X receptors (LXRs) and retinoid X receptors (RXRs) inhibits apoptotic responses of macrophages to macrophage colony-stimulating factor (M-CSF) withdrawal and several inducers of apoptosis. In addition, combined activation of LXR and RXR protected macrophages from apoptosis caused by infection with Bacillus anthracis, Escherichia coli, and Salmonella typhimurium. Expression-profiling studies demonstrated that LXR and RXR agonists induced the expression of antiapoptotic regulators, including AIM/CT2, Bcl-X(L), and Birc1a. Conversely, LXR and RXR agonists inhibited expression of proapoptotic regulators and effectors, including caspases 1, 4/11, 7, and 12; Fas ligand; and Dnase1l3. The combination of LXR and RXR agonists was more effective than either agonist alone at inhibiting apoptosis in response to various inducers of apoptosis, and it acted synergistically to induce expression of AIM/CT2. Inhibition of AIM/CT2 expression in response to LXR/RXR agonists partially reversed their antiapoptotic effects. These findings reveal unexpected roles of LXRs and RXRs in the control of macrophage survival and raise the possibility that LXR/RXR agonists may be exploited to enhance innate immunity to bacterial pathogens that induce apoptotic programs as a strategy for evading host responses.", "title": "Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis." }, { "docid": "20738970", "text": "Epithelial and endothelial tyrosine kinase (Etk), also known as Bmx (bone marrow X kinase) plays an important role in apoptosis of epithelial cells. The goal of this study was to investigate whether Etk is involved in apoptosis of small cell lung cancer (SCLC) cells and correlated with the expression levels of apoptosis-associated proteins such as Bcl-2, Bcl-X(L) and p53. One hundred and seventy-one cases of lung cancer specimens including seventy-one SCLCs and one hundred NSCLCs were immunostained for Etk, Bcl-2, Bcl-X(L) and p53. Parental SCLC H446 cell line, and its subline (H446-Etk) that overexpresses Etk, were used to study the role of Etk in apoptosis induced by doxorubicin. It was found that high expression of Etk occurs in 74.6% of SCLC cases, but only in 40% of NSCLC cases, and there is marked difference in the expression levels of Bcl-2, Bcl-X(L) and p53 between Etk-positive and Etk-negative SCLC cases. Furthermore, the levels of Bcl-2 and Bcl-X(L) significantly increased in H446-Etk cells than that in H446 cells after doxorubicin treatment, and were positively associated with Etk expression. However, p53 did not correspond with Etk expression although its expression decreased greatly with apoptosis both in H446-Etk and H446 cells. After doxorubicin treatment, the cell viability was significantly higher in H446-Etk cells than in parental H446 cells. Downregulation of Etk by Etk siRNA sensitized H446 cells to doxorubicin. Our results indicate that upregulation of tyrosine kinase Etk may be a new mechanism involved in protection of SCLC cells from apoptosis. Bcl-2 and Bcl-X(L) but not p53 may contribute to doxorubicin-induced apoptosis through Etk pathway.", "title": "Non-receptor tyrosine kinase Etk is involved in the apoptosis of small cell lung cancer cells." }, { "docid": "34439544", "text": "The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis(1). Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)(1). After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues(2). In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)(3-6). Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation(7,8). In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members(7,9). As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization(10). LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)(10). This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)(11). As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.", "title": "Examining BCL-2 family function with large unilamellar vesicles." }, { "docid": "3619931", "text": "Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.", "title": "Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function" } ]
797
Mitochondria play a major role in energy production.
[ { "docid": "8551160", "text": "Mitochondria are the primary energy-generating system in most eukaryotic cells. Additionally, they participate in intermediary metabolism, calcium signaling, and apoptosis. Given these well-established functions, it might be expected that mitochondrial dysfunction would give rise to a simple and predictable set of defects in all tissues. However, mitochondrial dysfunction has pleiotropic effects in multicellular organisms. Clearly, much about the basic biology of mitochondria remains to be understood. Here we discuss recent work that suggests that the dynamics (fusion and fission) of these organelles is important in development and disease.", "title": "Mitochondria: Dynamic Organelles in Disease, Aging, and Development" } ]
[ { "docid": "27693891", "text": "Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.", "title": "Transcriptional integration of mitochondrial biogenesis." }, { "docid": "18678095", "text": "Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular motors that transport vesicles. We demonstrate that glycolysis provides ATP for the FAT of vesicles. Although inhibiting ATP production from mitochondria did not affect vesicles motility, pharmacological or genetic inhibition of the glycolytic enzyme GAPDH reduced transport in cultured neurons and in Drosophila larvae. GAPDH localizes on vesicles via a huntingtin-dependent mechanism and is transported on fast-moving vesicles within axons. Purified motile vesicles showed GAPDH enzymatic activity and produced ATP. Finally, we show that vesicular GAPDH is necessary and sufficient to provide on-board energy for fast vesicular transport. Although detaching GAPDH from vesicles reduced transport, targeting GAPDH to vesicles was sufficient to promote FAT in GAPDH deficient neurons. This specifically localized glycolytic machinery may supply constant energy, independent of mitochondria, for the processive movement of vesicles over long distances in axons.", "title": "Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport" }, { "docid": "4410181", "text": "Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.", "title": "Metabolic rescue in pluripotent cells from patients with mtDNA disease" }, { "docid": "20456030", "text": "Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.", "title": "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies." }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "9244474", "text": "Diet is known to play a major role in the symptoms of the inflammatory bowel disease, Crohn's disease (CD). Although no single diet is appropriate to all individuals, most CD patients are aware of foods that provide adverse or beneficial effects. This study seeks to categorise foods in relation to their effects on symptoms of CD, in a New Zealand Caucasian population. Four hundred and forty-six subjects from two different centres in New Zealand were recruited into the study. An extensive dietary questionnaire (257 food items in 15 groups) recorded self-reported dietary tolerances and intolerances. Across each of the food groups, there were statistically significant differences among responses to foods. A two-dimensional graphical summary enabled stratification of foods according to the probability that they will be either beneficial or detrimental. A small number of foods are frequently considered to be beneficial, including white fish, salmon and tuna, gluten-free products, oatmeal, bananas, boiled potatoes, sweet potatoes (kumara), pumpkin, soya milk, goat's milk and yoghurt. Foods that are typically considered detrimental include grapefruit, chilli or chilli sauce, corn and corn products, peanuts, cream, salami, curried foods, cola drinks, high energy drinks, beer, and red wine. For a number of the food items, the same item that was beneficial for one group of subjects was detrimental to others; in particular soya milk, goat's milk, yoghurt, oatmeal, kiwifruit, prunes, apple, broccoli, cauliflower, linseed, pumpkin seed, sunflower seed, ginger and ginger products, beef, lamb, liver, and oily fish. It was not possible to identify a specific group of food items that should be avoided by all CD patients. The wide range of detrimental items suggests that dietary maintenance of remission is likely to be difficult, and to exclude a substantial number of foods. Personalised diets may be especially important to these individuals.", "title": "Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn's disease population." }, { "docid": "3107733", "text": "Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.", "title": "Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity" }, { "docid": "719812", "text": "Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.", "title": "Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques" }, { "docid": "8425533", "text": "A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process.", "title": "Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1" }, { "docid": "4939312", "text": "The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and nonrenewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, that is, the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.", "title": "Sodium Hydroxide Production from Seawater Desalination Brine: Process Design and Energy Efficiency." }, { "docid": "40232172", "text": "The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.", "title": "Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies." }, { "docid": "25251625", "text": "The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.", "title": "Caspase inhibitors promote alternative cell death pathways." }, { "docid": "13000926", "text": "Cold injury is a tissue trauma produced by exposure to freezing temperatures and even brief exposure to a severely cold and windy environment. Rewarming of frozen tissue is associated with blood reperfusion and the simultaneous generation of free oxygen radicals. In this review is discussed the current understanding of the mechanism of action of free oxygen radicals as related to cold injury during rewarming. Decreased energy stores during ischaemia lead to the accumulation of adenine nucleotides and liberation of free fatty acids due to the breakdown of lipid membranes. On rewarming, free fatty acids are metabolized via cyclo-oxygenase and adenine nucleotides are metabolized via the xanthine oxidase pathway. These may be the source of free oxygen radicals. Leukocytes may also play a major role in the pathogenesis of cold injury. Oxygen radical scavengers, such as superoxide dismutase and catalase, may help to reduce the cold induced injury but their action is limited due to the inability readily to cross the plasma membrane. Lipid soluble antioxidants are likely to be more effective scavengers because of their presence in membranes where peroxidative reactions can be arrested.", "title": "The role of free radicals in cold injuries." }, { "docid": "11615242", "text": "CCAAT/enhancer-binding proteins, C/EBPalpha and C/EBPbeta, are required for fat cell differentiation and maturation. Previous studies showed that replacement of C/EBPalpha with C/EBPbeta, generating the beta/beta alleles in the mouse genome, prevents lipid accumulation in white adipose tissue (WAT). In this study, beta/beta mice lived longer and had higher energy expenditure than their control littermates due to increased WAT energy oxidation. The WAT of beta/beta mice was enriched with metabolically active, thermogenic mitochondria known for energy burning. The beta/beta allele exerted its effect through the elevated expression of the G protein alpha stimulatory subunit (Galphas) in WAT. Galphas, when overexpressed in fat-laden 3T3-L1 cells, stimulated mitochondrial biogenesis similar to that seen in the WAT of beta/beta mice, and effectively diminished the stored lipid pool.", "title": "Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells." }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "1365188", "text": "Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.", "title": "Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice." }, { "docid": "16242975", "text": "In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.", "title": "A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs" }, { "docid": "14865329", "text": "Brown fat is a specialized fat depot that can increase energy expenditure and produce heat. After the recent discovery of the presence of active brown fat in human adults and novel transcription factors controlling brown adipocyte differentiation, the field of the study of brown fat has gained great interest and is rapidly growing. Brown fat expansion and/or activation results in increased energy expenditure and a negative energy balance in mice and limits weight gain. Brown fat is also able to utilize blood glucose and lipid and results in improved glucose metabolism and blood lipid independent of weight loss. Prolonged cold exposure and beta adrenergic agonists can induce browning of white adipose tissue. The inducible brown adipocyte, beige adipocyte evolving by thermogenic activation of white adipose tissue have different origin and molecular signature from classical brown adipocytes but share the characteristics of high mitochondria content, UCP1 expression and thermogenic capacity when activated. Increasing browning may also be an efficient way to increase whole brown fat activity. Recent human studies have shown possibilities that findings in mice can be reproduced in human, making brown fat a good candidate organ to treat obesity and its related disorders.", "title": "Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders" }, { "docid": "1991105", "text": "Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER-mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER-mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER-mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI:http://dx.doi.org/10.7554/eLife.00422.001.", "title": "ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast" } ]
798
Mitochondria play a trivial role in calcium homeostasis.
[ { "docid": "8551160", "text": "Mitochondria are the primary energy-generating system in most eukaryotic cells. Additionally, they participate in intermediary metabolism, calcium signaling, and apoptosis. Given these well-established functions, it might be expected that mitochondrial dysfunction would give rise to a simple and predictable set of defects in all tissues. However, mitochondrial dysfunction has pleiotropic effects in multicellular organisms. Clearly, much about the basic biology of mitochondria remains to be understood. Here we discuss recent work that suggests that the dynamics (fusion and fission) of these organelles is important in development and disease.", "title": "Mitochondria: Dynamic Organelles in Disease, Aging, and Development" } ]
[ { "docid": "14767844", "text": "Calcium influx is crucial for T cell activation and differentiation. The detailed regulation of this process remains unclear. We report here that golli protein, an alternatively spliced product of the myelin basic protein gene, plays a critical role in regulating calcium influx in T cells. Golli-deficient T cells were hyperproliferative and showed enhanced calcium entry upon T cell receptor stimulation. We further found that golli regulates calcium influx in T cells through the inhibition of the store depletion-induced calcium influx. Mutation of the myristoylation site on golli disrupted its association with the plasma membrane and reversed its inhibitory action on Ca2+ influx, indicating that membrane association of golli was essential for its inhibitory action. These results indicate that golli functions in a unique way to regulate T cell activation through a mechanism involving the modulation of the calcium homeostasis.", "title": "Golli protein negatively regulates store depletion-induced calcium influx in T cells." }, { "docid": "12058271", "text": "The bone marrow is the primary site for neutrophil production and release into the circulation. Because the CXC chemokine receptor-4/stromal derived factor-1 (CXCR4/SDF-1) axis plays a central role in the interactions of hematopoietic stem cells, lymphocytes, and developing neutrophils in the marrow, we investigated whether reciprocal CXCR4-dependent mechanisms might be involved in neutrophil release and subsequent return to the marrow following circulation. Neutralizing antibody to CXCR4 reduced marrow retention of infused neutrophils (45.7% +/- 0.5% to 6.9% +/- 0.5%) and was found to mobilize neutrophils from marrow (34.4% +/- 4.4%). Neutrophil CXCR4 expression and SDF-1-induced calcium flux decreased with maturation and activation of the cells, corresponding to the decreased marrow homing associated with these characteristics in vivo. Infusion of the inflammatory mediator and CXCR2 ligand KC led to mobilization of neutrophils from marrow by itself and was augmented 3-fold by low doses of CXCR4-blocking antibody that otherwise had no mobilizing effect. Examination of KC and SDF-1 calcium signaling demonstrated that the effect of KC may, in part, be due to heterologous desensitization to SDF-1. These results suggest that the CXCR4/SDF-1 axis is critical in circulating neutrophil homeostasis and that it may participate in the rapid release of neutrophils from the marrow during inflammation through a novel interaction with inflammatory CXC chemokines.", "title": "Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis." }, { "docid": "19205437", "text": "Uncoupling protein 1 (UCP1) plays a central role in nonshivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca2+ cycling by sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca2+ cycling by activation of α1- and/or β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis in beige adipocytes. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism and pyruvate dehydrogenase activity for ATP-dependent thermogenesis through the SERCA2b pathway; beige fat thereby functions as a 'glucose sink' and improves glucose tolerance independently of body weight loss. Our study uncovers a noncanonical thermogenic mechanism through which beige fat controls whole-body energy homeostasis via Ca2+ cycling.", "title": "UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis" }, { "docid": "5094468", "text": "During the past two decades calcium (Ca2+) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca2+ uptake was shown to control intracellular Ca2+ signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca2+ levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca2+ transporters has been revealed, opening new perspectives for investigation and molecular intervention.", "title": "Mitochondria as sensors and regulators of calcium signalling" }, { "docid": "3107733", "text": "Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.", "title": "Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity" }, { "docid": "8425533", "text": "A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process.", "title": "Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1" }, { "docid": "14835068", "text": "Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.", "title": "Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics" }, { "docid": "28724565", "text": "The transient receptor potential (TRP) channels TRPML1, TRPML2, and TRPML3 (also called mucolipins 1-3 or MCOLN1-3) are nonselective cation channels. Mutations in the Trpml1 gene cause mucolipidosis type IV in humans with clinical features including psychomotor retardation, corneal clouding, and retinal degeneration, whereas mutations in the Trpml3 gene cause deafness, circling behavior, and coat color dilution in mice. No disease-causing mutations are reported for the Trpml2 gene. Like TRPML channels, which are expressed in the endolysosomal pathway, two-pore channels (TPCs), namely TPC1, TPC2, and TPC3, are found in intracellular organelles, in particular in endosomes and lysosomes. Both TRPML channels and TPCs may function as calcium/cation release channels in endosomes, lysosomes, and lysosome-related organelles with TRPMLs being activated by phosphatidylinositol 3,5-bisphosphate and regulated by pH and TPCs being activated by nicotinic acid adenine dinucleotide phosphate in a calcium- and pH-dependent manner. They may also be involved in endolysosomal transport and fusion processes, e.g., as intracellular calcium sources. Currently, however, the exact physiological roles of TRPML channels and TPCs remain quite elusive, and whether TRPML channels are purely endolysosomal ion channels or whether they may also be functionally active at the plasma membrane in vivo remains to be determined.", "title": "Role of TRPML and two-pore channels in endolysosomal cation homeostasis." }, { "docid": "6259170", "text": "Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) was originally identified as a positive regulator of drug detoxifying enzyme gene expression during exposure to environmental electrophiles. Currently, Nrf2 is known to regulate the expression of hundreds of cytoprotective genes to counteract endogenously or exogenously generated oxidative stress. Furthermore, when activated in human tumors by somatic mutations, Nrf2 confers growth advantages and chemoresistance by regulating genes involved in various processes such as the pentose phosphate pathway and nucleotide synthesis in addition to antioxidant proteins. Interestingly, increasing evidence shows that Nrf2 is associated with mitochondrial biogenesis during environmental stresses in certain tissues such as the heart. Furthermore, SKN-1, a functional homolog of Nrf2 in C. elegans, is activated by mitochondrial reactive oxygen species and extends life span by promoting mitochondrial homeostasis (i.e., mitohormesis). Similarly, Nrf2 activation was recently observed in the heart of surfeit locus protein 1 (Surf1) -/- mice in which cellular respiration was decreased due to cytochrome c oxidase defects. In this review, we critically examine the relationship between Nrf2 and mitochondria and argue that the Nrf2 stress pathway intimately communicates with mitochondria to maintain cellular homeostasis during oxidative stress.", "title": "Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria" }, { "docid": "40232172", "text": "The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.", "title": "Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies." }, { "docid": "24349430", "text": "BACKGROUND Orai1/CRACM1 is a principal component of the store-operated calcium channels. Store-operated calcium influx is highly correlated with inflammatory reactions, immunological regulation, and cell proliferation. Epidermal growth factor (EGF), which plays an important role in the regulation of cell proliferation, can activate store-operated calcium channels. However, the consequences of Orai1/CRACM1 overexpression in EGF-mediated lung cancer cells growth are not known. \n METHODS To investigate the role of Orai1/CRACM1 in EGF-mediated lung cancer cell proliferation, Orai1/CRACM1 plasmids were transfected into cells by lipofection. A cell proliferation assay, immunofluorescence staining, flow cytometry, and real-time polymerase chain reaction were employed to monitor cell proliferation. The calcium influx signals were investigated using a fluorescent-based calcium assay. \n RESULTS Transfection of Orai1/CRACM1 plasmids resulted in the inhibition of EGF-mediated cell proliferation. ERK1/2 and Akt phosphorylation were inhibited by Orai1/CRACM1 overexpression. Expression of the cell cycle modulator p21 was induced in the Orai1/CRACM1-overexpressing cells, whereas the expression of cyclin D3 was reduced. Flow cytometry revealed that overexpression of Orai1/CRACM1 resulted in G0/G1 cell cycle arrest. Importantly, Orai1/CRACM1 overexpression significantly attenuated EGF-mediated store-operated calcium influx. In addition, application of 2-APB, a store-operated calcium channel inhibitor, resulted in the inhibition of EGF-mediated cancer cell proliferation. \n CONCLUSIONS We conclude that Orai1/CRACM1 overexpression attenuates store-operated Ca(2+) influx that in turn blocks EGF-mediated proliferative signaling and drives cell cycle arrest.", "title": "Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells." }, { "docid": "13312471", "text": "Vitamin D insufficiency is common, however within individuals, not all manifest the biochemical effects of PTH excess. This further extends to patients with established osteoporosis. The mechanism underlying the blunted PTH response is unclear but may be related to magnesium (Mg) deficiency. The aims of this study were to compare in patients with established osteoporosis and differing degrees of vitamin D and PTH status : (1) the presence of Mg deficiency using the standard Mg loading test (2) evaluate the effects of Mg loading on the calcium-PTH endocrine axis (3) determine the effects of oral, short term Mg supplementation on the calcium-PTH endocrine axis and bone turnover. 30 patients (10 women in 3 groups) were evaluated prospectively measuring calcium, PTH, Mg retention (Mg loading test), dietary nutrient intake (calcium, vitamin D, Mg) and bone turnover markers (serum CTX & P1CP). Multivariate analysis controlling for potential confounding baseline variable was undertaken for the measured outcomes. All subjects, within the low vitamin D and low PTH group following the magnesium loading test had evidence of Mg depletion [mean(SD) retention 70.3%(12.5)] and showed an increase in calcium 0.06(0.01) mmol/l [95% CI 0.03, 0.09, p=0.007], together with a rise in PTH 13.3 ng/l (4.5) [95% CI 3.2, 23.4, p=0.016] compared to baseline. Following oral supplementation bone turnover increased: CTX 0.16 (0.06) mcg/l [95%CI 0.01, 0.32 p=0.047]; P1CP 13.1 (5.7) mcg/l [95% CI 0.29, 26.6 p=0.049]. In subjects with a low vitamin D and raised PTH mean retention was 55.9%(14.8) and in the vitamin replete group 36.1%(14.4), with little change in both acute markers of calcium homeostasis and bone turnover markers following both the loading test and oral supplementation. This study confirms that in patients with established osteoporosis, there is also a distinct group with a low vitamin D and a blunted PTH level and that Mg deficiency (as measured by the Mg loading test) is an important contributing factor.", "title": "Vitamin D insufficiency and the blunted PTH response in established osteoporosis: the role of magnesium deficiency" }, { "docid": "2810997", "text": "The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9). This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing.", "title": "Efficient Mitochondrial Genome Editing by CRISPR/Cas9" }, { "docid": "27693891", "text": "Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.", "title": "Transcriptional integration of mitochondrial biogenesis." }, { "docid": "20456030", "text": "Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.", "title": "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies." }, { "docid": "16256507", "text": "CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. \n OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). \n DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). \n MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). \n CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates.", "title": "Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake." }, { "docid": "16242975", "text": "In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.", "title": "A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs" }, { "docid": "3619931", "text": "Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.", "title": "Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function" }, { "docid": "8856690", "text": "The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP9k, and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.", "title": "Molecular Mechanisms of Vitamin D Action" } ]
799
Moderate consumption of candy and chocolate reduces the risk of cardiovascular disease (CVD).
[ { "docid": "5293024", "text": "Our attitude towards candy—“if it tastes that good, it can't be healthy”—betrays society's puritanical stance towards pleasure. Candy has been blamed for various ills, including hyperactivity in children; however, clinical trials have not supported this.1 Candy—sugar confectionery and chocolate—is not a recent invention: the ancient Arabs, Chinese, and Egyptians candied fruits and nuts in honey, and the Aztecs made a chocolate drink from the bean of the cacao tree. Today, Americans gratify themselves with, on average, 5.4 kg of sugar candy and 6.5 kg of chocolate per person annually.2 Since candy has existed for centuries, we surmised that it cannot be totally unhealthy. We decided to investigate whether candy consumption was associated with longevity. Subjects were from the Harvard alumni health study, an ongoing study of men entering Harvard University as undergraduates between 1916 and 1950. We included 7841 men, free of cardiovascular disease and cancer, who responded to a health survey …", "title": "Life is sweet: candy consumption and longevity." } ]
[ { "docid": "7454794", "text": "Statins are widely used in the evidence-based lowering of cardiovascular disease (CVD) risk. The use of these drugs for secondary prevention of CVD is well founded, but their expanding use in primary prevention—in individuals without documented CVD—has raised some concerns. Firstly, evidence suggests that, in primary prevention, statins substantially decrease CVD morbidity, but only moderately reduce CVD mortality. Secondly, long-term statin use might cause adverse effects, such as incident diabetes mellitus. Thirdly, the cost-effectiveness of such a strategy is unclear, and has to be balanced against the risk of 'overmedicating' the general population. Data clearly support the use of statins for primary prevention in high-risk individuals, in whom the strategy is cost-effective and the benefits exceed the risks. Whether primary prevention is beneficial in individuals at low or moderate risk is not certain. Therefore, the prescription of statins for primary prevention should be individualized on the basis of clinical judgment, particularly for low-risk individuals. In appropriately selected individuals, statins should also be used for primary prevention of ischaemic stroke and transient ischaemic attack.", "title": "Statins in the primary prevention of cardiovascular disease" }, { "docid": "13230773", "text": "CONTEXT Population surveys indicate that physical activity levels are low in the United States. One consequence of inactivity, low cardiorespiratory fitness, is an established risk factor for cardiovascular disease (CVD) morbidity and mortality, but the prevalence of cardiorespiratory fitness has not been quantified in representative US population samples. \n OBJECTIVES To describe the prevalence of low fitness in the US population aged 12 through 49 years and to relate low fitness to CVD risk factors in this population. \n DESIGN, SETTING, AND PARTICIPANTS Inception cohort study using data from the cross-sectional nationally representative National Health and Nutrition Examination Survey 1999-2002. Participants were adolescents (aged 12-19 years; n = 3110) and adults (aged 20-49 years; n = 2205) free from previously diagnosed CVD who underwent submaximal graded exercise treadmill testing to achieve at least 75% to 90% of their age-predicted maximum heart rate. Maximal oxygen consumption (VO2max) was estimated by measuring the heart rate response to reference levels of submaximal work. \n MAIN OUTCOME MEASURES Low fitness defined using percentile cut points of estimated VO2max from existing external referent populations; anthropometric and other CVD risk factors measured according to standard methods. \n RESULTS Low fitness was identified in 33.6% of adolescents (approximately 7.5 million US adolescents) and 13.9% of adults (approximately 8.5 million US adults); the prevalence was similar in adolescent females (34.4%) and males (32.9%) (P = .40) but was higher in adult females (16.2%) than in males (11.8%) (P = .03). Non-Hispanic blacks and Mexican Americans were less fit than non-Hispanic whites. In all age-sex groups, body mass index and waist circumference were inversely associated with fitness; age- and race-adjusted odds ratios of overweight or obesity (body mass index > or =25) ranged from 2.1 to 3.7 (P<.01 for all), comparing persons with low fitness with those with moderate or high fitness. Total cholesterol levels and systolic blood pressure were higher and levels of high-density lipoprotein cholesterol were lower among participants with low vs high fitness. \n CONCLUSION Low fitness in adolescents and adults is common in the US population and is associated with an increased prevalence of CVD risk factors.", "title": "Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults." }, { "docid": "5939172", "text": "PURPOSE To analyze the relationship between an aspect of drinking pattern (i.e., drinking with or without meals) and risk of all-cause and specific-cause mortality. \n METHODS The Risk Factors and Life Expectancy Study, is a pooling of a series of epidemiological studies conducted in Italy. Eight-thousand six-hundred and forty-seven men and 6521 women, age 30-59 at baseline, and free of cardiovascular disease, were followed for mortality from all causes, cardiovascular and noncardiovascular, during an average follow-up of 7 years. \n RESULTS Drinkers of wine outside meals exhibited higher death rates from all causes, noncardiovascular diseases, and cancer, as compared to drinkers of wine with meals. This association was independent from the cardiovascular disease (CVD) risk factors measured at baseline and the amount of alcohol consumed and seemed to be stronger in women as compared to men. \n CONCLUSIONS The present results indicate that drinking patterns may have important health implications, and attention should be given to this aspect of alcohol use and its relationship to health outcomes. The relationship between alcohol consumption and disease has been the focus of intensive scientific investigation (1-9). Most studies to date, however, have limitations. A major drawback is that limited information has been collected regarding the complex issue of alcohol consumption. In many studies, ascertainment of alcohol consumption frequently focused only on quantity of alcohol consumed without considering the many different components of alcohol consumption, particularly drinking pattern (10-12). It has been hypothesized, and preliminary data support the notion, that drinking pattern could have important influences on determining the health effects of alcohol (13,14). The present study examines the relationship between one aspect of drinking pattern (drinking wine outside meals) and mortality in a large cohort of men and women.", "title": "Drinking pattern and mortality: the Italian Risk Factor and Life Expectancy pooling project." }, { "docid": "14803797", "text": "Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.", "title": "Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis" }, { "docid": "2138767", "text": "AIMS Cardiovascular disease (CVD) is now the most prevalent and debilitating disease affecting the Chinese population. The goal of the present manuscript was to analyse cardiovascular risk factors and the prevalence of non-fatal CVDs from data gathered from the 2007-2008 China National Diabetes and Metabolic Disorders Study. \n METHODS AND RESULTS A nationally representative sample of 46 239 adults, 20 years of age or older, was randomly recruited using a multistage stratified design method. Lifestyle factors, diagnosis of CVD, stroke, diabetes, and family history of each subject were collected, and an oral glucose tolerance test or a standard meal test was performed. Various non-fatal CVDs were reported by the subjects. SUDAAN software was used to perform all weighted statistical analyses, with P < 0.05 considered statistically significant. The prevalence of coronary heart disease, stroke, and CVDs was 0.74, 1.07, and 1.78% in males; and 0.51, 0.60, and 1.10% in females, respectively. The presence of CVDs increased with age in both males and females. The prevalence of being overweight or obese, hypertension, dyslipidaemia, or hyperglycaemia was 36.67, 30.09, 67.43, and 26.69% in males; and 29.77, 24.79, 63.98, and 23.62% in females, respectively. In the total sample of 46 239 patients, the prevalence of one subject having 1, 2, 3, or ≥4 of the 5 defined risk factors (i.e. smoking, overweight or obese, hypertension, dyslipidaemia, or hyperglycaemia) was 31.17, 27.38, 17.76, and 10.19%, respectively. Following adjustment for gender and age, the odds ratio of CVDs for those who had 1, 2, 3, or ≥4 risk factors was 2.36, 4.24, 4.88, and 7.22, respectively, when compared with patients with no risk factors. \n CONCLUSION Morbidity attributed to the five defined cardiovascular risk factors was high in the Chinese population, with multiple risk factors present in the same individual. Therefore, reasonable prevention strategies should be designed to attenuate the rapid rise in cardiovascular morbidity.", "title": "Prevalence of cardiovascular disease risk factor in the Chinese population: the 2007-2008 China National Diabetes and Metabolic Disorders Study." }, { "docid": "8780599", "text": "OBJECTIVE Although the Polypill concept (proposed in 2003) is promising in terms of benefits for cardiovascular risk management, the potential costs and adverse effects are its main pitfalls. The objective of this study was to identify a tastier and safer alternative to the Polypill: the Polymeal. \n METHODS Data on the ingredients of the Polymeal were taken from the literature. The evidence based recipe included wine, fish, dark chocolate, fruits, vegetables, garlic, and almonds. Data from the Framingham heart study and the Framingham offspring study were used to build life tables to model the benefits of the Polymeal in the general population from age 50, assuming multiplicative correlations. \n RESULTS Combining the ingredients of the Polymeal would reduce cardiovascular disease events by 76%. For men, taking the Polymeal daily represented an increase in total life expectancy of 6.6 years, an increase in life expectancy free from cardiovascular disease of 9.0 years, and a decrease in life expectancy with cardiovascular disease of 2.4 years. The corresponding differences for women were 4.8, 8.1, and 3.3 years. \n CONCLUSION The Polymeal promises to be an effective, non-pharmacological, safe, cheap, and tasty alternative to reduce cardiovascular morbidity and increase life expectancy in the general population.", "title": "The Polymeal: a more natural, safer, and probably tastier (than the Polypill) strategy to reduce cardiovascular disease by more than 75%." }, { "docid": "17914395", "text": "BACKGROUND African Americans have higher rates of cardiovascular disease (CVD) mortality than other ethnic groups. Young adults are prime targets for intervention strategies to prevent and reduce disease risk. The study purpose was to determine the level of knowledge of lifestyle risk factors for CVD among young African American adults in Phoenix. The results will be used to guide the development of CVD outreach programs targeted to this population. The Health Belief Model was used as a conceptual framework. \n METHODS A convenience sample of 172 African American men and women aged 18-26 years completed a questionnaire adapted from the American Heart Association national surveys. Descriptive statistics were compared by age, gender, education level, and health status variables including BMI, smoking status, and physical activity. \n RESULTS Some aspects of heart-disease were well known among young adult African Americans. Knowledge of certain other important risk factors (menopause) and preventive behaviors (eating fewer animal products), however, was more variable and inconsistent among the respondents. Differences in knowledge of individual variables was greater by education level than by gender overall. Predictors of a summary CVD knowledge score included higher education, female gender, and high self-efficacy (adjusted R2 = 0.158, p < .001). Predictors of self-efficacy in changing CVD risk were higher education and perceived low risk of CVD (adjusted R2 = 0.064, p < .001), but these characteristics explained only 6% of the variance. \n CONCLUSIONS Evaluation of baseline knowledge of CVD is essential before designing and implementing health promotion programs. Existing strengths and weaknesses in knowledge can guide tailoring of programs to be more effective. Further research would help to identify the range of other characteristics that determine knowledge and risk perception.", "title": "Knowledge of young African American adults about heart disease: a cross-sectional survey" }, { "docid": "409280", "text": "BACKGROUND Few data have evaluated physician adherence to cardiovascular disease (CVD) prevention guidelines according to physician specialty or patient characteristics, particularly gender. \n METHODS AND RESULTS An online study of 500 randomly selected physicians (300 primary care physicians, 100 obstetricians/gynecologists, and 100 cardiologists) used a standardized questionnaire to assess awareness of, adoption of, and barriers to national CVD prevention guidelines by specialty. An experimental case study design tested physician accuracy and determinants of CVD risk level assignment and application of guidelines among high-, intermediate-, or low-risk patients. Intermediate-risk women, as assessed by the Framingham risk score, were significantly more likely to be assigned to a lower-risk category by primary care physicians than men with identical risk profiles (P<0.0001), and trends were similar for obstetricians/gynecologists and cardiologists. Assignment of risk level significantly predicted recommendations for lifestyle and preventive pharmacotherapy. After adjustment for risk assignment, the impact of patient gender on preventive care was not significant except for less aspirin (P<0.01) and more weight management recommended (P<0.04) for intermediate-risk women. Physicians did not rate themselves as very effective in their ability to help patients prevent CVD. Fewer than 1 in 5 physicians knew that more women than men die each year from CVD. \n CONCLUSIONS Perception of risk was the primary factor associated with CVD preventive recommendations. Gender disparities in recommendations for preventive therapy were explained largely by the lower perceived risk despite similar calculated risk for women versus men. Educational interventions for physicians are needed to improve the quality of CVD preventive care and lower morbidity and mortality from CVD for men and women.", "title": "National study of physician awareness and adherence to cardiovascular disease prevention guidelines." }, { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" }, { "docid": "15155862", "text": "Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels (combined P = 9.7 x 10(-24)), and rs445925 at APOE with LDL levels (combined P = 8.7 x 10(-19)). We show that SNPs previously identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.", "title": "Longitudinal Genome-Wide Association of Cardiovascular Disease Risk Factors in the Bogalusa Heart Study" }, { "docid": "17693849", "text": "BACKGROUND Appropriate understanding of health information by patients with cardiovascular disease (CVD) is fundamental for better management of risk factors and improved morbidity, which can also benefit their quality of life. \n OBJECTIVES To assess the relationship between health literacy and health-related quality of life (HRQoL) in patients with ischaemic heart disease (IHD), and to investigate the role of sociodemographic and clinical variables as possible confounders. \n METHODS Cross-sectional study of patients with IHD recruited from a stratified sample of general practices in two Australian states (Queensland and South Australia) between 2007 and 2009. Health literacy was measured using a validated questionnaire and classified as inadequate, marginal, or adequate. Physical and mental components of HRQoL were assessed using the Medical Outcomes Study Short Form (SF12) questionnaire. Analyses were adjusted for confounders (sociodemographic variables, clinical history of IHD, number of CVD comorbidities, and CVD risk factors) using multiple linear regression. \n RESULTS A total sample of 587 patients with IHD (mean age 72.0±8.4 years) was evaluated: 76.8% males, 84.2% retired or pensioner, and 51.4% with up to secondary educational level. Health literacy showed a mean of 39.6±6.7 points, with 14.3% (95%CI 11.8-17.3) classified as inadequate. Scores of the physical component of HRQoL were 39.6 (95%CI 37.1-42.1), 42.1 (95%CI 40.8-43.3) and 44.8 (95%CI 43.3-46.2) for inadequate, marginal, and adequate health literacy, respectively (p-value for trend = 0.001). This association persisted after adjustment for confounders. Health literacy was not associated with the mental component of HRQoL (p-value = 0.482). Advanced age, lower educational level, disadvantaged socioeconomic position, and a larger number of CVD comorbidities adversely affected both, health literacy and HRQoL. CONCLUSION Inadequate health literacy is a contributing factor to poor physical functioning in patients with IHD. Increasing health literacy may improve HRQoL and reduce the impact of IHD among patients with this chronic CVD.", "title": "Effect of Health Literacy on Quality of Life amongst Patients with Ischaemic Heart Disease in Australian General Practice" }, { "docid": "12770738", "text": "BACKGROUND Questions remain as to whether higher levels of cardiorespiratory fitness, a measure of regular physical activity, are associated with lower risk of cardiovascular disease (CVD) mortality in overweight and obese individuals with diabetes. Our objective was to quantify the independent and joint relations of cardiorespiratory fitness (hereafter, fitness) and body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters) with CVD mortality in men with diabetes. \n METHODS This study was conducted using prospective observational data from the Aerobics Center Longitudinal Study. Study participants comprised 2316 men with no history of stroke or myocardial infarction and who were diagnosed as having diabetes (mean [SD] age, 50 [10] years); had a medical examination, including a maximal exercise test during 1970 to 1997 with mortality surveillance to December 31, 1998; and had a BMI of 18.5 or greater and less than 35.0. The main outcome measure was CVD mortality across levels of fitness with stratification by BMI. \n RESULTS We identified 179 CVD deaths during a mean (SD) follow-up of 15.9 (7.9) years and 36,710 man-years of exposure. In a model containing age, examination year, fasting glucose level, systolic blood pressure, parental history of premature CVD, total cholesterol level, cigarette smoking, abnormal resting, and exercise electrocardiograms, a significantly higher adjusted risk of mortality was observed in men with a low fitness level who were normal weight (hazard ratio, 2.7 [95% confidence interval, 1.3-5.7]), overweight (hazard ratio, 2.7 [95% confidence interval, 1.4-5.1]), and class 1 obese (hazard ratio, 2.8 [95% confidence interval, 1.4-5.1]) compared with normal weight men with a high fitness level. \n CONCLUSION In this cohort of men with diabetes, low fitness level was associated with increased risk of CVD mortality within normal weight, overweight, and class 1 obese weight categories.", "title": "Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes." }, { "docid": "4442799", "text": "BACKGROUND Soy protein or its components may protect against the atherosclerotic cardiovascular disease (CVD) risk factors total homocysteine (tHcy), C-reactive protein (CRP), and excess body iron, which generally increase with menopause. \n OBJECTIVE The primary objective of this study was to determine the independent effect of the soy protein components isoflavones and phytate on CVD risk factors in postmenopausal women. The secondary objective was to identify factors [blood lipids, oxidative stress indexes, serum ferritin, plasma folate, plasma vitamin B-12, and body mass index (BMI)] contributing to tHcy and CRP concentrations. \n DESIGN In a double-blind, 6-wk study, 55 postmenopausal women aged 47-72 y were randomly assigned to 1 of 4 soy protein (40 g/d) isolate treatments: native phytate and native isoflavone (n = 14), native phytate and low isoflavone (n = 13), low phytate and native isoflavone (n = 14), or low phytate and low isoflavone (n = 14). We measured iron indexes, tHcy, CRP, and BMI. \n RESULTS Soy protein with native phytate significantly reduced tHcy (P = 0.017), transferrin saturation (P = 0.027), and ferritin (P = 0.029), whereas soy protein with native isoflavones had no effect on any variables. At baseline, BMI was highly correlated with tHcy (r = 0.39, P = 0.003) and CRP (r = 0.55, P < 0.0001), whereas HDL cholesterol was correlated with CRP (r = -0.30, P = 0.02). Multiple regression analysis showed that LDL cholesterol and BMI contributed significantly (R2= 19.9%, P = 0.003) to the overall variance in tHcy. \n CONCLUSION Consuming phytate-rich foods and maintaining a healthy weight may reduce atherosclerotic CVD risk factors in postmenopausal women.", "title": "Effects of soy isoflavones and phytate on homocysteine, C-reactive protein, and iron status in postmenopausal women." }, { "docid": "9617381", "text": "OBJECTIVE To evaluate long-term prognostic effect of serum noncholesterol sterols, including plant sterols, in middle-aged men with high cardiovascular disease (CVD) risk, without statins at baseline. \n METHODS This was a prospective study of 232 men (mean age 60 years) at high risk of CVD in 1985-1986. Most were hypercholesterolemic, 29 (12%) had a history of CVD or cancer, 6 (3%) had diabetes, and 46 (20%) had metabolic syndrome (MS). Measured noncholesterol sterols (expressed as absolute concentrations or ratios to serum cholesterol to standardize for cholesterol concentrations) included lathosterol and desmosterol (reflect cholesterol synthesis), and plant sterols (campesterol and sitosterol) and cholestanol (reflect cholesterol absorption). Main outcome measure was total mortality. \n RESULTS At baseline, markers of cholesterol synthesis and absorption showed expected inverse associations. During the 22-year follow-up 101 men (43%) died. At baseline, nonsurvivors smoked more, exercised less and had more components of MS (although not filling strict criteria), whereas traditional risk factors of CVD were not significantly different. Of the noncholesterol sterols (either absolute or ratio), only sitosterol was significantly higher in survivors than in nonsurvivors (P=0.02). In multivariable analyses, highest sitosterol-to-cholesterol tertile was associated with significantly lower mortality risk (HR 0.51, 95% CI 0.30-0.87) as compared to lowest tertile. Other associations were nonsignificant, although a \"global\" index of cholesterol metabolism (desmosterol-to-sitosterol ratio) suggested higher cholesterol synthesis and lower absorption to be associated with higher total and CVD mortality. \n CONCLUSION Higher serum plant sterol levels in middle-aged men predicted lower long-term mortality risk, possibly reflecting an association between higher synthesis/lower absorption of cholesterol and mortality.", "title": "Serum plant and other noncholesterol sterols, cholesterol metabolism and 22-year mortality among middle-aged men." }, { "docid": "71625969", "text": "Abstract Background: For the past 20 years numerous epidemiological studies have correlated the consumption of alcohol and a variety of disease states: overall mortality, arteriosclerotic vascular diseases, hypertension, cancers, peptic ulcer, respiratory infections, gall stones, kidney stones, age-related macular degeneration, bone density, and cognitive function. Methods: A review of these articles reveals that each of these studies has compared the outcome of individuals at various levels of alcohol consumption with that of abstainers. Results: Each analysis has identified a U-shaped or J-shaped curve of reduced relative risk for a given disease state compared with abstainers. A clear definition of consumption in moderation becomes evident: for men it should not exceed 2 to 4 drinks per day, and for women it should not exceed 1 to 2 drinks per day. Conclusions: Alcohol by itself has favorable effects on the level of high-density lipoprotein cholesterol, and inhibition of platelet aggregation. Wine, particularly red wine, has high levels of phenolic compounds that favorably influence multiple biochemical systems, such as increased high-density lipoprotein cholesterol, antioxidant activity, decreased platelet aggregation and endothelial adhesion, suppression of cancer cell growth, and promotion of nitric oxide production.", "title": "Alcohol, wine, and health" }, { "docid": "43629704", "text": "BACKGROUND Lowering the blood cholesterol level may reduce the risk of coronary heart disease. This double-blind study was designed to determine whether the administration of pravastatin to men with hypercholesterolemia and no history of myocardial infarction reduced the combined incidence of nonfatal myocardial infarction and death from coronary heart disease. \n METHODS We randomly assigned 6595 men, 45 to 64 years of age, with a mean (+/- SD) plasma cholesterol level of 272 +/- 23 mg per deciliter (7.0 +/- 0.6 mmol per liter) to receive pravastatin (40 mg each evening) or placebo. The average follow-up period was 4.9 years. Medical records, electrocardiographic recordings, and the national death registry were used to determine the clinical end points. \n RESULTS Pravastatin lowered plasma cholesterol levels by 20 percent and low-density-lipoprotein cholesterol levels by 26 percent, whereas there was no change with placebo. There were 248 definite coronary events (specified as nonfatal myocardial infarction or death from coronary heart disease) in the placebo group, and 174 in the pravastatin group (relative reduction in risk with pravastatin, 31 percent; 95 percent confidence interval, 17 to 43 percent; P < 0.001). There were similar reductions in the risk of definite nonfatal myocardial infarctions (31 percent reduction, P < 0.001), death from coronary heart disease (definite cases alone: 28 percent reduction, P = 0.13; definite plus suspected cases: 33 percent reduction, P = 0.042), and death from all cardiovascular causes (32 percent reduction, P = 0.033). There was no excess of deaths from noncardiovascular causes in the pravastatin group. We observed a 22 percent reduction in the risk of death from any cause in the pravastatin group (95 percent confidence interval, 0 to 40 percent; P = 0.051). \n CONCLUSIONS Treatment with pravastatin significantly reduced the incidence of myocardial infarction and death from cardiovascular causes without adversely affecting the risk of death from noncardiovascular causes in men with moderate hypercholesterolemia and no history of myocardial infarction.", "title": "Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group." }, { "docid": "8906858", "text": "BACKGROUND Cali, Colombia, has a high incidence of interpersonal violence deaths. Various alcohol control policies have been implemented to reduce alcohol-related problems. The objective of this study was to determine whether different alcohol control policies were associated with changes in the incidence rate of homicides. \n METHODS Ecologic study conducted during 2004-08 using a time-series design. Policies were implemented with variations in hours of restriction of sales and consumption of alcohol. Most restrictive policies prohibited alcohol between 2 a.m. and 10 a.m. for 446 non-consecutive days. Moderately restrictive policies prohibited alcohol between 3 a.m. and 10 a.m. for 1277 non-consecutive days. Lax policies prohibited alcohol between 4 a.m. and 10 a.m. for 104 non-consecutive days. In conditional autoregressive negative binomial regressions, rates of homicides and unintentional injury deaths (excluding traffic events) were compared between different periods of days when different policies were in effect. \n RESULTS There was an increased risk of homicides in periods when the moderately restrictive policies were in effect compared with periods when the most restrictive policies were in effect [incidence rate ratio (IRR) 1.15, 90% confidence interval (CI) 1.05-1.26, P = 0.012], and there was an even higher risk of homicides in periods when the lax policies were in effect compared with periods when the most restrictive policies were in effect (IRR 1.42, 90% CI 1.26-1.61, P < 0.001). Less restrictive policies were not associated with increased risk of unintentional injury deaths. \n CONCLUSION Extended hours of sales and consumption of alcohol were associated with increased risk of homicides. Strong restrictions on alcohol availability could reduce the incidence of interpersonal violence events in communities where homicides are high.", "title": "Policies for alcohol restriction and their association with interpersonal violence: a time-series analysis of homicides in Cali, Colombia." }, { "docid": "21767325", "text": "Arterial stiffness and wave reflections exert a number of adverse effects on cardiovascular function and disease risk and are associated with a greater rate of mortality in patients with end-stage renal failure and essential hypertension. Accordingly, the prevention and treatment of arterial stiffness are of paramount importance. Because arterial stiffening is being recognized as a critical precursor of cardiovascular disease (CVD), it is essential to understand the role of lifestyle modifications on preventing and reversing arterial stiffening. Available evidence indicates that lifestyle modifications, in particular aerobic exercise and sodium restriction, appear to be clinically efficacious therapeutic interventions for preventing and treating arterial stiffening. Thus, sufficient evidence is available to recommend lifestyle modifications as part of a first-line therapeutic approach for arterial stiffening. However, more information is needed for a full understanding and optimal use of lifestyle modifications in the management of arterial stiffening.", "title": "Influence of lifestyle modification on arterial stiffness and wave reflections." }, { "docid": "52072815", "text": "Summary Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2·2% (95% uncertainty interval [UI] 1·5–3·0) of age-standardised female deaths and 6·8% (5·8–8·0) of age-standardised male deaths. Among the population aged 15–49 years, alcohol use was the leading risk factor globally in 2016, with 3·8% (95% UI 3·2–4·3) of female deaths and 12·2% (10·8–13·6) of male deaths attributable to alcohol use. For the population aged 15–49 years, female attributable DALYs were 2·3% (95% UI 2·0–2·6) and male attributable DALYs were 8·9% (7·8–9·9). The three leading causes of attributable deaths in this age group were tuberculosis (1·4% [95% UI 1·0–1·7] of total deaths), road injuries (1·2% [0·7–1·9]), and self-harm (1·1% [0·6–1·5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27·1% (95% UI 21·2–33·3) of total alcohol-attributable female deaths and 18·9% (15·3–22·6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0·0–0·8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption. Funding Bill & Melinda Gates Foundation.", "title": "Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016" } ]
801
Monoclonal antibody targeting of N-cadherin encourages castration resistance.
[ { "docid": "22180793", "text": "The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.", "title": "Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance" } ]
[ { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "17671145", "text": "The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.", "title": "ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer" }, { "docid": "4421578", "text": "Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.", "title": "Broad and potent neutralization of HIV-1 by a gp41-specific human antibody" }, { "docid": "14131683", "text": "An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer.", "title": "Divergent clonal evolution of castration resistant neuroendocrine prostate cancer" }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "31311495", "text": "We have previously demonstrated that, following acquisition of endocrine resistance, breast cancer cells display an altered growth rate together with increased aggressive behaviour in vitro. Since dysfunctional cell-cell adhesive interactions can promote an aggressive phenotype, we investigated the integrity of this protein complex in our breast cancer model of tamoxifen resistance. In culture, tamoxifen-resistant MCF7 (TamR) cells grew as loosely packed colonies with loss of cell-cell junctions and demonstrated altered morphology characteristic of cells undergoing epithelial-to-mesenchymal transition (EMT). Neutralising E-cadherin function promoted the invasion and inhibited the aggregation of endocrine-sensitive MCF7 cells, whilst having little effect on the behaviour of TamR cells. Additionally, TamR cells had increased levels of tyrosine-phosphorylated beta-catenin, whilst serine/threonine-phosphorylated beta-catenin was decreased. These cells also displayed loss of association between beta-catenin and E-cadherin, increased cytoplasmic and nuclear beta-catenin and elevated transcription of beta-catenin target genes known to be involved in tumour progression and EMT. Inhibition of EGFR kinase activity in TamR cells reduced beta-catenin tyrosine phosphorylation, increased beta-catenin-E-cadherin association and promoted cell-cell adhesion. In such treated cells, the association of beta-catenin with Lef-1 and the transcription of c-myc, cyclin-D1, CD44 and COX-2 were also reduced. These results suggest that homotypic adhesion in tamoxifen-resistant breast cancer cells is dysfunctional due to EGFR-driven modulation of the phosphorylation status of beta-catenin and may contribute to an enhanced aggressive phenotype and transition towards a mesenchymal phenotype in vitro.", "title": "Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation." }, { "docid": "25543207", "text": "Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. The candidates include various blockers of the purinergic P2Y12 receptor such as prasugrel, an oral irreversible thienopyridine; two adenosine triphosphate analogues that bind reversibly to the P2Y12 receptor: ticagrelor (oral) and cangrelor (intravenous); elinogrel, a direct-acting reversible P2Y12 receptor inhibitor (the only antiplatelet compound that can be administered both intravenously and orally); BX 667, an orally active and reversible small-molecule P2Y12 receptor antagonist; SCH 530348, SCH 205831, SCH 602539 and E5555, highly selective and orally active antagonists on the protease-activated receptor 1. A number of drugs also hit new targets: terutroban, an oral, selective and specific inhibitor of the thromboxane receptor; ARC1779, a second-generation, nuclease resistant aptamer which inhibits von Willebrand factor-dependent platelet aggregation; ALX-0081, a bivalent humanized nanobody targeting the GPIb binding site of von Willebrand factor and AJW200, an IgG4 monoclonal antibody of von Willebrand factor. The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.", "title": "Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "19485649", "text": "Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.", "title": "N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements." }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "27167110", "text": "BACKGROUND Androgens play a critical role in the growth of both androgen dependent and castration-resistant prostate cancer (CRPC). Only a few micro-RNAs (miRNAs) have been suggested to be androgen regulated. We aim to identify androgen regulated miRNAs. \n METHODS We utilized LNCaP derived model, we have established, and which overexpresses the androgen receptor (AR), the VCaP cell line, and 13 intact-castrated prostate cancer (PC) xenograft pairs, as well as clinical specimens of untreated (PC) and CRPC. The expression of miRNAs was analyzed by microarrays and quantitative RT-PCR (Q-RT-PCR). Transfection of pre-miR-141 and anti-miR-141 was also used. \n RESULTS Seventeen miRNAs were > 1.5-fold up- or downregulated upon dihydrotestosterone (DHT) treatment in the cell lines, and 42 after castration in the AR-positive xenografts. Only four miRNAs (miR-10a, miR-141, miR-150*, and miR-1225-5p) showed similar androgen regulation in both cell lines and xenografts. Of those, miR-141 was found to be expressed more in PC and CRPC compared to benign prostate hyperplasia. Additionally, the overexpression of miR-141 enhanced growth of parental LNCaP cells while inhibition of miR-141 by anti-miR-141 suppressed the growth of the LNCaP subline overexpressing AR. \n CONCLUSIONS Only a few miRNAs were found to be androgen-regulated in both cell lines and xenografts models. Of those, the expression of miR-141 was upregulated in cancer. The ectopic overexpression of miR-141 increased growth of LNCaP cell suggesting it may contribute to the progression of PC.", "title": "Androgen regulation of micro-RNAs in prostate cancer." }, { "docid": "2060137", "text": "Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.", "title": "Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing." }, { "docid": "3727986", "text": "Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.", "title": "A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion" }, { "docid": "26038789", "text": "3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1–infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.", "title": "HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1" }, { "docid": "3825472", "text": "Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine head, and that cadherin activity is essential for this synaptic rearrangement. Dendritic spines visualized with green fluorescent protein in hippocampal neurons showed an expansion by the activation of AMPA receptor, so that the synaptic apposition zone may be expanded. N-cadherin-venus fusion protein laterally dispersed along the expanding spine head. Overexpression of dominant-negative forms of N-cadherin resulted in the abrogation of the spine expansion. Inhibition of actin polymerization with cytochalasin D abolished the spine expansion. Together, our data suggest that cadherin-based adhesion machinery coupled with the actin-cytoskeleton is critical for the remodeling of synaptic apposition zone.", "title": "Cadherin activity is required for activity-induced spine remodeling" }, { "docid": "5700349", "text": "The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.", "title": "Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines" }, { "docid": "33904789", "text": "Measurements of carcinoembryonic antigen (CEA) in blood increased dramatically in some patients who were receiving injections of monoclonal antibody. CEA titers were measured with a monoclonal antibody-based double-determinant enzyme immunoassay in which untreated plasma specimens were diluted with an equal volume of buffer containing mouse serum. Increasing CEA titers were accompanied by the appearance and coincident increase in titers of human antibody against mouse Ig (HAMA). Adsorption of these sera with solid-phase anti-human IgG or Protein A restored antigen titers to pretreatment values; evidently the serum factor eliciting false-positive CEA titers was most probably HAMA. Neither addition of undiluted mouse serum to the assay mixture nor pretreatment by heating plasma specimens to 70 degrees C effectively abolished HAMA interference. By contrast, protein precipitation with polyethylene glycol (130 g/L) or heating plasma samples to 90 degrees C eliminated false-positive titers caused by HAMA, but did not reduce authentic CEA titers.", "title": "\"Sandwich\"-type immunoassay of carcinoembryonic antigen in patients receiving murine monoclonal antibodies for diagnosis and therapy." }, { "docid": "27907205", "text": "A monoclonal antibody was raised against cells from an experimental rat myelocytic leukemia (BNML). The major characteristics of the rat leukemia model resemble those of human acute myelocytic leukemia. The monoclonal antibody (MCA) RM124 was characterized with respect to its labeling pattern of BNML leukemia cells, normal rat bone marrow cells, and the hemopoietic stem cell (HSC), by flow cytometric methods and complement-dependent cytotoxicity assays. Flow cytometry revealed a much higher labeling of the leukemic cells by the MCA-RM124 compared with normal bone marrow cells, including CFU-S and CFU-C. Only a subpopulation of the normal granulocytes showed cross reactivity, however, at a lower labeling density. On using the cytotoxicity assays, it was evident that there was a selective killing of leukemic cells as compared with the activity towards the normal hemopoietic stem cells (CFU-S).", "title": "Characteristics of a monoclonal antibody (RM124) against acute myelocytic leukemia cells." } ]
802
Monoclonal antibody targeting of N-cadherin encourages metastasis.
[ { "docid": "22180793", "text": "The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.", "title": "Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance" } ]
[ { "docid": "3727986", "text": "Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.", "title": "A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion" }, { "docid": "7986878", "text": "We previously reported that intetumumab (CNTO 95), a fully human anti-αv integrin monoclonal antibody, is a radiosensitizer in mice with xenograft tumors. Because intetumumab does not cross-react with mouse integrins, but has cross-reactivity with rat integrins, we next studied the potential combined use of radiation therapy and intetumumab in human cancer xenograft models in nude rats to assess effects on both tumor cells and the tumor microenvironment. Nude rats bearing human head and neck cancer and non-small cell lung cancer (NSCLC) xenografts were treated with intetumumab and fractionated local tumor radiotherapy. Effects on tumor growth and metastasis, blood perfusion, oxygenation, and gastrointestinal toxicity were studied. Intetumumab alone had a moderate effect on tumor growth. When combined with fractionated radiation therapy, intetumumab significantly inhibited tumor growth and produced a tumor response rate that was significantly better than with radiation therapy alone. Treatment with intetumumab also significantly reduced lung metastasis in the A549 NSCLC xenograft model. The oxygenation and blood perfusion in xenograft tumors measured by microbubble-enhanced ultrasound imaging were substantially increased after treatment with intetumumab. The combined use of intetumumab and radiation therapy reduced the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. Toxicity studies showed that treatment with intetumumab did not cause the histopathologic changes in the lungs and did not sensitize the sensitive gastrointestinal epithelium to the effect of radiation therapy. Intetumumab can potentiate the efficacy of fractionated radiation therapy in human cancer xenograft tumors in nude rats without increased toxicity.", "title": "Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "9600826", "text": "Angiogenesis and cancer invasiveness greatly contribute to cancer malignancy. Arf6 and its effector, AMAP1, are frequently overexpressed in breast cancer, and constitute a central pathway to induce the invasion and metastasis. In this pathway, Arf6 is activated by EGFR via GEP100. Arf6 is highly expressed also in human umbilical vein endothelial cells (HUVECs) and is implicated in angiogenesis. Here, we found that HUVECs also highly express AMAP1, and that vascular endothelial growth factor receptor-2 (VEGFR2) recruits GEP100 to activate Arf6. AMAP1 functions by binding to cortactin in cancer invasion and metastasis. We demonstrate that the same GEP100-Arf6-AMAP1-cortactin pathway is essential for angiogenesis activities, including cell migration and tubular formation, as well as for the enhancement of cell permeability and VE-cadherin endocytosis of VEGF-stimulated HUVECs. Components of this pathway are highly expressed in pathologic angiogenesis, and blocking of this pathway effectively inhibits VEGF- or tumor-induced angiogenesis and choroidal neovascularization. The GEP100-Arf6-AMAP1-cortactin pathway, activated by receptor tyrosine kinases, appears to be common in angiogenesis and cancer invasion and metastasis, and provides their new therapeutic targets.", "title": "GEP100-Arf6-AMAP1-Cortactin Pathway Frequently Used in Cancer Invasion Is Activated by VEGFR2 to Promote Angiogenesis" }, { "docid": "19485649", "text": "Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.", "title": "N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements." }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "2060137", "text": "Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.", "title": "Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing." }, { "docid": "26038789", "text": "3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1–infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.", "title": "HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1" }, { "docid": "4421578", "text": "Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.", "title": "Broad and potent neutralization of HIV-1 by a gp41-specific human antibody" }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "3825472", "text": "Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine head, and that cadherin activity is essential for this synaptic rearrangement. Dendritic spines visualized with green fluorescent protein in hippocampal neurons showed an expansion by the activation of AMPA receptor, so that the synaptic apposition zone may be expanded. N-cadherin-venus fusion protein laterally dispersed along the expanding spine head. Overexpression of dominant-negative forms of N-cadherin resulted in the abrogation of the spine expansion. Inhibition of actin polymerization with cytochalasin D abolished the spine expansion. Together, our data suggest that cadherin-based adhesion machinery coupled with the actin-cytoskeleton is critical for the remodeling of synaptic apposition zone.", "title": "Cadherin activity is required for activity-induced spine remodeling" }, { "docid": "5700349", "text": "The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.", "title": "Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines" }, { "docid": "33904789", "text": "Measurements of carcinoembryonic antigen (CEA) in blood increased dramatically in some patients who were receiving injections of monoclonal antibody. CEA titers were measured with a monoclonal antibody-based double-determinant enzyme immunoassay in which untreated plasma specimens were diluted with an equal volume of buffer containing mouse serum. Increasing CEA titers were accompanied by the appearance and coincident increase in titers of human antibody against mouse Ig (HAMA). Adsorption of these sera with solid-phase anti-human IgG or Protein A restored antigen titers to pretreatment values; evidently the serum factor eliciting false-positive CEA titers was most probably HAMA. Neither addition of undiluted mouse serum to the assay mixture nor pretreatment by heating plasma specimens to 70 degrees C effectively abolished HAMA interference. By contrast, protein precipitation with polyethylene glycol (130 g/L) or heating plasma samples to 90 degrees C eliminated false-positive titers caused by HAMA, but did not reduce authentic CEA titers.", "title": "\"Sandwich\"-type immunoassay of carcinoembryonic antigen in patients receiving murine monoclonal antibodies for diagnosis and therapy." }, { "docid": "27907205", "text": "A monoclonal antibody was raised against cells from an experimental rat myelocytic leukemia (BNML). The major characteristics of the rat leukemia model resemble those of human acute myelocytic leukemia. The monoclonal antibody (MCA) RM124 was characterized with respect to its labeling pattern of BNML leukemia cells, normal rat bone marrow cells, and the hemopoietic stem cell (HSC), by flow cytometric methods and complement-dependent cytotoxicity assays. Flow cytometry revealed a much higher labeling of the leukemic cells by the MCA-RM124 compared with normal bone marrow cells, including CFU-S and CFU-C. Only a subpopulation of the normal granulocytes showed cross reactivity, however, at a lower labeling density. On using the cytotoxicity assays, it was evident that there was a selective killing of leukemic cells as compared with the activity towards the normal hemopoietic stem cells (CFU-S).", "title": "Characteristics of a monoclonal antibody (RM124) against acute myelocytic leukemia cells." }, { "docid": "25298276", "text": "Bisphosphonates are currently used for the treatment of bone metastases, and emerging data suggest that they may also have antitumor properties. Preclinical studies have demonstrated that zoledronic acid can inhibit angiogenesis, invasion and adhesion of tumor cells, and overall tumor progression, and emerging evidence suggests that the use of these agents may impede the development of skeletal metastases. In a recent clinical study in patients with metastatic bone disease, basal levels of vascular endothelial growth factor, a factor essential for angiogenesis, were significantly reduced in patients receiving zoledronic acid, suggesting that zoledronic acid may have clinically relevant antiangiogenic properties. Early clinical data on prevention of bone metastases by the early-generation bisphosphonate clodronate have yielded promising results in patients with breast cancer, and trials are currently ongoing to assess the efficacy of clodronate in this setting. Similarly, the new-generation bisphosphonate zoledronic acid has demonstrated activity in the prevention of bone metastases in small, 18-month pilot studies in patients with high-risk solid tumors (N=40; P=0.0002). Similarly, in a separate 5-year trial, the overall survival of patients with multiple myeloma was greater in patients whose standard treatment regimens included zoledronic acid compared with standard treatment alone (P<0.01). These encouraging early clinical results supported the initiation of larger randomized trials that are currently ongoing.", "title": "Emerging role of bisphosphonates in the clinic--antitumor activity and prevention of metastasis to bone." }, { "docid": "46266579", "text": "BACKGROUND The amyloid fibril deposits that cause systemic amyloidosis always contain the nonfibrillar normal plasma protein, serum amyloid P component (SAP). The drug (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC) efficiently depletes SAP from the plasma but leaves some SAP in amyloid deposits that can be specifically targeted by therapeutic IgG anti-SAP antibodies. In murine amyloid A type amyloidosis, the binding of these antibodies to the residual SAP in amyloid deposits activates complement and triggers the rapid clearance of amyloid by macrophage-derived multinucleated giant cells. \n METHODS We conducted an open-label, single-dose-escalation, phase 1 trial involving 15 patients with systemic amyloidosis. After first using CPHPC to deplete circulating SAP, we infused a fully humanized monoclonal IgG1 anti-SAP antibody. Patients with clinical evidence of cardiac involvement were not included for safety reasons. Organ function, inflammatory markers, and amyloid load were monitored. \n RESULTS There were no serious adverse events. Infusion reactions occurred in some of the initial recipients of larger doses of antibody; reactions were reduced by slowing the infusion rate for later patients. At 6 weeks, patients who had received a sufficient dose of antibody in relation to their amyloid load had decreased liver stiffness, as measured with the use of transient elastography. These patients also had improvements in liver function in association with a substantial reduction in hepatic amyloid load, as shown by means of SAP scintigraphy and measurement of extracellular volume by magnetic resonance imaging. A reduction in kidney amyloid load and shrinkage of an amyloid-laden lymph node were also observed. \n CONCLUSIONS Treatment with CPHPC followed by an anti-SAP antibody safely triggered clearance of amyloid deposits from the liver and some other tissues. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01777243.).", "title": "Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component." }, { "docid": "5123516", "text": "Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.", "title": "EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme." } ]
803
Monoclonal antibody targeting of N-cadherin inhibits castration resistance.
[ { "docid": "22180793", "text": "The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.", "title": "Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance" } ]
[ { "docid": "25543207", "text": "Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. The candidates include various blockers of the purinergic P2Y12 receptor such as prasugrel, an oral irreversible thienopyridine; two adenosine triphosphate analogues that bind reversibly to the P2Y12 receptor: ticagrelor (oral) and cangrelor (intravenous); elinogrel, a direct-acting reversible P2Y12 receptor inhibitor (the only antiplatelet compound that can be administered both intravenously and orally); BX 667, an orally active and reversible small-molecule P2Y12 receptor antagonist; SCH 530348, SCH 205831, SCH 602539 and E5555, highly selective and orally active antagonists on the protease-activated receptor 1. A number of drugs also hit new targets: terutroban, an oral, selective and specific inhibitor of the thromboxane receptor; ARC1779, a second-generation, nuclease resistant aptamer which inhibits von Willebrand factor-dependent platelet aggregation; ALX-0081, a bivalent humanized nanobody targeting the GPIb binding site of von Willebrand factor and AJW200, an IgG4 monoclonal antibody of von Willebrand factor. The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.", "title": "Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases." }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "31311495", "text": "We have previously demonstrated that, following acquisition of endocrine resistance, breast cancer cells display an altered growth rate together with increased aggressive behaviour in vitro. Since dysfunctional cell-cell adhesive interactions can promote an aggressive phenotype, we investigated the integrity of this protein complex in our breast cancer model of tamoxifen resistance. In culture, tamoxifen-resistant MCF7 (TamR) cells grew as loosely packed colonies with loss of cell-cell junctions and demonstrated altered morphology characteristic of cells undergoing epithelial-to-mesenchymal transition (EMT). Neutralising E-cadherin function promoted the invasion and inhibited the aggregation of endocrine-sensitive MCF7 cells, whilst having little effect on the behaviour of TamR cells. Additionally, TamR cells had increased levels of tyrosine-phosphorylated beta-catenin, whilst serine/threonine-phosphorylated beta-catenin was decreased. These cells also displayed loss of association between beta-catenin and E-cadherin, increased cytoplasmic and nuclear beta-catenin and elevated transcription of beta-catenin target genes known to be involved in tumour progression and EMT. Inhibition of EGFR kinase activity in TamR cells reduced beta-catenin tyrosine phosphorylation, increased beta-catenin-E-cadherin association and promoted cell-cell adhesion. In such treated cells, the association of beta-catenin with Lef-1 and the transcription of c-myc, cyclin-D1, CD44 and COX-2 were also reduced. These results suggest that homotypic adhesion in tamoxifen-resistant breast cancer cells is dysfunctional due to EGFR-driven modulation of the phosphorylation status of beta-catenin and may contribute to an enhanced aggressive phenotype and transition towards a mesenchymal phenotype in vitro.", "title": "Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "17671145", "text": "The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.", "title": "ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer" }, { "docid": "4421578", "text": "Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.", "title": "Broad and potent neutralization of HIV-1 by a gp41-specific human antibody" }, { "docid": "27167110", "text": "BACKGROUND Androgens play a critical role in the growth of both androgen dependent and castration-resistant prostate cancer (CRPC). Only a few micro-RNAs (miRNAs) have been suggested to be androgen regulated. We aim to identify androgen regulated miRNAs. \n METHODS We utilized LNCaP derived model, we have established, and which overexpresses the androgen receptor (AR), the VCaP cell line, and 13 intact-castrated prostate cancer (PC) xenograft pairs, as well as clinical specimens of untreated (PC) and CRPC. The expression of miRNAs was analyzed by microarrays and quantitative RT-PCR (Q-RT-PCR). Transfection of pre-miR-141 and anti-miR-141 was also used. \n RESULTS Seventeen miRNAs were > 1.5-fold up- or downregulated upon dihydrotestosterone (DHT) treatment in the cell lines, and 42 after castration in the AR-positive xenografts. Only four miRNAs (miR-10a, miR-141, miR-150*, and miR-1225-5p) showed similar androgen regulation in both cell lines and xenografts. Of those, miR-141 was found to be expressed more in PC and CRPC compared to benign prostate hyperplasia. Additionally, the overexpression of miR-141 enhanced growth of parental LNCaP cells while inhibition of miR-141 by anti-miR-141 suppressed the growth of the LNCaP subline overexpressing AR. \n CONCLUSIONS Only a few miRNAs were found to be androgen-regulated in both cell lines and xenografts models. Of those, the expression of miR-141 was upregulated in cancer. The ectopic overexpression of miR-141 increased growth of LNCaP cell suggesting it may contribute to the progression of PC.", "title": "Androgen regulation of micro-RNAs in prostate cancer." }, { "docid": "3825472", "text": "Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine head, and that cadherin activity is essential for this synaptic rearrangement. Dendritic spines visualized with green fluorescent protein in hippocampal neurons showed an expansion by the activation of AMPA receptor, so that the synaptic apposition zone may be expanded. N-cadherin-venus fusion protein laterally dispersed along the expanding spine head. Overexpression of dominant-negative forms of N-cadherin resulted in the abrogation of the spine expansion. Inhibition of actin polymerization with cytochalasin D abolished the spine expansion. Together, our data suggest that cadherin-based adhesion machinery coupled with the actin-cytoskeleton is critical for the remodeling of synaptic apposition zone.", "title": "Cadherin activity is required for activity-induced spine remodeling" }, { "docid": "6550579", "text": "Epidermal growth factor receptor (EGFR) and HER3 each form heterodimers with HER2 and have independently been implicated as key coreceptors that drive HER2-amplified breast cancer. Some studies suggest a dominant role for EGFR, a notion of renewed interest given the development of dual HER2/EGFR small-molecule inhibitors. Other studies point to HER3 as the primary coreceptor. To clarify the relative contributions of EGFR and HER3 to HER2 signaling, we studied receptor knockdown via small interfering RNA technology across a panel of six HER2-overexpressing cell lines. Interestingly, HER3 was as critical as HER2 for maintaining cell proliferation in most cell lines, whereas EGFR was dispensable. Induction of HER3 knockdown in the HER2-overexpressing BT474M1 cell line was found to inhibit growth in three-dimensional culture and induce rapid tumor regression of in vivo xenografts. Furthermore, preferential phosphorylation of HER3, but not EGFR, was observed in HER2-amplified breast cancer tissues. Given these data suggesting HER3 as an important therapeutic target, we examined the activity of pertuzumab, a HER2 antibody that inhibits HER3 signaling by blocking ligand-induced HER2/HER3 heterodimerization. Pertuzumab inhibited ligand-dependent morphogenesis in three-dimensional culture and induced tumor regression in the heregulin-dependent MDA-MB-175 xenograft model. Importantly, these activities of pertuzumab were distinct from those of trastuzumab, a monoclonal antibody currently used for treatment of HER2-amplified breast cancer patients. Our data suggest that inhibition of HER3 may be more clinically relevant than inhibition of EGFR in HER2-amplified breast cancer and also suggest that adding pertuzumab to trastuzumab may augment therapeutic benefit by blocking HER2/HER3 signaling.", "title": "A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy." }, { "docid": "14131683", "text": "An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer.", "title": "Divergent clonal evolution of castration resistant neuroendocrine prostate cancer" }, { "docid": "1454773", "text": "The programmed death-1 (PD-1) receptor serves as an immunologic checkpoint, limiting bystander tissue damage and preventing the development of autoimmunity during inflammatory responses. PD-1 is expressed by activated T cells and downmodulates T-cell effector functions upon binding to its ligands, PD-L1 and PD-L2, on antigen-presenting cells. In patients with cancer, the expression of PD-1 on tumor-infiltrating lymphocytes and its interaction with the ligands on tumor and immune cells in the tumor microenvironment undermine antitumor immunity and support its rationale for PD-1 blockade in cancer immunotherapy. This report details the development and characterization of nivolumab, a fully human IgG4 (S228P) anti-PD-1 receptor-blocking monoclonal antibody. Nivolumab binds to PD-1 with high affinity and specificity, and effectively inhibits the interaction between PD-1 and its ligands. In vitro assays demonstrated the ability of nivolumab to potently enhance T-cell responses and cytokine production in the mixed lymphocyte reaction and superantigen or cytomegalovirus stimulation assays. No in vitro antibody-dependent cell-mediated or complement-dependent cytotoxicity was observed with the use of nivolumab and activated T cells as targets. Nivolumab treatment did not induce adverse immune-related events when given to cynomolgus macaques at high concentrations, independent of circulating anti-nivolumab antibodies where observed. These data provide a comprehensive preclinical characterization of nivolumab, for which antitumor activity and safety have been demonstrated in human clinical trials in various solid tumors.", "title": "In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates." }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "19485649", "text": "Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.", "title": "N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements." }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "14241418", "text": "Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.", "title": "NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations." }, { "docid": "9142761", "text": "Plasmodium falciparum surface protein 25 (Pfs25) is a candidate for transmission-blocking vaccines (TBVs). Anti-Pfs25 antibodies block the development of oocysts in membrane-feeding assays and we have shown the activity correlates with antibody titer. In this study, we purified Pfs25-specific IgGs to convert antibody titer to microg/mL and determined the amount of antibody required to inhibit 50% of oocyst development (IC(50)). The IC(50) were, 15.9, 4.2, 41.2, and 85.6microg/mL for mouse, rabbit, monkey and human, respectively, and the differences among species were significant. Anti-Pfs25 sera from rabbit, monkey and human showed different patterns of competition against 6 mouse monoclonal antibodies, and the avidity of antibodies among four species were also different. These data suggests that information obtained from animal studies which assess efficacy of TBV candidates may be difficult to translate to human immunization.", "title": "The IC(50) of anti-Pfs25 antibody in membrane-feeding assay varies among species." }, { "docid": "13235609", "text": "Inhibition of VEGF signaling leads to a proinvasive phenotype in mouse models of glioblastoma multiforme (GBM) and in a subset of GBM patients treated with bevacizumab. Here, we demonstrate that vascular endothelial growth factor (VEGF) directly and negatively regulates tumor cell invasion through enhanced recruitment of the protein tyrosine phosphatase 1B (PTP1B) to a MET/VEGFR2 heterocomplex, thereby suppressing HGF-dependent MET phosphorylation and tumor cell migration. Consequently, VEGF blockade restores and increases MET activity in GBM cells in a hypoxia-independent manner, while inducing a program reminiscent of epithelial-to-mesenchymal transition highlighted by a T-cadherin to N-cadherin switch and enhanced mesenchymal features. Inhibition of MET in GBM mouse models blocks mesenchymal transition and invasion provoked by VEGF ablation, resulting in substantial survival benefit.", "title": "VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex." }, { "docid": "27772649", "text": "BACKGROUND & AIMS Celiac disease is characterized by disturbed jejunal crypt-villus axis biology with immunoglobulin (Ig) A deposits underlining the epithelium. The aim of this study was to test whether celiac disease serum IgA (reticulin/endomysial autoantibodies) interferes with the mesenchymal-epithelial cell cross-talk. \n METHODS Differentiation of T84 epithelial cells was induced with IMR-90 fibroblasts or transforming growth factor beta in three-dimensional collagen gel cultures. The effects of purified celiac IgA and monoclonal tissue transglutaminase antibodies (CUB7402) were studied by adding the antibodies to the cocultures. \n RESULTS Active celiac disease IgA, reactive for tissue transglutaminase, significantly inhibited T84 epithelial cell differentiation (P < 0.001) and increased epithelial cell proliferation (P = 0.024). Similar effects were obtained with antibodies against tissue transglutaminase. \n CONCLUSIONS Celiac disease-associated IgA class antibodies disturb transforming growth factor beta-mediated fibroblast-epithelial cell cross-talk in this in vitro crypt-villus axis model. This primary finding indicates that celiac disease-specific autoantibodies may also contribute to the formation of the gluten-triggered jejunal mucosal lesion in celiac disease.", "title": "Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation." } ]
804
Monoclonal antibody targeting of N-cadherin inhibits growth.
[ { "docid": "22180793", "text": "The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.", "title": "Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance" } ]
[ { "docid": "6550579", "text": "Epidermal growth factor receptor (EGFR) and HER3 each form heterodimers with HER2 and have independently been implicated as key coreceptors that drive HER2-amplified breast cancer. Some studies suggest a dominant role for EGFR, a notion of renewed interest given the development of dual HER2/EGFR small-molecule inhibitors. Other studies point to HER3 as the primary coreceptor. To clarify the relative contributions of EGFR and HER3 to HER2 signaling, we studied receptor knockdown via small interfering RNA technology across a panel of six HER2-overexpressing cell lines. Interestingly, HER3 was as critical as HER2 for maintaining cell proliferation in most cell lines, whereas EGFR was dispensable. Induction of HER3 knockdown in the HER2-overexpressing BT474M1 cell line was found to inhibit growth in three-dimensional culture and induce rapid tumor regression of in vivo xenografts. Furthermore, preferential phosphorylation of HER3, but not EGFR, was observed in HER2-amplified breast cancer tissues. Given these data suggesting HER3 as an important therapeutic target, we examined the activity of pertuzumab, a HER2 antibody that inhibits HER3 signaling by blocking ligand-induced HER2/HER3 heterodimerization. Pertuzumab inhibited ligand-dependent morphogenesis in three-dimensional culture and induced tumor regression in the heregulin-dependent MDA-MB-175 xenograft model. Importantly, these activities of pertuzumab were distinct from those of trastuzumab, a monoclonal antibody currently used for treatment of HER2-amplified breast cancer patients. Our data suggest that inhibition of HER3 may be more clinically relevant than inhibition of EGFR in HER2-amplified breast cancer and also suggest that adding pertuzumab to trastuzumab may augment therapeutic benefit by blocking HER2/HER3 signaling.", "title": "A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy." }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "27772649", "text": "BACKGROUND & AIMS Celiac disease is characterized by disturbed jejunal crypt-villus axis biology with immunoglobulin (Ig) A deposits underlining the epithelium. The aim of this study was to test whether celiac disease serum IgA (reticulin/endomysial autoantibodies) interferes with the mesenchymal-epithelial cell cross-talk. \n METHODS Differentiation of T84 epithelial cells was induced with IMR-90 fibroblasts or transforming growth factor beta in three-dimensional collagen gel cultures. The effects of purified celiac IgA and monoclonal tissue transglutaminase antibodies (CUB7402) were studied by adding the antibodies to the cocultures. \n RESULTS Active celiac disease IgA, reactive for tissue transglutaminase, significantly inhibited T84 epithelial cell differentiation (P < 0.001) and increased epithelial cell proliferation (P = 0.024). Similar effects were obtained with antibodies against tissue transglutaminase. \n CONCLUSIONS Celiac disease-associated IgA class antibodies disturb transforming growth factor beta-mediated fibroblast-epithelial cell cross-talk in this in vitro crypt-villus axis model. This primary finding indicates that celiac disease-specific autoantibodies may also contribute to the formation of the gluten-triggered jejunal mucosal lesion in celiac disease.", "title": "Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "7986878", "text": "We previously reported that intetumumab (CNTO 95), a fully human anti-αv integrin monoclonal antibody, is a radiosensitizer in mice with xenograft tumors. Because intetumumab does not cross-react with mouse integrins, but has cross-reactivity with rat integrins, we next studied the potential combined use of radiation therapy and intetumumab in human cancer xenograft models in nude rats to assess effects on both tumor cells and the tumor microenvironment. Nude rats bearing human head and neck cancer and non-small cell lung cancer (NSCLC) xenografts were treated with intetumumab and fractionated local tumor radiotherapy. Effects on tumor growth and metastasis, blood perfusion, oxygenation, and gastrointestinal toxicity were studied. Intetumumab alone had a moderate effect on tumor growth. When combined with fractionated radiation therapy, intetumumab significantly inhibited tumor growth and produced a tumor response rate that was significantly better than with radiation therapy alone. Treatment with intetumumab also significantly reduced lung metastasis in the A549 NSCLC xenograft model. The oxygenation and blood perfusion in xenograft tumors measured by microbubble-enhanced ultrasound imaging were substantially increased after treatment with intetumumab. The combined use of intetumumab and radiation therapy reduced the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. Toxicity studies showed that treatment with intetumumab did not cause the histopathologic changes in the lungs and did not sensitize the sensitive gastrointestinal epithelium to the effect of radiation therapy. Intetumumab can potentiate the efficacy of fractionated radiation therapy in human cancer xenograft tumors in nude rats without increased toxicity.", "title": "Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats." }, { "docid": "13235609", "text": "Inhibition of VEGF signaling leads to a proinvasive phenotype in mouse models of glioblastoma multiforme (GBM) and in a subset of GBM patients treated with bevacizumab. Here, we demonstrate that vascular endothelial growth factor (VEGF) directly and negatively regulates tumor cell invasion through enhanced recruitment of the protein tyrosine phosphatase 1B (PTP1B) to a MET/VEGFR2 heterocomplex, thereby suppressing HGF-dependent MET phosphorylation and tumor cell migration. Consequently, VEGF blockade restores and increases MET activity in GBM cells in a hypoxia-independent manner, while inducing a program reminiscent of epithelial-to-mesenchymal transition highlighted by a T-cadherin to N-cadherin switch and enhanced mesenchymal features. Inhibition of MET in GBM mouse models blocks mesenchymal transition and invasion provoked by VEGF ablation, resulting in substantial survival benefit.", "title": "VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex." }, { "docid": "3825472", "text": "Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine head, and that cadherin activity is essential for this synaptic rearrangement. Dendritic spines visualized with green fluorescent protein in hippocampal neurons showed an expansion by the activation of AMPA receptor, so that the synaptic apposition zone may be expanded. N-cadherin-venus fusion protein laterally dispersed along the expanding spine head. Overexpression of dominant-negative forms of N-cadherin resulted in the abrogation of the spine expansion. Inhibition of actin polymerization with cytochalasin D abolished the spine expansion. Together, our data suggest that cadherin-based adhesion machinery coupled with the actin-cytoskeleton is critical for the remodeling of synaptic apposition zone.", "title": "Cadherin activity is required for activity-induced spine remodeling" }, { "docid": "14149065", "text": "E-cadherin has been linked to the suppression of tumor growth and the inhibition of cell proliferation in culture. We observed that progressively decreasing the seeding density of normal rat kidney-52E (NRK-52E) or MCF-10A epithelial cells from confluence, indeed, released cells from growth arrest. Unexpectedly, a further decrease in seeding density so that cells were isolated from neighboring cells decreased proliferation. Experiments using microengineered substrates showed that E-cadherin engagement stimulated the peak in proliferation at intermediate seeding densities, and that the proliferation arrest at high densities did not involve E-cadherin, but rather resulted from a crowding-dependent decrease in cell spreading against the underlying substrate. Rac1 activity, which was induced by E-cadherin engagement specifically at intermediate seeding densities, was required for the cadherin-stimulated proliferation, and the control of Rac1 activation by E-cadherin was mediated by p120-catenin. Together, these findings demonstrate a stimulatory role for E-cadherin in proliferative regulation, and identify a simple mechanism by which cell–cell contact may trigger or inhibit epithelial cell proliferation in different settings.", "title": "E-cadherin engagement stimulates proliferation via Rac1" }, { "docid": "5123516", "text": "Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.", "title": "EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme." }, { "docid": "31311495", "text": "We have previously demonstrated that, following acquisition of endocrine resistance, breast cancer cells display an altered growth rate together with increased aggressive behaviour in vitro. Since dysfunctional cell-cell adhesive interactions can promote an aggressive phenotype, we investigated the integrity of this protein complex in our breast cancer model of tamoxifen resistance. In culture, tamoxifen-resistant MCF7 (TamR) cells grew as loosely packed colonies with loss of cell-cell junctions and demonstrated altered morphology characteristic of cells undergoing epithelial-to-mesenchymal transition (EMT). Neutralising E-cadherin function promoted the invasion and inhibited the aggregation of endocrine-sensitive MCF7 cells, whilst having little effect on the behaviour of TamR cells. Additionally, TamR cells had increased levels of tyrosine-phosphorylated beta-catenin, whilst serine/threonine-phosphorylated beta-catenin was decreased. These cells also displayed loss of association between beta-catenin and E-cadherin, increased cytoplasmic and nuclear beta-catenin and elevated transcription of beta-catenin target genes known to be involved in tumour progression and EMT. Inhibition of EGFR kinase activity in TamR cells reduced beta-catenin tyrosine phosphorylation, increased beta-catenin-E-cadherin association and promoted cell-cell adhesion. In such treated cells, the association of beta-catenin with Lef-1 and the transcription of c-myc, cyclin-D1, CD44 and COX-2 were also reduced. These results suggest that homotypic adhesion in tamoxifen-resistant breast cancer cells is dysfunctional due to EGFR-driven modulation of the phosphorylation status of beta-catenin and may contribute to an enhanced aggressive phenotype and transition towards a mesenchymal phenotype in vitro.", "title": "Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation." }, { "docid": "1454773", "text": "The programmed death-1 (PD-1) receptor serves as an immunologic checkpoint, limiting bystander tissue damage and preventing the development of autoimmunity during inflammatory responses. PD-1 is expressed by activated T cells and downmodulates T-cell effector functions upon binding to its ligands, PD-L1 and PD-L2, on antigen-presenting cells. In patients with cancer, the expression of PD-1 on tumor-infiltrating lymphocytes and its interaction with the ligands on tumor and immune cells in the tumor microenvironment undermine antitumor immunity and support its rationale for PD-1 blockade in cancer immunotherapy. This report details the development and characterization of nivolumab, a fully human IgG4 (S228P) anti-PD-1 receptor-blocking monoclonal antibody. Nivolumab binds to PD-1 with high affinity and specificity, and effectively inhibits the interaction between PD-1 and its ligands. In vitro assays demonstrated the ability of nivolumab to potently enhance T-cell responses and cytokine production in the mixed lymphocyte reaction and superantigen or cytomegalovirus stimulation assays. No in vitro antibody-dependent cell-mediated or complement-dependent cytotoxicity was observed with the use of nivolumab and activated T cells as targets. Nivolumab treatment did not induce adverse immune-related events when given to cynomolgus macaques at high concentrations, independent of circulating anti-nivolumab antibodies where observed. These data provide a comprehensive preclinical characterization of nivolumab, for which antitumor activity and safety have been demonstrated in human clinical trials in various solid tumors.", "title": "In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates." }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "25543207", "text": "Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. The candidates include various blockers of the purinergic P2Y12 receptor such as prasugrel, an oral irreversible thienopyridine; two adenosine triphosphate analogues that bind reversibly to the P2Y12 receptor: ticagrelor (oral) and cangrelor (intravenous); elinogrel, a direct-acting reversible P2Y12 receptor inhibitor (the only antiplatelet compound that can be administered both intravenously and orally); BX 667, an orally active and reversible small-molecule P2Y12 receptor antagonist; SCH 530348, SCH 205831, SCH 602539 and E5555, highly selective and orally active antagonists on the protease-activated receptor 1. A number of drugs also hit new targets: terutroban, an oral, selective and specific inhibitor of the thromboxane receptor; ARC1779, a second-generation, nuclease resistant aptamer which inhibits von Willebrand factor-dependent platelet aggregation; ALX-0081, a bivalent humanized nanobody targeting the GPIb binding site of von Willebrand factor and AJW200, an IgG4 monoclonal antibody of von Willebrand factor. The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.", "title": "Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases." }, { "docid": "2593298", "text": "Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments.", "title": "Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments" }, { "docid": "19485649", "text": "Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.", "title": "N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements." }, { "docid": "9142761", "text": "Plasmodium falciparum surface protein 25 (Pfs25) is a candidate for transmission-blocking vaccines (TBVs). Anti-Pfs25 antibodies block the development of oocysts in membrane-feeding assays and we have shown the activity correlates with antibody titer. In this study, we purified Pfs25-specific IgGs to convert antibody titer to microg/mL and determined the amount of antibody required to inhibit 50% of oocyst development (IC(50)). The IC(50) were, 15.9, 4.2, 41.2, and 85.6microg/mL for mouse, rabbit, monkey and human, respectively, and the differences among species were significant. Anti-Pfs25 sera from rabbit, monkey and human showed different patterns of competition against 6 mouse monoclonal antibodies, and the avidity of antibodies among four species were also different. These data suggests that information obtained from animal studies which assess efficacy of TBV candidates may be difficult to translate to human immunization.", "title": "The IC(50) of anti-Pfs25 antibody in membrane-feeding assay varies among species." }, { "docid": "21185923", "text": "CD25+CD4+ regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance. We show here that glucocorticoid-induced tumor necrosis factor receptor family–related gene (GITR, also known as TNFRSF18)—a member of the tumor necrosis factor–nerve growth factor (TNF-NGF) receptor gene superfamily—is predominantly expressed on CD25+CD4+ T cells and on CD25+CD4+CD8− thymocytes in normal naïve mice. We found that stimulation of GITR abrogated CD25+CD4+ T cell–mediated suppression. In addition, removal of GITR-expressing T cells or administration of a monoclonal antibody to GITR produced organ-specific autoimmune disease in otherwise normal mice. Thus, GITR plays a key role in dominant immunological self-tolerance maintained by CD25+CD4+ regulatory T cells and could be a suitable molecular target for preventing or treating autoimmune disease.", "title": "Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance" }, { "docid": "2060137", "text": "Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.", "title": "Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing." } ]
807
Most termination events in Okazaki fragments are dictated by initiation patterns.
[ { "docid": "36606083", "text": "Many fundamental aspects of DNA replication, such as the exact locations where DNA synthesis is initiated and terminated, how frequently origins are used, and how fork progression is influenced by transcription, are poorly understood. Via the deep sequencing of Okazaki fragments, we comprehensively document replication fork directionality throughout the S. cerevisiae genome, which permits the systematic analysis of initiation, origin efficiency, fork progression, and termination. We show that leading-strand initiation preferentially occurs within a nucleosome-free region at replication origins. Using a strain in which late origins can be induced to fire early, we show that replication termination is a largely passive phenomenon that does not rely on cis-acting sequences or replication fork pausing. The replication profile is predominantly determined by the kinetics of origin firing, allowing us to reconstruct chromosome-wide timing profiles from an asynchronous culture.", "title": "Quantitative, genome-wide analysis of eukaryotic replication initiation and termination." } ]
[ { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "36180468", "text": "Proteolytic processing of the beta-amyloid precursor proteins (APP) is required for release of the beta/A4 protein and its deposition into the amyloid plaques characteristic of aging and Alzheimer's disease. We have examined the involvement of acidic intracellular compartments in APP processing in cultured human cells. The use of acidotropic agents and inhibitors to a specific class of lysosomal protease, coupled with metabolic labeling and immunoprecipitation, revealed that APP is degraded within an acidic compartment to produce at least 12 COOH-terminal fragments. Nine likely contain the entire beta/A4 domain and, therefore, are potentially amyloidogenic. Treatment with E64 or Z-Phe-Ala-CHN2 irreversibly blocked activities of the lysosomal cysteine proteases cathepsins B and L but did not inhibit the lysosomal aspartic protease cathepsin D and did not alter the production of potentially amyloidogenic fragments. Instead, the inhibitors prevented further degradation of the fragments. Thus, large numbers of potentially amyloidogenic fragments of APP are routinely generated in an acidic compartment by noncysteine proteases and then are eliminated within lysosomes by cysteine proteases. Immunoblot and immunohistochemical analyses confirmed that chronic cysteine protease inhibition leads to accumulation of potentially amyloidogenic APP fragments in lysosomes. The results provide further support for the hypothesis that an acidic compartment may be involved in amyloid formation and begin to define the proteolytic events that may be important for amyloidogenesis.", "title": "Processing of the beta-amyloid precursor. Multiple proteases generate and degrade potentially amyloidogenic fragments." }, { "docid": "21853444", "text": "Alternative initiation, splicing, and polyadenylation are key mechanisms used by many organisms to generate diversity among mature mRNA transcripts originating from the same transcription unit. While previous computational analyses of alternative polyadenylation have focused on polyadenylation activities within or downstream of the normal 3'-terminal exons, we present the results of the first genome-wide analysis of patterns of alternative polyadenylation in the human, mouse, and rat genomes occurring over the entire transcribed regions of mRNAs using 3'-ESTs with poly(A) tails aligned to genomic sequences. Four distinct classes of patterns of alternative polyadenylation result from this analysis: tandem poly(A) sites, composite exons, hidden exons, and truncated exons. We estimate that at least 49% (human), 31% (mouse), and 28% (rat) of polyadenylated transcription units have alternative polyadenylation. A portion of these alternative polyadenylation events result in new protein isoforms.", "title": "Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat." }, { "docid": "8646760", "text": "Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species.", "title": "Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster" }, { "docid": "19974105", "text": "DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become \"licensed\" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.", "title": "Control over DNA replication in time and space." }, { "docid": "21302115", "text": "OBJECTIVE To assess if family care givers of patients with lung cancer experience the patterns of social, psychological, and spiritual wellbeing and distress typical of the patient, from diagnosis to death. \n DESIGN Secondary analysis of serial qualitative interviews carried out every three months for up to a year or to bereavement. \n SETTING South east Scotland. \n PARTICIPANTS 19 patients with lung cancer and their 19 family carers, totalling 88 interviews (42 with patients and 46 with carers). \n RESULTS Carers followed clear patterns of social, psychological, and spiritual wellbeing and distress that mirrored the experiences of those for whom they were caring, with some carers also experiencing deterioration in physical health that impacted on their ability to care. Psychological and spiritual distress were particularly dynamic and commonly experienced. In addition to the \"Why us?\" response, witnessing suffering triggered personal reflections in carers on the meaning and purpose of life. Certain key time points in the illness tended to be particularly problematic for both carers and patients: at diagnosis, at home after initial treatment, at recurrence, and during the terminal stage. \n CONCLUSIONS Family carers witness and share much of the illness experience of the dying patient. The multidimensional experience of distress suffered by patients with lung cancer was reflected in the suffering of their carers in the social, psychological, and spiritual domains, with psychological and spiritual distress being most pronounced. Carers may need to be supported throughout the period of illness not just in the terminal phase and during bereavement, as currently tends to be the case.", "title": "Archetypal trajectories of social, psychological, and spiritual wellbeing and distress in family care givers of patients with lung cancer: secondary analysis of serial qualitative interviews" }, { "docid": "4361990", "text": "PROGRESSIVE cerebral deposition of the amyloid β-peptide is an early and invariant feature of Alzheimer's disease. The β-peptide is released by proteolytic cleavages from the β-amyloid precursor protein (βAPP)1, a membrane-spanning glycoprotein expressed in most mammalian cells. Normal secretion of βAPP involves a cleavage in the β-peptide region2-3, releasing the soluble extramembranous portion4,5 and retaining a 10K C-terminal fragment in the membrane6. Because this secretory pathway precludes β-amyloid formation, we searched for an alternative proteolytic processing pathway that can generate β-peptide-bearing fragments from full-length β APP. Incubation of living human endothelial cells with a βAPP antibody revealed reinternalization of mature βAPP from the cell surface and its targeting to endosomes/lysosomes. After cell-surface biotinylation, full-length biotinylated βAPP was recovered inside the cells. Purification of lysosomes directly demonstrated the presence of mature βAPP and an extensive array of β-peptide-containing proteolytic products. Our results define a second processing pathway for βAPP and suggest that it may be responsible for generating amyloid-bearing fragments in Alzheimer's disease.", "title": "Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments" }, { "docid": "31514338", "text": "The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.", "title": "A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome." }, { "docid": "17731780", "text": "ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.", "title": "The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase" }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "40790033", "text": "BACKGROUND The Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial showed that initial antihypertensive therapy with benazepril plus amlodipine was superior to benazepril plus hydrochlorothiazide in reducing cardiovascular morbidity and mortality. We assessed the effects of these drug combinations on progression of chronic kidney disease. \n METHODS ACCOMPLISH was a double-blind, randomised trial undertaken in five countries (USA, Sweden, Norway, Denmark, and Finland). 11 506 patients with hypertension who were at high risk for cardiovascular events were randomly assigned via a central, telephone-based interactive voice response system in a 1:1 ratio to receive benazepril (20 mg) plus amlodipine (5 mg; n=5744) or benazepril (20 mg) plus hydrochlorothiazide (12.5 mg; n=5762), orally once daily. Drug doses were force-titrated for patients to attain recommended blood pressure goals. Progression of chronic kidney disease, a prespecified endpoint, was defined as doubling of serum creatinine concentration or end-stage renal disease (estimated glomerular filtration rate <15 mL/min/1.73 m(2) or need for dialysis). Analysis was by intention to treat (ITT). This trial is registered with ClinicalTrials.gov, number NCT00170950. \n FINDINGS The trial was terminated early (mean follow-up 2.9 years [SD 0.4]) because of superior efficacy of benazepril plus amlodipine compared with benazepril plus hydrochlorothiazide. At trial completion, vital status was not known for 143 (1%) patients who were lost to follow-up (benazepril plus amlodipine, n=70; benazepril plus hydrochlorothiazide, n=73). All randomised patients were included in the ITT analysis. There were 113 (2.0%) events of chronic kidney disease progression in the benazepril plus amlodipine group compared with 215 (3.7%) in the benazepril plus hydrochlorothiazide group (HR 0.52, 0.41-0.65, p<0.0001). The most frequent adverse event in patients with chronic kidney disease was peripheral oedema (benazepril plus amlodipine, 189 of 561, 33.7%; benazepril plus hydrochlorothiazide, 85 of 532, 16.0%). In patients with chronic kidney disease, angio-oedema was more frequent in the benazepril plus amlodipine group than in the benazepril plus hydrochlorothiazide group. In patients without chronic kidney disease, dizziness, hypokalaemia, and hypotension were more frequent in the benazepril plus hydrochlorothiazide group than in the benazepril plus amlodipine group. \n INTERPRETATION Initial antihypertensive treatment with benazepril plus amlodipine should be considered in preference to benazepril plus hydrochlorothiazide since it slows progression of nephropathy to a greater extent. \n FUNDING Novartis.", "title": "Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial." }, { "docid": "25462689", "text": "We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.", "title": "Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae." }, { "docid": "30553457", "text": "The role of transient receptor potential M4 (Trpm4), an unusual member of the Trp family of ion channels, is poorly understood. Using rodent models of spinal cord injury, we studied involvement of Trpm4 in the progressive expansion of secondary hemorrhage associated with capillary fragmentation, the most destructive mechanism of secondary injury in the central nervous system. Trpm4 mRNA and protein were abundantly upregulated in capillaries preceding their fragmentation and formation of petechial hemorrhages. Trpm4 expression in vitro rendered COS-7 cells highly susceptible to oncotic swelling and oncotic death following ATP depletion. After spinal cord injury, in vivo gene suppression in rats treated with Trpm4 antisense or in Trpm4−/− mice preserved capillary structural integrity, eliminated secondary hemorrhage, yielded a threefold to fivefold reduction in lesion volume and produced a substantial improvement in neurological function. To our knowledge, this is the first example of a Trp channel that must undergo de novo expression for manifestation of central nervous system pathology.", "title": "De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury" }, { "docid": "4391817", "text": "Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.", "title": "CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI" }, { "docid": "23342686", "text": "The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.", "title": "Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3." }, { "docid": "34439544", "text": "The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis(1). Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)(1). After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues(2). In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)(3-6). Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation(7,8). In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members(7,9). As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization(10). LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)(10). This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)(11). As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.", "title": "Examining BCL-2 family function with large unilamellar vesicles." }, { "docid": "44935041", "text": "Although most cytokines are studied for biological effects after engagement of their specific cell surface membrane receptors, increasing evidence suggests that some function in the nucleus. In the present study, the precursor form of IL-1alpha was overexpressed in various cells and assessed for activity in the presence of saturating concentrations of IL-1 receptor antagonist to prevent receptor signaling. Initially diffusely present in the cytoplasm of resting cells, IL-1alpha translocated to the to nucleus after activation by endotoxin, a Toll-like receptor ligand. The IL-1alpha precursor, but not the C-terminal mature form, activated the transcriptional machinery in the GAL4 system by 90-fold; a 50-fold increase was observed using only the IL-1alpha propiece, suggesting that transcriptional activation was localized to the N terminus where the nuclear localization sequence resides. Under conditions of IL-1 receptor blockade, intracellular overexpression of the precursor and propiece forms of IL-1alpha were sufficient to activate NF-kappaB and AP-1. Stable transfectants overproducing precursor IL-1alpha released the cytokines IL-8 and IL-6 but also exhibited a significantly lower threshold of activation to subpicomolar concentrations of tumor necrosis factor alpha or IFN-gamma. Thus, intracellular functions of IL-1alpha might play an unforeseen role in the genesis of inflammation. During disease-driven events, the cytosolic precursor moves to the nucleus, where it augments transcription of proinflammatory genes. Because this mechanism of action is not affected by extracellular inhibitors, reducing intracellular functions of IL-1alpha might prove beneficial in some inflammatory conditions.", "title": "The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription." }, { "docid": "12207340", "text": "The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.", "title": "Mechanism and regulation of DNA end resection in eukaryotes." }, { "docid": "11951999", "text": "Ten-Eleven Translocation-2 (TET2) inactivation through loss-of-function mutation, deletion and IDH1/2 (Isocitrate Dehydrogenase 1 and 2) gene mutation is a common event in myeloid and lymphoid malignancies. TET2 gene mutations similar to those observed in myeloid and lymphoid malignancies also accumulate with age in otherwise healthy subjects with clonal hematopoiesis. TET2 is one of the three proteins of the TET (Ten-Eleven Translocation) family, which are evolutionarily conserved dioxygenases that catalyze the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC) and promote DNA demethylation. TET dioxygenases require 2-oxoglutarate, oxygen and Fe(II) for their activity, which is enhanced in the presence of ascorbic acid. TET2 is the most expressed TET gene in the hematopoietic tissue, especially in hematopoietic stem cells. In addition to their hydroxylase activity, TET proteins recruit the O-linked β-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) enzyme to chromatin, which promotes post-transcriptional modifications of histones and facilitates gene expression. The TET2 level is regulated by interaction with IDAX, originating from TET2 gene fission during evolution, and by the microRNA miR-22. TET2 has pleiotropic roles during hematopoiesis, including stem-cell self-renewal, lineage commitment and terminal differentiation of monocytes. Analysis of Tet2 knockout mice, which are viable and fertile, demonstrated that Tet2 functions as a tumor suppressor whose haploinsufficiency initiates myeloid and lymphoid transformations. This review summarizes the recently identified TET2 physiological and pathological functions and discusses how this knowledge influences our therapeutic approaches in hematological malignancies and possibly other tumor types.", "title": "The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases" } ]
810
Mouse models can be generated using "artificial spermatids."
[ { "docid": "13513790", "text": "Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.", "title": "Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells" } ]
[ { "docid": "22186938", "text": "Human artificial chromosomes (HACs) are autonomous molecules that can function and segregate as normal chromosomes in human cells. De novo HACs have successfully been used as gene expression vectors to complement genetic deficiencies in human cultured cells. HACs now offer the possibility of studying the regulation and expression of large genes in a variety of cell types from different tissues and correcting gene deficiencies caused by human inherited diseases. Complementary gene expression studies in mice, especially in mouse models of human genetic diseases, are also important in determining if large human transgenes can be expressed appropriately from artificial chromosomes. Toward this aim we are establishing artificial chromosomes in murine cells as novel gene expression vectors. Initially we transferred HAC vectors into murine cells, but were unable to generate de novo HACs at a reasonable frequency. We then transferred HACs previously established in human HT1080 cells to three different murine cell types by microcell fusion, followed by positive selection. We observed that the HACs in murine cells bound centromere protein C (CENP-C), a marker of active centromeres, and were detected under selection but rapidly lost when selection was removed. These results suggest that the HACs maintain at least a partially functional centromere complex in murine cells, but other factors are required for stability and segregation. Artificial chromosomes containing mouse centromeric sequences may be required for better stability and maintenance in murine cells.", "title": "Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable." }, { "docid": "25041967", "text": "Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.", "title": "Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag." }, { "docid": "15981174", "text": "To generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes. These results were further verified by crossing the Q3 mice with a strain containing loxP-flanked integrin beta1. Excision of this conditional allele in megakaryocytes was complete at the DNA level, and platelets were virtually devoid of the integrin beta1 protein. The Pf4-Cre transgenic strain will be a valuable tool to study megakaryopoiesis, platelet formation, and platelet function.", "title": "Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo." }, { "docid": "22490293", "text": "Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of \"reprogramming\" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.", "title": "Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?" }, { "docid": "4405194", "text": "Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.", "title": "Induction of human neuronal cells by defined transcription factors" }, { "docid": "4462419", "text": "Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.", "title": "Derivation of novel human ground state naive pluripotent stem cells" }, { "docid": "12271486", "text": "BACKGROUND A central challenge of biology is to map and understand gene regulation on a genome-wide scale. For any given genome, only a small fraction of the regulatory elements embedded in the DNA sequence have been characterized, and there is great interest in developing computational methods to systematically map all these elements and understand their relationships. Such computational efforts, however, are significantly hindered by the overwhelming size of non-coding regions and the statistical variability and complex spatial organizations of regulatory elements and interactions. Genome-wide catalogs of regulatory elements for all model species simply do not yet exist. \n RESULTS The MotifMap system uses databases of transcription factor binding motifs, refined genome alignments, and a comparative genomic statistical approach to provide comprehensive maps of candidate regulatory elements encoded in the genomes of model species. The system is used to derive new genome-wide maps for yeast, fly, worm, mouse, and human. The human map contains 519,108 sites for 570 matrices with a False Discovery Rate of 0.1 or less. The new maps are assessed in several ways, for instance using high-throughput experimental ChIP-seq data and AUC statistics, providing strong evidence for their accuracy and coverage. The maps can be usefully integrated with many other kinds of omic data and are available at http://motifmap.igb.uci.edu/. CONCLUSIONS MotifMap and its integration with other data provide a foundation for analyzing gene regulation on a genome-wide scale, and for automatically generating regulatory pathways and hypotheses. The power of this approach is demonstrated and discussed using the P53 apoptotic pathway and the Gli hedgehog pathways as examples.", "title": "MotifMap: integrative genome-wide maps of regulatory motif sites for model species" }, { "docid": "1871499", "text": "5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.", "title": "Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease." }, { "docid": "4303075", "text": "Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.", "title": "Direct conversion of fibroblasts to functional neurons by defined factors" }, { "docid": "18600579", "text": "We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice.", "title": "Development of a novel mouse glioma model using lentiviral vectors" }, { "docid": "8476213", "text": "We developed a general model of sporophytic self-incompatibility under negative frequency-dependent selection allowing complex patterns of dominance among alleles. We used this model deterministically to investigate the effects on equilibrium allelic frequencies of the number of dominance classes, the number of alleles per dominance class, the asymmetry in dominance expression between pollen and pistil, and whether selection acts on male fitness only or both on male and on female fitnesses. We show that the so-called \"recessive effect\" occurs under a wide variety of situations. We found emerging properties of finite population models with several alleles per dominance class such as that higher numbers of alleles are maintained in more dominant classes and that the number of dominance classes can evolve. We also investigated the occurrence of homozygous genotypes and found that substantial proportions of those can occur for the most recessive alleles. We used the model for two species with complex dominance patterns to test whether allelic frequencies in natural populations are in agreement with the distribution predicted by our model. We suggest that the model can be used to test explicitly for additional, allele-specific, selective forces.", "title": "A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems." }, { "docid": "20033112", "text": "Recent studies have demonstrated direct reprogramming of fibroblasts into a range of somatic cell types, but to date stem or progenitor cells have only been reprogrammed for the blood and neuronal lineages. We previously reported generation of induced hepatocyte-like (iHep) cells by transduction of Gata4, Hnf1α, and Foxa3 in p19 Arf null mouse embryonic fibroblasts (MEFs). Here, we show that Hnf1β and Foxa3, liver organogenesis transcription factors, are sufficient to reprogram MEFs into induced hepatic stem cells (iHepSCs). iHepSCs can be stably expanded in vitro and possess the potential of bidirectional differentiation into both hepatocytic and cholangiocytic lineages. In the injured liver of fumarylacetoacetate hydrolase (Fah)-deficient mice, repopulating iHepSCs become hepatocyte-like cells. They also engraft as cholangiocytes into bile ducts of mice with DDC-induced bile ductular injury. Lineage conversion into bipotential expandable iHepSCs provides a strategy to enable efficient derivation of both hepatocytes and cholangiocytes for use in disease modeling and tissue engineering.", "title": "Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors." }, { "docid": "3446400", "text": "Transcriptional misregulation is involved in the development of many diseases, especially neoplastic transformation. Distal regulatory elements, such as enhancers, play a major role in specifying cell-specific transcription patterns in both normal and diseased tissues, suggesting that enhancers may be prime targets for therapeutic intervention. By focusing on modulating gene regulation mediated by cell type-specific enhancers, there is hope that normal epigenetic patterning in an affected tissue could be restored with fewer side effects than observed with treatments employing relatively nonspecific inhibitors such as epigenetic drugs. New methods employing genomic nucleases and site-specific epigenetic regulators targeted to specific genomic regions, using either artificial DNA-binding proteins or RNA-DNA interactions, may allow precise genome engineering at enhancers. However, this field is still in its infancy and further refinements that increase specificity and efficiency are clearly required.", "title": "Can genome engineering be used to target cancer-associated enhancers?" }, { "docid": "41256402", "text": "Neither the restoration of the centrosome during fertilization nor its reduction during gametogenesis is fully understood, but both are pivotal events in development. During each somatic cell cycle, the chromosomes, cytoplasm, and centrosomes duplicate in interphase, and all three split in two during each cell division. While it has long been recognized that both the sperm and the egg contribute equal haploid genomes during fertilization and that the vast majority of the cytoplasm is contributed by the egg, the relative contributions of the centrosome by each gamete are still in question. This article explores centrosome inheritance patterns and considers nine integral and secondarily derived activities of the centrosome. Boveri once hypothesized that \"The ripe egg possesses all of the elements necessary for development save an active division-center. The sperm, on the other hand, possesses such a center but lacks the protoplasmic substratum in which to operate. In this respect the egg and sperm are complementary structures; their union in syngamy thus restores to each the missing element necessary to further development. \" This article reviews the evidence gathered from 11 experimental strategies used to test this theory. While the majority of these approaches supports the hypothesis that the sperm introduces the centrosome at fertilization, the pattern did not reveal itself as universal, since parthenogenesis occurs in nature and can be induced artificially, since centrosome and centriole form de novo in extracts from unfertilized eggs and since the centrosome is derived from maternal sources during fertilization in some systems--notably, in mice. Models of the centrosome are proposed, along with speculative mechanisms which might lead to the cloaking of the reproducing element of the maternal centrosome during oogenesis and the retention of this structure by the paternal centrosome during spermatogenesis. Proteins essential for microtubule nucleation, like gamma-tubulin, are retained in the cytoplasm during oogenesis, but are largely lost during spermatogenesis. It is further postulated that the restoration of the zygotic centrosome at fertilization requires the attraction of maternal centrosomal components (in particular, gamma-tubulin and the 25S \"gamma-some\" particle) to the paternal reproducing element; this, along with post-translational modifications (including phosphorylation, disulfide reduction, and calcium ion binding), creates a functional zygote centrosome by blending both maternal and paternal constituents.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization." }, { "docid": "82971616", "text": "J. Agric. Genomics, 5 ABSTRACT Bacterial artificial chromosome (BAC) libraries have become invaluable tools in plant genetic research. However, it is difficult for new practitioners to create plant BAC libraries de novo because published protocols are not particularly detailed, and plant cells possess features that make isolation of clean, high molecular weight DNA troublesome. In this document we present an illustrated, step-by-step protocol for constructing plant BAC libraries. This protocol is sufficiently detailed to be of use to both new and experienced investigators. We hope that by reducing the obstacles to BAC cloning in plants, we will foster new and accelerated progress in plant genomics.", "title": "Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide." }, { "docid": "1084345", "text": "Chaperone-mediated autophagy (CMA), a selective mechanism for degradation of cytosolic proteins in lysosomes, contributes to the removal of altered proteins as part of the cellular quality-control systems. We have previously found that CMA activity declines in aged organisms and have proposed that this failure in cellular clearance could contribute to the accumulation of altered proteins, the abnormal cellular homeostasis and, eventually, the functional loss characteristic of aged organisms. To determine whether these negative features of aging can be prevented by maintaining efficient autophagic activity until late in life, in this work we have corrected the CMA defect in aged rodents. We have generated a double transgenic mouse model in which the amount of the lysosomal receptor for CMA, previously shown to decrease in abundance with age, can be modulated. We have analyzed in this model the consequences of preventing the age-dependent decrease in receptor abundance in aged rodents at the cellular and organ levels. We show here that CMA activity is maintained until advanced ages if the decrease in the receptor abundance is prevented and that preservation of autophagic activity is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function.", "title": "Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function" }, { "docid": "108886332", "text": "The goal of this research is to train children seated on mobile robots to purposefully and safely drive indoors. Our previous studies show that in about six weeks of training, infants can learn to drive directly to a goal using conventional joysticks. However, they are unable to acquire the advanced skill to avoid obstacles while driving. This limits mobility impaired children from exploring their home environment safely, which in turn impacts their cognitive and social developments in the important early years. In this paper, we describe results where toddlers are trained to drive a robot within an obstacle course. Using algorithms based on artificial potential fields to avoid obstacles, we create force field on the joystick that trains them to navigate while avoiding obstacles. In this ‘assist-as-needed’ approach, if the child steers the mobile robot outside a force tunnel centered around the desired direction, the driver experiences a bias force on the hand. The results suggest that force-feedback joystick results in faster learning than with a conventional joystick.", "title": "Training toddlers seated on mobile robots to drive indoors amidst obstacles" }, { "docid": "42279414", "text": "For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, the initiation phase is accomplished by the application of a sub-carcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor-promoting agent. The initiation protocol can be completed within 1–3 h depending on the number of mice used; whereas the promotion phase requires twice weekly treatments (1–2 h) and once weekly tumor palpation (1–2 h) for the duration of the study. Using the protocol described here, a highly reproducible papilloma burden is expected within 10–20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20–50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions, as well as separation of the initiation and promotion phases.", "title": "Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications" }, { "docid": "188911", "text": "Antigen-presenting, major histocompatibility complex (MHC) class II-rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II-negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent \"stroma. \" At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type.", "title": "Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor" }, { "docid": "19489351", "text": "Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, 70%-80% undergo consuming divisions generating progeny, resulting in the depletion of B1 cells over time. This cellular mechanism decouples self-renewal from the generation of progeny. Limited rounds of symmetric self-renewal and consuming symmetric differentiation divisions can explain the levels of neurogenesis observed throughout life.", "title": "Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation." } ]
812
Mutant mice lacking SVCT2 have severely reduced ascorbic acid levels in both brain and adrenals.
[ { "docid": "19799455", "text": "The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period.", "title": "Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival" } ]
[ { "docid": "5107861", "text": "Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis. Although incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known cross-talk between the brain and immune system includes the hypothalamic-pituitary-adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic-adrenal-medullary axis, which controls stress-induced catecholamine release in support of the fight-or-flight reflex. It remains unknown, however, whether chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive hematopoietic progenitors, giving rise to higher levels of disease-promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Under conditions of chronic variable stress in mice, sympathetic nerve fibers released surplus noradrenaline, which signaled bone marrow niche cells to decrease CXCL12 levels through the β3-adrenergic receptor. Consequently, hematopoietic stem cell proliferation was elevated, leading to an increased output of neutrophils and inflammatory monocytes. When atherosclerosis-prone Apoe(-/-) mice were subjected to chronic stress, accelerated hematopoiesis promoted plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans.", "title": "Chronic variable stress activates hematopoietic stem cells" }, { "docid": "5409325", "text": "Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.", "title": "Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects." }, { "docid": "7221410", "text": "The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD.", "title": "Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta" }, { "docid": "36357627", "text": "Serotonin (5-HT) plays a pivotal role in the regulation of the brain-pituitary-adrenal axis. In particular, 5-HT has been shown to control the activity of hypothalamic CRF neurons and pituitary corticotrope cells through activation of 5-HT1A and (or) 5-HT(2A/2C) receptor subtypes. 5-HT, acting through 5-HT2 receptors, can also trigger the renin-angiotensin system by stimulating renin secretion and consequently can enhance aldosterone production. At the adrenal level, 5-HT produced locally stimulates the secretory activity of adrenocortical cells through a paracrine mode of communication. The presence of 5-HT in the adrenal gland has been demonstrated immunohistochemically and biochemically in various species. In the frog, rat, and pig adrenal gland, 5-HT is synthesized by chromaffin cells, while in the mouse adrenal cortex, 5-HT is contained in nerve fibers. In man, 5-HT is present in perivascular mast cells. In vivo and in vitro studies have shown that 5-HT stimulates corticosteroid secretion in various species (including human). The type of receptor involved in the mechanism of action of 5-HT differs between the various species. In frogs and humans, the stimulatory effect of 5-HT on adrenocortical cells is mediated through a 5-HT4 receptor subtype positively coupled to adenylyl cyclase and calcium influx. In the rat, the effect of 5-HT on aldosterone secretion is mediated via activation of 5-HT7 receptors. Clinical studies indicate that 5-HT4 receptor agonists stimulate aldosterone secretion in healthy volunteers and in patients with corticotropic insufficiency and primary hyperaldosteronism. Local serotonergic control of corticosteroid production may be involved in the physiological control of the activity of the adrenal cortex as well as in the pathophysiology of cortisol and aldosterone disorders.", "title": "Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells." }, { "docid": "23868856", "text": "Reactive oxygen species have been linked with neuropathological changes in the central nervous system. Epidemiological studies supported the beneficial effect of supplementation of antioxidants. Superoxide dismutase (SOD) is an endogenous enzyme which can scavenge reactive oxygen species. This study investigated the effect of supplementation with ascorbic acid (vitamin C) on the changes of SOD in cultured neurological cells. Rat brain astrocytes (RBA-1 cells) were incubated with vitamin C and divided into four groups: a control group (without vitamin C) and three treatment groups with vitamin C at 40, 80, and 160 µmol/l. After short-term (2 days) and long-term (7 days) incubation, SOD activity, SOD mRNA level by Northern blotting, and SOD protein amounts by Western blotting were measured. After 2 days of incubation, vitamin C resulted in a decrease in the activity of SOD in a concentration-dependent manner (Mn-SOD from 14.8 ± 1.2 to 13.2 ± 0.5 U/mg protein and Cu/Zn-SOD from 64.8 ± 1.2 to 51.7 ± 0.9 U/mg protein; p < 0.05), and vitamin C also attenuated the Cu/Zn-SOD mRNA level from 100 to 86.3 ± 6.7%; p < 0.01), whereas the protein amounts of these two SODs remained unchanged. After 7 days of incubation with vitamin C, the SOD activity of RBA-1 cells decreased significantly (Mn-SOD from 14.9 ± 0.3 to 11.8 ± 0.3 U/mg protein and Cu/Zn SOD from 61.8 ± 1.8 to 54.6 ± 0.9 U/mg protein; p < 0.01), and the mRNA level was also attenuated (Mn-SOD from 100 to 86.8 ± 8.7% and Cu/Zn-SOD from 100 to 84.7 ± 4.8%; p < 0.01). These results suggest that 2 and 7 days of incubation with relatively high concentrations of vitamin C may downregulate activity and gene expression of SOD in cultured RBA-1 cells.", "title": "Downregulation of Superoxide Dismutase Activity and Gene Expression in Cultured Rat Brain Astrocytes after Incubation with Vitamin C" }, { "docid": "35062452", "text": "Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.", "title": "Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing." }, { "docid": "8698208", "text": "Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000–15,000 births. Affected females develop normally for 6–18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3–12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.", "title": "A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome" }, { "docid": "21878751", "text": "CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.", "title": "Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis." }, { "docid": "23180075", "text": "The cholesterol side-chain cleavage enzyme, cytochrome P450scc, initiates the biosynthesis of all steroid hormones. Adrenal and gonadal strategies for P450scc gene transcription are essentially identical and depend on the orphan nuclear receptor steroidogenic factor-1, but the placental strategy for transcription of P450scc employs cis-acting elements different from those used in the adrenal strategy and is independent of steroidogenic factor-1. Because placental expression of P450scc is required for human pregnancy, we sought factors that bind to the -155/-131 region of the human P450scc promoter, which participates in its placental but not adrenal or gonadal transcription. A yeast one-hybrid screen of 2.4 x 10(6) cDNA clones from human placental JEG-3 cells yielded two unique clones; one is the previously described transcription factor LBP-1b, which is induced by HIV, type I infection of lymphocytes, and the other is a new factor, termed LBP-9, that shares 83% amino acid sequence identity with LBP-1b. When expressed in transfected yeast, both factors bound specifically to the -155/-131 DNA; antisera to LBP proteins supershifted the LBP-9.DNA complex and inhibited formation of the LBP-1b. DNA complex. Reverse transcriptase-polymerase chain reaction detected LBP-1b in human placental JEG-3, adrenal NCI-H295A, liver HepG2, cervical HeLa, and monkey kidney COS-1 cells, but LBP-9 was detected only in JEG-3 cells. When the -155/-131 fragment was linked to a minimal promoter, co-expression of LBP-1b increased transcription 21-fold in a dose-dependent fashion, but addition of LBP-9 suppressed the stimulatory effect of LBP-1b. The roles of LBP transcription factors in normal human physiology have been unclear. Their modulation of placental but not adrenal P450scc transcription underscores the distinctiveness of placental strategies for steroidogenic enzyme gene transcription.", "title": "Cloning of factors related to HIV-inducible LBP proteins that regulate steroidogenic factor-1-independent human placental transcription of the cholesterol side-chain cleavage enzyme, P450scc." }, { "docid": "9748934", "text": "Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.", "title": "Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia" }, { "docid": "20868160", "text": "The Arabidopsis (Arabidopsis thaliana) trichome birefringence (tbr) mutant has severely reduced crystalline cellulose in trichomes, but the molecular nature of TBR was unknown. We determined TBR to belong to the plant-specific DUF231 domain gene family comprising 46 members of unknown function in Arabidopsis. The genes harbor another plant-specific domain, called the TBL domain, which contains a conserved GDSL motif known from some esterases/lipases. TBR and TBR-like3 (TBL3) are transcriptionally coordinated with primary and secondary CELLULOSE SYNTHASE (CESA) genes, respectively. The tbr and tbl3 mutants hold lower levels of crystalline cellulose and have altered pectin composition in trichomes and stems, respectively, tissues generally thought to contain mainly secondary wall crystalline cellulose. In contrast, primary wall cellulose levels remain unchanged in both mutants as measured in etiolated tbr and tbl3 hypocotyls, while the amount of esterified pectins is reduced and pectin methylesterase activity is increased in this tissue. Furthermore, etiolated tbr hypocotyls have reduced length with swollen epidermal cells, a phenotype characteristic for primary cesa mutants or the wild type treated with cellulose synthesis inhibitors. Taken together, we show that two TBL genes contribute to the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers.", "title": "TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis." }, { "docid": "735130", "text": "The Drosophila spaghetti squash ( sqh ) gene encodes the regulatory myosin light chain (RMLC) of nonmuscle myosin II. Biochemical analysis of vertebrate nonmuscle and smooth muscle myosin II has established that phosphorylation of certain amino acids of the RMLC greatly increases the actin-dependent myosin ATPase and motor activity of myosin in vitro. We have assessed the in vivo importance of these sites, which in Drosophila correspond to serine-21 and threonine-20, by creating a series of transgenes in which these specific amino acids were altered. The phenotypes of the transgenes were examined in an otherwise null mutant background during oocyte development in Drosophila females. Germ line cystoblasts entirely lacking a functional sqh gene show severe defects in proliferation and cytokinesis. The ring canals, cytoplasmic bridges linking the oocyte to the nurse cells in the egg chamber, are abnormal, suggesting a role of myosin II in their establishment or maintenance. In addition, numerous aggregates of myosin heavy chain accumulate in the sqh null cells. Mutant sqh transgene sqh -A20, A21 in which both serine-21 and threonine-20 have been replaced by alanines behaves in most respects identically to the null allele in this system, with the exception that no heavy chain aggregates are found. In contrast, expression of sqh -A21, in which only the primary phosphorylation target serine-21 site is altered, partially restores functionality to germ line myosin II, allowing cystoblast division and oocyte development, albeit with some cytokinesis failure, defects in the rapid cytoplasmic transport from nurse cells to cytoplasm characteristic of late stage oogenesis, and some damaged ring canals. Substituting a glutamate for the serine-21 (mutant sqh -E21) allows oogenesis to be completed with minimal defects, producing eggs that can develop normally to produce fertile adults. Flies expressing sqh -A20, in which only the secondary phosphorylation site is absent, appear to be entirely wild type. Taken together, this genetic evidence argues that phosphorylation at serine-21 is critical to RMLC function in activating myosin II in vivo, but that the function can be partially provided by phosphorylation at threonine-20.", "title": "Myosin Light Chain–activating Phosphorylation Sites Are Required for Oogenesis in Drosophila " }, { "docid": "20544428", "text": "Recent studies have highlighted the involvement of the peripheral immune system in delayed cellular degeneration after stroke. In the permanent middle cerebral artery occlusion (MCAO) model of stroke, the spleen decreases in size. This reduction occurs through the release of splenic immune cells. Systemic treatment with human umbilical cord blood cells (HUCBC) 24 h post-stroke blocks the reduction in spleen size while significantly reducing infarct volume. Splenectomy 2 weeks prior to MCAO also reduces infarct volume, further demonstrating the detrimental role of this organ in stroke-induced neurodegeneration. Activation of the sympathetic nervous system after MCAO results in elevated catecholamine levels both at the level of the spleen, through direct splenic innervation, and throughout the systemic circulation upon release from the adrenal medulla. These catecholamines bind to splenic alpha and beta adrenoreceptors. This study examines whether catecholamines regulate the splenic response to stroke. Male Sprague-Dawley rats either underwent splenic denervation 2 weeks prior to MCAO or received injections of carvedilol, a pan adrenergic receptor blocker, prazosin, an alpha1 receptor blocker, or propranolol, a beta receptor blocker. Denervation was confirmed by reduced splenic expression of tyrosine hydroxylase. Denervation prior to MCAO did not alter infarct volume or spleen size. Propranolol treatment also had no effects on these outcomes. Treatment with either prazosin or carvedilol prevented the reduction in spleen size, yet only carvedilol significantly reduced infarct volume (p < 0.05). These results demonstrate that circulating blood borne catecholamines regulate the splenic response to stroke through the activation of both alpha and beta adrenergic receptors.", "title": "Blockade of adrenoreceptors inhibits the splenic response to stroke." }, { "docid": "2443495", "text": "Candida albicans produces lipid metabolites that are functionally similar to host prostaglandins. These studies, using mass spectrometry, demonstrate that C. albicans produces authentic prostaglandin E(2) (PGE(2)) from arachidonic acid. Maximal PGE(2) production was achieved at 37 degrees C in stationary-phase culture supernatants and in cell-free lysates generated from stationary-phase cells. Interestingly, PGE(2) production is inhibited by both nonspecific cyclooxygenase and lipoxygenase inhibitors but not by inhibitors specific for the cyclooxygenase 2 isoenzyme. The C. albicans genome does not possess a cyclooxygenase homolog; however, several genes that may play a role in prostaglandin production from C. albicans were investigated. It was found that a C. albicans fatty acid desaturase homolog (Ole2) and a multicopper oxidase homolog (Fet3) play roles in prostaglandin production, with ole2/ole2 and fet3/fet3 mutant strains exhibiting reduced PGE(2) levels compared with parent strains. This work demonstrates that the synthesis of PGE(2) in C. albicans proceeds via novel pathways.", "title": "Characterization of prostaglandin E2 production by Candida albicans." }, { "docid": "6404801", "text": "Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.", "title": "Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands" }, { "docid": "56528795", "text": "Liver is a vital organ with many important functions, and the maintenance of normal hepatic function is necessary for health. As an essential mechanism for maintaining cellular homeostasis, autophagy plays an important role in ensuring normal organ function. Studies have indicated that the degeneration of hepatic function is associated with autophagic deficiency in aging liver. However, the underlying mechanisms still remain unclear. The serine protease Omi/HtrA2 belongs to the HtrA family and promotes apoptosis through either the caspase-dependent or caspase-independent pathway. Mice lacking Omi/HtrA2 exhibited progeria symptoms (premature aging), which were similar to the characteristics of autophagic insufficiency. In this study, we demonstrated that both the protein level of Omi/HtrA2 in liver and hepatic function were reduced as rats aged, and there was a positive correlation between them. Furthermore, several autophagy-related proteins (LC3II/I, Beclin-1 and LAMP2) in rat liver were decreased significantly with the increasing of age. Finally, inhibition of Omi/HtrA2 resulted in reduced autophagy and hepatic dysfunction. In conclusion, these results suggest that Omi/HtrA2 participates in age-related autophagic deficiency in rat liver. This study may offer a novel insight into the mechanism involved in liver aging.", "title": "Omi/HtrA2 Participates in Age-Related Autophagic Deficiency in Rat Liver" }, { "docid": "17081238", "text": "Taking advantage of the restricted expression of metabotropic glutamate receptor subtype 6 (mGluR6) in retinal ON bipolar cells, we generated knockout mice lacking mGluR6 expression. The homozygous mutant mice showed a loss of ON responses but unchanged OFF responses to light. The mutant mice displayed no obvious changes in retinal cell organization nor in the projection of optic fibers to the brain. Furthermore, the mGluR6-deficient mice showed visual behavioral responses to light stimulation as examined by shuttle box avoidance behavior experiments using light exposure as a conditioned stimulus. The results demonstrate that mGluR6 is essential in synaptic transmission to the ON bipolar cell and that the OFF response provides an important means for transmitting visual information.", "title": "Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene" }, { "docid": "12232678", "text": "Recent reports have suggested that birds lack a mechanism of wholesale dosage compensation for the Z sex chromosome. This discovery was rather unexpected, as all other animals investigated with chromosomal mechanisms of sex determination have some method to counteract the effects of gene dosage of the dominant sex chromosome in males and females. Despite the lack of a global mechanism of avian dosage compensation, the pattern of gene expression difference between males and females varies a great deal for individual Z-linked genes. This suggests that some genes may be individually dosage compensated, and that some less-than-global pattern of dosage compensation, such as local or temporal, exists on the avian Z chromosome. We used global gene expression profiling in males and females for both somatic and gonadal tissue at several time points in the life cycle of the chicken to assess the pattern of sex-biased gene expression on the Z chromosome. Average fold-change between males and females varied somewhat among tissue time-point combinations, with embryonic brain samples having the smallest gene dosage effects, and adult gonadal tissue having the largest degree of male bias. Overall, there were no neighborhoods of overall dosage compensation along the Z. Taken together, this suggests that dosage compensation is regulated on the Z chromosome entirely on a gene-by-gene level, and can vary during the life cycle and by tissue type. This regulation may be an indication of how critical a given gene's functionality is, as the expression level for essential genes will be tightly regulated in order to avoid perturbing important pathways and networks with differential expression levels in males and females.", "title": "All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome" }, { "docid": "22901758", "text": "The identification of brain tumor stem-like cells (BTSCs) has implicated a role of biological self-renewal mechanisms in clinical brain tumor initiation and propagation. The molecular mechanisms underlying the tumor-forming capacity of BTSCs, however, remain unknown. Here, we have generated molecular signatures of glioblastoma multiforme (GBM) using gene expression profiles of BTSCs and have identified both Sonic Hedgehog (SHH) signaling-dependent and -independent BTSCs and their respective glioblastoma surgical specimens. BTSC proliferation could be abrogated in a pathway-dependent fashion in vitro and in an intracranial tumor model in athymic mice. Both SHH-dependent and -independent brain tumor growth required phosphoinositide 3-kinase-mammalian target of rapamycin signaling. In human GBMs, the levels of SHH and PTCH1 expression were significantly higher in PTEN-expressing tumors than in PTEN-deficient tumors. In addition, we show that hyperactive SHH-GLI signaling in PTEN-coexpressing human GBM is associated with reduced survival time. Thus, distinct proliferation signaling dependence may underpin glioblastoma propagation by BTSCs. Modeling these BTSC proliferation mechanisms may provide a rationale for individualized glioblastoma treatment.", "title": "Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas." } ]
813
Mutations in G-Beta protein GNB1 are present in many cancers, resulting in loss of interaction with G-alpha subunits and concomitant activation of AKT pathway.
[ { "docid": "33387953", "text": "Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.", "title": "Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance" } ]
[ { "docid": "22036571", "text": "The AMP-activated protein kinase (AMPK) is a ubiquitous mammalian protein kinase important in the adaptation of cells to metabolic stress. The enzyme is a heterotrimer, consisting of a catalytic alpha subunit and regulatory beta and gamma subunits, each of which is a member of a larger isoform family. The enzyme is allosterically regulated by AMP and by phosphorylation of the alpha subunit. The beta subunit is post-translationally modified by myristoylation and multi-site phosphorylation. In the present study, we have examined the impact of post-translational modification of the beta-1 subunit on enzyme activity, heterotrimer assembly and subcellular localization, using site-directed mutagenesis and expression of subunits in mammalian cells. Removal of the myristoylation site (G2A mutant) results in a 4-fold activation of the enzyme and relocalization of the beta subunit from a particulate extranuclear distribution to a more homogenous cell distribution. Mutation of the serine-108 phosphorylation site to alanine is associated with enzyme inhibition, but no change in cell localization. In contrast, the phosphorylation site mutations, SS24, 25AA and S182A, while having no effects on enzyme activity, are associated with nuclear redistribution of the subunit. Taken together, these results indicate that both myristoylation and phosphorylation of the beta subunit of AMPK modulate enzyme activity and subunit cellular localization, increasing the complexity of AMPK regulation.", "title": "Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization." }, { "docid": "55040297", "text": "The term beta diversity has been used to refer to a wide variety of phenomena. Although all of these encompass some kind of compositional heterogeneity between places, many are not related to each other in any predictable way. The present two-part review aims to put the different phenomena that have been called beta diversity into a common conceptual framework, and to explain what each of them measures. In this first part, the focus is on defining a beta component of diversity. This involves deciding what diversity is and how the observed total or gamma diversity (g) is partitioned into alpha (a) and beta (b) components. Several different definitions of ‘‘beta diversity’’ that result from these decisions have been used in the ecological literature. True beta diversity is obtained when the total effective number of species in a dataset (true gamma diversity g) is multiplicatively partitioned into the effective number of species per compositionally distinct", "title": "A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity" }, { "docid": "14241418", "text": "Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.", "title": "NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations." }, { "docid": "11615242", "text": "CCAAT/enhancer-binding proteins, C/EBPalpha and C/EBPbeta, are required for fat cell differentiation and maturation. Previous studies showed that replacement of C/EBPalpha with C/EBPbeta, generating the beta/beta alleles in the mouse genome, prevents lipid accumulation in white adipose tissue (WAT). In this study, beta/beta mice lived longer and had higher energy expenditure than their control littermates due to increased WAT energy oxidation. The WAT of beta/beta mice was enriched with metabolically active, thermogenic mitochondria known for energy burning. The beta/beta allele exerted its effect through the elevated expression of the G protein alpha stimulatory subunit (Galphas) in WAT. Galphas, when overexpressed in fat-laden 3T3-L1 cells, stimulated mitochondrial biogenesis similar to that seen in the WAT of beta/beta mice, and effectively diminished the stored lipid pool.", "title": "Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells." }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "13329980", "text": "AIMS AND BACKGROUND The PI3 kinase signalling pathway is now accepted as being at least as important as the ras-MAP kinase pathway in cell survival and proliferation, and hence its potential role in cancer is of great interest. The purpose of this review is briefly to examine evidence for an involvement of PI3K in human cancers, discuss the mechanisms by which its activation promotes tumor progression, and consider its utility as a novel target for anticancer therapy. \n METHODS AND STUDY DESIGN A Medline review of recent literature concerning the role of PI3 kinase in tumor progression--mechanisms of action and clinical implications. \n RESULTS Evidence is presented that misregulation of the PI3 kinase pathway is a feature of many common cancers, either by loss of the suppressor protein PTEN, or by constitutive activation of PI3 kinase isoforms or downstream elements such as AKT and mTOR. This activation potentiates not only cell survival and proliferation, but also cytoskeletal deformability and motility; key elements in tumor invasion. In addition the PI3K pathway is implicated in many aspects of angiogenesis, including upregulation of angiogenic cytokines due to tumor hypoxia or oncogene activation and endothelial cell responses to them. These cytokines signal though receptors such as VEGF-R, FGF-R and Tie-2 and potentiate processes essential for neoangiogenesis including cell proliferation, migration, differentiation into tubules and \"invasion\" of these capillary sprouts into extracellular matrix (ECM). \n CONCLUSIONS A more complete understanding of the role of the PI3 kinase pathway in cancer will lead the way to the development of more potent and selective inhibitors which should be a useful adjunct to conventional therapies, potentially interfering with tumor progression at several pivotal points; in particular cell survival, invasion and angiogenesis.", "title": "Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis." }, { "docid": "14171859", "text": "beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.", "title": "Regulation of β-Adrenergic Receptor Signaling by S-Nitrosylation of G-Protein-Coupled Receptor Kinase 2" }, { "docid": "21307488", "text": "HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.", "title": "HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation" }, { "docid": "21551568", "text": "PURPOSE To investigate the overall occurrence and relationship of genetic alterations in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in thyroid tumors and explore the scope of this pathway as a therapeutic target for thyroid cancer. EXPERIMENTAL DESIGN We examined collectively the major genetic alterations and their relationship in this pathway, including PIK3CA copy number gain and mutation, Ras mutation, and PTEN mutation, in a large series of primary thyroid tumors. \n RESULTS Occurrence of any of these genetic alterations was found in 25 of 81 (31%) benign thyroid adenoma (BTA), 47 of 86 (55%) follicular thyroid cancer (FTC), 21 of 86 (24%) papillary thyroid cancer (PTC), and 29 of 50 (58%) anaplastic thyroid cancer (ATC), with FTC and ATC most frequently harboring these genetic alterations. PIK3CA copy gain was associated with increased PIK3CA protein expression. A mutual exclusivity among these genetic alterations was seen in BTA, FTC, and PTC, suggesting an independent role of each of them through the PI3K/Akt pathway in the tumorigenesis of the differentiated thyroid tumors. However, coexistence of these genetic alterations was increasingly seen with progression from differentiated tumor to undifferentiated ATC. Their coexistence with BRAF mutation was also frequent in PTC and ATC. \n CONCLUSIONS The data provide strong genetic implication that aberrant activation of PI3K/Akt pathway plays an extensive role in thyroid tumorigenesis, particularly in FTC and ATC, and promotes progression of BTA to FTC and to ATC as the genetic alterations of this pathway accumulate. Progression of PTC to ATC may be facilitated by coexistence of PI3K/Akt pathway-related genetic alterations and BRAF mutation. The PI3K/Akt pathway may thus be a major therapeutic target in thyroid cancers.", "title": "Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer." }, { "docid": "22482024", "text": "Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia characterized as a normochromic macrocytic anemia with a selective deficiency in red blood cell precursors in otherwise normocellular bone marrow. In 40% of DBA patients, various physical anomalies are also present. Currently two genes are associated with the DBA phenotype--the ribosomal protein (RP) S19 mutated in 25% of DBA patients and RPS24 mutated in approximately 1.4% of DBA patients. Here we report the identification of a mutation in yet another ribosomal protein, RPS17. The mutation affects the translation initiation start codon, changing T to G (c.2T>G), thus eliminating the natural start of RPS17 protein biosynthesis. RNA analysis revealed that the mutated allele was expressed, and the next downstream start codon located at position +158 should give rise to a short peptide of only four amino acids (Met-Ser-Arg-Ile). The mutation arose de novo, since all healthy family members carry the wild-type alleles. The identification of a mutation in the third RP of the small ribosomal subunit in DBA patients further supports the theory that impaired translation may be the main cause of DBA pathogenesis.", "title": "Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia." }, { "docid": "4422868", "text": "Intestinal cancer is initiated by Wnt-pathway-activating mutations in genes such as adenomatous polyposis coli (APC). As in most cancers, the cell of origin has remained elusive. In a previously established Lgr5 (leucine-rich-repeat containing G-protein-coupled receptor 5) knockin mouse model, a tamoxifen-inducible Cre recombinase is expressed in long-lived intestinal stem cells. Here we show that deletion of Apc in these stem cells leads to their transformation within days. Transformed stem cells remain located at crypt bottoms, while fuelling a growing microadenoma. These microadenomas show unimpeded growth and develop into macroscopic adenomas within 3-5weeks. The distribution of Lgr5+ cells within stem-cell-derived adenomas indicates that a stem cell/progenitor cell hierarchy is maintained in early neoplastic lesions. When Apc is deleted in short-lived transit-amplifying cells using a different cre mouse, the growth of the induced microadenomas rapidly stalls. Even after 30weeks, large adenomas are very rare in these mice. We conclude that stem-cell-specific loss of Apc results in progressively growing neoplasia.", "title": "Crypt stem cells as the cells-of-origin of intestinal cancer" }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "4961038", "text": "Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-alpha catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-alpha mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-alpha H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan-PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography-computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.", "title": "Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers" }, { "docid": "32927475", "text": "Class I-b genes constitute the majority of MHC class I loci. These monomorphic or oligomorphic molecules have been described in many organisms; they are best characterized in the mouse, which contains a substantial number of potentially intact genes. Two main characteristics differentiate class I-b from class I-a molecules: limited polymorphism and lower cell surface expression. These distinguishing features suggest possible generalizations regarding the evolution and function of this class. Additionally, class I-b proteins tend to have shorter cytoplasmic domains or in some cases may be secreted or may substitute a lipid anchor for the transmembrane domain. Some are also expressed in a limited distribution of cells or tissues. At least six mouse MHC class I-b molecules have been shown to present antigens to alpha beta or gamma delta T cells. Recent advances have provided insight into the physiological function of H-2M3a and have defined the natural peptide-binding motif of Qa-2. In addition, significant progress has been made toward better understanding of other class I-b molecules, including Qa-1, TL, HLA-E, HLA-G, and the MHC-unlinked class I molecule CD1. We begin this review, however, by arguing that the dichotomous categorization of MHC genes as class I-a and I-b is conceptually misleading, despite its historical basis and practical usefulness. With these reservations in mind, we then discuss antigen presentation by MHC class I-b molecules with particular attention to their structure, polymorphism, requirements for peptide antigen binding and tissue expression.", "title": "Antigen presentation by major histocompatibility complex class I-B molecules." }, { "docid": "3710557", "text": "β-catenin (encoded by CTNNB1) is a subunit of the cell surface cadherin protein complex that acts as an intracellular signal transducer in the WNT signaling pathway; alterations in its activity have been associated with the development of hepatocellular carcinoma and other liver diseases. Other than WNT, additional signaling pathways also can converge at β-catenin. β-catenin also interacts with transcription factors such as T-cell factor, forkhead box protein O, and hypoxia inducible factor 1α to regulate the expression of target genes. We discuss the role of β-catenin in metabolic zonation of the adult liver. β-catenin also regulates the expression of genes that control metabolism of glucose, nutrients, and xenobiotics; alterations in its activity may contribute to the pathogenesis of nonalcoholic steatohepatitis. Alterations in β-catenin signaling may lead to activation of hepatic stellate cells, which is required for fibrosis. Many hepatic tumors such as hepatocellular adenomas, hepatocellular cancers, and hepatoblastomas have mutations in CTNNB1 that result in constitutive activation of β-catenin, so this molecule could be a therapeutic target. We discuss how alterations in β-catenin activity contribute to liver disease and how these might be used in diagnosis and prognosis, as well as in the development of therapeutics.", "title": "β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis." }, { "docid": "26495128", "text": "B23 (NPM/nucleophosmin) is a multifunctional nucleolar protein and a member of the nucleoplasmin superfamily of acidic histone chaperones. B23 is essential for normal embryonic development and plays an important role in genomic stability, ribosome biogenesis, and anti-apoptotic signaling. Altered protein expression or genomic mutation of B23 is encountered in many different forms of cancer. Although described as multifunctional, a genuine molecular function of B23 is not fully understood. Here we show that B23 is associated with a protein complex consisting of ribosomal proteins and ribosome-associated RNA helicases. A novel, RNA-independent interaction between ribosomal protein S9 (RPS9) and B23 was further investigated. We found that S9 binding requires an intact B23 oligomerization domain. Depletion of S9 by small interfering RNA resulted in decreased protein synthesis and G(1) cell cycle arrest, in association with induction of p53 target genes. We determined that S9 is a short-lived protein in the absence of ribosome biogenesis, and proteasomal inhibition significantly increased S9 protein level. Overexpression of B23 facilitated nucleolar storage of S9, whereas knockdown of B23 led to diminished levels of nucleolar S9. Our results suggest that B23 selectively stores, and protects ribosomal protein S9 in nucleoli and therefore could facilitate ribosome biogenesis.", "title": "Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation." }, { "docid": "38752049", "text": "Youths with attention deficit hyperactivity disorder often experience weight loss on stimulants, which may limit optimal dosing and compliance. Cyproheptadine has been shown in medical samples to stimulate weight gain. We conducted a retrospective chart review of 28 consecutive pediatric psychiatry outpatients prescribed cyproheptadine for weight loss or insomnia while on stimulants. Of these, 4 patients never took cyproheptadine consistently, and 3 discontinued it within the first 7 days due to intolerable side effects. Data were analyzed for 21 other patients (age range 4-15 years) who continued with 4-8 mg of cyproheptadine nightly (mean final dose = 4.9 mg/day) for at least 14 days (mean duration = 104.7 days). Most had lost weight on stimulant alone (mean weight loss was 2.1 kg, mean weight velocity was -19.3 g/day). All 21 gained weight taking concomitant cyproheptadine, with a mean gain of 2.2 kg (paired t = 6.87, p < 0.0001) and a mean weight velocity of 32.3 g/day. Eleven of 17 patients who had reported initial insomnia on stimulant alone noted significant improvements in sleep with cyproheptadine added. We conclude that concomitant cyproheptadine may be useful in youths with attention deficit hyperactivity disorder for stimulant-induced weight loss, pending future randomized controlled trials.", "title": "A chart review of cyproheptadine for stimulant-induced weight loss." }, { "docid": "46305977", "text": "The maize abscisic acid responsive protein Rab17 is a highly phosphorylated late embryogenesis abundant protein involved in plant responses to stress. In this study, we provide evidence of the importance of Rab17 phosphorylation by protein kinase CK2 in growth-related processes under stress conditions. We show the specific interaction of Rab17 with the CK2 regulatory subunits CK2 beta-1 and CK2 beta-3, and that these interactions do not depend on the phosphorylation state of Rab17. Live-cell fluorescence imaging of both CK2 and Rab17 indicates that the intracellular dynamics of Rab17 are regulated by CK2 phosphorylation. We found both CK2 beta subunits and Rab17 distributed over the cytoplasm and nucleus. By contrast, catalytic CK2 alpha subunits and a Rab17 mutant protein (mRab17) that is not a substrate for CK2 phosphorylation remain accumulated in the nucleoli. A dual-color image shows that the CK2 holoenzyme accumulates mainly in the nucleus. The importance of Rab17 phosphorylation in vivo was assessed in transgenic plants. The overexpression of Rab17, but not mRab17, arrests the process of seed germination under osmotic stress conditions. Thus, the role of Rab17 in growth processes is mediated through its phosphorylation by protein kinase CK2.", "title": "Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize." }, { "docid": "11557602", "text": "LXR alpha is a nuclear receptor that has previously been shown to regulate the metabolic conversion of cholesterol to bile acids. Here we define a role for this transcription factor in the control of cellular cholesterol efflux. We demonstrate that retroviral expression of LXR alpha in NIH 3T3 fibroblasts or RAW264.7 macrophages and/or treatment of these cells with oxysterol ligands of LXR results in 7- to 30-fold induction of the mRNA encoding the putative cholesterol/phospholipid transporter ATP-binding cassette (ABC)A1. In contrast, induction of ABCA1 mRNA in response to oxysterols is attenuated in cells that constitutively express dominant-negative forms of LXR alpha or LXR beta that lack the AF2 transcriptional activation domain. We further demonstrate that expression of LXR alpha in NIH 3T3 fibroblasts and/or treatment of these cells with oxysterols is sufficient to stimulate cholesterol efflux to extracellular apolipoprotein AI. The ability of oxysterol ligands of LXR to stimulate efflux is dramatically reduced in Tangier fibroblasts, which carry a loss of function mutation in the ABCA1 gene. Taken together, these results indicate that cellular cholesterol efflux is controlled, at least in part, at the level of transcription by a nuclear receptor-signaling pathway. They suggest a model in which activation of LXRs by oxysterols in response to cellular sterol loading leads to induction of the ABCA1 transporter and the stimulation of lipid efflux to extracellular acceptors. These findings have important implications for our understanding of mammalian cholesterol homeostasis and suggest new opportunities for pharmacological regulation of cellular lipid metabolism.", "title": "Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha." } ]
815
Mutations in RIM1 decrease levels of IME1 RNA.
[ { "docid": "8148304", "text": "In the yeast Saccharomyces cerevisiae, genetic studies suggest that the RIM1 gene encodes a positive regulator of meiosis. rim1 mutations cause reduced expression of IME1, which is required for expression of many meiotic genes, and thus lead to a partial defect in meiosis and spore formation. We report the sequence of RIM1 and functional analysis of its coding region. The RIM1 gene product (RIM1) contains three regions similar to C2H2 zinc fingers. Serine substitutions for cysteine in each of the putative zinc fingers abolish RIM1 function. The carboxyl-terminus of RIM1 is enriched in acidic amino acids and is required for full RIM1 activity. RIM1 also contains two putative cAMP-dependent protein kinase (cAPK) phosphorylation sites. At one site, substitution of alanine for serine does not affect RIM1 activity; at the other site, this substitution impairs activity. This analysis of RIM1 suggests that the protein may function as a transcriptional activator. We have used the cloned RIM1 gene to create a complete rim1 deletion. This null allele, like previously isolated rim1 mutations, causes a partial meiotic defect. In addition to RIM1, maximum IME1 expression requires the MCK1 and IME4 gene products. Defects associated with rim1, mck1, and ime4 mutations in expression of a meiotic reporter gene (ime2-lacZ) and in sporulation are additive. These findings suggest that RIM1 acts independently of MCK1 and IME4 to stimulate IME1 expression.", "title": "Molecular characterization of the yeast meiotic regulatory gene RIM1." } ]
[ { "docid": "23604601", "text": "The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MAT alpha 2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.", "title": "Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae." }, { "docid": "19255949", "text": "Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3′-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3′ termini shows that PARN is required for removal of post-transcriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased proportion of oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results demonstrate a new role for PARN in the biogenesis of TERC and provide a mechanism linking PARN mutations to telomere diseases.", "title": "Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component" }, { "docid": "33370", "text": "Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.", "title": "Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth" }, { "docid": "26495128", "text": "B23 (NPM/nucleophosmin) is a multifunctional nucleolar protein and a member of the nucleoplasmin superfamily of acidic histone chaperones. B23 is essential for normal embryonic development and plays an important role in genomic stability, ribosome biogenesis, and anti-apoptotic signaling. Altered protein expression or genomic mutation of B23 is encountered in many different forms of cancer. Although described as multifunctional, a genuine molecular function of B23 is not fully understood. Here we show that B23 is associated with a protein complex consisting of ribosomal proteins and ribosome-associated RNA helicases. A novel, RNA-independent interaction between ribosomal protein S9 (RPS9) and B23 was further investigated. We found that S9 binding requires an intact B23 oligomerization domain. Depletion of S9 by small interfering RNA resulted in decreased protein synthesis and G(1) cell cycle arrest, in association with induction of p53 target genes. We determined that S9 is a short-lived protein in the absence of ribosome biogenesis, and proteasomal inhibition significantly increased S9 protein level. Overexpression of B23 facilitated nucleolar storage of S9, whereas knockdown of B23 led to diminished levels of nucleolar S9. Our results suggest that B23 selectively stores, and protects ribosomal protein S9 in nucleoli and therefore could facilitate ribosome biogenesis.", "title": "Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation." }, { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "7317051", "text": "Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.", "title": "Mutant KRAS is a druggable target for pancreatic cancer." }, { "docid": "15248287", "text": "Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand- or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.", "title": "Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival" }, { "docid": "25014337", "text": "We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.", "title": "The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs." }, { "docid": "4409524", "text": "In pregnancy, trophoblast invasion and uterine spiral artery remodelling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodelling has been implicated in pre-eclampsia, a major complication of pregnancy, for a long time but the underlying mechanisms remain unclear. Corin (also known as atrial natriuretic peptide-converting enzyme) is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone that is important in regulating blood pressure. Unexpectedly, corin expression was detected in the pregnant uterus. Here we identify a new function of corin and ANP in promoting trophoblast invasion and spiral artery remodelling. We show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria, characteristics of pre-eclampsia. In these mice, trophoblast invasion and uterine spiral artery remodelling were markedly impaired. Consistent with this, the ANP potently stimulated human trophoblasts in invading Matrigels. In patients with pre-eclampsia, uterine Corin messenger RNA and protein levels were significantly lower than that in normal pregnancies. Moreover, we have identified Corin gene mutations in pre-eclamptic patients, which decreased corin activity in processing pro-ANP. These results indicate that corin and ANP are essential for physiological changes at the maternal–fetal interface, suggesting that defects in corin and ANP function may contribute to pre-eclampsia.", "title": "Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy" }, { "docid": "16172576", "text": "BACKGROUND High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. \n METHODS AND PRINCIPAL FINDINGS We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. \n CONCLUSIONS AND SIGNIFICANCE Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.", "title": "Inter- and Intra-Host Viral Diversity in a Large Seasonal DENV2 Outbreak" }, { "docid": "19828689", "text": "Key features of diabetic nephropathy (DN) include the accumulation of extracellular matrix proteins such as collagen 1-alpha 1 and -2 (Col1a1 and -2). Transforming growth factor beta1 (TGF-beta), a key regulator of these extracellular matrix genes, is increased in mesangial cells (MC) in DN. By microarray profiling, we noted that TGF-beta increased Col1a2 mRNA in mouse MC (MMC) but also decreased mRNA levels of an E-box repressor, deltaEF1. TGF-beta treatment or short hairpin RNAs targeting deltaEF1 increased enhancer activity of upstream E-box elements in the Col1a2 gene. TGF-beta also decreased the expression of Smad-interacting protein 1 (SIP1), another E-box repressor similar to deltaEF1. Interestingly, we noted that SIP1 is a target of microRNA-192 (miR-192), a key miR highly expressed in the kidney. miR-192 levels also were increased by TGF-beta in MMC. TGF-beta treatment or transfection with miR-192 decreased endogenous SIP1 expression as well as reporter activity of a SIP1 3' UTR-containing luciferase construct in MMC. Conversely, a miR-192 inhibitor enhanced the luciferase activity, confirming SIP1 to be a miR-192 target. Furthermore, miR-192 synergized with deltaEF1 short hairpin RNAs to increase Col1a2 E-box-luc activity. Importantly, the in vivo relevance was noted by the observation that miR-192 levels were enhanced significantly in glomeruli isolated from streptozotocin-injected diabetic mice as well as diabetic db/db mice relative to corresponding nondiabetic controls, in parallel with increased TGF-beta and Col1a2 levels. These results uncover a role for miRs in the kidney and DN in controlling TGF-beta-induced Col1a2 expression by down-regulating E-box repressors.", "title": "MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors." }, { "docid": "6315132", "text": "We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.", "title": "KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome." }, { "docid": "711256", "text": "Malignant pleural effusion (MPE) is a useful specimen allowing for the evaluation of EGFR status in nonsmall cell lung cancer (NSCLC). However, direct sequencing of genomic DNA from MPE samples was found not to be sensitive for EGFR mutation detection. To test whether EGFR analysis from RNA is less prone to interference from nontumour cells that have no or lower EGFR expression, we compared three methods (sequencing from cell-derived RNA versus sequencing and mass-spectrometric analysis from genomic DNA), in parallel, for EGFR mutation detection from MPE samples in 150 lung adenocarcinoma patients receiving first-line tyrosine kinase inhibitors (TKIs). Among these MPE samples, EGFR mutations were much more frequently identified by sequencing using RNA than by sequencing and mass-spectrometric analysis from genomic DNA (for all mutations, 67.3 versus 44.7 and 46.7%; for L858R or exon 19 deletions, 61.3 versus 41.3 and 46.7%, respectively). The better mutation detection yield of sequencing from RNA was coupled with the superior prediction of clinical efficacy of first-line TKIs. In patients with acquired resistance, EGFR sequencing from RNA provided satisfactory detection of T790M (54.2%). These results demonstrated that EGFR sequencing using RNA as template greatly improves sensitivity for EGFR mutation detection from samples of MPE, highlighting RNA as the favourable source for analysing EGFR mutations from heterogeneous MPE specimens in NSCLC.", "title": "RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer." }, { "docid": "13108582", "text": "Osteopontin (OPN), a key component of the extracellular matrix, is associated with the fibrotic process during tissue remodeling. OPN and the cytokine interleukin (IL)-18 have been shown to be overexpressed in an array of human cardiac pathologies. In the present study, we determined the role of IL-18 in the regulation of cardiac OPN expression and the subsequent interstitial fibrosis and diastolic dysfunction. We demonstrated parallel increases in IL-18, OPN expression, and interstitial fibrosis in murine models of left ventricular pressure and volume overload. Exogenous recombinant (r)IL-18 administered for 2 wk increased cardiac OPN expression, interstitial fibrosis, and diastolic dysfunction. Stimulation of the T helper (Th)1 lymphocyte phenotype with a selective toll-like receptor (TLR)9 agonist induced cardiac IL-18 and OPN expression, which was associated with increased cardiac fibrillar collagen concentrations and interstitial fibrosis resulting in diastolic dysfunction. rIL-18 induced OPN expression and protein levels in primary of cardiac fibroblast cultures. Conditioned media from TLR9-stimulated T lymphocyte cultures induced IL-18 and OPN expression in cardiac fibroblasts, while blockade of the IL-18 receptor with a neutralizing antibody abolished the increase in OPN expression. Furthermore, a mutation in the transcriptional factor interferon regulatory factor (IRF)1 or IRF1 small interfering RNA (siRNA) resulted in the decreased expression of IL-18 and OPN in cardiac fibroblasts. With pressure overload, IRF1-mutant mice showed downregulation of IL-18 and OPN expression in cardiac tissue, reduced cardiac fibrotic development, and increased left ventricular function compared with wild type. These results provide direct evidence that the induction of IL-18 regulates OPN-mediated cardiac fibrosis and diastolic dysfunction.", "title": "IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice." }, { "docid": "12652963", "text": "MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3' UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels.", "title": "miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA." }, { "docid": "17648235", "text": "De-regulation of the wingless and integration site growth factor (WNT) signaling pathway via mutations in APC and Axin, proteins that target β-catenin for destruction, have been linked to various types of human cancer. These genetic alterations rarely, if ever, are observed in breast tumors. However, various lines of evidence suggest that WNT signaling may also be de-regulated in breast cancer. Most breast tumors show hypermethylation of the promoter region of secreted Frizzled-related protein 1 (sFRP1), a negative WNT pathway regulator, leading to downregulation of its expression. As a consequence, WNT signaling is enhanced and may contribute to proliferation of human breast tumor cells. We previously demonstrated that, in addition to the canonical WNT/β-catenin pathway, WNT signaling activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mouse mammary epithelial cells via epidermal growth factor receptor (EGFR) transactivation. Using the WNT modulator sFRP1 and short interfering RNA-mediated Dishevelled (DVL) knockdown, we interfered with autocrine WNT signaling at the ligand-receptor level. The impact on proliferation was measured by cell counting, YOPRO, and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay; β-catenin, EGFR, ERK1/2 activation, and PARP (poly [ADP-ribose]polymerase) cleavages were assessed by Western blotting after treatment of human breast cancer cell lines with conditioned media, purified proteins, small-molecule inhibitors, or blocking antibodies. Phospho-DVL and stabilized β-catenin are present in many breast tumor cell lines, indicating autocrine WNT signaling activity. Interfering with this loop decreases active β-catenin levels, lowers ERK1/2 activity, blocks proliferation, and induces apoptosis in MDA-MB-231, BT474, SkBr3, JIMT-1, and MCF-7 cells. The effects of WNT signaling are mediated partly by EGFR transactivation in human breast cancer cells in a metalloprotease- and Src-dependent manner. Furthermore, Wnt1 rescues estrogen receptor-positive (ER+) breast cancer cells from the anti-proliferative effects of 4-hydroxytamoxifen (4-HT) and this activity can be blocked by an EGFR tyrosine kinase inhibitor. Our data show that interference with autocrine WNT signaling in human breast cancer reduces proliferation and survival of human breast cancer cells and rescues ER+ tumor cells from 4-HT by activation of the canonical WNT pathway and EGFR transactivation. These findings suggest that interference with WNT signaling at the ligand-receptor level in combination with other targeted therapies may improve the efficiency of breast cancer treatments.", "title": "Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation" }, { "docid": "12582729", "text": "BACKGROUND Upregulated by atheroprotective flow, the transcription factor Krüppel-like factor 2 (KLF2) is crucial for maintaining endothelial function. MicroRNAs (miRNAs) are noncoding small RNAs that regulate gene expression at the posttranscriptional level. We examined the role of miRNAs, particularly miR-92a, in the atheroprotective flow-regulated KLF2. \n METHODS AND RESULTS Dicer knockdown increased the level of KLF2 mRNA in human umbilical vein endothelial cells, suggesting that KLF2 is regulated by miRNA. In silico analysis predicted that miR-92a could bind to the 3' untranslated region of KLF2 mRNA. Overexpression of miR-92a decreased the expression of KLF2 and the KLF2-regulated endothelial nitric oxide synthase and thrombomodulin at mRNA and protein levels. A complementary finding is that miR-92a inhibitor increased the mRNA and protein expression of KLF2, endothelial nitric oxide synthase, and thrombomodulin. Subsequent studies revealed that atheroprotective laminar flow downregulated the level of miR-92a precursor to induce KLF2, and the level of this flow-induced KLF2 was reduced by miR-92a precursor. Furthermore, miR-92a level was lower in human umbilical vein endothelial cells exposed to the atheroprotective pulsatile shear flow than under atheroprone oscillatory shear flow. Anti-Ago1/2 immunoprecipitation coupled with real-time polymerase chain reaction revealed that pulsatile shear flow decreased the functional targeting of miR-92a precursor/KLF2 mRNA in human umbilical vein endothelial cells. Consistent with these findings, mouse carotid arteries receiving miR-92a precursor exhibited impaired vasodilatory response to flow. \n CONCLUSIONS Atheroprotective flow patterns decrease the level of miR-92a, which in turn increases KLF2 expression to maintain endothelial homeostasis.", "title": "Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a." }, { "docid": "42065070", "text": "Early events during human immunodeficiency virus infections are considered to reflect the capacity of the host to control infection. We have studied early virus and host parameters during the early phase of simian immunodeficiency virus SIVmnd-1 nonpathogenic infection in its natural host, Mandrillus sphinx. Four mandrills were experimentally infected with a primary SIVmnd-1 strain derived from a naturally infected mandrill. Two noninfected control animals were monitored in parallel. Blood and lymph nodes were collected at three time points before infection, twice a week during the first month, and at days 60, 180, and 360 postinfection (p.i.). Anti-SIVmnd-1 antibodies were detected starting from days 28 to 32 p.i. Neither elevated temperature nor increased lymph node size were observed. The viral load in plasma peaked between days 7 to 10 p.i. (2 x 10(6) to 2 x 10(8) RNA equivalents/ml). Viremia then decreased 10- to 1,000-fold, reaching the viral set point between days 30 to 60 p.i. The levels during the chronic phase of infection were similar to that in the naturally infected donor mandrill (2 x 10(5) RNA equivalents/ml). The CD4(+) cell numbers and percentages in blood and lymph nodes decreased slightly (<10%) during primary infection, and CD8(+) cell numbers increased transiently. All values returned to preinfection infection levels by day 30 p.i. CD8(+) cell numbers or percentages, in peripheral blood and lymph nodes, did not increase during the 1 year of follow-up. In conclusion, SIVmnd-1 has the capacity for rapid and extensive replication in mandrills. Despite high levels of viremia, CD4(+) and CD8(+) cell numbers remained stable in the post-acute phase of infection, raising questions regarding the susceptibility of mandrill T cells to activation and/or cell death in response to SIVmnd-1 infection in vivo.", "title": "High levels of viral replication contrast with only transient changes in CD4(+) and CD8(+) cell numbers during the early phase of experimental infection with simian immunodeficiency virus SIVmnd-1 in Mandrillus sphinx." }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" } ]
816
Mutations in RIM1 raise levels of IME1 RNA.
[ { "docid": "8148304", "text": "In the yeast Saccharomyces cerevisiae, genetic studies suggest that the RIM1 gene encodes a positive regulator of meiosis. rim1 mutations cause reduced expression of IME1, which is required for expression of many meiotic genes, and thus lead to a partial defect in meiosis and spore formation. We report the sequence of RIM1 and functional analysis of its coding region. The RIM1 gene product (RIM1) contains three regions similar to C2H2 zinc fingers. Serine substitutions for cysteine in each of the putative zinc fingers abolish RIM1 function. The carboxyl-terminus of RIM1 is enriched in acidic amino acids and is required for full RIM1 activity. RIM1 also contains two putative cAMP-dependent protein kinase (cAPK) phosphorylation sites. At one site, substitution of alanine for serine does not affect RIM1 activity; at the other site, this substitution impairs activity. This analysis of RIM1 suggests that the protein may function as a transcriptional activator. We have used the cloned RIM1 gene to create a complete rim1 deletion. This null allele, like previously isolated rim1 mutations, causes a partial meiotic defect. In addition to RIM1, maximum IME1 expression requires the MCK1 and IME4 gene products. Defects associated with rim1, mck1, and ime4 mutations in expression of a meiotic reporter gene (ime2-lacZ) and in sporulation are additive. These findings suggest that RIM1 acts independently of MCK1 and IME4 to stimulate IME1 expression.", "title": "Molecular characterization of the yeast meiotic regulatory gene RIM1." } ]
[ { "docid": "23604601", "text": "The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MAT alpha 2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.", "title": "Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae." }, { "docid": "19255949", "text": "Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3′-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3′ termini shows that PARN is required for removal of post-transcriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased proportion of oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results demonstrate a new role for PARN in the biogenesis of TERC and provide a mechanism linking PARN mutations to telomere diseases.", "title": "Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component" }, { "docid": "2380002", "text": "Increasing numbers of transcripts have been reported to transmit both protein-coding and regulatory information. Apart from challenging our conception of the gene, this observation raises the question as to what extent this phenomenon occurs across the genome and how and why such dual encoding of function has evolved in the eukaryotic genome. To address this question, we consider the evolutionary path of genes in the earliest forms of life on Earth, where it is generally regarded that proteins evolved from a cellular machinery based entirely within RNA. This led to the domination of protein-coding genes in the genomes of microorganisms, although it is likely that RNA never lost its other capacities and functionalities, as evidenced by cis-acting riboswitches and UTRs. On the basis that the subsequent evolution of a more sophisticated regulatory architecture to provide higher levels of epigenetic control and accurate spatiotemporal expression in developmentally complex organisms is a complicated task, we hypothesize: (i) that mRNAs have been and remain subject to secondary selection to provide trans-acting regulatory capability in parallel with protein-coding functions; (ii) that some and perhaps many protein-coding loci, possibly as a consequence of gene duplication, have lost protein-coding functions en route to acquiring more sophisticated trans-regulatory functions; (iii) that many transcripts have become subject to secondary processing to release different products; and (iv) that novel proteins have emerged within loci that previously evolved functionality as regulatory RNAs. In support of the idea that there is a dynamic flux between different types of informational RNAs in both evolutionary and real time, we review recent observations that have arisen from transcriptomic surveys of complex eukaryotes and reconsider how these observations impact on the notion that apparently discrete loci may express transcripts with more than one function. In conclusion, we posit that many eukaryotic loci have evolved the capacity to transact a multitude of overlapping and potentially independent functions as both regulatory and protein-coding RNAs.", "title": "The evolution of RNAs with multiple functions." }, { "docid": "6670101", "text": "It is long been known that cancer and non-cancer cells can be distinguished on the basis of their nucleolar morphologies. As early as the 19th century, it was reported that cancer cells have larger and more irregularly shaped nucleoli. Since then, pathologists have used nucleolar morphology to predict the clinical outcome [1]. Nucleolar morphology is altered due to the up-regulation of ribosomal gene transcription. Within nucleoli, ribosomal genes (rDNA) are transcribed by RNA polymerase I (pol I). The pre-ribosomal RNA (pre-rRNA) transcripts are subsequently modified and processed into the mature 18S, 5.8S and 28S rRNAs. 5S rRNA is transcribed by RNA polymerase III in the nucleoplasm. Together with the ribosomal proteins, the 5S rRNA is imported into the nucleolus where 40S and 60S ribosomal subunits are assembled prior to export to the cytoplasm [1, 2]. Oncogenes such as c-Myc can both directly and indirectly upregulate rDNA transcription, while tumour suppressors like p53 and Rb suppress ribosome biogenesis. Mutations in these genes not only result in deregulated cell cycle control, but also upregulated ribosome biogenesis. In addition to ribosome biogenesis, the nucleolus is a key cellular stress sensor and plays a central role in p53 activation [1, 2]. The increased translational capacity of cancer cells enables them to maintain higher proliferation rates. As stated by Ruggero, “compared with normal cells, cancer cells may be addicted to increases in ribosome biogenesis and number” [1]. This provides new therapeutic opportunities. As it turns out many chemotherapeutic drugs used in cancer treatment already inhibit ribosome biogenesis. In one recent survey it was shown that 20 out of 36 drugs in clinical use inhibit ribosome biogenesis [3]. Most of these drugs were originally designed to target highly proliferating cells by damaging DNA, interfering with DNA synthesis or with mitosis. These targeting modalities of these drugs also lead to toxicity in normal highly proliferating tissues. An example is ActinomycinD (AMD), a DNA intercalator which has a preference for GC-rich DNA sequences. As rDNA has above average GC-richness and because of its open chromatin conformation, low concentrations of AMD preferentially inhibit RNA polymerase I transcription and upon prolonged exposure causes genome wide DNA damage. Alkylating drugs like cisplatin and oxaliplatin or topoisomerases poisons like camptothecin inhibit pol I transcription. The degree to which inhibition of ribosome biogenesis contributes to the efficacy of these drugs is difficult to establish [3]. This raises an important question. Can targeting ribosome biogenesis without DNA damage offer any therapeutic potential? Two recently described drugs CX-5461 and BMH-21 are now providing evidence that inhibition of ribosome biogenesis by targeting transcription of rDNA by pol I has promising therapeutic potential. CX-5461 was designed to specifically inhibit pol I transcription by disrupting pre-initiation complex formation at the rDNA promoter. CX-5461 has been shown to activate p53 via nucleolar stress. It induces autophagy as well as senescence in a multiple types of cancer cells in a p53-dependent manner. Especially in leukaemia and lymphoma cells, treatment with CX-5461 induces p53-dependent apoptosis, while normal cells tolerate it [4, 5]. Whether the drug also induces DNA damage was not fully addressed, but it was demonstrated that it could induce cell death in cells lacking ATM - a key mediator of DNA double strand break responses. However, more recently Laiho and colleagues have shown that at high concentrations, CX-5461 does induce a γH2AX response, raising concerns about DNA damage [6]. BMH-21 was identified in a screen performed by Laiho and colleagues aimed at identifying novel p53 activators. Like AMD, BMH-21 is a DNA intercalator with preference for GC rich sequences [7]. Continuing the parallel with AMD, BMH-21 is a potent and specific inhibitor rDNA transcription and induces nucleolar reorganisation often referred to as nucleolar capping. Interestingly, transcription inhibition was followed by the degradation of the main pol I subunit, RPA194, by the proteasome [6]. In contrast with AMD, initial indications were that BMH-21 did not appear to induce DNA damage as evidenced by the lack of a γH2AX response [7]. Inhibition of transcription by BMH-21 causes nucleolar stress, resulting in decreased proliferation and cell death. P53 is activated in BMH-21 treated cells but is not required for its anti-proliferative effects. Intriguingly, it appears that cancer cells with high demands for ribosome biogenesis are selectively targeted [6]. The current publication in Oncotarget now rules out any role for DNA damage signalling and repair pathways in the BMH-21 response. Moreover, BMH-21 derivatives that can induce DNA damage display lower efficiency in inducing nucleolar stress and inhibiting proliferation [8]. The central importance of this study is that it finally uncouples DNA damage and nucleolar stress and reveals an Achilles heel in cancer cells, their addiction to ribosome biogenesis.", "title": "Ribosome biogenesis: Achilles heel of cancer?" }, { "docid": "7662206", "text": "One-fourth of all deaths in industrialized countries result from coronary heart disease. A century of research has revealed the essential causative agent: cholesterol-carrying low-density lipoprotein (LDL). LDL is controlled by specific receptors (LDLRs) in liver that remove it from blood. Mutations that eliminate LDLRs raise LDL and cause heart attacks in childhood, whereas mutations that raise LDLRs reduce LDL and diminish heart attacks. If we are to eliminate coronary disease, lowering LDL should be the primary goal. Effective means to achieve this goal are currently available. The key questions are: who to treat, when to treat, and how long to treat.", "title": "A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins" }, { "docid": "42065070", "text": "Early events during human immunodeficiency virus infections are considered to reflect the capacity of the host to control infection. We have studied early virus and host parameters during the early phase of simian immunodeficiency virus SIVmnd-1 nonpathogenic infection in its natural host, Mandrillus sphinx. Four mandrills were experimentally infected with a primary SIVmnd-1 strain derived from a naturally infected mandrill. Two noninfected control animals were monitored in parallel. Blood and lymph nodes were collected at three time points before infection, twice a week during the first month, and at days 60, 180, and 360 postinfection (p.i.). Anti-SIVmnd-1 antibodies were detected starting from days 28 to 32 p.i. Neither elevated temperature nor increased lymph node size were observed. The viral load in plasma peaked between days 7 to 10 p.i. (2 x 10(6) to 2 x 10(8) RNA equivalents/ml). Viremia then decreased 10- to 1,000-fold, reaching the viral set point between days 30 to 60 p.i. The levels during the chronic phase of infection were similar to that in the naturally infected donor mandrill (2 x 10(5) RNA equivalents/ml). The CD4(+) cell numbers and percentages in blood and lymph nodes decreased slightly (<10%) during primary infection, and CD8(+) cell numbers increased transiently. All values returned to preinfection infection levels by day 30 p.i. CD8(+) cell numbers or percentages, in peripheral blood and lymph nodes, did not increase during the 1 year of follow-up. In conclusion, SIVmnd-1 has the capacity for rapid and extensive replication in mandrills. Despite high levels of viremia, CD4(+) and CD8(+) cell numbers remained stable in the post-acute phase of infection, raising questions regarding the susceptibility of mandrill T cells to activation and/or cell death in response to SIVmnd-1 infection in vivo.", "title": "High levels of viral replication contrast with only transient changes in CD4(+) and CD8(+) cell numbers during the early phase of experimental infection with simian immunodeficiency virus SIVmnd-1 in Mandrillus sphinx." }, { "docid": "11887584", "text": "The proto-oncogene c-src is rarely mutated in human cancers, and when overexpressed in normal cells is non- or weakly oncogenic. These observations have raised doubts about the involvement of c-src in the etiology of human tumors. However, recent studies have shown that c-Src, a non-receptor tyrosine kinase, exhibits elevated protein levels and activity in numerous types of human cancers. Furthermore, it has been found to be a critical component of multiple signaling pathways that regulate proliferation, survival, metastasis, and angiogenesis. Because of its important role in these oncogenic processes, it represents a therapeutic target ripe for exploitation.", "title": "c-Src and cooperating partners in human cancer." }, { "docid": "16172576", "text": "BACKGROUND High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. \n METHODS AND PRINCIPAL FINDINGS We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. \n CONCLUSIONS AND SIGNIFICANCE Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.", "title": "Inter- and Intra-Host Viral Diversity in a Large Seasonal DENV2 Outbreak" }, { "docid": "6315132", "text": "We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.", "title": "KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome." }, { "docid": "711256", "text": "Malignant pleural effusion (MPE) is a useful specimen allowing for the evaluation of EGFR status in nonsmall cell lung cancer (NSCLC). However, direct sequencing of genomic DNA from MPE samples was found not to be sensitive for EGFR mutation detection. To test whether EGFR analysis from RNA is less prone to interference from nontumour cells that have no or lower EGFR expression, we compared three methods (sequencing from cell-derived RNA versus sequencing and mass-spectrometric analysis from genomic DNA), in parallel, for EGFR mutation detection from MPE samples in 150 lung adenocarcinoma patients receiving first-line tyrosine kinase inhibitors (TKIs). Among these MPE samples, EGFR mutations were much more frequently identified by sequencing using RNA than by sequencing and mass-spectrometric analysis from genomic DNA (for all mutations, 67.3 versus 44.7 and 46.7%; for L858R or exon 19 deletions, 61.3 versus 41.3 and 46.7%, respectively). The better mutation detection yield of sequencing from RNA was coupled with the superior prediction of clinical efficacy of first-line TKIs. In patients with acquired resistance, EGFR sequencing from RNA provided satisfactory detection of T790M (54.2%). These results demonstrated that EGFR sequencing using RNA as template greatly improves sensitivity for EGFR mutation detection from samples of MPE, highlighting RNA as the favourable source for analysing EGFR mutations from heterogeneous MPE specimens in NSCLC.", "title": "RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer." }, { "docid": "8426046", "text": "Large noncoding RNAs are emerging as an important component in cellular regulation. Considerable evidence indicates that these transcripts act directly as functional RNAs rather than through an encoded protein product. However, a recent study of ribosome occupancy reported that many large intergenic ncRNAs (lincRNAs) are bound by ribosomes, raising the possibility that they are translated into proteins. Here, we show that classical noncoding RNAs and 5' UTRs show the same ribosome occupancy as lincRNAs, demonstrating that ribosome occupancy alone is not sufficient to classify transcripts as coding or noncoding. Instead, we define a metric based on the known property of translation whereby translating ribosomes are released upon encountering a bona fide stop codon. We show that this metric accurately discriminates between protein-coding transcripts and all classes of known noncoding transcripts, including lincRNAs. Taken together, these results argue that the large majority of lincRNAs do not function through encoded proteins.", "title": "Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins" }, { "docid": "26495128", "text": "B23 (NPM/nucleophosmin) is a multifunctional nucleolar protein and a member of the nucleoplasmin superfamily of acidic histone chaperones. B23 is essential for normal embryonic development and plays an important role in genomic stability, ribosome biogenesis, and anti-apoptotic signaling. Altered protein expression or genomic mutation of B23 is encountered in many different forms of cancer. Although described as multifunctional, a genuine molecular function of B23 is not fully understood. Here we show that B23 is associated with a protein complex consisting of ribosomal proteins and ribosome-associated RNA helicases. A novel, RNA-independent interaction between ribosomal protein S9 (RPS9) and B23 was further investigated. We found that S9 binding requires an intact B23 oligomerization domain. Depletion of S9 by small interfering RNA resulted in decreased protein synthesis and G(1) cell cycle arrest, in association with induction of p53 target genes. We determined that S9 is a short-lived protein in the absence of ribosome biogenesis, and proteasomal inhibition significantly increased S9 protein level. Overexpression of B23 facilitated nucleolar storage of S9, whereas knockdown of B23 led to diminished levels of nucleolar S9. Our results suggest that B23 selectively stores, and protects ribosomal protein S9 in nucleoli and therefore could facilitate ribosome biogenesis.", "title": "Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation." }, { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "13458119", "text": "Astrocytes can release glutamate in a calcium-dependent manner and consequently signal to adjacent neurons. Whether this glutamate release pathway is used during physiological signaling or is recruited only under pathophysiological conditions is not well defined. One reason for this lack of understanding is the limited knowledge about the levels of calcium necessary to stimulate glutamate release from astrocytes and about how they compare with the range of physiological calcium levels in these cells. We used flash photolysis to raise internal calcium in astrocytes, while monitoring astrocytic calcium levels and glutamate, which evoked slow inward currents that were recorded electrophysiologically from single neurons grown on microislands of astrocytes. With this approach, we demonstrate that modest changes of astrocytic calcium, from 84 to 140 nM, evoke substantial glutamatergic currents in neighboring neurons (-391 pA), with a Hill coefficient of 2.1 to 2.7. Because the agonists glutamate, norepinephrine, and dopamine all raise calcium in astrocytes to levels exceeding 1.8 microM, these quantitative studies demonstrate that the astrocytic glutamate release pathway is engaged at physiological levels of internal calcium. Consequently, the calcium-dependent release of glutamate from astrocytes functions within an appropriate range of astrocytic calcium levels to be used as a signaling pathway within the functional nervous system.", "title": "Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." }, { "docid": "19822046", "text": "BACKGROUND Deadenylation regulates RNA function and fate. Poly(A)-specific ribonuclease (PARN) is a deadenylase that processes mRNAs and non-coding RNA. Little is known about the biological significance of germline mutations in PARN. \n METHODS We identified mutations in PARN in patients with haematological and neurological manifestations. Genomic, biochemical and knockdown experiments in human marrow cells and in zebrafish have been performed to clarify the role of PARN in the human disease. \n RESULTS We identified large monoallelic deletions in PARN in four patients with developmental delay or mental illness. One patient in particular had a severe neurological phenotype, central hypomyelination and bone marrow failure. This patient had an additional missense mutation on the non-deleted allele and severely reduced PARN protein and deadenylation activity. Cells from this patient had impaired oligoadenylation of specific H/ACA box small nucleolar RNAs. Importantly, PARN-deficient patient cells manifested short telomeres and an aberrant ribosome profile similar to those described in some variants of dyskeratosis congenita. Knocking down PARN in human marrow cells and zebrafish impaired haematopoiesis, providing further evidence for a causal link with the human disease. \n CONCLUSIONS Large monoallelic mutations of PARN can cause developmental/mental illness. Biallelic PARN mutations cause severe bone marrow failure and central hypomyelination.", "title": "Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN)." }, { "docid": "7317051", "text": "Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.", "title": "Mutant KRAS is a druggable target for pancreatic cancer." }, { "docid": "7029990", "text": "One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.", "title": "Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene." }, { "docid": "11016410", "text": "Within hosts, RNA viruses form populations that are genetically and phenotypically complex. Heterogeneity in RNA virus genomes arises due to error-prone replication and is reduced by stochastic and selective mechanisms that are incompletely understood. Defining how natural selection shapes RNA virus populations is critical because it can inform treatment paradigms and enhance control efforts. We allowed West Nile virus (WNV) to replicate in wild-caught American crows, house sparrows and American robins to assess how natural selection shapes RNA virus populations in ecologically relevant hosts that differ in susceptibility to virus-induced mortality. After five sequential passages in each bird species, we examined the phenotype and population diversity of WNV through fitness competition assays and next generation sequencing. We demonstrate that fitness gains occur in a species-specific manner, with the greatest replicative fitness gains in robin-passaged WNV and the least in WNV passaged in crows. Sequencing data revealed that intrahost WNV populations were strongly influenced by purifying selection and the overall complexity of the viral populations was similar among passaged hosts. However, the selective pressures that control WNV populations seem to be bird species-dependent. Specifically, crow-passaged WNV populations contained the most unique mutations (~1.7× more than sparrows, ~3.4× more than robins) and defective genomes (~1.4× greater than sparrows, ~2.7× greater than robins), but the lowest average mutation frequency (about equal to sparrows, ~2.6× lower than robins). Therefore, our data suggest that WNV replication in the most disease-susceptible bird species is positively associated with virus mutational tolerance, likely via complementation, and negatively associated with the strength of selection. These differences in genetic composition most likely have distinct phenotypic consequences for the virus populations. Taken together, these results reveal important insights into how different hosts may contribute to the emergence of RNA viruses.", "title": "Experimental Evolution of an RNA Virus in Wild Birds: Evidence for Host-Dependent Impacts on Population Structure and Competitive Fitness" } ]
817
Myelin sheaths are lipid-rich cellular structures.
[ { "docid": "17814815", "text": "We report a newly developed technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser-scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas. These patterns highlight nodes of Ranvier and Schmidt-Lanterman incisures and can be used to detect various myelin pathologies. Using SCoRe we carried out chronic brain imaging up to 400 μm deep, capturing de novo myelination of mouse cortical axons in vivo. We also established the feasibility of imaging myelinated axons in the human cerebral cortex. SCoRe adds a powerful component to the evolving toolbox for imaging myelination in living animals and potentially in humans.", "title": "Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy" } ]
[ { "docid": "27731651", "text": "The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.", "title": "A view to a kill: the bacterial type VI secretion system." }, { "docid": "35467590", "text": "We have identified a novel transcription unit of 105 kilobases (called the Golli-mbp gene) that encompasses the mouse myelin basic protein (MBP) gene. Three unique exons within this gene are alternatively spliced into MBP exons and introns to produce a family of MBP gene-related mRNAs that are under individual developmental regulation. These mRNAs are temporally expressed within cells of the oligodendrocyte lineage at progressive stages of differentiation. Thus, the MBP gene is a part of a more complex gene structure, the products of which may play a role in oligodendrocyte differentiation prior to myelination. One Golli-mbp mRNA that encodes a protein antigenically related to MBP is also expressed in the spleen and other non-neural tissues.", "title": "Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain." }, { "docid": "2825380", "text": "Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein–GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70–containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.", "title": "T cell receptor ligation induces the formation of dynamically regulated signaling assemblies" }, { "docid": "38037690", "text": "Abstract. Stimulated Raman scattering (SRS) microscopy is used to generate structural and chemical three-dimensional images of native skin. We employed SRS microscopy to investigate the microanatomical features of skin and penetration of topically applied materials. Image depth stacks are collected at distinct wavelengths corresponding to vibrational modes of proteins, lipids, and water in the skin. We observed that corneocytes in stratum corneum are grouped together in clusters, 100 to 250 μm in diameter, separated by 10- to 25-μm-wide microanatomical skin-folds called canyons. These canyons occasionally extend down to depths comparable to that of the dermal–epidermal junction below the flat surface regions in porcine and human skin. SRS imaging shows the distribution of chemical species within cell clusters and canyons. Water is predominately located within the cell clusters, and its concentration rapidly increases at the transition from stratum corneum to viable epidermis. Canyons do not contain detectable levels of water and are rich in lipid material. Oleic acid-d34 applied to the skin surface lines the canyons down to a depth of 50 μm below the surface of the skin. This observation could have implications on the evaluation of penetration profiles of bioactive materials measured using traditional methods, such as tape-stripping.", "title": "Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy" }, { "docid": "45487164", "text": "Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.", "title": "A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation." }, { "docid": "11742219", "text": "Galanin (GAL) is known to stimulate feeding behavior. This peptide has different properties and functions from other feeding stimulants, e.g., neuropeptide Y and agouti-related protein. Hypothalamic GAL is relatively unresponsive to food deprivation and to changes in corticosterone, glucose utilization, dietary carbohydrate and leptin. This indicates that this peptide is not essential under conditions when food is scarce or low-energy, high-carbohydrate diets are being consumed. In contrast, recent evidence suggests that GAL in the paraventricular nucleus (PVN) functions in close relation to dietary fat and alcohol. In particular, it mediates functions that allow animals to adapt to conditions of positive energy balance involving excess consumption of these nutrients. This peptide in the PVN is stimulated by a high-fat diet and also by alcohol. It is stimulated by an increase in circulating lipids caused by a fat-rich meal or alcohol consumption, and it rises during the middle of the active feeding cycle, when fat consumption and triglycerides naturally rise. When centrally injected, GAL in the PVN increases the consumption of food and alcohol. Moreover, it produces a significantly stronger feeding response in rats maintained on a fat-rich diet, which also promotes alcohol intake. This evidence supports the existence of non-homeostatic, positive feedback circuits between GAL and both dietary fat and alcohol. These circuits are believed to contribute to the large meal size, over-consumption of alcohol, and obesity which are generally associated with fat-rich foods.", "title": "Regulation and effects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis." }, { "docid": "6386930", "text": "Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.", "title": "Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex." }, { "docid": "9283422", "text": "T cell receptor (TCR) signaling is initiated and sustained in microclusters; however, it's not known whether signaling also occurs in the TCR-rich central supramolecular activation cluster (cSMAC). We showed that the cSMAC formed by fusion of microclusters contained more CD45 than microclusters and is a site enriched in lysobisphosphatidic acid, a lipid involved in sorting ubiquitinated membrane proteins for degradation. Calcium signaling via TCR was blocked within 2 min by anti-MHCp treatment and 1 min by latrunculin-A treatment. TCR-MHCp interactions in the cSMAC survived these perturbations for 10 min and hence were not sufficient to sustain signaling. TCR microclusters were also resistant to disruption by anti-MHCp and latrunculin-A treatments. We propose that TCR signaling is sustained by stabilized microclusters and is terminated in the cSMAC, a structure from which TCR are sorted for degradation. Our studies reveal a role for F-actin in TCR signaling beyond microcluster formation.", "title": "T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster." }, { "docid": "19238", "text": "Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled us to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is approximately 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcripts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.", "title": "The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems." }, { "docid": "1412089", "text": "BACKGROUND Traditional T2 weighted MR imaging results are non-specific for the extent of underlying white matter structural abnormalities present in late life depression (LLD). Diffusion tensor imaging provides a unique opportunity to investigate the extent and nature of structural injury, but has been limited by examining only a subset of regions of interest (ROI) and by confounds common to the study of an elderly population, including comorbid vascular pathology. Furthermore, comprehensive correlation of diffusion tensor imaging (DTI) measurements, including axial and radial diffusivity measurements, has not been demonstrated in the late life depression population. \n METHODS 51 depressed and 16 non-depressed, age- and cerebrovascular risk factor-matched elderly subjects underwent traditional anatomic T1 and T2 weight imaging, as well as DTI. The DTI data were skeletonized using tract based spatial statistics (TBSS), and both regional and global analyses were performed. \n RESULTS Widespread structural abnormalities within white matter were detected in the LLD group, accounting for age, gender and education and matched for cerebrovascular risk factors and global T2 white matter hyperintensities (T2WMH). Regional differences were most prominent in uncinate and cingulate white matter and were generally characterized by an increase in radial diffusivity. Age-related changes particularly in the cingulate bundle were more advanced in individuals with LLD relative to controls. Regression analysis demonstrated significant correlations of regional fractional anisotropy and radial diffusivity with five different neuropsychological factor scores. TBSS analysis demonstrated a greater extent of white matter abnormalities in LLD not responsive to treatment, as compared to controls. \n CONCLUSIONS White matter integrity is compromised in late life depression, largely manifested by increased radial diffusivity in specific regions, suggesting underlying myelin injury. A possible mechanism for underlying myelin injury is chronic white matter ischemia related to intrinsic cerebrovascular disease. In some regions such as the cingulate bundle, the white matter injury related to late life depression appears to be independent of and compounded by age-related changes. The correlations with neuropsychological testing indicate the essential effects of white matter injury on functional status. Lastly, response to treatment may depend on the extent of white matter injury, suggesting a need for intact functional networks.", "title": "Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities." }, { "docid": "4300851", "text": "A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of >2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein's mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.", "title": "Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise" }, { "docid": "25789730", "text": "Both axon and myelin degeneration have significant impact on the long-term disability of patients with white matter disorder. However, the clinical manifestations of the neurological dysfunction caused by white matter disorders are not sufficient to determine the origin of neurological deficits. A noninvasive biological marker capable of detecting and differentiating axon and myelin degeneration would be a significant addition to currently available tools. Directional diffusivities derived from diffusion tensor imaging (DTI) have been previously proposed by this group as potential biological markers to detect and differentiate axon and myelin degeneration. To further test the hypothesis that axial (lambdaparallel) and radial (lambdaperpendicular) diffusivities reflect axon and myelin pathologies, respectively, the optic nerve was examined serially using DTI in a mouse model of retinal ischemia. A significant decrease of lambdaparallel, the putative DTI axonal marker, was observed 3 days after ischemia without concurrently detectable changes in lambdaperpendicular, the putative myelin marker. This result is consistent with histological findings of significant axonal degeneration with no detectable demyelination at 3 days after ischemia. The elevation of lambdaperpendicular observed 5 days after ischemia is consistent with histological findings of myelin degeneration at this time. These results support the hypothesis that lambdaparallel and lambdaperpendicular hold promise as specific markers of axonal and myelin injury, respectively, and, further, that the coexistence of axonal and myelin degeneration does not confound this utility.", "title": "Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia." }, { "docid": "19332616", "text": "Coronary atherosclerosis is by far the most frequent cause of ischemic heart disease, and plaque disruption with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.1 2 3 4 5 Therefore, for event-free survival, the vital question is not why atherosclerosis develops but rather why, after years of indolent growth, it suddenly becomes complicated by life-threatening thrombosis. The composition and vulnerability of plaque rather than its volume or the consequent severity of stenosis produced have emerged as being the most important determinants for the development of the thrombus-mediated acute coronary syndromes; lipid-rich and soft plaques are more dangerous than collagen-rich and hard plaques because they are more unstable and rupture-prone and highly thrombogenic after disruption.6 This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.7 8 Atherosclerosis is the result of a complex interaction between blood elements, disturbed flow, and vessel wall abnormality, involving several pathological processes: inflammation, with increased endothelial permeability, endothelial activation, and monocyte recruitment9 10 11 12 13 14 ; growth, with smooth muscle cell (SMC) proliferation, migration, and matrix synthesis15 16 ; degeneration, with lipid accumulation17 18 ; necrosis, possibly related to the cytotoxic effect of oxidized lipid19 ; calcification/ossification, which may represent an active rather than a dystrophic process20 21 ; and thrombosis, with platelet recruitment and fibrin formation.1 22 23 Thrombotic factors may play a role early during atherogenesis, but a flow-limiting thrombus does not develop until mature plaques are present, which is why thrombosis often is classified as a complication rather than a genuine component of atherosclerosis. ### Mature Plaques: Atherosis and Sclerosis As the name atherosclerosis implies, mature …", "title": "Coronary plaque disruption." }, { "docid": "47240151", "text": "BACKGROUND Steroidogenic acute regulatory (StAR) protein related lipid transfer (START) domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease. PRINCIPAL FINDINGS We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains. SIGNIFICANCE Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.", "title": "Comparative Structural Analysis of Lipid Binding START Domains" }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "13573143", "text": "Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.", "title": "Intestinal Cgi-58 Deficiency Reduces Postprandial Lipid Absorption" }, { "docid": "10486817", "text": "BACKGROUND Cellular nucleic acid binding protein (CNBP) has been implicated in vertebrate craniofacial development and in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human diseases by controlling cell proliferation and survival to mediate neural crest expansion. CNBP has been found to bind single-stranded nucleic acid and promote rearrangements of nucleic acid secondary structure in an ATP-independent manner, acting as a nucleic acid chaperone. \n METHODS A variety of methods were used, including cell viability assays, wound-scratch assays, chemotaxis assays, invasion assays, circular dichroic (CD) spectroscopy, NMR spectroscopy, chromatin immunoprecipitation, expression and purification of recombinant human CNBP, electrophoretic mobility shift assay (EMSA), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET) analyses, luciferase reporter assay, Western blotting, and isothermal titration calorimetry (ITC). \n RESULTS Up-regulation of CNBP induced human fibrosarcoma cell death and suppressed fibrosarcoma cell motility and invasiveness. It was found that CNBP transcriptionally down-regulated the expression of heterogeneous ribonucleoprotein K (hnRNP K) through its conversion of a G-rich sequence into G-quadruplex in the promoter of hnRNP K. G-quadruplex stabilizing ligand tetra-(N-methyl-4-pyridyl) porphyrin (TMPyP4) could interact with and stabilize the G-quadruplex, resulting in downregulation of hnRNP K transcription. \n CONCLUSIONS CNBP overexpression caused increase of cell death and suppression of cell metastasis through its induction of G-quadruplex formation in the promoter of hnRNP K resulting in hnRNP K down-regulation. GENERAL SIGNIFICANCE The present result provided a new solution for controlling hnRNP K expression, which should shed light on new anticancer drug design and development.", "title": "Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells." }, { "docid": "22003328", "text": "Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure of SSO1404 was solved at 1.6A resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs.", "title": "A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats." }, { "docid": "20330519", "text": "Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glucosylation. Excessive cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells, such as macrophages and dendritic cells, and enhances antigen-specific T cell responses. A cholesterol-rich diet during bacterial challenge leads to T cell–dependent reduction of the H. pylori burden in the stomach. Intrinsic α-glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. We identify the gene hp0421 as encoding the enzyme cholesterol-α-glucosyltransferase responsible for cholesterol glucosylation. Generation of knockout mutants lacking hp0421 corroborates the importance of cholesteryl glucosides for escaping phagocytosis, T cell activation and bacterial clearance in vivo. Thus, we propose a mechanism regulating the host–pathogen interaction whereby glucosylation of a lipid tips the scales towards immune evasion or response.", "title": "Cholesterol glucosylation promotes immune evasion by Helicobacter pylori" } ]
818
Myelin sheaths play a role in action potential propagation.
[ { "docid": "17814815", "text": "We report a newly developed technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser-scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas. These patterns highlight nodes of Ranvier and Schmidt-Lanterman incisures and can be used to detect various myelin pathologies. Using SCoRe we carried out chronic brain imaging up to 400 μm deep, capturing de novo myelination of mouse cortical axons in vivo. We also established the feasibility of imaging myelinated axons in the human cerebral cortex. SCoRe adds a powerful component to the evolving toolbox for imaging myelination in living animals and potentially in humans.", "title": "Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy" } ]
[ { "docid": "45487164", "text": "Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.", "title": "A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation." }, { "docid": "14767844", "text": "Calcium influx is crucial for T cell activation and differentiation. The detailed regulation of this process remains unclear. We report here that golli protein, an alternatively spliced product of the myelin basic protein gene, plays a critical role in regulating calcium influx in T cells. Golli-deficient T cells were hyperproliferative and showed enhanced calcium entry upon T cell receptor stimulation. We further found that golli regulates calcium influx in T cells through the inhibition of the store depletion-induced calcium influx. Mutation of the myristoylation site on golli disrupted its association with the plasma membrane and reversed its inhibitory action on Ca2+ influx, indicating that membrane association of golli was essential for its inhibitory action. These results indicate that golli functions in a unique way to regulate T cell activation through a mechanism involving the modulation of the calcium homeostasis.", "title": "Golli protein negatively regulates store depletion-induced calcium influx in T cells." }, { "docid": "7840442", "text": "A multisite optical recording technique consisting of an array of 464 photodiodes was used to measure dynamic changes in transmembrane potentials (Vm) of guinea-pig and mouse enteric neurones stained with the voltage-sensitive dye Di-8-ANEPPS. Optical recordings of Vm changes in enteric neurones which were evoked by depolarizing current pulses or synaptic activation mirrored the Vm changes measured intracellularly in the same neurone. Action potentials had fractional change in fluorescence of -0.09 +/- 0.06% and their peak to peak noise level was 20 +/- 14% of the action potential amplitude. Optical recordings after electrical stimulation of interganglionic nerve strands revealed slow EPSPs, nicotinergic supra- and subthreshold fast EPSPs as well as propagation of action potentials along interganglionic strands. Local application of acetylcholine onto a single ganglion induced reproducibly and dose dependently action potential discharge demonstrating the feasibility of neuropharmacological studies. The optical mapping made it possible to record action potentials simultaneously in a large number of neurones with high spatiotemporal resolution that is unattainable by conventional techniques. This technique presents a powerful tool to study excitability spread within enteric circuits and to assess differential activation of enteric populations in response to a number of stimuli which modulate neuronal activity directly or through synaptic mechanisms.", "title": "Multisite optical recording of excitability in the enteric nervous system." }, { "docid": "35467590", "text": "We have identified a novel transcription unit of 105 kilobases (called the Golli-mbp gene) that encompasses the mouse myelin basic protein (MBP) gene. Three unique exons within this gene are alternatively spliced into MBP exons and introns to produce a family of MBP gene-related mRNAs that are under individual developmental regulation. These mRNAs are temporally expressed within cells of the oligodendrocyte lineage at progressive stages of differentiation. Thus, the MBP gene is a part of a more complex gene structure, the products of which may play a role in oligodendrocyte differentiation prior to myelination. One Golli-mbp mRNA that encodes a protein antigenically related to MBP is also expressed in the spleen and other non-neural tissues.", "title": "Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain." }, { "docid": "11369420", "text": "Acute Myelogenous Leukemia (AML) is an aggressive cancer that strikes both adults and children and is frequently resistant to therapy. Thus, identifying signals needed for AML propagation is a critical step toward developing new approaches for treating this disease. Here, we show that Tetraspanin 3 is a target of the RNA binding protein Musashi 2, which plays a key role in AML. We generated Tspan3 knockout mice that were born without overt defects. However, Tspan3 deletion impaired leukemia stem cell self-renewal and disease propagation and markedly improved survival in mouse models of AML. Additionally, Tspan3 inhibition blocked growth of AML patient samples, suggesting that Tspan3 is also important in human disease. As part of the mechanism, we show that Tspan3 deficiency disabled responses to CXCL12/SDF-1 and led to defects in AML localization within the niche. These identify Tspan3 as an important regulator of aggressive leukemias and highlight a role for Tspan3 in oncogenesis.", "title": "Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia." }, { "docid": "25789730", "text": "Both axon and myelin degeneration have significant impact on the long-term disability of patients with white matter disorder. However, the clinical manifestations of the neurological dysfunction caused by white matter disorders are not sufficient to determine the origin of neurological deficits. A noninvasive biological marker capable of detecting and differentiating axon and myelin degeneration would be a significant addition to currently available tools. Directional diffusivities derived from diffusion tensor imaging (DTI) have been previously proposed by this group as potential biological markers to detect and differentiate axon and myelin degeneration. To further test the hypothesis that axial (lambdaparallel) and radial (lambdaperpendicular) diffusivities reflect axon and myelin pathologies, respectively, the optic nerve was examined serially using DTI in a mouse model of retinal ischemia. A significant decrease of lambdaparallel, the putative DTI axonal marker, was observed 3 days after ischemia without concurrently detectable changes in lambdaperpendicular, the putative myelin marker. This result is consistent with histological findings of significant axonal degeneration with no detectable demyelination at 3 days after ischemia. The elevation of lambdaperpendicular observed 5 days after ischemia is consistent with histological findings of myelin degeneration at this time. These results support the hypothesis that lambdaparallel and lambdaperpendicular hold promise as specific markers of axonal and myelin injury, respectively, and, further, that the coexistence of axonal and myelin degeneration does not confound this utility.", "title": "Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia." }, { "docid": "10555591", "text": "Zn2+ is present at high concentrations in the synaptic vesicles of hippocampal mossy fibers. We have used Zn2+ chelators and the mocha mutant mouse to address the physiological role of Zn2+ in this pathway. Zn2+ is not involved in the unique presynaptic plasticities observed at mossy fiber synapses but is coreleased with glutamate from these synapses, both spontaneously and with electrical stimulation, where it exerts a strong modulatory effect on the NMDA receptors. Zn2+ tonically occupies the high-affinity binding site of NMDA receptors at mossy fiber synapses, whereas the lower affinity voltage-dependent Zn2+ binding site is occupied during action potential driven-release. We conclude that Zn2+ is a modulatory neurotransmitter released from mossy fiber synapses and plays an important role in shaping the NMDA receptor response at these synapses.", "title": "The Actions of Synaptically Released Zinc at Hippocampal Mossy Fiber Synapses" }, { "docid": "23305547", "text": "Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.", "title": "Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis." }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" }, { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." }, { "docid": "13910150", "text": "Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.", "title": "The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells" }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "4767806", "text": "Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.", "title": "Exploring and exploiting the systemic effects of deregulated replication licensing." }, { "docid": "8267678", "text": "Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.", "title": "Regulation of chromatin by histone modifications" }, { "docid": "17731780", "text": "ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.", "title": "The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase" }, { "docid": "13000926", "text": "Cold injury is a tissue trauma produced by exposure to freezing temperatures and even brief exposure to a severely cold and windy environment. Rewarming of frozen tissue is associated with blood reperfusion and the simultaneous generation of free oxygen radicals. In this review is discussed the current understanding of the mechanism of action of free oxygen radicals as related to cold injury during rewarming. Decreased energy stores during ischaemia lead to the accumulation of adenine nucleotides and liberation of free fatty acids due to the breakdown of lipid membranes. On rewarming, free fatty acids are metabolized via cyclo-oxygenase and adenine nucleotides are metabolized via the xanthine oxidase pathway. These may be the source of free oxygen radicals. Leukocytes may also play a major role in the pathogenesis of cold injury. Oxygen radical scavengers, such as superoxide dismutase and catalase, may help to reduce the cold induced injury but their action is limited due to the inability readily to cross the plasma membrane. Lipid soluble antioxidants are likely to be more effective scavengers because of their presence in membranes where peroxidative reactions can be arrested.", "title": "The role of free radicals in cold injuries." }, { "docid": "16284655", "text": "Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.", "title": "Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice." }, { "docid": "2601324", "text": "Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.", "title": "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity" } ]
822
N348I mutations cause resistance to nevirapine.
[ { "docid": "15319019", "text": "Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions", "title": "N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance" } ]
[ { "docid": "2319305", "text": "Drug resistance-associated mutations in HIV-1 reverse transcriptase (RT) can affect the balance between polymerase and ribonuclease H (RNase H) activities of the enzyme. We have recently demonstrated that the N348I mutation in the connection domain causes selective dissociation from RNase H-competent complexes, whereas the functional integrity of the polymerase-competent complex remains largely unaffected. N348I has been associated with resistance to the non-nucleoside RT inhibitor (NNRTI), nevirapine; however, a possible mechanism that links changes in RNase H activity to changes in NNRTI susceptibility remains to be established. To address this problem, we consider recent findings suggesting that NNRTIs may affect the orientation of RT on its nucleic acid substrate and increase RNase H activity. Here we demonstrate that RNase H-mediated primer removal is indeed more efficient in the presence of NNRTIs; however, the N348I mutant enzyme is able to counteract this effect. Efavirenz, a tight binding inhibitor, restricts the influence of the mutation. These findings provide strong evidence to suggest that N348I can thwart the inhibitory effects of nevirapine during initiation of (+)-strand DNA synthesis, which provides a novel mechanism for resistance. The data are in agreement with clinical data, which demonstrate a stronger effect of N348I on susceptibility to nevirapine as compared with efavirenz.", "title": "N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation." }, { "docid": "6426919", "text": "Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.", "title": "A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors." }, { "docid": "25014337", "text": "We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.", "title": "The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs." }, { "docid": "43311750", "text": "Mutations in the NPHS1 gene cause congenital nephrotic syndrome of the Finnish type presenting before the first 3 months of life. Recently, NPHS1 mutations have also been identified in childhood-onset steroid-resistant nephrotic syndrome and milder courses of disease, but their role in adults with focal segmental glomerulosclerosis remains unknown. Here we developed an in silico scoring matrix to evaluate the pathogenicity of amino-acid substitutions using the biophysical and biochemical difference between wild-type and mutant amino acid, the evolutionary conservation of the amino-acid residue in orthologs, and defined domains, with the addition of contextual information. Mutation analysis was performed in 97 patients from 89 unrelated families, of which 52 presented with steroid-resistant nephrotic syndrome after 18 years of age. Compound heterozygous or homozygous NPHS1 mutations were identified in five familial and seven sporadic cases, including one patient 27 years old at onset of the disease. Substitutions were classified as 'severe' or 'mild' using this in silico approach. Our results suggest an earlier onset of the disease in patients with two 'severe' mutations compared to patients with at least one 'mild' mutation. The finding of mutations in a patient with adult-onset focal segmental glomerulosclerosis indicates that NPHS1 analysis could be considered in patients with later onset of the disease.", "title": "Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis." }, { "docid": "14241418", "text": "Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.", "title": "NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations." }, { "docid": "9505402", "text": "Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.", "title": "Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M" }, { "docid": "21246752", "text": "OBJECTIVE Mitochondrial disorders are caused by gene mutations in mitochondrial or nuclear DNA and affect energy-dependent organs such as the brain. Patients with psychiatric illness, particularly those with medical comorbidities, may have primary mitochondrial disorders. To date, this issue has received little attention in the literature, and mitochondrial disorders are likely underdiagnosed in psychiatric patients. \n DATA SOURCES This article describes a patient who presented with borderline personality disorder and treatment-resistant depression and was ultimately diagnosed with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) 3271. We also searched the literature for all case reports of patients with mitochondrial disorders who initially present with prominent psychiatric symptoms by using MEDLINE (from 1948-February 2011), Embase (from 1980-February 2011), PsycINFO (from 1806-February 2011), and the search terms mitochondrial disorder, mitochondria, psychiatry, mental disorders, major depression, anxiety, schizophrenia, and psychosis. STUDY SELECTION Fifty cases of mitochondrial disorders with prominent psychiatric symptomatology were identified. \n DATA EXTRACTION Information about the psychiatric presentation of the cases was extracted. This information was combined with our case, the most common psychiatric manifestations of mitochondrial disorders were identified, and the important diagnostic and treatment implications for patients with psychiatric illness were reviewed. \n RESULTS The most common psychiatric presentations in the cases of mitochondrial disorders included mood disorder, cognitive deterioration, psychosis, and anxiety. The most common diagnosis (52% of cases) was a MELAS mutation. Other genetic mitochondrial diagnoses included polymerase gamma mutations, Kearns-Sayre syndrome, mitochondrial DNA deletions, point mutations, twinkle mutations, and novel mutations. \n CONCLUSIONS Patients with mitochondrial disorders can present with primary psychiatric symptomatology, including mood disorder, cognitive impairment, psychosis, and anxiety. Psychiatrists need to be aware of the clinical features that are indicative of a mitochondrial disorder, investigate patients with suggestive presentations, and be knowledgeable about the treatment implications of the diagnosis.", "title": "The psychiatric manifestations of mitochondrial disorders: a case and review of the literature." }, { "docid": "641786", "text": "Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.", "title": "Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia" }, { "docid": "33387953", "text": "Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.", "title": "Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance" }, { "docid": "9498458", "text": "UNLABELLED Rociletinib is a third-generation EGFR inhibitor active in lung cancers with T790M, the gatekeeper mutation underlying most first-generation EGFR drug resistance. We biopsied patients at rociletinib progression to explore resistance mechanisms. Among 12 patients with T790M-positive cancers at rociletinib initiation, six had T790-wild-type rociletinib-resistant biopsies. Two T790-wild-type cancers underwent small cell lung cancer transformation; three T790M-positive cancers acquired EGFR amplification. We documented T790-wild-type and T790M-positive clones coexisting within a single pre-rociletinib biopsy. The pretreatment fraction of T790M-positive cells affected response to rociletinib. Longitudinal circulating tumor DNA (ctDNA) analysis revealed an increase in plasma EGFR-activating mutation, and T790M heralded rociletinib resistance in some patients, whereas in others the activating mutation increased but T790M remained suppressed. Together, these findings demonstrate the role of tumor heterogeneity when therapies targeting a singular resistance mechanism are used. To further improve outcomes, combination regimens that also target T790-wild-type clones are required. SIGNIFICANCE This report documents that half of T790M-positive EGFR-mutant lung cancers treated with rociletinib are T790-wild-type upon progression, suggesting that T790-wild-type clones can emerge as the dominant source of resistance. We show that tumor heterogeneity has important clinical implications and that plasma ctDNA analyses can sometimes predict emerging resistance mechanisms.", "title": "Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor." }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "14819804", "text": "The novel phosphatidylinositol-3-kinase (PI3K) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI3K (PIK3CA) and loss of PTEN activity were sufficient, but not necessary, as predictors of sensitivity to the antitumor activity of the PI3K inhibitor PX-866 in the presence of wild-type Ras, whereas mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI3K signaling measured by tumor phosphorylated Ser(473)-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse-phase protein array revealed that the Ras-dependent downstream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best-defined downstream targets of Ras, i.e., Raf, RalGDS, and PI3K, showed that mutant Ras mediates resistance through its ability to use multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI3K inhibition might serve as an important guide for patient selection as inhibitors enter clinical trials and for the development of rational combinations with other molecularly targeted agents.", "title": "Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance." }, { "docid": "2272614", "text": "Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, we found that erlotinib resistance was associated with reduced expression of neurofibromin, the RAS GTPase-activating protein encoded by the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signaling when neurofibromin levels were reduced. Treatment of neurofibromin-deficient lung cancers with a MAP-ERK kinase (MEK) inhibitor restored sensitivity to erlotinib. Low levels of NF1 expression were associated with primary and acquired resistance of lung adenocarcinomas to EGFR TKIs in patients. These findings identify a subgroup of patients with EGFR-mutant lung adenocarcinoma who might benefit from combination therapy with EGFR and MEK inhibitors.", "title": "Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer." }, { "docid": "85665741", "text": "5247 Constitutive ERK signaling is common in human cancer and is often the result of activating mutations of BRAF, RAS and upstream receptor tyrosine kinases. Missense BRAF kinase domain mutations are frequently observed in melanoma, colon and thyroid cancers and less frequently in lung and other cancer types. The vast majority (>90%) involve a glutamic acid for valine substitution at codon 600 (V600E), which results in elevated BRAF kinase activity. BRAF kinase domain mutations with intermediate and impaired kinase activity have also been identified, most frequently in NSCLC. We have previously reported that tumors with V600E BRAF mutation are selectively sensitive to MEK inhibition. Using the potent and selective MEK1/2 inhibitor PD0325901 (Pfizer), we examined a panel of NSCLC cell lines with mutant EGFR, KRAS, and/or low, intermediate and high-activity BRAF kinase domain mutations for MEK dependence. In all but one case, EGFR, KRAS and BRAF mutations were mutually exclusive with the exception being a cell line with concurrent NRAS and intermediate activity BRAF mutations. Consistent with our prior results, NSCLC cells with V600E BRAF mutation were exquisitely sensitive to MEK inhibition (PD0325901 IC50 of 2nM). The proliferation of cells with non-V600E mutations, including those with high (G469A), intermediate (L597V) and impaired (G466V) kinase activities, was also MEK dependent with IC50’s ranging between 2.7 and 80 nM. Inhibition of MEK in these cells resulted in downregulation of cyclin D1 and G1 growth arrest, with variable induction of apoptosis. Despite high basal ERK activity, NSCLC tumor cells with EGFR mutation were uniformly resistant to MEK inhibition (at doses of up to 500nM), despite effective and prolonged inhibition of ERK phosphorylation. Tumor cells with RAS mutation had a more variable response, with some cell lines demonstrating sensitivity, while others were completely resistant. There was no correlation between basal ERK activity and sensitivity to MEK inhibition. A strong inverse correlation between Akt activity and PD0325901 sensitivity was observed. These results suggest that MEK inhibition may be useful therapeutically in tumors with V600E and non-V600E BRAF kinase domain mutations. The results also suggest that inhibition of both MEK and Akt signaling may be required in NSCLC tumors with high basal AKT activity.", "title": "BRAF mutation predicts for MEK-dependence in non-small cell lung cancer (NSCLC)." }, { "docid": "40127292", "text": "Multidrug resistance remains an unresolved problem in clinical oncology. Over a decade ago genes encoding cellular efflux pumps were shown to confer resistance to a broad spectrum of biochemically unrelated anticancer drugs even before the compounds reached their intracellular targets. More recently it has become apparent that many drugs induce a common apoptotic program, such that mutations in this program can also produce multidrug resistance. However, a thorough evaluation of the contribution of apoptotic defects to this \"postdamage\" drug resistant phenotype is technically complicated, and this has led to uncertainty about the overall significance of apoptosis in therapy-induced cell death. For example, correlative analyses using patient specimens are limited by unknown background mutations in the biopsy material, and assays using cancer cell lines can be biased by unphysiological conditions. We sought to circumvent these restrictions by utilizing a tractable transgenic cancer model to examine the impact of apoptosis on treatment outcome. Here we discuss potential caveats of cell culture based assays, highlight features of genetically engineered mice as potential model systems, and describe a tractable transgenic mouse model to study drug responses in a series of primary lymphomas with genetically defined lesions treated at their natural site.", "title": "Apoptosis and chemoresistance in transgenic cancer models" }, { "docid": "24190159", "text": "Mutations of the KRAS oncogene are predictive for resistance to treatment with antibodies against the epithelial growth factor receptor in patients with colorectal cancer. Overcoming this therapeutic dilemma could potentially be achieved by the introduction of drugs that inhibit signaling pathways that are activated by KRAS mutations. To identify comprehensively such signaling pathways, we profiled pretreatment biopsies and normal mucosa from 65 patients with locally advanced rectal cancer-30 of which carried mutated KRAS-using global gene expression microarrays. By comparing all tumor tissues exclusively to matched normal mucosa, we could improve assay sensitivity, and identified a total of 22,297 features that were differentially expressed (adjusted P-value <0.05) between normal mucosa and cancer, including several novel potential rectal cancer genes. We then used this comprehensive description of the rectal cancer transcriptome as the baseline for identifying KRAS-dependent alterations. The presence of activating KRAS mutations is significantly correlated to an upregulation of 13 genes (adjusted P-value <0.05), among them DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase. Inhibition of the expression of both genes has previously been shown using the MEK1-inhibitor PD98059 and the antibacterial compound Novobiocin, respectively. These findings suggest a potential approach to overcome resistance to treatment with antibodies against the epithelial growth factor receptor in patients with KRAS-mutant rectal carcinomas.", "title": "Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas." }, { "docid": "8892905", "text": "Alzheimer's disease (AD) is hypothesized to be caused by an overproduction or reduced clearance of amyloid-β (Aβ) peptide. Autosomal dominant AD (ADAD) caused by mutations in the presenilin (PSEN) gene have been postulated to result from increased production of Aβ42 compared to Aβ40 in the central nervous system (CNS). This has been demonstrated in rodent models of ADAD but not in human mutation carriers. We used compartmental modeling of stable isotope labeling kinetic (SILK) studies in human carriers of PSEN mutations and related noncarriers to evaluate the pathophysiological effects of PSEN1 and PSEN2 mutations on the production and turnover of Aβ isoforms. We compared these findings by mutation status and amount of fibrillar amyloid deposition as measured by positron emission tomography (PET) using the amyloid tracer Pittsburgh compound B (PIB). CNS Aβ42 to Aβ40 production rates were 24% higher in mutation carriers compared to noncarriers, and this was independent of fibrillar amyloid deposits quantified by PET PIB imaging. The fractional turnover rate of soluble Aβ42 relative to Aβ40 was 65% faster in mutation carriers and correlated with amyloid deposition, consistent with increased deposition of Aβ42 into plaques, leading to reduced recovery of Aβ42 in cerebrospinal fluid (CSF). Reversible exchange of Aβ42 peptides with preexisting unlabeled peptide was observed in the presence of plaques. These findings support the hypothesis that Aβ42 is overproduced in the CNS of humans with PSEN mutations that cause AD, and demonstrate that soluble Aβ42 turnover and exchange processes are altered in the presence of amyloid plaques, causing a reduction in Aβ42 concentrations in the CSF.", "title": "Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers." }, { "docid": "18682109", "text": "Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC.", "title": "RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer" }, { "docid": "10326242", "text": "PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.", "title": "Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer" } ]
825
N348I mutations reduce resistance to nevirapine.
[ { "docid": "15319019", "text": "Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions", "title": "N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance" } ]
[ { "docid": "2319305", "text": "Drug resistance-associated mutations in HIV-1 reverse transcriptase (RT) can affect the balance between polymerase and ribonuclease H (RNase H) activities of the enzyme. We have recently demonstrated that the N348I mutation in the connection domain causes selective dissociation from RNase H-competent complexes, whereas the functional integrity of the polymerase-competent complex remains largely unaffected. N348I has been associated with resistance to the non-nucleoside RT inhibitor (NNRTI), nevirapine; however, a possible mechanism that links changes in RNase H activity to changes in NNRTI susceptibility remains to be established. To address this problem, we consider recent findings suggesting that NNRTIs may affect the orientation of RT on its nucleic acid substrate and increase RNase H activity. Here we demonstrate that RNase H-mediated primer removal is indeed more efficient in the presence of NNRTIs; however, the N348I mutant enzyme is able to counteract this effect. Efavirenz, a tight binding inhibitor, restricts the influence of the mutation. These findings provide strong evidence to suggest that N348I can thwart the inhibitory effects of nevirapine during initiation of (+)-strand DNA synthesis, which provides a novel mechanism for resistance. The data are in agreement with clinical data, which demonstrate a stronger effect of N348I on susceptibility to nevirapine as compared with efavirenz.", "title": "N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation." }, { "docid": "6426919", "text": "Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.", "title": "A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors." }, { "docid": "25014337", "text": "We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.", "title": "The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs." }, { "docid": "2272614", "text": "Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, we found that erlotinib resistance was associated with reduced expression of neurofibromin, the RAS GTPase-activating protein encoded by the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signaling when neurofibromin levels were reduced. Treatment of neurofibromin-deficient lung cancers with a MAP-ERK kinase (MEK) inhibitor restored sensitivity to erlotinib. Low levels of NF1 expression were associated with primary and acquired resistance of lung adenocarcinomas to EGFR TKIs in patients. These findings identify a subgroup of patients with EGFR-mutant lung adenocarcinoma who might benefit from combination therapy with EGFR and MEK inhibitors.", "title": "Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer." }, { "docid": "9505402", "text": "Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.", "title": "Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M" }, { "docid": "641786", "text": "Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.", "title": "Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia" }, { "docid": "33387953", "text": "Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.", "title": "Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "9498458", "text": "UNLABELLED Rociletinib is a third-generation EGFR inhibitor active in lung cancers with T790M, the gatekeeper mutation underlying most first-generation EGFR drug resistance. We biopsied patients at rociletinib progression to explore resistance mechanisms. Among 12 patients with T790M-positive cancers at rociletinib initiation, six had T790-wild-type rociletinib-resistant biopsies. Two T790-wild-type cancers underwent small cell lung cancer transformation; three T790M-positive cancers acquired EGFR amplification. We documented T790-wild-type and T790M-positive clones coexisting within a single pre-rociletinib biopsy. The pretreatment fraction of T790M-positive cells affected response to rociletinib. Longitudinal circulating tumor DNA (ctDNA) analysis revealed an increase in plasma EGFR-activating mutation, and T790M heralded rociletinib resistance in some patients, whereas in others the activating mutation increased but T790M remained suppressed. Together, these findings demonstrate the role of tumor heterogeneity when therapies targeting a singular resistance mechanism are used. To further improve outcomes, combination regimens that also target T790-wild-type clones are required. SIGNIFICANCE This report documents that half of T790M-positive EGFR-mutant lung cancers treated with rociletinib are T790-wild-type upon progression, suggesting that T790-wild-type clones can emerge as the dominant source of resistance. We show that tumor heterogeneity has important clinical implications and that plasma ctDNA analyses can sometimes predict emerging resistance mechanisms.", "title": "Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor." }, { "docid": "14241418", "text": "Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.", "title": "NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations." }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "712078", "text": "Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.", "title": "Pharmacological correction of a defect in PPARγ signaling ameliorates disease severity in Cftr-deficient mice" }, { "docid": "43311750", "text": "Mutations in the NPHS1 gene cause congenital nephrotic syndrome of the Finnish type presenting before the first 3 months of life. Recently, NPHS1 mutations have also been identified in childhood-onset steroid-resistant nephrotic syndrome and milder courses of disease, but their role in adults with focal segmental glomerulosclerosis remains unknown. Here we developed an in silico scoring matrix to evaluate the pathogenicity of amino-acid substitutions using the biophysical and biochemical difference between wild-type and mutant amino acid, the evolutionary conservation of the amino-acid residue in orthologs, and defined domains, with the addition of contextual information. Mutation analysis was performed in 97 patients from 89 unrelated families, of which 52 presented with steroid-resistant nephrotic syndrome after 18 years of age. Compound heterozygous or homozygous NPHS1 mutations were identified in five familial and seven sporadic cases, including one patient 27 years old at onset of the disease. Substitutions were classified as 'severe' or 'mild' using this in silico approach. Our results suggest an earlier onset of the disease in patients with two 'severe' mutations compared to patients with at least one 'mild' mutation. The finding of mutations in a patient with adult-onset focal segmental glomerulosclerosis indicates that NPHS1 analysis could be considered in patients with later onset of the disease.", "title": "Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis." }, { "docid": "14819804", "text": "The novel phosphatidylinositol-3-kinase (PI3K) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI3K (PIK3CA) and loss of PTEN activity were sufficient, but not necessary, as predictors of sensitivity to the antitumor activity of the PI3K inhibitor PX-866 in the presence of wild-type Ras, whereas mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI3K signaling measured by tumor phosphorylated Ser(473)-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse-phase protein array revealed that the Ras-dependent downstream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best-defined downstream targets of Ras, i.e., Raf, RalGDS, and PI3K, showed that mutant Ras mediates resistance through its ability to use multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI3K inhibition might serve as an important guide for patient selection as inhibitors enter clinical trials and for the development of rational combinations with other molecularly targeted agents.", "title": "Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance." }, { "docid": "85665741", "text": "5247 Constitutive ERK signaling is common in human cancer and is often the result of activating mutations of BRAF, RAS and upstream receptor tyrosine kinases. Missense BRAF kinase domain mutations are frequently observed in melanoma, colon and thyroid cancers and less frequently in lung and other cancer types. The vast majority (>90%) involve a glutamic acid for valine substitution at codon 600 (V600E), which results in elevated BRAF kinase activity. BRAF kinase domain mutations with intermediate and impaired kinase activity have also been identified, most frequently in NSCLC. We have previously reported that tumors with V600E BRAF mutation are selectively sensitive to MEK inhibition. Using the potent and selective MEK1/2 inhibitor PD0325901 (Pfizer), we examined a panel of NSCLC cell lines with mutant EGFR, KRAS, and/or low, intermediate and high-activity BRAF kinase domain mutations for MEK dependence. In all but one case, EGFR, KRAS and BRAF mutations were mutually exclusive with the exception being a cell line with concurrent NRAS and intermediate activity BRAF mutations. Consistent with our prior results, NSCLC cells with V600E BRAF mutation were exquisitely sensitive to MEK inhibition (PD0325901 IC50 of 2nM). The proliferation of cells with non-V600E mutations, including those with high (G469A), intermediate (L597V) and impaired (G466V) kinase activities, was also MEK dependent with IC50’s ranging between 2.7 and 80 nM. Inhibition of MEK in these cells resulted in downregulation of cyclin D1 and G1 growth arrest, with variable induction of apoptosis. Despite high basal ERK activity, NSCLC tumor cells with EGFR mutation were uniformly resistant to MEK inhibition (at doses of up to 500nM), despite effective and prolonged inhibition of ERK phosphorylation. Tumor cells with RAS mutation had a more variable response, with some cell lines demonstrating sensitivity, while others were completely resistant. There was no correlation between basal ERK activity and sensitivity to MEK inhibition. A strong inverse correlation between Akt activity and PD0325901 sensitivity was observed. These results suggest that MEK inhibition may be useful therapeutically in tumors with V600E and non-V600E BRAF kinase domain mutations. The results also suggest that inhibition of both MEK and Akt signaling may be required in NSCLC tumors with high basal AKT activity.", "title": "BRAF mutation predicts for MEK-dependence in non-small cell lung cancer (NSCLC)." }, { "docid": "40127292", "text": "Multidrug resistance remains an unresolved problem in clinical oncology. Over a decade ago genes encoding cellular efflux pumps were shown to confer resistance to a broad spectrum of biochemically unrelated anticancer drugs even before the compounds reached their intracellular targets. More recently it has become apparent that many drugs induce a common apoptotic program, such that mutations in this program can also produce multidrug resistance. However, a thorough evaluation of the contribution of apoptotic defects to this \"postdamage\" drug resistant phenotype is technically complicated, and this has led to uncertainty about the overall significance of apoptosis in therapy-induced cell death. For example, correlative analyses using patient specimens are limited by unknown background mutations in the biopsy material, and assays using cancer cell lines can be biased by unphysiological conditions. We sought to circumvent these restrictions by utilizing a tractable transgenic cancer model to examine the impact of apoptosis on treatment outcome. Here we discuss potential caveats of cell culture based assays, highlight features of genetically engineered mice as potential model systems, and describe a tractable transgenic mouse model to study drug responses in a series of primary lymphomas with genetically defined lesions treated at their natural site.", "title": "Apoptosis and chemoresistance in transgenic cancer models" }, { "docid": "24190159", "text": "Mutations of the KRAS oncogene are predictive for resistance to treatment with antibodies against the epithelial growth factor receptor in patients with colorectal cancer. Overcoming this therapeutic dilemma could potentially be achieved by the introduction of drugs that inhibit signaling pathways that are activated by KRAS mutations. To identify comprehensively such signaling pathways, we profiled pretreatment biopsies and normal mucosa from 65 patients with locally advanced rectal cancer-30 of which carried mutated KRAS-using global gene expression microarrays. By comparing all tumor tissues exclusively to matched normal mucosa, we could improve assay sensitivity, and identified a total of 22,297 features that were differentially expressed (adjusted P-value <0.05) between normal mucosa and cancer, including several novel potential rectal cancer genes. We then used this comprehensive description of the rectal cancer transcriptome as the baseline for identifying KRAS-dependent alterations. The presence of activating KRAS mutations is significantly correlated to an upregulation of 13 genes (adjusted P-value <0.05), among them DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase. Inhibition of the expression of both genes has previously been shown using the MEK1-inhibitor PD98059 and the antibacterial compound Novobiocin, respectively. These findings suggest a potential approach to overcome resistance to treatment with antibodies against the epithelial growth factor receptor in patients with KRAS-mutant rectal carcinomas.", "title": "Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas." }, { "docid": "33370", "text": "Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.", "title": "Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth" }, { "docid": "18682109", "text": "Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC.", "title": "RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer" } ]
826
NAC destabilizes NO to increase the effect of contrast agents on renal functions.
[ { "docid": "4678846", "text": "CONTEXT The antioxidant acetylcysteine prevents acute contrast nephrotoxicity in patients with impaired renal function who undergo computed tomography scanning. However, its role in coronary angiography is unclear. \n OBJECTIVE To determine whether oral acetylcysteine prevents acute deterioration in renal function in patients with moderate renal insufficiency who undergo elective coronary angiography. \n DESIGN AND SETTING Prospective, randomized, double-blind, placebo-controlled trial conducted from May 2000 to December 2001 at the Grantham Hospital at the University of Hong Kong. \n PARTICIPANTS Two hundred Chinese patients aged mean (SD) 68 (6.5) years with stable moderate renal insufficiency (creatinine clearance <60 mL/min [1.00 mL/s]) who were undergoing elective coronary angiography with or without intervention. \n INTERVENTION Participants were randomly assigned to receive oral acetylcysteine(600 mg twice per day; n = 102) or matching placebo tablets (n = 98) on the day before and the day of angiography. All patients received low-osmolality contrast agent. \n MAIN OUTCOME MEASURES Occurrence of more than a 25% increase in serum creatinine level within 48 hours after contrast administration; change in creatinine clearance and serum creatinine level. \n RESULTS Twelve control patients (12%) and 4 acetylcysteine patients (4%) developed a more than 25% increase in serum creatinine level within 48 hours after contrast administration (relative risk, 0.32; 95% confidence interval [CI], 0.10-0.96; P =.03). Serum creatinine was lower in the acetylcysteine group (1.22 mg/dL [107.8 micromol/L]; 95% CI, 1.11-1.33 mg/dL vs 1.38 mg/dL [122.9 micromol/L]; 95% CI, 1.27-1.49 mg/dL; P =.006) during the first 48 hours after angiography. Acetylcysteine treatment significantly increased creatinine clearance from 44.8 mL/min (0.75 mL/s) (95% CI, 42.7-47.6 mL/min) to 58.9 mL/min (0.98 mL/s) (95% CI, 55.6-62.3 mL/min) 2 days after the contrast administration (P<.001). The increase was not significant in the control group (from 42.1 to 44.1 mL/min [0.70 to 0.74 mL/s]; P =.15). The benefit of acetylcysteine was consistent among various patient subgroups and persistent for at least 7 days. There were no major treatment-related adverse events. \n CONCLUSION Acetylcysteine protects patients with moderate chronic renal insufficiency from contrast-induced deterioration in renal function after coronary angiographic procedures, with minimal adverse effects and at a low cost.", "title": "Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial." } ]
[ { "docid": "26025370", "text": "Background: Vasoconstriction and reactive oxygen species (ROS) accumulation following contrast media (CM) injection are the key factors triggering CM-induced nephropathy. We compared the effects of N-acetylcysteine (NAC), theophylline or sodium bicarbonate on intrarenal vasoconstriction and ROS generation in a rat model of CM-induced nephropathy. Methods: Following a 3-day dehydration, Sprague-Dawley rats received CM (Telebrix) or sham ‘CM’ injection of 0.9% saline. Part of them received NAC, theophylline or bicarbonate prior to CM. Medullar renal blood flow was estimated by laser Doppler. The animals were sacrificed 1, 15 or 30 min after the respective treatments, their kidneys allocated and intrarenal STAT-8 isoprostane, PGE2 and NO assessed. Results: Vasoconstriction was significantly attenuated by NAC. Theophylline only mildly attenuated the perfusion drop at 15 min, and was ineffective following 30 min. Unlike theophylline or bicarbonate, NAC significantly augmented intrarenal PGE2. NAC, theophylline but not bicarbonate, gradually increased intrarenal NO. In all experimental variables, CM-induced ROS accumulation, represented by STAT-8 isoprostane estimation, progressed undisturbed. Conclusions: (1) CM-induced intrarenal vasoconstriction was efficiently prohibited by NAC but not bicarbonate or theophylline; (2) the vasodilatory effect of NAC was mediated via increased PGE2 synthesis, and (3) ROS accumulation was a primary renal response to CM-induced injury, not affected by any pharmacologic manipulations.", "title": "Differential Effects of N-Acetylcysteine, Theophylline or Bicarbonate on Contrast-Induced Rat Renal Vasoconstriction" }, { "docid": "140098548", "text": "BACKGROUND Radiographic contrast agents can cause a reduction in renal function that may be due to reactive oxygen species. Whether the reduction can be prevented by the administration of antioxidants is unknown. \n METHODS We prospectively studied 83 patients with chronic renal insufficiency (mean [+/-SD] serum creatinine concentration, 2.4+/-1.3 mg per deciliter [216+/-116 micromol per liter]) who were undergoing computed tomography with a nonionic, low-osmolality contrast agent. Patients were randomly assigned either to receive the antioxidant acetylcysteine (600 mg orally twice daily) and 0.45 percent saline intravenously, before and after administration of the contrast agent, or to receive placebo and saline. \n RESULTS Ten of the 83 patients (12 percent) had an increase of at least 0.5 mg per deciliter (44 micromol per liter) in the serum creatinine concentration 48 hours after administration of the contrast agent: 1 of the 41 patients in the acetylcysteine group (2 percent) and 9 of the 42 patients in the control group (21 percent; P=0.01; relative risk, 0.1; 95 percent confidence interval, 0.02 to 0.9). In the acetylcysteine group, the mean serum creatinine concentration decreased significantly (P<0.001), from 2.5+/-1.3 to 2.1+/-1.3 mg per deciliter (220+/-118 to 186+/-112 micromol per liter) 48 hours after the administration of the contrast medium, whereas in the control group, the mean serum creatinine concentration increased nonsignificantly (P=0.18), from 2.4+/-1.3 to 2.6+/-1.5 mg per deciliter (212+/-114 to 226+/-133 micromol per liter) (P<0.001 for the comparison between groups). \n CONCLUSIONS Prophylactic oral administration of the antioxidant acetylcysteine, along with hydration, prevents the reduction in renal function induced by contrast agents in patients with chronic renal insufficiency.", "title": "Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine." }, { "docid": "4700428", "text": "BACKGROUND Relapse to cocaine seeking has been linked with low glutamate in the nucleus accumbens core (NAcore) causing potentiation of synaptic glutamate transmission from prefrontal cortex (PFC) afferents. Systemic N-acetylcysteine (NAC) has been shown to restore glutamate homeostasis, reduce relapse to cocaine seeking, and depotentiate PFC-NAcore synapses. Here, we examine the effects of NAC applied directly to the NAcore on relapse and neurotransmission in PFC-NAcore synapses, as well as the involvement of the metabotropic glutamate receptors 2/3 (mGluR2/3) and 5 (mGluR5). \n METHODS Rats were trained to self-administer cocaine for 2 weeks and following extinction received either intra-accumbens NAC or systemic NAC 30 or 120 minutes, respectively, before inducing reinstatement with a conditioned cue or a combined cue and cocaine injection. We also recorded postsynaptic currents using in vitro whole cell recordings in acute slices and measured cystine and glutamate uptake in primary glial cultures. \n RESULTS NAC microinjection into the NAcore inhibited the reinstatement of cocaine seeking. In slices, a low concentration of NAC reduced the amplitude of evoked glutamatergic synaptic currents in the NAcore in an mGluR2/3-dependent manner, while high doses of NAC increased amplitude in an mGluR5-dependent manner. Both effects depended on NAC uptake through cysteine transporters and activity of the cysteine/glutamate exchanger. Finally, we showed that by blocking mGluR5 the inhibition of cocaine seeking by NAC was potentiated. \n CONCLUSIONS The effect of NAC on relapse to cocaine seeking depends on the balance between stimulating mGluR2/3 and mGluR5 in the NAcore, and the efficacy of NAC can be improved by simultaneously inhibiting mGluR5.", "title": "The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine." }, { "docid": "7821634", "text": "Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.", "title": "Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance" }, { "docid": "9288638", "text": "OBJECTIVE The aim of this study was to investigate whether diabetes and hypertension cause additive effects in the responses to various vasoconstrictor and vasodilator agents, in isolated perfused kidneys obtained from streptozotocin (STZ)-diabetic Wistar-Kyoto (WKY) rats and from diabetic spontaneously hypertensive rats (SHR). \n METHODS SHR and WKY rats were administered STZ 55 mg/kg by intravenous injection into a lateral tail vein at age 12 weeks. Eight weeks later the kidneys were isolated and perfused via the left renal artery with a physiological salt solution. Renal perfusion pressure was measured continuously. Concentration response curves were plotted for various vasoconstrictor and vasodilator agents. \n RESULTS Both the diabetic and the hypertensive state were associated with an increased wet kidney weight. The contractile responses of the renal arterial system to phenylephrine (PhE), serotonin (5-HT) and angiotensin II (Ang II) in terms both of the maximal rise in perfusion pressure (mmHg) and of the sensitivity (log EC50) were the same in preparations from diabetic WKY rats and in those from normoglycaemic WKY rats. The maximal contractile responses both to PhE and to Ang II were enhanced in kidneys from SHR compared with those in kidneys from their normotensive controls, whereas simultaneously occurring diabetes impaired this sensitization. After precontraction with 3 x 10(-6) mol/l PhE both endothelium-dependent (methacholine) and endothelium-independent (sodium nitroprusside) vasodilator drugs caused the same vasodilator response in the preparations taken from the four groups of animals. \n CONCLUSION In isolated perfused kidneys obtained from STZ-diabetic WKY rats and SHR, the isolated diabetic state did not influence the vasoconstriction caused by various agonists. However, the enhanced vascular reactivity in the hypertensive state was blunted by simultaneously occurring diabetes mellitus. Endothelium-dependent and -independent vasorelaxation in this model was not affected neither by the hypertensive nor by the diabetic state.", "title": "Vascular responsiveness in isolated perfused kidneys of diabetic hypertensive rats." }, { "docid": "4389394", "text": "The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.", "title": "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization" }, { "docid": "25816994", "text": "BACKGROUND Angiotensin receptor blockers (ARB) and angiotensin converting enzyme (ACE) inhibitors are known to reduce proteinuria. Their combination might be more effective than either treatment alone, but long-term data for comparative changes in renal function are not available. We investigated the renal effects of ramipril (an ACE inhibitor), telmisartan (an ARB), and their combination in patients aged 55 years or older with established atherosclerotic vascular disease or with diabetes with end-organ damage. \n METHODS The trial ran from 2001 to 2007. After a 3-week run-in period, 25 620 participants were randomly assigned to ramipril 10 mg a day (n=8576), telmisartan 80 mg a day (n=8542), or to a combination of both drugs (n=8502; median follow-up was 56 months), and renal function and proteinuria were measured. The primary renal outcome was a composite of dialysis, doubling of serum creatinine, and death. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00153101. \n FINDINGS 784 patients permanently discontinued randomised therapy during the trial because of hypotensive symptoms (406 on combination therapy, 149 on ramipril, and 229 on telmisartan). The number of events for the composite primary outcome was similar for telmisartan (n=1147 [13.4%]) and ramipril (1150 [13.5%]; hazard ratio [HR] 1.00, 95% CI 0.92-1.09), but was increased with combination therapy (1233 [14.5%]; HR 1.09, 1.01-1.18, p=0.037). The secondary renal outcome, dialysis or doubling of serum creatinine, was similar with telmisartan (189 [2.21%]) and ramipril (174 [2.03%]; HR 1.09, 0.89-1.34) and more frequent with combination therapy (212 [2.49%]: HR 1.24, 1.01-1.51, p=0.038). Estimated glomerular filtration rate (eGFR) declined least with ramipril compared with telmisartan (-2.82 [SD 17.2] mL/min/1.73 m(2)vs -4.12 [17.4], p<0.0001) or combination therapy (-6.11 [17.9], p<0.0001). The increase in urinary albumin excretion was less with telmisartan (p=0.004) or with combination therapy (p=0.001) than with ramipril. \n INTERPRETATION In people at high vascular risk, telmisartan's effects on major renal outcomes are similar to ramipril. Although combination therapy reduces proteinuria to a greater extent than monotherapy, overall it worsens major renal outcomes.", "title": "Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial." }, { "docid": "41298619", "text": "BACKGROUND Hydroxyethyl starches (HES) are synthetic colloids commonly used for fluid resuscitation, yet controversy exists about their impact on kidney function. \n OBJECTIVES To examine the effects of HES on kidney function compared to other fluid resuscitation therapies in different patient populations. SEARCH STRATEGY We searched the Cochrane Renal Group's specialised register, the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library), MEDLINE, EMBASE, MetaRegister and reference lists of articles. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs in which HES was compared to an alternate fluid therapy for the prevention or treatment of effective intravascular volume depletion. Primary outcomes were renal replacement therapy (RRT), author-defined kidney failure and acute kidney injury (AKI) as defined by the RIFLE criteria. Secondary outcomes included serum creatinine and creatinine clearance. \n DATA COLLECTION AND ANALYSIS Screening, selection, data extraction and quality assessments for each retrieved article were carried out by two authors using standardised forms. Authors were contacted when published data were incomplete. Preplanned sensitivity and subgroup analyses were performed after data were analysed with a random effects model. \n MAIN RESULTS The review included 34 studies (2607 patients). Overall, the RR of author-defined kidney failure was 1.50 (95% CI 1.20 to 1.87; n = 1199) and 1.38 for requiring RRT (95% CI 0.89 to 2.16; n = 1236) in HES treated individuals compared with other fluid therapies. Subgroup analyses suggested increased risk in septic patients compared to non-septic (surgical/trauma) patients. Non-septic patient studies were smaller and had lower event rates, so subgroup differences may have been due to lack of statistical power in these studies. Only limited data was obtained for analysis of kidney outcomes by the RIFLE criteria. Overall, methodological quality of studies was good but subjective outcomes were potentially biased because most studies were unblinded. AUTHORS' CONCLUSIONS Potential for increased risk of AKI should be considered when weighing the risks and benefits of HES for volume resuscitation, particularly in septic patients. Large studies with adequate follow-up are required to evaluate the renal safety of HES products in non-septic patient populations. RIFLE criteria should be applied to evaluate kidney function in future studies of HES and, where data is available, to re-analyse those studies already published. There is inadequate clinical data to address the claim that safety differences exist between different HES products.", "title": "Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function." }, { "docid": "3430789", "text": "The present study retrospectively analyzed 19 patients diagnosed with paraquat (PQ) poisoning with the aim to investigate the effect of activated charcoal hemoperfusion on renal function and PQ elimination. The results indicated that 7 patients died and 12 survived. Non-oliguric renal failure occurred in all of the 7 patients who died. Among the 12 surviving patients, 10 had normal renal function and 2 developed non-oliguric renal failure. There was a linear correlation between plasma and urine paraquat concentration prior to and during activated charcoal hemoperfusion. The equation parameters together with the correlation coefficient on admission were as follows: Y=0.5820+1.7348X (R2=0.678; F=35.768; P<0.0001). The equation parameters together with the correlation coefficient were as follows during activated charcoal hemoperfusion: Y=0.6827+1.2649X (R2=0.626; F=50.308; P<0.0001). Therefore, it was concluded that in patients with normal renal function, the elimination kinetics of PQ by the kidneys were only associated with the plasma PQ concentration. Activated charcoal hemoperfusion had little effect on avoiding acute kidney injury in patients with severe PQ poisoning.", "title": "Effect of activated charcoal hemoperfusion on renal function in patients with paraquat poisoning." }, { "docid": "6157837", "text": "Angiotensin converting enzyme (ACE) inhibitors are now one of the most frequently used classes of antihypertensive drugs. Beyond their utility in the management of hypertension, their use has been extended to the long-term management of patients with congestive heart failure (CHF), as well as diabetic and nondiabetic nephropathies. Although ACE inhibitor therapy usually improves renal blood flow (RBF) and sodium excretion rates in CHF and reduces the rate of progressive renal injury in chronic renal disease, its use can also be associated with a syndrome of “functional renal insufficiency” and/or hyperkalemia. This form of acute renal failure (ARF) most commonly develops shortly after initiation of ACE inhibitor therapy but can be observed after months or years of therapy, even in the absence of prior ill effects. ARF is most likely to occur when renal perfusion pressure cannot be sustained because of substantial decreases in mean arterial pressure (MAP) or when glomerular filtration rate (GFR) is highly angiotensin II (Ang II) dependent. Conditions that predict an adverse hemodynamic effect of ACE inhibitors in patients with CHF are preexisting hypotension and low cardiac filling pressures. The GFR is especially dependent on Ang II during extracellular fluid (ECF) volume depletion, high-grade bilateral renal artery stenosis, or stenosis of a dominant or single kidney, as in a renal transplant recipient. Understanding the pathophysiological mechanisms and the common risk factors for ACE inhibitor–induced functional ARF is critical, because preventive strategies for ARF exist, and if effectively used, they may permit use of these compounds in a less restricted fashion. Under normal physiological conditions, renal autoregulation adjusts renal vascular resistance, so that RBF and GFR remain constant over a wide range of MAPs.1 The intrinsic renal autoregulation mechanism is adjusted by Ang II and the sympathetic nervous system. When renal perfusion pressure falls (as in …", "title": "Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association." }, { "docid": "18348376", "text": "BACKGROUND Multiple mechanisms have been advanced to account for CD4+FOXP3+ regulatory T cell (Treg)-mediated suppression of CD4+ effector T cells (Teffs) but none appear to completely explain suppression. Previous data indicates that Tregs may affect the microenvironment redox state. Given the inherent redox sensitivity of T cells, we tested the hypothesis that oxidants may mediate the direct suppression of Teffs by Tregs. \n METHODOLOGY/PRINCIPAL FINDINGS Tregs and Teffs were isolated from the spleens of wild type (WT) C57BL/6 mice or Ncf1(p47phox)-deficient C57BL/6 mice which lack NADPH oxidase function. Teffs were labeled with CFSE and co-cultured with unlabeled Tregs at varying Treg:Teff ratios in the presence of anti-CD3/CD28 coated beads for 3 days in suppression assays. Treg-mediated suppression was quantified by flow cytometric analysis of CFSE dilution in Teffs. The presence of the antioxidants n-acetylcysteine (NAC) or 2-mercaptoethanol or inhibitors of NADPH oxidase (diphenyleneiodonium and VAS-2870) resulted in reduced WT Treg-mediated suppression. The observed suppression was in part dependent upon TGFβ as it was partially blocked with neutralizing antibodies. The suppression of Teff proliferation induced by exogenous TGFβ treatment could be overcome with NAC. Ncf1-deficient Teff were slightly but significantly less sensitive than WT Teff to suppression by exogenous TGFβ. Ncf1-deficient Tregs suppressed Ncf1-deficient Teff very poorly compared to wild type controls. There was partial but incomplete reconstitution of suppression in assays with WT Tregs and Ncf1-deficient Teff. \n CONCLUSIONS/SIGNIFICANCE We present evidence that NADPH oxidase derived ROS plays a role in the direct Treg mediated suppression of CD4+ effector T cells in a process that is blocked by thiol-containing antioxidants, NADPH oxidase inhibitors or a lack of Ncf1 expression in Tregs and Teffs. Oxidants may represent a potential new target for therapeutic modulation of Treg function.", "title": "Ncf1 (p47phox) Is Essential for Direct Regulatory T Cell Mediated Suppression of CD4+ Effector T Cells" }, { "docid": "29735200", "text": "Dry beans and soybeans are nutrient-dense, fiber-rich, and are high-quality sources of protein. Protective and therapeutic effects of both dry bean and soybean intake have been documented. Studies show that dry bean intake has the potential to decrease serum cholesterol concentrations, improve many aspects of the diabetic state, and provide metabolic benefits that aid in weight control. Soybeans are a unique source of the isoflavones genistein and diadzein, which have numerous biological functions. Soybeans and soyfoods potentially have multifaceted health-promoting effects, including cholesterol reduction, improved vascular health, preserved bone mineral density, and reduction of menopausal symptoms. Soy appears to have salutary effects on renal function, although these effects are not well understood. Whereas populations consuming high intakes of soy have lower prevalences of certain cancers, definitive experimental data are insufficient to clarify a protective role of soy. The availability of legume products and resources is increasing, incorporating dry beans and soyfoods into the diet can be practical and enjoyable. With the shift toward a more plant-based diet, dry beans and soy will be potent tools in the treatment and prevention of chronic disease.", "title": "Cardiovascular and renal benefits of dry bean and soybean intake." }, { "docid": "1103795", "text": "Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.", "title": "A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics" }, { "docid": "21383026", "text": "Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.", "title": "Genes required for mycobacterial growth defined by high density mutagenesis." }, { "docid": "435529", "text": "HEN1-mediated 2'-O-methylation has been shown to be a key mechanism to protect plant microRNAs (miRNAs) and small interfering RNAs (siRNAs) as well as animal piwi-interacting RNAs (piRNAs) from degradation and 3' terminal uridylation [1-8]. However, enzymes uridylating unmethylated miRNAs, siRNAs, or piRNAs in hen1 are unknown. In this study, a genetic screen identified a second-site mutation hen1 suppressor1-2 (heso1-2) that partially suppresses the morphological phenotypes of the hypomorphic hen1-2 allele and the null hen1-1 allele in Arabidopsis. HESO1 encodes a terminal nucleotidyl transferase that prefers to add untemplated uridine to the 3' end of RNA, which is completely abolished by 2'-O-methylation. heso1-2 affects the profile of u-tailed miRNAs and siRNAs and increases the abundance of truncated and/or normal sized ones in hen1, which often results in increased total amount of miRNAs and siRNAs in hen1. In contrast, overexpressing HESO1 in hen1-2 causes more severe morphological defects and less accumulation of miRNAs. These results demonstrate that HESO1 is an enzyme uridylating unmethylated miRNAs and siRNAs in hen1. These observations also suggest that uridylation may destabilize unmethylated miRNAs through an unknown mechanism and compete with 3'-to-5' exoribonuclease activities in hen1. This study shall have implications on piRNA uridylation in hen1 in animals.", "title": "Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis" }, { "docid": "5573975", "text": "Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1-Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney. A structure-function analysis of the BMP-Alk3-BMP receptor, type 2 (BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led us to construct a library of small peptide agonists of BMP signaling that function through the Alk3 receptor. One such peptide agonist, THR-123, suppressed inflammation, apoptosis and the epithelial-to-mesenchymal transition program and reversed established fibrosis in five mouse models of acute and chronic renal injury. THR-123 acts specifically through Alk3 signaling, as mice with a targeted deletion for Alk3 in their tubular epithelium did not respond to therapy with THR-123. Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had an additive therapeutic benefit in controlling renal fibrosis. Our studies show that BMP signaling agonists constitute a new line of therapeutic agents with potential utility in the clinic to induce regeneration, repair and reverse established fibrosis.", "title": "Activin–like kinase–3 activity is important for kidney regeneration and reversal of fibrosis" }, { "docid": "356218", "text": "BACKGROUND Pregnant women with mild preexisting renal disease have relatively few complications of pregnancy, but the risks of maternal and obstetrical complications in women with moderate or severe renal insufficiency remain uncertain. \n METHODS We determined the frequency and types of maternal and obstetrical complications and the outcomes of pregnancy in 67 women with primary renal disease (82 pregnancies). All the women had initial serum creatinine concentrations of at least 1.4 mg per deciliter (124 mumol per liter) and gestations that continued beyond the first trimester. \n RESULTS The mean (+/- SD) serum creatinine concentration increased from 1.9 +/- 0.8 mg per deciliter (168 +/- 71 mumol per liter) in early pregnancy to 2.5 +/- 1.3 mg per deciliter (221 +/- 115 mumol per liter) in the third trimester. The frequency of hypertension rose from 28 percent at base line to 48 percent in the third trimester, and that of high-grade proteinuria (urinary protein excretion, > 3000 mg per liter) from 23 percent to 41 percent. For the 70 pregnancies (57 women) for which data were available during pregnancy and immediately post partum, pregnancy-related loss of maternal renal function occurred in 43 percent. Eight of these pregnancies (10 percent of the total) were associated with rapid acceleration of maternal renal insufficiency. Obstetrical complications included a high rate of preterm delivery (59 percent) and growth retardation (37 percent). The infant survival rate was 93 percent. \n CONCLUSIONS Among pregnant women with moderate or severe renal insufficiency, the rates of complications due to worsening renal function, hypertension, and obstetrical complications are increased, but fetal survival is high.", "title": "Outcome of pregnancy in women with moderate or severe renal insufficiency." }, { "docid": "10247282", "text": "In the rat isolated perfused kidney, arachidonic acid elicits cyclooxygenase-dependent vasoconstriction through activation of PGH2/TxA2 receptors; responses are enhanced in kidneys from diabetic rats. This study examined the roles of cyclooxygenase-1/cyclooxygenase-2 in the enhanced renal vasoconstrictor effect of arachidonic acid in streptozotocin-diabetic rats. Release of 20-HETE was also determined, as this eicosanoid has been reported to elicit cyclooxygenase-dependent vasoconstriction. We confirmed that vasoconstrictor responses to arachidonic acid were enhanced in the diabetic rat kidney associated with a 2-fold-greater increase in the release of 6-ketoPGF1alpha, which was used as an index of cyclooxygenase activity. One and three micrograms of arachidonic acid increased perfusion pressure by 85+/-37 and 186+/-6 mm Hg, respectively, in diabetic rat kidneys compared with 3+/-1 and 17+/-8 mm Hg, respectively, in control rat kidneys. Inhibition of both cyclooxygenase isoforms with indomethacin (10 micromol/L) abolished the vasoconstrictor response to arachidonic acid in both diabetic and control rat kidneys, whereas inhibition of cyclooxygenase-2 with nimesulide (5 micromol/L) reduced perfusion pressure responses to 1 and 3 microg arachidonic acid only in the diabetic rat kidney to 15+/-8 and 108+/-26 mm Hg, respectively, consistent with a 3-fold increase in the renal cortical expression of cyclooxygenase-2. 20-HETE release from the diabetic rat kidney was reduced almost 6-fold and was not increased in response to arachidonic acid. These results demonstrate that the renal vasoconstrictor effect of arachidonic acid is solely dependent on cyclooxygenase activity, with no evidence for a contribution from 20-HETE; in the diabetic rat, cyclooxygenase-2 activity contributes to the renal vasoconstrictor effect of arachidonic acid.", "title": "Arachidonic Acid in the Diabetic Rat Kidney" }, { "docid": "22236223", "text": "Pregnancy in women with different renal diseases has important consequences for the developing fetus and maternal health. Kidneys and the urinary tract have to adapt to the pregnancy status and therefore suffer significant anatomical, hemodynamic and endocrine changes. Failure to adapt can aggravate the preexisting maternal disease and can also create suboptimal environment for fetal development and increase the risk of obstetric complications. Knowledge and correct interpretation of the renal functional tests is necessary for the modern obstetrician, avoiding an incorrect diagnosis for renal disease where only specific renal changes during pregnancy are present, but meanwhile a correct evaluation of the renal function and changes can detect a pathology that can aggravate both the mother’s and the baby’s condition. Improvement and better understanding of the renal pathophysiology in pregnancy made possible that pregnant woman look forward for a good outcome, including here also the women with renal transplant. Nowadays is underlined the concept of multidisciplinary teamwork, a very important concept of modern medicine. The obstetrician should consider nephrologists as key players in the team and in our opinion should refer to them the pregnant women for a routine check-up of the renal status in the 2nd or beginning of 3rd trimester by ultrasound, beside the usual blood and urine analysis. The nephrologists and urologists should be involved in the management of severe medical conditions, such as preeclampsia, acute and chronic renal failure and never the less in the complex management of dialysis or renal transplant patients. In pregnancy it can be encountered several renal diseases, some of them preexisting the pregnancy and other developed or being direct influenced by pregnancy. This chapter will discuss briefly the basic evaluation of renal status in order to present and better understand the acute and chronic renal disorders in pregnancy. The chapter will focus on the most common preexisting diseases in pregnancy such as: chronic glomerulonephritis, secondary glomerular nephropathies, interstitial nephropathies (chronic pyelonephritis, renal tuberculosis), diabetes nephropathy, unique surgical kidney, chronic renal failure. From the renal diseases directly influenced by pregnancy it will be discussed: asymptomatic bacteriuria, symptomatic urinary infection, urolithiasis and acute renal failure in pregnancy. It will be presented also the management of dialysis in pregnancy and pregnant women with renal transplant.", "title": "Renal Disease and Pregnancy" } ]
828
NAC inhibits the generation of angiotensin-converting enzyme.
[ { "docid": "4678846", "text": "CONTEXT The antioxidant acetylcysteine prevents acute contrast nephrotoxicity in patients with impaired renal function who undergo computed tomography scanning. However, its role in coronary angiography is unclear. \n OBJECTIVE To determine whether oral acetylcysteine prevents acute deterioration in renal function in patients with moderate renal insufficiency who undergo elective coronary angiography. \n DESIGN AND SETTING Prospective, randomized, double-blind, placebo-controlled trial conducted from May 2000 to December 2001 at the Grantham Hospital at the University of Hong Kong. \n PARTICIPANTS Two hundred Chinese patients aged mean (SD) 68 (6.5) years with stable moderate renal insufficiency (creatinine clearance <60 mL/min [1.00 mL/s]) who were undergoing elective coronary angiography with or without intervention. \n INTERVENTION Participants were randomly assigned to receive oral acetylcysteine(600 mg twice per day; n = 102) or matching placebo tablets (n = 98) on the day before and the day of angiography. All patients received low-osmolality contrast agent. \n MAIN OUTCOME MEASURES Occurrence of more than a 25% increase in serum creatinine level within 48 hours after contrast administration; change in creatinine clearance and serum creatinine level. \n RESULTS Twelve control patients (12%) and 4 acetylcysteine patients (4%) developed a more than 25% increase in serum creatinine level within 48 hours after contrast administration (relative risk, 0.32; 95% confidence interval [CI], 0.10-0.96; P =.03). Serum creatinine was lower in the acetylcysteine group (1.22 mg/dL [107.8 micromol/L]; 95% CI, 1.11-1.33 mg/dL vs 1.38 mg/dL [122.9 micromol/L]; 95% CI, 1.27-1.49 mg/dL; P =.006) during the first 48 hours after angiography. Acetylcysteine treatment significantly increased creatinine clearance from 44.8 mL/min (0.75 mL/s) (95% CI, 42.7-47.6 mL/min) to 58.9 mL/min (0.98 mL/s) (95% CI, 55.6-62.3 mL/min) 2 days after the contrast administration (P<.001). The increase was not significant in the control group (from 42.1 to 44.1 mL/min [0.70 to 0.74 mL/s]; P =.15). The benefit of acetylcysteine was consistent among various patient subgroups and persistent for at least 7 days. There were no major treatment-related adverse events. \n CONCLUSION Acetylcysteine protects patients with moderate chronic renal insufficiency from contrast-induced deterioration in renal function after coronary angiographic procedures, with minimal adverse effects and at a low cost.", "title": "Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial." } ]
[ { "docid": "1759213", "text": "OBJECTIVE To examine the safety of using aliskiren combined with agents used to block the renin-angiotensin system. \n DESIGN Systematic review and meta-analysis of randomised controlled trials. \n DATA SOURCES Medline, Embase, the Cochrane Library, and two trial registries, published up to 7 May 2011. STUDY SELECTION Published and unpublished randomised controlled trials that compared combined treatment using aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers with monotherapy using these agents for at least four weeks and that provided numerical data on the adverse event outcomes of hyperkalaemia and acute kidney injury. A random effects model was used to calculate pooled risk ratios and 95% confidence intervals for these outcomes. \n RESULTS 10 randomised controlled studies (4814 participants) were included in the analysis. Combination therapy with aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers significantly increased the risk of hyperkalaemia compared with monotherapy using angiotensin converting enzymes or angiotensin receptor blockers (relative risk 1.58, 95% confidence interval 1.24 to 2.02) or aliskiren alone (1.67, 1.01 to 2.79). The risk of acute kidney injury did not differ significantly between the combined therapy and monotherapy groups (1.14, 0.68 to 1.89). \n CONCLUSION Use of aliskerin in combination with angiotensin converting enzyme inhibitors or angiotensin receptor blockers is associated with an increased risk for hyperkalaemia. The combined use of these agents warrants careful monitoring of serum potassium levels.", "title": "The effect of combination treatment with aliskiren and blockers of the renin-angiotensin system on hyperkalaemia and acute kidney injury: systematic review and meta-analysis" }, { "docid": "26199970", "text": "Objective: It is unclear whether blockade of the angiotensin system has effects on mental health. Our objective was to determine the impact of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor (AT1R) blockers on mental health domain of quality of life. Study design: Meta-analysis of published literature. Data sources: PubMed and clinicaltrials.gov databases. The last search was conducted in January 2017. Study selection: Randomized controlled trials comparing any angiotensin converting enzyme inhibitor or AT1R blocker versus placebo or non-angiotensin converting enzyme inhibitor or non-AT1R blocker were selected. Study participants were adults without any major physical symptoms. We adhered to meta-analysis reporting methods as per PRISMA and the Cochrane Collaboration. Data synthesis: Eleven studies were included in the analysis. When compared with placebo or other antihypertensive medications, AT1R blockers and angiotensin converting enzyme inhibitors were associated with improved overall quality of life (standard mean difference = 0.11, 95% confidence interval = [0.08, 0.14], p < 0.0001), positive wellbeing (standard mean difference = 0.11, 95% confidence interval = [0.05, 0.17], p < 0.0001), mental (standard mean difference = 0.15, 95% confidence interval = [0.06, 0.25], p < 0.0001), and anxiety (standard mean difference = 0.08, 95% confidence interval = [0.01, 0.16], p < 0.0001) domains of QoL. No significant difference was found for the depression domain (standard mean difference = 0.05, 95% confidence interval = [0.02, 0.12], p = 0.15). Conclusions: Use of angiotensin blockers and inhibitors for the treatment of hypertension in otherwise healthy adults is associated with improved mental health domains of quality of life. Mental health quality of life was a secondary outcome in the included studies. Research specifically designed to analyse the usefulness of drugs that block the angiotensin system is necessary to properly evaluate this novel psychiatric target.", "title": "Blockade of the angiotensin system improves mental health domain of quality of life: A meta-analysis of randomized clinical trials" }, { "docid": "14584755", "text": "The renin-angiotensin-aldosterone system plays a major role in the pathophysiology of hypertension and closely related cardio- and cerebrovascular events. Although both angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor antagonists (angiotensin receptor blockers; ARBs) are equally important in the treatment of hypertension, according to the results of recent years, there might be substantial differences in their cardiovascular protective effects, and these differences might be explained by our increasing knowledge of their non-overlapping mechanisms of action. The number of studies investigating how ACE inhibitors and ARB agents differ will certainly be increasing in the future. ACE inhibitors are the safe therapeutic opportunity for hypertensive patients at high risk, with a cardiological comorbidity.", "title": "Differences in the Clinical Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: A Critical Review of the Evidence" }, { "docid": "6157837", "text": "Angiotensin converting enzyme (ACE) inhibitors are now one of the most frequently used classes of antihypertensive drugs. Beyond their utility in the management of hypertension, their use has been extended to the long-term management of patients with congestive heart failure (CHF), as well as diabetic and nondiabetic nephropathies. Although ACE inhibitor therapy usually improves renal blood flow (RBF) and sodium excretion rates in CHF and reduces the rate of progressive renal injury in chronic renal disease, its use can also be associated with a syndrome of “functional renal insufficiency” and/or hyperkalemia. This form of acute renal failure (ARF) most commonly develops shortly after initiation of ACE inhibitor therapy but can be observed after months or years of therapy, even in the absence of prior ill effects. ARF is most likely to occur when renal perfusion pressure cannot be sustained because of substantial decreases in mean arterial pressure (MAP) or when glomerular filtration rate (GFR) is highly angiotensin II (Ang II) dependent. Conditions that predict an adverse hemodynamic effect of ACE inhibitors in patients with CHF are preexisting hypotension and low cardiac filling pressures. The GFR is especially dependent on Ang II during extracellular fluid (ECF) volume depletion, high-grade bilateral renal artery stenosis, or stenosis of a dominant or single kidney, as in a renal transplant recipient. Understanding the pathophysiological mechanisms and the common risk factors for ACE inhibitor–induced functional ARF is critical, because preventive strategies for ARF exist, and if effectively used, they may permit use of these compounds in a less restricted fashion. Under normal physiological conditions, renal autoregulation adjusts renal vascular resistance, so that RBF and GFR remain constant over a wide range of MAPs.1 The intrinsic renal autoregulation mechanism is adjusted by Ang II and the sympathetic nervous system. When renal perfusion pressure falls (as in …", "title": "Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association." }, { "docid": "43417006", "text": "New-onset diabetes mellitus (NOD) refers to forms of diabetes mellitus that develop during the therapeutic processes of other diseases such as hypertension. This study has been conducted in a network meta-analysis to compare antihypertensive drugs by identifying both the advantages and disadvantages on NOD by focusing on their respective effect rates. Odd ratios and corresponding 95% confidence intervals or credible intervals were calculated within pairwise and network meta-analysis. A total of 38 articles with 224 140 patients were included to evaluate the preventive effect of hypertension drugs on NOD. From the network meta-analysis it was evident that both angiotensin-converting enzyme inhibitor as well as angiotensin receptor blocker treatments are associated with a lower risk of developing NOD compared with placebo, with ranking probabilities of 79.81% and 72.77%, respectively, while β-blockers and calcium channel blockers may significantly increase the probability of developing NOD (β-blockers: odds ratio, 2.18 [95% credible intervals: 1.36-3.50]; calcium channel blockers: odds ratio, 1.16 [95% credible intervals, 1.05-1.29]). In conclusion, angiotensin receptor blockers have an advantage over the other treatments regarding the NOD.", "title": "Comparative risk of new-onset diabetes mellitus for antihypertensive drugs: A network meta-analysis." }, { "docid": "4700428", "text": "BACKGROUND Relapse to cocaine seeking has been linked with low glutamate in the nucleus accumbens core (NAcore) causing potentiation of synaptic glutamate transmission from prefrontal cortex (PFC) afferents. Systemic N-acetylcysteine (NAC) has been shown to restore glutamate homeostasis, reduce relapse to cocaine seeking, and depotentiate PFC-NAcore synapses. Here, we examine the effects of NAC applied directly to the NAcore on relapse and neurotransmission in PFC-NAcore synapses, as well as the involvement of the metabotropic glutamate receptors 2/3 (mGluR2/3) and 5 (mGluR5). \n METHODS Rats were trained to self-administer cocaine for 2 weeks and following extinction received either intra-accumbens NAC or systemic NAC 30 or 120 minutes, respectively, before inducing reinstatement with a conditioned cue or a combined cue and cocaine injection. We also recorded postsynaptic currents using in vitro whole cell recordings in acute slices and measured cystine and glutamate uptake in primary glial cultures. \n RESULTS NAC microinjection into the NAcore inhibited the reinstatement of cocaine seeking. In slices, a low concentration of NAC reduced the amplitude of evoked glutamatergic synaptic currents in the NAcore in an mGluR2/3-dependent manner, while high doses of NAC increased amplitude in an mGluR5-dependent manner. Both effects depended on NAC uptake through cysteine transporters and activity of the cysteine/glutamate exchanger. Finally, we showed that by blocking mGluR5 the inhibition of cocaine seeking by NAC was potentiated. \n CONCLUSIONS The effect of NAC on relapse to cocaine seeking depends on the balance between stimulating mGluR2/3 and mGluR5 in the NAcore, and the efficacy of NAC can be improved by simultaneously inhibiting mGluR5.", "title": "The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine." }, { "docid": "35724562", "text": "In adult patients with CKD, hypertension is linked to the development of left ventricular hypertrophy, but whether this association exists in children with CKD has not been determined conclusively. To assess the relationship between BP and left ventricular hypertrophy, we prospectively analyzed data from the Chronic Kidney Disease in Children cohort. In total, 478 subjects were enrolled, and 435, 321, and 142 subjects remained enrolled at years 1, 3, and 5, respectively. Echocardiograms were obtained 1 year after study entry and then every 2 years; BP was measured annually. A linear mixed model was used to assess the effect of BP on left ventricular mass index, which was measured at three different visits, and a mixed logistic model was used to assess left ventricular hypertrophy. These models were part of a joint longitudinal and survival model to adjust for informative dropout. Predictors of left ventricular mass index included systolic BP, anemia, and use of antihypertensive medications other than angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Predictors of left ventricular hypertrophy included systolic BP, female sex, anemia, and use of other antihypertensive medications. Over 4 years, the adjusted prevalence of left ventricular hypertrophy decreased from 15.3% to 12.6% in a systolic BP model and from 15.1% to 12.6% in a diastolic BP model. These results indicate that a decline in BP may predict a decline in left ventricular hypertrophy in children with CKD and suggest additional factors that warrant additional investigation as predictors of left ventricular hypertrophy in these patients.", "title": "BP control and left ventricular hypertrophy regression in children with CKD." }, { "docid": "32463364", "text": "OBJECTIVES Prevention of cognitive decline and dementia with blood pressure lowering treatments has shown inconsistent results. We compared the effects of different classes of antihypertensive drugs on the incidence of dementia, and on cognitive function. \n METHODS We conducted a systematic review and included 19 randomized trials (18 515 individuals) and 11 studies (831 674 individuals) analysing the effects of antihypertensive treatment on cognition and on the incidence of dementia, respectively, in hypertensive patients without prior cerebrovascular disorders. Network meta-analysis was used for the comparison of antihypertensive classes. \n RESULTS Antihypertensive treatment, regardless of the drug class, had benefits on overall cognition [effect size 0.05, 95% confidence interval (CI) 0.02-0.07] and all cognitive functions except language. Antihypertensive treatment reduced the risk of all-cause dementia by 9%, with reference to the control group (hazard ratio 0.91, 95% CI 0.89-0.94), when randomized trials and observationnal studies were combined (n = 15). Result was not significant with randomized trials alone (n = 4). Angiotensin II receptor blockers (ARBs) had larger benefits than placebo on overall cognition (adjusted effect size 0.60 ± 0.18, P = 0.02). ARBs were more effective than β-blockers (0.67 ± 0.18, P = 0.01), diuretics (0.54 ± 0.19, P = 0.04) and angiotensin-converting enzyme inhibitors (0.47 ± 0.17, P = 0.04) in rank. The mean change in blood pressure did not differ significantly between the different antihypertensive drug classes. \n CONCLUSION Our results support the notion that antihypertensive treatment has beneficial effects on cognitive decline and prevention of dementia, and indicate that these effects may differ between drug classes with ARBs possibly being the most effective.", "title": "Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis." }, { "docid": "26025370", "text": "Background: Vasoconstriction and reactive oxygen species (ROS) accumulation following contrast media (CM) injection are the key factors triggering CM-induced nephropathy. We compared the effects of N-acetylcysteine (NAC), theophylline or sodium bicarbonate on intrarenal vasoconstriction and ROS generation in a rat model of CM-induced nephropathy. Methods: Following a 3-day dehydration, Sprague-Dawley rats received CM (Telebrix) or sham ‘CM’ injection of 0.9% saline. Part of them received NAC, theophylline or bicarbonate prior to CM. Medullar renal blood flow was estimated by laser Doppler. The animals were sacrificed 1, 15 or 30 min after the respective treatments, their kidneys allocated and intrarenal STAT-8 isoprostane, PGE2 and NO assessed. Results: Vasoconstriction was significantly attenuated by NAC. Theophylline only mildly attenuated the perfusion drop at 15 min, and was ineffective following 30 min. Unlike theophylline or bicarbonate, NAC significantly augmented intrarenal PGE2. NAC, theophylline but not bicarbonate, gradually increased intrarenal NO. In all experimental variables, CM-induced ROS accumulation, represented by STAT-8 isoprostane estimation, progressed undisturbed. Conclusions: (1) CM-induced intrarenal vasoconstriction was efficiently prohibited by NAC but not bicarbonate or theophylline; (2) the vasodilatory effect of NAC was mediated via increased PGE2 synthesis, and (3) ROS accumulation was a primary renal response to CM-induced injury, not affected by any pharmacologic manipulations.", "title": "Differential Effects of N-Acetylcysteine, Theophylline or Bicarbonate on Contrast-Induced Rat Renal Vasoconstriction" }, { "docid": "6397191", "text": "Endothelin-1 (ET-1) is the predominant endothelin isopeptide generated by the vascular wall and therefore appears to be the most important peptide involved in regulation of cardiovascular events. Many pathologic conditions are associated with elevations of ET-1 in the blood vessel wall. Because these conditions are often cytokine driven, we examined the effects of a mixture of cytokines on ET-1 production in human vascular smooth muscle cells (VSMCs) derived from internal mammary artery and saphenous vein (SV). Incubation of IMA and SV VSMCs with tumor necrosis factor-alpha (10 ng/ml) and interferon-gamma (1000 U/ml) in combination for up to 48 h markedly elevated the expression of mRNA for prepro-ET-1 and the release of ET-1 into the culture medium. This cytokine-stimulated release of ET-1 was inhibited by a series of dual endothelin-converting enzyme (ECE)/neutral endopeptidase inhibitors, phosphoramidon, CGS 26303, and CGS 26393, with an accompanying increase in big ET-1 release but with no effect on expression of mRNA for prepro-ET-1. These same compounds were 10 times more potent at inhibiting the conversion of exogenously applied big ET-1 to ET-1. ECE-1b/c mRNA is present in SV VSMCs, however no ECE-1a is present in these cells. Thus VSMCs most probably contain, like endothelial cells, an intracellular ECE responsible for the endogenous synthesis of ET-1. Under the influence of pro-inflammatory mediators the vascular smooth muscle can therefore become an important site of ET-1 production, as has already been established for the dilator mediators nitric oxide, prostaglandin I2, and prostaglandin E2.", "title": "Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme." }, { "docid": "7821634", "text": "Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.", "title": "Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance" }, { "docid": "25816994", "text": "BACKGROUND Angiotensin receptor blockers (ARB) and angiotensin converting enzyme (ACE) inhibitors are known to reduce proteinuria. Their combination might be more effective than either treatment alone, but long-term data for comparative changes in renal function are not available. We investigated the renal effects of ramipril (an ACE inhibitor), telmisartan (an ARB), and their combination in patients aged 55 years or older with established atherosclerotic vascular disease or with diabetes with end-organ damage. \n METHODS The trial ran from 2001 to 2007. After a 3-week run-in period, 25 620 participants were randomly assigned to ramipril 10 mg a day (n=8576), telmisartan 80 mg a day (n=8542), or to a combination of both drugs (n=8502; median follow-up was 56 months), and renal function and proteinuria were measured. The primary renal outcome was a composite of dialysis, doubling of serum creatinine, and death. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00153101. \n FINDINGS 784 patients permanently discontinued randomised therapy during the trial because of hypotensive symptoms (406 on combination therapy, 149 on ramipril, and 229 on telmisartan). The number of events for the composite primary outcome was similar for telmisartan (n=1147 [13.4%]) and ramipril (1150 [13.5%]; hazard ratio [HR] 1.00, 95% CI 0.92-1.09), but was increased with combination therapy (1233 [14.5%]; HR 1.09, 1.01-1.18, p=0.037). The secondary renal outcome, dialysis or doubling of serum creatinine, was similar with telmisartan (189 [2.21%]) and ramipril (174 [2.03%]; HR 1.09, 0.89-1.34) and more frequent with combination therapy (212 [2.49%]: HR 1.24, 1.01-1.51, p=0.038). Estimated glomerular filtration rate (eGFR) declined least with ramipril compared with telmisartan (-2.82 [SD 17.2] mL/min/1.73 m(2)vs -4.12 [17.4], p<0.0001) or combination therapy (-6.11 [17.9], p<0.0001). The increase in urinary albumin excretion was less with telmisartan (p=0.004) or with combination therapy (p=0.001) than with ramipril. \n INTERPRETATION In people at high vascular risk, telmisartan's effects on major renal outcomes are similar to ramipril. Although combination therapy reduces proteinuria to a greater extent than monotherapy, overall it worsens major renal outcomes.", "title": "Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial." }, { "docid": "38944245", "text": "Lung Krüppel-like factor (LKLF/KLF2) is an endothelial transcription factor that is crucially involved in murine vasculogenesis and is specifically regulated by flow in vitro. We now show a relation to local flow variations in the adult human vasculature: decreased LKLF expression was noted at the aorta bifurcations to the iliac and carotid arteries, coinciding with neointima formation. The direct involvement of shear stress in the in vivo expression of LKLF was determined independently by in situ hybridization and laser microbeam microdissection/reverse transcriptase-polymerase chain reaction in a murine carotid artery collar model, in which a 4- to 30-fold induction of LKLF occurred at the high-shear sites. Dissection of the biomechanics of LKLF regulation in vitro demonstrated that steady flow and pulsatile flow induced basal LKLF expression 15- and 36-fold at shear stresses greater than approximately 5 dyne/cm2, whereas cyclic stretch had no effect. Prolonged LKLF induction in the absence of flow changed the expression of angiotensin-converting enzyme, endothelin-1, adrenomedullin, and endothelial nitric oxide synthase to levels similar to those observed under prolonged flow. LKLF repression by siRNA suppressed the flow response of endothelin-1, adrenomedullin, and endothelial nitric oxide synthase (P < 0.05). Thus, we demonstrate that endothelial LKLF is regulated by flow in vivo and is a transcriptional regulator of several endothelial genes that control vascular tone in response to flow.", "title": "Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes." }, { "docid": "5573975", "text": "Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1-Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney. A structure-function analysis of the BMP-Alk3-BMP receptor, type 2 (BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led us to construct a library of small peptide agonists of BMP signaling that function through the Alk3 receptor. One such peptide agonist, THR-123, suppressed inflammation, apoptosis and the epithelial-to-mesenchymal transition program and reversed established fibrosis in five mouse models of acute and chronic renal injury. THR-123 acts specifically through Alk3 signaling, as mice with a targeted deletion for Alk3 in their tubular epithelium did not respond to therapy with THR-123. Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had an additive therapeutic benefit in controlling renal fibrosis. Our studies show that BMP signaling agonists constitute a new line of therapeutic agents with potential utility in the clinic to induce regeneration, repair and reverse established fibrosis.", "title": "Activin–like kinase–3 activity is important for kidney regeneration and reversal of fibrosis" }, { "docid": "3831884", "text": "Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP(+) ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.", "title": "Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway" }, { "docid": "14121786", "text": "BACKGROUND Epidemiologic analysis of family data on blood pressure (BP) is often compromised by the effects of antihypertensive medications. A review of numerous clinical trials that investigated the effects of BP-lowering medications is summarized here. \n METHODS Published clinical trials, including 137 clinical trials with monodrug therapies and 28 clinical trials of combination drug therapies with a total of 11,739 participants, were reviewed from PubMed. Six major classes/groups of antihypertensive medications were categorized by ethnicity, including angiotensin-converting enzyme (ACE) inhibitors, alpha1-blockers, cardioselective beta-blockers (beta1-blockers), calcium channel blockers, thiazide and thiazide-like diuretics, and loop diuretics. \n RESULTS Using sitting or supine BP, for ethnic groups combined, monodrug therapy with ACE inhibitors showed a weighted average effect of lowering the systolic and diastolic BP by 12.5/9.5 mm Hg; alpha1-blockers by 15.5/11.7 mm Hg; beta1-blockers by 14.8/12.2 mm Hg; calcium channel blockers by 15.3/10.5 mm Hg; thiazide diuretics by 15.3/9.8 mm Hg; and loop diuretics by 15.8/8.2 mm Hg. However, ACE inhibitors, alpha1-blockers, and beta1-blockers were less effective in African Americans than in non-African Americans, whereas calcium channel blockers, thiazide diuretics, and loop diuretics were more effective in African Americans than in non-African Americans. For two-drug combination therapy with ethnic groups combined, the BP-lowering effect of the second medication, when compared to its effect as monodrug therapy, was 84% and 65% for systolic and diastolic BP, respectively. \n CONCLUSIONS The BP-lowering effects reported here may be used to impute the pretreatment BP levels, which can improve the information content and hence the power of epidemiologic analysis in studies where use of antihypertensive medications is a confounding factor in the BP measurements.", "title": "A summary of the effects of antihypertensive medications on measured blood pressure." }, { "docid": "35345807", "text": "Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.", "title": "Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration." }, { "docid": "3669694", "text": "Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.", "title": "Chromatin modifying enzymes as modulators of reprogramming" }, { "docid": "45770026", "text": "Eicosapentaenoic acid (EPA) has beneficial effects in many inflammatory disorders. In this study, dietary EPA was converted to 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) by ω-3 epoxygenation in the mouse peritoneal cavity. Mediator lipidomics revealed a series of novel oxygenated metabolites of 17,18-EpETE, and one of the major metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE), displayed a potent anti-inflammatory action by limiting neutrophil infiltration in murine zymosan-induced peritonitis. 12-OH-17,18-EpETE inhibited leukotriene B4-induced neutrophil chemotaxis and polarization in vitro in a low nanomolar range (EC50 0.6 nM). The complete structures of two natural isomers were assigned as 12S-OH-17R,18S-EpETE and 12S-OH-17S,18R-EpETE, using chemically synthesized stereoisomers. These natural isomers displayed potent anti-inflammatory action, whereas the unnatural stereoisomers were essentially devoid of activity. These results demonstrate that 17,18-EpETE derived from dietary EPA is converted to a potent bioactive metabolite 12-OH-17,18-EpETE, which may generate an endogenous anti-inflammatory metabolic pathway.", "title": "Eicosapentaenoic acid is converted via ω-3 epoxygenation to the anti-inflammatory metabolite 12-hydroxy-17,18-epoxyeicosatetraenoic acid." }, { "docid": "2086909", "text": "The Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development, we have generated Tet1 mutant mESCs and mice. Tet1(-/-) ESCs have reduced levels of 5hmC and subtle changes in global gene expression, and are pluripotent and support development of live-born mice in tetraploid complementation assay, but display skewed differentiation toward trophectoderm in vitro. Tet1 mutant mice are viable, fertile, and grossly normal, though some mutant mice have a slightly smaller body size at birth. Our data suggest that Tet1 loss leading to a partial reduction in 5hmC levels does not affect pluripotency in ESCs and is compatible with embryonic and postnatal development.", "title": "Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development." } ]
835
NR5A2 does not play a role in development of endometrial tissues.
[ { "docid": "15928989", "text": "Successful pregnancy requires coordination of an array of signals and factors from multiple tissues. One such element, liver receptor homolog-1 (Lrh-1), is an orphan nuclear receptor that regulates metabolism and hormone synthesis. It is strongly expressed in granulosa cells of ovarian follicles and in the corpus luteum of rodents and humans. Germline ablation of Nr5a2 (also called Lrh-1), the gene coding for Lrh-1, in mice is embryonically lethal at gastrulation. Depletion of Lrh-1 in the ovarian follicle shows that it regulates genes required for both steroid synthesis and ovulation. To study the effects of Lrh-1 on mouse gestation, we genetically disrupted its expression in the corpus luteum, resulting in luteal insufficiency. Hormone replacement permitted embryo implantation but was followed by gestational failure with impaired endometrial decidualization, compromised placental formation, fetal growth retardation and fetal death. Lrh-1 is also expressed in the mouse and human endometrium, and in a primary culture of human endometrial stromal cells, reduction of NR5A2 transcript abundance by RNA interference abrogated decidualization. These findings show that Lrh-1 is necessary for maintenance of the corpus luteum, for promotion of decidualization and for formation of the placenta. It therefore has multiple, indispensible roles in establishing and sustaining pregnancy.", "title": "Liver receptor homolog-1 is essential for pregnancy" } ]
[ { "docid": "1780819", "text": "BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. \n METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. \n CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.", "title": "Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development" }, { "docid": "6121668", "text": "OBJECTIVES To investigate the expressions of survivin and Cyclooxygenase-2 (COX-2), and their possible correlations in the development of endometrial adenocarcinoma (EC). We also looked at their association with classical prognostic factors in EC. To our knowledge, this is the first time survivin expression is investigated in terms of its relation to COX-2 in the developmental pathway of EC. \n METHODS Archived tissue samples of 50 EC, 30 endometrial hyperplasia and 20 proliferative endometrium were selected and immunohistochemically analyzed for survivin and COX-2 expression. \n RESULTS Both survivin and COX-2 were overexpressed in hyperplasia and endometrial adenocarcinoma cases compared to proliferative endometrium, which was statistically significant (p=0.01, p=0.02, respectively). Among EC cases, survivin and COX-2 were strongly positive in 38 (76%) and 30 (60%) patients, respectively. Furthermore, we found survivin and COX-2 to be positively correlated, which was also statistically significant (p=0.0001, r=0.46). Neither survivin nor COX-2 expression was correlated with classical prognostic factors of endometrial carcinoma such as myometrial invasion, grade or lymph node metastasis (p>0.05). Neither COX-2 nor survivin had an impact on overall survival (p>0.05). \n CONCLUSIONS Both survivin and COX-2 are overexpressed, and they seem to be early events in the occurrence of EC. Moreover, protein products of these two genes are positively correlated. COX-2 and survivin might share a common molecular pathway or enhance each other's actions in the developmental pathway of EC. Molecular basis of such a relationship should be further investigated in endometrial carcinogenesis.", "title": "COX-2 and survivin are overexpressed and positively correlated in endometrial carcinoma." }, { "docid": "30369606", "text": "Obtaining primary human endometrial stromal cells (HESCs) for in vitro studies is limited by the scarcity of adequate human material and the inability to passage these cells in culture for long periods. Immortalization of these cells would greatly facilitate studies; however, the process of immortalization often results in abnormal karyotypes and aberrant functional characteristics. To meet this need, we have introduced telomerase into cultured HESCs to prevent the normal shortening of telomeres observed in adult somatic cells during mitosis. We have now developed and analyzed a newly immortalized HESC line that contains no clonal chromosomal structural or numerical abnormalities. In addition, when compared with the primary unpassaged parent cells, the new cell line displayed similar biochemical endpoints after treatment with ovarian steroids. Classical decidualization response to estradiol plus medroxyprogesterone acetate were seen in both morphologically, and progestin was seen to induce or regulate the expression of IGF binding protein-1, fibronectin, prolactin, tissue factor, plasminogen activator inhibitor-1, and Fas/Fas ligand. In summary, an immortalized HESC line has been developed that is karyotypically, morphologically, and phenotypically similar to the primary parent cells, and it is a powerful and consistent resource for in vitro work.", "title": "A novel immortalized human endometrial stromal cell line with normal progestational response." }, { "docid": "24707550", "text": "Macrophages play a pivotal role in innate and acquired immune responses to Schistosoma mansoni. Classical (M1) or alternative (M2) activation states of these cells further delineate their roles in tissue damage through innate immunity or fibrotic remodeling, respectively. In the present study, we addressed the following question: Does systemic Th2-type cytokine polarization evoked by S. mansoni affect macrophage differentiation and activation? To this end, we analyzed bone marrow-derived macrophages from mice with S. mansoni egg-induced pulmonary granulomas and unchallenged (or naïve) mice to determine their activation state and their response to specific TLR agonists, including S. mansoni egg antigens. Unlike naïve macrophages, macrophages from Th2-polarized mice constitutively expressed significantly higher \"found in inflammatory zone-1\" (FIZZ1) and ST2 (M2 markers) and significantly lower NO synthase 2, CCL3, MIP-2, TNF-alpha, and IL-12 (M1 markers). Also, compared with naïve macrophages, Th2-polarized macrophages exhibited enhanced responses to the presence of specific TLR agonists, which consistently induced significantly higher levels of gene and protein levels for M2 and M1 markers in these cells. Together, these data show that signals received by bone marrow precursors during S. mansoni egg-induced granuloma responses dynamically alter the development of macrophages and enhance the TLR responsiveness of these cells, which may ultimately have a significant effect on the pulmonary granulomatous response.", "title": "A systemic granulomatous response to Schistosoma mansoni eggs alters responsiveness of bone-marrow-derived macrophages to Toll-like receptor agonists." }, { "docid": "8771704", "text": "Acute skeletal muscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to permanent tissue scarring, the consequences of its suppression remain to be studied. Using a model of acute muscle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration. We found that Nilotinib inhibits the damage-induced expansion of satellite cells in vivo, but it does not affect in vitro proliferation, suggesting a non cell-autonomous effect. Nilotinib impairs regenerative fibrogenesis by preventing the injury-triggered expansion and differentiation of resident CD45(-):CD31(-):α7integrin(-):Sca1(+) mesenchymal FAPs. Our data support the notion that the expansion of FAPs and transient fibrogenesis observed during regeneration play an important trophic role toward tissue-specific stem cells.", "title": "Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration." }, { "docid": "45015767", "text": "BACKGROUND Adenocarcinoma of the endometrium is the most common gynecologic malignancy in the United States, accounting for approximately 36,000 diagnoses of invasive carcinoma annually. The most common histologic type, endometrioid adenocarcinoma (EC), accounts for 75-80% of patients. The objective of this work was to estimate the prevalence of concurrent carcinoma in women with a biopsy diagnosis of the precursor lesion, atypical endometrial hyperplasia (AEH). \n METHODS This prospective cohort study included women who had a community diagnosis of AEH. Diagnostic biopsy specimens were reviewed independently by three gynecologic pathologists who used International Society of Gynecologic Pathologists/World Health Organization criteria. Study participants underwent hysterectomy within 12 weeks of entry onto protocol without interval treatment. The hysterectomy slides also were reviewed by the study pathologists, and their findings were used in the subsequent analyses. \n RESULTS Between November 1998 and June 2003, 306 women were enrolled on the study. Of these, 17 women were not included in the analysis: Two patients had unreadable slides because of poor processing or insufficient tissue, 2 patients had only slides that were not endometrial, the slides for 5 patients were not available for review, and 8 of the hysterectomy specimens were excluded because they showed evidence of interval intervention, either progestin effect or ablation. In total, 289 patients were included in the current analysis. The study panel review of the AEH biopsy specimens was interpreted as follows: 74 of 289 specimens (25.6%) were diagnosed as less than AEH, 115 of 289 specimens (39.8%) were diagnosed as AEH, and 84 of 289 specimens (29.1%) were diagnosed as endometrial carcinoma. In 5.5% (16 of 289 specimens), there was no consensus on the biopsy diagnosis. The rate of concurrent endometrial carcinoma for analyzed specimens was 42.6% (123 of 289 specimens). Of these, 30.9% (38 of 123 specimens) were myoinvasive, and 10.6% (13 of 123 specimens) involved the outer 50% of the myometrium. Among the women who had hysterectomy specimens with carcinoma, 14 of 74 women (18.9%) had a study panel biopsy consensus diagnosis of less than AEH, 45 of 115 women (39.1%) had a study panel biopsy consensus diagnosis of AEH, and 54 of 84 women (64.3%) had a study panel diagnosis of carcinoma. Among women who had no consensus in their biopsy diagnosis, 10 of 16 women (62.5%) had carcinoma in their hysterectomy specimens. \n CONCLUSIONS The prevalence of endometrial carcinoma in patients who had a community hospital biopsy diagnosis of AEH was high (42.6%). When considering management strategies for women who have a biopsy diagnosis of AEH, clinicians and patients should take into account the considerable rate of concurrent carcinoma.", "title": "Concurrent endometrial carcinoma in women with a biopsy diagnosis of atypical endometrial hyperplasia: a Gynecologic Oncology Group study." }, { "docid": "10889845", "text": "Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.", "title": "Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance." }, { "docid": "15836115", "text": "Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.", "title": "The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage" }, { "docid": "3210545", "text": "BACKGROUND Three quarter of endometrial carcinomas are treated at early stage. Still, 15 to 20% of these patients experience recurrence, with little effect from systemic therapies. Homo sapiens v-Ki-ras2 Kirsten rat sarcoma viral oncogenes homologue (KRAS) mutations have been reported to have an important role in tumorigenesis for human cancers, but there is limited knowledge regarding clinical relevance of KRAS status in endometrial carcinomas. \n METHODS We have performed a comprehensive and integrated characterisation of genome-wide expression related to KRAS mutations and copy-number alterations in primary- and metastatic endometrial carcinoma lesions in relation to clinical and histopathological data. A primary investigation set and clinical validation set was applied, consisting of 414 primary tumours and 61 metastatic lesions totally. \n RESULTS Amplification and gain of KRAS present in 3% of the primary lesions and 18% of metastatic lesions correlated significantly with poor outcome, high International Federation of Gynaecology and Obstetrics stage, non-endometrioid subtype, high grade, aneuploidy, receptor loss and high KRAS mRNA levels, also found to be associated with aggressive phenotype. In contrast, KRAS mutations were present in 14.7% of primary lesions with no increase in metastatic lesions, and did not influence outcome, but was significantly associated with endometrioid subtype, low grade and obesity. \n CONCLUSION These results support that KRAS amplification and KRAS mRNA expression, both increasing from primary to metastatic lesions, are relevant for endometrial carcinoma disease progression.", "title": "KRAS gene amplification and overexpression but not mutation associates with aggressive and metastatic endometrial cancer" }, { "docid": "19485649", "text": "Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.", "title": "N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements." }, { "docid": "29148743", "text": "To determine the relative contributions of endothelial-derived nitric oxide (NO) vs. intravascular nitrogen oxide species in the regulation of human blood flow, we simultaneously measured forearm blood flow and arterial and venous levels of plasma nitrite, LMW-SNOs and HMW-SNOs, and red cell S-nitrosohemoglobin (SNO-Hb). Measurements were made at rest and during regional inhibition of NO synthesis, followed by forearm exercise. Surprisingly, we found significant circulating arterial-venous plasma nitrite gradients, providing a novel delivery source for intravascular NO. Further supporting the notion that circulating nitrite is bioactive, the consumption of nitrite increased significantly with exercise during the inhibition of regional endothelial synthesis of NO. The role of circulating S-nitrosothiols and SNO-Hb in the regulation of basal vascular tone is less certain. We found that low-molecular-weight S-nitrosothiols were undetectable and S-nitroso-albumin levels were two logs lower than previously reported. In fact, S-nitroso-albumin primarily formed in the venous circulation, even during NO synthase inhibition. Whereas SNO-Hb was measurable in the human circulation (brachial artery levels of 170 nM in whole blood), arterial-venous gradients were not significant, and delivery of NO from SNO-Hb was minimal. In conclusion, we present data that suggest (i) circulating nitrite is bioactive and provides a delivery gradient of intravascular NO, (ii) S-nitroso-albumin does not deliver NO from the lungs to the tissue but forms in the peripheral circulation, and (iii) SNO-Hb and S-nitrosothiols play a minimal role in the regulation of basal vascular tone, even during exercise stress.", "title": "Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans." }, { "docid": "20960682", "text": "BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. \n METHODS Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. \n RESULTS GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. \n CONCLUSIONS Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. LAY SUMMARY GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic hepatitis B virus (HBV) infection. GS-9620 has previously been shown to suppress HBV in various animal models, but the underlying antiviral mechanisms were not completely understood. In this study, we determined that GS-9620 does not directly activate antiviral pathways in human liver cells, but can induce prolonged suppression of HBV via induction of an antiviral cytokine called interferon. However, interferon did not destroy the HBV genome, suggesting that other parts of the immune response (e.g. activation of immune cells that kill infected cells) also play an important role in the antiviral response to GS-9620.", "title": "Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism." }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "25263942", "text": "Endometrial polyps are very common benign endometrial lesions, but their pathogenesis is poorly understood, except for a few studies indicating the possibility of benign stromal neoplasm. Although the histopathological diagnosis of endometrial polyp on a surgical specimen is straightforward, it is often difficult to differentiate endometrial polyp from endometrial hyperplasia on a biopsy or curettage specimen. Presently, there is no immunohistochemical marker helpful in this differential diagnosis. In this study, we examined p16 expression in 35 endometrial polyps and 33 cases of endometrial hyperplasia that included 16 simple hyperplasias, 14 complex atypical hyperplasias, and 3 complex hyperplasias without atypia. Stromal p16 expression differed significantly between the two groups; it was seen in 31 (89 %) endometrial polyps, but in only 1 (3 %) endometrial hyperplasia. The percentage of p16-positive stromal cells ranged from 10 to 90 % (mean, 47 %) and the positive cells tended to be distributed around glands. Six cases of endometrial hyperplasia within an endometrial polyp were also examined and all cases showed stromal p16 expression. There was no difference in glandular p16 expression between endometrial polyps 33 (94 %) and hyperplasia 27 (82 %). The p16-immunoreactivity was mostly confined to metaplastic epithelial cells in both groups. Stromal p16 expression might be a peculiar characteristic of endometrial polyp and constitute a useful marker for the diagnosis, especially in fragmented specimens from biopsy or curettage. Stromal p16 expression might be a reflection of p16-induced cellular senescence, which has been documented in several benign mesenchymal neoplasms.", "title": "Stromal p16 expression differentiates endometrial polyp from endometrial hyperplasia" }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "22705234", "text": "The African green monkey (AGM) is one of many African species endemically infected with simian immunodeficiency virus (SIV). Like the other natural hosts, AGMs do not succumb to AIDS and understanding the basis for this resistance to disease progression would be of enormous theoretical and practical importance. Early efforts by our group that concentrated on identifying immune mechanisms presumed to keep the virus under control failed to find any obvious candidates. The presumption of virus control was invalidated by the finding that SIVagm replicates in AGMs with the same vigor as HIV-1 does in humans. Focus therefore shifted to identifying possible immunopathologic features present in disease susceptible hosts but absent in the AGM natural host. The apparent immunologic tolerance of AGMs to the SIVagm core protein led to the development of a hypothesis implicating anti-Gag antibodies in the formation of immune complexes, virus trapping in the lymph nodes and immune dysfunction. The idea proved difficult to test in vivo and present work focuses on the possibility that Gag tolerance at the T-cell level plays an important role in preventing the catastrophic demise of the immune system characteristic of immunodeficiency virus infection of the heterologous primate host.", "title": "The role of the immune response during SIVagm infection of the African green monkey natural host." }, { "docid": "8538916", "text": "The molecular chaperone CCT/TRiC plays a central role in maintaining cellular proteostasis as it mediates the folding of the major cytoskeletal proteins tubulins and actins. CCT/TRiC is also involved in the oncoprotein cyclin E, the Von Hippel-Lindau tumour suppressor protein, cyclin B and p21(ras) folding which strongly suggests that it is involved in cell proliferation and tumor genesis. To assess the involvement of CCT/TRiC in tumor genesis, we quantified its expression levels and activity in 18 cancer, one non-cancer human cell lines and a non-cancer human liver. We show that the expression levels of CCT/TRiC in cancer cell lines are higher than that in normal cells. However, CCT/TRiC activity does not always correlate with its expression levels. We therefore documented the expression levels of CCT/TRiC modulators and partners PhLP3, Hop/P60, prefoldin and Hsc/Hsp70. Our analysis reveals a functional interplay between molecular chaperones that might account for a precise modulation of CCT/TRiC activity in cell proliferation through changes in the cellular levels of prefoldin and/or Hsc/p70 and CCT/TRiC client protein availability. Our observation and approaches bring novel insights in the role of CCT/TRiC-mediated protein folding machinery in cancer cell development.", "title": "The Cytosolic Chaperonin CCT/TRiC and Cancer Cell Proliferation" }, { "docid": "16346504", "text": "BACKGROUND Growth arrest-specific 5 (GAS5) was reported to be implicated and aberrantly express in multiple cancers. However, the expression and mechanism of action of GAS5 were largely poor understood in endometrial carcinoma. \n RESULTS According to the result of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and flow cytometry analysis, we identified that GAS5 was down-regulated in endometrial cancer cells and stimulated the apoptosis of endometrial cancer cells. To investigate the expression of GAS5, PTEN and miR-103, RT-PCR was performed. And we found that the expression of PTEN was up-regulated when endometrial cancer cells overexpressed GAS5. The prediction of bioinformatics online revealed that GAS5 could bind to miR-103, which was further found to be regulated by GAS5. Finally, we found that miR-103 mimic could decrease the mRNA and protein levels of PTEN through luciferase reporter assay and western blotting, and GAS5 plasmid may reverse this regulation effect in endometrial cancer cells. \n CONCLUSION In summary, we demonstrate that GAS5 acts as an tumor suppressor lncRNA in endometrial cancer. Through inhibiting the expression of miR-103, GAS5 significantly enhanced the expression of PTEN to promote cancer cell apoptosis, and, thus, could be an important mediator in the pathogenesis of endometrial cancer.", "title": "LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells" }, { "docid": "20456030", "text": "Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.", "title": "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies." } ]
838
NR5A2 is important in reverse cholesterol transport in humans.
[ { "docid": "15928989", "text": "Successful pregnancy requires coordination of an array of signals and factors from multiple tissues. One such element, liver receptor homolog-1 (Lrh-1), is an orphan nuclear receptor that regulates metabolism and hormone synthesis. It is strongly expressed in granulosa cells of ovarian follicles and in the corpus luteum of rodents and humans. Germline ablation of Nr5a2 (also called Lrh-1), the gene coding for Lrh-1, in mice is embryonically lethal at gastrulation. Depletion of Lrh-1 in the ovarian follicle shows that it regulates genes required for both steroid synthesis and ovulation. To study the effects of Lrh-1 on mouse gestation, we genetically disrupted its expression in the corpus luteum, resulting in luteal insufficiency. Hormone replacement permitted embryo implantation but was followed by gestational failure with impaired endometrial decidualization, compromised placental formation, fetal growth retardation and fetal death. Lrh-1 is also expressed in the mouse and human endometrium, and in a primary culture of human endometrial stromal cells, reduction of NR5A2 transcript abundance by RNA interference abrogated decidualization. These findings show that Lrh-1 is necessary for maintenance of the corpus luteum, for promotion of decidualization and for formation of the placenta. It therefore has multiple, indispensible roles in establishing and sustaining pregnancy.", "title": "Liver receptor homolog-1 is essential for pregnancy" } ]
[ { "docid": "23286603", "text": "Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.", "title": "Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages." }, { "docid": "45166582", "text": "We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.", "title": "Intracellular sterol dynamics." }, { "docid": "11557602", "text": "LXR alpha is a nuclear receptor that has previously been shown to regulate the metabolic conversion of cholesterol to bile acids. Here we define a role for this transcription factor in the control of cellular cholesterol efflux. We demonstrate that retroviral expression of LXR alpha in NIH 3T3 fibroblasts or RAW264.7 macrophages and/or treatment of these cells with oxysterol ligands of LXR results in 7- to 30-fold induction of the mRNA encoding the putative cholesterol/phospholipid transporter ATP-binding cassette (ABC)A1. In contrast, induction of ABCA1 mRNA in response to oxysterols is attenuated in cells that constitutively express dominant-negative forms of LXR alpha or LXR beta that lack the AF2 transcriptional activation domain. We further demonstrate that expression of LXR alpha in NIH 3T3 fibroblasts and/or treatment of these cells with oxysterols is sufficient to stimulate cholesterol efflux to extracellular apolipoprotein AI. The ability of oxysterol ligands of LXR to stimulate efflux is dramatically reduced in Tangier fibroblasts, which carry a loss of function mutation in the ABCA1 gene. Taken together, these results indicate that cellular cholesterol efflux is controlled, at least in part, at the level of transcription by a nuclear receptor-signaling pathway. They suggest a model in which activation of LXRs by oxysterols in response to cellular sterol loading leads to induction of the ABCA1 transporter and the stimulation of lipid efflux to extracellular acceptors. These findings have important implications for our understanding of mammalian cholesterol homeostasis and suggest new opportunities for pharmacological regulation of cellular lipid metabolism.", "title": "Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha." }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "14803797", "text": "Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.", "title": "Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis" }, { "docid": "46202852", "text": "Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4(+) T cells. Consistent with our microarray data, (14)C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.", "title": "Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells." }, { "docid": "23180075", "text": "The cholesterol side-chain cleavage enzyme, cytochrome P450scc, initiates the biosynthesis of all steroid hormones. Adrenal and gonadal strategies for P450scc gene transcription are essentially identical and depend on the orphan nuclear receptor steroidogenic factor-1, but the placental strategy for transcription of P450scc employs cis-acting elements different from those used in the adrenal strategy and is independent of steroidogenic factor-1. Because placental expression of P450scc is required for human pregnancy, we sought factors that bind to the -155/-131 region of the human P450scc promoter, which participates in its placental but not adrenal or gonadal transcription. A yeast one-hybrid screen of 2.4 x 10(6) cDNA clones from human placental JEG-3 cells yielded two unique clones; one is the previously described transcription factor LBP-1b, which is induced by HIV, type I infection of lymphocytes, and the other is a new factor, termed LBP-9, that shares 83% amino acid sequence identity with LBP-1b. When expressed in transfected yeast, both factors bound specifically to the -155/-131 DNA; antisera to LBP proteins supershifted the LBP-9.DNA complex and inhibited formation of the LBP-1b. DNA complex. Reverse transcriptase-polymerase chain reaction detected LBP-1b in human placental JEG-3, adrenal NCI-H295A, liver HepG2, cervical HeLa, and monkey kidney COS-1 cells, but LBP-9 was detected only in JEG-3 cells. When the -155/-131 fragment was linked to a minimal promoter, co-expression of LBP-1b increased transcription 21-fold in a dose-dependent fashion, but addition of LBP-9 suppressed the stimulatory effect of LBP-1b. The roles of LBP transcription factors in normal human physiology have been unclear. Their modulation of placental but not adrenal P450scc transcription underscores the distinctiveness of placental strategies for steroidogenic enzyme gene transcription.", "title": "Cloning of factors related to HIV-inducible LBP proteins that regulate steroidogenic factor-1-independent human placental transcription of the cholesterol side-chain cleavage enzyme, P450scc." }, { "docid": "35760786", "text": "The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.", "title": "Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response." }, { "docid": "23702805", "text": "Secreted semaphorins act as guidance cues in the developing nervous system and may have additional functions in mature neurons. How semaphorins are transported and secreted by neurons is poorly understood. We find that endogenous semaphorin 3A (Sema3A) displays a punctate distribution in axons and dendrites of cultured cortical neurons. GFP-Sema3A shows a similar distribution and co-localizes with secretory vesicle cargo proteins. Live-cell imaging reveals highly dynamic trafficking of GFP-Sema3A vesicles with distinct properties in axons and dendrites regarding directionality, velocity, mobility and pausing time. In axons, most GFP-Sema3A vesicles move fast without interruption, almost exclusively in the anterograde direction, while in dendrites many GFP-Sema3A vesicles are stationary and move equally frequent in both directions. Disruption of microtubules, but not of actin filaments, significantly impairs GFP-Sema3A transport. Interestingly, depolarization induces a reversible arrest of axonal transport of GFP-Sema3A vesicles but has little effect on dendritic transport. Conversely, action potential blockade using tetrodotoxin (TTX) accelerates axonal transport, but not dendritic transport. These data indicate that axons and dendrites regulate trafficking of Sema3A and probably other secretory vesicles in distinct ways, with axons specializing in fast, uninterrupted, anterograde transport. Furthermore, neuronal activity regulates secretory vesicle trafficking in axons by a depolarization-evoked trafficking arrest.", "title": "Vesicular trafficking of semaphorin 3A is activity-dependent and differs between axons and dendrites." }, { "docid": "20996244", "text": "Productive infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile, reverse transcripts. We have previously identified G1b as the cell cycle stage required for the optimal completion of the reverse transcription process in T lymphocytes. However, the mechanism(s) involved in the blockage of reverse transcription remains undefined. In this study we investigated whether nucleotide levels influence viral reverse transcription in G0 cells. For this purpose the role of the enzyme ribonucleotide reductase was bypassed, by adding exogenous deoxyribonucleosides to highly purified T cells in the G0 or the G1a phase of the cell cycle. Our data showed a significant increase in the efficiency of the reverse transcription process following the addition of the deoxyribonucleosides. To define the stability and functionality of these full reverse transcripts, we used an HIV-1 reporter virus that expresses the murine heat-stable antigen on the surfaces of infected cells. Following activation of infected quiescent cells treated with exogenous nucleosides, no increased rescue of productive infection was seen. Thus, in addition to failure to complete reverse transcription, there was an additional nonreversible blockage of productive infection in quiescent T cells. These experiments have important relevance in the gene therapy arena, in terms of improving the ability of lentivirus vectors to enter metabolically inactive cells, such as hematopoietic stem cells.", "title": "Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes." }, { "docid": "20330519", "text": "Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glucosylation. Excessive cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells, such as macrophages and dendritic cells, and enhances antigen-specific T cell responses. A cholesterol-rich diet during bacterial challenge leads to T cell–dependent reduction of the H. pylori burden in the stomach. Intrinsic α-glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. We identify the gene hp0421 as encoding the enzyme cholesterol-α-glucosyltransferase responsible for cholesterol glucosylation. Generation of knockout mutants lacking hp0421 corroborates the importance of cholesteryl glucosides for escaping phagocytosis, T cell activation and bacterial clearance in vivo. Thus, we propose a mechanism regulating the host–pathogen interaction whereby glucosylation of a lipid tips the scales towards immune evasion or response.", "title": "Cholesterol glucosylation promotes immune evasion by Helicobacter pylori" }, { "docid": "39558597", "text": "Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.", "title": "Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione." }, { "docid": "16252863", "text": "The list of preventable and reversible risk factors for atherosclerotic cardiovascular disease continues to grow. Cigarette smoking, high blood pressure, physical inactivity, elevated cholesterol, underlying lipoprotein abnormalities, lipoprotein(a), diabetes, overweight, male gender, and age are well-established risk factors. During the 1990s, there have been many reports associating elevated plasma homocysteine levels with arteriosclerotic cardiovascular disease and consistent evidence that dietary and supplemental folic acid can reduce homocysteine levels.1 2 The article by Robinson and colleagues3 in this issue of Circulation presents further evidence of the importance of homocysteine and suggestive evidence that plasma folate and plasma pyrixodal-l-phosphate (vitamin B6) are protective factors. Their study is part of the European Concerted Action Project,4 which examined 750 patients younger than age 60 with diagnoses within the previous 12 months of coronary, cerebrovascular, or peripheral vascular disease and 800 healthy control subjects. The patient groups were young (47 years for cases and 44 years for control subjects) and heterogeneous, with nonfatal clinical events or symptoms of arteriosclerotic cardiovascular disease supported by ECG, angiographic, or Doppler evidence; the study involved 19 centers in nine European countries. Men in the highest quintile for fasting total homocysteine (tHcy), compared with the remainder of the population, had an estimated relative risk of 2.2 (95% confidence interval [CI], 1.6 to 2.9), with a striking dose-response relationship and a more-than-multiplicative interaction with cigarette smoking and high blood pressure on vascular disease risk4 ; the corresponding estimated relative risk for coronary heart disease was similar (2.0; 95% CI 1.6 to 2.8). (tHcy is the sum of homocysteine and homocysteinyl moieties of oxidized disulfides, homocystine, and cysteine- homocysteine. ) Robinson and colleagues3 examined three B vitamins in detail to determine their effects on fasting and post–methionine-loading tHcy levels and any independent effects on cardiovascular disease …", "title": "Preventing coronary heart disease: B vitamins and homocysteine." }, { "docid": "21380348", "text": "Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.", "title": "Intracellular transport of fat-soluble vitamins A and E." }, { "docid": "10795063", "text": "SPECIFIC AIMSOur previous studies implied the relation between lipid metabolism and amyloid beta protein (Aβ) as ‘a missing link in Alzheimer’s puzzle’ [FASEB J., vol. 12, p. 1097 (1998)]. In the present study, we evaluated the role of cholesterol in synaptic plasticity and neuronal degeneration by a combination of adult rat hippocampal slice technology, a well-established procedure for limited cholesterol efflux, lipid metabolic labeling, extracellular recording of CA1 field excitatory postsynaptic potentials (fEPSPs), and immunofluorescence. PRINCIPAL FINDINGS1. Increased cholesterol efflux impairs short- and long-term synaptic plasticitySynaptic plasticity is a fundamental feature of the central nervous system (CNS) that allows synapses to ‘remember’ previous activity and express plastic changes to fine-tune current synaptic action. In this study, we asked whether an increased cholesterol efflux induced ex vivo by normal human CSF-HDL3 and methyl-β-cyclodextrin (MβCD) (a natural and model cholesterol ac...", "title": "The FASEB Journal express article 10.1096/fj.00-0815fje. Published online June 27, 2001. Essential role for cholesterol in synaptic plasticity and neuronal degeneration" }, { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" }, { "docid": "30981192", "text": "Lowering low-density lipoprotein-cholesterol (LDL-C) is the primary target in the management of dyslipidemia in patients at high risk of cardiovascular disease. However, patients who have achieved LDL-C levels below the currently recommended targets may still experience cardiovascular events. This may result, in part, from elevated triglyceride (TG) levels and low levels of high-density lipoprotein-cholesterol (HDL-C). Low HDL-C and high TG levels are common and are recognized as independent risk factors for cardiovascular morbidity and mortality. Furthermore, atherogenic dyslipidemia, characterized by low levels of HDL-C, high TG, and small, dense LDL particles, is a typical phenotype of dyslipidemia in subjects with insulin resistance and metabolic syndrome. Therefore, to reduce further the risk of coronary heart disease (CHD), raising HDL-C and lowering TG may be the secondary therapeutic target for patients who achieve LDL-C levels below the currently recommended targets but are still at risk of CHD. However, whether increasing HDL-C levels alone reduces CHD has not yet been confirmed in large randomized clinical trials, and whether functional HDL is more important than HDL-C in reducing CHD remains controversial. Large CHD endpoint trials that include many patients with diabetes are underway to compare combination treatments with statin and niacin, fibrates, or cholesteryl ester transfer protein inhibitors with statin alone treatments. In this review, we discuss the rationale and importance of increasing HDL-C levels with and without lowering TG levels in the treatment and prevention of cardiovascular events.", "title": "How to control residual cardiovascular risk despite statin treatment: focusing on HDL-cholesterol." }, { "docid": "4429388", "text": "The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.", "title": "ESCRT-III recognition by VPS4 ATPases" }, { "docid": "4347374", "text": "Viral replication usually requires that innate intracellular lines of defence be overcome, a task usually accomplished by specialized viral gene products. The virion infectivity factor (Vif) protein of human immunodeficiency virus (HIV) is required during the late stages of viral production to counter the antiviral activity of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; also known as CEM15), a protein expressed notably in human T lymphocytes. When produced in the presence of APOBEC3G, vif-defective virus is non-infectious. APOBEC3G is closely related to APOBEC1, the central component of an RNA-editing complex that deaminates a cytosine residue in apoB messenger RNA. APOBEC family members also have potent DNA mutator activity through dC deamination; however, whether the editing potential of APOBEC3G has any relevance to HIV inhibition is unknown. Here, we demonstrate that it does, as APOBEC3G exerts its antiviral effect during reverse transcription to trigger G-to-A hypermutation in the nascent retroviral DNA. We also find that APOBEC3G can act on a broad range of retroviruses in addition to HIV, suggesting that hypermutation by editing is a general innate defence mechanism against this important group of pathogens.", "title": "Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts" } ]
840
Natriuretic peptides increase susceptibility to diabetes.
[ { "docid": "15663829", "text": "BACKGROUND Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. \n METHODS AND FINDINGS We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. \n CONCLUSIONS Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors' Summary.", "title": "Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies" } ]
[ { "docid": "3912660", "text": "OBJECTIVE Corin is a serine protease that converts pro-atrial natriuretic peptide (pro-ANP) to atrial natriuretic peptide (ANP), a cardiac hormone that regulates salt-water balance and blood pressure. ANP is degraded by natriuretic peptide receptor (NPR). This study was to determine if aberrant pro-ANP/corin/NPR signaling is present in maternal vascular system in preeclampsia. STUDY DESIGN Maternal venous blood was obtained from 197 pregnant women (84 normotensive, 16 complicated with chronic hypertension (CHT), 11 mild and 86 severe preeclampsia). Plasma corin and pro-ANP concentrations were measured by enzyme-linked immunosorbent assay. Maternal subcutaneous fat tissue was obtained from 12 pregnant women with cesarean section delivery (6 normotensive and 6 preeclampsia). Vascular ANP and its receptors NPR-A, NPR-B, and NPR-C expression were examined by immunostaining of paraffin embedded subcutaneous fat tissue sections. \n RESULTS Corin concentrations were significantly higher in mild (2.78 ± 0.67 ng/ml, p < .05) and severe (2.53 ± 0.18 ng/ml, p < .01) preeclampsia than in normotensive (1.58 ± 0.08 ng/ml) and CHT (1.55 ± 0.20 ng/ml) groups. Pro-ANP concentrations were significantly higher in CHT (1.59 ± 0.53 ng/ml, p < .05) and severe preeclampsia (1.42 ± 0.24 ng/ml, p < .01) than in normotensive (0.48 ± 0.06 ng/ml) and mild preeclampsia (0.52 ± 0.09 ng/ml) groups. ANP and NPR-B expression was undetectable in maternal vessels from normotensive and preeclamptic pregnancies, but reduced NPR-A expression and increased NPR-C expression was found in maternal vessel endothelium in preeclampsia. \n CONCLUSIONS ANP is a vasodilator and NPR-C is a clearance receptor for ANP. The finding of upregulation of NPR-C expression suggests that circulating ANP clearance or degradation is increased in preeclampsia. These results also suggest that pro-ANP/corin/NPR signaling is dominant in the vascular system in preeclampsia.", "title": "Aberrant pro-atrial natriuretic peptide/corin/natriuretic peptide receptor signaling is present in maternal vascular endothelium in preeclampsia." }, { "docid": "24150328", "text": "BACKGROUND Patients with metabolic syndrome are at increased risk for cardiovascular complications. We sought to determine whether peroxisome proliferator-activated receptor gamma agonists had any beneficial effect on patients with metabolic syndrome undergoing percutaneous coronary intervention (PCI). \n METHODS A total of 200 patients with metabolic syndrome undergoing PCI were randomized to rosiglitazone or placebo and followed for 1 year. Carotid intima-medial thickness (CIMT), inflammatory markers, lipid levels, brain natriuretic peptide, and clinical events were measured at baseline, 6 months, and 12 months. \n RESULTS There was no significant difference in CIMT between the 2 groups. There was no difference in the 12-month composite end point of death, myocardial infarction (MI), stroke, or any recurrent ischemia (31.4% vs 30.2%, P = .99). The rate of death, MI, or stroke at 12 months was numerically lower in the rosiglitazone group (11.9% vs 6.4%, P = .19). There was a trend toward a greater decrease over time in high-sensitivity C-reactive protein values compared with baseline in the group randomized to rosiglitazone versus placebo both at 6 months (-35.4% vs -15.8%, P = .059) and 12 months (-40.0% vs -20.9%, P = .089) and higher change in high-density lipoprotein (+15.5% vs +4.1%, P = .05) and lower triglycerides (-13.9% vs +14.9%, P = .004) in the rosiglitazone arm. There was a trend toward less new onset diabetes in the rosiglitazone group (0% vs 3.3%, P = .081) and no episodes of symptomatic hypoglycemia. There was no excess of new onset of clinical heart failure in the rosiglitazone group, nor was there a significant change in brain natriuretic peptide levels. \n CONCLUSIONS Patients with metabolic syndrome presenting for PCI are at increased risk for subsequent cardiovascular events. Rosiglitazone for 12 months did not appear to affect CIMT in this population, although it did have beneficial effects on high-sensitivity C-reactive protein, high-density lipoprotein, and triglycerides. Further study of peroxisome proliferator-activated receptor agonism in patients with metabolic syndrome undergoing PCI may be warranted.", "title": "Peroxisome proliferator-activated receptor gamma agonists for the Prevention of Adverse events following percutaneous coronary Revascularization--results of the PPAR study." }, { "docid": "34054472", "text": "BACKGROUND Accumulating evidence has indicated that corin plays critical roles in regulating salt-water balance, blood pressure and cardiac function by activating natriuretic peptides. The present case-control study was designed to evaluate the association of serum soluble corin with acute myocardial infarction (AMI). \n METHODS We enrolled 856 consecutive AMI patients and 856 control subjects and explored the possible relation between serum corin levels and AMI risk using logistic regression model. \n RESULTS Patients with AMI had higher BMI, were less physically active, and were more likely to have histories of hypertension, diabetes, hyperlipidemia and smoking compared with the controls. Serum levels of corin were remarkably reduced in AMI patients (825±263pg/ml) compared with those in healthy controls (1246±425pg/ml). Odds ratios of ST elevation (STEMI) and non-ST elevation myocardial infarction (NSTEMI) were significantly decreased with the increasing levels of serum corin in both men and women (P for trend, <0.001) after adjustment for body mass index, hypertension, diabetes, hyperlipidemia, smoking, and physical activity. \n CONCLUSIONS Our study demonstrates that serum levels of corin are significantly decreased in AMI patients, and it is inversely associated with the incidences of STEMI and NSTEMI in both men and women.", "title": "Association between serum corin levels and risk of acute myocardial infarction." }, { "docid": "68317730", "text": "Objectives Corin, an atrial natriuretic peptide-converting enzyme, has been found to promote trophoblast invasion and spiral artery remodeling. Reduced maternal plasma atrial natriuretic peptide (ANP) levels and elevated corin levels have been reported in pregnancies complicated by PE. The aim of this study was to investigate longitudinal changes in maternal plasma levels of corin and midregional proatrial natriuretic peptide (MR-PANP) in pregnancies that develop preeclampsia (PE) and gestational hypertension (GH). Methods Nested case control study drawn from a larger prospective longitudinal study in singleton pregnancies identified by screening at 11 + 0 − 13 + 6 weeks’ gestation as being at high risk for PE. Blood samples were taken every four weeks until delivery. Values were compared in pregnancies that developed preterm-PE (requiring delivery before 37 weeks), term-PE, GH, and those that remained normotensive. The distribution of maternal plasma corin and PANP were made Gaussian after log 10 transformation. Analysis of repeated measures with multilevel mixed-effects linear model (fixed effects and random effects) was performed. The multilevel model was compared to one-level model by the likelihood radio (LR) test. Results A total of 471 samples were analyzed from 122 women, including 85 that remained normotensive, 12 that developed GH, 13 term-PE and 12 preterm-PE. In the normotensive group, log10corin levels were associated with gestational age ( p p = 0.001). In the GH and term-PE groups, corin did not differ significantly from the normotensive group ( p = 0.64 and p = 0.16, respectively). Compared to the normotensive group, MR-PANP levels were significantly higher in the pregnancies that developed preterm-PE and GH ( p = 0.046 and p = 0.019, respectively), but not term-PE ( p = 0.47). Conclusions Maternal plasma corin and MR-PANP could potentially be useful biomarkers for the prediction of preterm-PE. Disclosures A. Khalil: Research Support Recipient; Commercial Interests: USCOM, Roche, Alere, NICOM, Q-fFN; Speaker: Roche.", "title": "Longitudinal changes in maternal corin and mid-regional proatrial natriuretic peptide in women at risk of pre-eclampsia" }, { "docid": "4409524", "text": "In pregnancy, trophoblast invasion and uterine spiral artery remodelling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodelling has been implicated in pre-eclampsia, a major complication of pregnancy, for a long time but the underlying mechanisms remain unclear. Corin (also known as atrial natriuretic peptide-converting enzyme) is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone that is important in regulating blood pressure. Unexpectedly, corin expression was detected in the pregnant uterus. Here we identify a new function of corin and ANP in promoting trophoblast invasion and spiral artery remodelling. We show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria, characteristics of pre-eclampsia. In these mice, trophoblast invasion and uterine spiral artery remodelling were markedly impaired. Consistent with this, the ANP potently stimulated human trophoblasts in invading Matrigels. In patients with pre-eclampsia, uterine Corin messenger RNA and protein levels were significantly lower than that in normal pregnancies. Moreover, we have identified Corin gene mutations in pre-eclamptic patients, which decreased corin activity in processing pro-ANP. These results indicate that corin and ANP are essential for physiological changes at the maternal–fetal interface, suggesting that defects in corin and ANP function may contribute to pre-eclampsia.", "title": "Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy" }, { "docid": "4445629", "text": "OBJECTIVES The aim of this study was to determine the prognostic value of plasma corin in patients with chronic heart failure (CHF). \n BACKGROUND In recent years, accumulating evidence has indicated that corin plays a critical role in regulating blood pressure and cardiac function. \n METHODS We enrolled 1,148 consecutive CHF patients in a prospective cohort study and explored the association between plasma corin levels and clinical prognosis using multivariate Cox regression analysis. \n RESULTS Patients with low corin levels (<458 pg/ml) were more likely to be women and to be hypertensive. Low corin was found to be associated with an increase in New York Heart Association (NYHA) functional class and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, and a decrease in left ventricular ejection fraction (LVEF) and the estimated glomerular filtration rate (eGFR). Multivariate Cox regression analysis suggested that log corin was an independent predictor of major adverse cardiac event(s) (MACE) (hazard ratio: 0.62; 95% confidence interval: 0.39 to 0.95), together with age, diabetes, NYHA functional class, LVEF, eGFR, and log NT-proBNP. In addition, log corin was also a significant predictor for cardiovascular death (p = 0.041) and heart failure rehospitalization (p = 0.015) after adjustment for clinical variables and established biomarkers of adverse prognosis. The Kaplan-Meier survival curves showed that low corin was a significant predictor of MACE in patients with NT-proBNP levels above and below the median. \n CONCLUSIONS Our study demonstrates that plasma corin is a valuable prognostic marker of MACE in patients with CHF, independent of established conventional risk factors.", "title": "Plasma Corin as a Predictor of Cardiovascular Events in Patients With Chronic Heart Failure." }, { "docid": "5567005", "text": "Recent genetic mapping and gene-phenotype studies have revealed the genetic architecture of type 1 diabetes. At least ten genes so far can be singled out as strong causal candidates. The known functions of these genes indicate the primary etiological pathways of this disease, including HLA class II and I molecules binding to preproinsulin peptides and T cell receptors, T and B cell activation, innate pathogen-viral responses, chemokine and cytokine signaling, and T regulatory and antigen-presenting cell functions. This review considers research in the field of type 1 diabetes toward identifying disease mechanisms using genetic approaches. The expression and functions of these pathways, and, therefore, disease susceptibility, will be influenced by epigenetic and environmental factors. Certain inherited immune phenotypes will be early precursors of type 1 diabetes and could be useful in future clinical trials.", "title": "Etiology of type 1 diabetes." }, { "docid": "12451492", "text": "OBJECTIVE One of the theories involved in the pathogenesis of pregnancy induced hypertension involves salt and water retention. We aimed to measure the proenzyme convertase corin, responsible for pro-atrial natriuretic peptide (ANP) cleavage to active ANP, in plasma of hypertensive pregnant females. STUDY DESIGN Sixty pregnant females suffering from pregnancy induced hypertension in second and third trimesters of pregnancy were compared to twenty eight healthy pregnant females of the same gestational period. Concomitant urine and plasma samples were collected for the determination of some biochemical parameters. Plasma soluble corin and N-terminal (NT) pro-ANP (1-98) values were determined in both groups using enzyme immunoassays. \n RESULTS Plasma soluble corin mean value was significantly higher in the patient group compared to the control group. Upon dividing the patient group according to blood pressure, plasma NT pro-ANP showed significantly higher mean value in the group with blood pressure⩾140/90mmHg compared to the group with blood pressure<140/90mmHg and control group. \n CONCLUSIONS High plasma soluble corin and NT pro-ANP values in hypertensive pregnant females particularly those with blood pressure⩾140/90mmHg speculates an ANP receptor/ post receptor signaling defect, which would aggravate the pregnancy induced hypertensive state.", "title": "Plasma soluble corin and N-terminal pro-atrial natriuretic peptide levels in pregnancy induced hypertension." }, { "docid": "4474874", "text": "BACKGROUND & AIMS Ghrelin is an orexigenic peptide with gastroprokinetic effects. Mice with streptozotocin (STZ)-induced diabetes exhibit hyperphagia, altered gastric emptying, and increased plasma ghrelin levels. We investigated the causative role of ghrelin herein by comparing changes in ghrelin receptor knockout (growth hormone secretagogue receptor [GHS-R](-/-)) and wild-type (GHS-R(+/+)) mice with STZ-induced diabetes. \n METHODS Gastric emptying was measured with the [(13)C]octanoic acid breath test. The messenger RNA (mRNA) expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin was quantified by real-time reverse-transcription polymerase chain reaction. Neural contractions were elicited by electrical field stimulation in fundic smooth muscle strips. \n RESULTS Diabetes increased plasma ghrelin levels to a similar extent in both genotypes. Hyperphagia was more pronounced in GHS-R(+/+) than in GHS-R(-/-) mice between days 12 and 21. Increases in NPY and AgRP mRNA expression were less pronounced in diabetic GHS-R(-/-) than in GHS-R(+/+) mice from day 15 on, whereas decreases in proopiomelanocortin mRNA levels were similar in both genotypes. Gastric emptying was accelerated to a similar extent in both genotypes, starting on day 16. In fundic smooth muscle strips of diabetic GHS-R(+/+) and GHS-R(-/-) mice, neuronal relaxations were reduced, whereas contractions were increased; this increase was related to an increased affinity of muscarinic and tachykinergic receptors. \n CONCLUSIONS Diabetic hyperphagia is regulated by central mechanisms in which the ghrelin-signaling pathway affects the expression of NPY and AgRP in the hypothalamus. The acceleration of gastric emptying, which is not affected by ghrelin signaling, is not the cause of diabetic hyperphagia and probably involves local contractility changes in the fundus.", "title": "Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice." }, { "docid": "26107000", "text": "RATIONALE Physical activity is reduced in patients with chronic obstructive pulmonary disease (COPD). COPD has a systemic component that includes significant extrapulmonary effects that may contribute to its severity in individual patients. \n OBJECTIVES To investigate the association of extrapulmonary effects of the disease and its comorbidities with reduced physical activity in patients with COPD. \n METHODS In a cross-sectional study, 170 outpatients with COPD (GOLD [Global Initiative for Chronic Obstructive Lung Disease] stages I-IV; BODE [body mass index, airway obstruction, dyspnea, and exercise capacity] score 0-10) underwent a series of tests. Physical activity was assessed over 5 to 6 consecutive days by using a multisensor accelerometer armband that records steps per day and the physical activity level (total daily energy expenditure divided by whole-night sleeping energy expenditure). Cardiovascular status was assessed by echocardiography, vascular Doppler sonography, and levels of N-terminal pro-B-type natriuretic peptide. Mental status, metabolic/muscular status, systemic inflammation, and anemia were assessed by Beck Depression Inventory, bioelectrical impedance analysis, handgrip strength, high-sensitivity C-reactive protein/fibrinogen, and hemoglobin, respectively. \n MEASUREMENTS AND MAIN RESULTS In a multivariate linear regression analysis using either steps per day or physical activity level as a dependent variable, the extrapulmonary parameters that were associated with reduced physical activity in patients with COPD independently of GOLD stages or BODE score were N-terminal pro-B-type natriuretic peptide levels, echocardiographically measured left ventricular diastolic function, and systemic inflammation. \n CONCLUSIONS Higher values of systemic inflammation and left cardiac dysfunction are associated with reduced physical activity in patients with COPD.", "title": "Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study." }, { "docid": "23400191", "text": "AIMS There is a fivefold increase in the frequency of intracranial aneurysm (IA) in adults with coarctation of the aorta (CoA). Current guidelines for management of adults with CoA recommend computed tomography angiography (CTA) or magnetic resonance imaging of the intracranial vessels. However, this recommendation has not been universally accepted. The purpose of our study was to prospectively perform CTA of the intracranial vessels in adults with CoA to evaluate the prevalence and identify high-risk features of this complication. \n METHODS AND RESULTS From January 2008 to February 2011, adults ≥18 years of age with CoA were prospectively enrolled in a screening program with CTA of the intracranial vessels. Analyses of prognostic variables were performed with both Fisher's exact and two sample t-test. Forty-three patients (58% female, 33.55 ± 10.21 years) with CoA completed CTA of the intracranial vessels. Five patients (11%) were found to have IA. Patients with IA were older than those without (45.6 ± 8.17 vs. 30.89 ± 7.89, P = 0.0003). There were no statistically significant differences detected between measurements of fasting lipid profiles, C-reactive protein, brain natriuretic peptide, and homocysteine levels among CoA patients with and without IA (P = not significant). \n CONCLUSION Prospective screening of adults with CoA confirmed the increased prevalence of IA but also identified increased age as the sole risk factor. These data suggested that screening is justified particularly in the fourth and fifth decades of life. Further studies are required that focus on the development, natural history, and treatment of IA.", "title": "Assessment of the cerebral circulation in adults with coarctation of the aorta." }, { "docid": "23577867", "text": "Conditions related to chronic hyperinsulinemia, such as obesity, noninsulin dependent diabetes mellitus and polycystic ovary syndrome, are associated with an increased risk of endometrial cancer. Elevated plasma IGF-I and decreased levels of IGF-binding proteins have been shown to be associated with increased risk of several cancer types that are frequent in affluent societies. We investigated for the first time in a prospective study the association of pre-diagnostic blood concentrations of C-peptide (a marker of pancreatic insulin production), IGF-I, IGFBP-1, -2 and -3 with endometrial cancer risk. A case-control study was nested within 3 cohorts in New York (USA), Umeå (Sweden) and Milan (Italy). It included 166 women with primary invasive endometrial cancer and 315 matched controls, of which 44 case and 78 control subjects were premenopausal at recruitment. Endometrial cancer risk increased with increasing levels of C-peptide (ptrend = 0.0002), up to an odds ratio (OR) of 4.76 [95% confidence interval (CI) = 1.91-11.8] for the highest quintile. This association remained after adjustment for BMI and other confounders [OR for the top quintile = 4.40 (1.65-11.7)]. IGFBP-1 levels were inversely related to endometrial cancer [ptrend = 0.002; OR in the upper quintile = 0.30 (0.15-0.62)], but the association was weakened and lost statistical significance after adjustment for confounders [ptrend = 0.06; OR in the upper quintile = 0.49 (0.22-1.07)]. Risk was unrelated to levels of IGF-I, IGFBP-2 and IGFBP-3. Chronic hyperinsulinemia, as reflected by increased circulating C-peptide, is associated with increased endometrial cancer risk. Decrease in the prevalence of chronic hyperinsulinemia, through changes in lifestyle or medication, is expected to prevent endometrial cancer.", "title": "Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer." }, { "docid": "45447613", "text": "OBJECTIVE Previous studies have shown increases in ambulatory short-term blood pressure (BP) variability to be related to cardiovascular disease. In this study, we examined whether an angiotensin II type 1 receptor blocker losartan would improve ambulatory short-term BP variability in hypertensive patients on hemodialysis. \n METHODS Forty hypertensive patients on hemodialysis therapy were randomly assigned to the losartan treatment group (n=20) or the control treatment group (n=20). At baseline and 6 and 12 months after the treatment, 24-h ambulatory BP monitoring was performed. Echocardiography and measurements of brachial-ankle pulse wave velocity (baPWV) and biochemical parameters were also performed before and after therapy. \n RESULTS After 6- and 12-months of treatment, nighttime short-term BP variability, assessed on the basis of the coefficient of variation of ambulatory BP, was significantly decreased in the losartan group, but remained unchanged in the control group. Compared with the control group, losartan significantly decreased left ventricular mass index (LVMI), baPWV, and the plasma levels of brain natriuretic peptide and advanced glycation end products (AGE). Furthermore, multiple regression analysis showed significant correlations between changes in LVMI and changes in nighttime short-term BP variability, as well as between changes in LVMI and changes in the plasma levels of AGE. \n CONCLUSION These results suggest that losartan is beneficial for the suppression of pathological cardiovascular remodeling though its inhibitory effect on ambulatory short-term BP variability during nighttime.", "title": "Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis." }, { "docid": "44387884", "text": "The abnormal metabolic state that accompanies diabetes renders arteries susceptible to atherosclerosis, being capable of altering the functional properties of multiple cell types, including endothelium and platelets. In particular, an altered platelet metabolism and changes in intraplatelet signaling pathways may contribute to the pathogenesis of atherothrombotic complications of diabetes. A variety of mechanisms may be responsible for enhanced platelet aggregation. Among them, hyperglycemia may represent a causal factor for in vivo platelet activation, and may be responsible for nonenzymatic glycation of platelet glycoproteins, causing changes in their structure and conformation, as well as alterations of membrane lipid dynamics. Furthermore, hyperglycemia-induced oxidative stress is responsible for enhanced peroxidation of arachidonic acid to form biologically active isoprostanes, which represents an important biochemical link between impaired glycemic control and persistent platelet activation. Finally, increased oxidative stress is responsible for activation of transcription factors and expression of redox-sensitive genes leading to a phenotypic switch of endothelium toward an adhesive, pro-thrombotic condition, initial platelet activation, adhesion and subsequent platelet aggregate formation. All this evidence is strengthened by the results of clinical trials documenting the beneficial effects of metabolic control on platelet function, and by the finding that aspirin treatment may even be more beneficial in diabetic than in high-risk non-diabetic patients. Attention to appropriate medical management of diabetic patients will have great impact on long-term outcome in this high-risk population.", "title": "Platelet activation in type 2 diabetes mellitus." }, { "docid": "25571386", "text": "BACKGROUND Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. \n METHODS We evaluated the association between type 1 diabetes and eight loci related to the risk of celiac disease by genotyping and statistical analyses of DNA samples from 8064 patients with type 1 diabetes, 9339 control subjects, and 2828 families providing 3064 parent-child trios (consisting of an affected child and both biologic parents). We also investigated 18 loci associated with type 1 diabetes in 2560 patients with celiac disease and 9339 control subjects. \n RESULTS Three celiac disease loci--RGS1 on chromosome 1q31, IL18RAP on chromosome 2q12, and TAGAP on chromosome 6q25--were associated with type 1 diabetes (P<1.00x10(-4)). The 32-bp insertion-deletion variant on chromosome 3p21 was newly identified as a type 1 diabetes locus (P=1.81x10(-8)) and was also associated with celiac disease, along with PTPN2 on chromosome 18p11 and CTLA4 on chromosome 2q33, bringing the total number of loci with evidence of a shared association to seven, including SH2B3 on chromosome 12q24. The effects of the IL18RAP and TAGAP alleles confer protection in type 1 diabetes and susceptibility in celiac disease. Loci with distinct effects in the two diseases included INS on chromosome 11p15, IL2RA on chromosome 10p15, and PTPN22 on chromosome 1p13 in type 1 diabetes and IL12A on 3q25 and LPP on 3q28 in celiac disease. \n CONCLUSIONS A genetic susceptibility to both type 1 diabetes and celiac disease shares common alleles. These data suggest that common biologic mechanisms, such as autoimmunity-related tissue damage and intolerance to dietary antigens, may be etiologic features of both diseases.", "title": "Shared and distinct genetic variants in type 1 diabetes and celiac disease." }, { "docid": "10207180", "text": "INTRODUCTION The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer's disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment resulted in decreased levels of Aβ1-34 together with increased Aβ5-40, suggesting that these Aβ species may be novel pharmacodynamic biomarkers in clinical trials. We have now examined whether the same holds true in humans. \n METHODS In an investigator-blind, placebo-controlled and randomized study, healthy subjects (n =18) were randomly assigned to receive a single dose of 30 mg of LY2811376 (n =6), 90 mg of LY2811376 (n =6), or placebo (n =6). We used hybrid immunoaffinity-mass spectrometry (HI-MS) and enzyme-linked immunosorbent assays to monitor a variety of Aβ peptides. \n RESULTS Here, we demonstrate dose-dependent changes in cerebrospinal fluid (CSF) Aβ1-34, Aβ5-40 and Aβ5-X after treatment with the BACE1-inhibitor LY2811376. Aβ5-40 and Aβ5-X increased dose-dependently, as reflected by two independent methods, while Aβ1-34 dose-dependently decreased. \n CONCLUSION Using HI-MS for the first time in a study where subjects have been treated with a BACE inhibitor, we confirm that CSF Aβ1-34 may be useful in clinical trials on BACE1 inhibitors to monitor target engagement. Since it is less hydrophobic than longer Aβ species, it is less susceptible to preanalytical confounding factors and may thus be a more stable marker. By independent measurement techniques, we also show that BACE1 inhibition in humans is associated with APP-processing into N-terminally truncated Aβ peptides via a BACE1-independent pathway. \n TRIAL REGISTRATION ClinicalTrials.gov NCT00838084. Registered: First received: January 23, 2009, Last updated: July 14, 2009, Last verified: July 2009.", "title": "β-site amyloid precursor protein-cleaving enzyme 1(BACE1) inhibitor treatment induces Aβ5-X peptides through alternative amyloid precursor protein cleavage" }, { "docid": "13768432", "text": "BACKGROUND The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. \n METHODS AND RESULTS Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1-13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E', and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3-13.1; P<0.05). \n CONCLUSIONS There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after adjustment for known prognostic factors.", "title": "Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis" }, { "docid": "3127341", "text": "The glucagon-like peptide-1 receptor (GLP-1R) is a key physiological regulator of insulin secretion and a major therapeutic target for the treatment of type II diabetes. However, regulation of GLP-1R function is complex with multiple endogenous peptides that interact with the receptor, including full-length (1-37) and truncated (7-37) forms of GLP-1 that can exist in an amidated form (GLP-1(1-36)NH₂ and GLP-1(7-36)NH₂) and the related peptide oxyntomodulin. In addition, the GLP-1R possesses exogenous agonists, including exendin-4, and the allosteric modulator, compound 2 (6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline). The complexity of this ligand-receptor system is further increased by the presence of several single nucleotide polymorphisms (SNPs) that are distributed across the receptor. We have investigated 10 GLP-1R SNPs, which were characterized in three physiologically relevant signaling pathways (cAMP accumulation, extracellular signal-regulated kinase 1/2 phosphorylation, and intracellular Ca²⁺ mobilization); ligand binding and cell surface receptor expression were also determined. We demonstrate both ligand- and pathway-specific effects for multiple SNPs, with the most dramatic effect observed for the Met¹⁴⁹ receptor variant. At the Met¹⁴⁹ variant, there was selective loss of peptide-induced responses across all pathways examined, but preservation of response to the small molecule compound 2. In contrast, at the Cys³³³ variant, peptide responses were preserved but there was attenuated response to compound 2. Strikingly, the loss of peptide function at the Met¹⁴⁹ receptor variant could be allosterically rescued by compound 2, providing proof-of-principle evidence that allosteric drugs could be used to treat patients with this loss of function variant.", "title": "Polymorphism and ligand dependent changes in human glucagon-like peptide-1 receptor (GLP-1R) function: allosteric rescue of loss of function mutation." }, { "docid": "11481946", "text": "Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.", "title": "Obesity, type 2 diabetes, and cancer: the insulin and IGF connection." } ]
841
Natriuretic peptides protect against diabetes.
[ { "docid": "15663829", "text": "BACKGROUND Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. \n METHODS AND FINDINGS We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. \n CONCLUSIONS Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors' Summary.", "title": "Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies" } ]
[ { "docid": "3912660", "text": "OBJECTIVE Corin is a serine protease that converts pro-atrial natriuretic peptide (pro-ANP) to atrial natriuretic peptide (ANP), a cardiac hormone that regulates salt-water balance and blood pressure. ANP is degraded by natriuretic peptide receptor (NPR). This study was to determine if aberrant pro-ANP/corin/NPR signaling is present in maternal vascular system in preeclampsia. STUDY DESIGN Maternal venous blood was obtained from 197 pregnant women (84 normotensive, 16 complicated with chronic hypertension (CHT), 11 mild and 86 severe preeclampsia). Plasma corin and pro-ANP concentrations were measured by enzyme-linked immunosorbent assay. Maternal subcutaneous fat tissue was obtained from 12 pregnant women with cesarean section delivery (6 normotensive and 6 preeclampsia). Vascular ANP and its receptors NPR-A, NPR-B, and NPR-C expression were examined by immunostaining of paraffin embedded subcutaneous fat tissue sections. \n RESULTS Corin concentrations were significantly higher in mild (2.78 ± 0.67 ng/ml, p < .05) and severe (2.53 ± 0.18 ng/ml, p < .01) preeclampsia than in normotensive (1.58 ± 0.08 ng/ml) and CHT (1.55 ± 0.20 ng/ml) groups. Pro-ANP concentrations were significantly higher in CHT (1.59 ± 0.53 ng/ml, p < .05) and severe preeclampsia (1.42 ± 0.24 ng/ml, p < .01) than in normotensive (0.48 ± 0.06 ng/ml) and mild preeclampsia (0.52 ± 0.09 ng/ml) groups. ANP and NPR-B expression was undetectable in maternal vessels from normotensive and preeclamptic pregnancies, but reduced NPR-A expression and increased NPR-C expression was found in maternal vessel endothelium in preeclampsia. \n CONCLUSIONS ANP is a vasodilator and NPR-C is a clearance receptor for ANP. The finding of upregulation of NPR-C expression suggests that circulating ANP clearance or degradation is increased in preeclampsia. These results also suggest that pro-ANP/corin/NPR signaling is dominant in the vascular system in preeclampsia.", "title": "Aberrant pro-atrial natriuretic peptide/corin/natriuretic peptide receptor signaling is present in maternal vascular endothelium in preeclampsia." }, { "docid": "24150328", "text": "BACKGROUND Patients with metabolic syndrome are at increased risk for cardiovascular complications. We sought to determine whether peroxisome proliferator-activated receptor gamma agonists had any beneficial effect on patients with metabolic syndrome undergoing percutaneous coronary intervention (PCI). \n METHODS A total of 200 patients with metabolic syndrome undergoing PCI were randomized to rosiglitazone or placebo and followed for 1 year. Carotid intima-medial thickness (CIMT), inflammatory markers, lipid levels, brain natriuretic peptide, and clinical events were measured at baseline, 6 months, and 12 months. \n RESULTS There was no significant difference in CIMT between the 2 groups. There was no difference in the 12-month composite end point of death, myocardial infarction (MI), stroke, or any recurrent ischemia (31.4% vs 30.2%, P = .99). The rate of death, MI, or stroke at 12 months was numerically lower in the rosiglitazone group (11.9% vs 6.4%, P = .19). There was a trend toward a greater decrease over time in high-sensitivity C-reactive protein values compared with baseline in the group randomized to rosiglitazone versus placebo both at 6 months (-35.4% vs -15.8%, P = .059) and 12 months (-40.0% vs -20.9%, P = .089) and higher change in high-density lipoprotein (+15.5% vs +4.1%, P = .05) and lower triglycerides (-13.9% vs +14.9%, P = .004) in the rosiglitazone arm. There was a trend toward less new onset diabetes in the rosiglitazone group (0% vs 3.3%, P = .081) and no episodes of symptomatic hypoglycemia. There was no excess of new onset of clinical heart failure in the rosiglitazone group, nor was there a significant change in brain natriuretic peptide levels. \n CONCLUSIONS Patients with metabolic syndrome presenting for PCI are at increased risk for subsequent cardiovascular events. Rosiglitazone for 12 months did not appear to affect CIMT in this population, although it did have beneficial effects on high-sensitivity C-reactive protein, high-density lipoprotein, and triglycerides. Further study of peroxisome proliferator-activated receptor agonism in patients with metabolic syndrome undergoing PCI may be warranted.", "title": "Peroxisome proliferator-activated receptor gamma agonists for the Prevention of Adverse events following percutaneous coronary Revascularization--results of the PPAR study." }, { "docid": "68317730", "text": "Objectives Corin, an atrial natriuretic peptide-converting enzyme, has been found to promote trophoblast invasion and spiral artery remodeling. Reduced maternal plasma atrial natriuretic peptide (ANP) levels and elevated corin levels have been reported in pregnancies complicated by PE. The aim of this study was to investigate longitudinal changes in maternal plasma levels of corin and midregional proatrial natriuretic peptide (MR-PANP) in pregnancies that develop preeclampsia (PE) and gestational hypertension (GH). Methods Nested case control study drawn from a larger prospective longitudinal study in singleton pregnancies identified by screening at 11 + 0 − 13 + 6 weeks’ gestation as being at high risk for PE. Blood samples were taken every four weeks until delivery. Values were compared in pregnancies that developed preterm-PE (requiring delivery before 37 weeks), term-PE, GH, and those that remained normotensive. The distribution of maternal plasma corin and PANP were made Gaussian after log 10 transformation. Analysis of repeated measures with multilevel mixed-effects linear model (fixed effects and random effects) was performed. The multilevel model was compared to one-level model by the likelihood radio (LR) test. Results A total of 471 samples were analyzed from 122 women, including 85 that remained normotensive, 12 that developed GH, 13 term-PE and 12 preterm-PE. In the normotensive group, log10corin levels were associated with gestational age ( p p = 0.001). In the GH and term-PE groups, corin did not differ significantly from the normotensive group ( p = 0.64 and p = 0.16, respectively). Compared to the normotensive group, MR-PANP levels were significantly higher in the pregnancies that developed preterm-PE and GH ( p = 0.046 and p = 0.019, respectively), but not term-PE ( p = 0.47). Conclusions Maternal plasma corin and MR-PANP could potentially be useful biomarkers for the prediction of preterm-PE. Disclosures A. Khalil: Research Support Recipient; Commercial Interests: USCOM, Roche, Alere, NICOM, Q-fFN; Speaker: Roche.", "title": "Longitudinal changes in maternal corin and mid-regional proatrial natriuretic peptide in women at risk of pre-eclampsia" }, { "docid": "20132778", "text": "Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.", "title": "Molecular strategies in biological evolution of antimicrobial peptides." }, { "docid": "34054472", "text": "BACKGROUND Accumulating evidence has indicated that corin plays critical roles in regulating salt-water balance, blood pressure and cardiac function by activating natriuretic peptides. The present case-control study was designed to evaluate the association of serum soluble corin with acute myocardial infarction (AMI). \n METHODS We enrolled 856 consecutive AMI patients and 856 control subjects and explored the possible relation between serum corin levels and AMI risk using logistic regression model. \n RESULTS Patients with AMI had higher BMI, were less physically active, and were more likely to have histories of hypertension, diabetes, hyperlipidemia and smoking compared with the controls. Serum levels of corin were remarkably reduced in AMI patients (825±263pg/ml) compared with those in healthy controls (1246±425pg/ml). Odds ratios of ST elevation (STEMI) and non-ST elevation myocardial infarction (NSTEMI) were significantly decreased with the increasing levels of serum corin in both men and women (P for trend, <0.001) after adjustment for body mass index, hypertension, diabetes, hyperlipidemia, smoking, and physical activity. \n CONCLUSIONS Our study demonstrates that serum levels of corin are significantly decreased in AMI patients, and it is inversely associated with the incidences of STEMI and NSTEMI in both men and women.", "title": "Association between serum corin levels and risk of acute myocardial infarction." }, { "docid": "13001323", "text": "Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.", "title": "SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance." }, { "docid": "19460822", "text": "When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.", "title": "Extending healthy life span--from yeast to humans." }, { "docid": "13923069", "text": "Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.", "title": "Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice" }, { "docid": "4409524", "text": "In pregnancy, trophoblast invasion and uterine spiral artery remodelling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodelling has been implicated in pre-eclampsia, a major complication of pregnancy, for a long time but the underlying mechanisms remain unclear. Corin (also known as atrial natriuretic peptide-converting enzyme) is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone that is important in regulating blood pressure. Unexpectedly, corin expression was detected in the pregnant uterus. Here we identify a new function of corin and ANP in promoting trophoblast invasion and spiral artery remodelling. We show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria, characteristics of pre-eclampsia. In these mice, trophoblast invasion and uterine spiral artery remodelling were markedly impaired. Consistent with this, the ANP potently stimulated human trophoblasts in invading Matrigels. In patients with pre-eclampsia, uterine Corin messenger RNA and protein levels were significantly lower than that in normal pregnancies. Moreover, we have identified Corin gene mutations in pre-eclamptic patients, which decreased corin activity in processing pro-ANP. These results indicate that corin and ANP are essential for physiological changes at the maternal–fetal interface, suggesting that defects in corin and ANP function may contribute to pre-eclampsia.", "title": "Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy" }, { "docid": "4445629", "text": "OBJECTIVES The aim of this study was to determine the prognostic value of plasma corin in patients with chronic heart failure (CHF). \n BACKGROUND In recent years, accumulating evidence has indicated that corin plays a critical role in regulating blood pressure and cardiac function. \n METHODS We enrolled 1,148 consecutive CHF patients in a prospective cohort study and explored the association between plasma corin levels and clinical prognosis using multivariate Cox regression analysis. \n RESULTS Patients with low corin levels (<458 pg/ml) were more likely to be women and to be hypertensive. Low corin was found to be associated with an increase in New York Heart Association (NYHA) functional class and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, and a decrease in left ventricular ejection fraction (LVEF) and the estimated glomerular filtration rate (eGFR). Multivariate Cox regression analysis suggested that log corin was an independent predictor of major adverse cardiac event(s) (MACE) (hazard ratio: 0.62; 95% confidence interval: 0.39 to 0.95), together with age, diabetes, NYHA functional class, LVEF, eGFR, and log NT-proBNP. In addition, log corin was also a significant predictor for cardiovascular death (p = 0.041) and heart failure rehospitalization (p = 0.015) after adjustment for clinical variables and established biomarkers of adverse prognosis. The Kaplan-Meier survival curves showed that low corin was a significant predictor of MACE in patients with NT-proBNP levels above and below the median. \n CONCLUSIONS Our study demonstrates that plasma corin is a valuable prognostic marker of MACE in patients with CHF, independent of established conventional risk factors.", "title": "Plasma Corin as a Predictor of Cardiovascular Events in Patients With Chronic Heart Failure." }, { "docid": "12451492", "text": "OBJECTIVE One of the theories involved in the pathogenesis of pregnancy induced hypertension involves salt and water retention. We aimed to measure the proenzyme convertase corin, responsible for pro-atrial natriuretic peptide (ANP) cleavage to active ANP, in plasma of hypertensive pregnant females. STUDY DESIGN Sixty pregnant females suffering from pregnancy induced hypertension in second and third trimesters of pregnancy were compared to twenty eight healthy pregnant females of the same gestational period. Concomitant urine and plasma samples were collected for the determination of some biochemical parameters. Plasma soluble corin and N-terminal (NT) pro-ANP (1-98) values were determined in both groups using enzyme immunoassays. \n RESULTS Plasma soluble corin mean value was significantly higher in the patient group compared to the control group. Upon dividing the patient group according to blood pressure, plasma NT pro-ANP showed significantly higher mean value in the group with blood pressure⩾140/90mmHg compared to the group with blood pressure<140/90mmHg and control group. \n CONCLUSIONS High plasma soluble corin and NT pro-ANP values in hypertensive pregnant females particularly those with blood pressure⩾140/90mmHg speculates an ANP receptor/ post receptor signaling defect, which would aggravate the pregnancy induced hypertensive state.", "title": "Plasma soluble corin and N-terminal pro-atrial natriuretic peptide levels in pregnancy induced hypertension." }, { "docid": "23342845", "text": "In type 1 diabetes (T1D), there is an intense inflammatory response that destroys the β cells in the pancreatic islets of Langerhans, the site where insulin is produced and released. A therapy for T1D that targets the specific autoimmune response in this disease while leaving the remainder of the immune system intact, has long been sought. Proinsulin is a major target of the adaptive immune response in T1D. We hypothesized that an engineered DNA plasmid encoding proinsulin (BHT-3021) would preserve β cell function in T1D patients through reduction of insulin-specific CD8⁺ T cells. We studied 80 subjects over 18 years of age who were diagnosed with T1D within the past 5 years. Subjects were randomized 2:1 to receive intramuscular injections of BHT-3021 or BHT-placebo, weekly for 12 weeks, and then monitored for safety and immune responses in a blinded fashion. Four dose levels of BHT-3021 were evaluated: 0.3, 1.0, 3.0, and 6.0 mg. C-peptide was used both as an exploratory efficacy measure and as a safety measure. Islet-specific CD8⁺ T cell frequencies were assessed with multimers of monomeric human leukocyte antigen class I molecules loaded with peptides from pancreatic and unrelated antigens. No serious adverse events related to BHT-3021 were observed. C-peptide levels improved relative to placebo at all doses, at 1 mg at the 15-week time point (+19.5% BHT-3021 versus -8.8% BHT-placebo, P < 0.026). Proinsulin-reactive CD8⁺ T cells, but not T cells against unrelated islet or foreign molecules, declined in the BHT-3021 arm (P < 0.006). No significant changes were noted in interferon-γ, interleukin-4 (IL-4), or IL-10 production in CD4 T cells. Thus, we demonstrate that a plasmid encoding proinsulin reduces the frequency of CD8⁺ T cells reactive to proinsulin while preserving C-peptide over the course of dosing.", "title": "Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8⁺ T cells in type 1 diabetes." }, { "docid": "26107000", "text": "RATIONALE Physical activity is reduced in patients with chronic obstructive pulmonary disease (COPD). COPD has a systemic component that includes significant extrapulmonary effects that may contribute to its severity in individual patients. \n OBJECTIVES To investigate the association of extrapulmonary effects of the disease and its comorbidities with reduced physical activity in patients with COPD. \n METHODS In a cross-sectional study, 170 outpatients with COPD (GOLD [Global Initiative for Chronic Obstructive Lung Disease] stages I-IV; BODE [body mass index, airway obstruction, dyspnea, and exercise capacity] score 0-10) underwent a series of tests. Physical activity was assessed over 5 to 6 consecutive days by using a multisensor accelerometer armband that records steps per day and the physical activity level (total daily energy expenditure divided by whole-night sleeping energy expenditure). Cardiovascular status was assessed by echocardiography, vascular Doppler sonography, and levels of N-terminal pro-B-type natriuretic peptide. Mental status, metabolic/muscular status, systemic inflammation, and anemia were assessed by Beck Depression Inventory, bioelectrical impedance analysis, handgrip strength, high-sensitivity C-reactive protein/fibrinogen, and hemoglobin, respectively. \n MEASUREMENTS AND MAIN RESULTS In a multivariate linear regression analysis using either steps per day or physical activity level as a dependent variable, the extrapulmonary parameters that were associated with reduced physical activity in patients with COPD independently of GOLD stages or BODE score were N-terminal pro-B-type natriuretic peptide levels, echocardiographically measured left ventricular diastolic function, and systemic inflammation. \n CONCLUSIONS Higher values of systemic inflammation and left cardiac dysfunction are associated with reduced physical activity in patients with COPD.", "title": "Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study." }, { "docid": "9278263", "text": "The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus–host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.", "title": "MHC class I antigen presentation: learning from viral evasion strategies" }, { "docid": "1234098", "text": "Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics.", "title": "Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium" }, { "docid": "8325952", "text": "OBJECTIVE Islet-reactive CD8(+) T-cells play a key role in the pathogenesis of type 1 diabetes in the NOD mouse. The predominant T-cell specificities change over time, but whether similar shifts also occur after clinical diagnosis and insulin treatment in type 1 diabetic patients is unknown. RESEARCH DESIGN AND METHODS We took advantage of a recently validated islet-specific CD8(+) T-cell gamma-interferon enzyme-linked immunospot (ISL8Spot) assay to follow responses against preproinsulin (PPI), GAD, insulinoma-associated protein 2 (IA-2), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) epitopes in 15 HLA-A2(+) adult type 1 diabetic patients close to diagnosis and at a second time point 7-16 months later. \n RESULTS CD8(+) T-cell reactivities were less frequent at follow-up, as 28.6% of responses tested positive at type 1 diabetes diagnosis vs. 13.2% after a median of 11 months (P = 0.003). While GAD and IA-2 autoantibody (aAb) titers were unchanged in 75% of cases, the fraction of patients responding to PPI and/or GAD epitopes by ISL8Spot decreased from 60-67 to 20% (P < 0.02). The previously subdominant IA-2(206-214) and IGRP(265-273) peptides were newly targeted, thus becoming the immunodominant epitopes. \n CONCLUSIONS Shifts both in frequency and in immunodominance of CD8(+) T-cell responses occur more rapidly than do changes in aAb titers. These different kinetics may suggest complementary clinical applications for T-cell and aAb measurements.", "title": "The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment." }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "27166444", "text": "Type 2 diabetes frequently results from progressive failure of pancreatic beta-cell function in the presence of chronic insulin resistance. We tested whether chronic amelioration of insulin resistance would preserve pancreatic beta-cell function and delay or prevent the onset of type 2 diabetes in high-risk Hispanic women. Women with previous gestational diabetes were randomized to placebo (n = 133) or the insulin-sensitizing drug troglitazone (400 mg/day; n = 133) administered in double-blind fashion. Fasting plasma glucose was measured every 3 months, and oral glucose tolerance tests (OGTTs) were performed annually to detect diabetes. Intravenous glucose tolerance tests (IVGTTs) were performed at baseline and 3 months later to identify early metabolic changes associated with any protection from diabetes. Women who did not develop diabetes during the trial returned for OGTTs and IVGTTs 8 months after study medications were stopped. During a median follow-up of 30 months on blinded medication, average annual diabetes incidence rates in the 236 women who returned for at least one follow-up visit were 12.1 and 5.4% in women assigned to placebo and troglitazone, respectively (P < 0.01). Protection from diabetes in the troglitazone group 1) was closely related to the degree of reduction in endogenous insulin requirements 3 months after randomization, 2) persisted 8 months after study medications were stopped, and 3) was associated with preservation of beta-cell compensation for insulin resistance. Treatment with troglitazone delayed or prevented the onset of type 2 diabetes in high-risk Hispanic women. The protective effect was associated with the preservation of pancreatic beta-cell function and appeared to be mediated by a reduction in the secretory demands placed on beta-cells by chronic insulin resistance.", "title": "Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women." }, { "docid": "4474874", "text": "BACKGROUND & AIMS Ghrelin is an orexigenic peptide with gastroprokinetic effects. Mice with streptozotocin (STZ)-induced diabetes exhibit hyperphagia, altered gastric emptying, and increased plasma ghrelin levels. We investigated the causative role of ghrelin herein by comparing changes in ghrelin receptor knockout (growth hormone secretagogue receptor [GHS-R](-/-)) and wild-type (GHS-R(+/+)) mice with STZ-induced diabetes. \n METHODS Gastric emptying was measured with the [(13)C]octanoic acid breath test. The messenger RNA (mRNA) expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin was quantified by real-time reverse-transcription polymerase chain reaction. Neural contractions were elicited by electrical field stimulation in fundic smooth muscle strips. \n RESULTS Diabetes increased plasma ghrelin levels to a similar extent in both genotypes. Hyperphagia was more pronounced in GHS-R(+/+) than in GHS-R(-/-) mice between days 12 and 21. Increases in NPY and AgRP mRNA expression were less pronounced in diabetic GHS-R(-/-) than in GHS-R(+/+) mice from day 15 on, whereas decreases in proopiomelanocortin mRNA levels were similar in both genotypes. Gastric emptying was accelerated to a similar extent in both genotypes, starting on day 16. In fundic smooth muscle strips of diabetic GHS-R(+/+) and GHS-R(-/-) mice, neuronal relaxations were reduced, whereas contractions were increased; this increase was related to an increased affinity of muscarinic and tachykinergic receptors. \n CONCLUSIONS Diabetic hyperphagia is regulated by central mechanisms in which the ghrelin-signaling pathway affects the expression of NPY and AgRP in the hypothalamus. The acceleration of gastric emptying, which is not affected by ghrelin signaling, is not the cause of diabetic hyperphagia and probably involves local contractility changes in the fundus.", "title": "Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice." } ]
844
Neutrophil extracellular trap (NET) antigens may contain the targeted autoantigens PR3 and MPO.
[ { "docid": "17741440", "text": "Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.", "title": "Netting neutrophils in autoimmune small-vessel vasculitis" } ]
[ { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "30041340", "text": "BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). \n OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. \n METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. \n RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. \n CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.", "title": "Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps." }, { "docid": "14853989", "text": "Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases.", "title": "Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity" }, { "docid": "9878167", "text": "Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.", "title": "Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps" }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "28015516", "text": "Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)-induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)-dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid-recognizing antibodies and type I IFN production in this disease.", "title": "Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus." }, { "docid": "36089763", "text": "Neutrophils phagocytose and kill microbes upon phagolysosomal fusion. Recently we found that activated neutrophils form extracellular fibres that consist of granule proteins and chromatin. These neutrophil extracellular traps (NETs) degrade virulence factors and kill Gram positive and negative bacteria. Here we show for the first time that Candida albicans, a eukaryotic pathogen, induces NET-formation and is susceptible to NET-mediated killing. C. albicans is the predominant aetiologic agent of fungal infections in humans, particularly in immunocompromised hosts. One major virulence trait of C. albicans is its ability to reversibly switch from singular budding cells to filamentous hyphae. We demonstrate that NETs kill both yeast-form and hyphal cells, and that granule components mediate fungal killing. Taken together our data indicate that neutrophils trap and kill ascomycetous yeasts by forming NETs.", "title": "Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms." }, { "docid": "17967608", "text": "Neutrophils trap and kill bacteria by forming highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs). We previously reported that histone hypercitrullination catalyzed by peptidylarginine deiminase 4 (PAD4) correlates with chromatin decondensation during NET formation. However, the role of PAD4 in NET-mediated bacterial trapping and killing has not been tested. Here, we use PAD4 knockout mice to show that PAD4 is essential for NET-mediated antibacterial function. Unlike PAD4(+/+) neutrophils, PAD4(-/-) neutrophils cannot form NETs after stimulation with chemokines or incubation with bacteria, and are deficient in bacterial killing by NETs. In a mouse infectious disease model of necrotizing fasciitis, PAD4(-/-) mice are more susceptible to bacterial infection than PAD4(+/+) mice due to a lack of NET formation. Moreover, we found that citrullination decreased the bacterial killing activity of histones and nucleosomes, which suggests that PAD4 mainly plays a role in chromatin decondensation to form NETs instead of increasing histone-mediated bacterial killing. Our results define a role for histone hypercitrullination in innate immunity during bacterial infection.", "title": "PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps" }, { "docid": "43054703", "text": "Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3-4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5-60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton-Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton-Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus.", "title": "A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus." }, { "docid": "28149602", "text": "PURPOSE OF REVIEW Recent discoveries implicate neutrophils as important regulators of innate and adaptive immunity and in the development of organ damage in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). RECENT FINDINGS Various putative SLE biomarkers are neutrophil-related, including neutrophil granular proteins and histones undergoing post-translational modifications during neutrophil extracellular trap (NET) formation. In the bone marrow, lupus neutrophils can drive B and T cell abnormalities, at least in part, by their enhanced production of type-I interferons, tumor necrosis factor-alpha (TNFα) and the B-cell stimulating factors B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL). Lupus neutrophils and, in particular, lupus low-density granulocytes (a distinct pathogenic subset) display epigenetic modifications and genomic alterations that may be relevant to their deleterious roles in SLE. Proteins and enzymes externalized by lupus NETs can affect vascular health by inducing endothelial apoptosis and oxidizing lipoproteins. Hampering NET formation through peptidylarginine deiminase inhibitors abrogates lupus phenotype and atherosclerosis in murine studies. SUMMARY Recent discoveries support the notion that neutrophils, low-density granulocytes and aberrant NET formation and clearance play important roles in lupus pathogenesis. Future studies should focus on how to selectively target these immunostimulatory pathways in this disease.", "title": "The role of neutrophils in the pathogenesis of systemic lupus erythematosus." }, { "docid": "1800734", "text": "Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein–coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase–independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.", "title": "CXCR2 mediates NADPH oxidase–independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation" }, { "docid": "29399239", "text": "Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed \"NETosis. \" Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.", "title": "Neutrophil extracellular traps: Is immunity the second function of chromatin?" }, { "docid": "2236768", "text": "Neutrophil extracellular traps (NETs) are released as neutrophils die in vitro in a process requiring hours, leaving a temporal gap that invasive microbes may exploit. Neutrophils capable of migration and phagocytosis while undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live polymorphonuclear cells (PMNs) in vivo rapidly releasing NETs, which prevented systemic bacterial dissemination. NETosis occurred during crawling, thereby casting large areas of NETs. NET-releasing PMNs developed diffuse decondensed nuclei, ultimately becoming devoid of DNA. Cells with abnormal nuclei showed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A requirement for both Toll-like receptor 2 and complement-mediated opsonization tightly regulated NET release. Additionally, live human PMNs injected into mouse skin developed decondensed nuclei and formed NETS in vivo, and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection NETosis involves neutrophils that do not undergo lysis and retain the ability to multitask.", "title": "Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo" }, { "docid": "1049501", "text": "Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.", "title": "Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease" }, { "docid": "46517055", "text": "Uncontrolled proteolysis by neutrophil serine proteases (NSPs) in lung secretions is a hallmark of cystic fibrosis (CF). We have shown that the active neutrophil elastase, protease 3, and cathepsin G in CF sputum resist inhibition in part by exogenous protease inhibitors. This resistance may be due to their binding to neutrophil extracellular traps (NETs) secreted by the activated neutrophils in CF sputum and to genomic DNA released from senescent and dead neutrophils. Treating CF sputum with DNase dramatically increases its elastase activity, which can then be stoichiometrically inhibited by exogenous elastase inhibitors. However, DNase treatment does not increase the activities of protease 3 and cathepsin G, indicating their different distribution and/or binding in CF sputum. Purified blood neutrophils secrete NETs when stimulated by the opportunistic CF bacteria Pseudomonas aeruginosa and Staphylococcus aureus. The activities of the three proteases were unchanged in these conditions, but subsequent DNase treatment produced a dramatic increase in all three proteolytic activities. Neutrophils activated with a calcium ionophore did not secrete NETs but released huge amounts of active proteases whose activities were not modified by DNase. We conclude that NETs are reservoirs of active proteases that protect them from inhibition and maintain them in a rapidly mobilizable status. Combining the effects of protease inhibitors with that of DNA-degrading agents could counter the deleterious proteolytic effects of NSPs in CF lung secretions.", "title": "Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum." }, { "docid": "12489688", "text": "Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.", "title": "Myeloperoxidase: friend and foe." }, { "docid": "13106686", "text": "Immune sensing of DNA is critical for antiviral immunity but can also trigger autoimmune diseases such as lupus erythematosus (LE). Here we have provided evidence for the involvement of a damage-associated DNA modification in the detection of cytosolic DNA. The oxidized base 8-hydroxyguanosine (8-OHG), a marker of oxidative damage in DNA, potentiated cytosolic immune recognition by decreasing its susceptibility to 3' repair exonuclease 1 (TREX1)-mediated degradation. Oxidizative modifications arose physiologically in pathogen DNA during lysosomal reactive oxygen species (ROS) exposure, as well as in neutrophil extracellular trap (NET) DNA during the oxidative burst. 8-OHG was also abundant in UV-exposed skin lesions of LE patients and colocalized with type I interferon (IFN). Injection of oxidized DNA in the skin of lupus-prone mice induced lesions that closely matched respective lesions in patients. Thus, oxidized DNA represents a prototypic damage-associated molecular pattern (DAMP) with important implications for infection, sterile inflammation, and autoimmunity.", "title": "Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing." }, { "docid": "3330111", "text": "Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.", "title": "Neutrophils in the activation and regulation of innate and adaptive immunity" }, { "docid": "10284593", "text": "Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atria's susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.", "title": "Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation" } ]
846
Neutrophils produce IL-1β in response to large particles.
[ { "docid": "22696649", "text": "How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.", "title": "Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size" } ]
[ { "docid": "2692522", "text": "Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.", "title": "Gout-associated uric acid crystals activate the NALP3 inflammasome" }, { "docid": "5386514", "text": "The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.", "title": "Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors" }, { "docid": "195683603", "text": "Neutrophils are the main effector cells during inflammation, but they can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms that modulate their plasticity remain unclear. We now show that systemic serum amyloid A 1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory interleukin 10 (IL-10)-secreting neutrophils but also promoted the interaction of invariant natural killer T cells (iNKT cells) with those neutrophils, a process that limited their suppressive activity by diminishing the production of IL-10 and enhancing the production of IL-12. Because SAA-1-producing melanomas promoted differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by decreasing the frequency of immunosuppressive neutrophils and restoring tumor-specific immune responses.", "title": "Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A." }, { "docid": "883747", "text": "Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.", "title": "IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs" }, { "docid": "16863359", "text": "Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.", "title": "Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases." }, { "docid": "1855679", "text": "It was recently demonstrated that interleukin (IL)-23–driven IL-17–producing (ThIL-17) T cells mediate inflammatory pathology in certain autoimmune diseases. We show that the induction of antigen-specific ThIL-17 cells, but not T helper (Th)1 or Th2 cells, by immunization with antigens and adjuvants is abrogated in IL-1 receptor type I–deficient (IL-1RI−/−) mice. Furthermore, the incidence of experimental autoimmune encephalomyelitis (EAE) was significantly lower in IL-1RI−/− compared with wild-type mice, and this correlated with a failure to induce autoantigen-specific ThIL-17 cells, whereas induction of Th1 and Th2 responses was not substantially different. However, EAE was induced in IL-1RI−/− mice by adoptive transfer of autoantigen-specific cells from wild-type mice with EAE. IL-23 alone did not induce IL-17 production by T cells from IL-1RI−/− mice, and IL-23–induced IL-17 production was substantially enhanced by IL-1α or IL-1β, even in the absence of T cell receptor stimulation. We demonstrate essential roles for phosphatidylinositol 3-kinase, nuclear factor κB, and novel protein kinase C isoforms in IL-1– and IL-23–mediated IL-17 production. Tumor necrosis factor α also synergized with IL-23 to enhance IL-17 production, and this was IL-1 dependent. Our findings demonstrate that IL-1 functions upstream of IL-17 to promote pathogenic ThIL-17 cells in EAE.", "title": "A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis" }, { "docid": "14474178", "text": "The objective of the present study was to determine if chicken melanoma-differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus infection to induce innate immunity that bridges to adaptive immunity. During IBDV infection in HD11 cells, IBDV titers and RNA loads increased up to 3.4 × 107 plaque-forming units (PFU)/mL and 1114 ng/µL, respectively, at 24 hours postinfection (hpi). IBDV infection in HD11 cells induced significantly upregulated (p < 0.05) expression levels of chicken MDA5 (59-fold), interferon-β (IFN-β) (693-fold), dsRNA-dependent protein kinase (PKR) (4-fold), 2’, 5’-oligoadenylate synthetase (OAS) (286-fold), myxovirus resistance gene (Mx) (22-fold), interleukin-1β (IL-1β) (5-fold), IL-6 (146-fold), IL-8 (4-fold), IL-10 (4-fold), inducible nitric oxide synthase (iNOS) (15-fold), and major histocompatibility complex class I (MHC class I) (4-fold). Nitric oxide production in the culture supernatants increased significantly (p < 0.05) up to 6.5 μM at 24 hpi. The expressed chMDA5 and IBDV-derived dsRNA were localized in the cytoplasm of HD11 cells during IBDV infection. ChMDA5-knockdown HD11 cells had significantly higher (p < 0.05) IBDV RNA loads at 24 hpi and significantly lower (p < 0.05) nitric oxide production and expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-18, IL-10, iNOS, MHC class I and CD86 at 24 hpi. In addition, chMDA5 overexpression in HD11 cells resulted in significantly reduced (p < 0.05) IBDV titers and RNA loads and significantly increased (p < 0.05) nitric oxide production at 16 and 24 hpi. It also resulted in significantly higher (p < 0.05) expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-10 and iNOS at 2 hpi. In conclusion, the results indicate that chMDA5 senses IBDV infection in chicken macrophages, and this is associated with IBDV-induced expression of IFN-β and initiation of an innate immune response that in turn activates the adaptive immune response and limits IBDV replication.", "title": "Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages" }, { "docid": "34469966", "text": "Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an \"alternative inflammasome\" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans.", "title": "Human Monocytes Engage an Alternative Inflammasome Pathway." }, { "docid": "6767271", "text": "Although adjuvants are critical vaccine components, their modes of action are poorly understood. In this study, we investigated the mechanisms by which the heat-killed mycobacteria in CFA promote Th17 CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1R signaling. Through measurement of Ag-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase-1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule caspase activation and recruitment domain 9 (CARD9) plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C-type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase-1- and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators.", "title": "Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome." }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "4345315", "text": "Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.", "title": "Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3" }, { "docid": "16488405", "text": "Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 ± 6.5 (SD) ml · kg−1 · min−1] but untrained men [age = 25 ± 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60–65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1β, IL-6, and TNF-α peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1β and TNF-α) postexercise. Cytokine gene expression in circulating mononucl...", "title": "Downloaded from" }, { "docid": "23901235", "text": "Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.", "title": "A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells." }, { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "21439640", "text": "Tumor-associated macrophages and high levels of cyclooxygenase-2 (COX-2) are associated with poor prognosis in breast cancer patients, but their potential interdependence has not been evaluated. The objective of this study was to determine whether macrophages regulate COX-2 expression in breast cancer cells. For this purpose, THP-1 cells were cocultured with HCC1954 breast cancer cells. Coculture led to increased COX-2 expression in the HCC1954 cells and elevated prostaglandin E(2) levels in conditioned media. Similar results were observed when THP-1 cells were incubated with HCC1937 breast cancer cells or when human monocyte-derived macrophages were cocultured with HCC1954 cells. Coculture triggered production of reactive oxygen species (ROS) in HCC1954 cells. COX-2 induction was blocked in cells preincubated with an reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor or by silencing p67PHOX, a subunit of NADPH oxidase. ROS production triggered activation of Src and mitogen-activated protein kinases (MAPKs). Blocking Src or MAPK activities or antagonizing the activator protein-1 (AP-1) transcription factor attenuated COX-2 induction in HCC1954 cells. Coculture caused rapid induction of interleukin-1β (IL-1β) in both breast cancer cells and macrophages. Increased IL-1β expression was blocked by an interleukin-1 receptor antagonist (IL-1Ra), suggesting autocrine and paracrine effects. Importantly, macrophage-induced COX-2 expression was blocked in HCC1954 cells preincubated with IL-1Ra or anti-IL-1β IgG. Together, these results indicate that macrophage-mediated induction of COX-2 in breast cancer cells is a consequence of IL-1β-mediated stimulation of ROS→Src→MAPK→AP-1 signaling. IL-1β-dependent induction of COX-2 in breast cancer cells provides a mechanism whereby macrophages contribute to tumor progression and potential therapeutic targets in breast cancer.", "title": "Macrophages induce COX-2 expression in breast cancer cells: role of IL-1β autoamplification." }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "54482327", "text": "Background/Aims: Osteoarthritis (OA) is a multifactorial disease that is associated with inflammation in joints. The purpose of the present study was to investigate the anti-inflammatory activity and mechanism of morin on human osteoarthritis chondrocytes stimulated by IL-1β. Methods: The levels of NO and PGE2 were measured by the Griess method and ELISA. The levels of MMP1, MMP3, and MMP13 were also measured by ELISA. Results: The results revealed that IL-1β significantly increased the production of NO, PGE2, MMP1, MMP3, and MMP13. Additionally, the increases were significantly attenuated by treatment with morin. Furthermore, IL-1β-induced NF-κB activation was suppressed by morin. In addition, the expression of Nrf2 and HO-1 were increased by morin and knockdown of Nrf2 could prevent the anti-inflammatory effects of morin. Conclusion: In conclusion, this study suggested that morin attenuated IL-1β-induced inflammation by activating the Nrf2 signaling pathway.", "title": "Morin Exhibits Anti-Inflammatory Effects on IL-1β-Stimulated Human Osteoarthritis Chondrocytes by Activating the Nrf2 Signaling Pathway" }, { "docid": "11837657", "text": "Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.", "title": "Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis" }, { "docid": "3761017", "text": "BACKGROUND Metformin, a widely used hypoglycemic drug, reduces stroke incidence and alleviates chronic inflammation in clinical trials. However, the effect of metformin in ischemic stroke is unclear. Here, we investigated the effect of metformin on ischemic stroke in mice and further explored the possible underlying mechanisms. \n METHODS Ninety-eight adult male CD-1 mice underwent 90-minute transient middle cerebral artery occlusion (tMCAO). Metformin (200 mg/kg) was administrated for up to 14 days. Neurobehavioral outcomes, brain infarct volume, inflammatory factors, blood-brain barrier (BBB) permeability and AMPK signaling pathways were evaluated following tMCAO. Oxygen glucose deprivation was performed on bEND.3 cells to explore the mechanisms of metformin in inhibiting inflammatory signaling pathways. \n RESULTS Infarct volume was reduced in metformin-treated mice compared to the control group following tMCAO (P < 0.05). Neurobehavioral outcomes were greatly improved in metformin-treated mice (P < 0.05). MPO+ cells, Gr1+ cells, MPO activity and BBB permeability were decreased after metformin administration (P < 0.05). In addition, metformin activated AMPK phosphorylation, inhibited NF-κB activation, down-regulated cytokine (IL-1β, IL-6, TNF-α) and ICAM-1 expression following tMCAO (P < 0.05). Furthermore, metformin activated AMPK signaling pathway and alleviated oxygen-glucose deprivation-induced ICAM-1 expression in bEND.3 cells (P < 0.05). Compound C, a selective AMPK inhibitor, eliminated this promotional effect. \n CONCLUSIONS Metformin down-regulated ICAM-1 in an AMPK-dependent manner, which could effectively prevent ischemia-induced brain injury by alleviating neutrophil infiltration, suggesting that metformin is a promising therapeutic agent in stroke therapy.", "title": "Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion" } ]
848
Nigerian physicians constitue the largest component of sub-Saharan Africa-trained physicians in the United States.
[ { "docid": "14500725", "text": "BACKGROUND The large-scale emigration of physicians from sub-Saharan Africa (SSA) to high-income nations is a serious development concern. Our objective was to determine current emigration trends of SSA physicians found in the physician workforce of the United States. \n METHODS AND FINDINGS We analyzed physician data from the World Health Organization (WHO) Global Health Workforce Statistics along with graduation and residency data from the 2011 American Medical Association Physician Masterfile (AMA-PM) on physicians trained or born in SSA countries who currently practice in the US. We estimated emigration proportions, year of US entry, years of practice before emigration, and length of time in the US. According to the 2011 AMA-PM, 10,819 physicians were born or trained in 28 SSA countries. Sixty-eight percent (n = 7,370) were SSA-trained, 20% (n = 2,126) were US-trained, and 12% (n = 1,323) were trained outside both SSA and the US. We estimated active physicians (age ≤ 70 years) to represent 96% (n = 10,377) of the total. Migration trends among SSA-trained physicians increased from 2002 to 2011 for all but one principal source country; the exception was South Africa whose physician migration to the US decreased by 8% (-156). The increase in last-decade migration was >50% in Nigeria (+1,113) and Ghana (+243), >100% in Ethiopia (+274), and >200% (+244) in Sudan. Liberia was the most affected by migration to the US with 77% (n = 175) of its estimated physicians in the 2011 AMA-PM. On average, SSA-trained physicians have been in the US for 18 years. They practiced for 6.5 years before US entry, and nearly half emigrated during the implementation years (1984-1999) of the structural adjustment programs. \n CONCLUSION Physician emigration from SSA to the US is increasing for most SSA source countries. Unless far-reaching policies are implemented by the US and SSA countries, the current emigration trends will persist, and the US will remain a leading destination for SSA physicians emigrating from the continent of greatest need. Please see later in the article for the Editors' Summary.", "title": "Physician Emigration from Sub-Saharan Africa to the United States: Analysis of the 2011 AMA Physician Masterfile" } ]
[ { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "6085365", "text": "BACKGROUND Few studies have examined whether physician knowledge, attitudes, or practice patterns might contribute to gender disparities in the primary prevention of coronary heart disease (CHD), including among physicians caring for the largest number of reproductive-age women, obstetricians and gynecologists (OB/GYNs). We sought to identify barriers affecting the provision of recommended coronary risk factor therapies in women. \n METHODS We surveyed internists and OB/GYNs who attended Grand Rounds presentations developed for the New York State Women and Heart Disease Physician Education Initiative. This program was designed to improve screening and management of coronary risk factors in women. Attendees were asked to complete a 7-minute questionnaire. \n RESULTS The mean age of the 529 respondents was 40.3 years (standard deviation = 12.3), 75.1% were internists (n=378), and 42.7% (n=226) were women. Physicians correctly responded to 71.5% of the 13 questions assessing knowledge of coronary risk prevention (range, 4-13). Almost one third of internists and half of the OB/GYNs did not know that tobacco use was the leading cause of myocardial infarction in young women. For patients who smoked tobacco, only two thirds of internists and 55.4% of OB/GYNs reported suggesting a quit date (p=.007). After controlling for covariates, physicians who did not perceive time as a barrier were more likely to discuss smoking cessation (odds ratio=1.7 [1.1-2.7]). \n CONCLUSIONS Among the internists and OB/GYNs surveyed, time was perceived as a barrier to implementing risk prevention. These physicians also underestimated the impact of tobacco use as a risk factor for CHD in young women. To lessen gender disparities in CHD prevention, both specialties need time-efficient educational programs that reflect specialty differences.", "title": "Physician knowledge levels and barriers to coronary risk prevention in women: survey results from the Women and Heart Disease Physician Education Initiative." }, { "docid": "20999249", "text": "BACKGROUND Falciparum malaria or malaria tropica is one of the leading causes of childhood mortality worldwide. Malaria-related deaths occur mainly in sub-Saharan Africa, where an estimated 365 million clinical cases of Plasmodium falciparum malaria occur each year. In Europe, imported malaria cases occur due to returning travellers or immigration mostly from African countries. Children are more at risk than adults. The objective of this study was to identify high risk groups for imported childhood malaria in Europe in order to guide development of strategies for prevention, early recognition and management. \n METHODS In the period May 2003-January 2005 we reviewed all cases of paediatric malaria in the Netherlands notified by the Dutch Paediatric Surveillance System (Nederland Signalerings Centrum Kindergeneeskunde, NSCK) and the literature on imported malaria in children in Europe published between 1996 and 2006. \n RESULTS Malaria occurred mainly in children of long-term (n = 15, 47%) and new (n = 8, 25%) immigrants and was mostly acquired in sub-Saharan Africa. The dominant species was P. falciparum. Only one quarter of children had used adequate malaria chemoprophylaxis. Complicated disease occurred in 10 (31%) of cases. We also reviewed the literature and found 6082 reported cases of imported malaria among children in Europe; among these, four died and only one was reported to develop neurological sequelae. \n CONCLUSION Imported malaria in children remains an important problem and is unlikely to decrease unless the reasons for inadequate prophylaxis are addressed.", "title": "Imported malaria in children: a national surveillance in the Netherlands and a review of European studies." }, { "docid": "25953438", "text": "Understanding of the age- and season- dependence of malaria mortality is an important prerequisite for epidemiologic models of malaria immunity. However, most studies of malaria mortality have aggregated their results into broad age groups and across seasons, making it hard to predict the likely impact of interventions targeted at specific age groups of children. We present age-specific mortality rates for children aged < 15 years for the period of 2001-2005 in 7 demographic surveillance sites in areas of sub-Saharan Africa with stable endemic Plasmodium falciparum malaria. We use verbal autopsies (VAs) to estimate the proportion of deaths by age group due to malaria, and thus calculate malaria-specific mortality rates for each site, age-group, and month of the year. In all sites a substantial proportion of deaths (ranging from 20.1% in a Mozambican site to 46.2% in a site in Burkina Faso) were attributed to malaria. The overall age patterns of malaria mortality were similar in the different sites. Deaths in the youngest children (< 3 months old) were only rarely attributed to malaria, but in children over 1 year of age the proportion of deaths attributed to malaria was only weakly age-dependent. In most of the sites all-cause mortality rates peaked during the rainy season, but the strong seasonality in malaria transmission in these sites was not reflected in strong seasonality in the proportion of deaths attributed to malaria, except in the two sites in Burkina Faso. Improvement in the specificity of malaria verbal autopsies would make it easier to interpret the age and season patterns in such data.", "title": "Patterns of age-specific mortality in children in endemic areas of sub-Saharan Africa." }, { "docid": "14395738", "text": "Studies from sub-Saharan Africa indicate that children made vulnerable by poverty have been disproportionately affected by HIV with many exposed via mother-to-child transmission. For youth living with HIV, adherence to life-saving treatment regimens are likely to be affected by the complex set of economic and social circumstances that challenge their families and also exacerbate health problems. Using baseline data from the National Institute of Child and Human Development (NICHD) funded Suubi+Adherence study, we examined the extent to which individual and composite measures of equity predict self-reported adherence among Ugandan adolescents aged 10-16 (n = 702) living with HIV. Results showed that greater asset ownership, specifically familial possession of seven or more tangible assets, was associated with greater odds of self-reported adherence (OR 1.69, 95% CI: 1.00-2.85). Our analyses also indicated that distance to the nearest health clinic impacts youth's adherence to an ARV regimen. Youth who reported living nearest to a clinic were significantly more likely to report optimal adherence (OR 1.49, 95% CI: 0.92-2.40). Moreover, applying the composite equity scores, we found that adolescents with greater economic advantage in ownership of household assets, financial savings, and caregiver employment had higher odds of adherence by a factor of 1.70 (95% CI: 1.07-2.70). These findings suggest that interventions addressing economic and social inequities may be beneficial to increase antiretroviral therapy (ART) uptake among economically vulnerable youth, especially in sub-Saharan Africa. This is one of the first studies to address the question of equity in adherence to ART among economically vulnerable youth with HIV.", "title": "Equity in adherence to antiretroviral therapy among economically vulnerable adolescents living with HIV in Uganda" }, { "docid": "1606628", "text": "CONTEXT One key target of the United Nations Millennium Development goals is to reduce the prevalence of underweight among children younger than 5 years by half between 1990 and 2015. \n OBJECTIVE To estimate trends in childhood underweight by geographic regions of the world. \n DESIGN, SETTING, AND PARTICIPANTS Time series study of prevalence of underweight, defined as weight 2 SDs below the mean weight for age of the National Center for Health Statistics and World Health Organization (WHO) reference population. National prevalence rates derived from the WHO Global Database on Child Growth and Malnutrition, which includes data on approximately 31 million children younger than 5 years who participated in 419 national nutritional surveys in 139 countries from 1965 through 2002. \n MAIN OUTCOME MEASURES Linear mixed-effects modeling was used to estimate prevalence rates and numbers of underweight children by region in 1990 and 2015 and to calculate the changes (ie, increase or decrease) to these values between 1990 and 2015. \n RESULTS Worldwide, underweight prevalence was projected to decline from 26.5% in 1990 to 17.6% in 2015, a change of -34% (95% confidence interval [CI], -43% to -23%). In developed countries, the prevalence was estimated to decrease from 1.6% to 0.9%, a change of -41% (95% CI, -92% to 343%). In developing regions, the prevalence was forecasted to decline from 30.2% to 19.3%, a change of -36% (95% CI, -45% to -26%). In Africa, the prevalence of underweight was forecasted to increase from 24.0% to 26.8%, a change of 12% (95% CI, 8%-16%). In Asia, the prevalence was estimated to decrease from 35.1% to 18.5%, a change of -47% (95% CI, -58% to -34%). Worldwide, the number of underweight children was projected to decline from 163.8 million in 1990 to 113.4 million in 2015, a change of -31% (95% CI, -40% to -20%). Numbers are projected to decrease in all subregions except the subregions of sub-Saharan, Eastern, Middle, and Western Africa, which are expected to experience substantial increases in the number of underweight children. \n CONCLUSIONS An overall improvement in the global situation is anticipated; however, neither the world as a whole, nor the developing regions, are expected to achieve the Millennium Development goals. This is largely due to the deteriorating situation in Africa where all subregions, except Northern Africa, are expected to fail to meet the goal.", "title": "Estimates of global prevalence of childhood underweight in 1990 and 2015." }, { "docid": "9274291", "text": "PURPOSE To compare expectations for cancer survivorship care between patients and their physicians and between primary care providers (PCPs) and oncologists. \n METHODS Survivors and their physicians were surveyed to evaluate for expectations regarding physician participation in primary cancer follow-up, screening for other cancers, general preventive health, and management of comorbidities. \n RESULTS Of 992 eligible survivors and 607 physicians surveyed, 535 (54%) and 378 (62%) were assessable, respectively. Among physician respondents, 255 (67%) were PCPs and 123 (33%) were oncologists. Comparing patients with their oncologists, expectations were highly discrepant for screening for cancers other than the index one (agreement rate, 29%), with patients anticipating significantly more oncologist involvement. Between patients and their PCPs, expectations were most incongruent for primary cancer follow-up (agreement rate, 35%), with PCPs indicating they should contribute a much greater part to this aspect of care. Expectations between patients and their PCPs were generally more concordant than between patients and their oncologists. PCPs and oncologists showed high discordances in perceptions of their own roles for primary cancer follow-up, cancer screening, and general preventive health (agreement rates of 3%, 44%, and 51%, respectively). In the case of primary cancer follow-up, both PCPs and oncologists indicated they should carry substantial responsibility for this task. \n CONCLUSION Patients and physicians have discordant expectations with respect to the roles of PCPs and oncologists in cancer survivorship care. Uncertainties around physician roles and responsibilities can lead to deficiencies in care, supporting the need to make survivorship care planning a standard component in cancer management.", "title": "Comparisons of patient and physician expectations for cancer survivorship care." }, { "docid": "12258338", "text": "CONTEXT Pharmacist review of medication orders in the intensive care unit (ICU) has been shown to prevent errors, and pharmacist consultation has reduced drug costs. However, whether pharmacist participation in the ICU at the time of drug prescribing reduces adverse events has not been studied. \n OBJECTIVE To measure the effect of pharmacist participation on medical rounds in the ICU on the rate of preventable adverse drug events (ADEs) caused by ordering errors. \n DESIGN Before-after comparison between phase 1 (baseline) and phase 2 (after intervention implemented) and phase 2 comparison with a control unit that did not receive the intervention. \n SETTING A medical ICU (study unit) and a coronary care unit (control unit) in a large urban teaching hospital. \n PATIENTS Seventy-five patients randomly selected from each of 3 groups: all admissions to the study unit from February 1, 1993, through July 31, 1993 (baseline) and all admissions to the study unit (postintervention) and control unit from October 1, 1994, through July 7, 1995. In addition, 50 patients were selected at random from the control unit during the baseline period. \n INTERVENTION A senior pharmacist made rounds with the ICU team and remained in the ICU for consultation in the morning, and was available on call throughout the day. \n MAIN OUTCOME MEASURES Preventable ADEs due to ordering (prescribing) errors and the number, type, and acceptance of interventions made by the pharmacist. Preventable ADEs were identified by review of medical records of the randomly selected patients during both preintervention and postintervention phases. Pharmacists recorded all recommendations, which were then analyzed by type and acceptance. \n RESULTS The rate of preventable ordering ADEs decreased by 66% from 10.4 per 1000 patient-days (95% confidence interval [CI], 7-14) before the intervention to 3.5 (95% CI, 1-5; P<.001) after the intervention. In the control unit, the rate was essentially unchanged during the same time periods: 10.9 (95% CI, 6-16) and 12.4 (95% CI, 8-17) per 1000 patient-days. The pharmacist made 366 recommendations related to drug ordering, of which 362 (99%) were accepted by physicians. \n CONCLUSIONS The presence of a pharmacist on rounds as a full member of the patient care team in a medical ICU was associated with a substantially lower rate of ADEs caused by prescribing errors. Nearly all the changes were readily accepted by physicians.", "title": "Pharmacist participation on physician rounds and adverse drug events in the intensive care unit." }, { "docid": "18268012", "text": "OBJECTIVES To estimate the present value of current and future funding needed for HIV treatment and prevention in 9 sub-Saharan African (SSA) countries that account for 70% of HIV burden in Africa under different scenarios of intervention scale-up. To analyse the gaps between current expenditures and funding obligation, and discuss the policy implications of future financing needs. \n DESIGN We used the Goals module from Spectrum, and applied the most up-to-date cost and coverage data to provide a range of estimates for future financing obligations. The four different scale-up scenarios vary by treatment initiation threshold and service coverage level. We compared the model projections to current domestic and international financial sources available in selected SSA countries. \n RESULTS In the 9 SSA countries, the estimated resources required for HIV prevention and treatment in 2015-2050 range from US$98 billion to maintain current coverage levels for treatment and prevention with eligibility for treatment initiation at CD4 count of <500/mm(3) to US$261 billion if treatment were to be extended to all HIV-positive individuals and prevention scaled up. With the addition of new funding obligations for HIV--which arise implicitly through commitment to achieve higher than current treatment coverage levels--overall financial obligations (sum of debt levels and the present value of the stock of future HIV funding obligations) would rise substantially. \n CONCLUSIONS Investing upfront in scale-up of HIV services to achieve high coverage levels will reduce HIV incidence, prevention and future treatment expenditures by realising long-term preventive effects of ART to reduce HIV transmission. Future obligations are too substantial for most SSA countries to be met from domestic sources alone. New sources of funding, in addition to domestic sources, include innovative financing. Debt sustainability for sustained HIV response is an urgent imperative for affected countries and donors.", "title": "Long-term financing needs for HIV control in sub-Saharan Africa in 2015-2050: a modelling study." }, { "docid": "12009265", "text": "CONTEXT Many individuals take vitamins in the hopes of preventing chronic diseases such as cancer, and vitamins E and C are among the most common individual supplements. A large-scale randomized trial suggested that vitamin E may reduce risk of prostate cancer; however, few trials have been powered to address this relationship. No previous trial in men at usual risk has examined vitamin C alone in the prevention of cancer. \n OBJECTIVE To evaluate whether long-term vitamin E or C supplementation decreases risk of prostate and total cancer events among men. \n DESIGN, SETTING, AND PARTICIPANTS The Physicians' Health Study II is a randomized, double-blind, placebo-controlled factorial trial of vitamins E and C that began in 1997 and continued until its scheduled completion on August 31, 2007. A total of 14,641 male physicians in the United States initially aged 50 years or older, including 1307 men with a history of prior cancer at randomization, were enrolled. \n INTERVENTION Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. \n MAIN OUTCOME MEASURES Prostate and total cancer. \n RESULTS During a mean follow-up of 8.0 years, there were 1008 confirmed incident cases of prostate cancer and 1943 total cancers. Compared with placebo, vitamin E had no effect on the incidence of prostate cancer (active and placebo vitamin E groups, 9.1 and 9.5 events per 1000 person-years; hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.85-1.09; P = .58) or total cancer (active and placebo vitamin E groups, 17.8 and 17.3 cases per 1000 person-years; HR, 1.04; 95% CI, 0.95-1.13; P = .41). There was also no significant effect of vitamin C on total cancer (active and placebo vitamin C groups, 17.6 and 17.5 events per 1000 person-years; HR, 1.01; 95% CI, 0.92-1.10; P = .86) or prostate cancer (active and placebo vitamin C groups, 9.4 and 9.2 cases per 1000 person-years; HR, 1.02; 95% CI, 0.90-1.15; P = .80). Neither vitamin E nor vitamin C had a significant effect on colorectal, lung, or other site-specific cancers. Adjustment for adherence and exclusion of the first 4 or 6 years of follow-up did not alter the results. Stratification by various cancer risk factors demonstrated no significant modification of the effect of vitamin E on prostate cancer risk or either agent on total cancer risk. \n CONCLUSIONS In this large, long-term trial of male physicians, neither vitamin E nor C supplementation reduced the risk of prostate or total cancer. These data provide no support for the use of these supplements for the prevention of cancer in middle-aged and older men. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00270647.", "title": "Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial." }, { "docid": "30741007", "text": "The distribution of insecticide-treated bednets to help combat the burden of malaria in sub-Saharan Africa has accelerated in the past 5 years. Additionally, many countries are also considering, or have already begun, indoor residual spraying campaigns. These are positive developments, since vector control has repeatedly proven to be an effective means of reducing malaria transmission. However, the sustainability of these insecticide-based interventions relies on the continuing susceptibility of the anopheles vectors to the limited number of available insecticides. Continual monitoring for early signs of insecticide resistance and the adoption of carefully considered resistance management strategies are therefore required. Regrettably, this essential monitoring component is frequently given a low priority in the push to meet ambitious coverage targets. We outline the key requirements for establishing an insecticide resistance surveillance system and urge all those involved in malaria vector control, either directly or as facilitators, to ensure that these measures are incorporated into control programmes. Failure to act now will inevitably lead to a future breakdown in disease control and jeopardise hopes of eradicating this major public-health problem.", "title": "Lessons from the past: managing insecticide resistance in malaria control and eradication programmes." }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." }, { "docid": "2138843", "text": "Diabetes is a group of chronic diseases characterized by hyperglycemia. Modern medical care uses a vast array of lifestyle and pharmaceutical interventions aimed at preventing and controlling hyperglycemia. In addition to ensuring the adequate delivery of glucose to the tissues of the body, treatment of diabetes attempts to decrease the likelihood that the tissues of the body are harmed by hyperglycemia. The importance of protecting the body from hyperglycemia cannot be overstated; the direct and indirect effects on the human vascular tree are the major source of morbidity and mortality in both type 1 and type 2 diabetes. Generally, the injurious effects of hyperglycemia are separated into macrovascular complications (coronary artery disease, peripheral arterial disease, and stroke) and microvascular complications (diabetic nephropathy, neuropathy, and retinopathy). It is important for physicians to understand the relationship between diabetes and vascular disease because the prevalence of diabetes continues to increase in the United States, and the clinical armamentarium for primary and secondary prevention of these complications is also expanding. ### Diabetic retinopathy Diabetic retinopathy may be the most common microvascular complication of diabetes. It is responsible for ∼ 10,000 new cases of blindness every year in the United States alone.1 The risk of developing diabetic retinopathy or other microvascular complications of diabetes depends on both the duration and the severity of hyperglycemia. Development of diabetic retinopathy in patients with type 2 diabetes was found to be related to both severity of hyperglycemia and presence of hypertension in the U.K. Prospective Diabetes Study (UKPDS), and most patients with type 1 diabetes develop evidence of retinopathy within 20 years of diagnosis.2,3 Retinopathy may begin to develop as early as 7 years before the diagnosis of diabetes in patients with type 2 diabetes.1 There are several proposed pathological mechanisms by which diabetes may lead …", "title": "Microvascular and Macrovascular Complications of Diabetes" }, { "docid": "34198460", "text": "BACKGROUND Given the high value placed on children in sub-Saharan Africa, previous research suggests that infertility increases the risk of psychological distress and marital conflict, encourages risky sexual behavior and deprives infertile individuals and couples of an important source of economic and social capital. This paper explores the implications of infertility for women in Ghana, West Africa. \n METHODS Semi-structured interview data collected from 107 women (aged 21-48 years, mean 33 years) seeking treatment in gynecological and obstetric clinics in Accra, Ghana, are analyzed. Based on iterative open coding of the interviews, the focus of the analysis is on mental health, marital instability, social interaction and gendered experiences. \n RESULTS Infertile women report facing severe social stigma, marital strain and a range of mental health difficulties. Many women feel that they shoulder a disproportionate share of the blame for infertility and, by extension, face greater social consequences than male partners for difficulties conceiving. Women who do not self-identify as infertile corroborate these findings, asserting that the social consequences of infertility are severe, particularly for women. \n CONCLUSIONS Infertility in Ghana has important consequences for social interactions, marital stability and mental health. These consequences are not perceived to be shared equally by Ghanaian men.", "title": "'Zero is not good for me': implications of infertility in Ghana." }, { "docid": "37248570", "text": "After a lapse of almost 40 years, malaria eradication is back on the global health agenda. Inspired by the Gates Malaria Forum in October 2007,1,2 key organizations are starting to debate the pros and cons of redefining eradication as an explicit goal of malaria control efforts. Attempts to eliminate malaria in southern Africa3 and Pacific Island states,4 and WHO’s Global Malaria Programme agenda and field manual for malaria elimination,5,6 foreshadow this movement towards another global attempt at eradication. When marking 60 years of WHO’s commitment to fighting malaria, we must ask what has been achieved, but also what can we learn from the past. We now know so much more about the biology of parasite-host responses, the determinants of endemicity and transmission dynamics, the social, economic and cultural implications of malaria at household, community and national levels, and the demands made upon health systems in endemic countries. We do not yet know how to synthesize and integrate this knowledge to achieve elimination in different settings. Regional malaria elimination campaigns were first conducted in the late 1940s, preparing the ground for the Global Malaria Eradication Program in 1955. This campaign succeeded in eliminating malaria from Europe, North America, the Caribbean and parts of Asia and South-Central America.7 But no major success occurred in sub-Saharan Africa, which accounts for 80% of today’s burden of malaria.8 When the aspiration of global eradication was abandoned in 1969, the main reasons for failure were technical challenges of executing the strategy especially in Africa. The post-eradication era from 1969 to 1991 focused on technical issues, and research and development for new tools, leading to advances in drug and vaccine development, vector control and insecticide-treated nets. These decades also brought a better understanding of the social, economic and cultural dimensions of malaria. There was little global support provided specifically for malaria control in the newly independent states of Africa that were struggling to establish broad-based health systems and primary health care. By 1992, the combination of a worsening malaria situation and promising technical developments led to renewed global focus on malaria control. The Roll Back Malaria initiative, launched by WHO in 1998, led to the Abuja Declaration in 2000, which defined progressive intervention coverage targets for control designed to eliminate malaria as a public health problem, while emphasizing that this could only be achieved through vastly strengthened local health systems.9 Increased resources through the Global Fund to Fight AIDS, Tuberculosis and Malaria, the World Bank’s Booster Program, the US President’s Malaria Initiative and many others has meant that this page is finally beginning to turn as intervention coverage is rising.10 It is against this background that we hear this call for elimination/eradication. The challenges remain formidable. We all know that elimination in Africa is not possible with current tools. But efforts must focus beyond simply developing better tools, to include how existing and future tools can be strategically combined for maximum synergistic effectiveness when integrated into different health and social systems prevailing in endemic areas. Aiming at elimination and eradication further implies the need for effective surveillance strategies to monitor progress (again a challenge for health systems). This in turn requires a better understanding of malaria transmission heterogeneity in a globalized world with rapidly changing dynamics in environment, climate, migration and transnational cooperation. Maintaining long-term momentum in the face of success in regional elimination while waiting to achieve final eradication will be a major challenge. Shrinking the map by starting on the malaria margins with the “easy-to-eliminate” settings will boost morale initially but may bring marginal benefits to such areas at the expense of those where the burden of malaria is highest. Any strategic plan – and here we learn again from the past – needs to be a synchronous global effort, locally adapted in all endemic areas. Although we lack sufficient knowledge, systems and tools to eradicate malaria today, we do have a window of political will and financial resources to refocus on the goal of effective control through universal coverage of appropriate interventions. The prerequisites for a successful start are: (i) a process of inclusive discourse to agree on global vision, goals and strategy; and (ii) a global plan for all endemic areas describing how, where and when we move from control towards elimination. What must distinguish the new era, especially in Africa, is a real rather than rhetorical emphasis on health systems. ■", "title": "Malaria eradication back on the table." }, { "docid": "409280", "text": "BACKGROUND Few data have evaluated physician adherence to cardiovascular disease (CVD) prevention guidelines according to physician specialty or patient characteristics, particularly gender. \n METHODS AND RESULTS An online study of 500 randomly selected physicians (300 primary care physicians, 100 obstetricians/gynecologists, and 100 cardiologists) used a standardized questionnaire to assess awareness of, adoption of, and barriers to national CVD prevention guidelines by specialty. An experimental case study design tested physician accuracy and determinants of CVD risk level assignment and application of guidelines among high-, intermediate-, or low-risk patients. Intermediate-risk women, as assessed by the Framingham risk score, were significantly more likely to be assigned to a lower-risk category by primary care physicians than men with identical risk profiles (P<0.0001), and trends were similar for obstetricians/gynecologists and cardiologists. Assignment of risk level significantly predicted recommendations for lifestyle and preventive pharmacotherapy. After adjustment for risk assignment, the impact of patient gender on preventive care was not significant except for less aspirin (P<0.01) and more weight management recommended (P<0.04) for intermediate-risk women. Physicians did not rate themselves as very effective in their ability to help patients prevent CVD. Fewer than 1 in 5 physicians knew that more women than men die each year from CVD. \n CONCLUSIONS Perception of risk was the primary factor associated with CVD preventive recommendations. Gender disparities in recommendations for preventive therapy were explained largely by the lower perceived risk despite similar calculated risk for women versus men. Educational interventions for physicians are needed to improve the quality of CVD preventive care and lower morbidity and mortality from CVD for men and women.", "title": "National study of physician awareness and adherence to cardiovascular disease prevention guidelines." }, { "docid": "7285256", "text": "COPD continues to cause a heavy health and economic burden both in the United States and around the world. Some of the risk factors for COPD are well-known and include smoking, occupational exposures, air pollution, airway hyperresponsiveness, asthma, and certain genetic variations, although many questions, such as why < 20% of smokers develop significant airway obstruction, remain. Precise definitions of COPD vary and are frequently dependent on an accurate diagnosis of the problem by a physician. These differences in the definition of COPD can have large effects on the estimates of COPD in the population. Furthermore, evidence that COPD represents several different disease processes with potentially different interventions continues to emerge. In most of the world, COPD prevalence and mortality are still increasing and likely will continue to rise in response to increases in smoking, particularly by women and adolescents. Resources aimed at smoking cessation and prevention, COPD education and early detection, and better treatment will be of the most benefit in our continuing efforts against this important cause of morbidity and mortality.", "title": "COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity." }, { "docid": "25499612", "text": "Despite its key role in determining the stability and intensity of malaria transmission, the infectiousness of human populations to mosquitoes has rarely been estimated. Field-based analyses of malaria transmission have frequently relied on the prevalence of asexual parasites or gametocytes as proxies for infectiousness. We now summarize empirical data on human infectiousness from Africa and Papua New Guinea. Over a wide range of transmission intensities there is little relationship between the infectiousness of human populations to vector mosquitoes and mosquito-to-human transmission intensity. We compare these data with the predictions of a stochastic simulation model of Plasmodium falciparum epidemiology. This model predicted little variation in the infectiousness of the human population for entomologic inoculation rates (EIRs) greater than approximately 10 infectious bites per year, demonstrating that the lack of relationship between the EIR and the infectious reservoir can be explained without invoking any effects of acquired transmission-blocking immunity. The near absence of field data from areas with an EIR < 10 per year precluded validation of the model predictions for low EIR values. These results suggest that interventions reducing mosquito-to-human transmission will have little or no effect on human infectiousness at the levels of transmission found in most rural areas of sub-Saharan Africa. Unless very large reductions in transmission can be achieved, measures to prevent mosquito-to-human transmission need to be complemented with interventions that reduce the density or infectiousness of blood stage parasites.", "title": "Infectiousness of malaria-endemic human populations to vectors." }, { "docid": "24077493", "text": "BACKGROUND With increasing restrictions placed on physician-industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician-industry interactions in clinical practice. \n METHODS AND FINDINGS We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry \"information,\" attended sponsored \"education,\" and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect \"promotion\" while benefiting from industry \"information. \" Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the first to our knowledge to provide a descriptive analysis of this literature. \n CONCLUSIONS Non-physician clinicians' generally positive attitudes toward industry interactions, despite their recognition of issues related to bias, suggest that industry interactions are normalized in clinical practice across non-physician disciplines. Industry relations policy should address all disciplines and be implemented consistently in order to mitigate conflicts of interest and address such interactions' potential to affect patient care. Please see later in the article for the Editors' Summary.", "title": "Interactions between Non-Physician Clinicians and Industry: A Systematic Review" } ]
853
Nonhuman primates are incapable of producing neutralizing antibodies in reponse to the Eilat virus (EILV) produced in mosquitos.
[ { "docid": "24922825", "text": "Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.", "title": "A chikungunya fever vaccine utilizing an insect-specific virus platform" } ]
[ { "docid": "152245", "text": "The genomic RNA of an alphavirus encodes four different nonstructural proteins, nsP1, nsP2, nsP3, and nsP4. The polyprotein P123 is produced when translation terminates at an opal termination codon between nsP3 and nsP4. The polyprotein P1234 is produced when translational readthrough occurs or when the opal termination codon has been replaced by a sense codon in the alphavirus genome. Evolutionary pressures appear to have maintained genomic sequences encoding both a stop codon (opal) and an open reading frame (arginine) as a general feature of the O'nyong-nyong virus (ONNV) genome, indicating that both are required at some point. Alternate replication of ONNVs in both vertebrate and invertebrate hosts may determine predominance of a particular codon at this locus in the viral quasispecies. However, no systematic study has previously tested this hypothesis in whole animals. We report here the results of the first study to investigate in a natural mosquito host the functional significance of the opal stop codon in an alphavirus genome. We used a full-length cDNA clone of ONNV to construct a series of mutants in which the arginine between nsP3 and nsP4 was replaced with an opal, ochre, or amber stop codon. The presence of an opal stop codon upstream of nsP4 nearly doubled (75.5%) the infectivity of ONNV over that of virus possessing a codon for the amino acid arginine at the corresponding position (39.8%). Although the frequency with which the opal virus disseminated from the mosquito midgut did not differ significantly from that of the arginine virus on days 8 and 10, dissemination did began earlier in mosquitoes infected with the opal virus. Although a clear fitness advantage is provided to ONNV by the presence of an opal codon between nsP3 and nsP4 in Anopheles gambiae, sequence analysis of ONNV RNA extracted from mosquito bodies and heads indicated codon usage at this position corresponded with that of the virus administered in the blood meal. These results suggest that while selection of ONNV variants is occurring, de novo mutation at the position between nsP3 and nsP4 does not readily occur in the mosquito. Taken together, these results suggest that the primary fitness advantage provided to ONNV by the presence of an opal codon between nsP3 and nsP4 is related to mosquito infectivity.", "title": "Effects of an opal termination codon preceding the nsP4 gene sequence in the O'Nyong-Nyong virus genome on Anopheles gambiae infectivity." }, { "docid": "10494012", "text": "Amodel that explains both the origin and sporadic nature of cancer argues that cancer cells are a chance result of events that cause genomic and epigenetic variability. The prevailing view is that these events are mutations that affect chromosome segregation or stability. However, genomic and epigenetic variability is also triggered by cell fusion, which is often caused by viruses. Yet, cells fused by viruses are considered harmless because they die. We provide evidence that a primate virus uses both viral and exosomal proteins involved in cell fusion to produce transformed proliferating human cells. Although normal cells indeed fail to proliferate after fusion, expression of an oncogene or a mutated tumor suppressor p53 in just one of the fusion partners is sufficient to produce heterogeneous progeny. We also show that this virus can produce viable oncogenically transformed cells by fusing cells that are otherwise destined to die. Therefore, we argue that viruses can contribute to carcinogenesis by fusing cells.", "title": "A primate virus generates transformed human cells by fusion" }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "23915841", "text": "The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.", "title": "Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection." }, { "docid": "19327364", "text": "Sera from 526 Old-World monkeys and apes, representing 50 species and 20 genera and living in US zoos and vivaria, were screened for antibodies to HTLV-I, HTLV-III/LAV, and simian-AIDS retrovirus, type I (SRV-I). Sera were screened initially by ELISA, and ELISA-positive sera, as well as ELISA-negative sera from cage contacts, were further tested by Western blotting. A large number of false-positive and a small number of false-negative ELISA sera were identified. Although most true positive reactions were directed to a single retrovirus, a number of individuals from 4 species were positive for more than one retrovirus. Specific seroreactivity to HTLV-I was found in 39/526 (7%) animals of 15 species. True positive reactions to SRV-I were found in 21/516 (4%) animals, including talapoins and 2 species of macaques. Specific serologic reactions to HTLV-III/LAV were detected in 23/526 (4%) monkeys. Many of the HTLV-III/LAV seropositive animals were from one mixed-species zoo exhibit, containing sooty mangabeys, mandrills, Kolb's guenons, and talapoins. A type D virus was isolated from the blood of 3/10 SRV-I antibody-positive Tonkeana macaques, but from none of 11 seropositive talapoins. A lentivirus was isolated from the blood of 4/7 HTLV-III/LAV seropositive sooty mangabeys, but not from seropositive talapoins in the same exhibit or from 2 seropositive colobus from another zoo. The sooty mangabey lentivirus produced generalized lymphadenopathy, leukopenia, and decreased levels of T4 lymphocytes in 2 experimentally infected rhesus macaques.", "title": "Seroepidemiologic survey of captive Old-World primates for antibodies to human and simian retroviruses, and isolation of a lentivirus from sooty mangabeys (Cercocebus atys)." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "21150010", "text": "Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.", "title": "Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer." }, { "docid": "3566945", "text": "Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.", "title": "Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage" }, { "docid": "12885341", "text": "West Nile virus (WNV) is the most common arthropod-borne flavivirus in the United States; however, the vector ligand(s) that participate in infection are not known. We now show that an Aedes aegypti C-type lectin, mosGCTL-1, is induced by WNV, interacts with WNV in a calcium-dependent manner, and facilitates infection in vivo and in vitro. A mosquito homolog of human CD45 in A. aegypti, designated mosPTP-1, recruits mosGCTL-1 to enable viral attachment to cells and to enhance viral entry. In vivo experiments show that mosGCTL-1 and mosPTP-1 function as part of the same pathway and are critical for WNV infection of mosquitoes. A similar phenomenon was also observed in Culex quinquefasciatus, a natural vector of WNV, further demonstrating that these genes participate in WNV infection. During the mosquito blood-feeding process, WNV infection was blocked in vivo with mosGCTL-1 antibodies. A molecular understanding of flaviviral-arthropod interactions may lead to strategies to control viral dissemination in nature.", "title": "A C-Type Lectin Collaborates with a CD45 Phosphatase Homolog to Facilitate West Nile Virus Infection of Mosquitoes" }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "1071991", "text": "Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.", "title": "Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines" }, { "docid": "16939583", "text": "Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.", "title": "2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size." }, { "docid": "45244537", "text": "Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.", "title": "Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone." }, { "docid": "9831859", "text": "Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.", "title": "Pancreatic stellate cells: partners in crime with pancreatic cancer cells." }, { "docid": "8063697", "text": "Pertussis is a highly contagious respiratory illness caused by the bacterial pathogen Bordetella pertussis. Pertussis rates in the United States have been rising and reached a 50-y high of 42,000 cases in 2012. Although pertussis resurgence is not completely understood, we hypothesize that current acellular pertussis (aP) vaccines fail to prevent colonization and transmission. To test our hypothesis, infant baboons were vaccinated at 2, 4, and 6 mo of age with aP or whole-cell pertussis (wP) vaccines and challenged with B. pertussis at 7 mo. Infection was followed by quantifying colonization in nasopharyngeal washes and monitoring leukocytosis and symptoms. Baboons vaccinated with aP were protected from severe pertussis-associated symptoms but not from colonization, did not clear the infection faster than naïve animals, and readily transmitted B. pertussis to unvaccinated contacts. Vaccination with wP induced a more rapid clearance compared with naïve and aP-vaccinated animals. By comparison, previously infected animals were not colonized upon secondary infection. Although all vaccinated and previously infected animals had robust serum antibody responses, we found key differences in T-cell immunity. Previously infected animals and wP-vaccinated animals possess strong B. pertussis-specific T helper 17 (Th17) memory and Th1 memory, whereas aP vaccination induced a Th1/Th2 response instead. The observation that aP, which induces an immune response mismatched to that induced by natural infection, fails to prevent colonization or transmission provides a plausible explanation for the resurgence of pertussis and suggests that optimal control of pertussis will require the development of improved vaccines.", "title": "Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model." }, { "docid": "6144337", "text": "Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.", "title": "AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System " }, { "docid": "9539248", "text": "Mosquito-borne viruses cause significant levels of morbidity and mortality in humans and domesticated animals. Maintenance of mosquito-borne viruses in nature requires a biological transmission cycle that involves alternating virus replication in a susceptible vertebrate and mosquito host. Although the vertebrate infection is acute and often associated with disease, continual transmission of these viruses in nature depends on the establishment of a persistent, nonpathogenic infection in the mosquito vector. An antiviral RNAi response has been shown to limit the replication of RNA viruses in flies. However, the importance of the RNAi pathway as an antiviral defense in mammals is unclear. Differences in the immune responses of mammals and mosquitoes may explain why these viruses are not generally associated with pathology in the invertebrate host. We identified virus-derived small interfering RNAs (viRNAs), 21 nt in length, in Aedes aegypti infected with the mosquito-borne virus, Sindbis (SINV). viRNAs had an asymmetric distribution that spanned the length of the SINV genome. To determine the role of viRNAs in controlling pathogenic potential, mosquitoes were infected with recombinant alphaviruses expressing suppressors of RNA silencing. Decreased survival was observed in mosquitoes in which the accumulation of viRNAs was suppressed. These results suggest that an exogenous siRNA pathway is essential to the survival of mosquitoes infected with alphaviruses and, thus, the maintenance of these viruses in nature.", "title": "Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes." }, { "docid": "22705234", "text": "The African green monkey (AGM) is one of many African species endemically infected with simian immunodeficiency virus (SIV). Like the other natural hosts, AGMs do not succumb to AIDS and understanding the basis for this resistance to disease progression would be of enormous theoretical and practical importance. Early efforts by our group that concentrated on identifying immune mechanisms presumed to keep the virus under control failed to find any obvious candidates. The presumption of virus control was invalidated by the finding that SIVagm replicates in AGMs with the same vigor as HIV-1 does in humans. Focus therefore shifted to identifying possible immunopathologic features present in disease susceptible hosts but absent in the AGM natural host. The apparent immunologic tolerance of AGMs to the SIVagm core protein led to the development of a hypothesis implicating anti-Gag antibodies in the formation of immune complexes, virus trapping in the lymph nodes and immune dysfunction. The idea proved difficult to test in vivo and present work focuses on the possibility that Gag tolerance at the T-cell level plays an important role in preventing the catastrophic demise of the immune system characteristic of immunodeficiency virus infection of the heterologous primate host.", "title": "The role of the immune response during SIVagm infection of the African green monkey natural host." }, { "docid": "14195528", "text": "The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.", "title": "Responses of primate frontal cortex neurons during natural vocal communication." } ]
854
Nonhypertensive people who are 55 years old have a 90% chance of developing hypertension during their lifetime.
[ { "docid": "12206390", "text": "CONTEXT The long-term risk for developing hypertension is best described by the lifetime risk statistic. The lifetime risk for hypertension and trends in this risk over time are unknown. \n OBJECTIVES To estimate the residual lifetime risk for hypertension in older US adults and to evaluate temporal trends in this risk. \n DESIGN, SETTING, AND PARTICIPANTS Community-based prospective cohort study of 1298 participants from the Framingham Heart Study who were aged 55 to 65 years and free of hypertension at baseline (1976-1998). \n MAIN OUTCOME MEASURES Residual lifetime risk (lifetime cumulative incidence not adjusted for competing causes of mortality) for hypertension, defined as blood pressure of 140/90 mm Hg or greater or use of antihypertensive medications. \n RESULTS The residual lifetime risks for developing hypertension and stage 1 high blood pressure or higher (greater-than-or-equal to 140/90 mm Hg regardless of treatment) were 90% in both 55- and 65-year-old participants. The lifetime probability of receiving antihypertensive medication was 60%. The risk for hypertension remained unchanged for women, but it was approximately 60% higher for men in the contemporary 1976-1998 period compared with an earlier 1952-1975 period. In contrast, the residual lifetime risk for stage 2 high blood pressure or higher (greater-than-or-equal to 160/100 mm Hg regardless of treatment) was considerably lower in both sexes in the recent period (35%-57% in 1952-1975 vs 35%-44% in 1976-1998), likely due to a marked increase in treatment of individuals with substantially elevated blood pressure. \n CONCLUSION The residual lifetime risk for hypertension for middle-aged and elderly individuals is 90%, indicating a huge public health burden. Although the decline in lifetime risk for stage 2 high blood pressure or higher represents a major achievement, efforts should be directed at the primary prevention of hypertension.", "title": "Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study." } ]
[ { "docid": "4506414", "text": "BACKGROUND The associations of blood pressure with the different manifestations of incident cardiovascular disease in a contemporary population have not been compared. In this study, we aimed to analyse the associations of blood pressure with 12 different presentations of cardiovascular disease. \n METHODS We used linked electronic health records from 1997 to 2010 in the CALIBER (CArdiovascular research using LInked Bespoke studies and Electronic health Records) programme to assemble a cohort of 1·25 million patients, 30 years of age or older and initially free from cardiovascular disease, a fifth of whom received blood pressure-lowering treatments. We studied the heterogeneity in the age-specific associations of clinically measured blood pressure with 12 acute and chronic cardiovascular diseases, and estimated the lifetime risks (up to 95 years of age) and cardiovascular disease-free life-years lost adjusted for other risk factors at index ages 30, 60, and 80 years. This study is registered at ClinicalTrials.gov, number NCT01164371. \n FINDINGS During 5·2 years median follow-up, we recorded 83,098 initial cardiovascular disease presentations. In each age group, the lowest risk for cardiovascular disease was in people with systolic blood pressure of 90-114 mm Hg and diastolic blood pressure of 60-74 mm Hg, with no evidence of a J-shaped increased risk at lower blood pressures. The effect of high blood pressure varied by cardiovascular disease endpoint, from strongly positive to no effect. Associations with high systolic blood pressure were strongest for intracerebral haemorrhage (hazard ratio 1·44 [95% CI 1·32-1·58]), subarachnoid haemorrhage (1·43 [1·25-1·63]), and stable angina (1·41 [1·36-1·46]), and weakest for abdominal aortic aneurysm (1·08 [1·00-1·17]). Compared with diastolic blood pressure, raised systolic blood pressure had a greater effect on angina, myocardial infarction, and peripheral arterial disease, whereas raised diastolic blood pressure had a greater effect on abdominal aortic aneurysm than did raised systolic pressure. Pulse pressure associations were inverse for abdominal aortic aneurysm (HR per 10 mm Hg 0·91 [95% CI 0·86-0·98]) and strongest for peripheral arterial disease (1·23 [1·20-1·27]). People with hypertension (blood pressure ≥140/90 mm Hg or those receiving blood pressure-lowering drugs) had a lifetime risk of overall cardiovascular disease at 30 years of age of 63·3% (95% CI 62·9-63·8) compared with 46·1% (45·5-46·8) for those with normal blood pressure, and developed cardiovascular disease 5·0 years earlier (95% CI 4·8-5·2). Stable and unstable angina accounted for most (43%) of the cardiovascular disease-free years of life lost associated with hypertension from index age 30 years, whereas heart failure and stable angina accounted for the largest proportion (19% each) of years of life lost from index age 80 years. \n INTERPRETATION The widely held assumptions that blood pressure has strong associations with the occurrence of all cardiovascular diseases across a wide age range, and that diastolic and systolic associations are concordant, are not supported by the findings of this high-resolution study. Despite modern treatments, the lifetime burden of hypertension is substantial. These findings emphasise the need for new blood pressure-lowering strategies, and will help to inform the design of randomised trials to assess them. \n FUNDING Medical Research Council, National Institute for Health Research, and Wellcome Trust.", "title": "Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people" }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "27711043", "text": "OBJECTIVES To describe the impact of musculoskeletal pain (MP); to compare management of MP by the population and by primary care physicians; and to identify misconceptions about treatment. \n METHODS 5803 people with MP and 1483 primary care physicians, randomly selected, in eight European countries were interviewed by telephone. A structured questionnaire was used to ask about usual management of MP and perceived benefits and risks of treatment. Current health status (SF-12) was also assessed. \n RESULTS From primary care physicians' perceptions, MP appears to be well managed. All presenting patients are offered some form of treatment, 90% or more doctors are trying to improve patients' quality of life, and most are aware and concerned about the risks of treatment with NSAIDs. From a population perspective, up to 27% of people with pain do not seek medical help and of those who do, several wait months/years before seeing a doctor. 55% or fewer patients who have seen a doctor are currently receiving prescription treatment for their pain. Communication between doctors and patients is poor; few patients are given information about their condition; and many have misconceptions about treatment. \n CONCLUSIONS Management of MP is similar across eight European countries, but there is discordance between physician and patient perspectives of care. Some people with pain have never sought medical help despite being in constant/daily pain. Those who do seek help receive little written information or explanation and many have misperceptions about the benefits and risks of treatment that limit their ability to actively participate in decisions about their care.", "title": "Musculoskeletal pain in Europe: its impact and a comparison of population and medical perceptions of treatment in eight European countries." }, { "docid": "24704139", "text": "OBJECTIVE The Diabetes Prevention Program (DPP) is a 27-center randomized clinical trial designed to evaluate the safety and efficacy of interventions that may delay or prevent development of diabetes in people at increased risk for type 2 diabetes. RESEARCH DESIGN AND METHODS Eligibility requirements were age > or = 25 years, BMI > or = 24 kg/m2 (> or = 22 kg/m2 for Asian-Americans), and impaired glucose tolerance plus a fasting plasma glucose of 5.3-6.9 mmol/l (or < or = 6.9 mmol for American Indians). Randomization of participants into the DPP over 2.7 years ended in June 1999. Baseline data for the three treatment groups--intensive lifestyle modification, standard care plus metformin, and standard care plus placebo--are presented for the 3,234 participants who have been randomized. \n RESULTS Of all participants , 55% were Caucasian, 20% were African-American, 16% were Hispanic, 5% were American Indian, and 4% were Asian-American. Their average age at entry was 51 +/- 10.7 years (mean +/- SD), and 67.7% were women. Moreover, 16% were < 40 years of age, and 20% were > or = 60 years of age. Of the women, 48% were postmenopausal. Men and women had similar frequencies of history of hypercholesterolemia (37 and 33%, respectively) or hypertension (29 and 26%, respectively). On the basis of fasting lipid determinations, 54% of men and 40% of women fit National Cholesterol Education Program criteria for abnormal lipid profiles. More men than women were current or former cigarette smokers or had a history of coronary heart disease. Furthermore, 66% of men and 71% of women had a first-degree relative with diabetes. Overall, BMI averaged 34.0 +/- 6.7 kg/m2 at baseline with 57% of the men and 73% of women having a BMI > or = 30 kg/m2. Average fasting plasma glucose (6.0 +/- 0.5 mmol/l) and HbA1c (5.9 +/- 0.5%) in men were comparable with values in women (5.9 +/- 0.4 mmol/l and 5.9 +/- 0.5%, respectively). \n CONCLUSIONS The DPP has successfully randomized a large cohort of participants with a wide distribution of age, obesity, and ethnic and racial backgrounds who are at high risk for developing type 2 diabetes. The study will examine the effects of interventions on the development of diabetes.", "title": "The Diabetes Prevention Program: baseline characteristics of the randomized cohort. The Diabetes Prevention Program Research Group." }, { "docid": "5151024", "text": "BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. \n METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. \n FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. \n INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. \n FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence.", "title": "Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study." }, { "docid": "39368721", "text": "OBJECTIVE to investigate the role of glucose tolerance in the development of hypertension. \n DESIGN Retrospective analysis of the results of a health check up in a group of clinically healthy middle aged men in the late 1960s (median year 1968). The subjects were invited to enter into a primary prevention trial for cardiovascular disease in 1974, when they underwent clinical examination for risk factors. The trial was completed in 1979, when the men were re-examined. Follow up was in 1986. \n SETTING Institute of Occupational Health, Helsinki, Finland and second department of medicine, University of Helsinki. SUBJECTS In all, 3490 men born during 1919-34 participated in a health check up in the late 1960s. In 1974, 1815 of these men who were clinically healthy were entered into a primary prevention trial for cardiovascular disease. On clinical examination 1222 of the men were considered at high risk of cardiovascular disease. Of these, 612 received an intervention and were excluded from the study. A total of 593 men were without risk factors. The study comprised all of the men who did not have an intervention (n = 1203). In 1979, 1120 men were re-examined, and in 1986 945 men attended follow up. There were two groups for analysis: one comprising all subjects and the other comprising only men who were normotensive in 1968 and for whom complete information was available. \n INTERVENTIONS By 1979, 103 men were taking antihypertensive drugs, and by 1986, 131 were taking antihypertensive drugs and 12 were taking drugs for hyperglycaemia. \n MAIN OUTCOME MEASURES Blood glucose concentration one hour after a glucose load, blood pressure, and body weight were measured in 1968, 1974, and 1979. In 1986 blood pressure and body weight were recorded. \n RESULTS Men who were hypertensive in 1986 had significantly higher blood pressures (p less than 0.0001) and (after adjustment for body mass index and alcohol intake) significantly higher blood glucose concentrations one hour after a glucose load at all examinations than those who were normotensive in 1986. Regression analysis showed that the higher the blood glucose concentration after a glucose load in 1968 the higher the blood pressure during the following years. Those men between the second and third tertiles of blood glucose concentration in 1968 had a significantly higher risk of developing hypertension (odds ratio 1.71, 95% confidence interval 1.05 to 2.77) compared with those below the first tertile. \n CONCLUSION In this study men who developed hypertension tended to have shown an increased intolerance to glucose up to 18 years before the clinical manifestation of their disorder. Blood glucose concentration one hour after a glucose load was an independent predictor of future hypertension.", "title": "Glucose tolerance and blood pressure: long term follow up in middle aged men." }, { "docid": "6748318", "text": "BACKGROUND In Spain, prophylactic vaccination against human papillomavirus (HPV) types 16 and 18 is being offered free-of-charge to one birth cohort of girls aged 11-14. Screening is opportunistic (annual/biannual) contributing to social and geographical disparities. \n METHODS A multi-HPV-type microsimulation model was calibrated to epidemiologic data from Spain utilising likelihood-based methods to assess the health and economic impact of adding HPV vaccination to cervical cancer screening. Strategies included (1) screening alone of women over age 25, varying frequency (every 1-5 years) and test (cytology, HPV DNA testing); (2) HPV vaccination of 11-year-old girls combined with screening. Outcomes included lifetime cancer risk, life expectancy, lifetime costs, number of clinical procedures and incremental cost-effectiveness ratios. \n RESULTS After the introduction of HPV vaccination, screening will need to continue, and strategies that incorporated HPV testing are more effective and cost-effective than those with cytology alone. For vaccinated girls, 5-year organised cytology with HPV testing as triage from ages 30 to 65 costs 24,350€ per year of life saved (YLS), assuming life-long vaccine immunity against HPV-16/18 by 3 doses with 90% coverage. Unvaccinated girls would benefit from organised cytology screening with HPV testing as triage; 5-year screening from ages 30 to 65 costs 16,060€/YLS and 4-year screening from ages 30 to 85 costs 38,250€/YLS. Interventions would be cost-effective depending on the cost-effectiveness threshold and the vaccine price. \n CONCLUSIONS In Spain, inequitable coverage and overuse of cytology make screening programmes inefficient. If high vaccination coverage among pre-adolescent girls is achieved, organised cytology screening with HPV triage starting at ages 30 to at least 65 every 4-5 years represents the best balance between costs and benefits.", "title": "Cost-effectiveness of human papillomavirus vaccination and screening in Spain." }, { "docid": "31889025", "text": "OBJECTIVES - To study the relative and population-attributable risks of hypertension for the development of congestive heart failure (CHF), to assess the time course of progression from hypertension to CHF, and to identify risk factors that contribute to the development of overt heart failure in hypertensive subjects. \n DESIGN - Inception cohort study. \n SETTING - General community. \n PARTICIPANTS - Original Framingham Heart Study and Framingham Offspring Study participants aged 40 to 89 years and free of CHF. To reflect more contemporary experience, the starting point of this study was January 1, 1970. EXPOSURE MEASURES - Hypertension (blood pressure of at least 140 mm Hg systolic or 90 mm Hg diastolic or current use of medications for treatment of high blood pressure) and other potential CHF risk factors were assessed at periodic clinic examinations. \n OUTCOME MEASURE - The development of CHF. \n RESULTS - A total of 5143 eligible subjects contributed 72422 person-years of observation. During up to 20.1 years of follow-up (mean, 14.1 years), there were 392 new cases of heart failure; in 91% (357/392), hypertension antedated the development of heart failure. Adjusting for age and heart failure risk factors in proportional hazards regression models, the hazard for developing heart failure in hypertensive compared with normotensive subjects was about 2-fold in men and 3-fold in women. Multivariable analyses revealed that hypertension had a high population-attributable risk for CHF, accounting for 39% of cases in men and 59% in women. Among hypertensive subjects, myocardial infarction, diabetes, left ventricular hypertrophy, and valvular heart disease were predictive of increased risk for CHF in both sexes. Survival following the onset of hypertensive CHF was bleak; only 24% of men and 31% of women survived 5 years. \n CONCLUSIONS - Hypertension was the most common risk factor for CHF, and it contributed a large proportion of heart failure cases in this population-based sample. Preventive strategies directed toward earlier and more aggressive blood pressure control are likely to offer the greatest promise for reducing the incidence of CHF and its associated mortality.", "title": "The progression from hypertension to congestive heart failure." }, { "docid": "24581365", "text": "CONTEXT The appropriate therapy for men with clinically localized prostate cancer is uncertain. A recent study suggested an increasing prostate cancer mortality rate for men who are alive more than 15 years following diagnosis. \n OBJECTIVE To estimate 20-year survival based on a competing risk analysis of men who were diagnosed with clinically localized prostate cancer and treated with observation or androgen withdrawal therapy alone, stratified by age at diagnosis and histological findings. \n DESIGN, SETTING, AND PATIENTS A retrospective population-based cohort study using Connecticut Tumor Registry data supplemented by hospital record and histology review of 767 men aged 55 to 74 years with clinically localized prostate cancer diagnosed between January 1, 1971, and December 31, 1984. Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. \n MAIN OUTCOME MEASURES Probability of mortality from prostate cancer or other competing medical conditions, given a patient's age at diagnosis and tumor grade. \n RESULTS The prostate cancer mortality rate was 33 per 1000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28-38) and 18 per 1000 person-years after 15 years of follow-up (95% CI, 10-29). The mortality rates for these 2 follow-up periods were not statistically different, after adjusting for differences in tumor histology (rate ratio, 1.1; 95% CI, 0.6-1.9). Men with low-grade prostate cancers have a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2-4, 6 deaths per 1000 person-years; 95% CI, 2-11). Men with high-grade prostate cancers have a high probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8-10, 121 deaths per 1000 person-years; 95% CI, 90-156). Men with Gleason score of 5 or 6 tumors have an intermediate risk of prostate cancer death. \n CONCLUSION The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis, which does not support aggressive treatment for localized low-grade prostate cancer.", "title": "20-year outcomes following conservative management of clinically localized prostate cancer." }, { "docid": "51972698", "text": "Problem Samoa has been struggling to address the burden of noncommunicable diseases at the health system, community and individual levels. Approach The World Health Organization (WHO) package of essential noncommunicable disease interventions for primary health care in low-resource settings was adopted in seven villages throughout Samoa in 2015. The National Steering Committee Members designed and implemented a screening process, and local facilitators and health-care workers collected health and lifestyle data. The WHO/International Society of Hypertension risk assessment was used on villagers older than 40 years to identify people at high risk of noncommunicable disease. Local setting Samoa is a small island developing state with increasing morbidity and mortality due to noncommunicable diseases. A national representative survey indicated that 50.1% (595/1188) of the Samoan adult population is at high risk of such diseases. High numbers of noncommunicable diseases are undiagnosed or untreated, because of shortage of health-care staff and lack of awareness of risk factors. Relevant changes The teams collected data from 2234 adults. For people older than 40 years, 6.7% (54/804) were identified as being at high-risk and were encouraged to seek treatment or manage risk factors. Community members developed an awareness programme to improve understanding of lifestyle risk factors. Lessons learnt Engaging community members was crucial in conducting a successful screening campaign. By identifying those villagers at high risk of developing noncommunicable diseases, early intervention was possible. Education improved awareness of the symptom-free nature of early-stage noncommunicable diseases.", "title": "Adapting the WHO package of essential noncommunicable disease interventions, Samoa" }, { "docid": "10692948", "text": "CONTEXT Early childhood introduction of nutritional habits aimed at atherosclerosis prevention is compatible with normal growth, but its effect on neurological development is unknown. \n OBJECTIVE To analyze how parental counseling aimed at keeping children's diets low in saturated fat and cholesterol influences neurodevelopment during the first 5 years of life. \n DESIGN Randomized controlled trial conducted between February 1990 and November 1996. \n SETTING Outpatient clinic of a university department in Turku, Finland. \n PARTICIPANTS A total of 1062 seven-month-old infants and their parents, recruited at well-baby clinics between 1990 and 1992. At age 5 years, 496 children still living in the city of Turku were available to participate in neurodevelopmental testing. \n INTERVENTION Participants were randomly assigned to receive individualized counseling aimed at limiting the child's fat intake to 30% to 35% of daily energy, with a saturated:monounsaturated:polyunsaturated fatty acid ratio of 1:1:1 and a cholesterol intake of less than 200 mg/d (n = 540) or usual health education (control group, n = 522). \n MAIN OUTCOME MEASURES Nutrient intake, serum lipid concentrations, and neurological development at 5 years, among children in the intervention vs control groups. \n RESULTS Absolute and relative intakes of fat, saturated fatty acids, and cholesterol among children in the intervention group were markedly less than the respective values of control children. Mean (SD) percentages of daily energy at age 5 years for the intervention vs control groups were as follows: for total fat, 30.6% (4.5%) vs 33.4% (4.4%) (P<. 001); and for saturated fat, 11.7% (2.3%) vs 14.5% (2.4%) (P<.001). Mean intakes of cholesterol were 164.2 mg (60.1 mg) and 192.5 mg (71. 9 mg) (P<.001) for the intervention and control groups, respectively. Serum cholesterol concentrations were continuously 3% to 5% lower in children in the intervention group than in children in the control group. At age 5 years, mean (SD) serum cholesterol concentration of the intervention group was 4.27 (0.63) mmol/L (165 [24] mg/dL) and of the control group, 4.41 (0.74) mmol/L (170 [29] mg/dL) (P =.04). Neurological development of children in the intervention group was at least as good as that of children in the control group. Relative risks for children in the intervention group to fail tests of speech and language skills, gross motor functioning plus perception, and visual motor skills were 0.95 (90% confidence interval [CI], 0.60-1.49), 0.95 (90% CI, 0.58-1.55), and 0.65 (90% CI, 0.39-1.08), respectively (P =.85,.86, and.16, respectively, vs control children). \n CONCLUSION Our data indicate that repeated child-targeted dietary counseling of parents during the first 5 years of a child's life lessens age-associated increases in children's serum cholesterol and is compatible with normal neurological development. JAMA. 2000;284:993-1000", "title": "Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: A randomized controlled trial." }, { "docid": "54490092", "text": "Blood pressure variability is one of the characteristic features of hypertension in the elderly. However, its clinical significance remains to be determined. We therefore examined the impact of blood pressure variability on the development of cardiovascular events in elderly hypertensive patients. A total of 106 consecutive hypertensive patients aged more than 60 years old (mean age, 73.9 +/- 8.1 years old; male, 54%), all of whom underwent 24-h ambulatory blood pressure monitoring, were followed up (median, 34 months; range, 3-60 months). During the follow-up period, 39 cardiovascular events were observed, including 14 cases of cerebral infarction and 7 cases of acute myocardial infarction. The coefficient of variation (CV) of 24-h systolic blood pressure (SBP) values was used as an index of blood pressure variability. The patients showed a mean CV value of 10.6%, and were divided into two groups according to this mean value as a cut-off point: a high CV group (n = 46) and a low CV group (n = 60). Although baseline clinical characteristics were similar in the two groups, Kaplan-Meier plots for event-free survival revealed that the rate of cardiovascular events was significantly higher in high CV group than in low CV group (p < 0.05). Cox's proportional hazards analysis showed that increased blood pressure variability (a high CV value of 24-h SBP) was an independent predictive variable for cardiovascular events. The CV value of daytime SBP and the SD value of both 24-h SBP and daytime SBP also had positive correlations with the onset of cardiovascular events. These results suggest that increased blood pressure variability may be an independent risk factor for cardiovascular events in elderly hypertensive patients.", "title": "Impact of blood pressure variability on cardiovascular events in elderly patients with hypertension." }, { "docid": "25562234", "text": "BACKGROUND Corin has been suggested to be associated with hypertension by cell- and animal-based studies. However, the association still lacks population-based evidence which critically promotes translation from basic research to clinical and preventive practice. Here, we aimed to explore the association in a general population of China. \n METHODS From January to May 2010, we conducted a cross-sectional study in 2,498 participants aged above 30 years, residing in Gusu district of Suzhou. Serum soluble corin and blood pressure were measured. \n RESULTS Hypertensive participants had a higher level of serum corin than nonhypertensive participants (median (interquartile range): 1,836.83 (1,497.85-2,327.87) pg/ml vs. 1,579.14 (1,322.18-1,956.82) pg/ml, P < 0.001). Higher serum corin was positively associated with prevalent hypertension (odds ratio (OR) = 2.01, P < 0.001). In the multiple analysis, participants in the third (OR = 1.43, P = 0.007) and fourth (OR = 1.96, P < 0.001) quartiles had significantly increased odds of hypertension compared to those in the lowest quartile of serum corin. ORs of hypertension positively and significantly increased with serum corin levels (P for trend <0.001). Further subgroup analysis showed that ORs of hypertension associated with high corin (over the median level of serum corin: 1,689.20 pg/ml) were still significant in subgroups by age, body mass index, total cholesterol, low-density lipoprotein cholesterol, and fasting plasma glucose (all P < 0.05). \n CONCLUSIONS Our study showed that hypertensive participants had an increased serum corin level compared to those without hypertension. This finding suggests that corin may play a role in the pathology of hypertension.", "title": "Association Between High Serum Soluble Corin and Hypertension: A Cross-Sectional Study in a General Population of China." }, { "docid": "32534305", "text": "OBJECTIVE Hyperinsulinemia may promote mammary carcinogenesis. Insulin resistance has been linked to an increased risk of breast cancer and is also characteristic of type 2 diabetes. We prospectively evaluated the association between type 2 diabetes and invasive breast cancer incidence in the Nurses' Health Study. RESEARCH DESIGN AND METHODS A total of 116,488 female nurses who were 30-55 years old and free of cancer in 1976 were followed through 1996 for the occurrence of type 2 diabetes and through 1998 for incident invasive breast cancer, verified by medical records and pathology reports. \n RESULTS During 2.3 million person-years of follow-up, we identified 6,220 women with type 2 diabetes and 5,189 incident cases of invasive breast cancer. Women with type 2 diabetes had a modestly elevated incidence of breast cancer (hazard ratio [HR] = 1.17; 95% CI 1.01-1.35) compared with women without diabetes, independent of age, obesity, family history of breast cancer, history of benign breast disease, reproductive factors, physical activity, and alcohol consumption. This association was apparent among postmenopausal women (1.16; 0.98-1.62) but not premenopausal women (0.83; 0.48-1.42). The association was predominant among women with estrogen receptor-positive breast cancer (1.22; 1.01-1.47). \n CONCLUSIONS Women with type 2 diabetes may have a slightly increased risk of breast cancer.", "title": "Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study." }, { "docid": "13071728", "text": "BACKGROUND The World Health Organization (WHO) released revised guidelines in 2015 recommending that all people living with HIV, regardless of CD4 count, initiate antiretroviral therapy (ART) upon diagnosis. However, few studies have projected the global resources needed for rapid scale-up of ART. Under the Health Policy Project, we conducted modeling analyses for 97 countries to estimate eligibility for and numbers on ART from 2015 to 2020, along with the facility-level financial resources required. We compared the estimated financial requirements to estimated funding available. \n METHODS AND FINDINGS Current coverage levels and future need for treatment were based on country-specific epidemiological and demographic data. Simulated annual numbers of individuals on treatment were derived from three scenarios: (1) continuation of countries' current policies of eligibility for ART, (2) universal adoption of aspects of the WHO 2013 eligibility guidelines, and (3) expanded eligibility as per the WHO 2015 guidelines and meeting the Joint United Nations Programme on HIV/AIDS \"90-90-90\" ART targets. We modeled uncertainty in the annual resource requirements for antiretroviral drugs, laboratory tests, and facility-level personnel and overhead. We estimate that 25.7 (95% CI 25.5, 26.0) million adults and 1.57 (95% CI 1.55, 1.60) million children could receive ART by 2020 if countries maintain current eligibility plans and increase coverage based on historical rates, which may be ambitious. If countries uniformly adopt aspects of the WHO 2013 guidelines, 26.5 (95% CI 26.0 27.0) million adults and 1.53 (95% CI 1.52, 1.55) million children could be on ART by 2020. Under the 90-90-90 scenario, 30.4 (95% CI 30.1, 30.7) million adults and 1.68 (95% CI 1.63, 1.73) million children could receive treatment by 2020. The facility-level financial resources needed for scaling up ART in these countries from 2015 to 2020 are estimated to be US$45.8 (95% CI 45.4, 46.2) billion under the current scenario, US$48.7 (95% CI 47.8, 49.6) billion under the WHO 2013 scenario, and US$52.5 (95% CI 51.4, 53.6) billion under the 90-90-90 scenario. After projecting recent external and domestic funding trends, the estimated 6-y financing gap ranges from US$19.8 billion to US$25.0 billion, depending on the costing scenario and the U.S. President's Emergency Plan for AIDS Relief contribution level, with the gap for ART commodities alone ranging from US$14.0 to US$16.8 billion. The study is limited by excluding above-facility and other costs essential to ART service delivery and by the availability and quality of country- and region-specific data. \n CONCLUSIONS The projected number of people receiving ART across three scenarios suggests that countries are unlikely to meet the 90-90-90 treatment target (81% of people living with HIV on ART by 2020) unless they adopt a test-and-offer approach and increase ART coverage. Our results suggest that future resource needs for ART scale-up are smaller than stated elsewhere but still significantly threaten the sustainability of the global HIV response without additional resource mobilization from domestic or innovative financing sources or efficiency gains. As the world moves towards adopting the WHO 2015 guidelines, advances in technology, including the introduction of lower-cost, highly effective antiretroviral regimens, whose value are assessed here, may prove to be \"game changers\" that allow more people to be on ART with the resources available.", "title": "The HIV Treatment Gap: Estimates of the Financial Resources Needed versus Available for Scale-Up of Antiretroviral Therapy in 97 Countries from 2015 to 2020" }, { "docid": "3801693", "text": "BACKGROUND Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine. There is growing evidence that TGF-β1 is involved in the pathogenesis of hypertension and the development of target organ damage in hypertensives. Although several studies have shown that TGF-β1 induced vascular hypertrophy and remodelling in various vascular diseases, there are no longitudinal data on hypertension in the epidemiological studies. The present study tested the hypothesis whether elevated TGF-β1 levels can predict the development of hypertension. \n METHODS In 2002-2004, 528 subjects received health examinations in Uku town, southwestern Japan. We examined blood pressure (BP), body mass index, and blood test. Data on fasting plasma TGF-β1 were obtained from 528 individuals. Of these, 149 normotensives (BP <140/90 mm Hg without antihypertensive medications) at baseline were followed-up for 14 years. \n RESULTS The receiver-operating characteristic curve was used and the calculated cutoff value was 8.9 ng/ml. Of 149 normotensives at baseline, 59 subjects developed hypertension. Plasma TGF-β1 levels were significantly associated with the development of hypertension after adjustment for confounding factors. To further examine the association between them, we performed logistic regression analysis. We divided the baseline plasma TGF-β1 levels into 2 groups using a cutoff value. The significant high odds ratio [3.582 (95% confidence interval, 1.025-12.525)] for the development of hypertension was found in the highest group of TGF-β1 level vs. the lowest group after adjustment for confounders. \n CONCLUSIONS This is the first report demonstrating the causal relationship between them. Elevated plasma TGF-β1 levels predicted the development of hypertension in normotensives in a population of community-dwelling Japanese.", "title": "Elevated Plasma Transforming Growth Factor &bgr;1 Levels Predict the Development of Hypertension in Normotensives: The 14-Year Follow-Up Study" }, { "docid": "5850219", "text": "BACKGROUND Population-based estimates of prevalence, risk distribution, and intervention uptake inform delivery of control programmes for sexually transmitted infections (STIs). We undertook the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) after implementation of national sexual health strategies, and describe the epidemiology of four STIs in Britain (England, Scotland, and Wales) and the uptake of interventions. \n METHODS Between Sept 6, 2010 and Aug 31, 2012 , we did a probability sample survey of 15,162 women and men aged 16-74 years in Britain. Participants were interviewed with computer-assisted face-to-face and self-completion questionnaires. Urine from a sample of participants aged 16-44 years who reported at least one sexual partner over the lifetime was tested for the presence of Chlamydia trachomatis, type-specific human papillomavirus (HPV), Neisseria gonorrhoeae, and HIV antibody. We describe age-specific and sex-specific prevalences of infection and intervention uptake, in relation to demographic and behavioural factors, and explore changes since Natsal-1 (1990-91) and Natsal-2 (1999-2001). \n FINDINGS Of 8047 eligible participants invited to provide a urine sample, 4828 (60%) agreed. We excluded 278 samples, leaving 4550 (94%) participants with STI test results. Chlamydia prevalence was 1·5% (95% CI 1·1-2·0) in women and 1·1% (0·7-1·6) in men. Prevalences in individuals aged 16-24 years were 3·1% (2·2-4·3) in women and 2·3% (1·5-3·4) in men. Area-level deprivation and higher numbers of partners, especially without use of condoms, were risk factors. However, 60·4% (45·5-73·7) of chlamydia in women and 43·3% (25·9-62·5) in men was in individuals who had had one partner in the past year. Among sexually active 16-24-year-olds, 54·2% (51·4-56·9) of women and 34·6% (31·8-37·4) of men reported testing for chlamydia in the past year, with testing higher in those with more partners. High-risk HPV was detected in 15·9% (14·4-17·5) of women, similar to in Natsal-2. Coverage of HPV catch-up vaccination was 61·5% (58·2-64·7). Prevalence of HPV types 16 and 18 in women aged 18-20 years was lower in Natsal-3 than Natsal-2 (5·8% [3·9-8·6] vs 11·3% [6·8-18·2]; age-adjusted odds ratio 0·44 [0·21-0·94]). Gonorrhoea (<0·1% prevalence in women and men) and HIV (0·1% prevalence in women and 0·2% in men) were uncommon and restricted to participants with recognised high-risk factors. Since Natsal-2, substantial increases were noted in attendance at sexual health clinics (from 6·7% to 21·4% in women and from 7·7% to 19·6% in men) and HIV testing (from 8·7% to 27·6% in women and from 9·2% to 16·9% in men) in the past 5 years. \n INTERPRETATION STIs were distributed heterogeneously, requiring general and infection-specific interventions. Increases in testing and attendance at sexual health clinics, especially in people at highest risk, are encouraging. However, STIs persist both in individuals accessing and those not accessing services. Our findings provide empirical evidence to inform future sexual health interventions and services. \n FUNDING Grants from the UK Medical Research Council and the Wellcome Trust, with support from the Economic and Social Research Council and the Department of Health.", "title": "Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal)" }, { "docid": "25806385", "text": "The World Health Organization/EURO Multicentre Project on Parasuicide is part of the action to implement target 12 of the WHO programme, \"Health for All by the Year 2000', for the European region. Sixteen centres in 13 European countries are participating in the monitoring aspect of the project, in which trends in the epidemiology of suicide attempts are assessed. The highest average male age-standardized rate of suicide attempts was found for Helsinki, Finland (314/100,000), and the lowest rate (45/100,000) was for Guipuzcoa, Spain, representing a sevenfold difference. The highest average female age-standardized rate was found for Cergy-Pontoise, France (462/100,000), and the lowest (69/100,000) again for Guipuzcoa, Spain. With only one exception (Helsinki), the person-based suicide attempt rates were higher among women than among men. In the majority of centres, the highest person-based rates were found in the younger age groups. The rates among people aged 55 years or over were generally the lowest. For the majority of the centres, the rates for individuals aged 15 years or over decreased between 1989 and 1992. The methods used were primarily \"soft' (poisoning) or cutting. More than 50% of the suicide attempters made more than one attempt, and nearly 20% of the second attempts were made within 12 months after the first attempt. Compared with the general population, suicide attempters more often belong to the social categories associated with social destabilization and poverty.", "title": "Attempted suicide in Europe: rates, trends and sociodemographic characteristics of suicide attempters during the period 1989-1992. Results of the WHO/EURO Multicentre Study on Parasuicide." }, { "docid": "6309659", "text": "CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. \n OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. \n DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. \n PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. \n MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. \n RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. \n CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.", "title": "Reproductive period and risk of dementia in postmenopausal women." } ]
855
Noninvasive positive pressure ventilation is not predictive of acute respiratory failure after solid organ transplantation.
[ { "docid": "8190282", "text": "CONTEXT Noninvasive ventilation (NIV) has been associated with lower rates of endotracheal intubation in populations of patients with acute respiratory failure. \n OBJECTIVE To compare NIV with standard treatment using supplemental oxygen administration to avoid endotracheal intubation in recipients of solid organ transplantation with acute hypoxemic respiratory failure. \n DESIGN AND SETTING Prospective randomized study conducted at a 14-bed, general intensive care unit of a university hospital. \n PATIENTS Of 238 patients who underwent solid organ transplantation from December 1995 to October 1997, 51 were treated for acute respiratory failure. Of these, 40 were eligible and 20 were randomized to each group. \n INTERVENTION Noninvasive ventilation vs standard treatment with supplemental oxygen administration. \n MAIN OUTCOME MEASURES The need for endotracheal intubation and mechanical ventilation at any time during the study, complications not present on admission, duration of ventilatory assistance, length of hospital stay, and intensive care unit mortality. \n RESULTS The 2 groups were similar at study entry. Within the first hour of treatment, 14 patients (70%) in the NIV group, and 5 patients (25%) in the standard treatment group improved their ratio of the PaO2 to the fraction of inspired oxygen (FIO2). Over time, a sustained improvement in PaO2 to FIO2 was noted in 12 patients (60%) in the NIV group, and in 5 patients (25%) randomized to standard treatment (P = .03). The use of NIV was associated with a significant reduction in the rate of endotracheal intubation (20% vs 70%; P = .002), rate of fatal complications (20% vs 50%; P = .05), length of stay in the intensive care unit by survivors (mean [SD] days, 5.5 [3] vs 9 [4]; P = .03), and intensive care unit mortality (20% vs 50%; P = .05). Hospital mortality did not differ. \n CONCLUSIONS These results indicate that transplantation programs should consider NIV in the treatment of selected recipients of transplantation with acute respiratory failure.", "title": "Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial." } ]
[ { "docid": "40867854", "text": "In uncontrolled studies, noninvasive positive pressure ventilation (NPPV) was found useful in avoiding endotracheal intubation in patients with acute respiratory failure (ARF) caused by severe community-acquired pneumonia (CAP). We conducted a prospective, randomized study comparing standard treatment plus NPPV delivered through a face mask to standard treatment alone in patients with severe CAP and ARF. Patients fitting the American Thoracic Society criteria for severe CAP were included in presence of ARF (refractory hypoxemia and/or hypercapnia with acidosis). Exclusion criteria were: severe hemodynamic instability, requirement for emergent cardiopulmonary resuscitation, home mechanical ventilation or oxygen long-term supplementation, concomitant severe disease with a low expectation of life, inability to expectorate or contraindications to the use of the mask. Fifty-six consecutive patients (28 in each arm) were enrolled, and the two groups were similar at study entry. The use of NPPV was well tolerated, safe, and associated with a significant reduction in respiratory rate, need for endotracheal intubation (21% versus 50%; p = 0.03), and duration of intensive care unit (ICU) stay (1.8 ± 0.7 d versus 6 ± 1.8 d; p = 0.04). The two groups had a similar intensity of nursing care workload, time interval from study entry to endotracheal intubation, duration of hospitalization, and hospital mortality. Among patients with chronic obstructive pulmonary disease (COPD), those randomized to NPPV had a lower intensity of nursing care workload (p = 0.04) and improved 2-mo survival (88.9% versus 37.5%; p = 0.05). We conclude that in selected patients with ARF caused by severe CAP, NPPV was associated with a significant reduction in the rate of endotracheal intubation and duration of ICU stay. A 2-mo survival advantage was seen in patients with COPD.", "title": "Acute respiratory failure in patients with severe community-acquired pneumonia: a prospective randomized evaluation of noninvasive ventilation." }, { "docid": "14361849", "text": "IntroductionWe conducted the present study to investigate the potential beneficial and adverse effects of continuous positive airway pressure (CPAP) compared with bi-level positive airway pressure (BiPAP) noninvasive ventilation in patients with cardiogenic pulmonary oedema. MethodWe included randomized controlled studies comparing CPAP and BiPAP treatment in patients with cardiogenic pulmonary oedema from the Cochrane Controlled Trials Register (2005 issue 3), and EMBASE and MEDLINE databases (1966 to 1 December 2005), without language restriction. Two reviewers reviewed the quality of the studies and independently performed data extraction. ResultsSeven randomized controlled studies, including a total of 290 patients with cardiogenic pulmonary oedema, were considered. The hospital mortality (relative risk [RR] 0.76, 95% confidence interval [CI] 0.32–1.78; P = 0.52; I2 = 0%) and risk for requiring invasive ventilation (RR 0.80, 95% CI 0.33–1.94; P = 0.62; I2 = 0%) were not significantly different between patients treated with CPAP and those treated with BiPAP. Stratifying studies that used either fixed or titrated pressure during BiPAP treatment and studies involving patients with or without hypercapnia did not change the results. The duration of noninvasive ventilation required until the pulmonary oedema resolved (weighted mean difference [WMD] in hours = 3.65, 95% CI -12.12 to +19.43; P = 0.65, I2 = 0%) and length of hospital stay (WMD in days = -0.04, 95% CI -2.57 to +2.48; P = 0.97, I2 = 0%) were also not significantly different between the two groups. Based on the limited data available, there was an insignificant trend toward an increase in new onset acute myocardial infarction in patients treated with BiPAP (RR 2.10, 95% CI 0.91–4.84; P = 0.08; I2 = 25.3%).ConclusionBiPAP does not offer any significant clinical benefits over CPAP in patients with acute cardiogenic pulmonary oedema. Until a large randomized controlled trial shows significant clinical benefit and cost-effectiveness of BiPAP versus CPAP in patients with acute cardiogenic pulmonary oedema, the choice of modality will depend mainly on the equipment available.", "title": "A comparison of continuous and bi-level positive airway pressure non-invasive ventilation in patients with acute cardiogenic pulmonary oedema: a meta-analysis" }, { "docid": "19464037", "text": "OBJECTIVE To describe outcomes and identify variables associated with hospital and 1-year survival for patients admitted to an intensive care unit (ICU) with an acute exacerbation of chronic obstructive pulmonary disease (COPD). \n DESIGN Prospective, multicenter, inception cohort study. \n SETTING Forty-two ICUs at 40 US hospitals. \n PATIENTS A total of 362 admissions for COPD exacerbation selected from the Acute Physiology and Chronic Health Evaluation (APACHE) III database of 17,440 ICU admissions. \n MEASUREMENTS AND RESULTS Hospital mortality for the 362 admissions was 24%. For the 167 patients aged 65 years or older, mortality was 30% at hospital discharge, 41% at 90 days, 47% at 180 days, and 59% at 1 year. Median survival for all patients was 224 days, and median survival for the patients who died within 1 year was 30.5 days. On multiple regression analysis, variables associated with hospital mortality included age, severity of respiratory and nonrespiratory organ system dysfunction, and hospital length of stay before ICU admission. Development of nonrespiratory organ system dysfunction was the major predictor of hospital mortality (60% of total explanatory power) and 180-day outcomes (54% of explanatory power). Respiratory physiological variables (respiratory rate, serum pH, PaCO2, PaO2, and alveolar-arterial difference in partial pressure of oxygen [PAO2-PaO2]) indicative of advanced dysfunction were more strongly associated with 180-day mortality rates (22% of explanatory power) than hospital death rates (4% of explanatory power). After controlling for severity of illness, mechanical ventilation at ICU admission was not associated with either hospital mortality or subsequent survival. \n CONCLUSIONS Patients with COPD admitted to an ICU for an acute exacerbation have a substantial hospital mortality (24%). For patients aged 65 years or older, mortality doubles in 1 year from 30% to 59%. Hospital and longer-term mortality is closely associated with development of nonrespiratory organ system dysfunction; severity of the underlying respiratory function substantially influences mortality following hospital discharge. The need for mechanical ventilation at ICU admission did not influence either short- or long-term outcomes. Physicians should be aware of these relationships when making treatment decisions or evaluating new therapies.", "title": "Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease." }, { "docid": "38735355", "text": "Alveolar hypoxia and hypoxic vasoconstriction lead to trapping of sickle cells within the pulmonary vasculature. Improving alveolar ventilation and oxygenation may improve the outcome of acute chest syndrome (ACS). Prospective randomized single-center open study from November 1998 to February 2002 to test whether noninvasive ventilation (NIV) was more effective than oxygen alone in improving oxygenation on day 3 in adults with ACS and to evaluate the effects on pain, transfusion requirements, and length of stay. Seventy-one consecutive ACS episodes in 67 patients were randomly allocated to oxygen (n = 36) or NIV (n = 35) for 3 days in a medical step-down unit. Baseline respiratory rate and pain score were higher in the NIV group. NIV promptly lowered the respiratory rate, raised $$ {\\text{Pa}}_{{\\text{O}_{2}}} $$ , and decreased alveolar–arterial oxygen gradient $$ (({\\text{A}} - {\\text{a}})_{{{\\text{O}}_{ 2} }} ) $$ , which remained unchanged with oxygen alone. $$ {\\text{Pa}}_{{{\\text{CO}}_{ 2} }} $$ significantly worsened only in the oxygen group. On day 3, the groups did not differ regarding the proportion of episodes with normal $$ {\\text{Pa}}_{{{\\text{O}}_{ 2} }} $$ (35% with NIV and 25% with oxygen; P = 0.5) or $$ (({\\text{A}} - {\\text{a}})_{{{\\text{O}}_{ 2} }} ) $$ . Patient satisfaction and compliance were lower with NIV. No differences were noted in pain relief, transfusions, or length of stay. In the subgroup of patients with severe hypoxemia $$ ( {\\text{Pa}}_{{{\\text{O}}_{ 2} }} \\le 6 5\\,{\\text{mmHg)}} $$ , physiological variables also improved faster with NIV, the differences being slightly more pronounced. Respiratory rate and gas exchange improved faster with NIV. However, NIV failed to significantly reduce the number of patients remaining hypoxemic at day 3, and was associated with greater patient discomfort.", "title": "Early intermittent noninvasive ventilation for acute chest syndrome in adults with sickle cell disease: a pilot study" }, { "docid": "13843341", "text": "OBJECTIVE To evaluate the cost effectiveness of standard treatment with and without the addition of ward based non-invasive ventilation in patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease. \n DESIGN Incremental cost effectiveness analysis of a randomised controlled trial. \n SETTING Medical wards in 14 hospitals in the United Kingdom. \n PARTICIPANTS The trial comprised 236 patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease and mild to moderate acidosis (pH 7.25-7.35) secondary to respiratory failure. The economic analysis compared the costs of treatment that these patients received after randomisation. \n MAIN OUTCOME MEASURE Incremental cost per in-hospital death. \n RESULTS 24/118 died in the group receiving standard treatment and 12/118 in the group receiving non-invasive ventilation (P=0.05). Allocation to the group receiving non-invasive ventilation was associated with a reduction in costs of 49362 pounds sterling (78741 dollars; 73109 euros), mainly through reduced use of intensive care units. The incremental cost effectiveness ratio was -645 pounds sterling per death avoided (95% confidence interval -2310 pounds sterling to 386 pounds sterling), indicating a dominant (more effective and less costly) strategy. Modelling of these data indicates that a typical UK hospital providing a non-invasive ventilation service will avoid six deaths and three to nine admissions to intensive care units per year, with an associated cost reduction of 12000-53000 pounds sterling per year. \n CONCLUSIONS Non-invasive ventilation is a highly cost effective treatment that both reduced total costs and improved mortality in hospital.", "title": "Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial." }, { "docid": "6157837", "text": "Angiotensin converting enzyme (ACE) inhibitors are now one of the most frequently used classes of antihypertensive drugs. Beyond their utility in the management of hypertension, their use has been extended to the long-term management of patients with congestive heart failure (CHF), as well as diabetic and nondiabetic nephropathies. Although ACE inhibitor therapy usually improves renal blood flow (RBF) and sodium excretion rates in CHF and reduces the rate of progressive renal injury in chronic renal disease, its use can also be associated with a syndrome of “functional renal insufficiency” and/or hyperkalemia. This form of acute renal failure (ARF) most commonly develops shortly after initiation of ACE inhibitor therapy but can be observed after months or years of therapy, even in the absence of prior ill effects. ARF is most likely to occur when renal perfusion pressure cannot be sustained because of substantial decreases in mean arterial pressure (MAP) or when glomerular filtration rate (GFR) is highly angiotensin II (Ang II) dependent. Conditions that predict an adverse hemodynamic effect of ACE inhibitors in patients with CHF are preexisting hypotension and low cardiac filling pressures. The GFR is especially dependent on Ang II during extracellular fluid (ECF) volume depletion, high-grade bilateral renal artery stenosis, or stenosis of a dominant or single kidney, as in a renal transplant recipient. Understanding the pathophysiological mechanisms and the common risk factors for ACE inhibitor–induced functional ARF is critical, because preventive strategies for ARF exist, and if effectively used, they may permit use of these compounds in a less restricted fashion. Under normal physiological conditions, renal autoregulation adjusts renal vascular resistance, so that RBF and GFR remain constant over a wide range of MAPs.1 The intrinsic renal autoregulation mechanism is adjusted by Ang II and the sympathetic nervous system. When renal perfusion pressure falls (as in …", "title": "Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association." }, { "docid": "30398773", "text": "Alloimmune lung syndromes (allo-LS), including idiopathic pneumonia syndrome, bronchiolitis obliterans syndrome, and bronchiolitis obliterans organizing pneumonia, are severe complications after hematopoietic stem cell transplantation (HSCT). In our cohort of 110 pediatric patients, 30 had allo-LS (27.3%), 18 with idiopathic pneumonia syndrome and 12 with bronchiolitis obliterans syndrome. Multivariate analysis showed that respiratory viral infection early after HSCT is an important predictor for the development of allo-LS (P <.0001). This was true for all viruses tested. In multivariate analysis, allo-LS was the only predictor for higher mortality (P = .04). Paradoxically, prolonged administration of immunosuppressive agents because of acute graft-versus-host disease had a protective effect on the development of allo-LS (P = .004). We hypothesize that early infection of the respiratory tract with a common cold virus makes the lungs a target for alloimmunity.", "title": "Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic alloimmune lung syndromes." }, { "docid": "13464392", "text": "OBJECTIVE Hypoproteinemia, fluid retention, and weight gain are associated with development of acute lung injury and mortality in critically ill patients, without proof of cause and effect. We designed a clinical trial to determine whether diuresis and colloid replacement in hypoproteinemic patients with acute lung injury would improve pulmonary physiology. \n DESIGN Prospective, randomized, double-blind, placebo-controlled trial. \n SETTING All adult intensive care units from two university hospitals. \n PATIENTS Thirty-seven mechanically-ventilated patients with acute lung injury and serum total protein </=5.0 g/dL. INTERVENTIONS Five-day protocolized regimen of 25 g of human serum albumin every 8 hrs with continuous infusion furosemide, or dual placebo, targeted to diuresis, weight loss, and serum total protein. \n MEASUREMENTS AND MAIN RESULTS Measured outcomes included change in weight, serum total protein, fluid balance, hemodynamics, respiratory system compliance, and oxygenation. Baseline characteristics were similar between groups (treatment, n = 19; control, n = 18), with trauma being the major cause of acute lung injury. Diuresis and weight loss over 5 days (5.3 kg more in the treatment group, p =.04) was accompanied by improvements in the Pao2/Fio2 ratio in the treatment group within 24 hrs (from 171 to 236, p =.02). Respiratory mechanics were unchanged. Mean arterial pressure increased from 80 to 88 mm Hg (p =.10), and heart rate decreased from 110 to 95 beats/min (p =.008) over time in the treatment group. No difference in mortality was observed, with favorable trends in measures of intensive care. \n CONCLUSIONS Albumin and furosemide therapy improves fluid balance, oxygenation, and hemodynamics in hypoproteinemic patients with acute lung injury. Determining the effect of this simple therapy on cost, outcomes, and other patient populations requires further study.", "title": "Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury." }, { "docid": "34208005", "text": "OBJECTIVES The original objective was to determine whether the use of bilevel positive airway pressure (BiPAP) ventilation would reduce the need for endotracheal intubation, the length of hospital stay, and hospital charges in patients with status asthmaticus. The development of physician treatment bias made patient enrollment difficult. The article subsequently describes the use of Bayesian statistics to explain study results when this bias occurs. \n METHODS This study was a prospective, randomized controlled clinical trial conducted over a 34.5-month period at an urban university hospital with an emergency department census of 94,000 annual visits. Patients remaining in status asthmaticus after initial standard treatment with inhaled beta-agonists and steroids were randomized to receive BiPAP ventilation plus standard treatment versus standard treatment alone (non-BiPAP), with intubation for either group as needed. Patients with concurrent cardiac or other pulmonary diseases were excluded. The primary outcome measures were endotracheal intubation rate and length of hospital stay. Secondary outcome measures included vital signs (respiratory rate, pulse rate, blood pressure), changes in expiratory peak flow, changes in pulse oximetry values, and hospital charges. Data were analyzed using Fisher's exact test, Mann-Whitney tests, and Bayesian statistics. For patients enrolled in the study more than once, data analysis was performed on the first enrollment only. \n RESULTS Nineteen patients were enrolled in the BiPAP group and 16 patients in the non-BiPAP group. Patients were frequently enrolled more than once and the data from the subsequent enrollments were excluded from the analysis. A marked decrease in enrollment, due to physician treatment bias, led to a premature termination of the study. Demographics showed that the groups were similar in age, sex, initial peak flow rate, and arterial blood gas measurements. There was a 7.3% increase (95% CI = -22 to +45) in the intubation rate in the non-BiPAP group (n = 2) compared with that for the BiPAP group (n = 1). No significant difference was seen in length of hospital stay or hospital charges, although there was a favorable trend toward the BiPAP group. Complications encountered in the BiPAP group included one patient with discomfort associated with the nasal BiPAP mask. Bayesian analysis demonstrated that in order for the collected data to be convincing at the 95% confidence level, the prior conviction among treating physicians that BiPAP was a successful treatment modality would have had to be 98.9%. \n CONCLUSIONS In this study, BiPAP appeared to have no deleterious effects in patients with status asthmaticus, with a trend toward decreased endotracheal intubation rate, decreased length of hospital stay, and decreased hospital charges. Although further study with more patients is needed to determine the clinical and statistical significance of this intervention, ethical concerns regarding withholding BiPAP treatment from the patients in the control group forced a premature termination of the study in the authors' institution.", "title": "Ethical dilemmas in a randomized trial of asthma treatment: can Bayesian statistical analysis explain the results?" }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "22547508", "text": "Acute paraquat poisoning is often fatal. Many studies have investigated successful treatment modalities, but no standard treatment yet exists. The purpose of this study was to determine the predictors of survival after acute paraquat poisoning in 602 patients. The paraquat exposure was assessed based on the amount of ingested paraquat and a semiquantitative measure of the urine level of paraquat. Initial clinical parameters including vital signs, hemoglobin, white-blood-cell count, pH, PaCO2, PaO2, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase, total bilirubin, amylase, and glucose were obtained at the time of arrival at the emergency room. Outcomes after acute paraquat poisoning were categorized as survivors and nonsurvivors. Multiple logistic regression analysis was applied to assess the predictors of survival after acute paraquat poisoning. Some patients (55.5%) survived after oral ingestion of paraquat, whereas all those exposed to paraquat percutaneous or inhalational route survived. The amount of paraquat (24.5% concentrate of 1,1'-dimethyl-4,4'-bipyridium dichloride) ingested was 45.6 +/- 74.1 mL (mean +/- SD). In addition to degree of paraquat exposure, survival after acute paraquat poisoning was associated with age, respiratory rate, pH, PaCO2, hemoglobin, white-blood-cell count, blood urea nitrogen, amylase, and the number of failed organs in multiple logistic regression analysis. In conclusion, young age, percutaneous or inhalational route, exposure to less paraquat, and lesser degrees of leukocytosis, acidosis, and renal, hepatic, and pancreatic failures on admission are good prognostic factors of survival after acute paraquat poisoning.", "title": "Predictors of survival after acute paraquat poisoning." }, { "docid": "24097933", "text": "Paraquat poisoning is characterized by multiorgan failure and pulmonary fibrosis with respiratory failure. Multiorgan failure with circulatory collapse is a major cause of early death within 3 days of paraquat ingestion. Recent studies suggested that continuous venovenous hemofiltration (CVVH) had a role in the treatment of multiorgan failure by promoting hemodynamic stability. We therefore evaluated the effect of prophylactic CVVH in 80 patients with paraquat poisoning (August 1996 to February 1999). The amount ingested was 2.1 +/- 1.0 mouthfuls (as 20% concentrate). All patients were treated with hemoperfusion (HP; duration, 6.4 +/- 3.0 hours) within 24 hours of ingestion and then randomly assigned to the HP-alone or HP-CVVH group. Forty-four patients underwent HP only, and 36 patients underwent CVVH (duration, 57.4 +/- 31.3 hours; ultrafiltration volume, 40.2 +/- 4.8 L/d) after HP. Although time to death after ingestion was significantly longer in the HP-CVVH than HP group (5.0 +/- 5.0 versus 2.5 +/- 2.1 days; P < 0.05), there was no difference in mortality rates between the two groups (66.7% versus 63.6%; P = 0.82). In the HP group, early circulatory collapse was a major cause of death compared with the HP-CVVH group, in which late respiratory failure was a major cause of death. In conclusion, prophylactic CVVH after HP prevented early death caused by circulatory collapse and prolonged survival time. However, it could not prevent late death caused by respiratory failure and did not provide a survival benefit in acute paraquat poisoning.", "title": "Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning." }, { "docid": "26105746", "text": "Solid organ transplant recipients receiving chronic immunosuppressive agents are at increased risk to acquire influenza virus despite vaccination. Myocarditis is a known but rare complication of influenza infection. We present the first adult liver transplant recipient who received prophylactic vaccination but developed influenza A myocarditis. This may occur in solid organ transplant recipients, because they have reduced response to protein vaccines, which may leave them vulnerable to infections. Studies are needed to evaluate if antiviral chemoprophylaxis in solid organ transplant recipients during influenza season would be an effective preventive therapy against influenza in this high-risk population.", "title": "Influenza A myocarditis developing in an adult liver transplant recipient despite vaccination: a case report and review of the literature." }, { "docid": "6993046", "text": "Exertional fatigue and dyspnoea limit the daily activities of patients with pulmonary arterial hypertension 1. These symptoms are usually explained by the inability of the overloaded right ventricle to perfuse the lungs and to adapt systemic oxygen delivery to oxygen demand. Accordingly, pulmonary hypertension patients present with reductions in peak oxygen uptake, anaerobic threshold, oxygen pulse, ventilatory efficiency and 6-min walk distance 2–8. This ergospirometric profile is strikingly similar to that of congestive heart failure 8–12, further supporting the notion of impaired cardiac output adaptation to peripheral oxygen requirements as the main cause of decreased exercise capacity. However, in both pulmonary hypertension and heart failure, ergospirometric variables and walk distances are better correlated to functional class and prognosis than to haemodynamic function 3, 6, 7, 10–12. In addition, impaired skeletal muscle function has been repeatedly reported in heart failure, fuelling a “muscle hypothesis” relating dyspnoea and fatigue symptoms to skeletal muscle metaboreceptor and/or ergoreceptor reflexes 13. The muscle hypothesis implies a persistent sympathetic nervous system activation, which has indeed been shown to occur in heart failure 14 and also, more recently, in pulmonary hypertension 15. Until now, there have been no studies on skeletal muscle function in pulmonary arterial hypertension. In the present issue of the European Respiratory Journal , Meyer et al. 16 report data suggesting that respiratory muscle strength is decreased in pulmonary arterial hypertension. In a prospective study on 37 patients with idiopathic pulmonary hypertension, significant decreases in maximal inspiratory (MIP) and expiratory pressures (MEP) were measured, together with an increased mouth occlusion pressure within first 0.1 s of inspiration ( P 0.1), suggesting inadequate muscle …", "title": "Breathing more with weaker respiratory muscles in pulmonary arterial hypertension." }, { "docid": "25817686", "text": "BACKGROUND Prolonged hypothermia, as occurs during solid organ transplantation, negatively influences transplantation outcome. Proteolysis is one of the deleterious events implicated in preservation injury of organ allografts. This strongly affects graft quality and hence immediate organ function. Since donor catecholamine treatment improves transplantation outcome after renal transplantation, the present study was conducted to examine the influence of dopamine (DA) pretreatment on hypothermia induced proteolysis in endothelial cells subjected to prolonged cold storage. MATERIALS AND METHODS Lactate dehydrogenase (LDH) assay, two-dimensional electrophoresis, ubiquitination analysis, intracellular calcium measurement, and Western blot analysis were performed on human umbilical vein endothelial cells (HUVEC) subjected to hypothermic preservation or not. \n RESULTS HUVEC were highly susceptible to cold storage, which was reflected by morphological changes, loss of viability, and by significant changes in cellular proteome. DA pretreatment prevented cell death during cold storage. Western blot analysis demonstrated a time dependent up-regulation of calpain 1 and 2 during cold storage, which could be prevented by addition of EDTA. DA pretreatment abolished autoproteolysis of calpain 1. Analysis of ubiquitination revealed a significant increase in ubiquitinated conjugates after cold storage. This was not prevented by DA pretreatment. Neither proteasome nor calpain inhibitors prevented cell death during cold storage. \n CONCLUSION In endothelial cells subjected to cold preservation, activation of the calpain pathway and the ubiquitin proteasome system occur. Although DA pretreatment inhibits the former, calpain inhibition did not protect endothelial cells during cold storage. DA pretreatment might influence proteolysis, but proteolysis is not the major cause of endothelial cell death.", "title": "Hypothermic preservation up-regulates calpain expression and increases ubiquitination in cultured vascular endothelial cells: influence of dopamine pretreatment." }, { "docid": "25182647", "text": "Acute fatty liver of pregnancy (AFLP) and the syndrome of hemolysis, elevated liver enzyme levels, and low platelet count (HELLP) are rare but major disorders of the third trimester of pregnancy. Over a 10-year period, 46 women (median age, 30 years; range, 17-41 years) developed hepatic dysfunction severe enough to require transfer to our Liver Failure Unit. Three quarters of the women were nulliparous, and 5 had twin pregnancies; the median gestational age was 35 weeks (range, 24-40 weeks). At admission, 32 patients (70%) were preeclamptic and 21 (46%) were encephalopathic and/or ventilated. Thirty-two patients (70%) had clinical features and laboratory values consistent with AFLP, and 7 (15%) had HELLP syndrome. One patient had preeclamptic liver rupture requiring liver transplantation. In 6 other patients, causes of severe liver dysfunction unrelated to pregnancy were found. Infectious complications occurred in 17 of the patients with AFLP (53%) and in 2 of those with HELLP syndrome (29%). Major intra-abdominal bleeding occurred in 12 women (10 with AFLP), 9 of whom required laparotomies for clot evacuation. Four patients with AFLP (12.5%) had a fatal outcome, with a corresponding perinatal mortality rate of 9%. There were no maternal or perinatal deaths associated with HELLP syndrome. In contrast to results of many previous studies, the results of this large series suggest a relatively favorable maternal and perinatal outcome in severe AFLP and HELLP syndrome. Further improvements in outcome are likely to be achieved through the prevention of the bleeding and infectious complications associated with these disorders.", "title": "Maternal and perinatal outcome in severe pregnancy-related liver disease." }, { "docid": "13380011", "text": "Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.", "title": "Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone." }, { "docid": "43587663", "text": "How the infection risks compare after umbilical cord blood (UCB) and bone marrow (BM) transplantation is not known. Therefore, we compared serious infections in the 2 years after pediatric myeloablative unrelated donor transplantation with unmanipulated BM (n = 52), T cell-depleted (TCD) BM (n = 24), or UCB (n = 60) for the treatment of hematologic malignancy. Overall, the cumulative incidence of 1 or more serious infections was comparable between groups (BM, 81%; TCD, 83%; UCB, 90%; P = .12). Furthermore, by taking all serious infections into account and using multivariate techniques with unmanipulated BM as the reference, there were also no significant differences between groups (TCD relative risk [RR], 1.6; P = .10; UCB RR, 1.0; P = .84). Within the time periods days 0 to 42, days 43 to 100, and days 101 to 180, the only difference was a greater risk of viral infections from days 0 to 42 in TCD recipients (RR, 3.5; P = .02). Notably, after day 180, TCD recipients had a significantly increased infection risk (RR, 3.1; P = .03), whereas the risk in UCB recipients (RR, 0.5; P = .23) was comparable to that in BM recipients. Other factors associated with an increased infection risk in the 2 years after transplantation were age > or = 8 years, graft failure, and severe acute graft-versus-host disease. These data suggest that the risk of serious infection after pediatric UCB transplantation is comparable to that with unmanipulated BM.", "title": "Serious infections after unrelated donor transplantation in 136 children: impact of stem cell source." }, { "docid": "24795767", "text": "The current study evaluates the role of quantitative measurement of peripheral lymphocyte subsets, especially CD4+ helper T-cell recovery, in predicting transplant outcomes including overall survival (OS) and non-relapse mortality (NRM) after allogeneic stem cell transplantation. A total of 69 allogeneic recipients were included with following diagnoses: acute myeloid leukemia 42, acute lymphoblastic leukemia 5, chronic myeloid leukemia 15, non-Hodgkin's lymphoma 5 and high-risk myelodysplastic syndrome 2. The peripheral lymphocyte subset counts (CD3+ T cells, CD3+4+ helper T cells, CD3+8+ cytotoxic T cells, CD19+ B cells, and CD56+ natural killer cells) were measured at 3, 6 and 12 months. The CD4+ helper T-cell reconstitution at 3 months was strongly correlated with OS (P<0.0001), NRM (P=0.0007), and opportunistic infections (P=0.0108) at the cutoff value of 200 × 106/l CD4+ helper T cells. Rapid CD4+ helper T-cell recovery was also associated with a higher CD4+ helper T-cell transplant dose (P=0.006) and donor type (P<0.001). An early CD4+ helper T-cell recovery at 3 months correlated with a subsequent faster helper T-cell recovery until 12 months, yet not with B-cell recovery. In a multivariate analysis, rapid recovery of CD4+ helper T cells at 3 months was a favorable prognostic factor together with higher CD34+ cell transplant dose in terms of OS (P=0.001) and NRM (P=0.005).", "title": "Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation" } ]
856
Nonsteroidal antinflammatory drugs are ineffective as cancer treatments.
[ { "docid": "43334921", "text": "IMPORTANCE Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. \n OBJECTIVE To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene × environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. \n DESIGN, SETTING, AND PARTICIPANTS Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. \n MAIN OUTCOMES AND MEASURES Colorectal cancer. \n RESULTS Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% CI, 0.64-0.74]; P = 6.2 × 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 × 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P = 7.7 × 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% CI, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 × 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 × 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% CI, 0.78-1.20]; P = .76). \n CONCLUSIONS AND RELEVANCE In this genome-wide investigation of gene × environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.", "title": "Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants." } ]
[ { "docid": "6407356", "text": "Coxibs, including celecoxib, and other nonsteroidal anti-inflammatory drugs (NSAID), including aspirin, are among the most promising cancer chemopreventive agents in development today. This article examines the data on the efficacy of these agents in animal model studies of cancer prevention carried out by the authors. The studies evaluated here are restricted to our rodent models of colon/intestinal, bladder, and nonmelanoma skin cancer, in which celecoxib and other NSAIDs were administered as either cancer preventive or therapeutic agents. These studies may shed light on several questions. Is celecoxib unique compared with other NSAIDs, and if so, what implications would this have for human use? Are standard NSAIDs (which inhibit both COX-1 and COX-2) as effective as celecoxib in animal studies? Is the efficacy of celecoxib in particular or NSAIDs in general due to their off-target effects or to their effects on COX-1 and COX-2? What is the likely efficacy of low-dose aspirin? Some questions raised by human trials and epidemiology are discussed and related to our observations in animal model studies. We also discuss the problem of cardiovascular (CV) events associated with coxibs and certain other NSAIDs and whether results in animal models are predictive of efficacy in humans. On the basis of epidemiologic studies and its CV profile, aspirin seems to be the most promising NSAID for preventing human colorectal, bladder, and skin cancer, although the animal data for aspirin are less clear. A comprehensive understanding of the results of coxibs and other NSAIDs in animal studies may help inform and shape human trials of these commonly employed, relatively inexpensive, and highly effective compounds.", "title": "Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention." }, { "docid": "878526", "text": "Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.", "title": "Neutrophils support lung colonization of metastasis-initiating breast cancer cells" }, { "docid": "10749308", "text": "Placebo-controlled trials are used extensively in the development of new pharmaceuticals. They are sometimes challenged as unethical in settings in which patients could be treated with an existing therapy (1-7). The issues of when placebo controls are ethically acceptable and when they are scientifically necessary are important and worthy of discussion. The Ethics of Placebo Controls The Declaration of Helsinki The Declaration of Helsinki (8) is an international document that describes ethical principles for clinical investigation. Those who contend that placebo controls are unethical whenever known effective therapy exists for a condition usually cite the following sentence in the Declaration as support for that position: In any medical study, every patientincluding those of a control group, if anyshould be assured of the best proven diagnostic and therapeutic method. We believe that an interpretation of this sentence as barring placebo controls whenever an effective treatment exists is untenable. First, the requirement that all patients receive the best proven diagnostic and therapeutic method would bar not only placebo-controlled trials but also active-control and historically controlled trials. When effective treatment exists, the patient receiving the investigational treatment instead of the established therapy is clearly not getting the best proven treatment. Second, it does not seem reasonable to consider as equivalent all failures to use known effective therapy. Historically, concerns about placebo use have usually arisen in the context of serious illness. There is universal agreement that use of placebo or otherwise untreated controls is almost always unethical when therapy shown to improve survival or decrease serious morbidity is available. But in cases in which the treatment does not affect the patient's long-term health, an ethical imperative to use existing therapy is not plausible. Can it be, for example, that because topical minoxidil or oral finasteride can grow hair, a placebo-controlled trial of a new remedy for baldness is unethical? Is it really unethical to use placebos in short-term studies of drugs for allergic rhinitis, insomnia, anxiety, dermatoses, heartburn, or headaches in fully informed patients? We do not believe that there is a reasonable basis for arguing that such studies and many other placebo-controlled studies of symptom relief are unethical and that an informed patient cannot properly be asked to participate in them. Third, there is good reason to doubt that the cited phrase was intended to discourage placebo-controlled trials. The phrase under discussion was not part of the original 1964 Declaration but was added in 1975 to reinforce the idea that the physicianpatient relationship must be respected just as it would be in a purely therapeutic situation not involving research objectives (8). In the explanation accompanying the 1975 change, the issue of placebo-controlled trials was not even mentioned (9). The American Medical Association (10), the World Health Organization (11), and the Council for International Organizations of Medical Sciences (12) have rejected the position that the Declaration uniformly bars placebo-controlled trials when proven therapy is available. Informed Consent in Placebo-Controlled Trials Patients asked to participate in a placebo-controlled trial must be informed of the existence of any effective therapy, must be able to explore the consequences of deferring such therapy with the investigator, and must provide fully informed consent. Concern about whether consent to participate in trials is as informed as we would like to believe is valid, but these concerns apply as much to the patient's decision to forgo known effective treatment and risk exposure to a potentially ineffective or even harmful new agent in an active-control trial as to a decision to accept possible persistence of symptoms in a placebo-controlled trial. Thus, this problem is not unique to placebo-controlled trials. For the above reasons, we conclude that placebo-controlled trials may be ethically conducted even when effective therapy exists, as long as patients will not be harmed by participation and are fully informed about their alternatives. Although in many cases application of this standard will be fairly straightforward, in others it will not, and there may be debate about the consequences of deferring treatment (13). Assessment of Effectiveness with Active-Control Trials Clinical trials that, because of deficiencies in study design or conduct, are unlikely to provide scientifically valid and clinically meaningful results raise their own ethical concerns (12, 14). The remainder of this paper will address the inability of commonly proposed alternatives to placebo-controlled trials to evaluate the effectiveness of new treatments in many medical settings. Active-Control Equivalence Trials (Noninferiority Trials) The ability to conduct a placebo-controlled trial ethically in a given situation does not necessarily mean that placebo-controlled trials should be carried out when effective therapy exists. Patients and physicians might still prefer a trial in which every participant is given an active treatment. What remains to be examined is why placebo-controlled trials (or, more generally, trials intended to show an advantage of one treatment over another) are frequently needed to demonstrate the effectiveness of new treatments and often cannot be replaced by active-control trials showing that a new drug is equivalent or noninferior to a known effective agent. The limitations of active-control equivalence trials (ACETs) that are intended to show the effectiveness of a new drug have long been recognized and are well described (15-33) but are perhaps not as widely appreciated as they should be. A recent proposed international guideline on choice of control group addresses this issue in detail (33). The Fundamental Problem: Need for Assay Sensitivity There are two distinct ways to show that a new therapy is effective. One can show that the new therapy is superior to a control treatment, or one can show that the new therapy is equivalent to or not worse by some defined amount than a known effective treatment. Each method can be valid, but each requires entirely different inferential approaches. A well-designed study that shows superiority of a treatment to a control (placebo or active therapy) provides strong evidence of the effectiveness of the new treatment, limited only by the statistical uncertainty of the result. No information external to the trial is needed to support the conclusion of effectiveness. In contrast, a study that successfully shows equivalencethat is, little difference between a new drug and known active treatmentdoes not by itself demonstrate that the new treatment is effective. Equivalence could mean that the treatments were both effective in the study, but it could also mean that both treatments were ineffective in the study. To conclude from an ACET that a new treatment is effective on the basis of its similarity to the active control, one must make the critical (and untestable within the study) assumption that the active control had an effect in that particular study. In other words, one must assume that if a placebo group had been included, the placebo would have been inferior to the active control (15-33). Support for this assumption must come from sources external to the trial. Although it might appear reasonable to expect a known active agent to be superior to placebo in any given appropriately designed trial, experience has shown that this is not the case for many types of drugs. The ability of a study to distinguish between active and inactive treatments is termed assay sensitivity. If assay sensitivity cannot be assumed, then even if the new and standard treatments appear virtually identical and the confidence interval for their comparison is exquisitely narrow, the study cannot demonstrate effectiveness of the new drug. (Note that in practice, ACETs are not designed simply to show lack of a statistically significant difference between treatments. Rather, such trials are designed to show noninferioritythat the new treatment is not inferior to the control by more than a specified margin. This approach is described in the Appendix.) The best evidence that an active drug would have an effect superior to that of placebo in a given study would be a series of trials of similar design in which the active drug has reliably outperformed placebo. The ACET thus requires information external to the trial (the information about past placebo-controlled studies of the active control) to interpret the results. In this respect, an ACET is similar to a historically controlled trial. In some settings, such as highly responsive cancers, most infectious diseases, and some cardiovascular conditions, such external information is available and ACETs can and do provide a valid and reliable basis for evaluating new treatments. In many cases, however, the historically based assumption of assay sensitivity cannot be made; for many types of effective drugs, studies of apparently adequate size and design do not regularly distinguish drugs from placebo (16-18, 25, 34). More than 20 years ago, Lasagna (19) described this difficulty particularly well (reflecting long recognition of the problem among analgesiologists): a comparison between new drug and standard is convincing only when the new remedy is superior to standard treatment. If it is inferior, or even indistinguishable from a standard remedy, the results are not readily interpretable. In the absence of placebo controls, one does not know if the inferior new medicine has any efficacy at all, and equivalent performance may reflect simply a patient population that cannot distinguish between two active treatments that differ considerably from each other, or between active drug and placebo. Certain clinical conditions, such as seri", "title": "Placebo-Controlled Trials and Active-Control Trials in the Evaluation of New Treatments. Part 1: Ethical and Scientific Issues" }, { "docid": "3866315", "text": "Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.", "title": "Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing" }, { "docid": "39892135", "text": "OBJECTIVE To assess the efficacy and tolerability of sulfasalazine (SSZ) in the treatment of spondylarthropathy. \n METHODS We conducted a 6-month randomized, placebo-controlled, double-blind, multicenter study of patients with spondylarthropathy whose disease had remained active despite treatment with nonsteroidal antiinflammatory drugs. Patients were treated with SSZ (3 gm/day) or placebo. The primary efficacy variables were the physician's and patient's overall assessments, pain, and morning stiffness. End points were analyzed in the intent-to-treat and completer patient populations; the time course of effect was analyzed in the completer patient population. \n RESULTS Of the 351 patients enrolled, 263 (75%) completed the 6-month treatment period. The withdrawal rates were 35 (20%) and 53 (30%) in the placebo and SSZ groups, respectively. In the intent-to-treat analysis of end point efficacy, the between-treatment difference reached statistical significance only for 1 of the 4 primary outcome variables, the patient's overall assessment of disease activity, for which 60% of the patients taking SSZ improved by at least 1 point on a 5-point scale, in contrast to 44% of the patients taking placebo. Laboratory markers of inflammation also showed statistically significant change in favor of SSZ. In subgroup analysis, the most impressive effects were seen in patients with psoriatic arthritis, both for the 4 primary efficacy variables and for secondary efficacy variables such as the number of inflamed joints. Adverse events were more frequent in the SSZ group than the placebo group, but all were transient or reversible after cessation of treatment. \n CONCLUSION The results of this study show that SSZ had greater efficacy than placebo in the treatment of active spondylarthropathy, notably in patients with psoriatic arthritis.", "title": "Sulfasalazine in the treatment of spondylarthropathy. A randomized, multicenter, double-blind, placebo-controlled study." }, { "docid": "5836", "text": "Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.", "title": "Induction of myelodysplasia by myeloid-derived suppressor cells." }, { "docid": "28419824", "text": "Two hundred patients who were taking daily symptomatic or immediate relief medications, often in excessive quantities, yet suffering from daily or near daily severe headaches were studied. One hundred and sixteen (58%) of them were also taking concomitant prophylactic medications and they were ineffective. Low tyramine, low caffeine dietary instructions and biofeedback training were given to all patients. The effect of continuing symptomatic medications, discontinuing symptomatic medications, and adding or changing prophylactic medications were studied in the various treatment groups. It is concluded that; 1.) Daily use of symptomatic or immediate relief medications result in chronic daily headache. 2.) Discontinuing daily symptomatic medications itself result in improvement of headache. 3.) Concomitant use of symptomatic medications nullifies the effect of prophylactic medications. 4.) Discontinuing daily symptomatic medications enhances the beneficial effect of prophylactic medications.", "title": "Drug induced refractory headache--clinical features and management." }, { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "40760684", "text": "As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.", "title": "Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics." }, { "docid": "22482820", "text": "Breast cancer (BC) is generally classified based on the receptors overexpressed on the cell nucleus, which include hormone receptors such as progesterone (PR) and estrogen (ER), and HER2. Triple-negative breast cancer (TNBC) is a type of cancer that lacks any of these three types of receptor proteins (ER/PR/HER2). Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. Generally, drug resistance has a genetic basis that is caused by an abnormal gene expression, nevertheless, there are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints. The use of \"combination therapy\" is recognized as an efficient solution to treat human diseases, in particular, breast cancer. In this review, we give examples of different nanocarriers used to co-deliver multiple therapeutics (chemotherapeutic agent and nucleic acid) to drug-resistant tumor cells, and lastly, we give our recommendations for the future directions for the co-delivery treatments.", "title": "An overview of the effective combination therapies for the treatment of breast cancer." }, { "docid": "21009874", "text": "CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. \n OBJECTIVE To assess whether immunosuppressive drugs increase mortality. \n DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. \n SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. \n MAIN OUTCOME MEASURES Overall mortality, cancer mortality. \n RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). \n CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed.", "title": "Overall and cancer related mortality among patients with ocular inflammation treated with immunosuppressive drugs: retrospective cohort study." }, { "docid": "25104843", "text": "We report on a patient treated with hemoperfusion-hemodialysis (HP-HD) for severe paraquat poisoning. This procedure was adopted since the combination of adsorption and dialysis may improve overall drug removal. On admission blood paraquat was 15.8 micrograms/ml. He received conventional treatment and combined HP-HD which started within 3 hours after ingestion of the chemical and lasted 5 hours. Blood samples were obtained during and after HP-HD. The samples during HP-HD were taken before the charcoal column, between the charcoal column and the artificial kidney and after the artificial kidney. Blood clearances of paraquat were 116 +/- 32 ml/min (n=6) for the charcoal column (HP), 90 +/- 54 ml/min (n=6) for the artificial kidney (HD) and 151 +/- 37 ml/min (n=6) for the combined systems (HP-HD). After HP-HD a limited rebound of blood paraquat level was seen. One day after admission renal and hepatic failure had developed, and the patient died after 5 days. Tissue paraquat levels (microgram/g wet tissue) were: skeletal muscle 9.4, pancreas 6.0, prostate 5.6, thyroid 4.2, lungs 4.0, bone marrow 4.0, kidney 3.1, spleen 2.9, adrenal 2.9, heart 2.8, liver 2.3, stomach and testis below 1.0. Measurements of blood levels demonstrated the efficient clearances of paraquat with HP-HD from the central (plasma) compartment. However, the present results confirmed those previously reported which suggest that the efficiency of short HP-HD in treating severe paraquat poisoning is questionable since paraquat levels in the peripheral (tissue) compartment remain elevated.", "title": "Hemoperfusion-hemodialysis ineffective for paraquat removal in life-threatening poisoning?" }, { "docid": "15048300", "text": "BACKGROUND Data on absolute risks of outcomes and patterns of drug use in cost-effectiveness analyses are often based on randomised clinical trials (RCTs). The objective of this study was to evaluate the external validity of published cost-effectiveness studies by comparing the data used in these studies (typically based on RCTs) to observational data from actual clinical practice. Selective Cox-2 inhibitors (coxibs) were used as an example. \n METHODS AND FINDINGS The UK General Practice Research Database (GPRD) was used to estimate the exposure characteristics and individual probabilities of upper gastrointestinal (GI) events during current exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) or coxibs. A basic cost-effectiveness model was developed evaluating two alternative strategies: prescription of a conventional NSAID or coxib. Outcomes included upper GI events as recorded in GPRD and hospitalisation for upper GI events recorded in the national registry of hospitalisations (Hospital Episode Statistics) linked to GPRD. Prescription costs were based on the prescribed number of tables as recorded in GPRD and the 2006 cost data from the British National Formulary. The study population included over 1 million patients prescribed conventional NSAIDs or coxibs. Only a minority of patients used the drugs long-term and daily (34.5% of conventional NSAIDs and 44.2% of coxibs), whereas coxib RCTs required daily use for at least 6-9 months. The mean cost of preventing one upper GI event as recorded in GPRD was US$104k (ranging from US$64k with long-term daily use to US$182k with intermittent use) and US$298k for hospitalizations. The mean costs (for GPRD events) over calendar time were US$58k during 1990-1993 and US$174k during 2002-2005. Using RCT data rather than GPRD data for event probabilities, the mean cost was US$16k with the VIGOR RCT and US$20k with the CLASS RCT. \n CONCLUSIONS The published cost-effectiveness analyses of coxibs lacked external validity, did not represent patients in actual clinical practice, and should not have been used to inform prescribing policies. External validity should be an explicit requirement for cost-effectiveness analyses.", "title": "A Comparison of Cost Effectiveness Using Data from Randomized Trials or Actual Clinical Practice: Selective Cox-2 Inhibitors as an Example" }, { "docid": "10071590", "text": "We report a case of postvaccination acute myopericarditis in an adolescent. The patient presented with acute chest pain, diffuse ST-segment elevation, and elevated cardiac enzyme levels. Cardiac MRI was consistent with acute myocarditis. He recovered within a few days with nonsteroidal antiinflammatory treatment and remains clinically stable, with improvement of MRI findings at the 10-week follow-up. Postvaccination cases of myopericarditis reported in the pediatric literature are also reviewed.", "title": "Acute myopericarditis after multiple vaccinations in an adolescent: case report and review of the literature." }, { "docid": "32421068", "text": "Objective To determine the availability of data on overall survival and quality of life benefits of cancer drugs approved in Europe. Design Retrospective cohort study. Setting Publicly accessible regulatory and scientific reports on cancer approvals by the European Medicines Agency (EMA) from 2009 to 2013.Main outcome measures Pivotal and postmarketing trials of cancer drugs according to their design features (randomisation, crossover, blinding), comparators, and endpoints. Availability and magnitude of benefit on overall survival or quality of life determined at time of approval and after market entry. Validated European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) used to assess the clinical value of the reported gains in published studies of cancer drugs. Results From 2009 to 2013, the EMA approved the use of 48 cancer drugs for 68 indications. Of these, eight indications (12%) were approved on the basis of a single arm study. At the time of market approval, there was significant prolongation of survival in 24 of the 68 (35%). The magnitude of the benefit on overall survival ranged from 1.0 to 5.8 months (median 2.7 months). At the time of market approval, there was an improvement in quality of life in seven of 68 indications (10%). Out of 44 indications for which there was no evidence of a survival gain at the time of market authorisation, in the subsequent postmarketing period there was evidence for extension of life in three (7%) and reported benefit on quality of life in five (11%). Of the 68 cancer indications with EMA approval, and with a median of 5.4 years' follow-up (minimum 3.3 years, maximum 8.1 years), only 35 (51%) had shown a significant improvement in survival or quality of life, while 33 (49%) remained uncertain. Of 23 indications associated with a survival benefit that could be scored with the ESMO-MCBS tool, the benefit was judged to be clinically meaningful in less than half (11/23, 48%).Conclusions This systematic evaluation of oncology approvals by the EMA in 2009-13 shows that most drugs entered the market without evidence of benefit on survival or quality of life. At a minimum of 3.3 years after market entry, there was still no conclusive evidence that these drugs either extended or improved life for most cancer indications. When there were survival gains over existing treatment options or placebo, they were often marginal.", "title": "Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13" }, { "docid": "24575065", "text": "CONTEXT The Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) altered reimbursements for outpatient chemotherapy drugs and drug administration services. Anecdotal reports suggest that these adjustments may have negatively affected access to chemotherapy for Medicare beneficiaries. \n OBJECTIVE To compare patient wait times and travel distances for chemotherapy before and after the enactment of the MMA. \n DESIGN, SETTING, AND PATIENTS Analysis of a nationally representative 5% sample of claims from the Centers for Medicare & Medicaid Services for the period 2003 through 2006. Patients were Medicare beneficiaries with incident breast cancer, colorectal cancer, leukemia, lung cancer, or lymphoma who received chemotherapy in inpatient hospital, institutional outpatient, or physician office settings. \n MAIN OUTCOME MEASURES Days from incident diagnosis to first chemotherapy visit and distance traveled for treatment, controlling for age, sex, race/ethnicity, cancer type, geographic region, comorbid conditions, and year of diagnosis and treatment. \n RESULTS There were 5082 incident cases of breast cancer, colorectal cancer, leukemia, lung cancer, or lymphoma in 2003; 5379 cases in 2004; 5116 cases in 2005; and 5288 cases in 2006. Approximately 70% of patients received treatment in physician office settings in each year. Although the distribution of treatment settings in 2004 and 2005 was not significantly different from 2003 (P = .24 and P = .72, respectively), there was a small but significant change from 2003 to 2006 (P = .02). The proportion of patients receiving chemotherapy in inpatient settings decreased from 10.2% in 2003 to 8.8% in 2006 (P = .03), and the proportion in institutional outpatient settings increased from 21.1% to 22.5% (P = .004). The proportion in physician offices remained at 68.7% (P = .29). The median time from diagnosis to initial chemotherapy visit was 28 days in 2003, 27 days in 2004, 29 days in 2005, and 28 days in 2006. In multivariate analyses, average wait times for chemotherapy were 1.96 days longer in 2005 than in 2003 (95% confidence interval [CI], 0.11-3.80 days; P = .04) but not significantly different in 2006 (0.88 days; 95% CI, -0.96 to 2.71 days; P = .35). Median travel distance was 7 miles (11.2 km) in 2003 and 8 miles (12.8 km) in 2004 through 2006. After adjustment, average travel distance remained slightly longer in 2004 (1.47 miles [2.35 km]; 95% CI, 0.87-2.07 miles [1.39-3.31 km]; P < .001), 2005 (1.19 miles [1.90 km]; 95% CI, 0.58-1.80 miles [0.93-2.88 km]; P < .001), and 2006 (1.30 miles [2.08 km]; 95% CI, 0.69-1.90 miles [1.10-3.04 km]; P < .001) compared with 2003. \n CONCLUSION There have not been major changes in travel distance and patient wait times for chemotherapy in the Medicare population since 2003, the year before MMA-related changes in reimbursement.", "title": "Association between the Medicare Modernization Act of 2003 and patient wait times and travel distance for chemotherapy." }, { "docid": "6670101", "text": "It is long been known that cancer and non-cancer cells can be distinguished on the basis of their nucleolar morphologies. As early as the 19th century, it was reported that cancer cells have larger and more irregularly shaped nucleoli. Since then, pathologists have used nucleolar morphology to predict the clinical outcome [1]. Nucleolar morphology is altered due to the up-regulation of ribosomal gene transcription. Within nucleoli, ribosomal genes (rDNA) are transcribed by RNA polymerase I (pol I). The pre-ribosomal RNA (pre-rRNA) transcripts are subsequently modified and processed into the mature 18S, 5.8S and 28S rRNAs. 5S rRNA is transcribed by RNA polymerase III in the nucleoplasm. Together with the ribosomal proteins, the 5S rRNA is imported into the nucleolus where 40S and 60S ribosomal subunits are assembled prior to export to the cytoplasm [1, 2]. Oncogenes such as c-Myc can both directly and indirectly upregulate rDNA transcription, while tumour suppressors like p53 and Rb suppress ribosome biogenesis. Mutations in these genes not only result in deregulated cell cycle control, but also upregulated ribosome biogenesis. In addition to ribosome biogenesis, the nucleolus is a key cellular stress sensor and plays a central role in p53 activation [1, 2]. The increased translational capacity of cancer cells enables them to maintain higher proliferation rates. As stated by Ruggero, “compared with normal cells, cancer cells may be addicted to increases in ribosome biogenesis and number” [1]. This provides new therapeutic opportunities. As it turns out many chemotherapeutic drugs used in cancer treatment already inhibit ribosome biogenesis. In one recent survey it was shown that 20 out of 36 drugs in clinical use inhibit ribosome biogenesis [3]. Most of these drugs were originally designed to target highly proliferating cells by damaging DNA, interfering with DNA synthesis or with mitosis. These targeting modalities of these drugs also lead to toxicity in normal highly proliferating tissues. An example is ActinomycinD (AMD), a DNA intercalator which has a preference for GC-rich DNA sequences. As rDNA has above average GC-richness and because of its open chromatin conformation, low concentrations of AMD preferentially inhibit RNA polymerase I transcription and upon prolonged exposure causes genome wide DNA damage. Alkylating drugs like cisplatin and oxaliplatin or topoisomerases poisons like camptothecin inhibit pol I transcription. The degree to which inhibition of ribosome biogenesis contributes to the efficacy of these drugs is difficult to establish [3]. This raises an important question. Can targeting ribosome biogenesis without DNA damage offer any therapeutic potential? Two recently described drugs CX-5461 and BMH-21 are now providing evidence that inhibition of ribosome biogenesis by targeting transcription of rDNA by pol I has promising therapeutic potential. CX-5461 was designed to specifically inhibit pol I transcription by disrupting pre-initiation complex formation at the rDNA promoter. CX-5461 has been shown to activate p53 via nucleolar stress. It induces autophagy as well as senescence in a multiple types of cancer cells in a p53-dependent manner. Especially in leukaemia and lymphoma cells, treatment with CX-5461 induces p53-dependent apoptosis, while normal cells tolerate it [4, 5]. Whether the drug also induces DNA damage was not fully addressed, but it was demonstrated that it could induce cell death in cells lacking ATM - a key mediator of DNA double strand break responses. However, more recently Laiho and colleagues have shown that at high concentrations, CX-5461 does induce a γH2AX response, raising concerns about DNA damage [6]. BMH-21 was identified in a screen performed by Laiho and colleagues aimed at identifying novel p53 activators. Like AMD, BMH-21 is a DNA intercalator with preference for GC rich sequences [7]. Continuing the parallel with AMD, BMH-21 is a potent and specific inhibitor rDNA transcription and induces nucleolar reorganisation often referred to as nucleolar capping. Interestingly, transcription inhibition was followed by the degradation of the main pol I subunit, RPA194, by the proteasome [6]. In contrast with AMD, initial indications were that BMH-21 did not appear to induce DNA damage as evidenced by the lack of a γH2AX response [7]. Inhibition of transcription by BMH-21 causes nucleolar stress, resulting in decreased proliferation and cell death. P53 is activated in BMH-21 treated cells but is not required for its anti-proliferative effects. Intriguingly, it appears that cancer cells with high demands for ribosome biogenesis are selectively targeted [6]. The current publication in Oncotarget now rules out any role for DNA damage signalling and repair pathways in the BMH-21 response. Moreover, BMH-21 derivatives that can induce DNA damage display lower efficiency in inducing nucleolar stress and inhibiting proliferation [8]. The central importance of this study is that it finally uncouples DNA damage and nucleolar stress and reveals an Achilles heel in cancer cells, their addiction to ribosome biogenesis.", "title": "Ribosome biogenesis: Achilles heel of cancer?" }, { "docid": "25895285", "text": "Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. SIGNIFICANCE Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy.", "title": "Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib" }, { "docid": "19673227", "text": "The prognostic value associated with the detection of circulating tumor cells (CTCs) in metastatic breast cancer by the CellSearch technology raise additional issues regarding the biological value of this information. We postulated that a drug-resistance profile of CTCs may predict response to chemotherapy in cancer patients and therefore could be used for patient selection. One hundred 5 patients with diagnosis of carcinoma were enrolled in a prospective trial. CTCs were isolated from peripheral blood, and positive samples were evaluated for the expression of a panel of genes involved in anticancer drugs resistance. The drug-resistance profile was correlated with disease-free survival (DFS; patients in adjuvant setting) and time to progression (TTP; metastatic patients) in a 24-months follow-up. Objective response correlation was a secondary end point. Fifty-one percent of patients were found positive for CTCs while all blood samples from healthy donors were negative. The drug-resistance profile correlates with DFS and TTP (p < 0.001 in both). Sensitivity of the test: able to predict treatment response in 98% of patients. Specificity of the test: 100%; no sample from healthy subject was positive for the presence of CTCs. Positive and negative predictive values were found to be 96.5 and 100%, respectively. We identified a drug-resistance profile of CTCs, which is predictive of response to chemotherapy, independent of tumor type and stage of disease. This approach may represent a first step toward the individualization of chemotherapy in cancer patients.", "title": "Chemosensitivity profile assay of circulating cancer cells: prognostic and predictive value in epithelial tumors." } ]
857
Nonsteroidal antinflammatory drugs show potential anticancer indications.
[ { "docid": "43334921", "text": "IMPORTANCE Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. \n OBJECTIVE To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene × environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. \n DESIGN, SETTING, AND PARTICIPANTS Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. \n MAIN OUTCOMES AND MEASURES Colorectal cancer. \n RESULTS Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% CI, 0.64-0.74]; P = 6.2 × 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 × 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P = 7.7 × 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% CI, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 × 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 × 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% CI, 0.78-1.20]; P = .76). \n CONCLUSIONS AND RELEVANCE In this genome-wide investigation of gene × environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.", "title": "Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants." } ]
[ { "docid": "3866315", "text": "Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.", "title": "Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing" }, { "docid": "6407356", "text": "Coxibs, including celecoxib, and other nonsteroidal anti-inflammatory drugs (NSAID), including aspirin, are among the most promising cancer chemopreventive agents in development today. This article examines the data on the efficacy of these agents in animal model studies of cancer prevention carried out by the authors. The studies evaluated here are restricted to our rodent models of colon/intestinal, bladder, and nonmelanoma skin cancer, in which celecoxib and other NSAIDs were administered as either cancer preventive or therapeutic agents. These studies may shed light on several questions. Is celecoxib unique compared with other NSAIDs, and if so, what implications would this have for human use? Are standard NSAIDs (which inhibit both COX-1 and COX-2) as effective as celecoxib in animal studies? Is the efficacy of celecoxib in particular or NSAIDs in general due to their off-target effects or to their effects on COX-1 and COX-2? What is the likely efficacy of low-dose aspirin? Some questions raised by human trials and epidemiology are discussed and related to our observations in animal model studies. We also discuss the problem of cardiovascular (CV) events associated with coxibs and certain other NSAIDs and whether results in animal models are predictive of efficacy in humans. On the basis of epidemiologic studies and its CV profile, aspirin seems to be the most promising NSAID for preventing human colorectal, bladder, and skin cancer, although the animal data for aspirin are less clear. A comprehensive understanding of the results of coxibs and other NSAIDs in animal studies may help inform and shape human trials of these commonly employed, relatively inexpensive, and highly effective compounds.", "title": "Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention." }, { "docid": "18473550", "text": "Bisphosphonates are widely used agents for the treatment of malignant bone disease. They inhibit osteoclast-mediated bone resorption and can have direct effects on cancer cells. In this study, we investigated whether the anticancer activity of the third-generation bisphosphonate zoledronic acid (ZOL) could be enhanced by combination with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). We found that ZOL and SAHA cooperated to induce cell death in the prostate cancer cell lines LNCaP and PC-3. The effect was synergistic, as evidenced by combination index isobologram analysis. ZOL and SAHA synergized to induce dissipation of the mitochondrial transmembrane potential, to activate caspase-3, and to trigger DNA fragmentation, showing that the combination of ZOL and SAHA resulted in the initiation of apoptosis. Because ZOL acts by inhibiting the mevalonate pathway, thereby preventing protein prenylation, we explored whether the mevalonate pathway was also the target of the cooperative action of ZOL and SAHA. We found that geranylgeraniol, but not farnesol, significantly reduced ZOL/SAHA-induced cell death, indicating that the synergistic action of the agents was due to the inhibition of geranylgeranylation. Consistently, a direct inhibitor of geranylgeranylation, GGTI-298, synergized with SAHA to induce cell death, whereas an inhibitor of farnesylation, FTI-277, had no effect. In addition, SAHA synergized with mevastatin, an inhibitor of the proximal enzyme in the mevalonate pathway. These in vitro findings provide a rationale for an in vivo exploration into the potential of combining SAHA and ZOL, or other inhibitors of the mevalonate pathway, as an effective strategy for anticancer therapy.", "title": "Synergistic activity of the histone deacetylase inhibitor suberoylanilide hydroxamic acid and the bisphosphonate zoledronic acid against prostate cancer cells in vitro." }, { "docid": "40127292", "text": "Multidrug resistance remains an unresolved problem in clinical oncology. Over a decade ago genes encoding cellular efflux pumps were shown to confer resistance to a broad spectrum of biochemically unrelated anticancer drugs even before the compounds reached their intracellular targets. More recently it has become apparent that many drugs induce a common apoptotic program, such that mutations in this program can also produce multidrug resistance. However, a thorough evaluation of the contribution of apoptotic defects to this \"postdamage\" drug resistant phenotype is technically complicated, and this has led to uncertainty about the overall significance of apoptosis in therapy-induced cell death. For example, correlative analyses using patient specimens are limited by unknown background mutations in the biopsy material, and assays using cancer cell lines can be biased by unphysiological conditions. We sought to circumvent these restrictions by utilizing a tractable transgenic cancer model to examine the impact of apoptosis on treatment outcome. Here we discuss potential caveats of cell culture based assays, highlight features of genetically engineered mice as potential model systems, and describe a tractable transgenic mouse model to study drug responses in a series of primary lymphomas with genetically defined lesions treated at their natural site.", "title": "Apoptosis and chemoresistance in transgenic cancer models" }, { "docid": "25328476", "text": "PURPOSE Peroxisome proliferator-activated receptors (PPAR) regulate lipid and glucose metabolism but their anticancer properties have been recently studied as well. We previously reported the antimetastatic activity of the PPARalpha ligand, fenofibrate, against melanoma tumors in vivo. Here we investigated possible molecular mechanisms of fenofibrate anti metastatic action. EXPERIMENTAL DESIGN Monolayer cultures of mouse (B16F10) and human (SkMell88) melanoma cell lines, soft agar assay, and cell migration assay were used in this study. In addition, we analyzed PPARalpha expression and its transcriptional activity in response to fenotibrate by using Western blots and liciferase-based reporter system. \n RESULTS Fenofibrate inhibited migration of B16F10 and SkMel188 cells in Transwell chambers and colony formation in soft agar. These effects were reversed by PPAR inhibitor, GW9662. Western blot analysis revealed time-dependent down-regulation of Akt and extracellular signal-regulated kinase l/2 phosphorylation in fenofibrate-treated cells. A B16F10 cell line stably expressing constitutively active Akt mutant was resistant to fenofibrate. In contrast, Akt gene silencing with siRNA mimicked the fenofibrate action and reduced the migratory ability of B16F1O cells. In addition, fenofibrate strongly sensitized BI6FIO cells to the proapoptotic drug staurosporine, further supporting the possibility that fenofibrate-induced down-regulation of Akt function contributes to fenofibrate-mediated inhibition of metastatic potential in this experimental model. \n CONCLUSIONS Our results show that the PPAR-dependent antimetastatic activity of fenofibrate involves down-regulation of Akt phosphorylation and suggest that supplementation with this drug may improve the effectiveness of melanoma chemotherapy.", "title": "Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt." }, { "docid": "6219790", "text": "Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core-shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.", "title": "Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery" }, { "docid": "8764879", "text": "Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony–stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1Rhigh cells), but not those expressing low amounts of CSF1R (CSF1Rlow cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1Rhigh cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2–induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1Rhigh cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.", "title": "PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2" }, { "docid": "1227277", "text": "Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.", "title": "Rapamycin passes the torch: a new generation of mTOR inhibitors" }, { "docid": "7764903", "text": "Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.", "title": "Classification, functions, and clinical relevance of extracellular vesicles." }, { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "40760684", "text": "As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.", "title": "Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics." }, { "docid": "23763738", "text": "We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.", "title": "New colorimetric cytotoxicity assay for anticancer-drug screening." }, { "docid": "28107602", "text": "The oncogene MDMX is overexpressed in many cancers, leading to suppression of the tumor suppressor p53. Inhibitors of the oncogene product MDMX therefore might help reactivate p53 and enhance the efficacy of DNA-damaging drugs. However, we currently lack a quantitative understanding of how MDMX inhibition affects the p53 signaling pathway and cell sensitivity to DNA damage. Live cell imaging showed that MDMX depletion triggered two distinct phases of p53 accumulation in single cells: an initial postmitotic pulse, followed by low-amplitude oscillations. The response to DNA damage was sharply different in these two phases; in the first phase, MDMX depletion was synergistic with DNA damage in causing cell death, whereas in the second phase, depletion of MDMX inhibited cell death. Thus a quantitative understanding of signal dynamics and cellular states is important for designing an optimal schedule of dual-drug administration.", "title": "Schedule-dependent interaction between anticancer treatments" }, { "docid": "39892135", "text": "OBJECTIVE To assess the efficacy and tolerability of sulfasalazine (SSZ) in the treatment of spondylarthropathy. \n METHODS We conducted a 6-month randomized, placebo-controlled, double-blind, multicenter study of patients with spondylarthropathy whose disease had remained active despite treatment with nonsteroidal antiinflammatory drugs. Patients were treated with SSZ (3 gm/day) or placebo. The primary efficacy variables were the physician's and patient's overall assessments, pain, and morning stiffness. End points were analyzed in the intent-to-treat and completer patient populations; the time course of effect was analyzed in the completer patient population. \n RESULTS Of the 351 patients enrolled, 263 (75%) completed the 6-month treatment period. The withdrawal rates were 35 (20%) and 53 (30%) in the placebo and SSZ groups, respectively. In the intent-to-treat analysis of end point efficacy, the between-treatment difference reached statistical significance only for 1 of the 4 primary outcome variables, the patient's overall assessment of disease activity, for which 60% of the patients taking SSZ improved by at least 1 point on a 5-point scale, in contrast to 44% of the patients taking placebo. Laboratory markers of inflammation also showed statistically significant change in favor of SSZ. In subgroup analysis, the most impressive effects were seen in patients with psoriatic arthritis, both for the 4 primary efficacy variables and for secondary efficacy variables such as the number of inflamed joints. Adverse events were more frequent in the SSZ group than the placebo group, but all were transient or reversible after cessation of treatment. \n CONCLUSION The results of this study show that SSZ had greater efficacy than placebo in the treatment of active spondylarthropathy, notably in patients with psoriatic arthritis.", "title": "Sulfasalazine in the treatment of spondylarthropathy. A randomized, multicenter, double-blind, placebo-controlled study." }, { "docid": "24101431", "text": "Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell-mediated autoimmune destruction of insulin-producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β-cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 10(5) syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor-derived insulin-producing cells. In contrast, 7 and 65 days post-transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control.", "title": "The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment." }, { "docid": "5386514", "text": "The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.", "title": "Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors" }, { "docid": "15048300", "text": "BACKGROUND Data on absolute risks of outcomes and patterns of drug use in cost-effectiveness analyses are often based on randomised clinical trials (RCTs). The objective of this study was to evaluate the external validity of published cost-effectiveness studies by comparing the data used in these studies (typically based on RCTs) to observational data from actual clinical practice. Selective Cox-2 inhibitors (coxibs) were used as an example. \n METHODS AND FINDINGS The UK General Practice Research Database (GPRD) was used to estimate the exposure characteristics and individual probabilities of upper gastrointestinal (GI) events during current exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) or coxibs. A basic cost-effectiveness model was developed evaluating two alternative strategies: prescription of a conventional NSAID or coxib. Outcomes included upper GI events as recorded in GPRD and hospitalisation for upper GI events recorded in the national registry of hospitalisations (Hospital Episode Statistics) linked to GPRD. Prescription costs were based on the prescribed number of tables as recorded in GPRD and the 2006 cost data from the British National Formulary. The study population included over 1 million patients prescribed conventional NSAIDs or coxibs. Only a minority of patients used the drugs long-term and daily (34.5% of conventional NSAIDs and 44.2% of coxibs), whereas coxib RCTs required daily use for at least 6-9 months. The mean cost of preventing one upper GI event as recorded in GPRD was US$104k (ranging from US$64k with long-term daily use to US$182k with intermittent use) and US$298k for hospitalizations. The mean costs (for GPRD events) over calendar time were US$58k during 1990-1993 and US$174k during 2002-2005. Using RCT data rather than GPRD data for event probabilities, the mean cost was US$16k with the VIGOR RCT and US$20k with the CLASS RCT. \n CONCLUSIONS The published cost-effectiveness analyses of coxibs lacked external validity, did not represent patients in actual clinical practice, and should not have been used to inform prescribing policies. External validity should be an explicit requirement for cost-effectiveness analyses.", "title": "A Comparison of Cost Effectiveness Using Data from Randomized Trials or Actual Clinical Practice: Selective Cox-2 Inhibitors as an Example" }, { "docid": "4320424", "text": "The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS–PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.", "title": "Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling" }, { "docid": "19673227", "text": "The prognostic value associated with the detection of circulating tumor cells (CTCs) in metastatic breast cancer by the CellSearch technology raise additional issues regarding the biological value of this information. We postulated that a drug-resistance profile of CTCs may predict response to chemotherapy in cancer patients and therefore could be used for patient selection. One hundred 5 patients with diagnosis of carcinoma were enrolled in a prospective trial. CTCs were isolated from peripheral blood, and positive samples were evaluated for the expression of a panel of genes involved in anticancer drugs resistance. The drug-resistance profile was correlated with disease-free survival (DFS; patients in adjuvant setting) and time to progression (TTP; metastatic patients) in a 24-months follow-up. Objective response correlation was a secondary end point. Fifty-one percent of patients were found positive for CTCs while all blood samples from healthy donors were negative. The drug-resistance profile correlates with DFS and TTP (p < 0.001 in both). Sensitivity of the test: able to predict treatment response in 98% of patients. Specificity of the test: 100%; no sample from healthy subject was positive for the presence of CTCs. Positive and negative predictive values were found to be 96.5 and 100%, respectively. We identified a drug-resistance profile of CTCs, which is predictive of response to chemotherapy, independent of tumor type and stage of disease. This approach may represent a first step toward the individualization of chemotherapy in cancer patients.", "title": "Chemosensitivity profile assay of circulating cancer cells: prognostic and predictive value in epithelial tumors." } ]
858
Normal expression of RUNX1 causes tumorsupressing effects.
[ { "docid": "1982286", "text": "The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.", "title": "Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL" } ]
[ { "docid": "12315072", "text": "At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.", "title": "Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program." }, { "docid": "22049489", "text": "The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.", "title": "The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1." }, { "docid": "9076196", "text": "Recent studies have established that during embryonic development, hematopoietic progenitors and stem cells are generated from hemogenic endothelium precursors through a process termed endothelial to hematopoietic transition (EHT). The transcription factor RUNX1 is essential for this process, but its main downstream effectors remain largely unknown. Here, we report the identification of Gfi1 and Gfi1b as direct targets of RUNX1 and critical regulators of EHT. GFI1 and GFI1B are able to trigger, in the absence of RUNX1, the down-regulation of endothelial markers and the formation of round cells, a morphologic change characteristic of EHT. Conversely, blood progenitors in Gfi1- and Gfi1b-deficient embryos maintain the expression of endothelial genes. Moreover, those cells are not released from the yolk sac and disseminated into embryonic tissues. Taken together, our findings demonstrate a critical and specific role of the GFI1 transcription factors in the first steps of the process leading to the generation of hematopoietic progenitors from hemogenic endothelium.", "title": "GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment." }, { "docid": "13048272", "text": "Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.", "title": "Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators." }, { "docid": "20732789", "text": "Cigarette smoke is the main cause of chronic obstructive pulmonary disease (COPD), where it can contribute to the observed airway inflammation. PGE(2) is produced within human airways, and both pro- and anti-inflammatory activities have been reported. We quantitated PGE(2) concentrations in induced sputum supernatants from different groups of subjects and correlated the obtained values to neutrophil infiltration as well as to the expression of cyclooxygenase-2 (COX-2). Cigarette smoke extract (CSE) was used to evaluate the effect of smoking on COX-2 and PGE(2) receptor expression as well as on PGE(2) release in neutrophils and alveolar macrophages (AM) obtained from normal donors. The effects of PGE(2) and of PGE receptor agonists and antagonists were evaluated on the adhesion of neutrophil to a human bronchial epithelial cell line (16HBE). PGE(2) levels, COX-2 expression, and neutrophil infiltration were significantly higher in normal smokers and COPD smokers (P < 0.0001) compared with controls and COPD former smokers. Induced sputum supernatant caused neutrophil adhesion to 16HBE that was significantly reduced, in COPD smokers only, by PGE(2) immunoprecipitation. In vitro experiments confirmed that CSE increased PGE(2) release and COX-2 and PGE(2) receptor expression in neutrophils and AM; PGE(2) enhanced the adhesion of neutrophils to 16HBE, and a specific E-prostanoid 4 (EP(4)) receptor antagonist blunted its effect. These results suggest that CSE promote the induction of COX-2 and contributes to the proinflammatory effects of PGE(2) in the airways of COPD subjects.", "title": "Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products." }, { "docid": "243694", "text": "The ontogeny of haematopoietic stem cells (HSCs) during embryonic development is still highly debated, especially their possible lineage relationship to vascular endothelial cells. The first anatomical site from which cells with long-term HSC potential have been isolated is the aorta-gonad-mesonephros (AGM), more specifically the vicinity of the dorsal aortic floor. But although some authors have presented evidence that HSCs may arise directly from the aortic floor into the dorsal aortic lumen, others support the notion that HSCs first emerge within the underlying mesenchyme. Here we show by non-invasive, high-resolution imaging of live zebrafish embryos, that HSCs emerge directly from the aortic floor, through a stereotyped process that does not involve cell division but a strong bending then egress of single endothelial cells from the aortic ventral wall into the sub-aortic space, and their concomitant transformation into haematopoietic cells. The process is polarized not only in the dorso-ventral but also in the rostro-caudal versus medio-lateral direction, and depends on Runx1 expression: in Runx1-deficient embryos, the exit events are initially similar, but much rarer, and abort into violent death of the exiting cell. These results demonstrate that the aortic floor is haemogenic and that HSCs emerge from it into the sub-aortic space, not by asymmetric cell division but through a new type of cell behaviour, which we call an endothelial haematopoietic transition.", "title": "Blood stem cells emerge from aortic endothelium by a novel type of cell transition" }, { "docid": "8385277", "text": "Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing. A specific pattern of chromosomal abnormalities was found in MDS/AML, which included 1q+ (44.8%), 3q+ (41.4%), -7/7q (17.2%), and 11q- (13.8%). Moreover, cryptic RUNX1/AML1 lesions (translocations, deletions, or mutations) were observed for the first time in FA (20.7%). Rare mutations of NRAS, FLT3-ITD, MLL-PTD, ERG amplification, and ZFP36L2-PRDM16 translocation, but no TP53, TET2, CBL, NPM1, and CEBPα mutations were found. Frequent homozygosity regions were related not to somatic copy-neutral loss of heterozygosity but to consanguinity, suggesting that homologous recombination is not a common progression mechanism in FA. Importantly, the RUNX1 and other chromosomal/genomic lesions were found at the MDS/AML stages, except for 1q+, which was found at all stages. These data have implications for staging and therapeutic managing in FA patients, and also to analyze the mechanisms of clonal evolution and oncogenesis in a background of genomic instability and BM failure.", "title": "Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions." }, { "docid": "25725663", "text": "Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.", "title": "Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway." }, { "docid": "16364639", "text": "By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR \"sponges\" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.", "title": "An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma" }, { "docid": "10795340", "text": "Pancytopenia is a major cause of morbidity in acute myeloid leukemia (AML), yet its cause is unclear. Normal osteoblastic cells have been shown to support hematopoiesis. To define the effects of leukemia on osteoblastic cells, we used an immunocompetent murine model of AML. Leukemic mice had inhibition of osteoblastic cells, with decreased serum levels of the bone formation marker osteocalcin. Osteoprogenitor cells and endosteal-lining osteopontin(+) cells were reduced, and osteocalcin mRNA in CD45(-) marrow cells was diminished. This resulted in severe loss of mineralized bone. Osteoclasts were only transiently increased without significant increases in bone resorption, and their inhibition only partially rescued leukemia-induced bone loss. In vitro data suggested that a leukemia-derived secreted factor inhibited osteoblastic cells. Because the chemokine CCL-3 was recently reported to inhibit osteoblastic function in myeloma, we tested its expression in our model and in AML patients. Consistent with its potential novel role in leukemic-dependent bone loss, CCL-3 mRNA was significantly increased in malignant marrow cells from leukemic mice and from samples from AML patients. Based on these results, we propose that therapeutic mitigation of leukemia-induced uncoupling of osteoblastic and osteoclastic cells may represent a novel approach to promote normal hematopoiesis in patients with myeloid neoplasms.", "title": "Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia." }, { "docid": "28206748", "text": "CBFbeta is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBFbeta levels display profound, early defects in T-cell but not B-cell development. Here we show that CBFbeta is also required at very early stages of natural killer (NK)-cell development. We also demonstrate that T-cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T-cell expansion or differentiation of CBFbeta insufficient cells, nor can overexpression of Runx1 or CBFbeta overcome a lack of Notch signaling. Therefore, the ability of the prethymic cell to respond appropriately to Notch is dependent on CBFbeta, and both signals converge to activate the T-cell developmental program.", "title": "Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification." }, { "docid": "13923140", "text": "Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4+ CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.", "title": "Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity" }, { "docid": "18938992", "text": "Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.", "title": "Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10." }, { "docid": "26068103", "text": "RSV lower respiratory tract infections (LRTI) are among the most common diseases necessitating hospital admission in children. In addition to causing acute respiratory failure, RSV infections are associated with sequelae such as secondary bacterial infections and reactive airway disease. One characteristic host response observed in severe RSV-induced LRTI and/or subsequent development of asthma is increased expression of interleukin (IL)-10. However, contradictory results have been reported regarding whether IL-10 inhibits asthmatic responses or intensifies the disease. We aimed to reconcile these discordant observations by elucidating the role of IL-10 in regulating the host response to RSV LRTI. In this study, we used a lung-specific, inducible IL-10 over-expression (OE) transgenic mouse model to address this question. Our results showed that the presence of IL-10 at the time of RSV infection not only attenuated acute inflammatory process (i.e. 24 h post-infection), but also late inflammatory changes [characterized by T helper type 2 (Th2) cytokine and chemokine expression]. While this result appears contradictory to some clinical observations where elevated IL-10 levels are observed in asthmatic patients, we also found that delaying IL-10 OE until the late immune response to RSV infection, additive effects rather than inhibitory effects were observed. Importantly, in non-infected, IL-10 OE mice, IL-10 OE alone induced up-regulation of Th2 cytokine (IL-13 and IL-5) and Th2-related chemokine [monocyte chemoattractant protein 1 (MCP-1), chemokine (C-C motif) ligand 3 (CCL3) and regulated upon activation normal T cell expressed and secreted (RANTES)] expression. We identified a subset of CD11b(+)CD11c(+)CD49b(+)F4/80(-)Gr-1(-) myeloid cells as a prinicipal source of IL-10-induced IL-13 production. Therefore, the augmented pathological responses observed in our 'delayed' IL-10 over-expression model could be attributed to IL-10 OE alone. Taken together, our study indicated dual roles of IL-10 on RSV-induced lung inflammation which appear to depend upon the timing of when elevated IL-10 is expressed in the lung.", "title": "Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation." }, { "docid": "9648896", "text": "Lung cancer is the leading cause of cancer-related mortality in humans worldwide. Moreover, the overall 5-year survival rate is only 15%. Pathologically almost 80% of all lung cancer cases are non-small cell lung cancer (NSCLC). Cancer-associated fibroblasts (CAFs) have been found to exist in a large number of NSCLCs. CAFs have been proven to promote tumor progression, metastasis and resistance to therapy through paracrine effects in most solid tumors. In the present study, firstly we isolated CAFs from patient tissues and demonstrated that they promoted cell proliferation and chemoresistance to cisplatin in the lung cancer cell lines A549 and 95D in a paracrine manner. Secondly, using ELISA and quantative PCR, we found that a higher amount of stromal cell-derived factor 1 (SDF-1) existed in the CAFs rather than that observed in the normal fibroblasts (NFs). Thirdly, we detected that SDF-1 facilitated lung cancer cell proliferation and drug resistance via the CXCR4-mediated signaling pathway which involved NF-κB and Bcl-xL. Moreover, we also confirmed that the expression level of SDF-1 in the CAFs was negatively regulated by microRNA mir-1 through microRNA overexpression and quantitative PCR. Overall, our data provide one explanation for the effects of CAFs on lung cancer cells. Meanwhile, our results also suggest CAFs as a potential therapeutic target in tumor treatment.", "title": "mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance." }, { "docid": "21363424", "text": "T cell-specific deletion of Blimp-1 causes abnormal T cell homeostasis and function, leading to spontaneous, fatal colitis in mice. Herein we explore the role of Blimp-1 in Th1/Th2 differentiation. Blimp-1 mRNA and protein are more highly expressed in Th2 cells compared with Th1 cells, and Blimp-1 attenuates IFN-gamma production in CD4 cells activated under nonpolarizing conditions. Although Blimp-1-deficient T cells differentiate normally to Th2 cytokines in vitro, Blimp-1 is required in vivo for normal Th2 humoral responses to NP-KLH (4-hydroxy-3-nitrophenylacetyl/keyhole lymphocyte hemocyanin) immunization. Lack of Blimp-1 in CD4 T cells causes increased IFN-gamma, T-bet, and Bcl-6 mRNA. By chromatin immunoprecipitation we show that Blimp-1 binds directly to a distal regulatory region in the ifng gene and at multiple sites in tbx21 and bcl6 genes. Our data provide evidence that Blimp-1 functions in Th2 cells to reinforce Th2 differentiation by repressing critical Th1 genes.", "title": "Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression." }, { "docid": "19843244", "text": "BACKGROUND AND PURPOSE The PAR(2) receptors are involved in chronic arthritis by mechanisms that are as yet unclear. Here, we examined PAR(2) activation in the rat knee joint. EXPERIMENTAL APPROACH PAR(2) in rat knee joint dorsal root ganglia (DRG) cells at L3-L5, retrogradely labelled with Fluoro-gold (FG) were demonstrated immunohistochemically. Electrophysiological recordings from knee joint nerve fibres in urethane anaesthetized Wistar rats assessed the effects of stimulating joint PAR(2) with its activating peptide, 2-furoyl-LIGRLO-NH(2) (1-100 nmol·100 μL(-1) , via close intra-arterial injection). Fibre firing rate was recorded during joint rotations before and 15 min after administration of PAR(2) activating peptide or control peptide. Leukocyte kinetics in the synovial vasculature upon PAR(2) activation were followed by intravital microscopy for 60 min after perfusion of 2-furoyl-LIGRLO-NH(2) or control peptide. Roles for transient receptor potential vanilloid-1 (TRPV1) or neurokinin-1 (NK(1) ) receptors in the PAR(2) responses were assessed using the selective antagonists, SB366791 and RP67580 respectively. KEY RESULTS PAR(2) were expressed in 59 ± 5% of FG-positive DRG cells; 100 nmol 2-furoyl-LIGRLO-NH(2) increased joint fibre firing rate during normal and noxious rotation, maximal at 3 min (normal; 110 ± 43%, noxious; 90 ± 31%). 2-Furoyl-LIGRLO-NH(2) also significantly increased leukocyte rolling and adhesion over 60 min. All these effects were blocked by pre-treatment with SB366791 and RP67580 (P < 0.05 compared with 2-furoyl-LIGRLO-NH(2) alone). \n CONCLUSIONS AND IMPLICATIONS PAR(2) receptors play an acute inflammatory role in the knee joint via TRPV1- and NK(1) -dependent mechanisms involving both PAR(2) -mediated neuronal sensitization and leukocyte trafficking.", "title": "Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint." }, { "docid": "712078", "text": "Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.", "title": "Pharmacological correction of a defect in PPARγ signaling ameliorates disease severity in Cftr-deficient mice" }, { "docid": "1192458", "text": "Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts-exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts-exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment.", "title": "A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion." } ]
860
Normal granulomas form in the absence of TNF in Zebrafish.
[ { "docid": "16066726", "text": "Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.", "title": "Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death." } ]
[ { "docid": "24707550", "text": "Macrophages play a pivotal role in innate and acquired immune responses to Schistosoma mansoni. Classical (M1) or alternative (M2) activation states of these cells further delineate their roles in tissue damage through innate immunity or fibrotic remodeling, respectively. In the present study, we addressed the following question: Does systemic Th2-type cytokine polarization evoked by S. mansoni affect macrophage differentiation and activation? To this end, we analyzed bone marrow-derived macrophages from mice with S. mansoni egg-induced pulmonary granulomas and unchallenged (or naïve) mice to determine their activation state and their response to specific TLR agonists, including S. mansoni egg antigens. Unlike naïve macrophages, macrophages from Th2-polarized mice constitutively expressed significantly higher \"found in inflammatory zone-1\" (FIZZ1) and ST2 (M2 markers) and significantly lower NO synthase 2, CCL3, MIP-2, TNF-alpha, and IL-12 (M1 markers). Also, compared with naïve macrophages, Th2-polarized macrophages exhibited enhanced responses to the presence of specific TLR agonists, which consistently induced significantly higher levels of gene and protein levels for M2 and M1 markers in these cells. Together, these data show that signals received by bone marrow precursors during S. mansoni egg-induced granuloma responses dynamically alter the development of macrophages and enhance the TLR responsiveness of these cells, which may ultimately have a significant effect on the pulmonary granulomatous response.", "title": "A systemic granulomatous response to Schistosoma mansoni eggs alters responsiveness of bone-marrow-derived macrophages to Toll-like receptor agonists." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "21258863", "text": "In schistosomiasis, chronic parasite egg-induced granuloma formation can lead to tissue destruction and fibrosis, which causes much of the morbidity and mortality associated with this disease. Here we show the importance of IL-13 in the pathogenesis of schistosomiasis, and demonstrate, perhaps for the first time, the therapeutic efficacy of an IL-13 inhibitor, sIL-13Ralpha2-Fc, in the control of hepatic fibrosis. T-helper type 2 (Th2) cytokines dominate the immune response in mice infected with Schistosoma mansoni, yet the specific contributions of IL-13 and IL-4 to the development of fibrosis were not previously investigated. Our studies demonstrate that both cytokines play redundant roles in granuloma formation, which explains the ability of IL-4-deficient mice to form granulomas around eggs. More importantly, however, these studies demonstrate that IL-13 is the dominant Th2-type cytokine regulating fibrosis. IL-13 stimulated collagen production in fibroblasts, and procollagen I and procollagen III mRNA expression was decreased in sIL-13Ralpha2-Fc-treated mice. Moreover, the reduction in fibrosis observed in IL-4-deficient mice was much less pronounced than that in sIL-13Ralpha2-Fc-treated animals. Fibrosis is a major pathological manifestation of a number of allergic, autoimmune, and infectious diseases. Thus, our findings provide evidence that IL-13 inhibitors may be of general therapeutic benefit in preventing damaging tissue fibrosis resulting from Th2-dominated inflammatory responses.", "title": "An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response." }, { "docid": "9629682", "text": "The field of macro-imaging has grown considerably with the appearance of innovative clearing methods and confocal microscopes with lasers capable of penetrating increasing tissue depths. The ability to visualize and model the growth of whole organs as they develop from birth, or with manipulation, disease or injury, provides new ways of thinking about development, tissue-wide signaling, and cell-to-cell interactions. The zebrafish (Danio rerio) has ascended from a predominantly developmental model to a leading adult model of tissue regeneration. The unmatched neurogenic and regenerative capacity of the mature central nervous system, in particular, has received much attention, however tools to interrogate the adult brain are sparse. At present there exists no straightforward methods of visualizing changes in the whole adult brain in 3-dimensions (3-D) to examine systemic patterns of cell proliferation or cell populations of interest under physiological, injury, or diseased conditions. The method presented here is the first of its kind to offer an efficient step-by-step pipeline from intraperitoneal injections of the proliferative marker, 5-ethynyl-2'-deoxyuridine (EdU), to whole brain labeling, to a final embedded and cleared brain sample suitable for 3-D imaging using optical projection tomography (OPT). Moreover, this method allows potential for imaging GFP-reporter lines and cell-specific antibodies in the presence or absence of EdU. The small size of the adult zebrafish brain, the highly consistent degree of EdU labeling, and the use of basic clearing agents, benzyl benzoate, and benzyl alcohol, makes this method highly tractable for most laboratories interested in understanding the vertebrate central nervous system in health and disease. Post-processing of OPT-imaged adult zebrafish brains injected with EdU illustrate that proliferative patterns in EdU can readily be observed and analyzed using IMARIS and/or FIJI/IMAGEJ software. This protocol will be a valuable tool to unlock new ways of understanding systemic patterns in cell proliferation in the healthy and injured brain, brain-wide cellular interactions, stem cell niche development, and changes in brain morphology.", "title": "A Whole Brain Staining, Embedding, and Clearing Pipeline for Adult Zebrafish to Visualize Cell Proliferation and Morphology in 3-Dimensions" }, { "docid": "3475317", "text": "Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.", "title": "Inflammatory signaling in human Tuberculosis granulomas is spatially organized" }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "38023457", "text": "Severe quantitative and qualitative brown adipocyte defects are common in obesity. To investigate whether aberrant expression of tumor necrosis factor alpha (TNF-alpha) in obesity is involved in functional brown fat atrophy, we have studied genetically obese (ob/ob) mice with targeted null mutations in the genes encoding the two TNF receptors. The absence of both TNF receptors or p55 receptor alone resulted in a significant reduction in brown adipocyte apoptosis and an increase in beta(3)-adrenoreceptor and uncoupling protein-1 expression in obese mice. Increased numbers of multilocular functionally active brown adipocytes, and improved thermoregulation was also observed in obese animals lacking TNF-alpha function. These results indicate that TNF-alpha plays an important role in multiple aspects of brown adipose tissue biology and mediates the abnormalities that occur at this site in obesity.", "title": "Tumor necrosis factor alpha mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity." }, { "docid": "8698857", "text": "TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.", "title": "The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation" }, { "docid": "5395426", "text": "Zebrafish maintain a greater capacity than mammals for central nervous system repair after injury. Understanding differences in regenerative responses between different vertebrate species may shed light on mechanisms to improve repair in humans. Quinolinic acid is an excitotoxin that has been used to induce brain injury in rodents for modeling Huntington's disease and stroke. When injected into the adult rodent striatum, this toxin stimulates subventricular zone neurogenesis and neuroblast migration to injury. However, most new neurons fail to survive and lesion repair is minimal. We used quinolinic acid to lesion the adult zebrafish telencephalon to study reparative processes. We also used conditional transgenic lineage mapping of adult radial glial stem cells to explore survival and integration of neurons generated after injury. Telencephalic lesioning with quinolinic acid, and to a lesser extent vehicle injection, produced cell death, microglial infiltration, increased cell proliferation, and enhanced neurogenesis in the injured hemisphere. Lesion repair was more complete with quinolinic acid injection than after vehicle injection. Fate mapping of her4-expressing radial glia showed injury-induced expansion of radial glial stem cells that gave rise to neurons which migrated to injury, survived at least 8 weeks and formed long-distance projections that crossed the anterior commissure and synapsed in the contralateral hemisphere. These findings suggest that quinolinic acid lesioning of the zebrafish brain stimulates adult neural stem cells to produce robust regeneration with long-distance integration of new neurons. This model should prove useful for elucidating reparative mechanisms that can be applied to restorative therapies for mammalian brain injury.", "title": "Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration." }, { "docid": "34615397", "text": "The human tuberculous granuloma provides the morphological basis for local immune processes central to the outcome of tuberculosis. Because of the scarcity of information in human patients, the aim of the present study was to gain insights into the functional and structural properties of infiltrated tissue. To this end, the mycobacterial load in lesions and dissemination to different tissue locations were investigated, as well as distribution, biological functions, and interactions of host immune cells. Analysis of early granuloma formation in formerly healthy lung tissue revealed a spatio-temporal sequence of cellular infiltration to sites of mycobacterial infection. A general structure of the developing granuloma was identified, comprising an inner cell layer with few CD8(+) cells surrounding the necrotic centre and an outer area of lymphocyte infiltration harbouring mycobacteria-containing antigen-presenting cells as well as CD4(+), CD8(+), and B cells in active follicle-like centres resembling secondary lymphoid organs. It is concluded that the follicular structures in the peripheral rim of granulomas serve as a morphological substrate for the orchestration of the enduring host response in pulmonary tuberculosis.", "title": "Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung." }, { "docid": "18346333", "text": "Glutamate receptors mediate the majority of excitatory synaptic transmission in the CNS. The AMPA-subtype has rapid kinetics, with activation, deactivation and desensitization proceeding on the millisecond timescale or faster. Crystallographic, biochemical, and functional studies suggest that GluR2 Cys mutants which form intermolecular disulfide cross-links between the lower D2 lobes of the ligand binding cores can be trapped in a conformation that represents the desensitized state. We used multi-channel rapid perfusion techniques to examine the state dependence of cross-linking in these mutants. Under reducing conditions, both wild-type GluR2 and the G725C and S729C mutants have normal activation and desensitization kinetics, but the Cys mutants can be efficiently trapped in nonconducting states when oxidized. In contrast the I664C mutant is only partially inactivated under oxidizing conditions. For S729C, disulfide cross-links form rapidly when receptors are desensitized in the presence of glutamate, but receptors also become trapped at rest, in the absence of agonist. We assessed such spontaneous trapping in various conditions, including CNQX, a competitive antagonist; kainate, a weak partial agonist; or when desensitization was blocked by the L483Y mutation that stabilizes the D1 dimer interface. These experiments suggest that trapping in the absence of glutamate is due to two motions: Spontaneous breaking of the D1 dimer interface and hyperextension of the lower lobes of the ligand binding core. These data show that the glutamate binding domains are surprisingly mobile in the absence of ligand, which could influence receptor activity in the brain.", "title": "AMPA receptor ligand binding domain mobility revealed by functional cross linking." }, { "docid": "4422723", "text": "For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.", "title": "Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia" }, { "docid": "24555417", "text": "In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1) bundles microtubules and KLP-18 (kinesin-12) likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.", "title": "Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis" }, { "docid": "4932668", "text": "In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.", "title": "Cardiac neural crest contributes to cardiomyogenesis in zebrafish." }, { "docid": "207972", "text": "Early region 3 (E3) of group C human adenoviruses (Ad) encodes several inhibitors of tumor necrosis factor alpha (TNF-alpha) cytolysis, including an E3 14.7-kDa protein (E3-14.7K) and a heterodimer containing two polypeptides of 10.4 and 14.5 kDa. To understand the mechanism by which the viral proteins inhibit TNF-alpha functions, the E3-14.7K protein was used to screen a HeLa cell cDNA library to search for interacting proteins in the yeast two-hybrid system. A novel protein containing multiple leucine zipper domains without any significant homology with any known protein was identified and has been named FIP-2 (for 14.7K-interacting protein). FIP-2 interacted with E3-14.7K both in vitro and in vivo. It colocalized with Ad E3-14.7K in the cytoplasm, especially near the nuclear membrane, and caused redistribution of the viral protein. FIP-2 by itself does not cause cell death; however, it can reverse the protective effect of E3-14.7K on cell killing induced by overexpression of the intracellular domain of the 55-kDa TNF receptor or by RIP, a death protein involved in the TNF-alpha and Fas apoptosis pathways. Deletion analysis indicates that the reversal effect of FIP-2 depends on its interaction with E3-14.7K. Three major mRNA forms of FIP-2 have been detected in multiple human tissues, and expression of the transcripts was induced by TNF-alpha treatment in a time-dependent manner in two different cell lines. FIP-2 has consensus sequences for several potential posttranslational modifications. These data suggest that FIP-2 is one of the cellular targets for Ad E3-14.7K and that its mechanism of affecting cell death involves the TNF receptor, RIP, or a downstream molecule affected by either of these two molecules.", "title": "Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains." }, { "docid": "16488405", "text": "Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 ± 6.5 (SD) ml · kg−1 · min−1] but untrained men [age = 25 ± 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60–65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1β, IL-6, and TNF-α peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1β and TNF-α) postexercise. Cytokine gene expression in circulating mononucl...", "title": "Downloaded from" }, { "docid": "40963697", "text": "The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.", "title": "The tumor necrosis factor receptor stalk regions define responsiveness to soluble versus membrane-bound ligand." }, { "docid": "30152134", "text": "Progressive advances using zebrafish as a model organism have provided hematologists with an additional genetic system to study blood cell formation and hematological malignancies. Despite extensive evolutionary divergence between bony fish (teleosts) and mammals, the molecular pathways governing hematopoiesis have been highly conserved. As a result, most (if not all) of the critical hematopoietic transcription factor genes identified in mammals have orthologues in zebrafish. As in other vertebrates, all of the teleost blood lineages are believed to originate from a pool of pluripotent, self-renewing hematopoietic stem cells. Here, we provide a detailed review of the timing, anatomical location, and transcriptional regulation of zebrafish ‘primitive’ and ‘definitive’ hematopoiesis as well as discuss a model of T-cell leukemia and recent advances in blood cell transplantation. Given that many of the regulatory genes that control embryonic hematopoiesis have been implicated in oncogenic pathways in adults, an understanding of blood cell ontogeny is likely to provide insights into the pathophysiology of human leukemias.", "title": "The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis" }, { "docid": "9956893", "text": "OBJECTIVE Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. \n METHODS Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. \n RESULTS AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. \n CONCLUSIONS In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.", "title": "The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes" } ]
861
Normal granulomas form in the presence of TNF in Zebrafish.
[ { "docid": "16066726", "text": "Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.", "title": "Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death." } ]
[ { "docid": "24707550", "text": "Macrophages play a pivotal role in innate and acquired immune responses to Schistosoma mansoni. Classical (M1) or alternative (M2) activation states of these cells further delineate their roles in tissue damage through innate immunity or fibrotic remodeling, respectively. In the present study, we addressed the following question: Does systemic Th2-type cytokine polarization evoked by S. mansoni affect macrophage differentiation and activation? To this end, we analyzed bone marrow-derived macrophages from mice with S. mansoni egg-induced pulmonary granulomas and unchallenged (or naïve) mice to determine their activation state and their response to specific TLR agonists, including S. mansoni egg antigens. Unlike naïve macrophages, macrophages from Th2-polarized mice constitutively expressed significantly higher \"found in inflammatory zone-1\" (FIZZ1) and ST2 (M2 markers) and significantly lower NO synthase 2, CCL3, MIP-2, TNF-alpha, and IL-12 (M1 markers). Also, compared with naïve macrophages, Th2-polarized macrophages exhibited enhanced responses to the presence of specific TLR agonists, which consistently induced significantly higher levels of gene and protein levels for M2 and M1 markers in these cells. Together, these data show that signals received by bone marrow precursors during S. mansoni egg-induced granuloma responses dynamically alter the development of macrophages and enhance the TLR responsiveness of these cells, which may ultimately have a significant effect on the pulmonary granulomatous response.", "title": "A systemic granulomatous response to Schistosoma mansoni eggs alters responsiveness of bone-marrow-derived macrophages to Toll-like receptor agonists." }, { "docid": "3475317", "text": "Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.", "title": "Inflammatory signaling in human Tuberculosis granulomas is spatially organized" }, { "docid": "21258863", "text": "In schistosomiasis, chronic parasite egg-induced granuloma formation can lead to tissue destruction and fibrosis, which causes much of the morbidity and mortality associated with this disease. Here we show the importance of IL-13 in the pathogenesis of schistosomiasis, and demonstrate, perhaps for the first time, the therapeutic efficacy of an IL-13 inhibitor, sIL-13Ralpha2-Fc, in the control of hepatic fibrosis. T-helper type 2 (Th2) cytokines dominate the immune response in mice infected with Schistosoma mansoni, yet the specific contributions of IL-13 and IL-4 to the development of fibrosis were not previously investigated. Our studies demonstrate that both cytokines play redundant roles in granuloma formation, which explains the ability of IL-4-deficient mice to form granulomas around eggs. More importantly, however, these studies demonstrate that IL-13 is the dominant Th2-type cytokine regulating fibrosis. IL-13 stimulated collagen production in fibroblasts, and procollagen I and procollagen III mRNA expression was decreased in sIL-13Ralpha2-Fc-treated mice. Moreover, the reduction in fibrosis observed in IL-4-deficient mice was much less pronounced than that in sIL-13Ralpha2-Fc-treated animals. Fibrosis is a major pathological manifestation of a number of allergic, autoimmune, and infectious diseases. Thus, our findings provide evidence that IL-13 inhibitors may be of general therapeutic benefit in preventing damaging tissue fibrosis resulting from Th2-dominated inflammatory responses.", "title": "An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response." }, { "docid": "9629682", "text": "The field of macro-imaging has grown considerably with the appearance of innovative clearing methods and confocal microscopes with lasers capable of penetrating increasing tissue depths. The ability to visualize and model the growth of whole organs as they develop from birth, or with manipulation, disease or injury, provides new ways of thinking about development, tissue-wide signaling, and cell-to-cell interactions. The zebrafish (Danio rerio) has ascended from a predominantly developmental model to a leading adult model of tissue regeneration. The unmatched neurogenic and regenerative capacity of the mature central nervous system, in particular, has received much attention, however tools to interrogate the adult brain are sparse. At present there exists no straightforward methods of visualizing changes in the whole adult brain in 3-dimensions (3-D) to examine systemic patterns of cell proliferation or cell populations of interest under physiological, injury, or diseased conditions. The method presented here is the first of its kind to offer an efficient step-by-step pipeline from intraperitoneal injections of the proliferative marker, 5-ethynyl-2'-deoxyuridine (EdU), to whole brain labeling, to a final embedded and cleared brain sample suitable for 3-D imaging using optical projection tomography (OPT). Moreover, this method allows potential for imaging GFP-reporter lines and cell-specific antibodies in the presence or absence of EdU. The small size of the adult zebrafish brain, the highly consistent degree of EdU labeling, and the use of basic clearing agents, benzyl benzoate, and benzyl alcohol, makes this method highly tractable for most laboratories interested in understanding the vertebrate central nervous system in health and disease. Post-processing of OPT-imaged adult zebrafish brains injected with EdU illustrate that proliferative patterns in EdU can readily be observed and analyzed using IMARIS and/or FIJI/IMAGEJ software. This protocol will be a valuable tool to unlock new ways of understanding systemic patterns in cell proliferation in the healthy and injured brain, brain-wide cellular interactions, stem cell niche development, and changes in brain morphology.", "title": "A Whole Brain Staining, Embedding, and Clearing Pipeline for Adult Zebrafish to Visualize Cell Proliferation and Morphology in 3-Dimensions" }, { "docid": "5395426", "text": "Zebrafish maintain a greater capacity than mammals for central nervous system repair after injury. Understanding differences in regenerative responses between different vertebrate species may shed light on mechanisms to improve repair in humans. Quinolinic acid is an excitotoxin that has been used to induce brain injury in rodents for modeling Huntington's disease and stroke. When injected into the adult rodent striatum, this toxin stimulates subventricular zone neurogenesis and neuroblast migration to injury. However, most new neurons fail to survive and lesion repair is minimal. We used quinolinic acid to lesion the adult zebrafish telencephalon to study reparative processes. We also used conditional transgenic lineage mapping of adult radial glial stem cells to explore survival and integration of neurons generated after injury. Telencephalic lesioning with quinolinic acid, and to a lesser extent vehicle injection, produced cell death, microglial infiltration, increased cell proliferation, and enhanced neurogenesis in the injured hemisphere. Lesion repair was more complete with quinolinic acid injection than after vehicle injection. Fate mapping of her4-expressing radial glia showed injury-induced expansion of radial glial stem cells that gave rise to neurons which migrated to injury, survived at least 8 weeks and formed long-distance projections that crossed the anterior commissure and synapsed in the contralateral hemisphere. These findings suggest that quinolinic acid lesioning of the zebrafish brain stimulates adult neural stem cells to produce robust regeneration with long-distance integration of new neurons. This model should prove useful for elucidating reparative mechanisms that can be applied to restorative therapies for mammalian brain injury.", "title": "Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration." }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "34615397", "text": "The human tuberculous granuloma provides the morphological basis for local immune processes central to the outcome of tuberculosis. Because of the scarcity of information in human patients, the aim of the present study was to gain insights into the functional and structural properties of infiltrated tissue. To this end, the mycobacterial load in lesions and dissemination to different tissue locations were investigated, as well as distribution, biological functions, and interactions of host immune cells. Analysis of early granuloma formation in formerly healthy lung tissue revealed a spatio-temporal sequence of cellular infiltration to sites of mycobacterial infection. A general structure of the developing granuloma was identified, comprising an inner cell layer with few CD8(+) cells surrounding the necrotic centre and an outer area of lymphocyte infiltration harbouring mycobacteria-containing antigen-presenting cells as well as CD4(+), CD8(+), and B cells in active follicle-like centres resembling secondary lymphoid organs. It is concluded that the follicular structures in the peripheral rim of granulomas serve as a morphological substrate for the orchestration of the enduring host response in pulmonary tuberculosis.", "title": "Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." }, { "docid": "496873", "text": "Vasculitis, inflammation of the vessel wall, can result in mural destruction with hemorrhage, aneurysm formation, and infarction, or intimal-medial hyperplasia and subsequent stenosis leading to tissue ischemia. The skin, in part due to its large vascular bed, exposure to cold temperatures, and frequent presence of stasis, is involved in many distinct as well as un-named vasculitic syndromes that vary from localized and self-limited to generalized and life-threatening with multi-organ disease. To exclude mimics of vasculitis, diagnosis of cutaneous vasculitis requires biopsy confirmation where its acute signs (fibrinoid necrosis), chronic signs (endarteritis obliterans), or past signs (acellular scar of healed arteritis) must be recognized and presence of extravascular findings such as patterned fibrosis or collagenolytic granulomas noted. Although vasculitis can be classified by etiology, many cases have no identifiable cause, and a single etiologic agent can elicit several distinct clinicopathologic expressions of vasculitis. Therefore, the classification of cutaneous vasculitis is best approached morphologically by determining vessel size and principal inflammatory response. These histologic patterns roughly correlate with pathogenic mechanisms that, when coupled with direct immunofluorescent examination, anti-neutrophil cytoplasmic antibody (ANCA) status, and findings from work-up for systemic disease, allow for specific diagnosis, and ultimately, more effective therapy. Herein, we review cutaneous vasculitis focusing on diagnostic criteria, classification, epidemiology, etiology, pathogenesis, and evaluation of the cutaneous vasculitis patient.", "title": "CRITICAL REVIEW Cutaneous Vasculitis Update: Diagnostic Criteria," }, { "docid": "4422723", "text": "For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.", "title": "Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia" }, { "docid": "4932668", "text": "In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.", "title": "Cardiac neural crest contributes to cardiomyogenesis in zebrafish." }, { "docid": "207972", "text": "Early region 3 (E3) of group C human adenoviruses (Ad) encodes several inhibitors of tumor necrosis factor alpha (TNF-alpha) cytolysis, including an E3 14.7-kDa protein (E3-14.7K) and a heterodimer containing two polypeptides of 10.4 and 14.5 kDa. To understand the mechanism by which the viral proteins inhibit TNF-alpha functions, the E3-14.7K protein was used to screen a HeLa cell cDNA library to search for interacting proteins in the yeast two-hybrid system. A novel protein containing multiple leucine zipper domains without any significant homology with any known protein was identified and has been named FIP-2 (for 14.7K-interacting protein). FIP-2 interacted with E3-14.7K both in vitro and in vivo. It colocalized with Ad E3-14.7K in the cytoplasm, especially near the nuclear membrane, and caused redistribution of the viral protein. FIP-2 by itself does not cause cell death; however, it can reverse the protective effect of E3-14.7K on cell killing induced by overexpression of the intracellular domain of the 55-kDa TNF receptor or by RIP, a death protein involved in the TNF-alpha and Fas apoptosis pathways. Deletion analysis indicates that the reversal effect of FIP-2 depends on its interaction with E3-14.7K. Three major mRNA forms of FIP-2 have been detected in multiple human tissues, and expression of the transcripts was induced by TNF-alpha treatment in a time-dependent manner in two different cell lines. FIP-2 has consensus sequences for several potential posttranslational modifications. These data suggest that FIP-2 is one of the cellular targets for Ad E3-14.7K and that its mechanism of affecting cell death involves the TNF receptor, RIP, or a downstream molecule affected by either of these two molecules.", "title": "Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains." }, { "docid": "16488405", "text": "Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 ± 6.5 (SD) ml · kg−1 · min−1] but untrained men [age = 25 ± 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60–65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1β, IL-6, and TNF-α peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1β and TNF-α) postexercise. Cytokine gene expression in circulating mononucl...", "title": "Downloaded from" }, { "docid": "40963697", "text": "The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.", "title": "The tumor necrosis factor receptor stalk regions define responsiveness to soluble versus membrane-bound ligand." }, { "docid": "43385013", "text": "It has been proposed that epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features, and that the presence of EMT characteristics in claudin-low breast tumors reveals their origin in basal stem cells. It remains to be determined, however, whether EMT is an inherent property of normal basal stem cells, and if the presence of a mesenchymal-like phenotype is required for the maintenance of all their stem cell properties. We used nontumorigenic basal cell lines as models of normal stem cells/progenitors and demonstrate that these cell lines contain an epithelial subpopulation (\"EpCAM+,\" epithelial cell adhesion molecule positive [EpCAM(pos)]/CD49f(high)) that spontaneously generates mesenchymal-like cells (\"Fibros,\" EpCAM(neg)/CD49f(med/low)) through EMT. Importantly, stem cell/progenitor properties such as regenerative potential, high aldehyde dehydrogenase 1 activity, and formation of three-dimensional acini-like structures predominantly reside within EpCAM+ cells, while Fibros exhibit invasive behavior and mammosphere-forming ability. A gene expression profiling meta-analysis established that EpCAM+ cells show a luminal progenitor-like expression pattern, while Fibros most closely resemble stromal fibroblasts but not stem cells. Moreover, Fibros exhibit partial myoepithelial traits and strong similarities with claudin-low breast cancer cells. Finally, we demonstrate that Slug and Zeb1 EMT-inducers control the progenitor and mesenchymal-like phenotype in EpCAM+ cells and Fibros, respectively, by inhibiting luminal differentiation. In conclusion, nontumorigenic basal cell lines have intrinsic capacity for EMT, but a mesenchymal-like phenotype does not correlate with the acquisition of global stem cell/progenitor features. Based on our findings, we propose that EMT in normal basal cells and claudin-low breast cancers reflects aberrant/incomplete myoepithelial differentiation.", "title": "Epithelial and mesenchymal subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties." }, { "docid": "30152134", "text": "Progressive advances using zebrafish as a model organism have provided hematologists with an additional genetic system to study blood cell formation and hematological malignancies. Despite extensive evolutionary divergence between bony fish (teleosts) and mammals, the molecular pathways governing hematopoiesis have been highly conserved. As a result, most (if not all) of the critical hematopoietic transcription factor genes identified in mammals have orthologues in zebrafish. As in other vertebrates, all of the teleost blood lineages are believed to originate from a pool of pluripotent, self-renewing hematopoietic stem cells. Here, we provide a detailed review of the timing, anatomical location, and transcriptional regulation of zebrafish ‘primitive’ and ‘definitive’ hematopoiesis as well as discuss a model of T-cell leukemia and recent advances in blood cell transplantation. Given that many of the regulatory genes that control embryonic hematopoiesis have been implicated in oncogenic pathways in adults, an understanding of blood cell ontogeny is likely to provide insights into the pathophysiology of human leukemias.", "title": "The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis" }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "22178316", "text": "Schizophrenia may arise from subtle abnormalities in brain development due to alterations in the functions of candidate susceptibility genes such as Disrupted-in-schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1). To provide novel insights into the functions of DISC1 in brain development, we mapped the expression of zebrafish disc1 and set out to characterize its role in early embryonic development using morpholino antisense methods. These studies revealed a critical requirement for disc1 in oligodendrocyte development by promoting specification of olig2-positive cells in the hindbrain and other brain regions. Since NRG1 has well-documented roles in myelination, we also analyzed the roles of nrg1 and ErbB signalling in zebrafish brain development and we observed strikingly similar defects to those seen in disc1 morphant embryos. In addition to their effects on oligodendrocyte development, knock-down of disc1 or nrg1 caused near total loss of olig2-positive cerebellar neurones, but caused no apparent loss of spinal motor neurones. These findings suggest that disc1 and nrg1 function in common or related pathways controlling development of oligodendrocytes and neurones from olig2-expressing precursor cells. Like DISC1 and NRG1, OLIG2 and ERBB4 are promising candidate susceptibility genes for schizophrenia. Hence our findings in the zebrafish embryo suggest that hitherto unappreciated neurodevelopmental connections may exist between key human schizophrenia susceptibility genes. These connections could be investigated in Disc1 and Nrg1 mouse models and in genetically defined groups of patients in order to determine whether they are relevant to the pathobiology of schizophrenia. GenBank accession number for Danio rerio disc1: EU273350.", "title": "Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain." }, { "docid": "4320111", "text": "The expression of clock genes in vertebrates is widespread and not restricted to classical clock structures. The expression of the Clock gene in zebrafish shows a strong circadian oscillation in many tissues in vivo and in culture, showing that endogenous oscillators exist in peripheral organs. A defining feature of circadian clocks is that they can be set or entrained to local time, usually by the environmental light-dark cycle. An important question is whether peripheral oscillators are entrained to local time by signals from central pacemakers such as the eyes or are themselves directly light-responsive. Here we show that the peripheral organ clocks of zebrafish are set by light-dark cycles in culture. We also show that a zebrafish-derived cell line contains a circadian oscillator, which is also directly light entrained.", "title": "Light acts directly on organs and cells in culture to set the vertebrate circadian clock." } ]
863
Notch signaling occurs between tumor cells and stromal cells.
[ { "docid": "20568364", "text": "While significant progress has been made in understanding the induction of tumor vasculature by secreted angiogenic factors, little is known regarding contact-dependent signals that promote tumor angiogenesis. Here, we report that the Notch ligand Jagged1 induced by growth factors via mitogen-activating protein kinase (MAPK) in head and neck squamous cell carcinoma (HNSCC) cells triggered Notch activation in neighboring endothelial cells (ECs) and promoted capillary-like sprout formation. Jagged1-expressing HNSCC cells significantly enhanced neovascularization and tumor growth in vivo. Moreover, the level of Jagged1 was significantly correlated with tumor blood vessel content and associated with HNSCC development. Our results elucidate a novel mechanism by which the direct interplay between tumor cells and ECs promotes angiogenesis through MAPK and Notch signaling pathways.", "title": "Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling." }, { "docid": "16361581", "text": "Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo.", "title": "Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells." } ]
[ { "docid": "16086778", "text": "The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ∼50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.", "title": "Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis" }, { "docid": "23576165", "text": "Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the \"reverse Warburg effect\". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.", "title": "Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication." }, { "docid": "17917408", "text": "Members of the Notch family of transmembrane receptors play an important role in cell fate determination. Over the past decade, a role for Notch in the pathogenesis of hematologic and solid malignancies has become apparent. Numerous cellular functions and microenvironmental cues associated with tumorigenesis are modulated by Notch signaling, including proliferation, apoptosis, adhesion, epithelial-to-mesenchymal transition, and angiogenesis. It is becoming increasingly evident that Notch signaling can be both oncogenic and tumor suppressive. This review highlights recent findings regarding the molecular and functional aspects of Notch-mediated neoplastic transformation. In addition, cellular mechanisms that potentially explain the complex role of Notch in tumorigenesis are discussed.", "title": "Recent insights into the role of Notch signaling in tumorigenesis" }, { "docid": "16790253", "text": "Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development. Signals exchanged between neighboring cells through the Notch receptor can amplify and consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals control how cells respond to intrinsic or extrinsic developmental cues that are necessary to unfold specific developmental programs. Notch activity affects the implementation of differentiation, proliferation, and apoptotic programs, providing a general developmental tool to influence organ formation and morphogenesis.", "title": "Notch signaling: cell fate control and signal integration in development." }, { "docid": "7736860", "text": "Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention.", "title": "Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis." }, { "docid": "15946643", "text": "Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.", "title": "A CXCL1 Paracrine Network Links Cancer Chemoresistance and Metastasis" }, { "docid": "14768471", "text": "Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.", "title": "Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells" }, { "docid": "26735905", "text": "The tumor microenvironment plays a critical role in cancer progression, but the precise mechanisms by which stromal cells influence the epithelium are poorly understood. Here we show that p62 levels were reduced in the stroma of several tumors and that its loss in the tumor microenvironment or stromal fibroblasts resulted in increased tumorigenesis of epithelial prostate cancer cells. The mechanism involves the regulation of cellular redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism, resulting in increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment. Thus, p62 is an anti-inflammatory tumor suppressor that acts through the modulation of metabolism in the tumor stroma.", "title": "Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis." }, { "docid": "4326318", "text": "The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-α and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-α complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.", "title": "Rejuvenation of aged progenitor cells by exposure to a young systemic environment" }, { "docid": "25050969", "text": "Since Notch signaling plays a critical role in stem cells and oncogenesis, we hypothesized that Notch signaling might play roles in cancer stem cells and cancer cells with a stem cell phenotype. In this study, we accessed potential functions of the Notch pathway in the formation of cancer stem cells using human glioma. Using RT-PCR, we found that most human astrogliomas of different grades expressed moderate to high level of Notch receptors and ligands. mRNA of Hes5 but not Hes1, both of which are major downstream molecules of the Notch pathway, was also detected. In human glioma cell lines BT325, U251, SHG-44, and U87, mRNA encoding different types of Notch receptors were detected, but active form of Notch1 (NIC) was only detected in SHG-44 and U87 by Western blot. Interestingly, proliferation of these two glioma cell lines appeared faster than that of the other two lines in which NIC was not detected. We have over-expressed NIC of Notch1 in SHG-44 cells by constitutive transfection to evaluate the effects of Notch signaling on glioma cells. Our results showed that over-expression of NIC in SHG-44 cells promoted the growth and the colony-forming activity of SHG-44 cells. Interestingly, over-expression of NIC increased the formation neurosphere-like colonies in the presence of growth factors. These colonies expressed nestin, and could be induced to cells expressing neuron-, astrocyte-, or oligodendrocyte-specific markers, consistent with phenotypes of neural stem cells. These data suggest that Notch signaling promote the formation of cancer stem cell-like cells in human glioma.", "title": "Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells" }, { "docid": "85326624", "text": "Summary Signals transduced by Notch receptors are indispensable for T cell specification and differentiation of αβ T lineage cells. However, the role of Notch signals during αβ versus γδ T lineage decision remains controversial. Here, we addressed this question by employing a clonal analysis of CD4 − CD8 − (DN) progenitor potential to position the divergence of αβ and γδ T cell lineages to the late DN2 to DN3 developmental stages. Accordingly, αβ and γδ precursor frequencies within these T cell progenitor subsets were determined, both in the presence and absence of Notch signaling through Delta-like 1. Notch signals were found to be critical for the DN to CD4 + CD8 + (DP) transition, irrespective of the identity (pTαβ or γδ) of the inducing T cell receptor complex, whereas γδ T cells developed from γδTCR-expressing T cell progenitors in the absence of further Notch ligand interaction. Collectively, our findings demonstrate a differential, stage-specific requirement for Notch receptor-ligand interactions in the differentiation of αβ and γδ T cells from T cell progenitors.", "title": "Stage-Specific and Differential Notch Dependency at the αβ and γδ T Lineage Bifurcation" }, { "docid": "5828251", "text": "During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.", "title": "Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation." }, { "docid": "9831859", "text": "Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.", "title": "Pancreatic stellate cells: partners in crime with pancreatic cancer cells." }, { "docid": "6363093", "text": "BACKGROUND Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. \n METHODOLOGY/PRINCIPAL FINDINGS We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. \n CONCLUSIONS/SIGNIFICANCE Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies.", "title": "Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations" }, { "docid": "25597580", "text": "New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2(+) NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.", "title": "Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging." }, { "docid": "15727984", "text": "Non-small cell lung cancer (NSCLC) cells with somatic mutations in K-ras recruit to the tumor a variety of cell types (hereafter collectively termed \"stromal cells\") that can promote or inhibit tumorigenesis by mechanisms that have not been fully elucidated. Here, we postulated that stromal cells in the tumor microenvironment alter the tumor cell secretome, including those proteins required for tumor growth and dissemination, and we developed an in vitro model to test this hypothesis. Coculturing a murine K-ras mutant lung adenocarcinoma cell line (LKR-13) with a murine lung stromal cell (macrophage, endothelial cell, or fibroblast) enhanced stromal cell migration, induced endothelial tube formation, increased LKR-13 cell proliferation, and regulated the secretion of proteins involved in angiogenesis, inflammation, cell proliferation, and epithelial-to-mesenchymal transition. Among these proteins, CXCL1 has been reported to promote NSCLC development, whereas interleukin-18 (IL-18) has an undefined role. Genetic and pharmacologic strategies to inhibit CXCL1 and IL-18 revealed that stromal cell migration, LKR-13 cell proliferation, and LKR-13 cell tumorigenicity required one or both of these proteins. We conclude that stromal cells enhanced LKR-13 cell tumorigenicity partly through their effects on the secretome of LKR-13 cells. Strategies to inhibit tumor/stromal cell interactions may be useful as therapeutic approaches in NSCLC patients.", "title": "Identification of secreted proteins that mediate cell-cell interactions in an in vitro model of the lung cancer microenvironment." }, { "docid": "24387017", "text": "Notch signals are necessary for the functional outcomes of T cell receptor β-selection, including differentiation, proliferation and rescue from apoptosis. The mechanism underlying this requirement for T cell development is unknown. Here we show that Notch receptor and Delta-like 1 ligand interactions promoted the survival of CD4−CD8− pre–T cells through the maintenance of cell size, glucose uptake and metabolism. Furthermore, the trophic effects of Notch signaling were mediated by the pathway of phosphatidylinositol-3-OH kinase and the kinase Akt, such that expression of active Atk overcame the requirement for Notch in β-selection. Collectively, our results demonstrate involvement of Notch receptor–ligand interactions in the regulation of cellular metabolism, thus enabling the autonomous signaling capacity of the pre–T cell receptor complex.*Note: In the version of this article initially published online, in the fourth sentence of the abstract, the term \"Atk\" was a misspelling; this should be \"Akt. \" In the fourth sentence of the second paragraph of the introduction, the name of the second kinase mentioned, \"PI(3)K-dependent kinase 1,\" was incorrect; this should read \"phosphoinositide-dependent kinase 1. \" These errors have been corrected for the HTML and print versions of the article.", "title": "Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism" }, { "docid": "13007205", "text": "Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively.", "title": "Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion" } ]
866
Nuclear transfer from adult human fibroblasts to human oocytes can give rise to blastocysts containing expandable pluripotent cells.
[ { "docid": "37822406", "text": "Derivation of patient-specific human pluripotent stem cells via somatic cell nuclear transfer (SCNT) has the potential for applications in a range of therapeutic contexts. However, successful SCNT with human cells has proved challenging to achieve, and thus far has only been reported with fetal or infant somatic cells. In this study, we describe the application of a recently developed methodology for the generation of human ESCs via SCNT using dermal fibroblasts from 35- and 75-year-old males. Our study therefore demonstrates the applicability of SCNT for adult human cells and supports further investigation of SCNT as a strategy for regenerative medicine.", "title": "Human somatic cell nuclear transfer using adult cells." } ]
[ { "docid": "4457834", "text": "The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.", "title": "Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells" }, { "docid": "15803282", "text": "The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.", "title": "Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells." }, { "docid": "4410181", "text": "Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.", "title": "Metabolic rescue in pluripotent cells from patients with mtDNA disease" }, { "docid": "14192687", "text": "The long-term goal of nuclear transfer or alternative reprogramming approaches is to create patient-specific donor cells for transplantation therapy, avoiding immunorejection, a major complication in current transplantation medicine. It was recently shown that the four transcription factors Oct4, Sox2, Klf4, and c-Myc induce pluripotency in mouse fibroblasts. However, the therapeutic potential of induced pluripotent stem (iPS) cells for neural cell replacement strategies remained unexplored. Here, we show that iPS cells can be efficiently differentiated into neural precursor cells, giving rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells migrate into various brain regions and differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Electrophysiological recordings and morphological analysis demonstrated that the grafted neurons had mature neuronal activity and were functionally integrated in the host brain. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease upon transplantation into the adult brain. We minimized the risk of tumor formation from the grafted cells by separating contaminating pluripotent cells and committed neural cells using fluorescence-activated cell sorting. Our results demonstrate the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement in the animal model.", "title": "Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease." }, { "docid": "3360421", "text": "We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines give rise to teratomas containing derivatives of all three embryonic germ layers. Both cell lines differentiate in vitro into extraembryonic and somatic cell lineages. Neural progenitor cells may be isolated from differentiating ES cell cultures and induced to form mature neurons. Embryonic stem cells provide a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.", "title": "Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro" }, { "docid": "10546779", "text": "Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells.", "title": "Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst." }, { "docid": "3883485", "text": "Replacement of mitochondria through nuclear transfer between oocytes of two different women has emerged recently as a strategy for preventing inheritance of mtDNA diseases. Although experiments in human oocytes have shown effective replacement, the consequences of small amounts of mtDNA carryover have not been studied sufficiently. Using human mitochondrial replacement stem cell lines, we show that, even though the low levels of heteroplasmy introduced into human oocytes by mitochondrial carryover during nuclear transfer often vanish, they can sometimes instead result in mtDNA genotypic drift and reversion to the original genotype. Comparison of cells with identical oocyte-derived nuclear DNA but different mtDNA shows that either mtDNA genotype is compatible with the nucleus and that drift is independent of mitochondrial function. Thus, although functional replacement of the mitochondrial genome is possible, even low levels of heteroplasmy can affect the stability of the mtDNA genotype and compromise the efficacy of mitochondrial replacement.", "title": "Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes." }, { "docid": "16375102", "text": "The simple yet powerful technique of induced pluripotency may eventually supply a wide range of differentiated cells for cell therapy and drug development. However, making the appropriate cells via induced pluripotent stem cells (iPSCs) requires reprogramming of somatic cells and subsequent redifferentiation. Given how arduous and lengthy this process can be, we sought to determine whether it might be possible to convert somatic cells into lineage-specific stem/progenitor cells of another germ layer in one step, bypassing the intermediate pluripotent stage. Here we show that transient induction of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can efficiently transdifferentiate fibroblasts into functional neural stem/progenitor cells (NPCs) with appropriate signaling inputs. Compared with induced neurons (or iN cells, which are directly converted from fibroblasts), transdifferentiated NPCs have the distinct advantage of being expandable in vitro and retaining the ability to give rise to multiple neuronal subtypes and glial cells. Our results provide a unique paradigm for iPSC-factor-based reprogramming by demonstrating that it can be readily modified to serve as a general platform for transdifferentiation.", "title": "Direct reprogramming of mouse fibroblasts to neural progenitors." }, { "docid": "27279525", "text": "The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.", "title": "Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary." }, { "docid": "13513790", "text": "Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.", "title": "Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells" }, { "docid": "86129154", "text": "Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.", "title": "Induced pluripotent stem cell lines derived from human somatic cells." }, { "docid": "4405194", "text": "Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.", "title": "Induction of human neuronal cells by defined transcription factors" }, { "docid": "4417177", "text": "As is the case for embryo-derived stem cells, application of reprogrammed human induced pluripotent stem cells is limited by our understanding of lineage specification. Here we demonstrate the ability to generate progenitors and mature cells of the haematopoietic fate directly from human dermal fibroblasts without establishing pluripotency. Ectopic expression of OCT4 (also called POU5F1)-activated haematopoietic transcription factors, together with specific cytokine treatment, allowed generation of cells expressing the pan-leukocyte marker CD45. These unique fibroblast-derived cells gave rise to granulocytic, monocytic, megakaryocytic and erythroid lineages, and demonstrated in vivo engraftment capacity. We note that adult haematopoietic programs are activated, consistent with bypassing the pluripotent state to generate blood fate: this is distinct from haematopoiesis involving pluripotent stem cells, where embryonic programs are activated. These findings demonstrate restoration of multipotency from human fibroblasts, and suggest an alternative approach to cellular reprogramming for autologous cell-replacement therapies that avoids complications associated with the use of human pluripotent stem cells.", "title": "Direct conversion of human fibroblasts to multilineage blood progenitors" }, { "docid": "4325137", "text": "Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo1,2 which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage3, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals4 and a useful system for the identification of polypeptide factors controlling differentiation processes in early development5. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells6. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA7. Here, we report that purified DIA is related in structure and function to the recently identified haemopoetic regulatory factors human interleukin for DA cells8,9 and leukaemia inhibitory factor10. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and haemopoetic stem cell systems.", "title": "Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides" }, { "docid": "26374799", "text": "Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFbeta superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.", "title": "TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells." }, { "docid": "22490293", "text": "Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of \"reprogramming\" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.", "title": "Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?" }, { "docid": "21387297", "text": "Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.", "title": "Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming." }, { "docid": "4380451", "text": "Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.", "title": "Reprogramming of human somatic cells to pluripotency with defined factors" }, { "docid": "25985964", "text": "Very small embryonic-like stem cells (VSELs) are possibly lost during cord blood banking and bone marrow (BM) processing for autologus stem cell therapy mainly because of their small size. The present study was conducted on human umbilical cord blood (UCB, n=6) and discarded red blood cells (RBC) fraction obtained after separation of mononuclear cells from human BM (n=6), to test this hypothesis. The results show that VSELs, which are pluripotent stem cells with maximum regenerative potential, settle along with the RBCs during Ficoll-Hypaque density separation. These cells are very small in size (3-5 μm), have high nucleo-cytoplasmic ratio, and express nuclear Oct-4, cell surface protein SSEA-4, and other pluripotent markers such as Nanog, Sox-2, Rex-1, and Tert as indicated by immunolocalization and quantitative polymerase chain reaction (Q-PCR) studies. Interestingly, a distinct population of slightly larger, round hematopoietic stem cells (HSCs) with cytoplasmic Oct-4 were detected in the \"buffy\" coat, which usually gets banked or used during autologus stem cell therapy. Immunohistochemical studies on the umbilical cord tissue (UCT) sections (n=3) showed the presence of nuclear Oct-4-positive VSELs and many fibroblast-like mesenchymal stem cells (MSCs) with cytoplasmic Oct-4. These VSELs with nuclear Oct-4, detected in UCB, UCT, and discarded RBC fraction obtained after BM processing, may persist throughout life, maintain tissue homeostasis, and undergo asymmetric cell division to self-renew as well as produce larger progenitor stem cells, viz. HSCs or MSCs, which follow differentiation trajectories depending on the somatic niche. Hence, it can be concluded that the true stem cells in adult body tissues are the VSELs, whereas the HSCs and MSCs are actually progenitor stem cells that arise by asymmetric cell division of VSELs. The results of the present study may help explain low efficacy reported during adult autologous stem cell trials, wherein unknowingly progenitor stem cells are injected rather than the pluripotent stem cells with maximum regenerative potential.", "title": "Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy." } ]
867
Oat tolerant coeliac patients may have oat specific inflammatory cells in their small bowel mucosa.
[ { "docid": "14340571", "text": "Background Celiac disease is a small intestinal inflammatory disorder characterized by malabsorption, nutrient deficiency, and a range of clinical manifestations. It is caused by an inappropriate immune response to dietary gluten and is treated with a gluten-free diet. Recent feeding studies have indicated oats to be safe for celiac disease patients, and oats are now often included in the celiac disease diet. This study aimed to investigate whether oat intolerance exists in celiac disease and to characterize the cells and processes underlying this intolerance. Methods and Findings We selected for study nine adults with celiac disease who had a history of oats exposure. Four of the patients had clinical symptoms on an oats-containing diet, and three of these four patients had intestinal inflammation typical of celiac disease at the time of oats exposure. We established oats-avenin-specific and -reactive intestinal T-cell lines from these three patients, as well as from two other patients who appeared to tolerate oats. The avenin-reactive T-cell lines recognized avenin peptides in the context of HLA-DQ2. These peptides have sequences rich in proline and glutamine residues closely resembling wheat gluten epitopes. Deamidation (glutamine→glutamic acid conversion) by tissue transglutaminase was involved in the avenin epitope formation. Conclusions We conclude that some celiac disease patients have avenin-reactive mucosal T-cells that can cause mucosal inflammation. Oat intolerance may be a reason for villous atrophy and inflammation in patients with celiac disease who are eating oats but otherwise are adhering to a strict gluten-free diet. Clinical follow-up of celiac disease patients eating oats is advisable.", "title": "The Molecular Basis for Oat Intolerance in Patients with Celiac Disease" } ]
[ { "docid": "10675756", "text": "BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease in which the colonic mucosa is infiltrated with plasma cells producing IgG autoantibodies. It is not known whether this represents a local mucosal response which has switched to IgG or a peripheral response which may have been initiated by peripheral antigen which homed to the colonic mucosa. The clonal distribution of IgG secreting cells and isotype switched variants in UC is not known. AIMS To investigate the clonal distribution of mucosal IgG in UC and to search for related IgG and IgA secreting cells in normal and diseased mucosa and blood in UC. To investigate characteristics which may discriminate between the mucosal and peripheral repertoire in the normal mucosa and in UC. \n PATIENTS Blood and normal and diseased mucosa from two patients with UC were studied. \n METHODS Immunoglobulin gene analysis and clone specific polymerase chain reaction were used to study the clonal distribution and characteristics of IgG and related IgA in the mucosa and blood of patients with UC. \n RESULTS The IgG response in the mucosa of UC patients included widespread clones of cells that were present in both the diseased mucosa and blood but that were scarce in normal mucosa. Clonally related IgA class switch variants, all IgA1, were detected but also only in the diseased mucosa and blood. This suggests that these clones home preferentially to the diseased mucosa. We showed that J(H)1 usage was characteristic of the peripheral repertoire, and that examples of J(H)1 usage were observed in mucosal IgG in UC. \n CONCLUSIONS Overall, these data are consistent with a model of UC in which a peripheral response is expressed and expanded in the colonic mucosa.", "title": "Related IgA1 and IgG producing cells in blood and diseased mucosa in ulcerative colitis." }, { "docid": "26735018", "text": "A sensitive reverse haemolytic plaque assay to detect lymphokine-secreting T cells, and Northern blot analysis to detect expression of lymphokine messenger RNA (mRNA) were used to study interferon-gamma (IFN-gamma) and interleukin-2 (IL-2) production in the mucosa of children with Crohn's disease or ulcerative colitis (UC), and in histologically normal mucosa from patients without inflammatory bowel disease. In the mucosa of most patients with UC and control patients, IL-2- and IFN-gamma-secreting cells were absent or were present at only low levels. In contrast, in mucosa from patients with Crohn's disease, lymphokine-secreting cells were readily detectable (3-18%). IFN-gamma mRNA was detected by Northern blot analysis in 5/6 Crohn's tissues, but only in 1/5 UC samples and none of nine samples of control mucosa. These studies reveal an ongoing cell-mediated immune response in the mucosa in Crohn's disease.", "title": "Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa." }, { "docid": "21956124", "text": "BACKGROUND Prebiotics are short-chain carbohydrates that alter the composition, or metabolism, of the gut microbiota in a beneficial manner. It is therefore expected that prebiotics will improve health in a way similar to probiotics, whilst at the same time being cheaper, and carrying less risk and being easier to incorporate into the diet than probiotics. AIM To review published evidence for prebiotic effects on gut function and human health. \n METHODS We searched the Science Citation Index with the terms prebiotic, microbiota, gut bacteria, large intestine, mucosa, bowel habit, constipation, diarrhoea, inflammatory bowel disease, Crohn's disease, ulcerative colitis, pouchitis, calcium and cancer, focussing principally on studies in humans and reports in the English language. Search of the Cochrane Library did not identify any clinical study or meta-analysis on this topic. \n RESULTS Three prebiotics, oligofructose, galacto-oligosaccharides and lactulose, clearly alter the balance of the large bowel microbiota by increasing bifidobacteria and Lactobacillus numbers. These carbohydrates are fermented and give rise to short-chain fatty acid and intestinal gas; however, effects on bowel habit are relatively small. Randomized-controlled trials of their effect in a clinical context are few, although animal studies show anti-inflammatory effects in inflammatory bowel disease, while calcium absorption is increased. \n CONCLUSIONS It is still early days for prebiotics, but they offer the potential to modify the gut microbial balance in such a way as to bring direct health benefits cheaply and safely.", "title": "Review article: prebiotics in the gastrointestinal tract." }, { "docid": "30041895", "text": "KEY POINTS The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.", "title": "Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces" }, { "docid": "11415809", "text": "OBJECTIVES Non-celiac wheat sensitivity (NCWS) is defined as a reaction to ingested wheat after exclusion of celiac disease and wheat allergy. As its pathogenesis is incompletely understood, we evaluated the inflammatory response in the rectal mucosa of patients with well-defined NCWS. \n METHODS The prospective study included 22 patients with irritable bowel syndrome (IBS)-like clinical presentation, diagnosed with NCWS by double-blind placebo-controlled challenge. Eight IBS patients not improving on wheat-free diet were used as controls. Two weeks after oral challenge was performed with 80 grams of wheat daily, cells were isolated from rectal biopsies and thoroughly characterized by fluorescence-activated cell sorting analysis for intracellular cytokines and surface markers. \n RESULTS Rectal biopsies from wheat-challenged NCWS patients showed that a significant mucosal CD45(+) infiltrate consisted of CD3(+) and CD3(-) lymphocytes, with the latter spontaneously producing more interferon (IFN)-γ than IBS controls. About 30% of IFN-γ-producing CD45(+) cells were T-bet(+), CD56(-), NKP44(-), and CD117(-), defining them as a type-1 innate lymphoid cells (ILC1). IFN-γ-producing ILC1 cells significantly decreased in 10 patients analyzed 2 weeks after they resumed a wheat-free diet. \n CONCLUSIONS These data indicate that, in patients with active NCWS, IFN-γ-producing ILC1 cells infiltrate rectal mucosa and support a role for this innate lymphoid cell population in the pathogenesis of NCWS.", "title": "Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet" }, { "docid": "1022115", "text": "Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23-driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23-responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3⁻ cells in IBD. IL17A and IL17F expression is restricted to CD56⁻ ILCs, whereas IL-23 induces IL22 and IL26 in the CD56⁺ ILC compartment. Furthermore, we observed a significant and selective increase in CD127⁺CD56⁻ ILCs in the inflamed intestine in Crohn's disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23-responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.", "title": "IL-23–responsive innate lymphoid cells are increased in inflammatory bowel disease" }, { "docid": "9244474", "text": "Diet is known to play a major role in the symptoms of the inflammatory bowel disease, Crohn's disease (CD). Although no single diet is appropriate to all individuals, most CD patients are aware of foods that provide adverse or beneficial effects. This study seeks to categorise foods in relation to their effects on symptoms of CD, in a New Zealand Caucasian population. Four hundred and forty-six subjects from two different centres in New Zealand were recruited into the study. An extensive dietary questionnaire (257 food items in 15 groups) recorded self-reported dietary tolerances and intolerances. Across each of the food groups, there were statistically significant differences among responses to foods. A two-dimensional graphical summary enabled stratification of foods according to the probability that they will be either beneficial or detrimental. A small number of foods are frequently considered to be beneficial, including white fish, salmon and tuna, gluten-free products, oatmeal, bananas, boiled potatoes, sweet potatoes (kumara), pumpkin, soya milk, goat's milk and yoghurt. Foods that are typically considered detrimental include grapefruit, chilli or chilli sauce, corn and corn products, peanuts, cream, salami, curried foods, cola drinks, high energy drinks, beer, and red wine. For a number of the food items, the same item that was beneficial for one group of subjects was detrimental to others; in particular soya milk, goat's milk, yoghurt, oatmeal, kiwifruit, prunes, apple, broccoli, cauliflower, linseed, pumpkin seed, sunflower seed, ginger and ginger products, beef, lamb, liver, and oily fish. It was not possible to identify a specific group of food items that should be avoided by all CD patients. The wide range of detrimental items suggests that dietary maintenance of remission is likely to be difficult, and to exclude a substantial number of foods. Personalised diets may be especially important to these individuals.", "title": "Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn's disease population." }, { "docid": "36216395", "text": "BACKGROUND & AIMS The therapeutic application of regulatory T cells (Tregs) for the treatment of inflammatory diseases is limited by the scarcity of antigen-specific Tregs. A preferred approach to endow effector T cells (Teff) with a desired specificity uses chimeric immune receptors with antibody-type specificity. Accordingly, employing such chimeric immune receptors to redirect Tregs to sites of inflammation may be a useful therapeutic approach to alleviate a broad scope of diseases in which an uncontrolled inflammatory response plays a major role. \n METHODS To enable application of the approach in clinical setting, which requires the genetic modification of the patient's own Tregs, we describe here a novel protocol that allows the efficient retroviral transduction and 2,4,6-trinitrophenol-specific expansion of murine naturally occurring regulatory T cells (nTregs), with a 2,4,6-trinitrophenol-specific tripartite chimeric receptor. \n RESULTS Transduced Tregs maintained their Foxp3 level, could undergo repeated expansion upon ex vivo encounter with their cognate antigen in a major histocompatibility complex-independent, costimulation-independent, and contact-dependent manner and specifically suppressed Teff cells. Adoptive transfer of small numbers of the transduced nTregs was associated with antigen-specific, dose-dependent amelioration of trinitrobenzenesulphonic acid colitis. \n CONCLUSIONS This study demonstrates that nTregs can be efficiently transduced to express functional, antigen-specific chimeric receptors that enable the specific suppression of effector T cells both in vitro and in vivo. This approach may enable future cell-based therapeutic application in inflammatory bowel disease, as well as other inflammatory disorders.", "title": "Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor." }, { "docid": "34733465", "text": "BACKGROUND Patients with cystic fibrosis have altered levels of plasma fatty acids. We previously demonstrated that arachidonic acid levels are increased and docosahexaenoic acid levels are decreased in affected tissues from cystic fibrosis-knockout mice. In this study we determined whether humans with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have a similar fatty acid defect in tissues expressing CFTR. \n METHODS Fatty acids from nasal- and rectal-biopsy specimens, nasal epithelial scrapings, and plasma were analyzed from 38 subjects with cystic fibrosis and compared with results in 13 obligate heterozygotes, 24 healthy controls, 11 subjects with inflammatory bowel disease, 9 subjects with upper respiratory tract infection, and 16 subjects with asthma. \n RESULTS The ratio of arachidonic to docosahexaenoic acid was increased in mucosal and submucosal nasal-biopsy specimens (P<0.001) and rectal-biopsy specimens (P=0.009) from subjects with cystic fibrosis and pancreatic sufficiency and subjects with cystic fibrosis and pancreatic insufficiency, as compared with values in healthy control subjects. In nasal tissue, this change reflected an increase in arachidonic acid levels and a decrease in docosahexaenoic acid levels. In cells from nasal mucosa, the ratio of arachidonic to docosahexaenoic acid was increased in subjects with cystic fibrosis (P<0.001), as compared with healthy controls, with values in obligate heterozygotes intermediate between these two groups (P<0.001). The ratio was not increased in subjects with inflammatory bowel disease. Subjects with asthma and those with upper respiratory tract infection had values intermediate between those in subjects with cystic fibrosis and those in healthy control subjects. \n CONCLUSIONS These data indicate that alterations in fatty acids similar to those in cystic fibrosis-knockout mice are present in CFTR-expressing tissue from subjects with cystic fibrosis.", "title": "Association of cystic fibrosis with abnormalities in fatty acid metabolism." }, { "docid": "11884292", "text": "BACKGROUND AND AIMS We adopted the twin method to disentangle the genetic and environmental components of susceptibility to coeliac disease (CD). We estimated disease concordance rate by zygosity and HLA genotypes, discordance times, progression rates to disease, and heritability. \n METHODS We crosslinked the Italian Twin Registry with the membership lists of the Italian Coeliac Disease Association and recruited 23 monozygotic (MZ) and 50 dizygotic (DZ) twin pairs with at least one affected member. Zygosity was assigned by DNA fingerprinting, and HLA-DQ and DR alleles were genotyped. Disease status was ascertained by antiendomysial, anti-human tissue transglutaminase antibodies, and bowel biopsy. \n RESULTS Concordance was significantly higher in MZ (83.3% probandwise, 71.4% pairwise) than in DZ (16.7% probandwise, 9.1% pairwise) pairs. Concordance was not affected by sex or HLA genotype of the co-twin and being MZ was significantly associated with the occurrence of CD (Cox adjusted hazard ratio 14.3 (95% confidence interval 4.0-50.3)). In 90% of concordant pairs the discordance time was <or=2 years. MZ and DZ co-twins had 70% and 9% cumulative probability of having symptomatic or silent forms of CD, respectively, within five years. Under ACE (additive genetic, common, and unshared environmental factors) models, with CD population prevalences of 1/91 and 1/1000, heritability estimates were 87% and 57%, respectively. \n CONCLUSION MZ pairs have a high probability of being concordant, regardless of sex or HLA genotype. Most of the affected co-twins receive a diagnosis within two years. A remarkable proportion of phenotypic variance is due to genetic factors.", "title": "Concordance, disease progression, and heritability of coeliac disease in Italian twins." }, { "docid": "21060008", "text": "OBJECTIVE To assay the efficiency for celiac disease (CD) screening of 2 immunochromatographic visual stick assays based on human recombinant tissue transglutaminase (tTG). One was the antitissue transglutaminase antibodies (AtTGA) stick for IgA/G antibodies to tTG detection, the other was the AtTGA/antigliadin antibodies (AGA) stick for IgA antibodies for tTG and/or gliadins. \n PATIENTS AND METHODS In a prospective multicenter study, 4 pediatric gastroenterology units from Spain and 2 from Latin America enrolled 72 control children with a normal small bowel mucosa and 113 untreated patients with CD with Marsh type 3 lesions. \n RESULTS Evaluation of results by the gastroenterologists and by 2 independent observers at the coordination center showed a remarkably low interobserver variability. For the AtTGA stick, sensitivity was 96.5% and specificity was 98.6%. The AtTGA/AGA stick displayed a sensitivity of 94.5% and a specificity of 98.6% for AtTGA and a sensitivity of 63.1% and a specificity of 95.2% for AGA. The highest efficiency and positive likelihood ratio was obtained for the AtTGA stick, higher than for IgA AtTGA by enzyme-linked immunosorbent assay. One additional advantage was that previous investigation of total serum IgA levels could be eluded. The IgA AtTGA/AGA stick, with an efficiency of 95.1%, compared with 89.2% when the combined results of the 2 enzyme-linked immunosorbent assays were considered, turned out to be an excellent diagnostic tool for infants with no IgA deficiency. \n CONCLUSION These 2 assays are extremely efficient for CD screening, by combining a high diagnostic accuracy with the simplicity and rapidity of visual methods.", "title": "Celiac disease screening by immunochromatographic visual assays: results of a multicenter study." }, { "docid": "12236208", "text": "Patients with inflammatory bowel disease have an increased prevalence of osteoporosis, and suffer high rates of spinal bone loss. Hormone replacement therapy (HRT) is effective in the treatment and prevention of osteoporosis but has not been studied in patients with inflammatory bowel disease. A two year prospective study of HRT in inflammatory bowel disease was performed in 47 postmenopausal women aged 44 to 67 years with ulcerative colitis (25) or Crohn's disease (22). Patients had radial and spinal bone density measured annually by single photon absorptiometry and quantitative computed tomography respectively. The mean (95% confidence intervals) annual change in radial bone density was +1.42%/yr (+0.58 to +2.26; P < 0.005) and for spinal bone +2.60%/yr (+1.06 to +4.15; p < 0.005). There was no significant correlation between rates of change of bone density at the two sites, or between the rates of change and the initial bone density either in the radius or spine. Twelve patients were given prednisolone during the study, and their rates of change for spinal bone density were lower, but values were not statistically significantly different from those who did not receive corticosteroids. Changes in bone density for patients with ulcerative colitis and Crohn's disease were not significantly different. The change in bone density did not correlate with the patients' age or number of years after the menopause. It is concluded that HRT is effective in prevention of bone loss in postmenopausal women with inflammatory bowel disease.", "title": "Hormone replacement therapy prevents bone loss in patients with inflammatory bowel disease." }, { "docid": "8428837", "text": "OBJECTIVE Ankylosing spondylitis (AS) and spondyloarthropathy (SpA) are inflammatory diseases of unknown etiology. Various exogenous and endogenous (inherited) factors play a role in their development. Sulfasalazine (SSZ) is generally accepted as a disease modifying drug in the treatment of AS and SpA. Which part of SSZ, 5-acetylsalicylic acid (5-ASA, mesalazine) or sulfapyridine (SP), is the effective moiety is unknown. As the bowel, colon, and the ileum play an important role in the development of AS and SpA, it may be possible that 5-ASA is the effective moiety, with a similar mode of action as in the treatment of inflammatory bowel disease. To determine the efficacy of 5-ASA an open pilot study was done in 2 groups of patients with SpA. METHODS Twenty patients with SpA, who were taking SSZ, were switched to 5-ASA (Pentasa), and 19 patients with active SpA were treated with 5-ASA without previous administration of SSZ. \n RESULTS In the first group, 17 (85%) patients responded with respect to the physician global clinical assessment compared to the previous SSZ treatment period; whereas in the second patient group a statistically significant improvement was obtained in erythrocyte sedimentation rate. \n CONCLUSION The results support our hypothesis that 5-ASA might be the active moiety of SSZ in the treatment of SpA.", "title": "Treatment of spondyloarthropathy with 5-aminosalicylic acid (mesalazine): an open trial." }, { "docid": "23649163", "text": "CONTEXT Peristomal pyoderma gangrenosum (PPG), an unusual variant of pyoderma gangrenosum, has been reported almost exclusively in patients with inflammatory bowel disease (IBD) and is frequently misdiagnosed. \n OBJECTIVE To better characterize the clinical manifestations, diagnosis, and management of PPG. \n DESIGN, SETTING, AND PATIENTS Retrospective analysis of 7 patients with PPG observed in a university-affiliated community setting between 1988 and December 1999. \n MAIN OUTCOME MEASURES Clinical and histopathologic features, associated disorders, and microbiologic findings. \n RESULTS Two patients had Crohn disease, 2 had ulcerative colitis, and 3 had abdominal cancer. Five patients had at least 1 relapse of PPG after initial healing. Although 3 of 4 patients with IBD had active bowel disease, a parallel course with PPG occurred in only 1 patient. Both patients whose stoma was relocated developed an ulcer at the new site. Effective therapies included topical superpotent corticosteroids; intralesional injection of triamcinolone acetonide at the ulcer margin; topical cromolyn sodium; oral dapsone, prednisone, cyclosporine, mycophenolate mofetil; and intravenous infliximab. \n CONCLUSION Our experiences demonstrate that although PPG has been most often reported in patients with IBD, it may occur in the absence of IBD. Biopsy of the skin lesion is not diagnostic but excludes other causes. Relocation of the stoma may be associated with a new ulceration and should be avoided. Trauma to the skin of a predisposed patient may elicit the pustules or ulcerations associated with pathergy. JAMA. 2000;284:1546-1548.", "title": "Clinical features and treatment of peristomal pyoderma gangrenosum." }, { "docid": "34481589", "text": "Biological agents are widely used in rheumatology, dermatology and inflammatory bowel disease. Evidence about their efficacy and safety has been strengthened for all those therapeutic indications over the last decade. Biosimilar agents are monoclonal antibodies similar to previously approved biologics. In the European Union, they have been approved for all the indications in the management of immune-mediated inflammatory diseases (IMIDs), although data only in rheumatoid arthritis and ankylosing spondylitis are currently available. Direct evidence on efficacy, safety, and immunogenicity of biosimilars is mandatory in psoriasis, psoriatic arthritis, and inflammatory bowel disease, as well as in children. Based on the current evidence in the literature, we present the joint official position of the Italian Societies of Rheumatology, Dermatology and Inflammatory Bowel Disease on the use of biosimilars in IMIDs.", "title": "The use of biosimilars in immune-mediated disease: A joint Italian Society of Rheumatology (SIR), Italian Society of Dermatology (SIDeMaST), and Italian Group of Inflammatory Bowel Disease (IG-IBD) position paper." }, { "docid": "25878014", "text": "The hygiene hypothesis is thought to be a significant contributor to the growing incidence of inflammatory bowel disease (IBD) around the world, although the evidence for specific factors that underlie the hygiene hypothesis in IBD is unclear. We aimed to systematically review the literature to determine which hygiene-related factors are associated with the development of IBD. Publications identified from a broad based MEDLINE and Current Contents search between 1966 and 2007 on key terms relevant to the 'hygiene hypothesis' and IBD including H pylori exposure, helminths, cold chain hypothesis, measles infection and vaccination, antibiotic use, breastfeeding, family size, sibship, urban upbringing, day care attendance and domestic hygiene were reviewed. The literature suggests that the hygiene hypothesis and its association with decreased microbial exposure in childhood probably plays an important role in the development of IBD, although the strength of the supporting data for each of the factors varies considerably. The most promising factors that may potentially be associated with development of IBD include H pylori exposure, helminths, breastfeeding and sibship. However, the vast majority of studies in this area are plagued by serious methodological shortcomings, particularly the reliance on retrospective recall of information making it difficult to truly ascertain the importance of a 'hygiene hypothesis' in IBD. The 'hygiene hypothesis' in IBD is an important area of research that may give clues to the aetiology of this disease. Directions for future research are recommended.", "title": "Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "44672703", "text": "BACKGROUND & AIMS Various commensal enteric and potentially pathogenic bacteria may be involved in the pathogenesis of inflammatory bowel diseases (IBD). We compared the risk of IBD between a cohort of patients with documented Salmonella or Campylobacter gastroenteritis and an age- and gender-matched control group from the same population in Denmark. \n METHODS We identified 13,324 patients with Salmonella/Campylobacter gastroenteritis from laboratory registries in North Jutland and Aarhus counties, Denmark, from 1991 through 2003, and 26,648 unexposed controls from the same counties. Of these, 176 exposed patients with IBD before the infection, their 352 unexposed controls, and 80 unexposed individuals with IBD before the Salmonella/Campylobacter infection were excluded. The final study cohort of 13,148 exposed and 26,216 unexposed individuals were followed for up to 15 years (mean, 7.5 years). \n RESULTS A first-time diagnosis of IBD was reported in 107 exposed (1.2%) and 73 unexposed individuals (0.5%). By age, gender, and comorbidity adjusted Cox proportional hazards regression analysis, the hazard ratio (95% confidence interval) for IBD was 2.9 (2.2-3.9) for the whole period and 1.9 (1.4-2.6) if the first year after the Salmonella/Campylobacter infection was excluded. The increased risk in exposed subjects was observed throughout the 15-year observation period. The increased risk was similar for Salmonella (n = 6463) and Campylobacter (n = 6685) and for a first-time diagnosis of Crohn's disease (n = 47) and ulcerative colitis (n = 133). \n CONCLUSIONS In our population-based cohort study with complete follow-up, an increased risk of IBD was demonstrated in individuals notified in laboratory registries with an episode of Salmonella/Campylobacter gastroenteritis.", "title": "Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis." }, { "docid": "23126677", "text": "BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules. Reduced or increased levels of specific miRNAs are observed in colon and other cancers, supporting their role in carcinogenesis. Detection of colorectal polyps is the cornerstone of the Bowel Cancer Screening Programme in the UK. However, uptake of screening nationally remains under 60%. We aimed to see whether circulating plasma miRNAs can be used to screen for patients with colorectal polyps, adenomas, or both. \n METHODS Blood samples were taken from patients from the Bowel Cancer Screening Programme (asymptomatic but faecal occult blood testing [FOBt] positive). Plasma RNA was extracted, target miRNAs (19a, 98, 146b, 186, 191, 222*, 331-5p, 452, 625, 664, 1247) were identified on pooled case miRNA assay cards, and miRNA fraction was quantified by quantitative RT-PCR assay. Results were compared with endoscopy reports and with histology of any polyps identified and removed. Analysis was done with Excel (2011) and SPSS (version 20) software. \n FINDINGS 210 patients were included (117 with polyps, 12 with cancer, 81 healthy controls [FOBt positive]). The miRNA panel showed significant differences in expression (on t testing) for patients compared with controls for those with polyps, cancer, or both (miR-19a, p=0·0184; miR-98, p=0·0206; miR-146b, p=0·0029; miR-186, p=0·0006; miR-62,5 p=0·0008), polyps (miR-19a, p=0·0233; miR-98, p=0·0224; miR-146b, p=0·003; miR-186, p=0·0004; miR-625, p=0·001), adenomas (miR-19a, p=0·0339; miR-98, p=0·0266; miR-146b, p=0·0045; miR-186, p=0·0008; miR-625, p=0·0049), multiple adenomas (both sides of colon; miR-146b, p=0·0194; miR-186, p=0·0226; miR-625, p=0·0013), and right-sided adenomas (miR-98, p=0·031; miR-146b, p=0·0076; miR-186, p=0·0041; miR-331-5p, p=0·0142; miR-625, p=0·0049). Receiver operating characteristic analysis showed sensitivity of 60% or more, and specificity of 86% or more for men with polyps, men with adenomas, all patients with haemorrhoids or diverticulosis and polyps, and all patients with haemorrhoids or diverticulosis and adenomas. \n INTERPRETATION The target miRNAs that we identified showed significant differences in expression levels for patients with polyps and patients with adenomas from controls. Use of this panel has potential as a screening test. \n FUNDING Bowel Disease Research Foundation.", "title": "Circulating plasma microRNAs as a screening method for detection of colorectal adenomas." } ]