parquet-converter commited on
Commit
6298f5a
1 Parent(s): d78f189

Update parquet files

Browse files
README.md DELETED
@@ -1,3 +0,0 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
non_commercial/partial-train/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ac0eea378e76b945b1dbf23622f624fc26f64a749062d41a10905ef0eb7636
3
+ size 269103526
non_commercial/partial-train/0001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc6d24051dab5708f760a7708c0afaf8a0114d7096a4da00b049d20daf1ad0b
3
+ size 254029928
non_commercial/partial-train/0002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f814f5077de9efa9453ca4923c4a999e2c9d07580ef509280a24eabf54ddd88
3
+ size 262852901
non_commercial/partial-train/0003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9687eb46fe67ee1f10c479cc6c114cf18fb1b352a97c575eaa762c071a2c9d2b
3
+ size 263556424
non_commercial/partial-train/0004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9d66860a97281b5ab613404fb0c4b6e182c2ad09988afc495314194a11fe21a
3
+ size 270911407
non_commercial/partial-train/0005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6eb0be88f2a3a437a574594b3661a7e96f5f30e1117736f839e4b19c9e3c8a8
3
+ size 263459961
non_commercial/partial-train/0006.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b6582714a91e3953533ad17396ad99cf05fa94a50c112f2b1a172d36f9828f9
3
+ size 267282684
non_commercial/partial-train/0007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274f76db2f2db3d58efa966606bb20aa2ae9adee62d1274d98d42317c92be6b4
3
+ size 267566366
non_commercial/partial-train/0008.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0917ff41127ccebb00edcff2a49068663ac8b0dcd076f541d8b9a0b47f2b2ee
3
+ size 274157233
non_commercial/partial-train/0009.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107c63bb969f0852eb9a3332b3c725f05d49d9098afb530e35a0d19a10d3d345
3
+ size 226602043
pmc_open_access_section.py DELETED
@@ -1,391 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- #
16
- # This dataset script is based on pmc/open_access.py loading script.
17
-
18
- """PMC Open Access Subset sections parsed (plain text)"""
19
-
20
- import datetime
21
- import pandas as pd
22
- import numpy as np
23
- from itertools import compress, chain
24
- from collections import defaultdict
25
- import re
26
- from lxml import etree
27
- import json
28
- import html
29
- import unicodedata
30
-
31
- import datasets
32
- from datasets.tasks import LanguageModeling
33
-
34
-
35
- # TODO: Add BibTeX citation
36
- # Find for instance the citation on arxiv or on the dataset repo/website
37
- _CITATION = ""
38
-
39
- _DESCRIPTION = """\
40
- The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under
41
- license terms that allow reuse.
42
- Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
43
- in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
44
- liberal redistribution and reuse than a traditional copyrighted work.
45
- The PMC Open Access Subset is one part of the PMC Article Datasets
46
-
47
- This version takes XML version as source, benefiting from the structured text
48
- to split the articles in sections, naming the introduction, methods, results,
49
- discussion and conclusion, front, body and back. XML is then removed and format
50
- it to plain text.
51
- """
52
-
53
- _HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/"
54
-
55
- # TODO: Add the licence for the dataset here if you can find it
56
- _LICENSE = """
57
- https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
58
-
59
- Within the PMC Open Access Subset, there are three groupings:
60
-
61
- Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
62
- Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
63
- Other - no machine-readable Creative Commons license, no license, or a custom license.
64
- """
65
-
66
- _URL_ROOT = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/"
67
- _URL = _URL_ROOT+"oa_bulk/{subset}/xml/"
68
-
69
- _SUBSETS = {
70
- "commercial": "oa_comm",
71
- "non_commercial": "oa_noncomm",
72
- "other": "oa_other",
73
- }
74
- _BASELINE_DATE = "2022-11-18"
75
-
76
- begin_doc_rgx = re.compile("""<!DOCTYPE.*""")
77
- def clean_raw(xml_text):
78
- """
79
- Fixes the formating of xml of files and returns it.
80
- Some have bad formating but they can be fixed/improved
81
- """
82
- #Some XML can't be parsed because they are not starting with the DOCTYPE declaration
83
- # Could be disabled if we handle the parsing error (TBD, how many files would be trashed)
84
-
85
- begin_doc = begin_doc_rgx.search(xml_text)
86
- xml_text = xml_text[begin_doc.start():]
87
-
88
- #Some XML are poisoned with consecutive tabs and new lines
89
- xml_text = re.sub('\s+',' ',xml_text)
90
- return xml_text
91
-
92
- def construct_datadict(article_tree):
93
- """
94
- Where the magic happens. A long script that:
95
- - Remove the references (and what is referenced to) from the text
96
- - Extract paragraphs and titles with their path in the document
97
- - Titles are used to identify ["introduction", "methods", "results" and "discussion"]
98
- - The path are then used to group paragraphs and titles into corresponding content.
99
- - Remaining p and title are put in three other section: front, body, back
100
-
101
- Returns:
102
- - content_d: Dictionnary with the content result
103
-
104
- Useful information about the tags can be found here: https://jats.nlm.nih.gov/archiving/tag-library/1.3/
105
- """
106
- res_content_d = {}
107
-
108
- refs_el = article_tree.find(".//ref-list")
109
- if refs_el is not None:
110
- refs_el.getparent().remove(refs_el)
111
-
112
- # One big query is faster than multiple small ones
113
- ref_el_l = article_tree.xpath(".//fig|.//table-wrap|.//array|.//supplementary-material\
114
- |.//inline-supplementary-material|.//disp-formula\
115
- |.//inline-formula|.//graphic|.//inline-graphic\
116
- |.//media|.//inline-media|.//boxed-text\
117
- |.//table-wrap-foot|.//fn-group|.//chem-struct-wrap\
118
- |.//code|.//disp-quote|.//speech")
119
- for el in ref_el_l[::-1]:
120
- repl_xref = etree.Element("xref")
121
- repl_xref.tail = el.tail
122
- el.addprevious(repl_xref)
123
- el.getparent().remove(el)
124
-
125
- path_l, text_l = [], []
126
- t_paths, t_texts_lowcase = [], []
127
- for part in ["front", "body", "back"]: #Iterate parts and insert first front and back
128
- tmp_path_l, tmp_text_l = [], []
129
- tmp_t_paths, tmp_t_texts_lowcase = [], []
130
- part_el = article_tree.find(".//"+part)
131
- if part_el is None:
132
- res_content_d[part] = []
133
- continue
134
- #Only the outermost p are kept, to prevent duplication.
135
- #Also seen title with p inside. not(ancestor::title) prevents duplication of that p
136
- for el in part_el.xpath(".//p[not(ancestor::p) and not(ancestor::title)]| .//title[not(ancestor::p) and not(ancestor::title)]"):
137
- new_text = " ".join(el.itertext())
138
- new_text = unicodedata.normalize("NFKD", html.unescape(new_text))
139
- tmp_path_l.append(article_tree.getelementpath(el))
140
- tmp_text_l.append(new_text)
141
- if el.tag=="title":
142
- tmp_t_paths.append(tmp_path_l[-1])
143
- tmp_t_texts_lowcase.append(new_text.lower())
144
- if part=="body": #We keep the body for processing right bellow.
145
- path_l, text_l = tmp_path_l, tmp_text_l
146
- t_paths, t_texts_lowcase = tmp_t_paths, tmp_t_texts_lowcase
147
- else:
148
- res_content_d[part] = tmp_text_l
149
-
150
- # Figuring from the titles which are the different categories
151
- mask_intro = np.array(["introduction" in t_text or "background" in t_text for t_text in t_texts_lowcase]).astype(bool)
152
- mask_metho = np.array(["method" in t_text for t_text in t_texts_lowcase]).astype(bool)
153
- mask_resul = np.array(["result" in t_text for t_text in t_texts_lowcase]).astype(bool)
154
- mask_discu = np.array(["discussion" in t_text for t_text in t_texts_lowcase]).astype(bool)
155
- mask_concl = np.array(["conclusion" in t_text for t_text in t_texts_lowcase]).astype(bool)
156
- processed_mask = np.zeros(len(text_l), dtype="bool")
157
- for mask, name_section in zip([mask_intro, mask_metho, mask_resul, mask_discu, mask_concl],
158
- ["introduction", "methods", "results", "discussion", "conclusion"]):
159
- if not np.any(mask):
160
- res_content_d[name_section] = []
161
- continue
162
-
163
- filtered_path_l = list(compress(t_paths, mask))
164
- levels = np.array([len(path.split("/")) for path in filtered_path_l])
165
- root_path = filtered_path_l[np.argmin(levels)]
166
- root_path = root_path[:root_path.rindex("/")]
167
- mask_contents = np.array([path.startswith(root_path) for path in path_l]).astype(bool)
168
- processed_mask |= mask_contents
169
- res_content_d[name_section] = list(compress(text_l, mask_contents))
170
-
171
- processed_mask = ~processed_mask #Finally, add the body part as everything that don't belong to previous categories
172
- res_content_d["body"] = list(compress(text_l, processed_mask))
173
-
174
- return res_content_d
175
-
176
- class OpenAccessXMLConfig(datasets.BuilderConfig):
177
- """BuilderConfig for the PMC Open Access Subset."""
178
-
179
- def __init__(self, subsets=None, **kwargs):
180
- """BuilderConfig for the PMC Open Access Subset.
181
- Args:
182
- subsets (:obj:`List[str]`): List of subsets/groups to load.
183
- **kwargs: Keyword arguments forwarded to super.
184
- """
185
- subsets = [subsets] if isinstance(subsets, str) else subsets
186
- super().__init__(
187
- name="+".join(subsets), **kwargs,
188
- )
189
- self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys())
190
-
191
-
192
- class OpenAccessXML(datasets.GeneratorBasedBuilder):
193
- """PMC Open Access Subset enriched from XML files."""
194
-
195
- VERSION = datasets.Version("1.0.0")
196
- BUILDER_CONFIG_CLASS = OpenAccessXMLConfig
197
- BUILDER_CONFIGS = [OpenAccessXMLConfig(subsets="all")] + [OpenAccessXMLConfig(subsets=subset) for subset in _SUBSETS]
198
- DEFAULT_CONFIG_NAME = "all"
199
-
200
- def _info(self):
201
- return datasets.DatasetInfo(
202
- description=_DESCRIPTION,
203
- features=datasets.Features(
204
- {
205
- "accession_id": datasets.Value("string"),
206
- "pmid": datasets.Value("string"),
207
-
208
- "introduction": datasets.Value("string"),
209
- "methods": datasets.Value("string"),
210
- "results": datasets.Value("string"),
211
- "discussion": datasets.Value("string"),
212
- "conclusion": datasets.Value("string"),
213
-
214
- "front": datasets.Value("string"),
215
- "body": datasets.Value("string"),
216
- "back": datasets.Value("string"),
217
-
218
- "license": datasets.Value("string"),
219
- "retracted": datasets.Value("string"),
220
- "last_updated": datasets.Value("string"),
221
- "citation": datasets.Value("string"),
222
- "package_file": datasets.Value("string"),
223
- }
224
- ),
225
- homepage=_HOMEPAGE,
226
- license=_LICENSE,
227
- citation=_CITATION,
228
- task_templates=[LanguageModeling(text_column="content")],
229
- )
230
-
231
- def _split_generators(self, dl_manager):
232
-
233
- incremental_paths = {
234
- "incremental_file_lists": [],
235
- "incremental_archives": []
236
- }
237
-
238
- baseline_package_list = dl_manager.download(f"{_URL_ROOT}oa_file_list.csv")
239
-
240
- baseline_file_lists = []
241
- baseline_archives = []
242
- for subset in self.config.subsets:
243
- url = _URL.format(subset=_SUBSETS[subset])
244
- basename = f"{_SUBSETS[subset]}_xml."
245
- # Baselines non-commercial PMC000xxxxxx baseline does not exist
246
- baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(10) if (subset != "non_commercial" or i > 0)]
247
-
248
- for baseline in baselines:
249
- baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
250
- baseline_archive_url = f"{url}{basename}{baseline}.tar.gz"
251
- baseline_file_list = dl_manager.download(baseline_file_list_url)
252
- baseline_archive = dl_manager.download(baseline_archive_url)
253
-
254
- baseline_file_lists.append(baseline_file_list)
255
- baseline_archives.append(baseline_archive)
256
-
257
- baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
258
-
259
- # Incremental commented because some articles are already in the main parts (updates?)
260
- # Need to find a way to add them to the dataset without duplicating the articles.
261
- # Also adding them would mean that each new day the dataset is loaded, the whole dataset is recreated.
262
- date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE)
263
- incremental_dates = [
264
- (datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat()
265
- for i in range(date_delta.days)
266
- ]
267
- incrementals = [f"incr.{date}" for date in incremental_dates]
268
- for incremental in incrementals:
269
- incremental_file_list_url = f"{url}{basename}{incremental}.filelist.csv"
270
- incremental_archive_url = f"{url}{basename}{incremental}.tar.gz"
271
- try:
272
- incremental_file_list = dl_manager.download(incremental_file_list_url)
273
- incremental_archive = dl_manager.download(incremental_archive_url)
274
- except FileNotFoundError: # Some increment might not exist
275
- continue
276
- incremental_paths["incremental_file_lists"].append(incremental_file_list)
277
- incremental_paths["incremental_archives"].append(incremental_archive)
278
-
279
- return [
280
- datasets.SplitGenerator(
281
- name=datasets.Split.TRAIN,
282
- gen_kwargs={
283
- "baseline_file_lists": baseline_file_lists,
284
- "baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives],
285
- "baseline_package_list": baseline_package_list,
286
- "incremental_file_lists": incremental_paths["incremental_file_lists"],
287
- "incremental_archives": [dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"]],
288
- },
289
- ),
290
- ]
291
-
292
- def _generate_examples(self, baseline_file_lists, baseline_archives, baseline_package_list, incremental_file_lists, incremental_archives):
293
- #Loading the file listing folders of individual PMC Article package (with medias and graphics)
294
- oa_package_list = pd.read_csv(baseline_package_list, index_col="Accession ID")
295
- oa_package_list = oa_package_list[["File"]]
296
- oa_package_list.sort_index(inplace=True)
297
- processed_ids = set()
298
-
299
- # Incrementals
300
- if incremental_file_lists:
301
- for incremental_file_list, incremental_archive in zip(incremental_file_lists[::-1], incremental_archives[::-1]):
302
- try:
303
- incrementals = pd.read_csv(incremental_file_list, index_col="AccessionID")
304
- except FileNotFoundError: # File not found can happen here in stream mode
305
- continue
306
- incrementals = incrementals.join(oa_package_list).reset_index().set_index("Article File")
307
- incrementals.File = incrementals.File.fillna('')
308
- incrementals = incrementals.to_dict(orient="index")
309
-
310
- for path, file in incremental_archive:
311
- data = incrementals.pop(path)
312
- pmcid = data["AccessionID"]
313
- if pmcid in processed_ids: #oa_package_list.loc[pmcid, "yet_processed"]:
314
- continue
315
- content = file.read()
316
- try:
317
- text = content.decode("utf-8").strip()
318
- except UnicodeDecodeError as e:
319
- text = content.decode("latin-1").strip()
320
- text = clean_raw(text)
321
- try:
322
- article_tree = etree.ElementTree(etree.fromstring(text))
323
- except etree.XMLSyntaxError: #In some files, xml is broken
324
- continue
325
-
326
- content_d = construct_datadict(article_tree)
327
- data = {
328
- "introduction": "\n".join(content_d["introduction"]),
329
- "methods": "\n".join(content_d["methods"]),
330
- "results": "\n".join(content_d["results"]),
331
- "discussion": "\n".join(content_d["discussion"]),
332
- "conclusion": "\n".join(content_d["conclusion"]),
333
- "front": "\n".join(content_d["front"]),
334
- "body": "\n".join(content_d["body"]),
335
- "back": "\n".join(content_d["back"]),
336
- "pmid": data["PMID"],
337
- "accession_id": pmcid,
338
- "license": data["License"],
339
- "last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
340
- "retracted": data["Retracted"],
341
- "citation": data["Article Citation"],
342
- "package_file": data["File"],
343
- }
344
- processed_ids.add(pmcid)
345
- yield pmcid, data
346
-
347
- # Baselines
348
- for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives):
349
-
350
- #try:
351
- baselines = pd.read_csv(baseline_file_list, index_col="AccessionID")
352
- baselines = baselines.join(oa_package_list).reset_index().set_index("Article File")
353
- baselines.File = baselines.File.fillna('')
354
- baselines = baselines.to_dict(orient="index")
355
-
356
- for path, file in baseline_archive:
357
- data = baselines.pop(path)
358
- pmcid = data["AccessionID"]
359
- if pmcid in processed_ids:
360
- continue
361
- content = file.read()
362
- try:
363
- text = content.decode("utf-8").strip()
364
- except UnicodeDecodeError as e:
365
- text = content.decode("latin-1").strip()
366
- text = clean_raw(text)
367
- try:
368
- article_tree = etree.ElementTree(etree.fromstring(text))
369
- except etree.XMLSyntaxError: #In some files, xml is broken
370
- continue
371
-
372
- content_d = construct_datadict(article_tree)
373
- data = {
374
- "introduction": "\n".join(content_d["introduction"]),
375
- "methods": "\n".join(content_d["methods"]),
376
- "results": "\n".join(content_d["results"]),
377
- "discussion": "\n".join(content_d["discussion"]),
378
- "conclusion": "\n".join(content_d["conclusion"]),
379
- "front": "\n".join(content_d["front"]),
380
- "body": "\n".join(content_d["body"]),
381
- "back": "\n".join(content_d["back"]),
382
- "pmid": data["PMID"],
383
- "accession_id": pmcid,
384
- "license": data["License"],
385
- "last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
386
- "retracted": data["Retracted"],
387
- "citation": data["Article Citation"],
388
- "package_file": data["File"],
389
- }
390
- processed_ids.add(pmcid)
391
- yield pmcid, data