accession_id
stringlengths
9
11
pmid
stringlengths
1
8
introduction
sequencelengths
0
213
methods
sequencelengths
0
389
results
sequencelengths
0
2.61k
discussion
sequencelengths
0
371
conclusion
sequencelengths
0
229
front
sequencelengths
0
66
body
sequencelengths
0
2.64k
back
sequencelengths
0
550
figure
sequencelengths
0
370
table
sequencelengths
0
999
formula
sequencelengths
0
2.66k
box
sequencelengths
0
58
code
sequencelengths
0
10
quote
sequencelengths
0
105
chemical
sequencelengths
0
0
supplementary
sequencelengths
0
74
footnote
sequencelengths
0
37
graphic
sequencelengths
0
2.41k
media
sequencelengths
0
74
unknown_pub
stringlengths
2
363k
glossary
sequence
n_references
int32
0
1.35k
license
stringclasses
4 values
retracted
stringclasses
2 values
last_updated
stringlengths
19
19
citation
stringlengths
14
89
package_file
stringlengths
0
35
PMC9284965
35840902
[ "<title>Background</title>", "<p id=\"Par19\">Coronaviruses are large, enveloped, single-stranded RNA viruses found in humans and other animals, such as dogs, cats, bats, chickens, cattle, pigs, and birds. These viruses have the potential to cause respiratory, enteric, hepatic, and neurologic diseases. The most common coronaviruses in clinical practice are 229E, OC43, NL63, and HKU1, which typically cause common cold symptoms in immunocompetent individuals and contribute 15% to 30% of common cold cases [##REF##32648899##1##, ##UREF##0##2##]. Two other strains, the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), are associated with severe respiratory disease and are responsible for the first significant coronavirus outbreaks [##UREF##0##2##, ##REF##31978945##3##]. On December 21, 2019, a novel coronavirus was identified in hospitalized patients with pneumonia in Wuhan, China. Genetic analysis revealed that this novel coronavirus fits into the genus betacoronavirus. Further phylogenetic analysis showed that the SARS-CoV-2 virus belongs to the subgenus Sarbecovirus and that is more similar to two bat-derived coronavirus strains, bat-SL-CoVZC45 and bat-SL-CoVZXC21, than to known human-infecting coronaviruses, including SARS-CoV [##REF##31978945##3##, ##REF##32007145##4##].</p>", "<p id=\"Par20\">Because seasonal coronaviruses are regarded as mild upper respiratory pathogens with a known peak prevalence during December–March each year in the U.S. (coinciding with the winter respiratory virus season), molecular testing is not frequently performed in the clinical outpatient practice, and it is reserved for surveillance purposes [##REF##29427907##5##]. However, because of the increased availability of molecular test methods and the adoption of sCoV testing as part of routine multiplex diagnostic screens, particularly for patients with severe respiratory illness or admitted to critical care units where a precise microbiologic diagnosis is more clinically relevant, it is now possible to recognize and characterize the associated disease spectrum of severe sCoV infections and compare it to that of COVID-19 [##REF##29427907##5##, ##REF##32296837##6##]. The clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been well described in multiple case series and cohort studies [##REF##32031570##7##–##REF##32109013##10##] and compared to hospitalized patients with other respiratory viruses [##REF##32864588##11##–##REF##34050659##14##]. Nevertheless, there is limited data on how COVID-19 compares clinically to seasonal coronaviruses (sCoV). Unlike SARS-CoV and MERS-CoV, SARS-CoV-2 carries the potential to become a recurrent seasonal infection; hence, it is essential to compare the clinical spectrum of COVID-19 to the existent endemic coronaviruses in an attempt to help clinicians distinguish both entities during potential co-circulation throughout winter seasons and guide further management [##REF##29427907##5##, ##REF##34932078##15##, ##REF##33436525##16##]. Thus, this study compares the clinical characteristics, course, and outcomes of hospitalized patients with COVID-19 with hospitalized patients with sCoV infection.</p>" ]
[ "<title>Methods</title>", "<title>Design, setting, and participants</title>", "<p id=\"Par21\">This cross-sectional retrospective cohort study included 380 hospitalized adult patients (18 years or older) with sCoV or COVID19 across four AMITA Health hospitals located in the Chicago metropolitan area. A total of 190 patients hospitalized with pneumonia (ICD-10-CM Code J18.9), upper respiratory tract infection (ICD-10-CM Code J06.9) or lower respiratory tract infection (ICD-10-CM Code J22), and a positive respiratory viral panel (BioFire® FilmArray Respiratory Panel) for sCoV from January 1, 2011, to March 31, 2020, were identified by the Electronic Health Records department and thus, no sample size calculation was performed. Those patients were compared with 190 patients randomly selected from a de-identified dataset that included 313 hospitalized adult patients with molecularly confirmed new-onset symptomatic COVID-19 (Abbott™ RealTi<italic>me</italic>™ SARS-CoV-2 assay or Abbott™ ID NOW COVID-19™ assay) admitted from March 1, 2020, to May 25, 2020.</p>", "<title>Definitions</title>", "<p id=\"Par22\">Respiratory failure was defined as room air oxygen saturation less than or equal to 90% or using any means of supplemental oxygen associated with shortness of breath. Sepsis and septic shock were defined according to the 2016 Third International Consensus Definition for Sepsis and Septic Shock [##REF##28101605##17##]. Acute kidney injury (AKI) was diagnosed according to the KDIGO clinical practice guidelines [##REF##22890468##18##], and acute respiratory distress syndrome (ARDS) was diagnosed according to the Berlin Definition [##REF##22797452##19##]. Troponin leak was defined as non-ACS cardiac troponin elevation above reference range levels [##UREF##1##20##]. The severity of COVID-19 illness and sCoV infections was defined and unified according to the National Institutes of Health guidelines for the management of COVID-19 [##UREF##2##21##]. Other definitions include: residents of long-term care facilities as residents of group, board and care homes, assisted living facilities, nursing homes, or continuing care retirement communities; neurocognitive impairment as any dementia, Parkinson’s disease with cognitive impairment, intellectual disability, or cerebral palsy; altered mental status as any alteration in alertness, orientation or level of consciousness; immunosuppression as patients on daily dose ≥ 20 mg of prednisone or equivalent, active chemotherapy, immunotherapy, immunomodulators (immunosuppressants), or patients diagnosed with any hematological neoplasia.</p>", "<title>Data collection</title>", "<p id=\"Par23\">Clinical data were manually extracted and collected by the investigators via retrospective chart review from an electronic medical record system (Epic). Information collected included demographic data, medical history, underlying comorbidities, symptoms, signs, laboratory findings, imaging studies, treatment measures, survival to hospital discharge (survivors), and in-hospital death or referral to hospice (nonsurvivors). A 10% random sample was re-abstracted to ascertain agreement and monitor calibration. We calculated a Cohen’s kappa for each categorical variable and intraclass correlation coefficient for continuous variables included in the analysis. The mean (SD) Cohen’s kappa for categorical variables was 0.85 (0.15), with a percentage agreement of 94%, indicating a strong level of interrater agreement. The mean intraclass correlation coefficient for continuous variables was 0.94 (0.08), indicating excellent interrater reliability.</p>", "<p id=\"Par24\">The study was approved by the Institutional Review Board of AMITA Health System (2021-0180-02). The Ethics Commission waived the requirement for informed consent, given that this research involves no more than minimal risk to participants.</p>", "<title>Statistical analysis</title>", "<p id=\"Par25\">Descriptive statistics were used to summarize the data; categorical variables were described as frequency and percentages, and continuous variables were described using median and interquartile range (IQR) values. Non-normal distribution was confirmed with the Shapiro–Wilk test. We used the Mann–Whitney U test, Chi-squared test, or Fisher exact test to compare differences between patients with sCoV infection and COVID-19 when appropriate. An exploratory unconditional multivariable logistic regression model with generalized estimating equations with exchangeable correlation structure correcting standard error estimates for site-level clustering was used to assess differences in case-fatality between patients with sCoV infection and participants with COVID-19 [##REF##12578807##22##], adjusting for age, residence (home or long-term care facility [LTCF]), do-not-resuscitate/do-not-intubate (DNR/DNI) status and quick Sequential Organ Failure Assessment (qSOFA) score. We opted to fit these variables into the model based on clinical knowledge and previous literature. A two-sided alfa of less than 0.05 was considered statistically significant.</p>" ]
[ "<title>Results</title>", "<title>Demographics and baseline characteristics</title>", "<p id=\"Par26\">The median age of the base cohort was 72 years (IQR, 59.0–83.0 years; range 21–98 years) and 203 (53.4%) were male. Among patients with sCoV infection, the Human Coronavirus (HCoV)-OC43 was the most common coronavirus with 47.4% of the cases, followed by HCoV-HKU1 (20.5%), HCoV-229E (17.4%), and HCoV-NL63 (14.7%) (Fig. ##FIG##0##1##). Baseline characteristics, disease severity, and inpatient case-fatality rates were not significantly different between each sCoV, except for a significantly higher rate of inpatients with CoV-HKU1 and a history of COPD and a significantly higher rate of patients with CoV-229E who required IMV (Table ##TAB##0##1##).</p>", "<p id=\"Par27\">When comparing demographics and baseline characteristics between inpatients with sCoV and COVID-19, both groups were of similar age, more patients with sCoV infection were female, White, and admitted from home, while patients with COVID-19 were more likely to be male and admitted from an LTCF. Of note, more patients with COVID-19 were admitted with DNR/DNI orders (Table ##TAB##1##2##). The proportion of patients with two or more comorbidities, obesity and a history of smoking was not significantly different between patients with sCoV infection and COVID-19. However, patients with sCoV infection presented higher rates of cardiovascular disease, history of malignancies, COPD or asthma, and immunodeficiency, whereas patients with COVID-19 presented higher rates of diabetes and neurocognitive disorders (Table ##TAB##1##2##).</p>", "<title>Clinical presentation and interventions</title>", "<p id=\"Par28\">Upon presentation to the hospital, more patients with sCoV infection reported chills and cough, while more patients with COVID-19 reported fever, anosmia, and diarrhea. The rates of shortness of breath were not different between groups. Clinically, patients with COVID-19 presented higher rates of altered mental status, higher body temperature, and lower blood pressure than patients with sCoV infection (Table ##TAB##1##2##). Patients with sCoV infection presented a higher white blood count, while patients with COVID-19 presented higher serum creatinine levels and blood urea nitrogen (Table ##TAB##1##2##). Between patients with sCoV and COVID-19, there were no differences in the rates of leukopenia (white blood cells &lt; 4.0 × 10<sup>9</sup>/L, 6.3% vs. 9.5%; p = 0.254), lymphopenia (lymphocyte count &lt; 0.6 × 10<sup>9</sup>/L, 71.6% vs. 78.9%; p = 0.096), or thrombocytopenia (platelet count &lt; 150 × 10<sup>9</sup>/L, 13.2 vs. 19.5%; p = 0.096). On imaging, a more significant proportion of patients with sCoV infection showed no acute findings or unilateral opacities, whereas more patients with COVID-19 were found to have bilateral or diffuse (Table ##TAB##1##2##).</p>", "<p id=\"Par29\">With regards to interventions (Table ##TAB##2##3##), more patients with sCoV infection were placed on nonrebreather masks (12.1% vs. 6.3%) and noninvasive ventilation (13.2% vs. 1.1%) in the emergency department. On the other hand, more patients with COVID-19 were placed on high-flow nasal cannula (8.9% vs. 0.5%) and humidified high-flow system (3.7% vs. 0%). A similar proportion of patients required invasive mechanical ventilation (IMV) on presentation and later during the hospital stay. Both groups of patients with sCoV infection and COVID-19 were administered similar rates of steroids (45.3% vs. 43.7%) and antibiotics (95.8% vs. 91.1%). A larger proportion of patients with COVID-19 required vasopressors (16.8% vs. 10%), neuromuscular blockers (17.9% vs. 0.5%), and prone positioning (11.1% vs. 1.1%).</p>", "<title>Outcomes</title>", "<p id=\"Par30\">Regarding inpatient outcomes (Table ##TAB##2##3##), patients with sCoV infection and COVID-19 developed similar respiratory failure rates. Patients with COVID-19 presented higher rates of sepsis, AKI, and ARDS. A higher number of individuals with sCoV were found to have co-infective organisms than individuals with COVID-19. Rates of mild and moderate illness were similar among both groups of patients on presentation, but significantly more patients with COVID-19 presented with severe disease. The time from symptom onset to discharge or death was not significantly different between patients with sCoV infection and COVID-19. Though, patients admitted with COVID-19 had a higher length of hospital stay than patients with sCoV. Rates of intensive care unit (ICU) admissions were similar between both groups; however, more patients with sCoV were successfully extubated and successfully discharged from the ICU than patients with COVID-19. The inpatient case fatality rate was significantly higher in patients with COVID-19 compared with patients with sCoV infection.</p>", "<p id=\"Par31\">In the unconditional logistic regression model with generalized estimating equations, patients with COVID-19 presented a significantly increased risk of death compared to patients with sCoV infection (adjusted Odds Ratio [aOR] 3.86, Confidence Interval 1.99–7.49; p &lt; 0.001) (Table ##TAB##3##4##). We performed three sensitivity analyses. First, using an automated variable selection procedure, we performed a backward stepwise (likelihood ratio) logistic regression to compare our variable selection model based on current evidence of known risk factors associated with viral respiratory infections severity with an automated variable selection model. Covariates with the greatest P-value were progressively removed until only covariates with a P-value less than 0.10 remained in a block with significant improvement of fit compared to the previous block. In this model, COVID-19 remained as a significant predictor of death compared with sCoV infection (aOR 3.42 [1.76–6.63]; p &lt; 0.001). Second, we adjusted the regression model with a propensity score that was calculated from saving the predicted probabilities of a logistic regression with COVID-19 or sCoV infection as dependent variable and age and sex as independent variables, then adjusted the backward selection regression model by including predicted probabilities as a covariate. Additionally, the backward selection regression model was also performed with the logit of the predicted probabilities as a covariate. Lastly, given the lack of a standardized protocol regarding when to order a respiratory multiplex panel by PCR within the Integrated Healthcare System, there is an inherent selection bias towards patients with more severe sCoV infection as physicians tend to order this panel for patients with severe respiratory infections where a precise microbiologic diagnosis is more important. Thus, we performed a subgroup analysis with a model that only included patients admitted to the ICU. Again, COVID-19 carried a significantly greater risk of death compared to sCoV infection (aOR 5.42 [2.08–14.08]; p = 0.001) (Table ##TAB##3##4##).</p>" ]
[ "<title>Discussion</title>", "<p id=\"Par32\">This retrospective cohort study examined the characteristics and clinical outcomes of hospitalized patients with sCoV infection compared to patients with COVID-19. Patients with COVID-19 presented a higher case fatality rate and an almost fourfold increased risk of death than patients with sCoV. Interestingly, the rates of ICU admission and IMV use were not significantly different. However, more patients with sCoV were extubated and were more likely discharged from the ICU than patients with COVID-19. Seasonal coronaviruses are usually associated with mild upper respiratory illness in adults and are not a considerable public health burden [##REF##33436525##16##]. Though, elderly individuals and immunocompromised hosts can sometimes develop life-threatening bronchiolitis, pneumonia, and even neurological infection (hCoV-OC43) [##UREF##0##2##]. In one study of community-acquired pneumonia requiring hospitalization among U.S. adults, the incidence of coronaviruses in individuals 80 years of age or older was similar to that of <italic>Streptococcus pneumoniae</italic> [##REF##26172429##23##]. Besides, previous studies have linked common respiratory viruses, including sCoV, with COPD exacerbations, asthma exacerbations, and worsening cardiovascular disease [##REF##29038056##24##–##REF##29622165##27##]. In our cohort, patients admitted with sCoV were found to be initially admitted due to exacerbation of a pre-existing condition, namely heart failure exacerbation and COPD or asthma exacerbation, and later found to have a sCoV infection, where coronaviruses were likely responsible for disease aggravation, as demonstrated by the significantly higher proportions of patients with sCoV infection and underlying cardiovascular disease, obstructive pulmonary disease, and immunodeficiency in comparison to patients with COVID-19. In contrast, most patients with SARS-CoV-2 infection were merely admitted due to COVID-19 and its complications.</p>", "<p id=\"Par33\">The clinical spectrum of hospitalized patients with SARS-CoV-2 infection has been mainly compared to SARS, MERS, and other pandemic viruses [##REF##32234451##28##, ##REF##33013925##29##]; nevertheless, our data shows significant differences with these viruses and important similarities with hospitalized patients with sCoV infection. For instance, although all coronaviruses can affect persons in all age groups, hospitalized patients with COVID-19 and sCoV infection were found to be older (median age 69 and 74 years, respectively). In contrast, previous series reported younger populations affected by SARS and MERS (median age 39 and 56 years, respectively) [##REF##12682352##30##–##REF##23891402##35##]. COVID-19 and MERS affected more male patients, while sCoV and SARS affected predominately female patients. Overall, SARS series reported fewer patients with pre-existing underlying conditions (10 to 30%) [##REF##12682352##30##–##REF##12734147##32##], while in MERS series, 50 to 96% of patients were reported to have at least one underlying condition [##REF##23782161##33##–##REF##23891402##35##]. Similar to MERS series, more than 80% of hospitalized patients with sCoV and COVID-19 had two or more underlying comorbidities in our cohorts. For COVID-19, sCoV, and MERS, the most common presenting symptoms included fever, cough, and shortness of breath, while in SARS series, fever and cough were more prominent relative to shortness of breath [##REF##12682352##30##–##REF##23891402##35##]. Leukopenia on admission was less common in our cohort of patients with sCoV (6.3%) and COVID-19 (9.5%) compared to previous MERS (14–42%) and SARS (25–35%) series [##REF##27433382##34##, ##REF##23891402##35##], whereas lymphopenia rates were similar in patients with sCoV (71.6%), COVID-19 (78.9%), and SARS (68–85%) in comparison to MERS (34%) [##REF##23891402##35##]. As expected, rates of bilateral or multifocal infiltrates at admission were overall higher in patients with COVID-19 (61.6%), SARS (29–45%), and MERS (26–80.3%) than in patients with sCoV infection (30.5%) [##REF##12682352##30##–##REF##27433382##34##]. The rates of ICU admission among patients with sCoV (35.3%) and COVID-19 (32.1%) in our cohorts were higher than in SARS series (20–26%) but lower than in MERS series (78–89%) [##REF##12682352##30##–##REF##23782161##33##, ##REF##23891402##35##]. Overall, the rates of IMV were higher in MERS series (24.5–80%), followed by our cohort of patients with COVID-19 (19.5%), SARS series (13.8–21%), and our cohort of patients with sCoV infection (14.2%) [##REF##12682352##30##–##REF##23891402##35##]. Case fatality rates were higher in series of hospitalized patients with MERS (20.4–65%), followed by our cohort of hospitalized patients with COVID-19 (34.7%), SARS series (3.6–13.6%), and our cohort of hospitalized patients with sCoV infection (11.6%) [##REF##12682352##30##–##REF##23891402##35##]. Considering all patients, including outpatients and inpatients, the estimated case-fatality rate of COVID-19 is around 1–3%, 9.5–15% for SARS, and 34.4% for MERS. The overall case-fatality rate for seasonal coronaviruses is not well described [##REF##32234451##28##, ##REF##33013925##29##]. However, using data from the Underlying Cause of Death tool in the CDC Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER) Online Database and the National Respiratory and Enteric Virus Surveillance System (NREVS), we estimated a rough case fatality rate of 0.0027% (108 deaths from unspecified coronavirus illness reported between the years 2014–2017 in the CDC WONDER Online Database and 39 588 cases of HCoV reported to the NREVSS during the same period) [##REF##29427907##5##, ##UREF##3##36##].</p>", "<p id=\"Par34\">Compared to other respiratory pathogens other than coronaviruses, COVID-19 shares some similarities but also has a unique disease spectrum. In a study by Shah et al., similarly to our results, most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ between patients with and without COVID-19. However, patients with COVID-19 were more likely to be admitted to the hospital (79% vs. 56%, p = 0.014), have more extended hospitalizations (median 10.7 days vs. 4.7 days, p &lt; 0.001), and develop ARDS (23% vs. 3%, p &lt; 0.001), and were unlikely to have co-existent viral infections compared with patients with an acute respiratory illness different that COVID-19 [##REF##32864588##11##]. Furthermore, Spieza et al. showed that patients with COVID-19 pneumonia had significantly shorter clot formation time and higher maximum clot firmness (P &lt; 0.01 and P &lt; 0.05, respectively) than patients with non-COVID-19 pneumonia [##REF##33024937##12##].</p>", "<p id=\"Par35\">In a systematic review that compared COVID-19 to influenza, comorbidities such as cardiovascular diseases, diabetes, and obesity were significantly higher in COVID-19 patients. In contrast, pulmonary diseases and immunocompromised conditions were significantly more common in influenza patients, similar to our population with sCoV infection. Neurologic symptoms and diarrhea were statistically more frequent in COVID-19 patients compared to influenza patients, reminiscent of our cohort of COVID-19 patients. Ground-grass opacities and a peripheral distribution were more common in COVID-19 patients than in influenza patients, where consolidations and linear opacities were described instead. In comparison, our patient population with COVID-19 also most commonly presented diffuse opacities with bilateral distribution compared with patients sCoV infection. Lastly, COVID-19 patients were found to have significantly worse outcomes than influenza patients: More often transferred to intensive care unit with a higher rate of mortality [##REF##33802155##13##]. The severity of COVID-19 compared to influenza was demonstrated again in a study by Talbot et al., where patients with COVID-19 showed greater severity and complications, including more ICU admissions (aOR 5.3, 95% CI 11.6–20.3), ventilator use (aOR 15.6, 95% CI 10.7–22.8), seven additional days of hospital stay in those discharged alive, and death during hospitalization (aOR 19.8, 95% CI–12.0, 32.7) [##REF##34050659##14##].</p>", "<p id=\"Par36\">With the expansion of SARS-CoV-2 worldwide, the emergence of new, more transmissible variants [##REF##33476315##37##, ##REF##33658326##38##], and the variable effectiveness of current vaccines against those variants [##REF##34910864##39##], there is little hope for eliminating the virus from the human population. Unlike SARS-CoV and MERS-CoV, which were locally contained, SARS-CoV-2 will likely transition to endemicity and continued circulation with the other sCoVs [##REF##33436525##16##]. Seasonal coronaviruses have annual circulation peaks in the winter months in the U.S., and individual species show variable circulation from year to year [##REF##29427907##5##]. Recent data from the NREVSS showed that during the 2019–20 winter season, HCoV-HKU1 was the most common sCoV circulating in the U.S., followed by HCoV-NL63. In comparison, during the 2020–21 winter season, HCoV-OC43 was the most common sCoV circulating in the U.S., again followed by HCoV-NL63 [##UREF##4##40##]. Our cohort encompassing nine years, the most common isolated sCoV was HCoV-OC43, followed by HCoV-HKU1. Although it is not clear whether COVID-19 will become a chronic seasonal disease, numerous epidemiological studies and models have explored the relationship between COVID-19 transmission and meteorological factors. These models have shown that infectivity of SARS-CoV-2 and mortality of COVID-19 are more substantial in colder climates and that COVID-19 seasonality is more pronounced at higher latitudes where larger seasonal amplitudes of environmental indicators are observed [##REF##34932078##15##, ##REF##33610582##41##], supporting the circulation of SARS-CoV-2 as a seasonal respiratory pathogen.</p>", "<p id=\"Par37\">This study has several limitations. As mentioned before, one of the most significant limitations is the selection bias associated with the inpatient use of the respiratory multiplex panel by PCR. Since its availability and up to the writing of this manuscript, there is no formal protocol in place within the Integrated Health System regarding when to order this test. Physicians can order the panel at their discretion. In consequence, there may be a selection bias towards patients with more severe disease, whereas patients with less severe disease were omitted. We tried to address this issue with a sensitivity analysis, including only critically ill patients. Another significant limitation is the fact that the data of the COVID-19 population analyzed in this study were obtained during the initial wild-type (Wuhan-Hu-1) phase in the United States and before the emergence of variants of concern that later replaced the wild-type virus, namely Alpha, Delta, and Omicron, that have been shown to have different biological, epidemiological and clinical characteristics [##UREF##5##42##, ##REF##34535792##43##]. This was a retrospective cohort study, and clinical data were retrospectively collected through electronic medical records and manual chart review. Therefore, a degree of inter-rater variability is expected. Second, the present study was observational and included populations of patients distributed at different points in time; thus, unknown risk factors and bias might have been unequally distributed between the two groups in the analysis. The subjects with COVID-19 included for analysis encompass a series of consecutively admitted patients early in the pandemic before using steroids as the standard of care and the development of standardized, evidence-based management guidelines, and widespread availability of COVID-19 vaccines, which have shown to have a significant impact on morbidity and mortality. On the other hand, the cohort of subjects with sCoV infection included patients from a period of 9 years, during which progress in medical knowledge and patient care are expected; hence, the crude case-fatality ratio must be taken with caution. Finally, the analyzed population was limited to one Integrated-Delivery Health system in the Chicago metropolitan area and may have limited external generalizability.</p>" ]
[ "<title>Conclusions</title>", "<p id=\"Par38\">In conclusion, the clinical spectrum of hospitalized patients with COVID-19 is more similar to SARS and MERS in terms of illness severity and case-fatality rate than hospitalized patients with sCoV infection. However, the demographics and baseline characteristics of patients hospitalized with COVID-19 and sCoV infection are more similar, affecting older populations with many underlying conditions, making it difficult to distinguish both entities solely on a clinical basis. Thus, should SARS-CoV-2 transition into an endemic virus after the pandemic, clinical findings alone may not help confirm or exclude the diagnosis of COVID-19 during high acute respiratory illness seasons. With the availability of specific COVID-19 therapies and infection prevention protocols, the respiratory multiplex panel by PCR that includes SARS-CoV-2 in conjunction with local epidemiological data may be a valuable tool to assist clinicians with management decisions.</p>" ]
[ "<title>Background</title>", "<p id=\"Par1\">Unlike SARS-CoV and MERS-C0V, SARS-CoV-2 has the potential to become a recurrent seasonal infection; hence, it is essential to compare the clinical spectrum of COVID-19 to the existent endemic coronaviruses. We conducted a retrospective cohort study of hospitalized patients with seasonal coronavirus (sCoV) infection and COVID-19 to compare their clinical characteristics and outcomes.</p>", "<title>Methods</title>", "<p id=\"Par2\">A total of 190 patients hospitalized with any documented respiratory tract infection and a positive respiratory viral panel for sCoV from January 1, 2011, to March 31, 2020, were included. Those patients were compared with 190 hospitalized adult patients with molecularly confirmed symptomatic COVID-19 admitted from March 1, 2020, to May 25, 2020.</p>", "<title>Results</title>", "<p id=\"Par3\">Among 190 patients with sCoV infection, the Human Coronavirus-OC43 was the most common coronavirus with 47.4% of the cases. When comparing demographics and baseline characteristics, both groups were of similar age (sCoV: 74 years vs. COVID-19: 69 years) and presented similar proportions of two or more comorbidities (sCoV: 85.8% vs. COVID-19: 81.6%). More patients with COVID-19 presented with severe disease (78.4% vs. 67.9%), sepsis (36.3% vs. 20.5%), and developed ARDS (15.8% vs. 2.6%) compared to patients with sCoV infection. Patients with COVID-19 had an almost fourfold increased risk of in-hospital death than patients with sCoV infection (OR 3.86, CI 1.99–7.49; p &lt; .001).</p>", "<title>Conclusion</title>", "<p id=\"Par4\">Hospitalized patients with COVID-19 had similar demographics and baseline characteristics to hospitalized patients with sCoV infection; however, patients with COVID-19 presented with higher disease severity, had a higher case-fatality rate, and increased risk of death than patients with sCoV. Clinical findings alone may not help confirm or exclude the diagnosis of COVID-19 during high acute respiratory illness seasons. The respiratory multiplex panel by PCR that includes SARS-CoV-2 in conjunction with local epidemiological data may be a valuable tool to assist clinicians with management decisions.</p>", "<title>Keywords</title>" ]
[]
[ "<title>Acknowledgements</title>", "<p>None.</p>", "<title>Author contributions</title>", "<p>GRN: Conceptualization, project administration, data curation, writing—original draft, methodology, formal analysis. GE: Project administration, data curation, writing—original draft, writing—review and editing. TD, QZ, EH, BP1, MAYB, DPTG, CWC, BP2, TIR, VPTG: Data curation, writing—review and editing. DSBS Data curation, formal analysis, writing—review and editing. JS: Project administration, supervision, writing—original draft, writing—review and editing. All authors have reviewed and approved the manuscript (and any substantially modified version that involves the author’s contribution to the study) and have agreed both to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. All authors read and approved the final manuscript.</p>", "<title>Funding</title>", "<p>There has been no financial support for this work.</p>", "<title>Availability of data and materials</title>", "<p>The data and materials used to support the findings of this study are available from the corresponding author upon reasonable request. The local IRB committee prohibits the release of the dataset without protocol amendments.</p>", "<title>Declarations</title>", "<title>Ethics approval and consent to participate</title>", "<p id=\"Par39\">The study was approved by the Institutional Review Board of AMITA Health System (2021-0180-02). Ascension Ethics waived the requirement for informed consent, given that the probability and magnitude of harm or discomfort anticipated in this research are not greater in and of themselves than those ordinarily encountered in daily life or during the performance of routine physical or psychological examinations or tests, and hence involves no more than minimal risk to participants. The Ascension Ethics allowed access to data through chart review. Data from patients was anonymized before its use.</p>", "<title>Consent for publication</title>", "<p id=\"Par40\">Not applicable.</p>", "<title>Competing interests</title>", "<p id=\"Par41\">The authors of this manuscript have no conflicts of interest to disclose.</p>" ]
[ "<fig id=\"Fig1\"><label>Fig. 1</label><caption><p>Distribution of human coronavirus species among 190 patients with seasonal coronavirus infection</p></caption></fig>" ]
[ "<table-wrap id=\"Tab1\"><label>Table 1</label><caption><p>Comparison between inpatients with human seasonal coronaviruses</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"left\"/><th align=\"left\">CoV-229E (N = 33)</th><th align=\"left\">CoV-HKU1 (N = 39)</th><th align=\"left\">CoV-NL63 (N = 28)</th><th align=\"left\">CoV-OC43 (N = 90)</th><th align=\"left\">P-value</th></tr></thead><tbody><tr><td align=\"left\">Age in years<sup>a</sup></td><td char=\"(\" align=\"char\">72 (63–81.5)</td><td char=\"(\" align=\"char\">69 (55–82)</td><td char=\"(\" align=\"char\">75.5 (56.5–84)</td><td char=\"(\" align=\"char\">75.5 (64.5–87.25)</td><td align=\"left\">.164</td></tr><tr><td align=\"left\">Male</td><td char=\"(\" align=\"char\">18 (54.5%)</td><td char=\"(\" align=\"char\">22 (56.4%)</td><td char=\"(\" align=\"char\">12 (42.9%)</td><td char=\"(\" align=\"char\">37 (41.1%)</td><td align=\"left\">.310</td></tr><tr><td align=\"left\">White (vs. all other)</td><td char=\"(\" align=\"char\">25 (75.8%)</td><td char=\"(\" align=\"char\">19 (48.7%)</td><td char=\"(\" align=\"char\">19 (67.9%)</td><td char=\"(\" align=\"char\">56 (62.2%)</td><td align=\"left\">.112</td></tr><tr><td align=\"left\">Home (vs. SNF)</td><td char=\"(\" align=\"char\">22 (66.7%)</td><td char=\"(\" align=\"char\">25 (64.1%)</td><td char=\"(\" align=\"char\">17 (60.7%)</td><td char=\"(\" align=\"char\">57 (63.3%)</td><td align=\"left\">.971</td></tr><tr><td align=\"left\">Two or more comorbidities</td><td char=\"(\" align=\"char\">27 (81.8%)</td><td char=\"(\" align=\"char\">36 (92.3%)</td><td char=\"(\" align=\"char\">25 (89.3%)</td><td char=\"(\" align=\"char\">75 (83.3%)</td><td align=\"left\">.473</td></tr><tr><td align=\"left\">Obesity</td><td char=\"(\" align=\"char\">12 (36.4%)</td><td char=\"(\" align=\"char\">14 (35.9%)</td><td char=\"(\" align=\"char\">8 (28.6%)</td><td char=\"(\" align=\"char\">25 (27.8%)</td><td align=\"left\">.707</td></tr><tr><td align=\"left\">COPD</td><td char=\"(\" align=\"char\">8 (24.2%)</td><td char=\"(\" align=\"char\">20 (51.3%)<sup>b</sup></td><td char=\"(\" align=\"char\">8 (28.6%)</td><td char=\"(\" align=\"char\">32 (35.6%)</td><td align=\"left\">.085</td></tr><tr><td align=\"left\">Abnormal CXR</td><td char=\"(\" align=\"char\">26 (78.8%)</td><td char=\"(\" align=\"char\">28 (71.8%)</td><td char=\"(\" align=\"char\">21 (75%)</td><td char=\"(\" align=\"char\">65 (72.2%)</td><td align=\"left\">.887</td></tr><tr><td align=\"left\">Severe illness</td><td char=\"(\" align=\"char\">26 (78.8%)</td><td char=\"(\" align=\"char\">25 (64.1%)</td><td char=\"(\" align=\"char\">20 (71.4%)</td><td char=\"(\" align=\"char\">58 (64.4%)</td><td align=\"left\">.439</td></tr><tr><td align=\"left\">ICU</td><td char=\"(\" align=\"char\">14 (42.4%)</td><td char=\"(\" align=\"char\">13 (33.3%)</td><td char=\"(\" align=\"char\">14 (50%)</td><td char=\"(\" align=\"char\">26 (28.9%)</td><td align=\"left\">.167</td></tr><tr><td align=\"left\">IMV</td><td char=\"(\" align=\"char\">9 (27.3%)<sup>c</sup></td><td char=\"(\" align=\"char\">6 (15.4%)</td><td char=\"(\" align=\"char\">2 (7.1%)</td><td char=\"(\" align=\"char\">10 (11.1%)</td><td align=\"left\">.089</td></tr><tr><td align=\"left\">Nonsurvivors</td><td char=\"(\" align=\"char\">4 (12.1%)</td><td char=\"(\" align=\"char\">2 (5.1%)</td><td char=\"(\" align=\"char\">5 (17.9%)</td><td char=\"(\" align=\"char\">11 (11.2%)</td><td align=\"left\">.439</td></tr></tbody></table></table-wrap>", "<table-wrap id=\"Tab2\"><label>Table 2</label><caption><p>Differences in baseline characteristics and clinical presentation between seasonal coronaviruses and COVID-19 inpatients</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"left\"/><th align=\"left\">sCoV (N = 190)</th><th align=\"left\">COVID-19 (N = 190)</th><th align=\"left\">P-value</th></tr></thead><tbody><tr><td align=\"left\" colspan=\"4\">Demographics</td></tr><tr><td align=\"left\"> Age in years<sup>a</sup></td><td char=\"(\" align=\"char\">74 (59–84)</td><td char=\"(\" align=\"char\">69 (59–82)</td><td char=\".\" align=\"char\">.081</td></tr><tr><td align=\"left\"> Male (vs. female)</td><td char=\"(\" align=\"char\">89 (46.8%)</td><td char=\"(\" align=\"char\">114 (60%)</td><td char=\".\" align=\"char\">.010</td></tr><tr><td align=\"left\"> White (vs. all other)</td><td char=\"(\" align=\"char\">119 (62.6%)</td><td char=\"(\" align=\"char\">76 (40%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> LTCF (vs. home)</td><td char=\"(\" align=\"char\">69 (36.3%)</td><td char=\"(\" align=\"char\">123 (64.7%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> DNR/DNI</td><td char=\"(\" align=\"char\">53 (27.9%)</td><td char=\"(\" align=\"char\">74 (38.9%)</td><td char=\".\" align=\"char\">.022</td></tr><tr><td align=\"left\"> Two or more comorbidities</td><td char=\"(\" align=\"char\">163 (85.8%)</td><td char=\"(\" align=\"char\">155 (81.6%)</td><td char=\".\" align=\"char\">.267</td></tr><tr><td align=\"left\"> Cardiovascular</td><td char=\"(\" align=\"char\">89 (46.8%)</td><td char=\"(\" align=\"char\">65 (34.2%)</td><td char=\".\" align=\"char\">.012</td></tr><tr><td align=\"left\"> Obesity</td><td char=\"(\" align=\"char\">59 (31.1%)</td><td char=\"(\" align=\"char\">55 (28.9%)</td><td char=\".\" align=\"char\">.654</td></tr><tr><td align=\"left\"> Diabetes</td><td char=\"(\" align=\"char\">73 (38.4%)</td><td char=\"(\" align=\"char\">92 (48.4%)</td><td char=\".\" align=\"char\">.049</td></tr><tr><td align=\"left\"> Malignant disease or mass</td><td char=\"(\" align=\"char\">42 (22.1%)</td><td char=\"(\" align=\"char\">20 (10.5%)</td><td char=\".\" align=\"char\">.002</td></tr><tr><td align=\"left\"> Neurocognitive disorder</td><td char=\"(\" align=\"char\">51 (26.8%)</td><td char=\"(\" align=\"char\">69 (36.3%)</td><td char=\".\" align=\"char\">.047</td></tr><tr><td align=\"left\"> COPD or asthma</td><td char=\"(\" align=\"char\">68 (35.8%)</td><td char=\"(\" align=\"char\">42 (22.1%)</td><td char=\".\" align=\"char\">.003</td></tr><tr><td align=\"left\"> HIV or other immunodeficiency</td><td char=\"(\" align=\"char\">23 (12.1%)</td><td char=\"(\" align=\"char\">3 (1.6%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Never smoker (vs. former or current)</td><td char=\"(\" align=\"char\">103 (54.2%)</td><td char=\"(\" align=\"char\">110 (57.9%)</td><td char=\".\" align=\"char\">.469</td></tr><tr><td align=\"left\" colspan=\"4\">Symptoms</td></tr><tr><td align=\"left\"> Fever</td><td char=\"(\" align=\"char\">96 (50.5%)</td><td char=\"(\" align=\"char\">117 (61.6%)</td><td char=\".\" align=\"char\">.030</td></tr><tr><td align=\"left\"> Chills</td><td char=\"(\" align=\"char\">46 (24.2%)</td><td char=\"(\" align=\"char\">16 (8.4%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Cough</td><td char=\"(\" align=\"char\">143 (75.3%)</td><td char=\"(\" align=\"char\">103 (54.2%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Shortness of breath</td><td char=\"(\" align=\"char\">143 (75.3%)</td><td char=\"(\" align=\"char\">130 (68.4%)</td><td char=\".\" align=\"char\">.138</td></tr><tr><td align=\"left\"> Anosmia</td><td char=\"(\" align=\"char\">1 (0.5%)</td><td char=\"(\" align=\"char\">7 (3.7%)</td><td char=\".\" align=\"char\">.032</td></tr><tr><td align=\"left\"> Diarrhea</td><td char=\"(\" align=\"char\">7 (3.7%)</td><td char=\"(\" align=\"char\">25 (13.2%)</td><td char=\".\" align=\"char\">.001</td></tr><tr><td align=\"left\" colspan=\"4\">Signs</td></tr><tr><td align=\"left\"> Altered mental status</td><td char=\"(\" align=\"char\">43 (22.6%)</td><td char=\"(\" align=\"char\">88 (46.3%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Temperature (°C)<sup>a</sup></td><td char=\"(\" align=\"char\">37.1 (36.7–38.1)</td><td char=\"(\" align=\"char\">37.8 (37–38.625)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Lowest SpO2 in the ED (%)<sup>a</sup></td><td char=\"(\" align=\"char\">93 (88–95)</td><td char=\"(\" align=\"char\">93 (88–95)</td><td char=\".\" align=\"char\">.680</td></tr><tr><td align=\"left\"> Systolic blood pressure (mmHg)<sup>a</sup></td><td char=\"(\" align=\"char\">132 (114–160)</td><td char=\"(\" align=\"char\">120.5 (102–139.25)</td><td char=\".\" align=\"char\">.014</td></tr><tr><td align=\"left\"> Heart rate (bpm)<sup>a</sup></td><td char=\"(\" align=\"char\">100.5 (86–116.25)</td><td char=\"(\" align=\"char\">97 (81–111)</td><td char=\".\" align=\"char\">.259</td></tr><tr><td align=\"left\"> Respiratory rate (rpm)<sup>a</sup></td><td char=\"(\" align=\"char\">22 (20–28)</td><td char=\"(\" align=\"char\">22 (20–28)</td><td char=\".\" align=\"char\">.757</td></tr><tr><td align=\"left\" colspan=\"4\">Labs<sup>a</sup></td></tr><tr><td align=\"left\"> White blood cells (4.0–11.0, × 109/L)</td><td char=\"(\" align=\"char\">10.75 (7.3–15.025)</td><td char=\"(\" align=\"char\">7.9 (5.575–11.70)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Lymphocyte count (0.6–3.4, × 109/L)</td><td char=\"(\" align=\"char\">1 (0.6–1.625)</td><td char=\"(\" align=\"char\">0.9 (0.6–1.3)</td><td char=\".\" align=\"char\">.148</td></tr><tr><td align=\"left\"> Hemoglobin (12.0–15.3, g/dL)</td><td char=\"(\" align=\"char\">12.1 (10.675–13.60)</td><td char=\"(\" align=\"char\">12.8 (11.4–14.2)</td><td char=\".\" align=\"char\">.010</td></tr><tr><td align=\"left\"> Platelets (150–450, × 109/L)</td><td char=\"(\" align=\"char\">216.5 (162.5–292)</td><td char=\"(\" align=\"char\">206 (160.5–277.5)</td><td char=\".\" align=\"char\">.473</td></tr><tr><td align=\"left\"> Serum creatinine (0.6–1.3, mg/dL)</td><td char=\"(\" align=\"char\">1.01 (0.77–1.43)</td><td char=\"(\" align=\"char\">1.31 (0.93–2.17)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Blood urea nitrogen (7–25, mg/dL)</td><td char=\"(\" align=\"char\">23 (15–36.25)</td><td char=\"(\" align=\"char\">28 (17–46)</td><td char=\".\" align=\"char\">.010</td></tr><tr><td align=\"left\"> Lactic acid (0.7–2.0, mmol/L)</td><td char=\"(\" align=\"char\">1.8 (1.3–2.75)</td><td char=\"(\" align=\"char\">1.7 (1.2–2.4)</td><td char=\".\" align=\"char\">.621</td></tr><tr><td align=\"left\" colspan=\"4\">Chest X-rays</td></tr><tr><td align=\"left\"> No acute findings</td><td char=\"(\" align=\"char\">50 (25.3%)</td><td char=\"(\" align=\"char\">28 (14.7%)</td><td char=\".\" align=\"char\">.009</td></tr><tr><td align=\"left\"> Unilateral opacities</td><td char=\"(\" align=\"char\">82 (43.2%)</td><td char=\"(\" align=\"char\">45 (23.7%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Bilateral opacities<sup>c</sup></td><td char=\"(\" align=\"char\">49 (25.8%)</td><td char=\"(\" align=\"char\">92 (48.4%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Diffuse opacities<sup>c</sup></td><td char=\"(\" align=\"char\">9 (4.7%)</td><td char=\"(\" align=\"char\">25 (13.2%)</td><td char=\".\" align=\"char\">.003</td></tr></tbody></table></table-wrap>", "<table-wrap id=\"Tab3\"><label>Table 3</label><caption><p>Interventions, complications, and clinical outcomes among inpatients with seasonal coronaviruses and COVID-19</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"left\"/><th align=\"left\">sCoV (N = 190)</th><th align=\"left\">COVID-19 (N = 190)</th><th align=\"left\">P-value</th></tr></thead><tbody><tr><td align=\"left\">Steroids</td><td char=\"(\" align=\"char\">86 (45.3%)</td><td char=\"(\" align=\"char\">83 (43.7%)</td><td char=\".\" align=\"char\">.757</td></tr><tr><td align=\"left\">Antibiotics</td><td char=\"(\" align=\"char\">182 (95.8%)</td><td char=\"(\" align=\"char\">175 (92.1%)</td><td char=\".\" align=\"char\">.132</td></tr><tr><td align=\"left\">Maximal respiratory support on presentation</td><td align=\"left\"/><td align=\"left\"/><td char=\".\" align=\"char\">.032</td></tr><tr><td align=\"left\"> None</td><td char=\"(\" align=\"char\">56 (29.5%)</td><td char=\"(\" align=\"char\">56 (29.5%)</td><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> Nasal cannula</td><td char=\"(\" align=\"char\">95 (50%)</td><td char=\"(\" align=\"char\">111 (58.4%)</td><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> NIV</td><td char=\"(\" align=\"char\">25 (13.2%)</td><td char=\"(\" align=\"char\">9 (4.7%)</td><td char=\".\" align=\"char\">.004<sup>b</sup></td></tr><tr><td align=\"left\"> IMV</td><td char=\"(\" align=\"char\">14 (7.4%)</td><td char=\"(\" align=\"char\">14 (7.4%)</td><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\">Prone position</td><td char=\"(\" align=\"char\">2 (1.1%)</td><td char=\"(\" align=\"char\">21 (11.1%)</td><td char=\".\" align=\"char\"> &lt; .001</td></tr><tr><td align=\"left\">Neuromuscular blockade</td><td char=\"(\" align=\"char\">1 (0.5%)</td><td char=\"(\" align=\"char\">34 (17.9%)</td><td char=\".\" align=\"char\"> &lt; .001</td></tr><tr><td align=\"left\">Vasopressors</td><td char=\"(\" align=\"char\">19 (10%)</td><td char=\"(\" align=\"char\">32 (16.8%)</td><td char=\".\" align=\"char\">.050</td></tr><tr><td align=\"left\">Respiratory failure</td><td char=\"(\" align=\"char\">134 (70.5%)</td><td char=\"(\" align=\"char\">135 (71.1%)</td><td char=\".\" align=\"char\">.910</td></tr><tr><td align=\"left\">Sepsis</td><td align=\"left\"/><td align=\"left\"/><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> SIRS</td><td char=\"(\" align=\"char\">124 (65.3%)</td><td char=\"(\" align=\"char\">120 (63.2%)</td><td char=\".\" align=\"char\">.669</td></tr><tr><td align=\"left\"> qSOFA</td><td char=\"(\" align=\"char\">39 (20.5%)</td><td char=\"(\" align=\"char\">69 (36.3%)</td><td char=\".\" align=\"char\">.001</td></tr><tr><td align=\"left\"> Septic shock</td><td char=\"(\" align=\"char\">27 (14.2%)</td><td char=\"(\" align=\"char\">38 (20%)</td><td char=\".\" align=\"char\">.134</td></tr><tr><td align=\"left\">ARDS</td><td char=\"(\" align=\"char\">6 (2.6%)</td><td char=\"(\" align=\"char\">38 (15.8%)</td><td char=\".\" align=\"char\"> &lt; .001</td></tr><tr><td align=\"left\">Acute kidney injury</td><td char=\"(\" align=\"char\">48 (25.3%)</td><td char=\"(\" align=\"char\">84 (44.2%)</td><td char=\".\" align=\"char\"> &lt; .001</td></tr><tr><td align=\"left\">Troponin leak</td><td char=\"(\" align=\"char\">49 (25.8%)</td><td char=\"(\" align=\"char\">55 (29.9%)</td><td char=\".\" align=\"char\">.373</td></tr><tr><td align=\"left\">Coinfection</td><td char=\"(\" align=\"char\">49 (25.8%)</td><td char=\"(\" align=\"char\">25 (13.2%)</td><td char=\".\" align=\"char\">.002</td></tr><tr><td align=\"left\">NIH severity</td><td align=\"left\"/><td align=\"left\"/><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> Mild</td><td char=\"(\" align=\"char\">14 (7.4%)</td><td char=\"(\" align=\"char\">8 (4.2%)</td><td char=\".\" align=\"char\">.188</td></tr><tr><td align=\"left\"> Moderate</td><td char=\"(\" align=\"char\">47 (24.7%)</td><td char=\"(\" align=\"char\">33 (17.4%)</td><td char=\".\" align=\"char\">.078</td></tr><tr><td align=\"left\"> Severe</td><td char=\"(\" align=\"char\">129 (67.9%)</td><td char=\"(\" align=\"char\">149 (78.4%)</td><td char=\".\" align=\"char\">.021</td></tr><tr><td align=\"left\">Time from symptom onset to admission (days)<sup>a</sup></td><td char=\"(\" align=\"char\">3 (1–7)</td><td char=\"(\" align=\"char\">2 (1–6)</td><td char=\".\" align=\"char\">.916</td></tr><tr><td align=\"left\">Hospital length of stay (days)<sup>a</sup></td><td char=\"(\" align=\"char\">5 (3–8)</td><td char=\"(\" align=\"char\">7 (4–12)</td><td char=\".\" align=\"char\">.013</td></tr><tr><td align=\"left\">ICU admission</td><td char=\"(\" align=\"char\">67 (35.3%)</td><td char=\"(\" align=\"char\">61 (32.1%)</td><td char=\".\" align=\"char\">.515</td></tr><tr><td align=\"left\">IMV in total</td><td char=\"(\" align=\"char\">27 (14.2%)</td><td char=\"(\" align=\"char\">37 (19.5%)</td><td char=\".\" align=\"char\">.170</td></tr><tr><td align=\"left\">Successfully extubated</td><td char=\"(\" align=\"char\">16/27 (59.3%)</td><td char=\"(\" align=\"char\">13/37 (35.1%)</td><td char=\".\" align=\"char\">0.056</td></tr><tr><td align=\"left\">Successfully discharged from ICU</td><td char=\"(\" align=\"char\">46/67 (73%)</td><td char=\"(\" align=\"char\">26/61 (43.3%)</td><td char=\".\" align=\"char\">0.001</td></tr><tr><td align=\"left\">Onset to discharge (days)<sup>a</sup></td><td char=\"(\" align=\"char\">9 (6–13.75)</td><td char=\"(\" align=\"char\">9.5 (7–16.75)</td><td char=\".\" align=\"char\">0.902</td></tr><tr><td align=\"left\">Onset to death (days)<sup>a</sup></td><td char=\"(\" align=\"char\">9 (5.75–15.25)</td><td char=\"(\" align=\"char\">10 (6.75–16.25)</td><td char=\".\" align=\"char\">0.855</td></tr><tr><td align=\"left\">Case fatality rate</td><td char=\"(\" align=\"char\">22 (11.6%)</td><td char=\"(\" align=\"char\">66 (34.7%)</td><td char=\".\" align=\"char\">&lt; .001</td></tr></tbody></table></table-wrap>", "<table-wrap id=\"Tab4\"><label>Table 4</label><caption><p>Multivariable regression analysis</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"left\">Independent variable</th><th align=\"left\">Adjusted OR (95% CI)</th><th align=\"left\">P-value</th></tr></thead><tbody><tr><td align=\"left\">Overall population</td><td align=\"left\"/><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> COVID-19 (vs. sCoV)</td><td char=\"(\" align=\"char\">3.86 (1.98–7.49)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\">Age</td><td char=\"(\" align=\"char\">1.02 (0.99–1.03)</td><td char=\".\" align=\"char\">.228</td></tr><tr><td align=\"left\"> Dwelling (LTCF vs. Home)</td><td char=\"(\" align=\"char\">0.71 (0.34–1.43)</td><td char=\".\" align=\"char\">.339</td></tr><tr><td align=\"left\"> DNR/DNI status</td><td char=\"(\" align=\"char\">6.2 (2.87–13.36)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> qSOFA score</td><td char=\"(\" align=\"char\">3.61 (2.40–5.43)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\">ICU only</td><td align=\"left\"/><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> COVID-19 (vs. sCoV)</td><td char=\"(\" align=\"char\">5.42 (2.08–14.08)</td><td char=\".\" align=\"char\">.001</td></tr><tr><td align=\"left\"> Age</td><td char=\"(\" align=\"char\">1.02 (0.98–1.05)</td><td char=\".\" align=\"char\">.220</td></tr><tr><td align=\"left\"> Dwelling (LTCF vs. Home)</td><td char=\"(\" align=\"char\">0.54 (0.19–1.49)</td><td char=\".\" align=\"char\">.236</td></tr><tr><td align=\"left\"> DNR/DNI status</td><td char=\"(\" align=\"char\">9.94 (3.11–31.73)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> qSOFA score</td><td char=\"(\" align=\"char\">1.64 (0.91–2.94)</td><td char=\".\" align=\"char\">.096</td></tr><tr><td align=\"left\">Backward selection</td><td align=\"left\"/><td char=\".\" align=\"char\"/></tr><tr><td align=\"left\"> COVID-19 (vs. sCoV)<sup>a</sup></td><td char=\"(\" align=\"char\">3.42 (1.76–6.63)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> DNR/DNI status</td><td char=\"(\" align=\"char\">7.74 (4.06–14.74)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> qSOFA score</td><td char=\"(\" align=\"char\">3.33 (2.29–4.83)</td><td char=\".\" align=\"char\">&lt; .001</td></tr><tr><td align=\"left\"> Sex (male vs. female)</td><td char=\"(\" align=\"char\">1.94 (1.03–3.66)</td><td char=\".\" align=\"char\">.039</td></tr><tr><td align=\"left\"> Malignancy or mass</td><td char=\"(\" align=\"char\">2.04 (0.90–4.57)</td><td char=\".\" align=\"char\">.085</td></tr><tr><td align=\"left\"> Severe illness</td><td char=\"(\" align=\"char\">3.92 (1.53–9.99)</td><td char=\".\" align=\"char\">.004</td></tr></tbody></table></table-wrap>" ]
[]
[]
[]
[]
[]
[]
[ "<table-wrap-foot><p><sup>a</sup>Shapiro–Wilk normality test results showed deviation from a normal distribution</p><p><sup>b</sup>P-value obtained with a Bonferroni Chi-Square residual analysis: p = .023</p><p><sup>c</sup>P-value obtained with a Bonferroni Chi-Square residual analysis: p = .018</p></table-wrap-foot>", "<table-wrap-foot><p><sup>a</sup>Shapiro-Wilk normality test results showed deviation from a normal distribution</p><p><sup>b</sup>Two or more co-existing comorbidities</p><p><sup>c</sup>Bilateral opacities: Lung infiltrates present in both lung fields but &lt; 50%; Diffuse opacities: Lung infiltrates &gt; 50% in both lung fields</p><p>COPD: chronic obstructive pulmonary disease; COVID-19: Coronavirus Disease 2019; DNR/DNI: do-not-intubate and do-not-resuscitate; ED: emergency department; HIV: human immunodeficiency virus; LTCF: long-term care facility; sCoV: seasonal coronavirus; SpO2: peripheral oxygen saturation; VTE: venous thromboembolism</p></table-wrap-foot>", "<table-wrap-foot><p><sup>a</sup>Shapiro–Wilk normality test results showed deviation from a normal distribution</p><p><sup>b</sup>P-value obtained with a Bonferroni Chi-Square residual analysis</p><p>ARDS: acute respiratory distress syndrome; COVID-19: Coronavirus Disease 2019; ICU: intensive care unit; IMV: invasive mechanical ventilation; NIV: noninvasive ventilation; qSOFA: quick Sequential Organic Failure Assessment; sCoV: seasonal coronavirus; SIRS: Systemic Inflammatory Response Syndrome</p></table-wrap-foot>", "<table-wrap-foot><p><sup>a</sup>Adjusted OR after propensity score adjustment: 3.511 (95% CI 1.802–6.844); aOR after logit adjustment: 3.511 (95% CI 1.801–6.843)</p><p>CI: confidence interval; COVID-19: Coronavirus Disease 2019; DNR/DNI: do-not-resuscitate/do-not-intubate; ICU: intensive care unit; LTCF: long-term care facility; OR: Odds Ratio; qSOFA: quick Sequential Organic Failure Assessment; sCoV: seasonal coronavirus</p></table-wrap-foot>", "<fn-group><fn><p>This article has been updated to correct the spelling of OC43.</p></fn><fn><p><bold>Publisher's Note</bold></p><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></fn><fn><p><bold>Change history</bold></p><p>1/15/2024</p><p>A Correction to this paper has been published: 10.1186/s12879-023-08782-z</p></fn></fn-group>" ]
[ "<graphic xlink:href=\"12879_2022_7555_Fig1_HTML\" id=\"MO1\"/>" ]
[]
[{"label": ["2."], "surname": ["Liu", "Liang", "Fung"], "given-names": ["DX", "JQ", "TS"], "article-title": ["Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae)"], "source": ["Encycl Virol."], "year": ["2021"], "pub-id": ["10.1016/B978-0-12-809633-8.21501-X"]}, {"label": ["20."], "mixed-citation": ["Key Points About Myocardial Injury and Cardiac Troponin in COVID-19. "], "ext-link": ["https://www.acc.org/latest-in-cardiology/articles/2020/07/17/08/00/key-points-about-myocardial-injury-and-cardiac-troponin-in-covid-19"]}, {"label": ["21."], "mixed-citation": ["Clinical Spectrum of SARS-CoV-2 Infection. "], "ext-link": ["https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/"]}, {"label": ["36."], "mixed-citation": ["Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999\u20132019 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999\u20132019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. "], "ext-link": ["http://wonder.cdc.gov/ucd-icd10.html"]}, {"label": ["40."], "mixed-citation": ["National Trends for Common Human Coronaviruses. "], "ext-link": ["https://www.cdc.gov/surveillance/nrevss/coronavirus/natl-trends.html"]}, {"label": ["42."], "mixed-citation": ["Genomic epidemiology of novel coronavirus - North America-focused subsampling. "], "ext-link": ["https://nextstrain.org/ncov/gisaid/north-america?animate=2019-12-09,2022-02-11,0,0,30000&f_country=USA&gmin=15&p=full"]}]
{ "acronym": [ "AKI", "ARDS", "CDC WONDER", "COVID-19", "DNR/DNI", "HCoV", "IQR", "IVM", "LTCF", "MERS", "NREVSS", "qSOFA", "sCoV", "SARS" ], "definition": [ "Acute kidney injury", "Acute respiratory distress syndrome", "CDC Wide-ranging ONline Data for Epidemiologic Research", "Coronavirus disease 2019", "Do-not-resuscitate/do-not-intubate", "Human Coronavirus", "Interquartile range", "Invasive mechanical ventilation", "Long-term care facility", "Middle East respiratory syndrome coronavirus", "National Respiratory Enteric Virus Surveillance System", "Quick Sequential Organ Failure Assessment", "Seasonal coronavirus", "Severe acute respiratory syndrome" ] }
43
CC BY
no
2024-01-15 23:35:09
BMC Infect Dis. 2022 Jul 15; 22:618
oa_package/dd/37/PMC9284965.tar.gz
PMC10003871
36902924
[ "<title>1. Introduction</title>", "<p>Since the 1980s, with the rapid development of many Chinese cities, many buildings with a frame bottom floor and a masonry top floor, called bottom frame structures, have been built. Bottom frame structures are used as buildings on both sides of the street, with the lower floors being used for commercial purposes and the upper floors for work and housing [##UREF##0##1##]. Compared to frame structures, bottom-frame structures can save 20–25% of construction costs [##UREF##1##2##]. In general, the bottom frame structures are adapted to the degree of economic development in China and with Chinese characteristics. There are similarities and differences between the bottom frame structure and the European pilotis system. In the pilotis system, the superstructure is usually a shear wall structure, which is grouted and reinforced so that the shear wall can withstand shear forces.</p>", "<p>Research on bottom-frame structures began early worldwide, with Mantel [##UREF##2##3##] arguing that a flexible bottom-floor construction could improve the structure’s seismic performance. As a result, many researchers have conducted experimental and finite element studies on the seismic performance of bottom frame structures. Gao Xiaowang [##UREF##3##4##,##UREF##4##5##] conducted seismic tests on the bottom frame structures model with scales of 1/2 and 1/3. Liang Xingwen [##UREF##5##6##] carried out a proposed dynamic seismic response test of a 1/2 scale model of the double bottom frame. Zheng Shansuo [##UREF##6##7##] performed three simulated shaking table tests with a 1/6 scale model. All these tests provided a detailed summary of the load-carrying capacity, seismic performance, and damage mechanism of the bottom frame structure under seismic action. As there are many factors affecting the seismic performance of the bottom frame structure, numerical methods are of great importance for the study of the functional performance of the bottom frame structure under seismic conditions. Li Qi [##UREF##7##8##] conducted a dynamic time analysis of a two-story frame underframe structure and investigated its elastic–plastic response under different seismic effects using the finite element program CANNY. Chen Jun [##UREF##0##1##] and Song Linbo [##UREF##8##9##] carried out pushover analysis and elastoplastic time analysis of the underframe structure system by building a finite element model to obtain the densification capacity and elastoplastic response of the underframe structure under seismic action, respectively.</p>", "<p>The abovementioned experimental and numerical methods have obtained the damage patterns, load-carrying capacities, and the laws of continuous collapse processes for various types of bottom frame structures under seismic conditions. The characteristics of these experimental and numerical studies can be summarized as follows.</p>", "<p>the load-carrying capacity of bottom frame structures obtained from these experimental and numerical studies is often the load-carrying capacity corresponding to their ultimate working condition. Moreover, the reference point for the design and construction of the bottom frame structure is also based on the load-carrying capacity corresponding to the ultimate working condition;</p>", "<p>All of the above studies consider the inherent property of uncertainty/randomness in the ultimate working state of a structure. Design methods based on the ultimate working state are difficult to accurately estimate a structure’s working capacity for various structural and loading conditions. This result has further led to empirical and statistical approaches to structural analysis and design;</p>", "<p>Data obtained from experimental and numerical studies, such as experimentally measured strains and the strain energy density of the finite element model, are not fully utilized.</p>", "<p>Therefore, it is impossible to accurately estimate the seismic load capacity of the bottom frame structure based on existing theories and methods. The final state of the structure contains huge random variations and empirical errors. Therefore, it is impossible to accurately predict a structure’s load-carrying capacity using the ultimate working state as a foothold. Based on this understanding, existing structural analyses do not attempt to reveal the general laws of operation of various structures. Experimental and numerical studies have formed a fixed paradigm [##UREF##9##10##]. In such a paradigm, the adverse effects of uncertainty in the load-carrying capacity of structures were reduced, resulting in outstanding engineering achievements. However, uncertainty in load-carrying capacity has become a bottleneck in current structural engineering research, and new theories are needed to reveal the laws embedded in the working of structures. Zhou’s view is that Newton’s and Hooke’s laws reveal the transient laws of structural working in the elastic phase, but any theory or law does not reveal the evolution of structures from the elastic–plastic phase to the damage phase. The general laws of structural work may be contained in the experimental strain and displacement data, but new theories and methods are needed to model them to find the laws.</p>", "<p>Zhou [##UREF##10##11##,##REF##31443454##12##] has developed a structural stressing state theory and proposed a corresponding analysis method to break through the above bottlenecks. The structural stressing state theory treats the failure of a structure as an evolutionary process, which can be characterized by modeling the displacement and strain data during the loading process. The elastic-plastic branching points and the starting point of failure are then defined by defining the abrupt change in the evolution of the structure’s stress state. In recent years, the modeling of the stressing state of dozens of structures of different materials and conditions has revealed defined elastoplastic branch points and failure points, including steel box girder bridges [##UREF##11##13##], arch supports [##UREF##12##14##], steel-tube-restrained concrete arches [##UREF##13##15##], steel frames [##UREF##10##11##], steel nodes [##UREF##14##16##] and members [##UREF##15##17##], steel tube [##REF##35057322##18##] and spiral reinforced concrete [##UREF##16##19##,##UREF##17##20##] columns, reinforced masonry shear walls [##UREF##18##21##], and concrete airport pavement [##UREF##19##22##].</p>", "<p>This study proposes a method for modeling the measured strain data from shaking tables of bottom frame structures based on the structural stressing state theory. The measured strain data from the shaking table of the substructure is modeled as a generalized strain energy density (GSED), and the stressing state modes (matrices or vectors) and characteristic parameters of the substructure are established based on the GSED, which are called stressing state characteristic pairs. A mutation determination criterion is applied to determine the location of the mutation points. The mutation points reveal the failure starting point and the elastic–plastic branch point during the seismic damage of the bottom frame structure, and the load corresponding to the failure starting point is defined as the structural failure load.</p>" ]
[ "<title>3. Structural Stressing State Theory and Methods</title>", "<title>3.1. Concept and Physical Law in Structural Stressing State Theory</title>", "<p>The structural stressing state manifests structural response at a load level. Structural response data, such as strains and displacements, can be modeled to describe the structural stressing state. The numerical mode (matrix or vector) formed by the response data is called a structural stressing state mode with both shape and magnitude characters so that a parameter can characterize a structural stressing state mode. Stressing state mode and characteristic parameter are called the stressing state characteristic pair.</p>", "<p>According to the natural law from quantitative change to qualitative change of a system, the stressing state evolution of a structure with the load increase presents a mutation around a certain load level. This mutation feature is general for various structures under individual loading cases, so it could be called the structural failure law. The law reflects the general and essential working features of structures: (a) Various structures, structural members, and specimens (measuring material strength) undergoing a complete loading process certainly embody the stressing state mutations at specific loads; (b) The stressing state mutations define the failure starting point and the elastic-plastic branch (EPB) point in the structural failure process. Both characteristic points provide physical-law-based references to improving and updating the existing design codes governed by empirical and statistical judgments. In a sense, the structural stressing state theory and the structural failure law could update the foothold (structural ultimate/peak states) of the present structural analysis and design, that is, they could address the classic issue, the uncertainty of structural load-bearing capacity, and structural design.</p>", "<p>At present, structural stressing state analysis generally follows the following procedure:<list list-type=\"bullet\"><list-item><p>Model the experimental data to obtain the basic variables to express stressing state modes and characteristic parameters. For instance, this study transforms the tested strains as generalized strain energy density (GSED) values to describe the structural stressing state;</p></list-item><list-item><p>Build the stressing state characteristic pair of the structure, that is, the stressing state mode and the parameter characterizing the mode.</p></list-item><list-item><p>Detect the mutation points in the curves of characteristic parameter evolution applying the criterion, and then verify the mutation characteristic in the evolution of the stressing state mode;</p></list-item><list-item><p>Redefine/update structural failure load and define the EPB load according to structural stressing state mutation features and provide them as the reference to the update and improvement of the existing structural designs.</p></list-item></list></p>", "<title>3.2. Modeling of Structural Stressing State</title>", "<p>The experimental strains can be modeled as the state variables to express the structural stressing state. However, strains’ directionality makes it challenging to form the stressing state mode (the vector or matrix of strains) and the parameter characterizing the mode. Therefore, a standard method is to model the strain as the scalar quantity:\nwhere is the GSED values of the ith point at the <italic toggle=\"yes\">j</italic>th load (<italic toggle=\"yes\">F<sub>j</sub></italic>); is the normalized value of ; is the maximum value among (the load step <italic toggle=\"yes\">j</italic> = 1, 2, …, n); <italic toggle=\"yes\">ε<sub>i</sub></italic> is the strain at the <italic toggle=\"yes\">i</italic>th point. Thus, the stressing state mode can be expressed by GSED values according to the analytical intentions. Of course, GSED values can be further modeled as other forms of state variables to express structural stressing state characteristic pairs.</p>", "<p>For the bottom frame model, the stressing state submodes, the matrixes or vectors formed by GSED values or others, can be composited referring to the locations of strain gauges. For instance, the submodes can be built for individual members, columns, masonry walls, the 1st floor, the 2nd floor, or the frame and wall. All the submodes can combine the stressing state mode of the whole structure. The characteristic parameter can be the sum of the GSED-based elements in the mode. </p>", "<title>3.3. Detection of Structural Stressing State Mutation</title>", "<p>Structural stressing state characteristic pairs will present the mutation feature at a load level according to the natural law of quantitative change and qualitative change. Here, the Mann–Kendall (M–K) criterion [##UREF##21##24##,##UREF##22##25##] is applied to detect the mutation point in the characteristic parameter-load (<italic toggle=\"yes\">E-F</italic>) curve. The operative steps of the M–K criterion are as follows: For the numerical sequence {<italic toggle=\"yes\">E</italic>(<italic toggle=\"yes\">i</italic>)} (the load step <italic toggle=\"yes\">i</italic> = 1, 2, …, <italic toggle=\"yes\">n</italic>), a statistical quantity <italic toggle=\"yes\">d<sub>k</sub></italic> at the kth load step can be defined as:\nwhere <italic toggle=\"yes\">m<sub>i</sub></italic> is the cumulative number of the samples; “+1” is to add one more to the present value if the inequality on the right side is satisfied for the <italic toggle=\"yes\">j</italic>th comparison. The mean value and variance of the statistical quantity <italic toggle=\"yes\">d<sub>k</sub></italic> were calculated as follows:</p>", "<p>Then, a new statistic quantity <italic toggle=\"yes\">UF<sub>k</sub></italic> is defined by\n\nand the <italic toggle=\"yes\">UF<sub>k</sub>-F</italic> curve can be plotted. For the inverse sequence of {<italic toggle=\"yes\">E(j)</italic>} (the load step <italic toggle=\"yes\">j</italic> = <italic toggle=\"yes\">n</italic>, <italic toggle=\"yes\">n</italic> − 1, …,1), the same steps from Equations (2)–(4) are proceeded to derive the <italic toggle=\"yes\">UB<sub>k</sub>-F</italic> curve. Finally, the intersection of the <italic toggle=\"yes\">UF<sub>k</sub>-F</italic> and <italic toggle=\"yes\">UB<sub>k</sub>-F</italic> curves defines the characteristic point of the <italic toggle=\"yes\">E-F</italic> curve, that is, the mutation point of structural stressing state.</p>" ]
[ "<title>2.4. The Experimental Results</title>", "<p>##TAB##5##Table 6##, ##TAB##6##Table 7## and ##TAB##7##Table 8## list the inter-story displacement angles for each level of seismic acceleration used in the shaker tests to describe the evolution of the failure mode of the bottom frame model. It should be noted that first-hand accurate data on the inter-story displacement angles for each level of acceleration were not available for this study, and the inter-story displacement angles for the three types of seismic waves presented in the table are approximations extracted from the data presented in the test report charts for this test.</p>" ]
[ "<title>5. Discussion</title>", "<p>The above stressing state modeling study of the bottom frame structure reveals the EPB and FS points in the failure process by establishing the stressing state mode with characteristic parameters, and further verification can be observed for the experimental phenomena listed in ##TAB##4##Table 5##.</p>", "<p>At 0.22 g, the new cracks appeared close to the location of the window bottom, and the last cracks propagated and became cracked all the way through, implying that some limited local failure led to the structural elastic working behavior that started to affect the structural normal working state. Therefore, this point was characterized as the EPB point, and 0.22 g was called the EPB load.</p>", "<p>From 0.22 g to 0.40 g, the cracks under the window bottom propagated and formed the small triangle failure area; the cross cracks appeared at the up part of the side beam. The oblique cracks appeared at the masonry wall close to the pedestal of the bottom frame. The local failure quickly propagated to present the structural elastoplastic working state, that is, the structure worked in the plastic formation accumulation state, which the structural design requirement could not allow.</p>", "<p>At 0.40 g, the new cracks appeared under the window bottom, and the previous ones propagated, further promoting the triangle failure area. The oblique cracks developed at the masonry wall close to the pedestal of the bottom frame, together with new cracks. The structural stressing state form would mutate to the other, lose the normal working state, and start its failure. A load of 0.40 g was defined as the structural failure load in structural stressing state theory. It should be stated again that 0.40 g was the structural failure starting point and the embodiment of the structural failure law. Furthermore, the EPB point could be the principle derived from structural failure law, which might be taken as the general design principle of structures.</p>", "<p>So far, we can summarize that the bottom frame structure indeed presents the stressing state mutation behavior at a certain seismic intensity, complying with structural failure law or the natural law of quantitative change to qualitative change. In other words, when the structural stressing state quantitatively develops to a certain extent, it will qualitatively mutate and present a different profile (stressing state mode) from the previous one, which the M–K criterion can detect. Then, based on the structural failure starting point, it can detect the structural EPB characteristic point, which might be taken as the design principle. The EPB point provides the physical-law-based reference to improving the design of bottom frame structures or other structures. </p>", "<p>So far, we can summarize that the substructure does exhibit a mutation in stressing state behavior under specific seismic intensities, in line with the structural damage law or the quantitative to qualitative change law. In other words, when the quantitative change in the structural stressing state develops to a certain level, a qualitative change will occur, presenting a different shape from the previous one. Combining the results of the M–K criterion and the mutation characteristics of the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve, the FS point, and EPB point can be detected. Among other things, the EPB point provides a reference for improving the design of bottom frame structures or other structures based on physical laws.</p>", "<p>For comparison’s sake, the structural stressing state feature provides a new foothold complying with the natural law for structural analysis and design, different from the foothold of the structural ultimate working state, which is the existing structural analysis and design standard. The two footholds have the essential difference, one in particular and general; the other is uncertain and specific. In a sense, structural analysis and design have been anticipating and pursuing the former, but the foothold on the structural ultimate state would lead to the belief that there was a physical law for structural bearing capacity. This belief may have been broken by discovering the starting point of the structure’s failure process: the specific embodiment of the natural law in the structural working process. Thus, structural analysis and design could be mainly governed by the definite and general structural working law (structural failure law), that is, the structural failure starting point and the EPB point with the attribute of certainty, rather than the structural failure ending point (structural ultimate state) with uncertainty/randomness. </p>" ]
[ "<title>6. Conclusions</title>", "<p>At present, the application of structural stressing state theory to various structures has significance in science and engineering: the scientific significance is to achieve the specific scientific discovery in the working process of a structure or a type of structure based on the natural law from quantitative change to qualitative change of a system, that is, to reveal the general and definite working law of the structures unseen in the existing structural analysis; the engineering significance is it addresses the classic issue, the uncertainty of structural bearing capacity and the inconsistent design criterion of various structures. In this study, structural stressing state theory is first applied to reveal the seismic working law of the bottom frame structure, from which can be drawn the following conclusions: </p>", "<p>The GSED values transferred from the experimental strain data can express the substructure’s stressing state mode and characteristic parameters under seismic action. The M–K criterion and the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve can find two mutation points of stressing states, the starting point of the structural damage process and the elastoplastic branching point during the regular operation of the structure. The seismic capacity of the bottom frame structure should be determined as the failure starting point of the structural damage process, and the seismic intensity can be referred to as the structural damage load. The EPB point can be used as a direct reference for the design of the substructure as a design criterion extracted from the laws of nature or the structural damage law. The method based on the structural stressing state theory can eliminate the typical problem of inherent randomness in the ultimate state, which can lead to explicit design criteria for the seismic load capacity of the structure.</p>", "<p>In addition, this study has developed a method for modeling experimental seismic strain data and analyzing the characteristics of structural seismic stress states, enriching and developing structural stress state theory and facilitating its further application.</p>" ]
[ "<p>These authors contributed equally to this work.</p>", "<p>As a classic issue, structural seismic bearing capacity could not be accurately predicted since it was based on a structural ultimate state with inherent uncertainty. This result led to rare research efforts to discover structures’ general and definite working laws from their experimental data. This study is to reveal the seismic working law of a bottom frame structure from its shaking table strain data by applying structural stressing state theory: (1) The tested strains are transformed into generalized strain energy density (GSED) values. (2) The method is proposed to express the stressing state mode and the corresponding characteristic parameter. (3) According to the natural law of quantitative and qualitative change, the Mann–Kendall criterion detects the mutation feature in the evolution of characteristic parameters versus seismic intensity. Moreover, it is verified that the stressing state mode also presents the corresponding mutation feature, which reveals the starting point in the seismic failure process of the bottom frame structure. (4) The Mann–Kendall criterion distinguishes the elastic–plastic branch (EPB) feature in the bottom frame structure’s normal working process, which could be taken as the design reference. This study presents a new theoretical basis to determine the bottom frame structure’s seismic working law and update the design code. Meanwhile, this study opens up the application of seismic strain data in structural analysis.</p>" ]
[ "<title>2. The Shaking Table Test of the Bottom Frame Model</title>", "<title>2.1. The Bottom Frame Model</title>", "<p>This experimental model in 1/5 scale ratio was designed referring to an actual 4-story bottom frame building close to the street based on the Code for Seismic Design of Buildings of P.R. China GB50011-2010 [##UREF##20##23##]. The bottom frame was reinforced concrete, and the three stories were masonry structures. The configuration of the structural model is listed in ##TAB##0##Table 1##, and the floor plan is shown in ##FIG##1##Figure 1##. <xref rid=\"sec2dot3-materials-16-01809\" ref-type=\"sec\">Section 2.3</xref> below shows the accurate picture of the bottom frame model (##FIG##0##Figure 2##).</p>", "<p>The direct application of amplitude-modulated seismic waves to a 1/5 scale model of the bottom frame structure does make it challenging to respond to the non-linear response of the structure and the results from resonance. Therefore, based on the similarity theory, the three seismic waves and the geometrical and material parameters of the model were converted in this study, as shown in ##TAB##1##Table 2##.</p>", "<p>The results of the 1/5 scale model shaker tests and the corresponding modeling and study results are equally reliable as long as the similarity theory is sound. In other words, the model tests based on similarity theory concluded that the Eigen-periods of the model were in the ratio of 1/2.23 to that of the actual structure. Therefore, by determining the seismic intensity corresponding to the bottom frame model’s failure point, the actual structure’s seismic eigen-periods can be calculated from the ratio.</p>", "<p>The artificial mass of the model is added to simulate the weight and various constant and live loads. For the total mass of real structure: M<sub>T</sub> = M<sub>beam</sub> + M<sub>column</sub> + M<sub>wall</sub> + M<sub>live</sub>. For the total mass of the model: m<sub>T</sub> = M<sub>T</sub> × similarity ratio of mass. For the mass of the model members: m = M<sub>member</sub> × volume similarity ratio of the model member. For the total mass of artificial weight: m<sub>w</sub> = m<sub>T</sub> − m. ##TAB##2##Table 3## lists the mass parameters of individual stories and the artificial weights.</p>", "<title>2.2. The Experimental Plan</title>", "<p>##TAB##3##Table 4## shows the working parameters of the shaking table and the seismic input to test the bottom frame structure model.</p>", "<p>Since different seismic inputs considerably affected the experimental output results, the seismic input for the shaking table test selected the typical and prominent seismic records, even the artificial seismic waves consistent with the design response spectrum in the statistical sense. This study selected the El-Centro (El), Taft (Tf), and Wolong (Wl) seismic records according to the practical experience of the shaking table. In order to reflect the possible seismic cases, the test input the three seismic records in the same seismic period (the 30 s), respectively. The horizontal seismic magnitude was applied along the weakest direction. According to Specification 5.1.2 in China Code GB50011-2010, the magnitudes of the Taft wave in three directions were set as X:Y:Z = 1:0.85:0.65. Because the bottom frame model’s mass was not beyond the shaking table’s limit, the similarity ratio of the input seismic accelerations was set as 1. The seismic input scheme is shown in ##TAB##4##Table 5##, in which WNS means the while-noise sweep. ##TAB##4##Table 5## presents the failure profile, and a description of the bottom frame structure, and the corresponding explanation is given in <xref rid=\"sec4dot3-materials-16-01809\" ref-type=\"sec\">Section 4.3</xref>.</p>", "<title>2.3. The Experimental Measurement</title>", "<p>##FIG##0##Figure 2## shows the layout of accelerators and displacement meters on each floor according to China Code GB50011-2010. Twelve accelerators were set to measure the accelerations along with three directions (X, Y, Z). Two horizontal accelerators and one vertical accelerator were put at individual points on the top floor and the ground floor. Two horizontal accelerators were put at the individual points A on the 1st, 2nd, and 3rd floors. Twelve displacement meters were set to measure the displacements along with three directions (X, Y, Z): Two horizontal displacement meters were set at the individual points C on the top and bottom locations of the frame column as well as the second, third, and fourth floors; On the 4th floor, a vertical displacement meter was set at Point B and a lateral displacement meter at Point D to verify the structural torsional response. ##FIG##2##Figure 3## shows the layout of 32 strain gauges for measuring strains according to China Code GB50011-2010. In addition, three cameras were arranged to picture the cracking propagation on the three sides. It was a pity that only points 2~7 output the stain values in the testing process. However, using the limited strains, structural stressing state theory and method can still present the essential stressing state features of the bottom frame structure.</p>", "<title>4. The Stressing State Analysis of the Bottom Frame Model</title>", "<title>4.1. The Seismic Stressing State Modeling</title>", "<p>For the strain values of a point to individual moments in each time history, they can be modeled as the GSED values by Equation (1). For a time history, the GSED values at individual moments can be calculated as:\nin which and are the GSED value and the strain value at the <italic toggle=\"yes\">i</italic>th measured point, at moment <italic toggle=\"yes\">t</italic> and under the <italic toggle=\"yes\">j</italic>th seismic intensity (ground acceleration magnitude) , respectively. Since each seismic acceleration during loading includes El Centro, Taft and Wolong waves, and El Centro and Wolong dominate the structural response. e+ is defined as a measure of the stressing state of the measurement points under each seismic conditions. In order to make a difference calculation, the seismic response of the modeling in this study is chosen to be 30 s.\n</p>", "<p>Correspondingly, the GSED values at can be calculated as: \nin which is the GSED value at the <italic toggle=\"yes\">i</italic>th measured point during the seismic history T under means acceleration at the <italic toggle=\"yes\">j</italic>th earthquake intensity.</p>", "<p>In this test of the bottom frame structure model, only measured points 2~7 recorded the strains in the entire seismic process, and the other 26 points just obtained a part of the strains. For the conventional structural analysis, the strains at the ultimate points could not reflect the working features of the whole structure. However, structural stressing state analysis could effectively reflect the working features of the whole structure using the strains at some specific points, shown in ##FIG##3##Figure 4## below. </p>", "<p>Besides, the results obtained by selecting different measuring points for structural stressing state analysis are almost identical. This result is because structural stressing state analysis is based on the structural failure law. Here, suppose that the strains at measured points 2~7 could represent the stressing state of the structure, and the stressing state mode () to can be built as the vector:\nin which superscript “+” represents the strains in the positive seismic direction; if superscript is “−”, it represents the strains in the negative seismic direction. Correspondingly, the stressing state characteristic parameter () can be the sum of several GSED values: \nwhere is the maximum among .</p>", "<p>Also, the stressing state submodes for the 1st and 2nd floors can be built as vectors and \n\nthe corresponding characteristic parameters can be written as: </p>", "<p>This study mainly concerns the evolution of the stressing state characteristic pair to the seismic intensities to find out the failure starting point of the bottom frame structure.</p>", "<title>4.2. The Stressing State Mutation Feature </title>", "<p>The structural stressing state theory characterizes the evolution and mutation in the structural stressing state theory by establishing stressing state mode and characteristic parameters. As a result, there is a great deal of flexibility in how stressing state characteristic pairs are established.</p>", "<p>For example, ##FIG##3##Figure 4## shows the curves for several state variables at individual seismic intensities. It can be seen that the most significant state variables correspond to different seismic intensities, which indicates that the state variables at one measurement point are not representative of the functional characteristics of the whole structure. This is because a single state variable can only model the local state information of a particular measurement point and cannot reflect the global information of the working state of the whole structure. In other words, the study of a single state variable alone cannot reveal the failure characteristics of a structure under seismic conditions.</p>", "<title>4.3. The Stressing State Features of the Whole Structure</title>", "<p>##FIG##4##Figure 5## shows the <italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curves that characterize the overall response of the substructure model. The characteristic points P and Q are defined as the elastoplastic branch (EPB) and the substructure’s failure starting (FS) points under shaking table conditions, respectively. As shown in ##FIG##4##Figure 5##, the seismic intensity/moment of the EPB and FS points are 0.4 g/14.8 s and 0.3 g/7.4 s, respectively, where the mutation around the EPB and FS points are more evident in the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curves. The Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve has a Z-shape, with a monotonically decreasing Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve before the EPB point and a monotonically increasing Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve after the EPB point until the FS point when it starts to show a decreasing trend.</p>", "<p>The stressing state mode <bold>M</bold><italic toggle=\"yes\"><sub>j</sub>-a<sub>j</sub></italic> curve corresponding to the <italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve also shows distinctive sharp points and mutations near the failure characteristic points, as shown in ##FIG##5##Figure 6##a,b. The horizontal coordinates of ##FIG##5##Figure 6##a represent the seismic intensity, and the curves represent the different measurement points. The curves show turning and cusp features near the characteristic points P and Q. The horizontal coordinates of ##FIG##5##Figure 6##b represent different measurement points in space, and the curves represent different seismic intensities. The curves show the mode’s leap near the characteristic points. </p>", "<p>These phenomena show that modeling the structure’s stressing state can lead to numerical modes that show significant mutation around the characteristic points, further validating the modeling method and the reasonableness of the characteristic points.</p>", "<title>4.4. The Stressing State Features of Two Floors</title>", "<p>##FIG##6##Figure 7##a,b show the characteristic parameter curves, that is, the <italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curves, that characterize the stressing state of the two floors of the bottom frame structure model. Combined with the result of M–K criterion and the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve, it can be determined that the EPB and FS points of the 1st and 2nd floors of the bottom frame structure are almost identical to the whole stressing state characteristic points, corresponding to a seismic intensity/moment of 0.4 g/14.8 s and 0.3 g/7.4 s. This phenomenon indicates that although the flexibility of the bottom floor characterizes the bottom frame structure, the masonry part of the structure still has good overall working performance during the input of seismic action.</p>", "<p>In particular, the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve shows a more pronounced turning and cusp characteristic near the EPB and FS points of the bottom frame structure. Moreover, the highest and sharpest points of the Δ<italic toggle=\"yes\">E<sub>j</sub>-a<sub>j</sub></italic> curve are often found near the FS point, which further demonstrates the importance of the FS point in the seismic design process of the bottom frame structure.</p>" ]
[ "<title>Acknowledgments</title>", "<p>Thanks to Rui Zhe for contributing to revising this paper’s language. And for her excellent insights into concrete and masonry structures that have improved the paper.</p>", "<title>Author Contributions</title>", "<p>Conceptualization, L.Z. and R.L.; methodology, R.L. and B.L.; formal analysis, Z.S.; investigation, R.L. and J.K.; resources, R.L. and J.K.; data curation, Z.S.; writing—original draft preparation, Z.S.; writing—review and editing, G.Z.; visualization, J.K. and B.L.; supervision, Z.S. All authors have read and agreed to the published version of the manuscript.</p>", "<title>Institutional Review Board Statement</title>", "<p>Not applicable.</p>", "<title>Informed Consent Statement</title>", "<p>Not applicable.</p>", "<title>Data Availability Statement</title>", "<p>The data presented in this study are available on request from the corresponding author.</p>", "<title>Conflicts of Interest</title>", "<p>The authors declare no conflict of interest.</p>" ]
[ "<fig position=\"anchor\" id=\"materials-16-01809-f002\"><label>Figure 2</label><caption><p>The bottom frame model, the layout of strain gauges and the cracking.</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f001\"><label>Figure 1</label><caption><p>The floor plans of the bottom frame structure: (<bold>a</bold>) the bottom floor plan, (<bold>b</bold>) the standard story plan, (<bold>c</bold>) the anti-seismic wall plan in the bottom story, (<bold>d</bold>) the constructional columns in the upon stories.</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f003\"><label>Figure 3</label><caption><p>The layout of accelerators and displacement meters.</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f004\"><label>Figure 4</label><caption><p>The curves of state variables , , and : (<bold>a</bold>) Point P2, (<bold>b</bold>) Point P6, (<bold>c</bold>) Point P7.</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f005\"><label>Figure 5</label><caption><p>The stressing state mutation features of the bottom frame structure.</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f006\"><label>Figure 6</label><caption><p>The mutation features of the stressing state mode . (<bold>a</bold>) (Trend diagram); (<bold>b</bold>) (Mode diagram).</p></caption></fig>", "<fig position=\"float\" id=\"materials-16-01809-f007\"><label>Figure 7</label><caption><p>The characteristic curves and the mutation points of the 1st and 2nd floors. (<bold>a</bold>) the 1st floor; (<bold>b</bold>) the 2nd floor.</p></caption></fig>" ]
[ "<table-wrap position=\"float\" id=\"materials-16-01809-t001\"><object-id pub-id-type=\"pii\">materials-16-01809-t001_Table 1</object-id><label>Table 1</label><caption><p>The information of the tested bottom frame structure (mm).</p></caption><table frame=\"hsides\" rules=\"groups\"><tbody><tr><td align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\" colspan=\"1\">Masonry wall height: 3300, thickness: 240</td><td align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\" colspan=\"1\">MU10 clay brick</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Frame height: 4500</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Mortar: M5</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Section of column: 400 × 400</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Concrete: C30</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Section of longitudinal beam: 300 × 400</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Aseismic protection; 7 class</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Section of lateral beam (side span): 300 × 600</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Ground acceleration 0.1 g</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Section of lateral beam (middle span): 300 × 400</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Class II venues</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Section of constructional column: 240 × 240</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Serve time: 50 years</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t002\"><object-id pub-id-type=\"pii\">materials-16-01809-t002_Table 2</object-id><label>Table 2</label><caption><p>The similarity of physical parameters.</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Parameter</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Length</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Elastic Modulus</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Acceleration</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Period</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Velocity</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Equivalent Density</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Mass</th></tr></thead><tbody><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Symbol</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n<italic toggle=\"yes\">l<sub>r</sub></italic>\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n<italic toggle=\"yes\">E<sub>r</sub></italic>\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n<italic toggle=\"yes\">a<sub>r</sub></italic>\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\"><italic toggle=\"yes\">T<sub>r</sub></italic> = (<italic toggle=\"yes\">l<sub>r</sub></italic>/<italic toggle=\"yes\">a<sub>r</sub></italic>)<sup>1/2</sup></td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\"><italic toggle=\"yes\">v<sub>r</sub></italic> = (<italic toggle=\"yes\">l<sub>r</sub>\n</italic>× <italic toggle=\"yes\">a<sub>r</sub></italic>)<sup>1/2</sup></td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\"><italic toggle=\"yes\">ρ<sub>r</sub></italic> = <italic toggle=\"yes\">E<sub>r</sub></italic>/(<italic toggle=\"yes\">l<sub>r</sub></italic> × <italic toggle=\"yes\">a<sub>r</sub></italic>)</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n<italic toggle=\"yes\">E<sub>r</sub> × l<sub>r</sub></italic>\n<sup>2</sup>\n<italic toggle=\"yes\">/a<sub>r</sub></italic>\n</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Ratio</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1/5</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1/3</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1/2.23</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1/2.23</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1.67</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">1/75</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t003\"><object-id pub-id-type=\"pii\">materials-16-01809-t003_Table 3</object-id><label>Table 3</label><caption><p>The mass parameters of individual stories and the artificial weights.</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Item</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Real Volume<break/>(m<sup>3</sup>)</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Density<break/>(m<sup>3</sup>)</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Real Mass<break/>(t)</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Mass of Model<break/>(t)</th></tr></thead><tbody><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Concrete on the 1st floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">61.881</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">2.5</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">154.702</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.238</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Concrete on the 2nd floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">19.703</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">2.5</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">49.257</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.394</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Masonry on the 2nd floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">84.326</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.8</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">151.787</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.214</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Concrete on the 3rd floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">19.703</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">2.5</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">49.257</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.394</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Masonry on the 3rd floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">84.326</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.8</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">151.757</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.214</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Concrete on the 4th floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">23.094</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">2.5</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">57.735</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.462</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Masonry on the 4st floor</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">83.799</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.8</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">150.839</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">1.208</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Live load</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">137.665</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">Total</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">376.833</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">\n</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">903.031</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">6.123</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Artificial weights</td><td colspan=\"4\" align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\"><italic toggle=\"yes\">m</italic><sub>T</sub> = 6.123 t, <italic toggle=\"yes\">m</italic> = 12.040 t; <italic toggle=\"yes\">m</italic><sub>w</sub> = 5.917 t.</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t004\"><object-id pub-id-type=\"pii\">materials-16-01809-t004_Table 4</object-id><label>Table 4</label><caption><p>The parameters of the shaking table and the seismic inputs.</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th colspan=\"4\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\">The Parameters of the Shaking Table</th></tr><tr><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Load Capacity (t)</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Size (m)</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Horizontal &amp; Vertical Displacements (cm)</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Horizontal &amp; Vertical Acceleration (m/s<sup>2</sup>)</th></tr></thead><tbody><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">30</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">5 × 5</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">8, 10</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">5, 7</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t005\"><object-id pub-id-type=\"pii\">materials-16-01809-t005_Table 5</object-id><label>Table 5</label><caption><p>The seismic input scheme and the failure profiles of the bottom frame structure.</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Case</th><th align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Description and Profile of Typical Failure (along X-Axis)</th></tr></thead><tbody><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">T1 (0.035 g–7 dg)<break/>T2 (0.055 g–7.5 dg)</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Under the El, Tf, and Wl waves with seismic intensities of 0.035~0.10 g, no visible cracks occurred.</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">T3 (0.10 g–7 dg)</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>The masonry close to the window bottom first cracked under the El wave (a) and then slightly propagated under Tf and Wl waves (b).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.07 g)<break/>T4 (0.15 g–7.5 dg)<break/>El, Tf, Wl</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>Slight cracks appeared at the location of the window contact with the lintel (a). The oblique crack appeared from the window corner to the side beam (b).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.10 g)<break/>T5 (0.22 g–7 dg)<break/>El, Tf, Wl</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>The new cracks appeared close to the location of the window bottom (a). The previous cracks propagated and cracked all the way through (b).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.10 g)<break/>T6 (0.31 g–7 dg)<break/>El, Tf, Wl</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>The cracks under the window bottom propagated and formed the slight triangle failure area; the cross cracks appeared at the upper part of the side beam (a). The oblique cracks appeared at the masonry wall close to the pedestal of the bottom frame (b).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.10 g)<break/>T7 (0.40 g–8 dg)<break/>El, Tf, Wl</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>The new cracks appeared under the window bottom, and the previous cracks propagated, which further promoted the triangle failure area (a). The oblique cracks developed at the masonry wall close to the pedestal of the bottom frame together with new cracks (b).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.10 g)<break/>T8 (0.51 g–8 dg)<break/>El, Tf</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>All the previous cracks propagated (a). The oblique cracks under the window bottom cracked all the way through with those on the beam and formed the plastic hinge. The concrete dropped at the bottom corners of the masonry wall (b). The horizontal cracks appeared and propagated along the contacting section between the masonry on the 2nd floor and the bottom frame (c).</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">WNS (0.10 g)<break/>T9 (0.62 g–9 dg)<break/>El, Tf<break/>WNS (0.10 g)</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\"><break/>All the previous cracks further propagated failed; the cracks appeared at the window edge on the 3rd floor (a). The cracks came through along the lintel to the structural column (b). The steel bar in the bottom column yielded together with the concrete drop (c).</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t006\"><object-id pub-id-type=\"pii\">materials-16-01809-t006_Table 6</object-id><label>Table 6</label><caption><p>Inter-story displacement angle (EL-Centro).</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th rowspan=\"2\" colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\">Inter-Story Displacement Angle <break/>(EL-Centro)</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">1st Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">2nd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">3rd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">4th Floor</th></tr><tr><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th></tr></thead><tbody><tr><td rowspan=\"7\" align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" colspan=\"1\">Acceleration peak (g)</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.035</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0008</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0018</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0015</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0010</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0016</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.1</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0007</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0007</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0021</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0014</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0018</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0011</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.22</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0029</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0017</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0034</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0033</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0027</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0036</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0031</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0043</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.31</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0033</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0018</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0042</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0032</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0039</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0033</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0037</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.4</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0064</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0018</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0033</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0039</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0018</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0047</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0038</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.51</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0136</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0032</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0049</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0031</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0041</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0028</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0051</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.62</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0201</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0077</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0050</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0048</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0029</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0049</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0031</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0028</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t007\"><object-id pub-id-type=\"pii\">materials-16-01809-t007_Table 7</object-id><label>Table 7</label><caption><p>Inter-story displacement angle (Taft).</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th rowspan=\"2\" colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\">Inter-Story Displacement Angle <break/>(Taft)</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">1st Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">2nd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">3rd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">4th Floor</th></tr><tr><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th></tr></thead><tbody><tr><td rowspan=\"7\" align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" colspan=\"1\">Acceleration peak (g)</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.035</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0010</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0007</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0014</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0020</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0020</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.1</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0008</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0014</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0017</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0014</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.22</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0028</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0016</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0015</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0020</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0034</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.31</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0047</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0026</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0029</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0020</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0020</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0021</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.4</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0085</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0030</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0039</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0023</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0046</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0039</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.51</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0085</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0044</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0030</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0046</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0023</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0067</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0032</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.62</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0207</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0132</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0043</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0037</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0060</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0023</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0030</td></tr></tbody></table></table-wrap>", "<table-wrap position=\"float\" id=\"materials-16-01809-t008\"><object-id pub-id-type=\"pii\">materials-16-01809-t008_Table 8</object-id><label>Table 8</label><caption><p>Inter-story displacement angle (Wolong).</p></caption><table frame=\"hsides\" rules=\"groups\"><thead><tr><th rowspan=\"2\" colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\">Inter-Story Displacement Angle<break/>(Wolong)</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">1st Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">2nd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">3rd Floor</th><th colspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin\" rowspan=\"1\">4th Floor</th></tr><tr><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">X</th><th align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">Y</th></tr></thead><tbody><tr><td rowspan=\"5\" align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" colspan=\"1\">Acceleration peak (g)</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.035</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0008</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0007</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0009</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0019</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0010</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0017</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.1</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0008</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0007</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0011</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0011</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0010</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.22</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0024</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0012</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0024</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0013</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0032</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0017</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0021</td></tr><tr><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.31</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0034</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0014</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0016</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0021</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0015</td><td align=\"center\" valign=\"middle\" rowspan=\"1\" colspan=\"1\">0.0025</td></tr><tr><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.4</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0081</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0022</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0024</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0014</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0015</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0021</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0017</td><td align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" rowspan=\"1\" colspan=\"1\">0.0025</td></tr></tbody></table></table-wrap>" ]
[ "<disp-formula id=\"FD1-materials-16-01809\">\n<label>(1)</label>\n<mml:math id=\"mm1\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"true\"><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mrow><mml:msub><mml:mi>ε</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mstyle><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mo> </mml:mo><mml:mi>or</mml:mi><mml:mo> </mml:mo><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy=\"true\">¯</mml:mo></mml:mover><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac><mml:mstyle displaystyle=\"true\"><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mrow><mml:msub><mml:mi>ε</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mstyle><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>F</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm2\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm3\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy=\"true\">¯</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm4\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm5\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm6\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD3-materials-16-01809\">\n<label>(2)</label>\n<mml:math id=\"mm7\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"true\"><mml:munderover><mml:mo>∑</mml:mo><mml:mi>i</mml:mi><mml:mi>k</mml:mi></mml:munderover><mml:mrow><mml:msub><mml:mi>m</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow></mml:mstyle><mml:mfenced><mml:mrow><mml:mn>2</mml:mn><mml:mo>≤</mml:mo><mml:mi>k</mml:mi><mml:mo>≤</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:msub><mml:mi>m</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mfenced close=\"\" open=\"{\"><mml:mrow><mml:mtable equalrows=\"true\" equalcolumns=\"true\"><mml:mtr><mml:mtd><mml:mrow><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mn>0</mml:mn></mml:mtd></mml:mtr></mml:mtable><mml:mtable equalrows=\"true\" equalcolumns=\"true\"><mml:mtr><mml:mtd><mml:mrow><mml:msup><mml:mi>E</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>&gt;</mml:mo><mml:msup><mml:mi>E</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>j</mml:mi><mml:mo>≤</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mi>o</mml:mi><mml:mi>t</mml:mi><mml:mi>h</mml:mi><mml:mi>e</mml:mi><mml:mi>r</mml:mi><mml:mi>w</mml:mi><mml:mi>i</mml:mi><mml:mi>s</mml:mi><mml:mi>e</mml:mi></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:mfenced></mml:mrow></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<disp-formula id=\"FD5-materials-16-01809\">\n<label>(3)</label>\n<mml:math id=\"mm8\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:mi>E</mml:mi><mml:mfenced><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>k</mml:mi><mml:mfenced><mml:mrow><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced><mml:mo>/</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>≤</mml:mo><mml:mi>k</mml:mi><mml:mo>≤</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mi>V</mml:mi><mml:mi>a</mml:mi><mml:mi>r</mml:mi><mml:mfenced><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>k</mml:mi><mml:mfenced><mml:mrow><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced><mml:mfenced><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:mfenced><mml:mo>/</mml:mo><mml:mn>72</mml:mn><mml:mfenced><mml:mrow><mml:mn>2</mml:mn><mml:mo>≤</mml:mo><mml:mi>k</mml:mi><mml:mo>≤</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<disp-formula id=\"FD7-materials-16-01809\">\n<label>(4)</label>\n<mml:math id=\"mm9\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>U</mml:mi><mml:msub><mml:mi>F</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mfenced close=\"\" open=\"{\"><mml:mrow><mml:mtable equalrows=\"true\" equalcolumns=\"true\"><mml:mtr><mml:mtd><mml:mn>0</mml:mn></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:mi>E</mml:mi><mml:mfenced><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:mfenced><mml:mo>/</mml:mo><mml:msqrt><mml:mrow><mml:mi>V</mml:mi><mml:mi>a</mml:mi><mml:mi>r</mml:mi><mml:mfenced><mml:mrow><mml:msub><mml:mi>d</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:mfenced></mml:mrow></mml:msqrt></mml:mrow></mml:mtd></mml:mtr></mml:mtable><mml:mtable equalrows=\"true\" equalcolumns=\"true\"><mml:mtr><mml:mtd><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mn>2</mml:mn><mml:mo>≤</mml:mo><mml:mi>k</mml:mi><mml:mo>≤</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<disp-formula id=\"FD8-materials-16-01809\">\n<label>(5)</label>\n<mml:math id=\"mm10\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"true\"><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mi>t</mml:mi></mml:msubsup><mml:mrow><mml:msub><mml:mi>ε</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:mstyle><mml:mo> </mml:mo><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm11\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm12\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>ε</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm13\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD9-materials-16-01809\">\n<label>(6)</label>\n<mml:math id=\"mm14\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mfenced close=\"|\" open=\"|\"><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi></mml:mrow><mml:mrow><mml:mi>El</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>−</mml:mo><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>Wl</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mstyle displaystyle=\"true\"><mml:munderover><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mn>7</mml:mn></mml:munderover><mml:mrow><mml:mfenced close=\"|\" open=\"|\"><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi></mml:mrow><mml:mrow><mml:mi>El</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>−</mml:mo><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>Wl</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:mfenced></mml:mrow></mml:mstyle></mml:mrow></mml:mfrac></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm15\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD10-materials-16-01809\">\n<label>(7)</label>\n<mml:math id=\"mm16\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"true\"><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msubsup><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:mstyle><mml:mo> </mml:mo><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm17\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm18\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mo> </mml:mo><mml:msub><mml:mi>a</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm21\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">M</mml:mi><mml:mi>j</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm22\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD11-materials-16-01809\">\n<label>(8)</label>\n<mml:math id=\"mm23\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">M</mml:mi><mml:mi>j</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mfenced close=\"]\" open=\"[\"><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mo>…</mml:mo><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msup></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm24\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>E</mml:mi><mml:mi>j</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD12-materials-16-01809\">\n<label>(9)</label>\n<mml:math id=\"mm25\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>E</mml:mi><mml:mi>j</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msub></mml:mrow></mml:mfrac><mml:mstyle displaystyle=\"true\"><mml:munderover><mml:mo>∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mn>7</mml:mn></mml:munderover><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>k</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mstyle></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm26\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm27\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>k</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm28\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">m</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm29\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">m</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi>II</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<disp-formula id=\"FD13-materials-16-01809\">\n<label>(10)</label>\n<mml:math id=\"mm30\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">m</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mfenced close=\"]\" open=\"[\"><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msup></mml:mrow><mml:mrow><mml:mo> </mml:mo><mml:mi>or</mml:mi><mml:mo> </mml:mo><mml:msubsup><mml:mi mathvariant=\"bold-sans-serif\">m</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi>II</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mfenced close=\"]\" open=\"[\"><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>4</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>5</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>6</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<disp-formula id=\"FD15-materials-16-01809\">\n<label>(11)</label>\n<mml:math id=\"mm31\" display=\"block\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>E</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msub></mml:mrow></mml:mfrac><mml:mfenced><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:msubsup><mml:mi>E</mml:mi><mml:mi>j</mml:mi><mml:mrow><mml:mi>II</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi mathvariant=\"normal\">T</mml:mi></mml:msub></mml:mrow></mml:mfrac><mml:mstyle displaystyle=\"true\"><mml:munderover><mml:mo>∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mn>6</mml:mn></mml:munderover><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mi>k</mml:mi><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:mstyle></mml:mrow></mml:mrow></mml:math>\n</disp-formula>", "<inline-formula>\n<mml:math id=\"mm34\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm19\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>6</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm20\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>e</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mi>j</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msubsup><mml:mfenced><mml:mi>t</mml:mi></mml:mfenced></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm35\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mstyle mathvariant=\"bold\" mathsize=\"normal\"><mml:mi>M</mml:mi></mml:mstyle><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm32\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mstyle mathvariant=\"bold\" mathsize=\"normal\"><mml:mi>M</mml:mi></mml:mstyle><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>", "<inline-formula>\n<mml:math id=\"mm33\" overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mstyle mathvariant=\"bold\" mathsize=\"normal\"><mml:mi>M</mml:mi></mml:mstyle><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math>\n</inline-formula>" ]
[]
[]
[]
[]
[]
[ "<fn-group><fn><p><bold>Disclaimer/Publisher’s Note:</bold> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</p></fn></fn-group>" ]
[ "<graphic xlink:href=\"materials-16-01809-g002\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g001\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g003\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g004\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g005\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g006\" position=\"float\"/>", "<graphic xlink:href=\"materials-16-01809-g007\" position=\"float\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i001.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i002.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i003.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i004.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i005.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i006.jpg\"/>", "<inline-graphic xlink:href=\"materials-16-01809-i007.jpg\"/>" ]
[]
[{"label": ["1."], "person-group": ["\n"], "surname": ["Chen"], "given-names": ["J."], "source": ["Analysis on Seismic Performance of Masonry Structure with Bottom-Frame and Influence of Story Stiffness Ratio"], "publisher-name": ["Chongqing University"], "publisher-loc": ["Chongqing, China"], "year": ["2010"]}, {"label": ["2."], "person-group": ["\n"], "surname": ["Shan"], "given-names": ["R."], "source": ["Study on The Seismic Collapse Pattern and The Ruin\u2019s Structural Characteristics of Typical RC Frame Supported Masonry Structures Institute of Engineering Mechanics"], "publisher-name": ["China Earthquake Administration"], "publisher-loc": ["Beijing, China"], "year": ["2015"]}, {"label": ["3."], "person-group": ["\n"], "surname": ["Li", "Wang"], "given-names": ["B.", "Z."], "article-title": ["Lessons from the Performance of Masonry Structure with Ground RC Frame during Wenchuan Earthquake"], "source": ["ACTA Sci. Nat. Univ. Sunyatseni"], "year": ["2010"], "volume": ["49"], "fpage": ["22"], "lpage": ["27"]}, {"label": ["4."], "person-group": ["\n"], "surname": ["Gao", "Wang"], "given-names": ["X.", "Y."], "article-title": ["The Seismic Testing Study of 1/2 Scale Model of 7-Story Multi-Story Brick Building with Frame Shear Wall in First Story"], "source": ["Build. Sci."], "year": ["1995"], "volume": ["4"], "fpage": ["18"], "lpage": ["23"]}, {"label": ["5."], "person-group": ["\n"], "surname": ["Gao", "Meng", "Li", "Liao", "He", "Xiao", "Wang", "Wang", "Sun", "Yang"], "given-names": ["X.", "J.", "H.", "X.", "J.", "W.", "J.", "J.", "X.", "S."], "article-title": ["The Seismic Testing Study of a 1/3 Scale Model with R/C Frame and shear Wall in the Lower-Two Story and Masonry Structure in the Upper-Six Story"], "source": ["Build. Sci."], "year": ["1994"], "volume": ["3"], "fpage": ["12"], "lpage": ["18"]}, {"label": ["6."], "person-group": ["\n"], "surname": ["Liang", "Wang", "Liang"], "given-names": ["X.", "Q.", "Y."], "article-title": ["Experimental investigation on pseudo-dynamic test of 1/2 scale model brick masonry building with frame-shear wall structure at first two stories"], "source": ["China Civ. Eng. J."], "year": ["1999"], "volume": ["32"], "fpage": ["14"], "lpage": ["21"]}, {"label": ["7."], "person-group": ["\n"], "surname": ["Zheng"], "given-names": ["S."], "article-title": ["A reasonable and Simple determining method of aseismic wall numbers in Frame-Shear wall story of masonry building with frame structure at lower stories"], "source": ["Ind. Constr."], "year": ["2001"], "volume": ["31"], "fpage": ["22"], "lpage": ["25"]}, {"label": ["8."], "person-group": ["\n"], "surname": ["Li", "Gu"], "given-names": ["Q.", "R."], "article-title": ["Reaserch on displacement-based seismic capability of brick masonry structures with frame-shear wall at the bottom"], "source": ["World Earthq. Eng."], "year": ["2006"], "volume": ["22"], "fpage": ["64"], "lpage": ["67"]}, {"label": ["9."], "person-group": ["\n"], "surname": ["Song"], "given-names": ["L."], "source": ["Analysis and Verification on Seismic Performance of Masonry Building with Concrete Frame-Shear Wall Structure on First Two Stories"], "publisher-name": ["Chongqing University"], "publisher-loc": ["Chongqing, China"], "year": ["2011"]}, {"label": ["10."], "person-group": ["\n"], "surname": ["Zhou"], "given-names": ["G."], "source": ["Structural State-of-Stress Theory and Its Applications"], "publisher-name": ["Harbin Institute of Technology Press"], "publisher-loc": ["Harbin, China"], "year": ["2021"]}, {"label": ["11."], "person-group": ["\n"], "surname": ["Zhou", "Shi", "Li", "Li"], "given-names": ["G.", "J.", "P.", "H."], "article-title": ["Characteristics of structural state of stress for steel frame in progressive collapse"], "source": ["J. Constr. Steel Res."], "year": ["2019"], "volume": ["160"], "fpage": ["444"], "lpage": ["456"], "pub-id": ["10.1016/j.jcsr.2019.05.026"]}, {"label": ["13."], "person-group": ["\n"], "surname": ["Shi", "Xiao", "Zheng", "Shen", "Zhou"], "given-names": ["J.", "H.", "K.", "J.", "G."], "article-title": ["Essential stressing state features of a large-curvature continuous steel box-girder bridge model revealed by modeling experimental data"], "source": ["Thin-Walled Struct."], "year": ["2019"], "volume": ["143"], "fpage": ["106247"], "pub-id": ["10.1016/j.tws.2019.106247"]}, {"label": ["14."], "person-group": ["\n"], "surname": ["Shen", "Huang", "Yang", "Shi", "Zheng"], "given-names": ["J.", "W.", "X.", "J.", "K."], "article-title": ["Stressing State Analysis of CFST Arch Supports in Deep Roadway Based on NSF Method"], "source": ["Appl. Sci."], "year": ["2019"], "volume": ["9"], "elocation-id": ["4238"], "pub-id": ["10.3390/app9204238"]}, {"label": ["15."], "person-group": ["\n"], "surname": ["Shi", "Yang", "Zheng", "Shen", "Zhou", "Huang"], "given-names": ["J.", "K.", "K.", "J.", "G.", "Y."], "article-title": ["An Investigation into Working Behavior Characteristics of Parabolic Cfst Arches Applying Structural Stressing State Theory"], "source": ["J. Civ. Eng. Manag."], "year": ["2019"], "volume": ["25"], "fpage": ["215"], "lpage": ["227"], "pub-id": ["10.3846/jcem.2019.8102"]}, {"label": ["16."], "person-group": ["\n"], "surname": ["Chen", "Zhao", "Shao", "Zhou"], "given-names": ["Z.", "Y.", "Y.", "G."], "article-title": ["Essential state-of-stress features of HBBC connections revealed by modeling simulative strain energy"], "source": ["Eng. Struct."], "year": ["2021"], "volume": ["230"], "fpage": ["111463"], "pub-id": ["10.1016/j.engstruct.2020.111463"]}, {"label": ["17."], "person-group": ["\n"], "surname": ["Shen", "Liu", "Cheng", "Zhou"], "given-names": ["Z.", "B.", "X.", "G."], "article-title": ["Stressing state features of H-steel columns under cyclic biaxial bending action revealed from experimental residual strains"], "source": ["Case Stud. Constr. Mater."], "year": ["2023"], "volume": ["18"], "fpage": ["e01518"], "pub-id": ["10.1016/j.cscm.2022.e01518"]}, {"label": ["19."], "person-group": ["\n"], "surname": ["Shen", "Liu", "Zhou"], "given-names": ["Z.", "B.", "G."], "article-title": ["Stressing State Analysis of SRC Column with Modeling Test and Finite Element Model Data"], "source": ["Appl. Sci."], "year": ["2022"], "volume": ["12"], "elocation-id": ["8866"], "pub-id": ["10.3390/app12178866"]}, {"label": ["20."], "person-group": ["\n"], "surname": ["Liu", "Zhang", "Li", "Zhou", "Zhao"], "given-names": ["B.", "Y.", "R.", "G.", "Y."], "article-title": ["Essential stressing state features of spirally reinforced concrete short columns revealed by modeling experimental strain data"], "source": ["Structures"], "year": ["2020"], "volume": ["25"], "fpage": ["1"], "lpage": ["7"], "pub-id": ["10.1016/j.istruc.2020.02.006"]}, {"label": ["21."], "person-group": ["\n"], "surname": ["Liu", "Zhao", "Liu", "Zhou"], "given-names": ["B.", "Y.", "H.", "G."], "article-title": ["The Hysteretic Failure Features of Reinforced Masonry Shear Walls Revealed by Modeling Experimental Residual Strain Data"], "source": ["J. Earthq. Eng."], "year": ["2022"], "volume": ["26"], "fpage": ["7353"], "lpage": ["7365"], "pub-id": ["10.1080/13632469.2021.1961943"]}, {"label": ["22."], "person-group": ["\n"], "surname": ["Shen", "Liu", "Zhou"], "given-names": ["Z.", "B.", "G."], "article-title": ["Stressing state analysis of concrete airport pavement by modeling experimental strain data"], "source": ["Case Stud. Constr. Mater."], "year": ["2022"], "volume": ["17"], "fpage": ["e01635"], "pub-id": ["10.1016/j.cscm.2022.e01635"]}, {"label": ["23."], "std": ["GB 50011-2010"], "source": ["Code for Seismic Design of Buildings"], "publisher-name": ["China Architecture and Building Press"], "publisher-loc": ["Beijing, China"], "year": ["2010"]}, {"label": ["24."], "person-group": ["\n"], "surname": ["Mann"], "given-names": ["H.B."], "article-title": ["Non-parametric tests against trend"], "source": ["Econometrical"], "year": ["1945"], "volume": ["13"], "fpage": ["163"], "lpage": ["171"], "pub-id": ["10.2307/1907187"]}, {"label": ["25."], "person-group": ["\n"], "surname": ["Kendall"], "given-names": ["M.G."], "source": ["Rank Correlation Methods"], "publisher-name": ["Oxford University Press"], "publisher-loc": ["New York, NY, USA"], "year": ["1990"]}]
{ "acronym": [], "definition": [] }
25
CC BY
no
2024-01-15 23:35:11
Materials (Basel). 2023 Feb 22; 16(5):1809
oa_package/3e/bd/PMC10003871.tar.gz
PMC10034578
36934759
["<title>Introduction</title>","<p>The success of evolutionary game theory (EGT) since Maynard Smith(...TRUNCATED)
["<title>A method for behavioural ecology: a case study</title>","<p>Both Brockmann's and Riechert's(...TRUNCATED)
[]
[]
[]
["<p>One contribution of 18 to a theme issue ‘<ext-link xlink:href=\"http://dx.doi.org/10.1098/rst(...TRUNCATED)
["<title>Evolutionary game theory: first steps</title>","<p>The reception given to the theory of gam(...TRUNCATED)
["<title>Acknowledgements</title>","<p>We express our very sincere gratitude to all the scientists c(...TRUNCATED)
[]
[]
[]
[]
[]
["<disp-quote><p>Someday, particularly for social traits, we will have to work out some more formal (...TRUNCATED)
[]
[]
[]
[]
[]
"[{\"label\": [\"1\"], \"x\": [\".\"], \"surname\": [\"Maynard Smith\", \"Price\"], \"given-names\":(...TRUNCATED)
{ "acronym": [], "definition": [] }
135
CC BY
no
2024-01-15 23:43:51
Philos Trans R Soc Lond B Biol Sci.; 378(1876):20210493
oa_package/72/16/PMC10034578.tar.gz
PMC10184354
37189133
["<title>Introduction</title>","<p id=\"Par33\">The endospore-forming <italic>Bacillus cereus</itali(...TRUNCATED)
["<title>Methods</title>","<title><italic>B. cereus</italic> strains and growth conditions</title>",(...TRUNCATED)
["<title>Results</title>","<title><italic>B. cereus</italic> secretes EVs into the culture supernata(...TRUNCATED)
["<title>Discussion</title>","<p id=\"Par51\">EVs secreted by clinically relevant bacteria are consi(...TRUNCATED)
["<title>Conclusion</title>","<p id=\"Par62\">Though considerable progress has been made in the char(...TRUNCATED)
["<title>Background</title>","<p id=\"Par1\">Extracellular vesicles (EVs) from Gram-positive bacteri(...TRUNCATED)
["<title>Limitation of this study</title>","<p id=\"Par60\">Currently, there are no minimal guidelin(...TRUNCATED)
["<title>Acknowledgements</title>","<p>We thank Richard Dietrich (Department of Veterinary Sciences,(...TRUNCATED)
["<fig id=\"Fig1\"><label>Fig. 1</label><caption><p><italic>B. cereus</italic> releases EVs in vitro(...TRUNCATED)
[]
[]
[]
[]
[]
[]
["<supplementary-material content-type=\"local-data\" id=\"MOESM1\"></supplementary-material>","<sup(...TRUNCATED)
["<fn-group><fn><p>The original version of this article was revised: The family name of author Marku(...TRUNCATED)
["<graphic xlink:href=\"12964_2023_1132_Fig1_HTML\" id=\"MO1\"/>","<graphic xlink:href=\"12964_2023_(...TRUNCATED)
["<media xlink:href=\"12964_2023_1132_MOESM6_ESM.mp4\" id=\"MOESM6\"><caption><p>Video Abstract</p><(...TRUNCATED)
"[{\"label\": [\"1.\"], \"mixed-citation\": [\"Ehling-Schulz M, Lereclus D, Koehler TM. The \"], \"i(...TRUNCATED)
{"acronym":["ABC","Caco2","CME","DTT","EVs","FASP","FCS","FDR","FTIR","Hbl","IAA","LB","LC–MS/MS",(...TRUNCATED)
85
CC BY
no
2024-01-15 23:35:09
Cell Commun Signal. 2023 May 15; 21:112
oa_package/1f/17/PMC10184354.tar.gz
PMC10229423
37198474
[]
["<title>Methods</title>","<title>Cell lines</title>","<p id=\"Par24\">K562 (CCL-243), 293T (CRL-321(...TRUNCATED)
[]
[]
[]
["<p id=\"Par1\">Glucose is vital for life, serving as both a source of energy and carbon building b(...TRUNCATED)
["<title>Main</title>","<p id=\"Par3\">We sought to identify new genes and pathways that might serve(...TRUNCATED)
["<title>Extended data</title>","<p id=\"Par60\">\n\n</p>","<p id=\"Par61\">\n\n</p>","<p id=\"Par62(...TRUNCATED)
["<fig id=\"Fig1\"><label>Fig. 1</label><caption><title>Uridine phosphorylase activity supports grow(...TRUNCATED)
[]
["<disp-formula id=\"Equ1\"><label>1</label><alternatives><tex-math id=\"M1\">\\documentclass[12pt]{(...TRUNCATED)
[]
[]
[]
[]
["<supplementary-material content-type=\"local-data\" id=\"MOESM1\"></supplementary-material>","<sup(...TRUNCATED)
["<fn-group><fn><p><bold>Publisher’s note</bold> Springer Nature remains neutral with regard to ju(...TRUNCATED)
["<graphic xlink:href=\"42255_2023_774_Fig1_HTML\" id=\"d32e510\"/>","<graphic xlink:href=\"42255_20(...TRUNCATED)
["<media xlink:href=\"42255_2023_774_MOESM1_ESM.pdf\"><caption><p>Reporting Summary</p></caption></m(...TRUNCATED)
"[{\"label\": [\"23.\"], \"surname\": [\"Goncalves\", \"Hopkins\", \"Cantley\"], \"given-names\": [\(...TRUNCATED)
{ "acronym": [], "definition": [] }
46
CC BY
no
2024-01-15 23:35:06
Nat Metab. 2023 May 17; 5(5):765-776
oa_package/05/40/PMC10229423.tar.gz
PMC10233181
37264348
["<title>Background</title>","<p id=\"Par5\">Performing physical activities is vital in maintaining (...TRUNCATED)
["<title>Methods</title>","<title>Study design and setting</title>","<p id=\"Par10\">We used a cross(...TRUNCATED)
["<title>Results</title>","<p id=\"Par19\">Among 131 participants (age range: 14–25 years), 81% of(...TRUNCATED)
["<title>Discussion</title>","<p id=\"Par30\">This study investigated the concurrent validity of sel(...TRUNCATED)
["<title>Conclusion</title>","<p id=\"Par39\">This study showed an overall poor correlation and low (...TRUNCATED)
["<title>Background</title>","<p id=\"Par1\">Most young adults and adolescents in the United Arab Em(...TRUNCATED)
[]
["<title>Acknowledgements</title>","<p>The authors would like to thank Professor Hazzaa M. Al-Hazzaa(...TRUNCATED)
["<fig id=\"Fig1\"><label>Fig. 1</label><caption><p> A Bland-Altman plot showing agreement between (...TRUNCATED)
["<table-wrap id=\"Tab1\"><label>Table 1</label><caption><p>Criteria for interpreting the Spearman r(...TRUNCATED)
["<inline-formula id=\"IEq1\"><alternatives><tex-math id=\"M1\">\\documentclass[12pt]{minimal}\n\t\t(...TRUNCATED)
[]
[]
[]
[]
[]
["<table-wrap-foot><p>Note: These criteria were adapted from Schober et al.2018 [##UREF##41##43##].<(...TRUNCATED)
["<inline-graphic xlink:href=\"12889_2023_15881_Article_IEq1.gif\"/>","<graphic xlink:href=\"12889_2(...TRUNCATED)
[]
"[{\"label\": [\"1.\"], \"mixed-citation\": [\"O\\u2019Donovan G, Lee I-M, Hamer M, Stamatakis E. As(...TRUNCATED)
{"acronym":["ATLS","ATLS-2","IPAQ-SF","METs","UAE"],"definition":["Arab Teen Lifestyle Study","Revis(...TRUNCATED)
47
CC BY
no
2024-01-15 23:35:09
BMC Public Health. 2023 Jun 1; 23:1045
oa_package/05/33/PMC10233181.tar.gz
PMC10258666
37305907
[]
[]
[]
[]
[]
["<p>\n<email>louise.rollins-smith@vumc.org</email>\n</p>","<p>One contribution of 14 to a theme iss(...TRUNCATED)
["<title>Amphibians responding to changing environments</title>","<p>Amphibians are ancient creature(...TRUNCATED)
["<title>Data accessibility</title>","<p>This article has no additional data.</p>","<title>Authors' (...TRUNCATED)
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
"[{\"label\": [\"2\"], \"x\": [\". \"], \"surname\": [\"P\\u00f6rtner\", \"P\\u00f6rtner\"], \"given(...TRUNCATED)
{ "acronym": [], "definition": [] }
98
CC BY
no
2024-01-15 23:43:51
Philos Trans R Soc Lond B Biol Sci.; 378(1882):20220132
oa_package/e5/f7/PMC10258666.tar.gz
PMC10263403
37341226
[]
[]
[]
[]
[]
["<p>Potencial conflito de interesse</p>","<p>Não há conflito com o presente artigo.</p>","<title>(...TRUNCATED)
["<title>Introdução</title>","<p>O infarto do miocárdio com artérias coronárias não obstrutiva(...TRUNCATED)
[]
["<fig position=\"float\" id=\"f01\"><label>Figura 1</label><caption><title>– A ventriculografia e(...TRUNCATED)
[]
[]
[]
[]
[]
[]
[]
["<fn-group><fn fn-type=\"other\"><p>Vinculação acadêmica</p><p>Não há vinculação deste estud(...TRUNCATED)
["<graphic xlink:href=\"0066-782X-abc-120-06-e20220705-gf01\" position=\"float\"/>","<graphic xlink:(...TRUNCATED)
[]
"[{\"label\": [\"2\"], \"person-group\": [\"\\n\"], \"surname\": [\"Lypovetska\", \"Shved\", \"Gursk(...TRUNCATED)
{ "acronym": [], "definition": [] }
14
CC BY
no
2024-01-15 23:35:10
Arq Bras Cardiol. 2023 May 26; 120(6):e20220705
oa_package/6e/8b/PMC10263403.tar.gz
PMC10291421
37381861
["<title>Introduction</title>","<p>There is broad agreement that 15 000 years before the present (BP(...TRUNCATED)
[]
[]
[]
["<title>Conclusion</title>","<p>The IOEC theory we have developed in this paper and in Dow &amp; Re(...TRUNCATED)
["<p>One contribution of 20 to a theme issue ‘<ext-link xlink:href=\"http://dx.doi.org/10.1098/rst(...TRUNCATED)
["<title>The Holocene environment and household inheritance</title>","<p>The HEHI theory of early in(...TRUNCATED)
["<title>Acknowledgements</title>","<p>We thank Robert Kelly, Stephen Shennan, Eric Alden Smith, and(...TRUNCATED)
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
"[{\"label\": [\"1\"], \"x\": [\". \"], \"surname\": [\"Kelly\"], \"given-names\": [\"RL\"], \"year\(...TRUNCATED)
{ "acronym": [], "definition": [] }
41
CC BY
no
2024-01-15 23:43:51
Philos Trans R Soc Lond B Biol Sci.; 378(1883):20220293
oa_package/1a/f7/PMC10291421.tar.gz
PMC10368488
37490942
["<title>Introduction</title>","<p>Animals must gather, process and act on information about their s(...TRUNCATED)
["<title>Material and methods</title>","<p>Adult fish were wild caught in 2011 and 2012 from Enos La(...TRUNCATED)
["<title>Results</title>","<title>Are there species differences in use of social information?</title(...TRUNCATED)
["<title>Discussion</title>","<p>We tested individual threespine stickleback fish on the ability to (...TRUNCATED)
[]
["<p>Electronic supplementary material is available online at <uri xlink:href=\"https://doi.org/10.6(...TRUNCATED)
[]
["<title>Acknowledgements</title>","<p>W. Fetzner and J. Martinez assisted with data collection. Mem(...TRUNCATED)
["<fig position=\"float\" id=\"RSBL20230208F1\"><label>Figure 1<x xml:space=\"preserve\">. </x></lab(...TRUNCATED)
["<table-wrap position=\"float\" id=\"RSBL20230208TB1\"><label>Table 1<x xml:space=\"preserve\">. </(...TRUNCATED)
[]
[]
[]
[]
[]
[]
[]
["<graphic xlink:href=\"rsbl20230208f01\" position=\"float\"/>","<graphic xlink:href=\"rsbl20230208f(...TRUNCATED)
[]
"[{\"label\": [\"2\"], \"x\": [\". \"], \"surname\": [\"Brown\", \"Laland\"], \"given-names\": [\"C\(...TRUNCATED)
{ "acronym": [], "definition": [] }
40
CC BY
no
2024-01-15 23:43:51
Biol Lett.; 19(7):20230208
oa_package/ab/ce/PMC10368488.tar.gz

Dataset Card for PMC Open Access XML

Dataset Summary

The XML Open Access includes more than 3.4 million journal articles and preprints that are made available under license terms that allow reuse. Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more liberal redistribution and reuse than a traditional copyrighted work. The PMC Open Access Subset is one part of the PMC Article Datasets

This version takes XML version as source, benefiting from the structured text to split the articles in parts, naming the introduction, methods, results, discussion and conclusion, and reference with keywords in the text to external or internal resources (articles, figures, tables, formulas, boxed-text, quotes, code, footnotes, chemicals, graphics, medias).

The dataset was initially created with relation-extraction tasks in mind, between the references in text and the content of the references (e.g. for PMID, by joining the refered article abstract from the pubmed dataset), but aims in a larger extent to provide a corpus of pre-annotated text for other tasks (e.g. figure caption to graphic, glossary definition detection, summarization).

Supported Tasks and Leaderboards

[Needs More Information]

Languages

[Needs More Information]

Dataset Structure

Data Fields

  • "accession_id": The PMC ID of the article
  • "pmid": The PubMed ID of the article
  • "introduction": List of <title> and <p> elements in <body>, sharing their root with a <title> containing "introduction" or "background".
  • "methods": Same as introduction with "method" keyword.
  • "results": Same as introduction with "result" keyword.
  • "discussion": Same as introduction with "discussion" keyword.
  • "conclusion": Same as introduction with "conclusion" keyword.
  • "front": List of <title> and <p> elements in <front> after everything else has been searched.
  • "body": List of <title> and <p> elements in <body> after everything else has been searched.
  • "back": List of <title> and <p> elements in <back> after everything else has been searched.
  • "figure": List of <fig> elements of the article.
  • "table": List of <table-wrap> and <array> elements of the article.
  • "formula": List of <disp-formula> and <inline-formula> elements of the article.
  • "box": List of <boxed-text> elements of the article.
  • "code": List of <code> elements of the article.
  • "quote": List of <disp-quote> and <speech> elements of the article.
  • "chemical": List of <chem-struct-wrap> elements of the article.
  • "supplementary": List of <supplementary-material> and <inline-supplementary-material> elements of the article.
  • "footnote": List of <fn-group> and <table-wrap-foot> elements of the article.
  • "graphic": List of <graphic> and <inline-graphic> elements of the article.
  • "media": List of <media> and <inline-media> elements of the article.
  • "glossary": Glossary if found in the XML
  • "unknown_references": JSON of a dictionnary of each "tag":"text" for the reference that did not indicate a PMID
  • "n_references": Total number of references and unknown references
  • "license": The licence of the article
  • "retracted": If the article was retracted or not
  • "last_updated": Last update of the article
  • "citation": Citation of the article
  • "package_file": path to the folder containing the graphics and media files of the article (to append to the base URL: ftp.ncbi.nlm.nih.gov/pub/pmc/)

In text, the references are in the form ##KEYWORD##IDX_REF##OLD_TEXT##, with keywords (REF, UREF, FIG, TAB, FORMU, BOX, CODE, QUOTE, CHEM, SUPPL, FOOTN, GRAPH, MEDIA) referencing respectively to "pubmed articles" (external), "unknown_references", "figure", "table", "formula", "box", "code", "quote", "chem", "supplementary", "footnote", "graphic" and "media".

Data Splits

[Needs More Information]

Dataset Creation

Curation Rationale

Internal references (figures, tables, ...) were found using specific tags. Deciding on those tags was done by testing and by looking in the documentation for the different kind of possible usage. Then, to split the article into introduction, methods, results, discussion and conclusion, specific keywords in titles were used. Because there are no rules in this xml to tag those sections, finding the keyword seemed like the most reliable approach to do so. A drawback is that many section do not have those keywords in the titles but could be assimilated to those. However, the huge diversity in the titles makes it harder to label such sections. This could be the work of further versions of this dataset.

Source Data

Initial Data Collection and Normalization

Data was obtained from:

  • ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_noncomm/xml/
  • ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_comm/xml/
  • ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_other/xml/

Additional content for individual articles (graphics, media) can be obtained from:

  • ftp.ncbi.nlm.nih.gov/pub/pmc + "package_file"

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

[Needs More Information]

Who are the annotators?

[Needs More Information]

Personal and Sensitive Information

[Needs More Information]

Considerations for Using the Data

Social Impact of Dataset

[Needs More Information]

Discussion of Biases

The articles XML are similar accross collections. This means that if a certain collection handles the structure in unusual ways, the whole collection might not be as well annotated than others. This concerns all the sections (intro, methods, ...), the external references (pmids) and the internal references (tables, figures, ...). To illustrate that, references are sometime given as a range (e.g. 10-15). In that case, only reference 10 and 15 are linked. This could potentially be handled in a future version.

Other Known Limitations

[Needs More Information]

Preprocessing recommendations

  • Filter out empty contents.
  • Remove unwanted references from the text, and replace either by the "references_text" or by the reference content itself.
  • Unescape HTML special characters: import html; html.unescape(my_text)
  • Remove superfluous line break in text.
  • Remove XML tags (<italic>, <sup>, <sub>, ...), replace by special tokens?
  • Join the items of the contents' lists.

Additional Information

Dataset Curators

[Needs More Information]

Licensing Information

https://www.ncbi.nlm.nih.gov/pmc/about/copyright/

Within the PMC Open Access Subset, there are three groupings:

Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and Other - no machine-readable Creative Commons license, no license, or a custom license.

Citation Information

[Needs More Information]

Downloads last month
160
Edit dataset card