Datasets:

Modalities:
Tabular
Text
Formats:
csv
Languages:
Finnish
Libraries:
Datasets
pandas
License:
OttoTarkka commited on
Commit
9368f59
·
verified ·
1 Parent(s): 0e8b0df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -1,3 +1,47 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - fi
7
+ size_categories:
8
+ - 10K<n<100K
9
  ---
10
+
11
+ # Dataset Card for HunEmPoli_finnish
12
+
13
+ This dataset is a machine translated version of the HunEmPoli dataset set available here: https://osf.io/67zsf/?view_only=a23e5b6ba5ef443892a885a3f1d1d1e7 <br>
14
+ Details about the dataset can be found in the original paper. <br>
15
+ The dataset was translated into Finnish using DeepL: https://www.deepl.com/translator
16
+
17
+ ## Uses
18
+
19
+ The dataset can be used to train an emotion analysis model.
20
+
21
+ ## Dataset Structure
22
+
23
+ The data fiels are:
24
+
25
+ - `text`: A sentence from the Hungarian parliament.
26
+ - `label`: Aclassification label, where 0 = `neutral`, 1 = `fear`, 2 = `sadness`, 3 = `anger`, 4 = `disgust`, 5 = `success`, 6 = `joy`, 7 = `trust`.
27
+ - `id`: Anique identifier for each sentence. Numbering matches the row numbers in the original dataset.
28
+
29
+ ## Recommendations
30
+
31
+ The dataset is machine translated and, thus, might include mistranslations. The quality of the translation has not been verified. Make sure the data is suitable for your use case!
32
+
33
+ ## Citation
34
+
35
+ Please, cite the original work when using the data.
36
+
37
+ @ARTICLE{10149341,
38
+ author={Üveges, István and Ring, Orsolya},
39
+ journal={IEEE Access},
40
+ title={HunEmBERT: A Fine-Tuned BERT-Model for Classifying Sentiment and Emotion in Political Communication},
41
+ year={2023},
42
+ volume={11},
43
+ number={},
44
+ pages={60267-60278},
45
+ keywords={Analytical models;Task analysis;Sentiment analysis;Dictionaries;Social sciences;Bit error rate;Data models;Emotion recognition;Fine-tuned BERT-model;huBERT;emotion analysis;sentiment analysis;political communication},
46
+ doi={10.1109/ACCESS.2023.3285536}
47
+ }