Statement:
stringlengths 7
24.3k
|
---|
lemma topo_open_imp:
fixes A and S (structure) defines "S \<equiv> topo A"
fixes B and T (structure) defines "T \<equiv> topo B"
shows "\<lbrakk> A \<subseteq> B; x open\<^bsub>S\<^esub> \<rbrakk> \<Longrightarrow> x open\<^bsub>T\<^esub>" (is "PROP ?P") |
lemma fp_cop_F_preferred:
assumes "y \<in> CD_on ds (CH (fp_cop_F ds) \<union> X'')"
assumes "x \<in> CH (fp_cop_F ds)"
assumes "Xd x = Xd y"
shows "(x, y) \<in> Pd (Xd x)" |
lemma bst_iff_sorted_wrt_less: "bst t \<longleftrightarrow> sorted_wrt (<) (inorder t)" |
lemma mdeg_child_if_wedge:
"\<lbrakk>max_deg (Node r xs) > n; fcard xs \<le> n \<or> \<not>(\<forall>t \<in> fst ` fset xs. max_deg t \<le> n)\<rbrakk>
\<Longrightarrow> \<exists>t \<in> fst ` fset xs. max_deg t > n" |
lemma exposed_face_of_Int_supporting_hyperplane_ge:
"\<lbrakk>convex S; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) exposed_face_of S" |
lemma intvs_decr_h:
"{l::int..<h - 1} = {l..<h} - {h-1}" |
lemma inv_baldR:
"\<lbrakk> invh l; invh r; bheight l = bheight r + 1; invc l; invc2 r \<rbrakk>
\<Longrightarrow> invh (baldR l a r) \<and> bheight (baldR l a r) = bheight l
\<and> invc2 (baldR l a r) \<and> (color l = Black \<longrightarrow> invc (baldR l a r))" |
lemma uint32_of_nat_code [code]:
"uint32_of_nat = uint32_of_int \<circ> int" |
lemma safety_invariant:
shows "safety (\<lambda>\<sigma>. \<forall>i. P (\<sigma> i))" |
lemma sum_not_less_zero[simp, dest]: "(s::'lbl) < 0 \<Longrightarrow> False" |
lemma prime_factorization_0 [simp]: "prime_factorization 0 = {#}" |
lemma ins_impl: "set_ins \<alpha> invar ins" |
lemma W_endomorphism:
"w\<in>W \<Longrightarrow> ChamberComplexEndomorphism X (permutation w)" |
lemma free_incorrect_cap_offset:
assumes "c \<noteq> NULL"
and "tag c = True"
and "perm_global c = False"
and "Mapping.lookup (heap_map h) (block_id c) = Some (Map m)"
and "offset c \<noteq> 0"
shows "free h c = Error (LogicErr (Unhandled 0))" |
lemma degen_path_sound:
assumes "path (degen.E T m) u p v"
shows "path E (fst u) (map fst p) (fst v)" |
lemma acyclic_5a_5e:
"acyclic_5a x \<longleftrightarrow> acyclic_5e x" |
lemma insert_type:
"t \<in> B h \<Longrightarrow> insert x t \<in> B h \<union> B (Suc h)" |
lemma mcont_id' [cont_intro, simp]: "mcont lub ord lub ord (\<lambda>x. x)" |
lemma bdt_Some_Node_iff [simp]:
"(bdt t var = Some (Bdt_Node bdt1 v bdt2)) =
(\<exists> p l r. t = Node l p r \<and> bdt l var = Some bdt1 \<and> bdt r var = Some bdt2 \<and>
1 < v \<and> var p = v )" |
lemma field_cont_on_typeI_region_cont_on_edges:
assumes typeI_twoC: "typeI_twoCube twoC"
and field_cont: "continuous_on (cubeImage twoC) F"
and member_of_boundary: "(k,\<gamma>) \<in> boundary twoC"
shows "continuous_on (\<gamma> ` {0 .. 1}) F" |
lemma flow_initial_time[simp]: "t0 \<in> T \<Longrightarrow> x0 \<in> X \<Longrightarrow> flow t0 x0 t0 = x0" |
lemma ordinal_plus_oSuc [simp]: "x + oSuc y = oSuc (x + y)" |
lemma mutator_reachable_tso:
"sys_mem_store_buffers (mutator m) s = mw_Mutate r f opt_r' # ws
\<Longrightarrow> mut_m.reachable m r s \<and> (\<forall>r'. opt_r' = Some r' \<longrightarrow> mut_m.reachable m r' s)"
"sys_mem_store_buffers (mutator m) s = mw_Mutate_Payload r f pl # ws
\<Longrightarrow> mut_m.reachable m r s" |
lemma approx_diff: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a - c \<approx> b - d" |
lemma finite_natarray2: "finite {(x, y). x < (m::nat) & y < (n::nat)}" |
lemma exits_simps [simp]:
"exits [ADD] = {1}"
"exits [LOADI v] = {1}"
"exits [LOAD x] = {1}"
"exits [STORE x] = {1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMP i] = {1 + i}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPGE i] = {1 + i, 1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPLESS i] = {1 + i, 1}" |
lemma dom_restrict_inter[simp] : "T \<triangleleft> S \<triangleleft> p = T \<inter> S \<triangleleft> p" |
lemma total_on_lexord_less_than_char_linear2:
\<open>xs \<noteq> ys \<Longrightarrow> (xs, ys) \<notin> lexord (less_than_char) \<longleftrightarrow>
(ys, xs) \<in> lexord less_than_char\<close> |
lemma
assumes A: "\<forall>xs A. (\<forall>X \<in> A. (xs, X) \<in> failures P) \<longrightarrow>
(xs, \<Union>X \<in> A. X) \<in> failures P"
shows "\<forall>xs. xs \<in> traces P" |
lemma split_invar: "invar t \<Longrightarrow> split t = t" |
lemma mult_Limit: "Limit \<gamma> \<Longrightarrow> x * \<gamma> = \<Squnion> ((*) x ` elts \<gamma>)" |
lemma geod_dist3:
assumes "a \<le> 2^n" "b \<le> 2^p"
shows "dist (geod n a) (geod p b) = abs(b/2^p - a/2^n) * dist x0 y0" |
lemma L2_set_empty [simp]: "L2_set f {} = 0" |
lemma assertion_fun_disj_less_one: "assertion_fun = Apply.disjunctive \<inter> {x::'a::boolean_algebra \<Rightarrow> 'a . x \<le> id}" |
lemma drop_bit_word_minus_numeral [simp]:
\<open>drop_bit (numeral n) (- numeral k) =
(word_of_int (drop_bit (numeral n) (take_bit LENGTH('a) (- numeral k))) :: 'a::len word)\<close> |
lemma stream_rel_pred_szip: "stream_all2 P u v \<longleftrightarrow> pred_stream (case_prod P) (szip u v)" |
lemma reg_funas:
"\<L> \<A> \<subseteq> \<T>\<^sub>G (fset (ta_sig (ta \<A>)))" |
lemma at_least_one_step:"steps0 (1, [], r) tm n = (0,tap) \<Longrightarrow> 0 < n" |
lemma epsclo_nextl [simp]: "epsclo (nextl Q xs) = nextl Q xs" |
lemma valid_adv_start_bounds':
assumes "valid_window args t0 sub rho w" "w_run_t args (w_ti w) = Some (ti', t)"
"w_run_sub args (w_si w) = Some (si', bs)"
shows "w_ti (adv_start args w) = ti'" "w_si (adv_start args w) = si'" |
lemma "(R'::'a::complete_lattice \<Rightarrow> 'b::complete_lattice) \<in> Apply.Disjunctive \<Longrightarrow>
DataRefinement S R R' S' \<Longrightarrow> R (- grd S) \<le> - grd S'" |
lemma apply_swap_same [simp]:
"c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> \<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c = c" |
lemma (in Order) BNTr4:"\<lbrakk>f \<in> carrier D \<rightarrow> carrier D; a \<in> carrier D;
\<forall>x\<in>carrier D. x \<preceq> (f x); W1 \<in> WWa D f a; W2 \<in> WWa D f a;
\<exists>b\<in>carrier D. ord_equiv (Iod D W1) (Iod D (segment (Iod D W2) b))\<rbrakk> \<Longrightarrow>
W1 \<subseteq> W2" |
lemma holomorphic_injective_imp_regular:
assumes holf: "f holomorphic_on S"
and "open S" and injf: "inj_on f S"
and "\<xi> \<in> S"
shows "deriv f \<xi> \<noteq> 0" |
lemma all_bi_edges_alt2: "all_bi_edges X Y = {{x, y} | x y. x \<in> X \<and> y \<in> Y }" |
lemma vdisjnt_singleton0[simp]: "vdisjnt (set {a}) (set {b}) \<longleftrightarrow> a \<noteq> b"
and vdisjnt_singleton1[simp]: "vdisjnt (set {a}) A \<longleftrightarrow> a \<notin>\<^sub>\<circ> A"
and vdisjnt_singleton2[simp]: "vdisjnt A (set {a}) \<longleftrightarrow> a \<notin>\<^sub>\<circ> A" |
lemma \<Delta>\<^sub>\<epsilon>_swap:
"prod.swap p |\<in>| \<Delta>\<^sub>\<epsilon> \<A> \<B> \<longleftrightarrow> p |\<in>| \<Delta>\<^sub>\<epsilon> \<B> \<A>" |
lemma bounded_closure[intro]:
assumes "bounded S"
shows "bounded (closure S)" |
theorem secure_implies_c_secure:
assumes S: "secure (c_process step out s\<^sub>0) I (c_dom D)"
shows "c_secure step out s\<^sub>0 I D" |
lemma L_alt: "L idx I =
to_language {xs. \<exists>\<AA> \<in> I. \<exists>\<BB>. \<AA> = fold CONS (rev xs) \<BB> \<and> Length \<BB> = 0 \<and>
#\<^sub>V \<BB> = idx \<and> (\<forall>x \<in> set xs. size x = idx)}" |
lemma Map_comp [simp]:
assumes "arr f" and "arr g" and "Dom g = Cod f"
shows "Map (COMP g f) = Comp (Cod g) (Dom g) (Dom f) (Map g) (Map f)" |
lemma subst_plus [usubst]: "\<sigma> \<dagger> (x + y) = \<sigma> \<dagger> x + \<sigma> \<dagger> y" |
lemma suffix_imp_sublist [simp, intro]: "suffix xs ys \<Longrightarrow> sublist xs ys" |
lemma
assumes asms: "A" "B"
shows "True" |
lemma closed_cspan_range_ket[simp]:
\<open>closure (cspan (range ket)) = UNIV\<close> |
lemma contour_integral_subpath_combine:
assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
contour_integral (subpath u w g) f" |
lemma rstep_imp_C_s_r:
assumes "(s,t) \<in> rstep R"
shows "\<exists>C \<sigma> l r. (l,r) \<in> R \<and> s = C\<langle>l\<cdot>\<sigma>\<rangle> \<and> t = C\<langle>r\<cdot>\<sigma>\<rangle>" |
lemma absolutely_integrable_component_ubound:
fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
assumes f: "f integrable_on A" and g: "g absolutely_integrable_on A"
and comp: "\<And>x b. \<lbrakk>x \<in> A; b \<in> Basis\<rbrakk> \<Longrightarrow> f x \<bullet> b \<le> g x \<bullet> b"
shows "f absolutely_integrable_on A" |
lemma iteci_lu_rule: "
( mi.ite_impl_lu i t e bdd = Some (p,bdd')) \<longrightarrow>
<is_bdd_impl bdd bddi>
iteci_lu i t e bddi
<\<lambda>(pi,bddi'). is_bdd_impl bdd' bddi' * \<up>(pi=p )>\<^sub>t" |
lemma FL_bisimilar_symp: "symp (FL_bisimilar F)" |
lemma card_one[elim]:
assumes "card A = 1"
obtains a
where "A = {a}" |
lemma AKcryptSK_not_AKcryptSK:
"\<lbrakk> AKcryptSK authK servK evs; evs \<in> kerbIV_gets \<rbrakk>
\<Longrightarrow> \<not> AKcryptSK servK K evs" |
lemma add_node_wf[simp]: "wf_graph g \<Longrightarrow> wf_graph (add_node v g)" |
lemma neg_lt: "neg\<cdot>(lt\<cdot>x\<cdot>y) = le\<cdot>y\<cdot>x" |
lemma input_unconstrained_aval_input_swap:
"\<forall>i. \<not> aexp_constrains a (V (I i)) \<Longrightarrow>
aval a (join_ir i r) = aval a (join_ir i' r)" |
lemma l3: assumes "x \<in> S2"
shows "finite x" |
lemma B_trusts_NS3:
"\<lbrakk>Crypt (shrK B) \<lbrace>Key K, Agent A\<rbrace> \<in> parts (spies evs);
B \<notin> bad; evs \<in> ns_shared\<rbrakk>
\<Longrightarrow> \<exists>NA. Says Server A
(Crypt (shrK A) \<lbrace>NA, Agent B, Key K,
Crypt (shrK B) \<lbrace>Key K, Agent A\<rbrace>\<rbrace>)
\<in> set evs" |
lemma signed_take_bit_eq_if_positive:
\<open>signed_take_bit n a = take_bit n a\<close> if \<open>\<not> bit a n\<close> |
lemma findnth_inv_layout_of_via_crsp[simp]:
"crsp (layout_of ap) (as, lm) (s, l, r) ires
\<Longrightarrow> findnth_inv (layout_of ap) n (as, lm) (Suc 0, l, r) ires" |
lemma %invisible F2'_antimono:
shows "antimono (\<lambda>XD. - RD_on (ds-{d'}) XD)" |
lemma lookup_pair_eq_valueI:
assumes "oalist_inv_raw xs" and "(k, v) \<in> set xs"
shows "lookup_pair xs k = v" |
lemma b_assn_invalid_merge5: "hn_ctxt (b_assn A P') x y \<or>\<^sub>A hn_invalid (b_assn A P) x y
\<Longrightarrow>\<^sub>t hn_invalid (b_assn A (\<lambda>x. P x \<or> P' x)) x y" |
lemma cm_all_eq_cm_all':
assumes "\<forall>(loc,t)\<in>set_zmset \<Delta>. \<exists>t'. t' \<in>\<^sub>A frontier (c_imp c0 loc) \<and> t' \<le> t"
shows "cm_all c0 \<Delta> = cm_all' c0 \<Delta>" |
lemma weakCongSum1:
fixes P :: ccs
and \<alpha> :: act
and P' :: ccs
and Q :: ccs
assumes "P \<Longrightarrow>\<alpha> \<prec> P'"
shows "P \<oplus> Q \<Longrightarrow>\<alpha> \<prec> P'" |
lemma msetext_dersh_trans:
assumes
zs_a: "zs \<in> lists A" and
ys_a: "ys \<in> lists A" and
xs_a: "xs \<in> lists A" and
trans: "\<forall>z \<in> A. \<forall>y \<in> A. \<forall>x \<in> A. gt z y \<longrightarrow> gt y x \<longrightarrow> gt z x" and
zs_gt_ys: "msetext_dersh gt zs ys" and
ys_gt_xs: "msetext_dersh gt ys xs"
shows "msetext_dersh gt zs xs" |
lemma lasso_run_rel_def:
"\<langle>R\<rangle>lasso_run_rel = br run_of_lasso (\<lambda>_. True) O (nat_rel \<rightarrow> R)" |
lemma filternew_flows_state_alt2: "filternew_flows_state \<T> = {e \<in> flows_state \<T>. e \<notin> backflows (flows_fix \<T>)}" |
lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)" |
lemma Col_dep2:
"real_euclid.Col a b c \<longleftrightarrow> dep2 (b - a) (c - a)" |
lemma reachable_append: "reachable g (xs @ ys) = reachable g xs \<union> reachable g ys" |
lemma (in \<Z>) \<KK>23_is_tiny_functor:
"\<KK>23 : cat_ordinal (2\<^sub>\<nat>) \<mapsto>\<mapsto>\<^sub>C\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> cat_ordinal (3\<^sub>\<nat>)" |
lemma continuous_on_inverse_ennreal': "continuous_on (UNIV :: ennreal set) inverse" |
lemma bisimI:
fixes P :: "ccs"
and Q :: "ccs"
assumes "P \<leadsto>[bisim] Q"
and "Q \<sim> P"
shows "P \<sim> Q" |
lemma SSpec_strong: "\<Turnstile> c :A \<Longrightarrow> \<forall> s t . SSpec c s t \<longrightarrow> A s t" |
lemma Trivially_fulfilled_FCD_Nabla_\<Upsilon>_empty:
"\<lbrakk>\<nabla>\<^bsub>\<Gamma>\<^esub>={} \<or> \<Upsilon>\<^bsub>\<Gamma>\<^esub>={}\<rbrakk>\<Longrightarrow> FCD \<Gamma> \<V> Tr\<^bsub>ES\<^esub>" |
lemma bin_basis_code: "code {\<zero>,\<one>}" |
lemma (in fl_subdigraph) fl_subdg_Hom_eq:
assumes "A \<in>\<^sub>\<circ> \<BB>\<lparr>Obj\<rparr>" and "B \<in>\<^sub>\<circ> \<BB>\<lparr>Obj\<rparr>"
shows "Hom \<BB> A B = Hom \<CC> A B" |
lemma (in Corps) PCauchy_lPCauchy:"\<lbrakk>valuation K v; PolynRg R (Vr K v) X;
\<forall>n. F n \<in> carrier R; \<forall>n. deg R (Vr K v) X (F n) \<le> an (Suc d);
P_mod R (Vr K v) X (vp K v\<^bsup>(Vr K v) (an N)\<^esup>) (F n \<plusminus>\<^bsub>R\<^esub> -\<^sub>a\<^bsub>R\<^esub> (F m))\<rbrakk>
\<Longrightarrow> P_mod R (Vr K v) X (vp K v\<^bsup>(Vr K v) (an N)\<^esup>)
(((Pseql\<^bsub>R X K v d\<^esub> F) n) \<plusminus>\<^bsub>R\<^esub> -\<^sub>a\<^bsub>R\<^esub> ((Pseql\<^bsub>R X K v d\<^esub> F) m))" |
lemma Skip_Sim: "Skip \<preceq>S Skip" |
lemma has_vector_derivative_eq_has_derivative_blinfun:
"(f has_vector_derivative f') (at x within U) \<longleftrightarrow>
(f has_derivative blinfun_scaleR_left f') (at x within U)" |
lemma [simp]: "fields E ClassCast = []" |
lemma unital_quantale_homset_iff: "f \<in> unital_quantale_homset = (comp_pres f \<and> Sup_pres f \<and> un_pres f)" |
lemma siso_cont_indis[simp]:
assumes *: "siso c" and **: "s \<approx> t" "i < brn c"
shows "eff c s i \<approx> eff c t i \<and> wt c s i = wt c t i \<and> cont c s i = cont c t i" |
lemma vrangeD[dest]:
assumes "\<langle>r, s\<rangle> \<in>\<^sub>\<circ> vrange A"
shows "r \<in>\<^sub>\<circ> A" and "s = \<R>\<^sub>\<circ> r" |
lemma bind_assoc_SBE: "(y :\<equiv> (x :\<equiv> m; k); h) = (x :\<equiv> m; (y :\<equiv> k; h))" |
theorem gb_sig_z_is_min_sig_GB:
assumes "p \<in> set (fst (gb_sig_z rw_rat_strict fs))" and "q \<in> set (fst (gb_sig_z rw_rat_strict fs))"
and "p \<noteq> q" and "punit.lt (snd p) adds punit.lt (snd q)"
shows "punit.lt (snd p) \<oplus> fst q \<prec>\<^sub>t punit.lt (snd q) \<oplus> fst p" |
lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1" |
lemma (in imap) added_ids_Deliver_Expunge_diff_collapse [simp]:
shows "e \<noteq> e' \<Longrightarrow> added_ids ([Deliver (i, Expunge e mo j)]) e' = []" |
lemma valuesum_rec:
assumes fin: "finite (dom (Mapping.lookup m))"
shows "valuesum m = (if Mapping.is_empty m then 0 else
let l = (SOME l. l \<in> Mapping.keys m) in the (Mapping.lookup m l) + valuesum (Mapping.delete l m))" |
lemma apply_guards_double_cons:
"apply_guards (y # x # G) s = (gval (gAnd y x) s = true \<and> apply_guards G s)" |