task
stringlengths
42
679
solution
stringlengths
72
2.19k
short answer
stringlengths
1
7
class
stringclasses
7 values
grade
int64
8
11
Пусть x1 < x2 < ... < x2024 — возрастающая последовательность натуральных чисел. При i = 1, 2, ..., 2024 обозначим pi = (x1 − 1/x1)(x2 − 1/x2)...(xi − 1/xi). Какое наибольшее количество натуральных чисел может содержаться среди чисел p1, p2, ..., p2024?
Приведем другой пример последовательности, дающий 2023 натуральных числа. Положим x1 = 2, x2 = = 3, ... , x2024 = 2025. Тогда xk − 1/xk = k + 1 − 1/(k + 1) = k(k + 2)/k + 1 . Тогда pi = (1 * 3)/2 * (2 * 4)/3 * ... * i(i + 2)/(i + 1) = i!(i + 2)/2, что является натуральным числом при i > 2.
2023
region
11
На доске написано n различных целых чисел. Произведение двух наибольших равно 77. Произведение двух наименьших тоже равно 77. При каком наибольшем n это возможно?
Числа −11, −7, −6, −5, . . . , 6, 7, 11 дают пример при n = 17. Допустим, что есть хотя бы 18 чисел с таким свойством. Тогда какие-то 9 из них будут одного знака (все положительны или все отрицательны). Среди этих 9 чисел модули двух наибольших будут не меньше 8 и 9 соответственно. Тогда их произведение не может быть равно 77
17
region
11
В некоторых клетках квадрата 200 * 200 стоит по одной фишке — красной или синей; остальные клетки пусты. Одна фишка видит другую, если они находятся в одной строке или одном столбце. Известно, что каждая фишка видит ровно пять фишек другого цвета (и, возможно, некоторое количество фишек своего цвета). Найдите наибольшее возможное количество фишек, стоящих в клетках.
Пример, содержащий 3800 фишек, получается, например, так. Выделим у квадрата 200 * 200 «каемку» ширины 5. Эта каемка состоит из четырех угловых квадратов 5 * 5 и четырех прямоугольников 5 * 190. Расставим фишки в эти четыре прямоугольника: в левый и в верхний — красные, а в правый и в нижний — синие. Нетрудно видеть, что этот пример удовлетворяет всем требованиям, и в нем по 1900 красных и синих фишек. Осталось доказать, что фишек не может быть больше 3800. Рассмотрим произвольную расстановку фишек, удовлетворяющую требованиям. Назовем ряд (строку или столбец) разноцветным, если в нем есть фишки обеих цветов. Сделаем сразу два полезных замечания. Во-первых, каждая фишка видит какую-то фишку другого цвета, поэтому каждая фишка лежит хотя бы в одном разноцветном ряду. Кроме того, поскольку разноцветный ряд содержит красную фишку, в нем не может быть более пяти синих фишек (иначе красная все их увидит). Аналогично, в разноцветном ряду не более пяти красных фишек, то есть всего не более 10 фишек. Теперь нетрудно получить требуемую оценку. Если есть 191 разноцветная строка, то в них не более 191 * 10 = 1910 фишек, а в оставшихся девяти строках не более 9 * 200 = 1800 фишек, итого не больше 1910 + 1800 < 3800 фишек. Аналогично разбирается случай, когда есть 191 разноцветный столбец. Если же и тех и других не более, чем по 190, то они содержат не более 190 * 10 + 190 * 10 = 3800 фишек, причем все фишки содержатся в этих рядах. Оценка доказана.
3800
allrus
11
На клетчатый лист бумаги размера 100 * 100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.
Положим n = 50. Назовем треугольничек верхним, если он расположен сверху от прямой, содержащей его горизонтальный катет, и нижним иначе. Пронумеруем горизонтальные линии сетки снизу вверх числами от 0 до 2n. Обозначим через uk (соответственно dk ) число отрезочков k-й линии, участвующих в верхних (соответственно нижних) треугольничках; тогда uk + dk = 2n и u0 = d2n = 2n. Кроме того, вертикальные отрезки сетки, расположенные между k-й и (k + 1)-й линиями, участвуют ровно в uk +dk+1 треугольничках, так что uk + dk+1 = 2n + 1. Отсюда несложно получить, что dk = k и uk = 2n − k при всех k. Рассмотрим теперь клетки, расположенные между k-й и (k + 1)-й линиями сетки. Хотя бы uk = 2n − k из этих клеток содержат по верхнему треугольнику, и хотя бы dk+1 = k + 1 из них содержат по нижнему. Значит, свободных клеток в этом ряду не больше, чем 2n−max(uk , dk+1), то есть не больше k при k < n и не больше (2n − 1) − k при k > n. Итого, общее число свободных клеток не больше, чем 2(0+1+. . .+(n−1)) = n(n−1). Осталось привести пример, на котором эта оценка достигается. Пример при n = 50 строится аналогично: выделяется «прямоугольник» из клеток со сторонами из n + 1 и n клеток, параллельными диагоналям доски, его клетки красятся в шахматном порядке (так, что угловые клетки прямоугольника — черные), и во все черные клетки кладется по два треугольничка (при этом n(n − 1) белых клеток остаются свободными); в оставшихся же четырех «углах» доски треугольнички кладутся так, что прямой угол
2450
allrus
11
Назовем число интересным, если любые две его соседние цифры отличаются на 2. Сколько 14-значных интересных чисел делится на 11?
Воспользуемся критерием делимости на 11: «число делится на 11, если знакочередующаяся сумма S его цифр делится на 11». Разобьем цифры числа на 7 пар. Тогда в S 7 двоек. Но данная сумма четна и по модулю меньше 22. Поэтому интересное число может делиться на 11, только если S = 0 . Но это также невозможно, поскольку в S входит нечетное число двоек (и либо больше будет со знаком плюс, либо со знаком минус). Поэтому ни одно интересное число не может делится на 11.
0
mipt
11
Назовем число интересным, если любые две его соседние цифры отличаются на 2. Сколько 18-значных интересных чисел делится на 11?
Воспользуемся критерием делимости на 11: «число делится на 11, если знакочередующаяся сумма S его цифр делится на 11». Разобьем цифры числа на 9 пар. Тогда в S 9 двоек. Но данная сумма четна и по модулю меньше 22. Поэтому интересное число может делиться на 11, только если S = 0 . Но это также невозможно, поскольку в S входит нечетное число двоек (и либо больше будет со знаком плюс, либо со знаком минус). Поэтому ни одно интересное число не может делится на 11.
0
mipt
11
В одной тетради Вася записал 11 натуральных чисел. В другую тетрадь Петя записал наибольшие общие делители каждой пары чисел, записанных в васиной тетради. Оказалось, что каждое число, записанное в одной из двух тетрадей, есть и в другой тетради. Какое наибольшее количество различных чисел могло быть написано в васиной тетради?
Заметим вначале, что для любых натуральных чисел A >= B выполняется неравенство НОД(A, B) <= A, причем равенство выполняется только в случае, когда A = B. Пусть A >= B – два самых больших числа в васиной тетради. Тогда в петиной тетради число A может появиться только в одном случае, когда A = B ; НОД всех других пар чисел будет меньше A. Значит, в васиной тетради не больше 10 различных чисел. Если Вася запишет в тетрадь числа 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1024, то в петиной тетради будут записаны только такие же числа.
10
mipt
11
В комнате находятся несколько рыцарей и лжецов (рыцари всегда говорят правду, а лжецы всегда лгут). Каждому дали листок бумаги и попросили написать про каждого из остальных, кем он является — лжецом или рыцарем. Когда собрали все листы бумаги, оказалось, что всего записей «лжец» оказалось 48, а записей «рыцарь» — 42. Сколько в комнате лжецов, если известно, что их меньше рыцарей?
Пусть в комнате находятся x человек, тогда каждый из них написал x − 1 слово, поэтому x(x − 1) = 42 + 48 = 90, то есть x = 10. Пусть в комнате y лжецов, тогда рыцарей — (10 − y). Поэтому ответов «лжец» каждый из рыцарей дал y раз, а каждый из лжецов — 10 − y раз. Имеем: y(10 − y) + (10 − y)y = 48 следовательно y**2 − 10y + 24 = 0 следовательно y = 4 или y = 6. Но лжецов — меньше, поэтому y = 4.
4
mipt
11
В комнате находятся несколько рыцарей и лжецов (рыцари всегда говорят правду, а лжецы всегда лгут). Каждому дали листок бумаги и попросили написать про каждого из остальных, кем он является — лжецом или рыцарем. Когда собрали все листы бумаги, оказалось, что всего записей «лжец» оказалось 42, а записей «рыцарь» — 48. Сколько в комнате лжецов, если известно, что их меньше рыцарей?
Пусть в комнате находятся x человек, тогда каждый из них написал x − 1 слово, поэтому x(x − 1) = 48 + 42 = 90, то есть x = 10. Пусть в комнате y лжецов, тогда рыцарей — (10 − y). Поэтому ответов «лжец» каждый из рыцарей дал y раз, а каждый из лжецов — 10 − y раз. Имеем: y(10 − y) + (10 − y)y = 42 следовательно y**2 − 10y + 21 = 0 следовательно y = 3 или y = 7. Но лжецов — меньше, поэтому y = 3.
3
mipt
11
Найдите количество восьмизначных чисел, произведение цифр каждого из которых равно 16875. Ответ необходимо представить в виде целого числа.
Ввиду того, что 16875 = 3**3 * 5**4 , искомые числа могут состоять из следующих цифр: (а) три тройки, четыре пятёрки и одна единица или (б) тройка, девятка, четыре пятёрки и две единицы. Вычислим количество вариантов в каждом случае. (а) Сначала выбираем три места из восьми для расположения троек, затем одно место из пяти оставшихся для размещения единицы (5 способов). Наконец, оставшиеся места занимают пятёрки. По правилу произведения выходит 280 способов. (б) Рассуждая аналогично, находим, что количество способов в этом случае равно 840. Окончательно получаем 280 + 840 = 1120 способов.
1120
mipt
11
Найдите количество восьмизначных чисел, произведение цифр каждого из которых равно 9261. Ответ необходимо представить в виде целого числа.
Ввиду того, что 9261 = 3**3 * 7**3 , искомые числа могут состоять из следующих цифр: (а) три тройки, три семёрки и две единицы или (б) тройка, девятка, три семёрки и три единицы. Вычислим количество вариантов в каждом случае. (а) Сначала выбираем три места из восьми для расположения троек, затем три места из пяти оставшихся для размещения семёрок . Наконец, оставшиеся места занимают единицы. По правилу произведения выходит 560 способов. (б) Рассуждая аналогично, находим, что количество способов в этом случае равно 1120. Окончательно получаем 560 + 1120 = 1680 способов.
1680
mipt
11
Дан правильный 60-угольник. В нем провели все диагонали, соединяющие вершины, между которыми не более 19 других вершин. Сколько равнобедренных треугольников нарисовано? (Сторонами равнобедренного треугольника могут быть стороны и проведенные диагонали данного правильного многоугольника.)
Посчитаем основания равнобедренных треугольников, которые не содержат центр многоугольника. Треугольник будет равнобедренным, если между точками основания будет нечетное число отмеченных точек, то есть 19, 17, 15, …, 1. Отрезков каждого вида ровно 60. Поэтому таких треугольников 60 * 10 = 600. Также возможен случай, когда треугольник содержит центр многоугольника. Это возможно только если между вершинами лежит ровно по 19 точек, и такие треугольники
620
mipt
9
Дан правильный 90-угольник. В нем провели все диагонали, соединяющие вершины, между которыми не более 29 других вершин. Сколько равнобедренных треугольников нарисовано? (Сторонами равнобедренного треугольника могут быть стороны и проведенные диагонали данного правильного многоугольника.)
Посчитаем основания равнобедренных треугольников, которые не содержат центр многоугольника. Треугольник будет равнобедренным, если между точками основания будет нечетное число отмеченных точек, то есть 29, 27, 25, …, 1. Отрезков каждого вида ровно 90. Поэтому таких треугольников 90 * 15 = 1350. Также возможен случай, когда треугольник содержит центр многоугольника. Это возможно только если между вершинами лежит ровно по 29 точек, и такие треугольники будут равносторонними. Их количество равно 30. Итого получаем 1380 треугольников.
1380
mipt
9
Когда новый ученик Вася пришел в класс, средний балл по алгебре вырос на 0,04. Какое наибольшее число учеников могло быть в классе до прихода Васи, если в классе было меньше 30 учеников?
Пусть в классе было x учеников, их суммарный балл по алгебре равнялся S, а Васина оценка по алгебре A. Тогда (S + A) / (x + 1) - S/x = 1/25. Отсюда (Ax - S) / x*(x + 1), то есть x*(x + 1) = 25(Ax - S). Значит, x(x + 1) делится на 25 = 5**2. Числа x и x+1 взаимно простые, поэтому либо x, либо x+1 делится на 25. Значит, в классе было либо 24, либо 25 учеников. Покажем, что в классе могло быть 25 учеников. Пусть S = 99, A = 5, x = 25 , тогда (S + A) / (x + 1) - S/x = 104/26 - 99/25 = 1/25.
25
mipt
9
Когда новый ученик Вася пришел в класс, средний балл по алгебре вырос на 0,02. Какое наибольшее число учеников могло быть в классе до прихода Васи, если в классе было меньше 30 учеников?
Пусть в классе было x учеников, их суммарный балл по алгебре равнялся S, а Васина оценка по алгебре A. Тогда (S + A) / (x + 1) - S/x = 1/50. Отсюда (Ax - S) / x*(x + 1), то есть x*(x + 1) = 50(Ax - S). Значит, x(x + 1) делится на 25 = 5**2. Числа x и x+1 взаимно простые, поэтому либо x, либо x+1 делится на 25. Значит, в классе было либо 24, либо 25 учеников. Покажем, что в классе могло быть 25 учеников. Пусть S = 112, A = 5, x = 25 , тогда (S + A) / (x + 1) - S/x = 117/26 - 112/25 = 1/50.
25
mipt
9
На столе лежат 100 различных карточек с числами 3, 6, 9, . . . 297, 300 (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы сумма чисел на выбранных карточках делилась на 5?
Данные числа, расположенные в порядке возрастания, образуют арифметическую прогрессию с разностью 3. Следовательно, остатки от деления на 5 у этих чисел чередуются. Действительно, если какое-то из этих чисел делится на 5, т.е. имеет вид 5𝑘, где 𝑘 принадлежит N, то следующее за ним число есть 5𝑘 + 3 – и оно даёт остаток 3 от деления на 5, далее – 5𝑘 + 6 = 5(𝑘 + 1) + 1, дающее остаток 1 от деления на 5, затем – 5𝑘 + 9 = 5(𝑘 + 1) + 4, дающее остаток 4 от деления на 5, затем 5𝑘 + 12 = 5(𝑘 + 2) + 2, дающее остаток 4 от деления на 5; наконец, следующим является 5𝑘 + 15 = 5(𝑘 + 3), которое снова делится на 5, после чего порядок остатков повторяется. Таким образом, остатки от деления данных чисел на 5 идут в порядке ... 0; 3; 1; 4; 2; 0 ... Среди данных нам 100 чисел есть по 20 чисел, дающих остатки 0, 1, 2, 3, 4 от деления на 5. Сумма двух чисел может делиться на 5 в следующих случаях. 1) Оба числа делятся на 5. Всего карточек с такими числами 20, и нужно выбрать 2 них – есть 1/2 * 20 * 19 = 190 способов сделать это. 2) Одно из чисел даёт остаток 1 от деления на 5 – тогда второе должно давать остаток 4 от деления на 5. Эту пару чисел можно выбрать 20 * 20 = 400 способами. 3) Одно из чисел даёт остаток 2 от деления на 5 – тогда второе даёт остаток 3, и, аналогично второму случаю, получаем 400 способов выбрать 2 числа. В итоге выходит 990 способов.
990
mipt
9
Даны две линейные функции 𝑓(𝑥) и 𝑔(𝑥) такие, что графики 𝑦 = 𝑓(𝑥) и 𝑦 = 𝑔(𝑥) – параллельные прямые, не параллельные осям координат. Найдите наименьшее значение функции (𝑔(𝑥))**2 + 𝑓(𝑥), если наименьшее значение функции (𝑓(𝑥))**2 + 𝑔(𝑥) равно −6.
Пусть 𝑓(𝑥) = 𝑎𝑥 + 𝑏, 𝑔(𝑥) = 𝑎𝑥 + 𝑐, где 𝑎 != 0. Рассмотрим ℎ(𝑥) = (𝑓(𝑥))**2 + 𝑔(𝑥). Раскрывая скобки, получаем ℎ(𝑥) = (𝑎𝑥 + 𝑏)**2 + (𝑎𝑥 + 𝑐) = 𝑎**2𝑥**2 + 𝑎(2𝑏+1)𝑥 + 𝑏**2 + 𝑐. График 𝑦 = ℎ(𝑥) – это парабола с ветвями вверх, минимальное значение принимается в вершине. Абсциссой вершины является 𝑥в = −(2𝑏 + 1) / 2𝑎 ; ордината вершины равна ℎ (𝑥в) = −𝑏 − 1/4 + 𝑐. Аналогично получаем, что минимальное значение выражения (𝑔(𝑥))**2 + 𝑓(𝑥) равно −𝑐 − 1/4 + 𝑏. Заметим, что сумма этих двух минимальных значений равна − 1/2 , следовательно, если одно из этих минимальных значений равно −6, то второе равно − 1 2 + 6 = 11/2 = 5,5 .
5.5
mipt
9
На каждой из прямых 𝑦 = 3 и 𝑦 = 4 отмечено по 73 точки с абсциссами 1, 2, 3, ... , 73. Сколькими способами можно выбрать три точки из отмеченных 146 так, чтобы они являлись вершинами прямоугольного треугольника?
Есть две возможности. 1) Гипотенуза треугольника лежит на одной из прямых, а вершина прямого угла – на второй прямой. Пусть 𝐴𝐵𝐶 – данный треугольник с прямым углом при вершине 𝐶, 𝐶𝐻 – его высота, опущенная на гипотенузу. Из пропорциональности отрезков прямоугольного треугольника получаем, что 𝐶𝐻**2 = 𝐴𝐻 * 𝐵𝐻, т.е. 𝐴𝐻 * 𝐵𝐻 = 1. Поскольку 𝐴𝐻 и 𝐵𝐻 – целые числа, то 𝐴𝐻 = 𝐵𝐻 = 1. Гипотенузу 𝐴𝐵, равную 2, можно расположить 71 * 2 = 142 способами (по 73 − 2 способов расположения на каждой из двух данных прямых), при этом положение вершины 𝐶 определяется однозначно. 2) Один из катетов треугольника (назовём его 𝐵𝐶) перпендикулярен данным прямым, а второй катет (𝐴𝐶) лежит на одной из данных прямых. Тогда положение катета 𝐵𝐶 можно выбрать 73 способами. Для каждого варианта расположения катета 𝐵𝐶 вершину 𝐴 можно расположить 144 способами (подходят все точки кроме уже выбранных 𝐵 и 𝐶) – всего выходит 73 * 144 = 10512 способов. Итого получаем 142 + 10512 = 10654 способа.
10654
mipt
9
На координатной плоскости рассматриваются квадраты, все вершины которых имеют целые неотрицательные координаты, а центр находится в точке (60; 45). Найдите количество таких квадратов.
Проведём через данную точку (60; 45) вертикальную и горизонтальную прямые (𝑥 = 60 и 𝑦 = 45). Возможны два варианта. а) Вершины квадрата лежат на этих прямых (а его диагонали параллельны осям координат). Тогда “нижняя” вершина квадрата может быть расположена 45 способами: (60; 0),(60; 1), ... ,(60; 44) (положение остальных вершин при этом определяется однозначно). б) Вершины квадрата не лежат на указанных прямых. Это означает, что вершины лежат по одной в каждой из четырёх частей, на которые прямые 𝑥 = 60 и 𝑦 = 45 разделяют плоскость. Рассмотрим “левую нижнюю” вершину (её местоположение однозначно определяет остальные вершины). Для того, чтобы координаты всех вершин квадрата оказались неотрицательными, необходимо и достаточно, чтобы эта вершина попала в квадрат 15 <= 𝑥 <= 59, 0 <= 𝑦 <= 44. Получаем 45**2 способов. Общее количество способов равно 45**2 + 45 = 46 * 45 = 2070.
2070
mipt
9
На координатной плоскости рассматриваются квадраты, все вершины которых имеют натуральные координаты, а центр находится в точке (55; 40). Найдите количество таких квадратов.
Проведём через данную точку (55; 40) вертикальную и горизонтальную прямые (𝑥 = 55 и 𝑦 = 40). Возможны два варианта. а) Вершины квадрата лежат на этих прямых (а его диагонали параллельны осям координат). Тогда “нижняя” вершина квадрата может быть расположена 39 способами: (55; 1),(55; 1), . . . ,(55; 39) (положение остальных вершин при этом определяется однозначно). б) Вершины квадрата не лежат на указанных прямых. Это означает, что вершины лежат по одной в каждой из четырёх частей, на которые прямые 𝑥 = 55 и 𝑦 = 40 разделяют плоскость. Рассмотрим “левую нижнюю” вершину (её местоположение однозначно определяет остальные вершины). Для того, чтобы координаты всех вершин квадрата оказались натуральными, необходимо и достаточно, чтобы эта вершина попала в квадрат 16 <= 𝑥 <= 54, 1 <= 𝑦 <= 39. Получаем 39**2 способов. Общее количество способов равно 39**2 + 39 = 39 * 40 = 1560.
1560
mipt
9
Известно, что для трёх последовательных натуральных значений аргумента квадратичная функция 𝑓(𝑥) принимает значения 13, 13 и 35 соответственно. Найдите наименьшее возможное значение 𝑓(𝑥).
Пусть 𝑛, 𝑛 + 1, 𝑛 + 2 – три данные последовательные значения аргумента. Поскольку квадратичная функция принимает одинаковые значения в точках, симметричных относительно абсциссы вершины параболы 𝑥в, то 𝑥в = 𝑛 + 0,5, а значит, 𝑓(𝑥) может быть представлена в виде 𝑓(𝑥) = 𝑎 (𝑥 − 𝑛 − 0,5)**2 + 𝑐. Так как 𝑓(𝑛) = 13, 𝑓(𝑛 + 2) = 35, то получаем 𝑎/4 + 𝑐 = 13, 9𝑎/4 + 𝑐 = 35, откуда 𝑎 = 11, 𝑐 = 41/4 . Но 𝑐 = 𝑓(𝑥в) и есть наименьшее значение функции.
4.25
mipt
9
На полуокружности равномерно отметили 200 точек (расстояние между любыми двумя соседними точками равны). Любые две точки, между которыми не более 19 точек, соединили отрезком. Сколько равнобедренных треугольников с вершинами в отмеченных точках нарисовано?
Посчитаем основания этих равнобедренных треугольников. Треугольник будет равнобедренным, если между точками основания будет нечетное число отмеченных точек. Если между точками основания лежит 19 точек, то таких оснований будет 200 - 19 - 1 = 180. Если 17 – то 182, если 15 – то 184, …, если 1 – то 198. Таким образом, искомое количество равно (180 + 198)/2 * 10 = 1890.
1890
mipt
10
На полуокружности равномерно отметили 210 точек (расстояние между любыми двумя соседними точками равны). Любые две точки, между которыми не более 17 точек, соединили отрезком. Сколько равнобедренных треугольников с вершинами в отмеченных точках нарисовано?
Посчитаем основания этих равнобедренных треугольников. Треугольник будет равнобедренным, если между точками основания будет нечетное число отмеченных точек. Если между точками основания лежит 17 точек, то таких оснований будет 210 - 17 - 1 = 192. Если 15 – то 194, если 13 – то 196, …, если 1 – то 208. Таким образом, искомое количество равно (192 + 208)/2 * 9 = 1800.
1800
mipt
10
На плоскости с заданной прямоугольной декартовой системой координат нарисован квадрат с вершинами в точках (0; 0), (0; 59), (59; 59) и (59; 0). Найдите количество способов выбрать два узла сетки внутри этого квадрата (не включая его границу) так, чтобы хотя бы один из этих узлов лежал на одной из прямых 𝑦 = 𝑥 или 𝑦 = 59 − 𝑥, но оба выбранных узла не лежали ни на какой прямой, параллельной любой из координатных осей.
Возможны два случая. 1) Оба выбранных узла лежат на указанных в условии прямых. На каждой из них внутри квадрата лежат по 58 точек, причём повторяющихся среди них нет (точка пересечения прямых имеет нецелые координаты). Для выбора первой точки есть 116 способов, а для выбора второй – на 3 меньше (подходят все точки, кроме первой и двух точек, лежащих с первой на той же горизонтали или вертикали). При этом мы учитывали упорядоченные пары точек, поэтому каждую пару точек мы посчитали дважды. Значит, в этом случае получаем 116 * 113/2 = 6554 способа. 2) Ровно один из выбранных узлов лежит на данных в условии прямых. Выберем сначала узел, лежащий на одной из прямых (116 способов). Посчитаем, сколько после этого есть способов выбрать второй узел. Всего в квадрате отмечены 58**2 узлов; из них мы должны исключить узлы на диагоналях (116 штук), а также узлы, стоящие с выбранным на одной горизонтали (56 штук с учётом исключённых ранее диагональных) или на одной вертикали (56 штук). Отсюда второй узел можно выбрать 582−116−112 = 3136 способами, а количество способов выбрать пару узлов равно 116 * 3136 = 363776. Подводя итоги, имеем 6554 + 363776 = 370330 способов.
370330
mipt
10
На столе лежит 55 кучек конфет. В одной кучке лежит 1 конфета, в другой — две, в третьей — 3, …, в последней — 55. Петя и Вася играют в следующую игру, делая ходы по очереди; начинает Петя. За один ход игрок берёт одну конфету из любой кучки. Если игрок забрал из кучки последнюю конфету, то он её съедает, а иначе выбрасывает. Игра продолжается до тех пор, пока все конфеты из кучек не будут съедены или выброшены. Какое наибольшее количество конфет может гарантированно съесть Петя?
Понятно, что Петя может съесть 1 конфету, например, если самым первым ходом заберёт конфету из кучки с 1 конфетой. Докажем, что Вася может помешать Пете съесть больше 1 конфеты. Для этого Вася будет действовать следующим образом. Если в какой-то кучке осталась ровно 1 конфета, он заберёт её и съест. Если же кучек с 1 конфетой нет, он будет брать конфету из любой кучки, в которой более 2 конфет. Для начала поймём, почему Вася всегда сможет сделать ход по такой стратегии. Предположим, что в какой-то момент Вася не может сделать ход, то есть в каждой кучке не больше 2 конфет, при этом нет кучек с 1 конфетой. Тогда в каждой кучке ровно 2 конфеты, и перед ходом Васи осталось чётное количество конфет. С другой стороны, изначально на столе конфет было 1 + 2 + … + 55 = 55 * 56/2 = 1540, т. е. чётное количество. Значит, после хода Пети должно оставаться нечётное количество конфет, а после хода Васи — чётное количество, противоречие. Теперь докажем, что при такой стратегии Васи Петя не сможет съесть больше 1 конфеты. Заметим, что если после какого-то хода Пети нет кучек из 1 конфеты, то их больше никогда и не будет. Действительно, кучки, из которых берёт конфеты Вася, после его хода не могут состоять только из 1 конфеты, а все кучки из 1 конфеты, которые оставляет Петя, Вася сразу же съедает следующим ходом. Таким образом, если Петя на первом ходу съест кучку из 1 конфеты, больше он конфет никогда не съест. Если же он не будет этого делать, её следующим ходом съест Вася, а Петя успеет за свой первый ход сделать не более одной новой кучки из 1 конфеты. Если она всё-таки появится (из кучки с 2 конфетами), и Петя не съест её на своём втором ходу, то он не съест вообще ничего, так как новой кучки из 1 конфеты на втором ходу он образовать не сможет. А если съест, то, как и ранее, больше ничего съесть не сможет. Итак, у Васи есть стратегия, позволяющая не дать Пете съесть более 1 конфеты
1
hse
8
Вычислите сумму 1**2 + 2**2 − 3**2 − 4**2 + 5**2 + 6**2 − 7**2 − 8**2 + 9**2 + 10**2 − ... + 2017**2 + 2018**2
Заметим, что при любом k верно равенство k**2 − (k + 1)**2 − (k + 2)**2 + (k + 3)**2 = 4. Поэтому вся сумма равна 1 + 504 * 4 + 2018**2 = 4074341.
4074341
hse
8
Сколькими способами из цифр 1, 2, 3, 4 можно составить число, кратное 6? При составлении числа каждую цифру можно использовать один раз или не использовать совсем
Число делится на 6, тогда и только тогда, когда оно делится на 2 и на 3. Число, составленное из цифр 1, 2, 3, 4 делится на 2, если и только если его последняя цифра чётная, то есть 2 или 4. Число делится на 3, тогда и только тогда, когда его сумма цифр делится на 3. В нашей ситуации такое возможно, для следующих наборов цифр: {1, 2}, или {1, 2, 3}, или {2, 4}, или {2, 3, 4} имеем 2 варианта в первом случае, 2 варианта во втором и 4 в последнем третьем случае. Итого 9 вариантов
9
hse
8
Найдите наименьшее натуральное число, которое можно получить при подстановке натуральных чисел вместо переменных в следующее выражение 13x**2 + y**2 + z**2 − 4xy − 6xz + y.
Заметим, что 13x**2 + y**2 + z**2 − 4xy − 6xz + y = (2x − y)**2 + (3x − z)**2 + y (1) Поскольку квадрат целого числа всегда неотрицательное число, он достигает минимума, когда равен 0. Натуральное число y не меньше 1. Если же y = 1, то число (2x − y) — нечётное и его квадрат также не меньше 1. Поэтому выражение (1) не меньше 2 для любых натуральных x, y, z. Значение 2 может быть достигнуто несколькими способами, например, x= 1,y = 2,z = 3 или x = 1, y = 1, z = 3.
2
hse
8
Какое максимальное количество полосок 5*1 можно вырезать из квадрата на клетчатой бумаге размера 8*8 клеток?
Заметим, что больше 12 фигурок из 5 клеток в каждой поместить на клетчатую бумагу в которой всего 8 * 8 = 64 клетки заведомо не удастся (т. к. 64 = 12 * 5 + 4). Поэтому остается подыскать пример из 12 полосок.
12
hse
8
В стране из 2018 городов каждая пара городов соединена одной дорогой. Власти решили присвоить каждой трассе статус «федеральной» или «социальной», и для этой цели выпустили метки «Ф» и «С» суммарным числом, равным числу дорог. Однако рабочие расставили метки неправильно: на некоторых трассах могло оказаться по одной метке обоих видов, а на некоторых могло не оказаться ни одной. (Случай, когда на каждой дороге — ровно по одной метке, также считается возможным.) Каково максимально возможное число дорог с меткой «федеральная», если для любой такой дороги на каждой, не имеющей с ней общих концов, есть метка «социальная»?
Будем называть дорогу федеральной, если она имеет метку «Ф», даже если она при этом имеет метку «С». Если есть две федеральные дороги без общих концов (пусть это дороги А–Б и В–Г), то федеральных дорог не более 6 (потому что все дороги, кроме дорог между городами А, Б, В, Г, обязательно имеют метку «С», а число меток равно числу дорог). Если любые две федеральные дороги имеют общий конец, то рассмотрим две из них: А–Б и Б–В. Тогда либо есть ещё только одна федеральная дорога А–В (в таком случае федеральных дорог больше нет, т. е. их всего 3), либо все федеральные дороги имеют своим концом город Б (в таком случае федеральных дорог не более 2017). Случай с 2017 федеральными дорогами возможен (все дороги из одного города имеют метку «Ф», все остальные дороги – метку «С»).
2017
hse
8
Шесть почти честных пиратов закопали добытые золотые монеты на необитаемом острове и пустились в бега. Через год первый пират вернулся на остров, разделил все монеты на шесть равных частей, одна монета оказалась лишней. Пират забрал себе одну из частей и лишнюю монету, а остальное закопал. То же самое сделали по очереди остальные пираты, причем никто из них не знал о действиях других. Через много лет ученый археолог наткнулся на закопанные монеты. Какое наименьшее количество монет мог найти археолог?
Заметим, что после каждого перезакапывания число монет делится на 5. Пусть археолог нашёл n, монет, тогда n = 5a. Значит, шестой пират нашёл 6a + 1, что также делится на 5, то есть a = 4 % 5. Значит, a = 5b − 1, то есть 6a + 1 = 5(6b−1). Пятый нашёл 6(6b − 1) + 1 = 6**2b − 5. При этом 6**2b − 5 делится на 5, откуда b делится на 5, то есть b = 5c, 6**2b − 5 = 5(6c**2 − 1). Продолжая таким образом, получаем, что второй нашёл 6(6**4e − 1) + 1 = 6**5e − 5. При этом e делится на 5, то есть e = 5f, 6**5 e − 5 = 5(6**5f − 1). Первый пират нашёл 6**6f − 5, но это уже не имеет значения. Таким образом, b = 5c - ... = 5**4f. Тогда n=5a=5(5b−1)=5**6f −5. Поскольку f > 1, b > 5**6 − 5 = 15620.
15620
hse
8
Чётное число 2N >2 называется подходящим, если оно делится на модуль разницы между наибольшим из своих чётных делителей, отличных от 2N, и наибольшим из своих нечётных делителей. Сколько существует подходящих чётных чисел, не превосходящих 2018?
Предположим, что число 2N подходящее. Пусть 2N = 2**k*m, где m нечётное. Если k >= 2, то условие говорит, что 2**k*m делится на 2**(k−1)m − m = m(2**(k−1) −1), что возможно только при условии k = 2. Если k = 1 и m = ps, где p минимальный простой нечетный делитель m, то 2ps делится на 2s − ps = (2 − p)s, откуда имеем p−2p, значит p=3. Число N или имеет остаток 2 по модулю 4 или имеет остаток 3 по модулю 6. Тем самым число 2N является подходящим, если число N может иметь остаток 2, 3, 6, 9, 10 по модулю 12. Это значит, что в каждом ряду из 12 последовательных четных чисел ровно пять подходящих. Используя равенство 2018 = 2 * (12 * 84 + 1), получаем ответ 420 = 5 * 84.
420
hse
8
Действительные числа 𝑎, 𝑏, 𝑐, 𝑑 таковы, что 𝑎 + 𝑏 = 9/(𝑐 − 𝑑) и 𝑐 + 𝑑 = 25/(𝑎 − 𝑏). Какое наименьшее значение может принимать величина 𝑎**2 + 𝑏**2 + 𝑐**2 + 𝑑**2 ?
Если данные равенства домножить на знаменатели соответствующих дробей и сложить, мы получим 2(𝑎𝑐 − 𝑏𝑑) = 34. Докажем, что 𝑎**2 + 𝑏**2 + 𝑐**2 + 𝑑**2 >= 2(𝑎𝑐 − 𝑏𝑑). Это следует из 𝑎**2 + 𝑐**2 >= 2𝑎𝑐 (эквивалентно (𝑎 − 𝑐)**2 >= 0) и 𝑏**2 + 𝑑**2 >= −2𝑏𝑑 (эквивалентно (𝑏 + 𝑑)**2 >= 0). Значит, 𝑎**2 + 𝑏**2 + 𝑐**2 + 𝑑**2 >= 34. Равенство достигается, если все указанные выше неравенства обращаются в равенства, то есть при 𝑎 = 𝑐 и 𝑏 = −𝑑. Подставив эти соотношения в равенства, данные в условии, нетрудно найти подходящие значения, например 𝑎 = 4, 𝑏 = −1, 𝑐 = 4, 𝑑 = 1.
34
hse
9
Найдите все составные натуральные числа 𝑛, обладающие следующим свойством: каждый натуральный делитель числа 𝑛 (в частности, само 𝑛), уменьшенный на 1, является квадратом целого числа.
Предположим, что 𝑛 делится на квадрат какого-то простого числа 𝑝. Тогда у него есть делитель 𝑝**2 = 𝑏**2 +1; но два квадрата целых чисел могут отличаться на 1, только если это 0 и 1. Пусть 𝑛 делится на какие-то два простых числа 𝑝 и 𝑞. Без ограничения общности можно считать, что 𝑝 > 𝑞. Из условия, что любой делитель, уменьшенный на 1, является квадратом, можно записать 𝑝 = 𝑎**2 + 1, 𝑞 = 𝑏**2 + 1, 𝑝𝑞 = 𝑐**2 + 1. Вычтем из третьего уравнения первое, получим 𝑝𝑞 − 𝑝 = 𝑐**2 − 𝑎**2 . Это можно переписать в виде 𝑝(𝑞 − 1) = (𝑐 − 𝑎)(𝑐 + 𝑎). Так как 𝑝 — простое число, один из множителей в правой части должен делиться на 𝑝. Заметим, что из условия 𝑝 > 𝑞 следует, что 𝑝𝑞 < 𝑝**2 , откуда 𝑐 < 𝑝. Поэтому 𝑐 − 𝑎 < 𝑝 и, так как 𝑐 != 𝑎, не может делиться на 𝑝. Значит, 𝑐 + 𝑎 должно делиться на 𝑝. При этом 𝑐 < 𝑝 и 𝑎 < 𝑝, откуда 𝑐 + 𝑎 должно быть в точности равно 𝑝. Итак, получили, что 𝑐 = 𝑝 − 𝑎. Кроме того, так как 𝑝 = 𝑐 + 𝑎, 𝑞 − 1 должно быть равно оставшемуся множителю, т. е. 𝑐 − 𝑎. Значит, 𝑞 = 𝑐 − 𝑎 + 1 = 𝑝 − 2𝑎 + 1. Отсюда видно, что числа 𝑝 и 𝑞 разной чётности. Но так как они оба простые и 𝑝 > 𝑞, получаем, что 𝑞 = 2. Подставляя 𝑞 = 2, получаем 2 = 𝑐 − 𝑎 + 1 = 𝑝 − 2𝑎 + 1, откуда, во-первых, 𝑐 = 𝑎 + 1, а во-вторых, 𝑝 = 2𝑎 + 1. Тогда 𝑝𝑞 = 2𝑝 = 4𝑎 + 2 и 𝑝𝑞 = 𝑐**2 + 1 = (𝑎 + 1)**2 + 1. Приравнивая, получаем квадратное уравнение 𝑎**2 + 2𝑎 + 2 = 4𝑎 + 2, корнями которого являются числа 2 и 0, откуда 𝑝 равно 5 или 1. Но так как 𝑝 должно быть простым, то остаётся единственный вариант 𝑝 = 5. Таким образом, единственный возможный случай— это 𝑝 = 5, 𝑞 = 2. Понятно, что других простых чисел в разложении 𝑛 уже быть не может.
10
hse
10
Про вещественные числа a, b и c известно, что abc + a + b + c = 10, ab + bc + ac = 9. Для каких чисел x можно утверждать, что хотя бы одно из чисел a, b, c равно x? (Найдите все такие числа x и докажите, что других нет.)
Вычтем из первого равенства второе, преобразовав, получим (a − 1)(b − 1)(c − 1) = 0. Отсюда следует, что одно из a, b, c равно единице. Другие x не подходят, так как тройки (a, b, c) = (4, 1, 1) и (a, b, c) = (0, 9, 1) удовлетворяют условию.
1
hse
10
Рассмотрим всевозможные приведенные квадратные трёхчлены x**2 + px + q с целыми коэффициентами p и q. Назовём областью значений такого трехчлена множество его значений во всех целых точках x = 0, +1, -1, +2, -2 ... . Какое наибольшее количество таких трехчленов можно выбрать, чтобы их области значений попарно не пересекались?
Заметим, что замена переменной x на x + k при любом целом k не меняет области значений многочлена. Тогда, сделав замену x на x − [p/2] (квадратные скобки означают целую часть) можем считать, что любой многочлен имеет один из двух видов: x**2 + q или x**2 + x + q. Области значений любых двух многочленов разного вида пересекаются: в самом деле, значения многочленов x**2 + q и x**2 + x + q' совпадают при x = q − q'. Значит, многочлены разного вида брать нельзя. Многочленов первого вида можно выбрать не больше двух, поскольку если области значений f1(x) = x**2 + q и f2(x) = x**2+q' не пересекаются, то q−q' = 4k + 2 при некотором k принадлежащем Z. В самом деле, для нечетной разности свободных членов q − q' = 2k + 1 имеем f1(k) = f2(k + 1). Для делящейся на 4 разности свободных членов q − q' = 4k имеем f1(k − 1) = f2(k + 1). Но если выбрано хотя бы три многочлена, то среди попарных разностей свободных членов хотя бы одна не имеет вид 4k + 2. Многочленов второго вида тоже можно выбрать не больше двух, поскольку если области значений f1(x) = x**2 + x + q и f2(x) = x**2 + x + q' не пересекаются, то q − q' = 2k + 1 при некотором k принадлежащем Z. В самом деле, для четной разности свободных членов q − q' = 2k имеем f1(k − 1) = f2(k). Опять же, если выбрано хотя бы три многочлена, то среди попарных разностей свободных членов хотя бы одна четна. Итак, больше двух многочленов выбрать нельзя. Пример для двух: f1(x) = x**2 и f2(x) = x**2 + 2.
2
hse
10
Натуральные числа 𝑎, 𝑏, 𝑐 таковы, что 1 <= 𝑎 < 𝑏 < 𝑐 <= 3000. Найдите наибольшее возможное значение величины НОД(𝑎, 𝑏) + НОД(𝑏, 𝑐) + НОД(𝑐, 𝑎).
Заметим, что НОД(𝑎, 𝑏) = НОД(𝑎, 𝑏 − 𝑎) <= 𝑏 − 𝑎, так как НОД двух натуральных чисел не превосходит каждое из них. Аналогично получаем, что НОД(𝑏, 𝑐) <= 𝑐−𝑏, а также НОД(𝑐, 𝑎) <= 𝑎. Складывая эти три неравенства, получаем НОД(𝑎, 𝑏) + НОД(𝑏, 𝑐) + НОД(𝑐, 𝑎) <= (𝑏 − 𝑎) + (𝑐 − 𝑏) + 𝑎 = 𝑐 <= 3000. В качестве примера на 3000 можно предъявить, например, 𝑎 = 1000, 𝑏 = 2000, 𝑐 = 3000. В этом случае НОД(𝑎, 𝑏) + НОД(𝑏, 𝑐) + НОД(𝑐, 𝑎) = 1000 + 1000 + 1000 = 3000.
3000
hse
11
Болельщики должны выбрать 6 лучших хоккеистов чемпионата: одного вратаря, двух защитников и трех нападающих. Среди претендентов: 3 вратаря, 5 защитников, 6 нападающих и 3 «универсала». «Универсал» — игрок, хороший в разных ролях, который поэтому может быть выбран как в качестве защитника, так в качестве нападающего (но не вратаря). Сколько существует способов выбрать эту шестерку? Требуется получить числовое значение.
С выбором вратаря проблем нет: 3 способа. При выборе защитника есть 3 возможности: а) оба защитника выбираются из 5-ти защитников: (5 * 4)/2 = 10; тогда при выборе нападающих есть 6 + 3 = 9 претендентов; б) один защитник выбирается из 5-ти защитников, а второй из 3-х «универсалов»; тогда при выборе нападающих есть 6 + 2 = 8 претендентов; в) оба защитника выбираются из 3-х «универсалов»; тогда при выборе нападающих есть 6 + 1 = 7 претендентов. Таким образом, общее количество вариантов равно: 3 * ( (5 * 4)/2 * (9 * 8 * 7)/(2 * 3) + 5 * 3 * (8 * 7 * 6)/(2 * 3) + (3 * 2)/2 * (7 * 6 * 5)/(2 * 3) ) = 3 * 7 * 5 * (3 * 8 + 8 * 3 + 3) = 105 * (24 + 24 + 3) = 5355.
5355
msu
11
В магазине продают три вида ручек: по 14 рублей, по 15 рублей и по 16 рублей. Вася купил ручек ровно на 170 рублей. Сколькими способами это можно было сделать?
Пусть Вася купил k ручек по 14 рублей, l ручек по 15 рублей и m ручек по 16 рублей. Тогда 14k + 15l + 16m = 170; для ответа на вопрос задачи нужно найти количество решений этого уравнения в неотрицательных целых числах. Перейдя в уравнении к остаткам от деления на 15, получим, что m = k + 5 + 15s, где s — некоторое целое число. Подставив это выражение в исходное уравнение и поделив обе его части на 15, получим 2k + l + 16s = 6. Так как 2k + l >= 0, то s <= 0; если s <= −2, то 2k + l >= 6 + 32 = 38 и 170 = 14k + 15l + 16m >= 14k + 7l >= 7 * 38 > 170 — противоречие, следовательно, s = 0 или s = −1. При s = 0 получаем k = 0 и l = 6, k = 1 и l = 4, k = 2 и l = 2, k = 3 и l = 0, при этом m = k + 5 равно 5, 6, 7, 8 соответственно. При s = −1 имеем m = k + 5 − 15 = k − 10 >= 0, значит, 2k >= 20 и 22 = 22 + 0 = 20 + 2, получаем k = 11 и l = 0, k = 10 и l = 2, при этом m равно 1 и 0 соответственно. Итого 6 вариантов.
6
msu
11
Даны два натуральных числа. Большее из них равно квадрату их разности, а меньшее из них в 8 раз больше их наибольшего общего делителя. Найдите наименьшее общее кратное этих двух чисел.
Пусть даны числа x <= y. По условию y = (y−x)**2 , откуда y = n**2 и x = n**2 − n, где n — некоторое натуральное число. Поскольку НОД(n**2 , n**2 − n) = НОД(n**2 , n) = n, из второго условия задачи получим x = 8n следовательно n**2 − n = 8n следовательно n = 9. Значит, x = 72, y = 81, НОК(72,81) = 648.
648
msu
11
Четыре купца Арсений, Богдан, Вакула и Гаврила получили из казны 50 золотых червонцев. Они их решили разделить так, чтобы каждому досталось нечётное количество червонцев. Сколько есть разных способов дележа?
Ответ на вопрос задачи равен количеству решений уравнения x1 + x2 + x3 + x4 = 50 в положительных нечётных числах. Пусть xi = 2yi −1 (i = 1, 2, 3, 4). Тогда все yi — натуральные числа, и уравнение приобретает вид y1 + y2 + y3 + y4 = 27. Количество решений этого уравнения в натуральных числах равно числу способов расставить в ряду из 27 шариков 3 перегородки (перегородки можно ставить только между двумя шариками, нельзя ставить две перегородки рядом): число y1 будет равно количеству шариков левее первой перегородки, y2 — между первой и второй, y3 — между второй и третьей, y4 — правее третьей перегородки. А число способов расстановки перегородок равно (26 * 25 * 24) / (2 * 3) = 2600.
2600
msu
11
Шайка пиратов нашла клад в 15000 золотых монет. Они договорились, что некоторые из них получат по 48 монет, а остальные — по 49 монет. Клад удалось поделить без остатка. Какое наименьшее число пиратов может получить по 49 монет?
Пусть x пиратов получили по 48 монет, а y — по 49. Тогда 48x + 49y = 15000, (50 − 2)x + (50 − 1)y = 15000, 50(x + y) − 2x − y = 15000, ((x + y) − 2x + y)/50 = 300. Таким образом, число 2x + y нацело делится на 50. Пусть 2x + y = 50k, где k — некоторое натуральное число. Тогда 2x + y = 50k, x + y = 300 + k. Если вычесть из первого уравнения второе, а из удвоенного второго — первое, получим x = 49k − 300, y = 600 − 48k. Таким образом, каждому натуральному k соответствуют единственно возможные значения x и y. Число x будет неотрицательным при k >= 7, а число y — при k <= 12. Значит, k принадлежит [7; 12]. При k = 7 получаем наименьшее значение x = 43 и наибольшее значение y = 264, а при k = 12 — наоборот, наибольшее значение x = 288 и наименьшее значение y = 24.
24
msu
11
Сколько целочисленных решений у уравнения x**2 + (y**2 − 2022**2)**2 = sin(2023(x**3 − 1)) + 1?
При подстановке в уравнение целочисленного решения левая часть уравнения принимает целочисленное значение. Значит, правая часть тоже принимает целочисленное значение, то есть синус может принимать значения −1, 0, 1. Синус не может принимать значения 1, −1 на целочисленном аргументе, поэтому он принимает значение 0, откуда с учётом целочисленности x получаем, что 2023(x**3 − 1) = 0 и x = 1. Отсюда находим, что y = 2022, -2022 то есть уравнение имеет два целочисленных решения
2
msu
11
Три различных корня уравнения 8x**3 − 12x**2 − 2x + a = 0 составляют арифметическую прогрессию. Найдите наибольший из корней, ответ при необходимости округлите до сотых
Пусть x1 < x2 < x3 — корни уравнения. Так как они образуют арифметическую прогрессию, то x2 = (x1+x3)/2 , поэтому x1 + x2 + x3 = 3 * x2. С другой стороны, по теореме Виета для многочлена третьей степени x1 + x2 + x3 = 12/8 = 3/2 , откуда x2 = 1/2 . Так как x2 = 0.5 — корень, то 8(0.5)**3 − 12(0.5)**2 − 2(0.5) + a = 0, откуда a = 3. Далее, 8x**3 − 12x**2 − 2x + 3 = (x − 0.5)(8x**2 − 8x − 6), и два оставшихся корня равны −0.5 и 1.5. Значит, наибольший корень равен 1.5
1.5
msu
11
Обозначим через s(n) число цифр в десятичной записи натурального числа n. Найдите сумму s(2**2023) + s(5**2023)
Заметим, что s(2**2023) = lg(2**2023) + a = 2023lg2 + a, где 0 < a < 1. Аналогично, s(5**2023) = lg(5**2023) + b = 2023lg5 + b, где 0 < b < 1. Тогда s(2**2023) + s(5**2023) = 2023(lg2 + lg5) + a + b = 2023 + (a + b). Значит, a + b целое, причем 0 < a + b < 2, так как 0 < a < 1, 0 < b < 1. Отсюда a + b = 1, а ответ равен 2024. В общем случае — s(2**n) + s(5**n) = n + 1
2024
msu
11
Монета искривлена так, что вероятность выпадения ровно 3-х орлов в серии из 5- ти бросков равна вероятности выпадения ровно 2-х орлов в серии из 4-х бросков. Найдите вероятность того, что в серии из 6-ти бросков выпадет не менее 3-х орлов. Если необходимо, ответ округлите до сотых.
Пусть вероятность выпадения орла при одном броске равна p. Тогда вероятность выпадения ровно 3-х орлов в серии из 5-ти бросков равна 10p**3 * (1 − p)**2 , а вероятность выпадения ровно двух орлов в серии 4-х бросков равна 6p**2 * (1 − p)**2 . По условию 10p**3 * (1 − p)**2 = 6p**2 * (1 − p)**2 , откуда p = 3/5 . Тогда вероятность того, что в серии 6 бросков выпадет не менее 3-х орлов, равна 513/625 = 0.82. В варианте 2) p такая же, а вероятность выкинуть не менее 4 орлов за 6 бросков равна 7 * 3**5/5**5 = 1701/3125 = 0.54
0.54
msu
11
Числа a, b, c таковы, что каждое из двух уравнений x**2 + bx + a = 0 и x**2 + cx + a = 1 имеет по два целых корня, при этом все эти корни меньше (−1). Найдите наименьшее значение a.
По теореме Виета произведение корней первого уравнения равно a, произведение корней второго уравнения равно a − 1. Ввиду того, что корни целые и меньше −1, их произведение больше 1, поэтому каждое из двух последовательных чисел a − 1 и a является произведением двух различных целых чисел, больших 1. Так как первое нечетное число, не являющееся простым или квадратом простого, это 15, то получается a − 1 = 14, a = 15. Тогда корни первого уравнения −3 и −5 (при этом b = 8), корни второго уравнения −2 и −7 (при этом c = 9).
15
msu
11
Рассматриваются всевозможные наборы, которые состоят из 2017 различных натуральных чисел и в каждом из которых ни одно из чисел нельзя представить в виде суммы двух других чисел этого набора. Какое наименьшее значение может принимать наибольшее число в таком наборе?
Положим для краткости n = 2017. Рассмотрим следующий набор из n чисел: n − 1, n, n + 1, . . ., 2n − 3, 2n − 2. Так как (n − 1) + n = 2n − 1 > 2n − 2, то ни одно из чисел этого набора не может равняться сумме двух других, то есть представленный набор удовлетворяет условию задачи. Пусть теперь имеется произвольный набор из n натуральных чисел, удовлетворяющий условию задачи. Докажем, что наибольшее из этих чисел N не меньше, чем 2n − 2. Пусть N <= 2n − 3. Докажем, что в таком наборе чисел есть пара чисел, меньших N, сумма которых равна N. Разобьём все натуральные числа, меньшие N, на пары с суммой, равной N: (1, N − 1); (2, N − 2), . . .. Если таких пар n − 1 или больше, то чисел, меньших N, будет не меньше, чем 2n − 2, что невозможно. Поэтому таких пар не больше, чем n − 2, а чисел в наборе n. Значит, в наборе найдётся, по крайней мере, одна пара чисел с суммой, равной N. Таким образом, в произвольном наборе из n чисел, удовлетворяющих условию задачи, наибольшее из этих чисел не меньше, чем 2n − 2 (причём эта оценка достижима). В случае n = 2017 это число 4032.
4032
msu
11
На доске было написано 21 последовательное натуральное число. Когда одно из чисел стерли, сумма оставшихся стала равна 2017. Какое число стерли?
Пусть на доске были написаны числа N-10, N-9,…,N, …, N+10. Их сумма равна 21N. Когда стерли одно их этих чисел – х - сумма стала равна 2017, 21Nx = 2017. Следовательно, x = 21N - 2017 , поскольку это одно из этих чисел, получаем 𝑁 − 10 <= 21𝑁 − 2017 <= 𝑁 + 10. Решим неравенства 2007/20 <= 𝑁 <= 2027/20 , откуда N =101, следовательно, x=21 * 101 - 2017 = 104.
104
msu
9
Прямая проходит через точку с координатами (10; 0) и пересекает параболу 𝑦 = 𝑥**2 в точках с абсциссами 𝑥1 и 𝑥2. Найдите 1/𝑥1 + 1/𝑥2 .
Точки x1,x2, являются решениями уравнения 𝑥**2 = 𝑘(𝑥 − 10), где k – коэффициент наклона прямой. Тогда по теореме Виета 𝑥1 + 𝑥2 = 𝑘, 𝑥1𝑥2 = 10𝑘. Следовательно, 1/𝑥1 + 1/𝑥2 = (𝑥1+𝑥2)/𝑥1𝑥2 = 𝑘/10𝑘 = 1/10 .
0.1
msu
9
Сколько диагоналей в правильном 32-угольнике не параллельны ни одной из сторон этого 32-угольника?
Всего в 32-угольнике 32 * (32 - 3)/2 = 464 диагоналей. Разобьем стороны на 16 пар параллельных сторон. Несложно заметить, что если зафиксировать какую-то пару, т.е. 4 вершины, то оставшиеся вершины можно соединить попарно диагоналями, параллельными этой паре. Их всего будет (32 - 4)/2 = 14. Значит диагоналей, параллельных какой-то стороне – 14 * 16 = 224. А не параллельных – 464 - 224 = 240.
240
msu
9
Про натуральные числа m и n известно, что 3𝑛**3 = 5𝑚**2 . Найдите наименьшее возможное значение m+n.
Очевидно, если m,n содержат простые сомножители, не равные 3 или 5, то на них можно сократить (и уменьшить m+n). Пусть 𝑛 = 3**𝑎 * 5**𝑏 , 𝑚 = 3**𝑐 * 5**𝑑 . Тогда из условия вытекает, что 3a + 1 = 2c, 3b = 2d + 1. Наименьшие возможные значения: a = 1, b = 1, c = 2, d = 1, откуда n = 15, m = 45.
60
msu
9
А у нас сегодня кошка родила вчера котят! Известно, что два самых легких весят в сумме 80 г., четыре самых тяжелых – 200 г., а суммарный вес всех котят равен X г. При каком наименьшем X по этим данным нельзя однозначно определить, сколько котят родила кошка?
Упорядочим котят по весу: 𝑎1 <= 𝑎2 <= ⋯ <= 𝑎𝑛. По условию 𝑎1 + 𝑎2 = 80, следовательно, 𝑎3, … , 𝑎𝑛 >= 40 . Так же по условию 𝑎(𝑛−3) + 𝑎(𝑛−2) + 𝑎(𝑛−1) + 𝑎𝑛 = 200, следовательно, 𝑎1, … , 𝑎(𝑛−4) <= 50. Получаем, что a3+. . . +a(n−4) = X − 280 = X1, при этом каждое слагаемое в левой части принадлежит отрезку [ 40; 50]. Значит 40 * (𝑛 − 6) <= 𝑋1 <= 50 * (𝑛 − 6), откуда вытекает, что n-6 лежит на [X1/50; X1/40]. Длина этого отрезка равна X1/200, значит два различных целых числа могут попасть только при 𝑋1 >= 200. Берем X1 = 200 и проверяем, что такие наборы весов существуют: 40 * 7 + 50 * 4 = 480 и 40 * 2 + 50 * 8 = 480. Для полноты решения надо добавить, что если X=200, то котят 4, если 200 < X < 280, то котят 5 и при X = 280 котят 6, т.е. количество котят тоже определяется однозначно
480
msu
8
Найдите двузначное число, цифры которого различны и квадрат которого равен кубу суммы его цифр
Запишем условие в виде 𝐴𝐵**2 = (𝐴 + 𝐵)**3 . Заметим, что сумма цифр (A + B) не превосходит 17, т.е. 𝐴𝐵̅**2 <= 17**3 . Кроме того, это число 𝐴𝐵̅**2 = 𝑛**6 , где n - некоторое натуральное число, которое не превосходит 4. Но 1, 2 не подходят, т.к. их кубы однозначны. Осталось 3 и 4, непосредственная проверка показывает, что 27**2 = (2 + 7)**2 = 729.
27
msu
8
На окружности отмечено 100 точек, которые покрашены в красный или синий цвет. Некоторые точки соединены отрезками, причем у любого отрезка один конец синий, а другой – красный. Известно, что не существует двух красных точек, принадлежащих одинаковому количеству отрезков. Каково наибольшее возможное число красных точек?
Возьмем 50 красных и 50 синих точек. Первую красную точку не соединяем ни с какой другой, вторую с одной синей, …, 50-ю – с 49 синими. Очевидно, что больше 50 красных точек быть не может, т.к. если их 51 или больше, то синих не более 49, следовательно, количество вариантов соединения не более 50, т.е. (по принципу Дирихле) какие-то две красные точки будут принадлежать одинаковому количеству отрезков.
50
msu
8
Бизнесмены Иванов, Петров и Сидоров решили создать автопредприятие. Иванов купил для предприятия 70 одинаковых автомобилей, Петров – 40 таких же автомобилей, а Сидоров внес в предприятие 44 миллиона рублей. Известно, что Иванов и Петров могут поделить эти деньги между собой так, что вклад в общее дело каждого из трех бизнесменов будет одинаковым. Сколько денег полагается Иванову? Ответ дать в миллионах рублей.
1 способ. Каждый из бизнесменов должен внести столько же, сколько Сидоров, то есть 44 млн. руб. Если автомобиль стоит x, то (70x + 40x)/3 = 44 , x = 1.2 . Получается, что Иванов внес 70 * 1.2 = 84 млн. руб., поэтому он должен получить обратно 84 - 44 = 40 млн. руб. Петров внес 40 * 1.2 = 48млн. руб., поэтому он должен получить обратно 48 - 44 = 4 млн. руб. 2 способ. Каждый из бизнесменов должен внести столько же, сколько Сидоров, то есть 44 млн. руб. Если Иванов заберет t млн. руб., то Петрову останется ( 44 - t ) млн. руб. Поэтому 70x - t = 44 и 40x - (44 - t) = 44 (здесь x – цена автомобиля). Решая эту систему, получим x = 1.2 и t = 40.
40
msu
11
Сколько 9-значных чисел, делящихся на 5, можно составить путем перестановки цифр числа 377353752?
Так как число делится на 5, то на 9-м месте может стоять только пятерка. После этого нужно на оставшиеся 8 мест распределить 8 цифр: 3 семѐрки, 3 тройки, пятерку и двойку. Всего перестановок будет 8! , но так как есть повторяющиеся цифры, то ответ будет: 8! / 3! * 3! = (2 * 3 * 4 * 5 * 6 * 7 * 8) / (2 * 3 * 2 * 3) = 4 * 5 * 7 * 8 = 1120
1120
msu
11
Найдите сумму всех корней уравнения x**2 - 31x + 220 = 2**x(31 - 2x - 2**x)
Исходное уравнение равносильно уравнению (x + 2**x)**2 - 31(x + 2**x) + 220 = 0 следовательно x + 2**x = 11, x + 2**x = 20. Каждое из уравнений этой совокупности имеет не более одного корня, так функция f(x) = x + 2**x – монотонно возрастающая. Первое уравнение имеет корень x = 3 , а второе – корень x = 4 . Сумма корней равна 7.
7
msu
11
Среди всех простых дробей, числитель и знаменатель которых являются двузначными числами, найдите наименьшую дробь, большую чем 3/4 . В ответе укажите ее числитель.
Требуется найти такую дробь a/b , при которой a/b - 3/4 = (4a - 3b)/4b достигает минимума. Поэтому ищется максимальное двузначное b, при котором 4a - 3b = 1. Если при этом получается b >= 50 , то дробь a/b - 3/4 = 1/4b будет всегда меньше, чем любая другая дробь с большим целым числителем и другим двузначным b. Решаем уравнение 4a - 3b = 1. Так как b = (4a - 1)/3 = a + (a - 1)/3 – целое, то a = 1 + 3k , где k – произвольное целое число. Поэтому b = 1 +4k. Максимальным k, при котором a и b двузначные, будет .k = 24 Поэтому b = 97 и a = 73, то есть искомая дробь: a/b = 73/97
73
msu
11
Средняя оценка на ЕГЭ по математике всех выпускников школы, в которой два выпускных класса, оказалась равна 58 баллам. При этом средняя оценка у учеников 11 «А» класса составляет 54.5 балла, а у учеников 11 «Б» класса – 62 балла. Сколько учеников в 11 «Б» классе, если известно, что по нормативам в классе должно быть не меньше 22 и не больше 39 учеников?
Пусть в 11 «А» классе x учеников, а в 11 «Б» классе – y учеников. Тогда (54.5 * x + 62 * y)/(x + y) = 58 , откуда получается 7x = 8y . Значит, x = 8n , y = 7n, где n принадлежит N. По условию 22 <= 8n <= 39 (отсюда n = 3 или 4), 22 <= 7n <= 39 (отсюда n = 4 или 5), поэтому n = 4 . Значит, в классах соответственно 32 и 28 учеников.
28
msu
11
Найдите все четырехзначные числа, которые при делении на 71 дают в остатке 27, а при делении на 79 дают в остатке 40. В ответ запишите сумму всех таких чисел.
Из условия задачи следует, что искомое число равно x = 71m + 27 или x = 79n + 40 . Отсюда получается уравнение в целых числах 71m + 27 = 79n + 40, или 71m - 79n = 13. Решение последнего уравнения (его можно найти разными путями): m = 28 + 79k , n = 25 + 71k , где k – произвольное целое число. Поэтому искомые числа: x = 2015 + 5609k. Из них четырѐхзначными являются: 2015 и 7624. Их сумма: 9639.
9639
msu
11
В ящике лежат сто разноцветных шариков: 28 красных, 20 зеленых, 13 желтых, 19 синих, 11 белых и 9 черных. Какое наименьшее число шариков надо вытащить, не заглядывая в ящик, чтобы среди них заведомо оказалось не менее 15 шариков одного цвета?
Наихудший вариант: будет вытащено 14 красных, 14 зеленых, 13 желтых, 14 синих, 11 белых и 9 черных шариков – всего 75 шариков. Следующий шарик обязательно будет 15-м шариком какого-то одного из цветов: либо красным, либо зеленым, либо синим.
76
msu
11
Шариковая ручка стоит 10 рублей, гелевая – 50 рублей, а перьевая – 80 рублей. Какое наибольшее количество гелевых ручек можно купить при условии, что всего нужно купить ровно 20 ручек и среди них должны быть ручки всех трех типов, а истратить на них нужно ровно 1000 рублей?
Если куплено x шариковых ручек, y – гелевых и z – перьевых, то имеем два уравнения: x + y + z = 20 ; 10x + 50y + 80z = 1000 (или x + 5y + 8z = 100). Вычитая из второго уравнения первое, получим 4y + 7z = 80. Отсюда следует, что z должно делиться на 4, т. е. z = 4n. Значит, 4y + 7 * 4n = 80, т. е. y = 20 - 7n. Соответственно x = 20 - y - z =3n. Положительные решения получаются при n = 1 и n = 2 . В итоге решением являются две тройки целых чисел: (3, 13, 4) и (6, 6, 8). Наибольшее возможное y равно 13.
13
msu
11
Найдите наименьшее значение a, при котором сумма квадратов корней уравнения x**2 -3ax + a**2 = 0 равна 0.28.
По теореме Виета x1**2 + x2**2 = (x1 + x2)**2 - 2x1x2 = (3a)**2 - 2a**2 = 7a**2. По условию 7a**2 = 28/100, отсюда a**2 = 1/25 и a = 0.2, -0.2 . Важно при этом, что при a = 0.2, -0.2 дискриминант D = 9a**2 - 4a**2 = 5a**2 > 0.
-0.2
msu
11
Первоклассница Маша, заходя в школу, каждый раз поднимается на школьное крыльцо по лестнице, имеющей 10 ступенек. Находясь внизу лестницы или на очередной ее ступеньке, она может либо подняться на следующую ступеньку, либо перепрыгнуть через одну ступеньку вверх (перепрыгнуть через две или более ступенек Маша пока не может). Какое минимальное количество раз Маше нужно зайти в школу, чтобы подняться на крыльцо всеми возможными способами?
Заметим, что на крыльцо из одной ступеньки Маша может подняться одним способом, а на крыльцо из двух ступенек – двумя: либо наступив на каждую ступеньку, либо, перешагнув через первую ступеньку, попасть сразу на вторую. Пусть n a – количество способов, которыми Маша может подняться на крыльцо, имеющее n ступенек. Так как на n-ю ступеньку Маша может подняться либо с (n - 1)-й ступеньки, либо с (n - 2) -й ступеньки, то an = a(n - 2) + a(n - 1). Последовательно вычисляем: a1 = 1, a2 = 2, a3 = 1 + 2 = 3, a4 = 2 + 3 = 5, a5 = 3 + 5 = 8, a6 = 5 + 8 = 13, a7 = 8 + 13 = 21, a8 = 13 + 21 = 34, a9 = 21 + 34 = 55, a10 = 34 + 55 = 89. Заметим, что числа, построенные по правилу F0 = 0, F1 = 1, F(n) = F(n - 2) + F(n - 1) (n >= 2), называются числами Фибоначчи. Таким образом, a(n) = F(n + 1).
89
msu
11
Сколько страниц в книжке, если для полной нумерации ее страниц (от первой до последней) потребовалось 708 цифр?
Однозначными и двузначными числами занумеровано 99 страниц – на это ушло 9 * 1 + 90 * 2 = 189 цифр. Значит, осталось 708 - 189 = 519 цифр, которыми записано 519/3 = 173 трехзначных числа.
272
msu
11
Из сосуда, до краев наполненного вкусным 100%-м соком, пятиклассница Маша за день отпила 1 л сока, а вечером долила в сосуд 1 л воды. На следующий день после тщательного перемешивания она выпила 1 л смеси и вечером долила 1 л воды. На третий день, снова перемешав смесь, она выпила 1 л этой смеси и вечером долила 1 л воды. Утром следующего дня родители выяснили, что объем воды в сосуде на 1,5 л больше объема оставшегося сока. Сколько литров сока выпила в итоге Маша? Если ответ на вопрос задачи неоднозначен, укажите сумму всех возможных значений искомой величины.
Пусть объем сосуда в литрах равен x. После первого дня в сосуде останется (x - 1) литр сока, после второго дня – (x - 1)**2 / x литров сока, а после третьего дня – (x - 1)**3 / x литров сока. Согласно условию получаем уравнение x - (x - 1)**2 / x = (x - 1)**3 / x + 1.5 следовательно x**3 - (x - 1)**3 = (x - 1)**3 + 3/2x**2 следовательно (x - 2)**2(x - 1/2) = 0. По условию x > 1 , следовательно x = 2 (это объем сосуда), сока осталось (2 - 1)**3/2**2 = 1/4литра. Значит, Маша выпила 2 - 0.25 = 1.75 литра.
1.75
msu
11
Среди чисел, превышающих 2013, найдите наименьшее четное число N, при котором дробь (15N - 7)/(22N - 5) сократима.
Наличие общего множителя у чисел 15N - 7 и 22N - 5 влечет за собой наличие такого же множителя у числа (22N - 5) - (15N - 7) = 7N + 2, а далее последовательно у чисел (15N - 7) - 2 * (7N + 2) = N - 11, (7N + 2) - 7 * (N - 11) = 79. Так как 79 – простое число, то дробь сократима на 79, поэтому N - 11 = 79m, N = 11 + 79m. По условию N – четное, поэтому N = 90 + 158p. Нужное значение достигается при p = 13.
2144
msu
11
Маша задумала 10-значное число и сообщила Васе, что остаток от деления этого числа на 9 равен 3. Потом Маша зачеркнула одну цифру и сказала Васе, что остаток от деления на 9 получившегося 9-значного числа равен 7. Помогите Васе угадать цифру, которую зачеркнула Маша. Запишите эту цифру в ответ.
По признаку делимости на 9 остаток от деления суммы цифр числа на 9 равен 3 (поэтому сумма цифр этого числа равна 9n + 3), а остаток от деления суммы цифр получившегося числа на 9 равен 7 (поэтому сумма цифр получившегося числа равна 9k + 7). Если зачеркнутая цифра равна x, то 9n + 3 - x = 9k + 7, отсюда x = 9(n - k) + 3 - 7, то есть зачеркнутая цифра равна 9 + 3 - 7 = 5.
5
msu
11
При каком наименьшем натуральном k выражение 2017 * 2018 * 2019 * 2020 + k является квадратом натурального числа?
Докажем, что уже k = 1 подходит. Пусть n = 2018, тогда при k = 1 выражение из условия равняется (n − 1)n(n + 1)(n + 2) + 1 = (n − 1)(n + 2) * n(n + 1) + 1 = (n**2 + n − 2)(n**2 + n) + 1 = ((n**2 + n − 1) − 1)((n**2 + n − 1) + 1) + 1 = (n**2 + n − 1)**2
1
ommo
11
В школе имеется три кружка: по математике, по физике и по информатике. Директор как-то заметил, что среди участников кружка по математике ровно 1/6 часть ходит ещё и на кружок по физике, а 1/8 часть — на кружок по информатике; среди участников кружка по физике ровно 1/3 часть ходит ещё и на кружок по математике, а ровно 1/5 — на кружок по информатике; наконец, среди участников кружка по информатике ровно 1/7 часть ходит на кружок по математике. А какая часть участников кружка по информатике ходит на кружок по физике?
Пусть участников кружка по информатике x; тогда детей, которые ходят одновременно на кружок по математике и информатике x/7; тогда участников кружка по математике 8x/7, а детей, которые ходят одновременно на кружок по математике и по физике — 4x/21; тогда участников кружка по физике 4x/7, а детей, которые ходят одновременно на кружок по информатике и по физике — 4x/35
4/35
ommo
11
Что больше: 1 или 21/64 + 51/154 + 71/214?
21/64 + 51/154 + 71/214 < 21/63 + 51/153 + 71/213 = 1/3 + 1/3 + 1/3 = 1.
1
ommo
11
В футбольном турнире играли семь команд: каждая команда по одному разу сыграла с каждой. В следующий круг отбираются команды, набравшие тринадцать и более очков. За победу даётся 3 очка, за ничью — 1 очко, за поражение — 0 очков. Какое наибольшее количество команд может выйти в следующий круг?
Всего командами сыграна 7 * 6/2 = 21 игра, в каждой из которых разыгрывалось 2 или 3 очка. Следовательно, максимальное количество очков, которое суммарно может быть у всех команд это 21 * 3 = 63. Значит, количество вышедших в следующий этап команд n удовлетворяет неравенству n * 13 <= 63, откуда n <= 4.
4
ommo
11
Представьте в виде несократимой дроби 7 * 19/2015 * 6 * 19/2016 − 13 * 1996/2015 * 2 * 1997/2016 − 9 * 19/2015 .
После замены смешанных дробей на обыкновенные, получаем, что исходное выражение равно 14124/2015 * 12115/2016 − 28191/2015 * 6029/2016 − 171/2015 = (171112260 − 169963539 − 344736)/(2015 * 2016) = 803985/(2015 * 2016) = (2015 * 21 * 19)/(2015 * 21 * 96) = 19/96 .
19/96
ommo
11
Федерация спортивной борьбы присвоила каждому участнику соревнования квалификационный номер. Известно, что во встречах борцов, квалификационные номера которых отличаются более, чем на 2 номера, всегда побеждает борец с меньшим номером. Турнир для 256 борцов проводится по олимпийской системе: в начале каждого дня бойцы разбиваются на пары, проигравший выбывает из соревнований (ничьих не бывает). Какой наибольший квалификационный номер может иметь победитель?
Заметим, что борец с номером k может проиграть только борцу с номером k+1 или k+2, поэтому после каждого тура наименьший номер не может увеличиться больше, чем на 2 номера. На турнире с 256 участниками 8 туров, следовательно, номер победителя турнира не превосходит 1 + 2 * 8 = 17. Предположим, что борец с номером 17 может победить. Тогда в первом туре должны выбыть борцы с номерами 1 и 2. Это возможно только если борец с номером 1 проиграл борцу с номером 3, а борец с номером 2 проиграл борцу с номером 4. Значит после первого тура борцы с номерами 3 и 4 останутся. Аналогично, после второго тура останутся борцы с номерами 5 и 6, после третьего — 7 и 8, . . . , после седьмого — 15 и 16. Значит в последнем, финальном, бою встретятся борцы с номерами 15 и 16. Противоречие с предположением, что борец с номером 17 может победить. Покажем, что борец с номером 16 может победить. Назовём борцов с номерами большими 16 слабыми. Пусть в туре с номером k <= 7 борец с номером 2k − 1 проиграет борцу с номером 2k + 1, борец с номером 2k проиграет борцу с номером 2k + 2, борцы с номерами 2k + 3, . . . , 16 победят каких-то слабых борцов, оставшиеся слабые борцы как-то сыграют между собой. Тогда после 7 туров останутся борцы с номерами 15 и 16, и в финальном бое борец с номером 16 победит
16
ommo
11
Сумма первых тринадцати членов некоторой арифметической прогрессии составляет 50% от суммы последних тринадцати членов этой прогрессии. Сумма всех членов этой прогрессии без первых трёх относится к сумме всех членов без последних трёх как 4/3. Найти количество членов этой прогрессии.
Обозначим через a первый член арифметической прогрессии, через d — ее разность, через n — количество членов. Тогда, сумма первых тринадцати ее членов будет равна 13 * (a + (a + 12d))/2 , последних тринадцати — (13 * (a + (n − 13) d + a + (n − 1)d))/2 , всех без первых трех — ((n − 3) * (a + 3d + a + (n − 1)d))/2 , всех без последних трех — ((n − 3) * (a + a + (n − 4)d))/2 . Из условия тогда имеем систему: 2 * 13(a + 6d) = 13(a + (n − 7)d), 3 * (n − 3) * (2a + (n + 2)d) = 4 * (n − 3) * (2a + (n − 4)d) , или, после преобразований, a = (n − 19)d, −2a = (n − 22)d Умножая первое равенство на 2 и прибавляя ко второму, получаем (3n − 60)d = 0. Поскольку d != 0 (так как иначе сумма всех членов без первых трех, равнялась бы сумме всех членов без последних трех), получаем n = 20.
20
ommo
11
Четырехзначное число X не кратно 10. Сумма числа X и числа, записанного теми же цифрами в обратном порядке, равна N. Оказалось, что число N делится на 100. Найдите N.
Пусть X = 1000a + 100b + 10c + d, Y = 1000d + 100c + 10b + a, при этом a, b, c, d — цифры и a != 0. По условию X + Y делится на 100, т.е. 1001(a + d) + 110(b + c) . . . 100. Имеем 1001(a + d) . . . 10, т.е. a + d . . . 10, откуда, поскольку a и d — цифры и a != 0, 1 <= a + d <= 18, значит a + d = 10. Далее, 1001 * 10 + 110(b + c) . . . 100, т.е. b + c + 1 . . . 10, откуда, поскольку b и c — цифры, 1 <= b + c + 1 <= 19, значит, b + c = 9. Таким образом, N = X + Y = 1001 * 10 + 110 * 9 = 11000.
11000
ommo
11
В конус вписан цилиндр объема 9. Плоскость верхнего основания этого цилиндра отсекает от исходного конуса усеченный конус объемом 63. Найдите объем исходного конуса.
Пусть высота и радиус исходного конуса равны H и R, а высота и радиус цилиндра равны h и r. Воспользуемся формулой для объема усеченного конуса: 1/3π(R**2 +Rr +r**2)h = 63. Также мы знаем, что πr**2h = 9. Поделив соответствующие части равенств получаем (R/r)**2 + (R/r) + 1 = 63 * 3/9 = 21. Решая квадратное уравнение получаем корни 4 и −5, геометрический смысл имеет только положительный. R/r = 4, (H−h)/H = 4, h/H = 3/4 , откуда получаем для исходного конуса: V = 1/3πR**2H = 1/3(πr**2h)(R/r)**2 * (H/h) = 1/3 * 9 * 4**2 * 4/3 = 64
64
ommo
11
Пройдя 2/5 длины узкого моста, пешеход заметил, что сзади к мосту приближается машина. Тогда он пош¨ел назад и встретился с машиной у начала моста. Если бы пешеход продолжал идти вперед, то машина догнала бы его у конца моста. Найти отношение скорости машины к скорости пешехода.
За время t, которое пешеход двигался навстречу машине до встречи у начала моста, он прош¨ел 2/5 длины моста. Следовательно, если бы пешеход продолжал идти впер¨ед, то за время t он прош¨ел бы ещ¨е 2/5 длины моста и ему осталось бы пройти 1/5 длины моста, а согласно условию, машина за время t подъехала бы к началу моста и до встречи с пешеходом ей осталось бы проехать мост целиком. Значит, отношение скорости машины к скорости пешехода равно 5.
5
msu
11
Сколько решений имеет уравнение 1/(x − 1)**2 + 1/(x − 2)**2 = 2/x**2?
Исходное уравнение при условиях x != 0, x != 1, x != 2 равносильно уравнению 6x**3 − 21x**2 + 24x − 8 = 0. Рассмотрим функцию f(x) = 6x**3 − 21x**2 + 24x − 8. Поскольку f′(x) = 18x**2 − 42x + 24, то x = 1 — точка максимума, а x = 4/3 — точка минимума. На области (−∞, 1) ∪ ( 4 3 ; +∞) функция f возрастает, на промежутке (1; 4/3) убывает. Так как f(0) = −8, f(1) = 1, f(4/3) = 8/9 , то уравнение f(x) = 0 имеет единственный корень, который лежит на промежутке (0; 1).
1
msu
11
В какую степень надо возвести корень x0 уравнения x**11 + x**7 + x**3 = 1, чтобы получить число x0 ** 4 + x0 ** 3 − 1?
Если x0 = 1, то и x0 ** 4 + x0 ** 3 − 1 = 1, следовательно, в этом случае степень может быть любой. Но число x0 = 1 не удовлетворяет уравнению x**11 + x**7 + x**3 = 1, поэтому x0 != 1. Поскольку 1 = x0 ** 11 + x0 ** 7 + x0 ** 3, получаем x0 ** 4 + x0 ** 3 − 1 = x0 ** 4 + x0 ** 3 − x0 ** 11 − x0 ** 7 − x0 ** 3 = x0 ** 4 * (1 − x0 ** 7 − x0 ** 3) = x0 ** 4 * (x0 ** 11 + x0 ** 7 + x0 ** 3 − x0 ** 7 − x0 ** 3) = x0 ** 15.
15
msu
11
Маша выписала на доске подряд все натуральные числа от 2 до 2015. Пришёл Ваня и заменил каждое из этих чисел суммой его цифр. Пришла Таня и сделала то же самое с получившимися числами. Так продолжалось до тех пор, пока на доске не осталось 2014 однозначных чисел (цифр). Какова сумма всех оставшихся чисел?
Число a и сумма цифр числа a при делении на 9 дают одинаковые остатки, поэтому в итоге на доске останется ряд чисел: 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, …, 9, 1, 2, и так далее. Так как 2014 = 9 * 223 / 7, то в этом ряду 223 раза встретится последовательность от 1 до 9 и будет ещё 7 цифр. Значит, ряд заканчивается цифрой 8, и искомая сумма чисел равна (1 + 2 + ... + 9) * 224 - 1 - 9 = 45 * 224 - 10 = 10070.
10070
msu
11
Для охраны объекта в течение 5 суток заказчик договорился с охранниками о следующем: все они укажут отрезки времени своих предполагаемых дежурств с единственным условием, чтобы их объединение составляло заданные 5 суток, а он выберет из этих отрезков любой набор, удовлетворяющий тому же условию, и оплатит работу из расчета 500 руб. в час каждому дежурному. Какая наименьшая сумма денег, заранее подготовленная заказчиком, позволит ему наверняка расплатиться с охранниками?
1. Двойной оплаты времени охраны точно хватит, поскольку из любого покрытия отрезка конечной системой отрезков можно выбрать не более чем двукратное подпокрытие (если какая-то точка покрыта более чем двумя отрезками, то можно оставить только два из них — с самым левым концом и с самым правым, а остальные выбросить). 2. Менее чем двойной оплаты может не хватить при грамотных действиях охранников: они могут поставить свои дежурства так, чтобы ни одного из них выбросить было нельзя, а суммарная длина дежурств была сколь угодно близкой к удвоенному периоду наблюдения: 2 * 5 * 24 * 500 = 120 тыс. руб.
120000
msu
11
Прямоугольная таблица состоит из 5681 одинаковой клетки. Петя и Вася пронумеровали клетки натуральными числами 1, 2, …, 5681 подряд. Петя нумеровал клетки по строкам слева направо (сначала первую строку, затем вторую и т. д.), а Вася – по столбцам сверху вниз (сначала первый столбец, затем второй и т. д.). Оказалось, что ровно в 5 клетках их номера совпали. Чему равна сумма числа строк и числа столбцов в этой таблице?
Пусть в таблице m строк и n столбцов, а клетка, получившая одинаковые номера, расположена в строке с номером i и в столбце с номером j. Тогда, если считать по строкам, в этой клетке стоит число (i - 1) * n + j, а если считать по столбцам, то это число равно (j - 1) * m + i. Следовательно, (i - 1) * n + j = (j - 1) * m + i и (i - 1) * (n - 1) = (j - 1) * (m - 1). Если m = 1 или n = 1 , то номера Пети и Васи совпадут во всех клетках. Значит, m > 1 и n > 1 . Пусть d = НОД(n - 1, m - 1), тогда n - 1 = pd , m - 1 = pd , где НОД(p, q) = 1. Получаем (i - 1) * p = (j - 1) * q. Поэтому i - 1 = qk, j - 1 = pk, k = 0, 1, ..., d. Следовательно, количество клеток, получивших одинаковые номера, равно d + 1 = НОД(n - 1, m - 1) + 1 . Так как 5681 = 13 * 19 * 23, то n =13, m = 19 * 23 = 437 или, наоборот, n = 437 , m =13 . В любом случае m + n = 450.
450
msu
11
Решите уравнение 1 – (2 – (3 – (...2010 – (2011 – (2012 – x))...))) = 1006.
Открыв скобки, получим 1 – 2 + 3 – 4 + … +2011 – 2012 + x = 1006; -1006 + x = 1006; x=2012.
2012
school
10
Дорогу длиной 28 километров разделили на три неравные части. Расстояние между серединами крайних частей равно 16 км. Найдите длину средней части.
Расстояние между серединами крайних частей складывается из половин крайних участков и целого среднего участка, т.е. удвоенное это число равно длине дороги плюс длина среднего участка. Т.о. длина среднего участка = 16 * 2 - 28 = 4.
4
school
10
Решите числовой ребус: ТЭТА + БЭТА = ГАММА. (Разные буквы – разные цифры.)
Так как A + A заканчивается на А, то А = 0. Т.к. Г – результат переноса в следующий разряд, то Г = 1. Так как A + A заканчивается на А, то А = 0. Значит переноса в разряд десятков нет, т.е. Т + Т заканчивается на М, и значит М – четно. Переноса в разряд сотен тоже нет, т.к. иначе нечетное число Э + Э + 1 заканчивалось бы на четное М. Т.к. переноса нет, то 2ТБ < 10. Возможные варианты 2, 3, 4. Если Т = 2, то Э = 7, откуда Б = 7 – но 7 уже занята. Если Т = 3, то М = 6, Э = 8, откуда Б = 6, но 6 = М. И последний вариант Т = 4. Тогда М = 8, Э = 9. Откуда Б = 5 – противоречия нет. Таким образом, возможен только один вариант: 4940 + 5940 = 10880
10880
school
10
Саша, Лёша и Коля одновременно стартуют в забеге на 100 м. Когда Саша финишировал, Лёша находился в десяти метрах позади него, а когда финишировал Лёша — Коля находился позади него в десяти метрах. На каком расстоянии друг от друга находились Саша и Коля, когда Саша финишировал? (Предполагается, что все мальчики бегут с постоянными, но, конечно, не равными скоростями.)
Скорость Коли составляет 0,9 от скорости Лёши. В момент, когда Саша финишировал, Лёша пробежал 90 м, а Коля 0,9 * 90 = 81 м. Следовательно, расстояние между Сашей и Колей было 19 м
19
school
8
Каждый из 10 гномов либо всегда говорит правду, либо всегда лжет. Известно, что каждый из них любит ровно один сорт мороженого: сливочное, шоколадное или фруктовое. Сначала Белоснежка попросила поднять руки тех, кто любит сливочное мороженое, и все подняли руки, потом тех, кто любит шоколадное мороженое – и половина гномов подняли руки, потом тех, кто любит фруктовое мороженое – и руку поднял только один гном. Сколько среди гномов правдивых?
Гномы, которые всегда говорят правду, подняли руку один раз, а гномы, которые всегда лгут, – два раза. Всего было поднято 16 рук (10 + 5 + 1). Если бы все гномы сказали правду, то было бы поднято 10 рук. Если одного правдивого гнома заменить на одного лгуна, то число поднятых рук увеличится на 1. Так как было поднято 6 «лишних» рук, то 6 гномов солгали, а 4 сказали правду.
4
school
8
Назовем число зеркальным, если слева направо оно «читается» так же, как справа налево. Например, число 12321 – зеркальное. Сколько существует пятизначных зеркальных чисел, которые делятся на 5?
Число, которое делится на 5, должно оканчиваться на 5 или на 0. Зеркальное число оканчиваться на 0 не может, так как тогда оно должно на 0 начинаться. Итак, первая и последняя цифры - это 5. Вторая и третья цифра могут быть любыми – от сочетания 00 до сочетания 99 – всего 100 вариантов. Так как четвертая цифра повторяет вторую, всего различных чисел будет 100.
100
school
8
Фирма изготавливает лимонный напиток, разбавляя лимонный сок водой. Сначала фирма производила напиток, содержащий 15% лимонного сока. Через некоторое время генеральный директор отдал указание снизить содержание лимонного сока до 10%. На сколько процентов увеличится количество производимого лимонного напитка при тех же объёмах поставок лимонов?
Содержание лимонного сока в напитке после указания генерального директора снизилось в полтора раза. Значит, из тех же лимонов можно приготовить в полтора раза больше лимонного напитка. Иными словами, количество производимого лимонного напитка увеличится в полтора раза или на 50%.
50
school
8
Все натуральные числа, сумма цифр в записи которых делится на 5, выписывают в порядке возрастания: 5, 14, 19, 23, 28, 32, … Чему равна самая маленькая положительная разность между соседними числами в этом ряду? Приведите пример и объясните, почему меньше быть не может.
Разность меньше 1 быть не может, так речь идет про разность различных натуральных чисел, например, между числами 49999 и 50000. Понятно, что если два соседних числа отличаются только в разряде единиц, то разность между ними равна 5 (например, 523 и 528). Значит, нужно, чтобы числа отличались и в других разрядах. Можно попробовать взять большее число круглым, тогда числа будут отличаться минимум в двух разрядах. Возьмем, например, 50, предыдущее число 46, а разность равна 4. Если взять 500, то предыдущее число 497 и разность равна 3. Осталось подобрать такое число нулей, чтобы разность была равна 1.
1
school
8
В тот день, когда Диму поздравляли с днём рождения его брат и сестра, Дима сказал: «Смотрите, как интересно, я теперь вдвое старше брата и втрое старше сестры!» – «А ваш средний возраст 11 лет», – подхватил папа. Сколько лет исполнилось Диме?
Если возрасты Димы, его брата и сестры изобразить отрезками, то «Димин отрезок» состоит из двух «отрезков брата» или трех «отрезков сестры». Тогда, если возраст Димы поделить на 6 частей, то возраст сестры – две такие части, а возраст брата – три такие части. Тогда сумма их возрастов – 11 таких частей. С другой стороны, если средний возраст равен 11 лет, то сумма возрастов – 33 года. Откуда следует, что в одной части – три года. Значит, Диме исполнилось 18 лет.
18
school
9
Сколько существует трёхзначных чисел, которые в 5 раз больше произведения своих цифр?
В составе цифр, которыми записывается число, нет цифры 0, иначе не может быть выполнено условие задачи. Данное трехзначное число получено умножением на 5 произведения своих цифр, следовательно, оно делится на 5. Значит, его запись оканчивается цифрой 5. Получаем, что произведение цифр, умноженное на 5, должно делиться на 25. Заметим, что четных цифр в записи числа быть не может, иначе произведение цифр было бы равно нулю. Таким образом, трехзначное число должно делиться на 25 и не содержать четных цифр. Таких чисел только пять: 175, 375, 575, 775 и 975. Произведение цифр искомого числа должно быть меньше 200, иначе, умноженное на 5, даст четырехзначное число. Поэтому числа 775 и 975 заведомо не подходят. Среди оставшихся трех чисел только 175 удовлетворяет условию задачи.
1
school
9
За круглым столом сидят 30 человек — рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них ровно один друг, причем у рыцаря этот друг — лжец, а у лжеца этот друг — рыцарь (дружба всегда взаимна). На вопрос «Сидит ли рядом с вами ваш друг?» сидевшие через одного ответили «да». Сколько из остальных могли также ответить «да»? (Перечислите все варианты и докажите, что других нет.)
Из условия следует, что все сидящие за столом разбиваются на пары друзей; значит, рыцарей и лжецов поровну. Рассмотрим любую пару друзей. Если они сидят рядом, то рыцарь на заданный вопрос ответит «да», а лжец — «нет». Если же они не сидят рядом, то их ответы будут противоположными. В любом случае ровно один из пары друзей даст ответ «да». Значит, при любой рассадке все остальные 15 ответов бу- дут «нет».
0
region
9
На окружности отмечено 2N точек ( N — натуральное число) Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем паросочетанием такой набор из N хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание чётным, если количество точек, в которых пересекаются его хорды, чётно, и нечётным иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Приведём другое доказательство шага индукции. Пусть отмеченные точки — A1,... ,A2N . Рассмотрим все паросочетания, в которых A2N − 1 и A2N соединены хордой. Эта хорда не пересекается ни с одной другой. Значит, выбросив её из каждого из рассматриваемых паросочетаний, мы получим все паросочетания на точках A1,... ,A2N − 2, причём чётность каждого из них сохранится. По предположению индукции, среди на- ших паросочетаний чётных на одно больше, чем нечётных. Для завершения доказательства достаточно показать, что среди всех остальных паросочетаний поровну чётных и нечётных. Рассмотрим любое из них; пусть в нём есть хорды A2N−1Ai и A2N Ak. Теперь «поменяем местами» точки A2N − 1 и A2N , то есть заменим наши хорды на A2N Ai и A2N − 1Ak. При этом, если исходная хорда пересекалась с какой-то из остальных, то и новая хорда будет с ней пересекаться. С другой стороны, если хорды A2N − 1Ai и A2N Ak не пересекались, то новые хорды будут пересекаться, и наоборот. Итак, каждому оставшемуся чётному паросочетанию мы сопоставили нечётное, и наоборот; при этом разным паросочетаниям, очевидно, соответствуют разные. Значит, оставшихся чётных и нечётных паросочетаний поровну, что и требовалось доказать.
1
region
10
Петя выбрал натуральное число a > 1 и выписал на доску пятнадцать чисел 1 + a, 1 + a**2 , 1 + a**3 , . . . , 1 + a**15. Затем он стёр несколько чисел так, что любые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться н а доске?
Покажем сначала, что искомых чисел не может быть более четырех. Заметим, что если k — нечётное, то число 1 + a**(nk) = 1**k + (a**n)**k делится на 1 + a**n. Далее, каждое из чисел 1, 2, . . . , 15 имеет один из видов k, 2k, 4k, 8 k, где k нечётно. Таким образом, каждое из чисел 1 + a, 1 + a 2 , 1 + a 3 , . . . , 1 + a15 делится либо на 1 + a, либо на 1 + a**2, либо на 1 + a**4, либо на 1 + a**8. Поэтому, если мы возьмем хотя бы пять чисел, то среди них найдутся два, делящиеся на одно и то же число, большее 1; значит, они не будут взаимно просты. Итак, оставшихся чисел не более четырех. Осталось показать, что четыре числа могли остаться. Действительно, если a = 2, то можно оставить числа 1 + 2 = 3, 1 + 2**2 = 5, 1 + 2**4 = 17 и 1 + 2**8 = 257. Все они попарно взаимно просты.
4
region
10
2011 складов соединены дорогами так, что от любого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по x1, . . . , x2011 кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой склад по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по y1, . . . , y2011 кг цемента соответственно, причём x1 + x2 + . . . + x2011 = y1 + y2 + . . . + y2011. За какое минимальное количество рейсов можно выполнить план при любых значениях чисел xi и yi и любой схеме дорог?
Покажем вначале, что за 2009 рейсов план выполнить удастся не всегда. Пусть (при произвольной схеме дорог) изначально весь цемент расположен на одном складе S, а распределить его нужно по всем складам поровну. Тогда на каждый склад, кроме S, нужно в каком-нибудь рейсе цемент завезти; ясно, что такие 2010 рейсов различны, поэтому всего рейсов должно быть не меньше 2010. Нам осталось показать, что за 2010 рейсов план всегда удастся выполнить. Мы докажем индукцией по n, что при n складах всегда удастся обойтись n − 1 рейсом. База при n = 1 очевидна. Пусть n > 1. Так как с любого склада можно добраться до любого другого, то существует маршрут, проходящий по всем складам (может быть, неоднократно). Рассмотрим любой такой маршрут и склад A, который впервые появился на этом маршруте позже всего. Тогда, если удалить склад A и все дороги, ведущие из него, то по-прежнему от любого склада до любого другого можно добраться (по предыдущим дорогам маршрута). Можно считать, что A — склад с номером n. Если yn <= xn, то вывезем из A на любой соединённый с ним склад xn − yn кг цемента, а после этого забудем про него и про все дороги, из него ведущие. По предположению индукции, для оставшихся складов можно выполнить план за (n − 1) − 1 рейс. В итоге через (n − 2) + 1 рейс получится требуемое распределение цемента. Если же yn > xn, то мы уже доказали, что из распределения, когда на i-м складе находится yi кг, можно получить распределение, когда на i-м складе находится xi кг, за n − 1 рейс. Проведя теперь все эти перевозки в обратном порядке (и обратном направлении), мы осуществим требуемый план.
2010
region
11
Квадратный трехчлен f(x) таков, что многочлен (f(x))**5 − f(x) имеет ровно три вещественных корня. Найдите ординату вершины графика этого трехчлена.
Так как g(x) = (f(x))**5− f(x) = f(x) * (f(x) − 1) * (f(x) + 1) * ((f(x))**2 + 1), то корнями нашего многочлена являются корни трехчленов f(x), f(x) − 1 и f(x) + 1 (поскольку многочлен (f(x))**2 + 1 всюду положителен). Ясно, что любое число может быть корнем только одного из них. Пусть y0 — искомая ордината вершины. Предположим, что y0 != 0. Будем считать, что старший коэффициент в f(x) положителен (иначе заменим f(x) на − f(x), при этом y0 заменится на − y0). Предположим, что y0 > 0; тогда f(x) > 0 и f(x) + 1 > 0 при всех x, значит, корни многочлена g(x) являются корнями f(x) − 1, а их не больше двух. Если же y0 < 0, то трехчлены f(x) и f(x) − 1 имеют по два корня, значит, g(x) имеет хотя бы 4 корня. Оба случая невозможны; значит, y0 = 0.
0
region
11