Search is not available for this dataset
image
imagewidth (px)
170
5.81k
label
class label
30 classes
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
0acerolas
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
1apples
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
2apricots
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
3avocados
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
4bananas
5blackberries
5blackberries
5blackberries
5blackberries
5blackberries
5blackberries
5blackberries
5blackberries
5blackberries
6blueberries
6blueberries
6blueberries
6blueberries
6blueberries
6blueberries

Fruits30 Dataset

Description:

The Fruits30 dataset is a collection of images featuring 30 different types of fruits. Each image has been preprocessed and standardized to a size of 224x224 pixels, ensuring uniformity in the dataset.

Dataset Composition:

  • Number of Classes: 30
  • Image Resolution: 224x224 pixels
  • Total Images: 826

Classes:

0 : acerolas
1 : apples
2 : apricots
3 : avocados
4 : bananas
5 : blackberries
6 : blueberries
7 : cantaloupes
8 : cherries
9 : coconuts
10 : figs
11 : grapefruits
12 : grapes
13 : guava
14 : kiwifruit
15 : lemons
16 : limes
17 : mangos
18 : olives
19 : oranges
20 : passionfruit
21 : peaches
22 : pears
23 : pineapples
24 : plums 25 : pomegranates
26 : raspberries
27 : strawberries
28 : tomatoes
29 : watermelons

Preprocessing:

Images have undergone preprocessing to maintain consistency and facilitate model training. Preprocessing steps may include resizing, normalization, and other enhancements.

Intended Use:

The Fruits30 dataset is suitable for tasks such as image classification, object recognition, and machine learning model training within the domain of fruit identification.

Sources:

Croudsource.

Note:

Ensure proper attribution and compliance with the dataset's licensing terms when using it for research or development purposes.

Downloads last month
1,450

Models trained or fine-tuned on VinayHajare/Fruits-30