|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: conditioning_image |
|
dtype: image |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 111989279184.95 |
|
num_examples: 507050 |
|
download_size: 112032639870 |
|
dataset_size: 111989279184.95 |
|
--- |
|
# Dataset Card for "hagrid-mediapipe-hands" |
|
|
|
This dataset is designed to train a ControlNet with human hands. It includes hand landmarks detected by MediaPipe(for more information refer to: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker). |
|
The source image data is from [HaGRID dataset](https://github.com/hukenovs/hagrid) and we use a modified version from Kaggle(https://www.kaggle.com/datasets/innominate817/hagrid-classification-512p) to build this dataset. There are 507050 data samples in total and the image resolution is 512x512. |
|
|
|
### Generate Mediapipe annotation |
|
We use the script below to generate hand landmarks and you should download `hand_landmarker.task` file first. For more information please refer to [this](https://developers.google.com/mediapipe/solutions/vision/hand_landmarker). |
|
``` |
|
import mediapipe as mp |
|
from mediapipe import solutions |
|
from mediapipe.framework.formats import landmark_pb2 |
|
from mediapipe.tasks import python |
|
from mediapipe.tasks.python import vision |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
|
|
def draw_landmarks_on_image(rgb_image, detection_result): |
|
hand_landmarks_list = detection_result.hand_landmarks |
|
handedness_list = detection_result.handedness |
|
annotated_image = np.zeros_like(rgb_image) |
|
|
|
# Loop through the detected hands to visualize. |
|
for idx in range(len(hand_landmarks_list)): |
|
hand_landmarks = hand_landmarks_list[idx] |
|
handedness = handedness_list[idx] |
|
|
|
# Draw the hand landmarks. |
|
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList() |
|
hand_landmarks_proto.landmark.extend([ |
|
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks |
|
]) |
|
solutions.drawing_utils.draw_landmarks( |
|
annotated_image, |
|
hand_landmarks_proto, |
|
solutions.hands.HAND_CONNECTIONS, |
|
solutions.drawing_styles.get_default_hand_landmarks_style(), |
|
solutions.drawing_styles.get_default_hand_connections_style()) |
|
|
|
return annotated_image |
|
|
|
# Create an HandLandmarker object. |
|
base_options = python.BaseOptions(model_asset_path='hand_landmarker.task') |
|
options = vision.HandLandmarkerOptions(base_options=base_options, |
|
num_hands=2) |
|
detector = vision.HandLandmarker.create_from_options(options) |
|
|
|
# Load the input image. |
|
image = np.asarray(Image.open("./test.png")) |
|
image = mp.Image( |
|
image_format=mp.ImageFormat.SRGB, data=image |
|
) |
|
|
|
# Detect hand landmarks from the input image. |
|
detection_result = detector.detect(image) |
|
|
|
# Process the classification result and save it. |
|
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result) |
|
cv2.imwrite("ann.png", cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)) |
|
``` |