|
--- |
|
license: eupl-1.1 |
|
task_categories: |
|
- time-series-forecasting |
|
tags: |
|
- climate |
|
size_categories: |
|
- 100M<n<1B |
|
--- |
|
|
|
# Dataset Summary |
|
Contains hourly 2 meters of land (on-shore) air temperature data within grid areas of Thailand country. <br/> |
|
Data is retrieved from [Corpernicus Climate Data Store](https://cds.climate.copernicus.eu/cdsapp#!/home) on [ERA5-Land hourly data from 1950 to present](https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview) |
|
<br/> |
|
Thailand areas in this context is **Latitude** = **[5.77434, 20.43353]** and **Longitude** = **[97.96852, 105.22908]** <br/> |
|
For more details of data, you can refer to [ERA5-Land hourly data from 1950 to present](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview) |
|
- Data Granularity: Hourly per Latitude/ Longitude |
|
- Period: 01/Jan/2010 - 13/May/2023 |
|
- Temperature Unit: Kelvin |
|
|
|
|
|
# Source Data |
|
- Organization of the producer: ECMWF |
|
|
|
# Data Creation |
|
Below is an example of how to make data query using Python via [CDS API](https://cds.climate.copernicus.eu/api-how-to) in monthly requests. <br/> |
|
|
|
``` python |
|
import cdsapi |
|
c = cdsapi.Client() |
|
|
|
month_list = [str(num).zfill(2) for num in range(1, 13)] |
|
day_list = [str(num).zfill(2) for num in range(1, 32)] |
|
time_list = [str(num).zfill(2) + ":00" for num in range(0, 24)] |
|
year_list = [str(num) for num in range(2000, 2022)] |
|
|
|
for year in year_list: |
|
for month in month_list: |
|
c.retrieve('reanalysis-era5-land', |
|
{ |
|
'variable': [ |
|
'2m_temperature'] |
|
, |
|
'year': year, |
|
'month' : month, |
|
'day': day_list, |
|
'time': time_list, |
|
'format': 'grib', |
|
'area': [ |
|
20.43, 97.96, 5.77, |
|
105.22, |
|
], |
|
}, |
|
f'{year}_{month}_hourly_2m_temp_TH.grib') |
|
``` |
|
Direct file output from API is in ```.grib``` format, to make it easy for futher analysis work, I have converted it to ```.parquet``` format. |
|
To convert GRIB format to pandas datafram, you can use [xrray](https://github.com/pydata/xarray) and [cfgrib](https://github.com/ecmwf/cfgrib) library to help as below example snippet of code. |
|
|
|
``` python |
|
import xarray as xr |
|
import cfgrib |
|
|
|
ds = xr.open_dataset('2022_12_31_hourly_2m_temp_TH.grib', engine='cfgrib') |
|
df = ds.to_dataframe().reset_index() |
|
|
|
``` |
|
|
|
## Licensing |
|
[Climate Data Store Product Licensing](https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf) |
|
|
|
## Citation |
|
- This data was generated using **Copernicus Climate Change Service** information and <br/> |
|
contains modified **Copernicus Climate Change Service** information on 2020/Jan/01 - 2023/May/13 data period |
|
|
|
- Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. <br/> |
|
- Copernicus Climate Change Service (C3S) Climate Data Store (CDS). <br/> |
|
DOI: [10.24381/cds.e2161bac](https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview) (Accessed on 13-May-2023) |
|
|
|
- Copernicus Climate Change Service (C3S) (2022): ERA5-Land hourly data from 1950 to present. <br/> |
|
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). <br/> |
|
DOI: [10.24381/cds.e2161bac](https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview) (Accessed on 13-May-2023) |